US20120040195A1 - Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces - Google Patents
Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces Download PDFInfo
- Publication number
- US20120040195A1 US20120040195A1 US13/277,504 US201113277504A US2012040195A1 US 20120040195 A1 US20120040195 A1 US 20120040195A1 US 201113277504 A US201113277504 A US 201113277504A US 2012040195 A1 US2012040195 A1 US 2012040195A1
- Authority
- US
- United States
- Prior art keywords
- polyolefin
- modified
- water
- agent
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 163
- 239000002318 adhesion promoter Substances 0.000 title description 15
- 239000000203 mixture Substances 0.000 claims abstract description 108
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000000178 monomer Substances 0.000 claims abstract description 32
- 150000001412 amines Chemical class 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229920003023 plastic Polymers 0.000 claims abstract description 9
- 239000004033 plastic Substances 0.000 claims abstract description 9
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 claims abstract description 6
- 150000001733 carboxylic acid esters Chemical class 0.000 claims abstract description 5
- 150000007529 inorganic bases Chemical class 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 239000002987 primer (paints) Substances 0.000 claims description 78
- 238000000576 coating method Methods 0.000 claims description 36
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 35
- -1 polypropylene Polymers 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 229920000642 polymer Polymers 0.000 claims description 27
- 229920000877 Melamine resin Polymers 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 25
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 25
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 230000004927 fusion Effects 0.000 claims description 16
- 239000004094 surface-active agent Substances 0.000 claims description 16
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 14
- 239000005977 Ethylene Substances 0.000 claims description 14
- 239000008199 coating composition Substances 0.000 claims description 13
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 11
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 239000000049 pigment Substances 0.000 claims description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 10
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 claims description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 8
- 239000004711 α-olefin Substances 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 7
- 229920001897 terpolymer Polymers 0.000 claims description 7
- 239000002562 thickening agent Substances 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 6
- 229920005862 polyol Polymers 0.000 claims description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 6
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 claims description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 5
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 4
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 claims description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 4
- 239000011976 maleic acid Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 3
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- 239000000417 fungicide Substances 0.000 claims description 3
- 239000002736 nonionic surfactant Substances 0.000 claims description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 claims description 3
- 239000001373 (E)-2-methylpent-2-enoic acid Substances 0.000 claims description 2
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 claims description 2
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 claims description 2
- MFGALGYVFGDXIX-UHFFFAOYSA-N 2,3-Dimethylmaleic anhydride Chemical compound CC1=C(C)C(=O)OC1=O MFGALGYVFGDXIX-UHFFFAOYSA-N 0.000 claims description 2
- JJYWRQLLQAKNAD-UHFFFAOYSA-N 2-Methyl-2-pentenoic acid Natural products CCC=C(C)C(O)=O JJYWRQLLQAKNAD-UHFFFAOYSA-N 0.000 claims description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 claims description 2
- JJYWRQLLQAKNAD-PLNGDYQASA-N 2-methyl-2-pentenoic acid Chemical compound CC\C=C(\C)C(O)=O JJYWRQLLQAKNAD-PLNGDYQASA-N 0.000 claims description 2
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 claims description 2
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 claims description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 claims description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 claims description 2
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- UEKQGZQLUMSLNW-UHFFFAOYSA-N Propyl isome Chemical compound C1=C2C(C(=O)OCCC)C(C(=O)OCCC)C(C)CC2=CC2=C1OCO2 UEKQGZQLUMSLNW-UHFFFAOYSA-N 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 2
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 claims description 2
- YIYBQIKDCADOSF-UHFFFAOYSA-N alpha-Butylen-alpha-carbonsaeure Natural products CCC=CC(O)=O YIYBQIKDCADOSF-UHFFFAOYSA-N 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000000908 ammonium hydroxide Substances 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 claims description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 claims description 2
- 229940018557 citraconic acid Drugs 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 claims description 2
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 claims description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 claims description 2
- ZWWQRMFIZFPUAA-UHFFFAOYSA-N dimethyl 2-methylidenebutanedioate Chemical compound COC(=O)CC(=C)C(=O)OC ZWWQRMFIZFPUAA-UHFFFAOYSA-N 0.000 claims description 2
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 claims description 2
- 229960004419 dimethyl fumarate Drugs 0.000 claims description 2
- FNMTVMWFISHPEV-AATRIKPKSA-N dipropan-2-yl (e)-but-2-enedioate Chemical compound CC(C)OC(=O)\C=C\C(=O)OC(C)C FNMTVMWFISHPEV-AATRIKPKSA-N 0.000 claims description 2
- FNMTVMWFISHPEV-WAYWQWQTSA-N dipropan-2-yl (z)-but-2-enedioate Chemical compound CC(C)OC(=O)\C=C/C(=O)OC(C)C FNMTVMWFISHPEV-WAYWQWQTSA-N 0.000 claims description 2
- DSTWFRCNXMNXTR-AATRIKPKSA-N dipropyl (e)-but-2-enedioate Chemical compound CCCOC(=O)\C=C\C(=O)OCCC DSTWFRCNXMNXTR-AATRIKPKSA-N 0.000 claims description 2
- 229920001038 ethylene copolymer Polymers 0.000 claims description 2
- 239000001530 fumaric acid Substances 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 claims description 2
- 239000004611 light stabiliser Substances 0.000 claims description 2
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 claims description 2
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 claims description 2
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 claims description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 2
- 229920001748 polybutylene Polymers 0.000 claims description 2
- 229920005906 polyester polyol Polymers 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 238000000518 rheometry Methods 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 claims description 2
- YIYBQIKDCADOSF-ONEGZZNKSA-N trans-pent-2-enoic acid Chemical compound CC\C=C\C(O)=O YIYBQIKDCADOSF-ONEGZZNKSA-N 0.000 claims description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000009736 wetting Methods 0.000 claims description 2
- 239000000080 wetting agent Substances 0.000 claims description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 claims 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 claims 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 claims 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims 1
- ZFDIRQKJPRINOQ-HWKANZROSA-N Ethyl crotonate Chemical compound CCOC(=O)\C=C\C ZFDIRQKJPRINOQ-HWKANZROSA-N 0.000 claims 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims 1
- 230000000855 fungicidal effect Effects 0.000 claims 1
- MCVVUJPXSBQTRZ-ONEGZZNKSA-N methyl (e)-but-2-enoate Chemical compound COC(=O)\C=C\C MCVVUJPXSBQTRZ-ONEGZZNKSA-N 0.000 claims 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims 1
- ZFDIRQKJPRINOQ-UHFFFAOYSA-N transbutenic acid ethyl ester Natural products CCOC(=O)C=CC ZFDIRQKJPRINOQ-UHFFFAOYSA-N 0.000 claims 1
- 239000003973 paint Substances 0.000 abstract description 32
- 238000006243 chemical reaction Methods 0.000 abstract description 25
- 150000001298 alcohols Chemical class 0.000 abstract description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract description 6
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 5
- 239000000853 adhesive Substances 0.000 abstract description 3
- 230000001070 adhesive effect Effects 0.000 abstract description 3
- 239000000976 ink Substances 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 2
- 238000009877 rendering Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 71
- 229920002397 thermoplastic olefin Polymers 0.000 description 59
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 57
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 46
- 239000007921 spray Substances 0.000 description 41
- 239000002904 solvent Substances 0.000 description 40
- 239000000243 solution Substances 0.000 description 35
- 239000011541 reaction mixture Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 28
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 27
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 25
- 239000003999 initiator Substances 0.000 description 25
- 239000008096 xylene Substances 0.000 description 25
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 24
- 238000000034 method Methods 0.000 description 24
- 229910052757 nitrogen Inorganic materials 0.000 description 23
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 20
- 150000003254 radicals Chemical class 0.000 description 18
- 239000011521 glass Substances 0.000 description 17
- 229920001451 polypropylene glycol Polymers 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 239000002966 varnish Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 150000008064 anhydrides Chemical class 0.000 description 12
- 238000010926 purge Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 9
- 230000000717 retained effect Effects 0.000 description 8
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920005672 polyolefin resin Polymers 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 239000007810 chemical reaction solvent Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 150000003949 imides Chemical class 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 239000003759 ester based solvent Substances 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 231100001244 hazardous air pollutant Toxicity 0.000 description 3
- 239000005453 ketone based solvent Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- DFPSKSUPYBRMPF-UHFFFAOYSA-N 2-(hydroxymethyl)-2-methylpropane-1,3-diol Chemical compound OCC(C)(CO)CO.OCC(C)(CO)CO DFPSKSUPYBRMPF-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 125000005462 imide group Chemical group 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- 235000015096 spirit Nutrition 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 1
- ARVUDIQYNJVQIW-UHFFFAOYSA-N (4-dodecoxy-2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC(OCCCCCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 ARVUDIQYNJVQIW-UHFFFAOYSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- TUBQDCKAWGHZPF-UHFFFAOYSA-N 1,3-benzothiazol-2-ylsulfanylmethyl thiocyanate Chemical compound C1=CC=C2SC(SCSC#N)=NC2=C1 TUBQDCKAWGHZPF-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- LHJGJYXLEPZJPM-UHFFFAOYSA-N 2,4,5-trichlorophenol Chemical compound OC1=CC(Cl)=C(Cl)C=C1Cl LHJGJYXLEPZJPM-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- JLZIIHMTTRXXIN-UHFFFAOYSA-N 2-(2-hydroxy-4-methoxybenzoyl)benzoic acid Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1C(O)=O JLZIIHMTTRXXIN-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- BKMMTJMQCTUHRP-UHFFFAOYSA-N 2-aminopropan-1-ol Chemical compound CC(N)CO BKMMTJMQCTUHRP-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- KRDXTHSSNCTAGY-UHFFFAOYSA-N 2-cyclohexylpyrrolidine Chemical compound C1CCNC1C1CCCCC1 KRDXTHSSNCTAGY-UHFFFAOYSA-N 0.000 description 1
- IFXDUNDBQDXPQZ-UHFFFAOYSA-N 2-methylbutan-2-yl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CC IFXDUNDBQDXPQZ-UHFFFAOYSA-N 0.000 description 1
- SNOJPWLNAMAYSX-UHFFFAOYSA-N 2-methylpropan-1-ol;titanium Chemical compound [Ti].CC(C)CO.CC(C)CO.CC(C)CO.CC(C)CO SNOJPWLNAMAYSX-UHFFFAOYSA-N 0.000 description 1
- VJMGCRKBPXGKAH-UHFFFAOYSA-N 3,4,4-trimethyl-1,3-oxazolidine Chemical compound CN1COCC1(C)C VJMGCRKBPXGKAH-UHFFFAOYSA-N 0.000 description 1
- UUTSCMBZWMGAGB-UHFFFAOYSA-N 3-(3-acetyl-4-hydroxyphenyl)pentan-3-ylphosphonic acid Chemical compound CCC(CC)(P(O)(O)=O)C1=CC=C(O)C(C(C)=O)=C1 UUTSCMBZWMGAGB-UHFFFAOYSA-N 0.000 description 1
- XYFRHHAYSXIKGH-UHFFFAOYSA-N 3-(5-methoxy-2-methoxycarbonyl-1h-indol-3-yl)prop-2-enoic acid Chemical compound C1=C(OC)C=C2C(C=CC(O)=O)=C(C(=O)OC)NC2=C1 XYFRHHAYSXIKGH-UHFFFAOYSA-N 0.000 description 1
- CARSMBZECAABMO-UHFFFAOYSA-N 3-chloro-2,6-dimethylbenzoic acid Chemical compound CC1=CC=C(Cl)C(C)=C1C(O)=O CARSMBZECAABMO-UHFFFAOYSA-N 0.000 description 1
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 1
- GUQMDNQYMMRJPY-UHFFFAOYSA-N 4,4-dimethyl-1,3-oxazolidine Chemical compound CC1(C)COCN1 GUQMDNQYMMRJPY-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910001006 Constantan Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- APQHKWPGGHMYKJ-UHFFFAOYSA-N Tributyltin oxide Chemical compound CCCC[Sn](CCCC)(CCCC)O[Sn](CCCC)(CCCC)CCCC APQHKWPGGHMYKJ-UHFFFAOYSA-N 0.000 description 1
- 239000013036 UV Light Stabilizer Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 1
- YJVBLROMQZEFPA-UHFFFAOYSA-L acid red 26 Chemical compound [Na+].[Na+].CC1=CC(C)=CC=C1N=NC1=C(O)C(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=CC=C12 YJVBLROMQZEFPA-UHFFFAOYSA-L 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- QBLDFAIABQKINO-UHFFFAOYSA-N barium borate Chemical class [Ba+2].[O-]B=O.[O-]B=O QBLDFAIABQKINO-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- VNZQQAVATKSIBR-UHFFFAOYSA-L copper;octanoate Chemical compound [Cu+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O VNZQQAVATKSIBR-UHFFFAOYSA-L 0.000 description 1
- JXGWDGNWDNGFJB-UHFFFAOYSA-L copper;quinoline-8-carboxylate Chemical compound [Cu+2].C1=CN=C2C(C(=O)[O-])=CC=CC2=C1.C1=CN=C2C(C(=O)[O-])=CC=CC2=C1 JXGWDGNWDNGFJB-UHFFFAOYSA-L 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical compound OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- ILUAAIDVFMVTAU-UHFFFAOYSA-N cyclohex-4-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CC=CCC1C(O)=O ILUAAIDVFMVTAU-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- JEQRBTDTEKWZBW-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1=C(O)OC(C)=CC1=O JEQRBTDTEKWZBW-UHFFFAOYSA-N 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Natural products CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- GKCPCPKXFGQXGS-UHFFFAOYSA-N ditert-butyldiazene Chemical compound CC(C)(C)N=NC(C)(C)C GKCPCPKXFGQXGS-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- HKIOYBQGHSTUDB-UHFFFAOYSA-N folpet Chemical compound C1=CC=C2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C2=C1 HKIOYBQGHSTUDB-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- UWNADWZGEHDQAB-UHFFFAOYSA-N i-Pr2C2H4i-Pr2 Natural products CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000004306 orthophenyl phenol Substances 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 239000001259 polydextrose Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- TVPFLPJBESCUKI-UHFFFAOYSA-M potassium;n,n-dimethylcarbamodithioate Chemical compound [K+].CN(C)C([S-])=S TVPFLPJBESCUKI-UHFFFAOYSA-M 0.000 description 1
- QDESFMLRHRZCSV-UHFFFAOYSA-M potassium;n-(hydroxymethyl)-n-methylcarbamodithioate Chemical compound [K+].OCN(C)C([S-])=S QDESFMLRHRZCSV-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- GDESWOTWNNGOMW-UHFFFAOYSA-N resorcinol monobenzoate Chemical compound OC1=CC=CC(OC(=O)C=2C=CC=CC=2)=C1 GDESWOTWNNGOMW-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- WYKYCHHWIJXDAO-UHFFFAOYSA-N tert-butyl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)C WYKYCHHWIJXDAO-UHFFFAOYSA-N 0.000 description 1
- PFBLRDXPNUJYJM-UHFFFAOYSA-N tert-butyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(C)(C)C PFBLRDXPNUJYJM-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000009757 thermoplastic moulding Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000011850 water-based material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
- C08F290/042—Polymers of hydrocarbons as defined in group C08F10/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/14—Esterification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/06—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J151/00—Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
- C09J151/06—Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- This invention relates to the field of coating compositions, and in particular, to modified polyolefins useful as primers.
- plastic parts are widely used in automobiles, trucks, household appliances, graphic arts, and the like. Frequently these plastic parts are made from polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends with other polymers.
- polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends with other polymers.
- TPO thermoplastic polyolefin
- these plastic parts must be painted to match the color of painted metal parts that are also present in the automobile, appliance, or other item. Typical paints do not adhere well to these plastic parts. Thus, adhesion-promoting primers are needed to improve the adhesion of the paints to the polyolefin materials.
- chlorinated polyolefins particularly chlorinated, maleated crystalline polypropylene polymers
- HAPs Hazardous Air Pollutants
- Other systems proposed for use as primers are based on maleated amorphous polyolefins, which are dissolved in aromatic solvents such as xylene and toluene.
- non-conjugated double bond in the ring such as cis-4-cyclohexene-1,2-dicarboxylic acid or endobicyclo[2,2,1]-5-heptene-2,3-dicarboxylic acid, or the anhydride of either; or an unsaturated carboxylic acid or anhydride, such as maleic anhydride or acrylic acid, resulting in a modified crystalline polyolefin having residual carboxylic acid monomer present.
- the polyolefin is thereafter reacted with a polyhydric alcohol or a polyamine, to thereby fix the residual monomer into the polymer.
- U.S. Pat. No. 4,299,754 describes a method for producing a modified propylene-ethylene copolymer, by graft copolymerization with maleic acid or anhydride.
- the propylene ethylene copolymer has a propylene content of 50 to 75 mole percent and a crystallinity, determined by an X-ray diffraction method, of 2 to 20%.
- the amount of maleic acid or maleic anhydride grafted is 0.5 to 15% by weight.
- the modified polymer has an intrinsic viscosity of at least 0.3, and is dissolved in the organic solvent in a concentration of 10 to 100 kg/m 3 of solvent.
- the resulting treating agent is suitable as an undercoat of the polyolefin articles and permits coating of a paint with markedly improved adhesion.
- U.S. Pat. No. 4,461,809 describes a surface-treating agent used as an undercoat on the surface of a polyolefin shaped article to be coated with paint.
- This surface-treating agent is composed of a solution of a modified polymer in organic solvent.
- the modified polymer is prepared by graft copolymerization of a propylene-ethylene copolymer with an alkyl ester of a monolefinic dicarboxylic acid.
- the alkyl moiety of the alkyl ester is described by the general formula C n H 2n , such as methyl, ethyl, n-propyl, n-butyl, isopropyl, octyl, or 2-ethylhexyl.
- U.S. Pat. No. 4,632,962 describes a method for graft modifying a polyolefin with hydroxyl functional groups through an imide linkage. These modified polyolefins are made by grafting an anhydride functional group to a polyolefin chain and then reacting the anhydride group with an amine substituted organic alcohol to produce an imide. The resulting imide group on the polyolefin contains hydroxyl groups for crosslinking with various topcoats. The polyolefins are taught to be useful to produce a thermoplastic molding composition.
- U.S. Pat. No. 4,966,947 describes a method for graft modifying a chlorinated polyolefin with hydroxyl functional groups through an imide linkage. These modified polyolefins are made by grafting an anhydride functional group to a chlorinated polyolefin, and then reacting the anhydride group with an amine-substituted organic alcohol to produce an imide. The resulting imide group on the chlorinated polyolefin contains hydroxyl groups for crosslinking with various topcoats.
- U.S. Pat. No. 4,997,882 describes an acid- or anhydride-grafted chlorinated polyolefin that has been reacted with a monoalcohol and a polyepoxide.
- the composition described in this patent is prepared by grafting an unsaturated acid or anhydride onto a chlorinated polyolefin to
- U.S. Pat. No. 5,030,681 discloses a coating resin composition obtained by graft-polymerizing an unsaturated carboxylic acid to a chlorinated polyolefin in a solvent, esterifying all unsaturated carboxylic acid present in the reaction system, and mixing the obtained composition with a urethane prepolymer.
- U.S. Pat. No. 5,135,984 describes a method for modifying a chlorinated polyolefin with maleic anhydride and an acrylic-modified hydrogenated polybutadiene. This method involves the graft copolymerization of the chlorinated polyolefin with the maleic acid anhydride and acrylate modified hydrogenated polybutadiene by heating the mixture in the presence of a peroxide initiator. This results in an acrylic- and maleic anhydride-modified chlorinated polyolefin.
- U.S. Pat. No. 5,143,976 describes a resin composition containing graft copolymers of acrylic monomers (A) and polydiene (B) grafted onto a chlorinated polyolefin (C).
- the polyolefin resin compositions composed of the acrylic oligomers contain hydroxyl or carboxyl groups and/or certain acrylic oligomers.
- U.S. Pat. No. 5,523,358 describes the grafting of various unsaturated monomers to polyolefins in which an organic solvent is used to swell the polyolefin during the grafting step.
- U.S. Pat. No. 5,587,418 describes a method for producing a graft copolymer for use as a primerless colored basecoat on polyolefin surfaces.
- the graft copolymer is obtained by copolymerizing acrylic monomers, unsaturated carboxylic acids, and acrylic monomers containing hydroxyl groups, with certain chlorinated polyolefins.
- U.S. Pat. No. 5,811,489 describes a method for producing a coating resin composition based on a graft-copolymerized resin.
- This coating resin composition comprises a graft copolymerized resin prepared by graft copolymerizing a monomer containing an ethylenic unsaturated bond, and a monomer containing both an ethylenic unsaturated bond and a hydroxyl group, onto a mixed resin of (1) a carboxyl group-containing chlorinated polyolefin resin obtained by graft copolymerizing an unsaturated carboxylic acid or anhydride onto a polyolefin followed by chlorination and (2) a chlorinated polyolefin resin obtained by simultaneously oxidizing and chlorinating a polyolefin using at least one oxidizing agent selected from air, oxygen and ozone, an isocyanate compound or an alkyl-etherified amino resin as a curing agent.
- U.S. Pat. No. 5,863,646 describes a liquid coating composition comprising a mixture of a substantially saturated polyhydroxylated polydiene polymer, having terminal hydroxyl groups, with a chlorinated polyolefin, a film forming polymer, and a carrier material.
- the coating can be applied to plastic substrates to improve the adhesion of subsequently applied coatings.
- U.S. Pat. No. 6,001,469 describes a composition similar to that described in U.S. Pat. No. 5,863,646, and describes its use as an adhesion promoting coating that can be applied directly onto thermoplastic and thermosetting plastic substrates.
- European patent application 1036817 A1 discloses a polyamide-modified polyolefin composition, which is obtained by reacting an unsaturated carboxylic acid anhydride modified polyolefin, having a specified molecular weight range, with a polyamide, having a specified molecular weight range. The resulting composition is described as having excellent adherence to polyolefin substrates without tack.
- U.S. Pat. No. 6,310,134 describes solvent-based primer compositions containing 0.5 to 40 weight percent of a modified polyolefin and a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents, and mixtures thereof.
- polyolefins described in this report have been graft-modified with unsaturated acids, anhydrides, or esters. These modified polyolefins are reported to have good utility as primers for polyolefins substrates when topcoated with melamine based and 2-part polyurethane paints. Although these modified polyolefins provide good initial crosshatch adhesion of melamine based topcoats and good solvent resistance after application, they are deficient in water resistance, especially under high temperature and humidity conditions.
- U.S. Pat. No. 6,262,182 describes a solution process for the modification of certain polyolefins with an unsaturated anhydride, unsaturated acid or unsaturated ester.
- the present invention provides polyfunctional alcohol-modified carboxylated polyolefins, and their use in solvent- and water-based, adhesion-promoting primer compositions.
- the polyfunctional alcohol-modified carboxylated polyolefins of the present invention are prepared by reacting polyolefins, having a heat of fusion ( ⁇ H f ) of 0 to 10 calories/gram, with unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, vinyl monomers, acrylic monomers, or mixtures thereof, to provide a carboxylated polyolefin.
- the carboxylated polyolefins are then further modified by reaction with one or more polyfunctional alcohols.
- the polyfunctional alcohol-modified carboxylated polyolefins are useful in solvent- and water-based coating compositions, ink compositions, and adhesive compositions.
- the present invention provides polyfunctional alcohol-modified carboxylated polyolefins and their use in solvent- and water-based, adhesion-promoting primer compositions.
- the present invention provides a polyfunctional alcohol-modified carboxylated polyolefin comprising the reaction product of at least one carboxylated polyolefin with at least one polyfunctional alcohol, wherein the carboxylated polyolefin is prepared from a polyolefin having a heat of fusion of 0 to 10 calories/gram, preferably 0 to 8 calories/gram.
- the carboxylated polyolefins are prepared by reacting polyolefins having a heat of fusion of 0 to 10 calories/gram, preferably 0 to 8 calories/gram, with unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, vinyl monomers, acrylic monomers, or mixtures thereof.
- the carboxylated polyolefins are then further modified by reaction with one or more polyfunctional alcohols.
- the polyolefins useful as starting materials in the present invention are preferably amorphous, to be suitably soluble in the intended solvents, but may exhibit some measurable crystallinity.
- the starting material polyolefins will exhibit a heat of fusion ( ⁇ H f ) of 0 to 10 calories/gram, preferably 0 to 8 calories/gram, as indicated by differential scanning calorimetry (DSC). The methodology for determination of heat of fusion is described below.
- Exemplary starting material polyolefin polymers for practice of the invention include ethylene copolymers prepared from ethylene and alpha olefins having 3 to about 10 carbon atoms, polypropylene, propylene copolymers prepared from ethylene or alpha olefins having from 4 to about 10 carbon atoms, poly(1-butene), 1-butene copolymers prepared from ethylene or alpha olefins having 3 to about 10 carbon atoms, propylene terpolymers prepared from ethylene and/or alpha olefins having from 4 to about 10 carbon atoms, and the like.
- mixtures of the previously mentioned polyolefins may be used in this process, as opposed to using a single polyolefin.
- Preferred copolymers include propylene-ethylene copolymers comprising 70-90 mole percent propylene and about 10-30 mole percent ethylene, and having a heat of fusion of 0 to 8 calories/gram.
- Preferred terpolymers include propylene-butylene-ethylene terpolymers comprising 55-75 mole percent propylene, 15-30 mole percent butylene, and 5-25 mole percent ethylene, and having a heat of fusion of 0 to 8 calories/gram.
- Exemplary monomers useful in the carboxylation of the starting material polyolefin include unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, vinyl monomers, and acrylic monomers.
- Preferred monomers include, but are not limited to, maleic anhydride, citraconic anhydride, itaconic anhydride, glutaconic anhydride, 2,3-dimethylmaleic anhydride, maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, acrylic acid, methacrylic acid, crotonic acid, 2-pentenoic acid, 2-methyl-2-pentenoic acid, dimethyl maleate, diethyl maleate, di-n-propyl maleate, diisopropyl maleate, dimethyl fumarate, diethyl fumarate, di-n-propyl fumarate, diisopropyl fumarate, dimethyl itaconate, hydroxyethyl acrylate, and
- the concentration of the carboxylating monomer is in the range of from about 1 to about 25 weight percent based on the weight of polyolefin. A more preferred range is from about 2 to about 20 weight percent. A range of about 4 to about 18 weight percent is especially preferred.
- the monomers are readily grafted to polyolefins, in the solution or melt phase, using radical initiators such as organic peroxides or azo compounds as the initiator.
- a preferred method includes the grafting of the monomers in a solution process according to the procedure described in U.S. Pat. No. 6,262,182, incorporated herein by reference.
- the reaction temperature is usually controlled by the half-life of the peroxide initiator.
- the half-life of the initiator at a given reaction temperature should be about one third to about one sixth of the reaction time.
- organic peroxides which may be used include, but are not limited to, dibenzoyl peroxide, tert-amylperoxy 2-ethylhexanoate, tert-butylperoxy 2-ethyl hexanoate, tert-butylperoxy isobutyrate, and tert-butylperoxy isopropyl carbonate, tert-butylperoxy 3,5,5-trimethyl-hexanoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, tert-butylperoxy acetate, tert-butylperoxy benzoate, n-butyl 4,4-di(tert-butylperoxy)valerate, dicumyl peroxide, tert-butylcumyl peroxide, di(2-tert-butylperoxy isopropyl)benzene, 2,5-dimethyl-2,5-di
- azo compounds useful as radical initiators include, but are not limited to, 2,2′-azobisisopropionitrile, 2,2′-azobisisobutyronitrile (AIBN), dimethyl azoisobutyrate, 1,1′ azobis(cyclohexanecarbonitrile), 2,2′-azobis(2-methylpropane), and mixtures thereof.
- Typical concentrations of radical initiators range from about 0.1 to about 20 weight %, based on the weight of the polyolefin. A more preferred range is from about 0.2 to about 10 weight percent.
- the addition of the monomers and a radical initiator can be carried out under numerous scenarios.
- these monomers can be added before the radical initiator, concurrent with the radical initiator, or subsequent to the radical initiator.
- the monomer can be added in either the molten state, or as a solution in a solvent that does not interfere with the carboxylating or grafting reaction.
- the radical initiator can be added in either solid or liquid form. It is also possible to charge a solution of the grafting monomer containing the initiator in a solvent that does not interfere with the desired reaction.
- the solvent used for this purpose can be the same as or different from the reaction solvent.
- the solvent preferably has a low volatility such that it flashes off and does not dilute or contaminate the reaction solvent.
- Preferred solvents for dissolving the grafting monomer include, but are not limited to, ketone solvents such as acetone and methyl ethyl ketone.
- ketone solvents are used in amounts that do not cause the polyolefin to precipitate.
- the carboxylating or grafting process is typically conducted in solution at temperatures ranging from about 50° C. to about 300° C., depending on the choice of reaction solvent.
- the carboxylating reaction may be carried out at temperatures up to and including the boiling point of the reaction solvent.
- a more preferable temperature range is from about 70° C. to about 240° C., and a most preferred range is from about 80° C. to about 220° C.
- the reaction product may be used as is, or optionally the solvent used in the reaction may be removed by distillation at either ambient pressure, or more preferably, at reduced pressure.
- the solvent may be recovered and recycled in subsequent batches.
- Solvents with relatively low boiling points are typically easier to remove and consequently more desirable for use in this process.
- Preferred solvents include tert-butylbenzene (b.p. 169° C.) and anisole (b.p. 154° C.).
- the carboxylated polyolefin is further reacted with one or more polyfunctional alcohols.
- Suitable alcohols will have at least two hydroxyl groups or at least one hydroxyl group and another functional group capable of reacting with the carboxylated polyolefin, such as amino, epoxy, isocyanato, and the like.
- Exemplary polyfunctional alcohols include, but are not limited to, trimethylolethane, pentaerythritol, trimethylolpropane, 1,6-hexanediol, 1,4-cyclohexanediol, 1,2-propylene glycol, 1,4-cyclohexanedimethanol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, diethylene glycol, triethylene glycol, polyethylene glycols, glycerol, polyester polyols, acrylic polyols, polyurethanepolyols, glucose, sucrose, 2-amino-1-propanol, ethanolamine, and the like.
- Preferred for use are 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, and 1,6-hexanediol.
- those polyfunctional alcohols having one primary hydroxyl group, and one secondary or tertiary hydroxyl group.
- the primary hydroxyl group being less sterically hindered and consequently more reactive, will preferentially react with the carboxylated polyolefin, leaving the secondary or tertiary hydroxyl group pendant.
- polyfunctional alcohols include 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1,2-propylene glycol.
- the amount of polyol used to modify the carboxylated polyolefin will generally be in the range of about 0.01 to about 60 weight %, based on the weight of the carboxylated polyolefin.
- the polyfunctional alcohol modification reaction may be carried out in the presence or absence of a solvent.
- a solvent When using a solvent, the reaction is conducted at temperatures in the range of about 10° C. to about 250° C. The reaction temperature chosen will affect the time necessary to complete the reaction.
- Any solvent in which the carboxylated polyolefin is soluble may be used.
- Exemplary solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, tert-butylbenzene, chlorinated solvents, aliphatic hydrocarbon solvents such as naphtha, mineral spirits, and hexane, ester solvents such as propyl acetate and butyl acetate as well as ketones such as methyl amyl ketone. Mixtures of solvents may be used if desired.
- the polyfunctional alcohol may be reacted with the carboxylated polyolefin in the solvent used to prepare the carboxylated polyolefin.
- solvent may be removed from the carboxylated polyolefin and replaced with any suitable solvent for the reaction with the polyfunctional alcohol.
- the carboxylated polyolefin contains anhydride groups
- no catalyst is required to react this material with the polyfunctional alcohols to yield the corresponding monoester and half acid groups.
- the remaining half acid groups on the polyolefin may then be further reacted with polyfunctional alcohol in the presence of excess polyfunctional alcohol and at higher temperature to yield the corresponding diester.
- a catalyst may or may not be needed to completely esterify all of the half acid groups.
- carboxylated polyolefin is prepared by grafting an ester monomer such as dimethyl maleate to the polyolefin substrate, then it may be desirable to use a catalyst such as a titanium catalyst in the polyol modification reaction.
- a catalyst such as a titanium catalyst in the polyol modification reaction.
- Suitable titanium catalysts include titanium tetraisopropoxide, titanium tetraisobutoxide, and the like.
- the polyfunctional alcohol-modified carboxylated polyolefin resins are soluble in typical coating solvents such as toluene, xylene, naphtha, mineral spirits, hexane, and ester solvents such as propyl acetate and butyl acetate as well as ketones such as methyl amyl ketone. Mixtures of solvents may be used if desired.
- these polyolefins are especially useful as primers for coating substrates which suffer from poor paint adhesion. Accordingly, such resins may be applied to, for example, a plastic substrate, allowed to dry, and a conventional topcoat coating composition applied thereto.
- the polyolefins of the invention may be blended with various coating compositions to afford a self-priming composition useful for coating such substrates.
- topcoat compositions may be any coating composition, typically comprised of any number of traditional resins, for example, polyesters, acrylics, urethanes, melamines, alkyds, etc.
- such compositions may also further comprise one or more typical coatings additives.
- a coating composition comprising the polyolefins of the present invention as described herein, further comprising one or more coatings additives such as leveling, rheology, and flow control agents such as silicones, fluorocarbons or cellulosics; neutralized carboxylic acid-containing latex particles with highly crosslinked particles; associative thickeners; flatting agents; pigment wetting and dispersing agents and surfactants; ultraviolet (UV) absorbers; UV light stabilizers; tinting pigments; defoaming and antifoaming agents; anti-settling, anti-sag, and bodying agents; anti-skinning agents; anti-flooding and anti-floating agents; fungicides and mildewcides; corrosion inhibitors; thickening agents; or coalescing agents.
- coatings additives such as leveling, rheology, and flow control agents
- silicones, fluorocarbons or cellulosics such as silicones, fluorocarbons or cellulosics; neutral
- flatting agents examples include synthetic silica, available from the Davison Chemical Division of W. R. Grace & Company under the trademark Syloid®; polypropylene, available from Hercules Inc., under the trademark Hercoflat®; and synthetic silicate, available from J. M. Huber Corporation under the trademark Zeolex®.
- dispersing agents and surfactants include sodium bis(tridecyl)sulfosuccinnate, di(2-ethylhexyl)sodium sulfosuccinnate, sodium dihexylsulfosuccinnate, sodium dicyclohexyl sulfosuccinnate, diamyl sodium sulfosuccinnate, sodium diisobutyl sulfosuccinnate, disodium iso-decyl sulfosuccinnate, disodium ethoxylated alcohol half ester of sulfosuccinnic acid, disodium alkyl amido polyethoxy sulfosuccinnate, tetrasodium N-(1,2-dicarboxy-ethyl)-N-octadecyl sulfosuccinnamate, disodium N-octasulfosuccinnamate, sulfated ethoxylated nonyl
- viscosity, suspension, and flow control agents examples include polyaminoamide phosphate, high molecular weight carboxylic acid salts of polyamine amides, and alkylene amine salts of an unsaturated fatty acid, all available from BYK Chemie U.S.A. under the trademark Anti Terra®.
- Further examples include polysiloxane copolymers, polyacrylate solution, cellulose esters, hydroxyethyl cellulose, hydrophobically-modified hydroxyethyl cellulose, hydroxypropyl cellulose, polyamide wax, polyolefin wax, carboxymethyl cellulose, ammonium polyacrylate, sodium polyacrylate, and polyethylene oxide.
- thickeners include the methane/ethylene oxide associative thickeners and water soluble carboxylated thickeners, for example, those sold under the UCAR POLYPHOBE trademark by Union Carbide.
- fungicides examples include 4,4-dimethyloxazolidine, 3,4,4-trimethyloxazolidine, modified barium metaborate, potassium N-hydroxy-methyl-N-methyldithiocarbamate, 2-(thiocyanomethylthio)benzothiazole, potassium dimethyl dithiocarbamate, adamantane, N-(trichloromethylthio)phthalimide, 2,4,5,6-tetrachloroisophthalonitrile, orthophenyl phenol, 2,4,5-trichlorophenol, dehydroacetic acid, copper naphthenate, copper octoate, organic arsenic compounds, tributyl tin oxide, zinc naphthenate, and copper 8-quinolinate.
- U.V. absorbers and U.V. light stabilizers include substituted benzophenones, substituted benzotriazoles, hindered amines, and hindered benzoates, available from American Cyanamid Company under the trademark CYASORB UV, and diethyl-3-acetyl-4-hydroxy-benzyl-phosphonate, 4-dodecyloxy-2-hydroxy benzophenone, and resorcinol monobenzoate.
- Such paint or coating additives as described above form a relatively minor proportion of the coating composition, preferably about 0.05 weight % to about 5.00 weight %.
- a coating composition as set forth above, further comprising one or more pigments and/or fillers in a concentration of about 1 to about 70 weight percent, preferably about 30 to about 60 weight percent, based on the total weight of the components of the composition.
- Pigments suitable for use in the coating compositions envisioned by the present invention are the typical organic and inorganic pigments, well-known to one of ordinary skill in the art of surface coatings, especially those set forth by the Colour Index, 3d Ed., 2d Rev., 1982, published by the Society of Dyers and Colourists in association with the American Association of Textile Chemists and Colorists. Examples include, but are not limited to the following: CI Pigment White 6 (titanium dioxide); CI Pigment Red 101 (red iron Oxide); CI Pigment Yellow 42, CI Pigment Blue 15, 15:1, 15:2, 15:3, 15:4 (copper phthalocyanines); CI Pigment Red 49:1; and CI Pigment Red 57:1.
- the polyfunctional alcohol modified carboxylated polyolefins of the present invention may also contain pendant carboxylic acid groups, which have the propensity to form hydrophilic salts with amines and therefore may allow the modified polyolefins of the present invention to be rendered water-dispersible.
- the modified carboxylated polyolefin may contain a combination of both hydroxyester and carboxylic acid functional groups. For example, this can be accomplished by reacting an anhydride functional polyolefin with 2,2,4-trimethyl-1,3-pentanediol or 2-ethyl-1,3-hexanediol to yield a modified carboxylated polyolefin containing both hydroxyester and carboxylic acid functional groups.
- modified carboxylated polyolefins having pendant carboxyl groups
- modified carboxylated polyolefins may be dispersed by emulsifying the modified carboxylated polyolefin in the presence of an amine, or other inorganic base, and water; depending on molecular weight and acid number, it may be desirable or even necessary to utilize at least one surfactant, at least one amine, and water.
- This method for dispersing carboxylated resins is described in U.S. Pat. No. 5,373,048, incorporated herein by reference.
- the surfactants may have a molecular weight of up to 500 or greater and may include polymeric materials.
- the surfactants include materials that contain groups of varying polarity whereby one part of the molecule is hydrophilic and the other part of the molecule is hydrophobic. Examples of such materials include polyethyleneoxy polyols and ethoxylated alkyl phenols. Particularly preferred classes of surfactants include alkyl phenoxy poly(ethyleneoxy)alcohols, primary ethoxylated alcohols and secondary ethoxylated alcohols.
- the surfactant is a primary ethoxylated alcohol having 12 to 15 carbon atoms or a secondary ethoxylated alcohol having 11 to 15 carbon atoms.
- alkyl phenoxy poly(ethyleneoxy)alcohols include Igepal® CO-710 sold by Rhone Poulenc.
- primary ethoxylated alcohols include Neodol® 25-9 and Neodol® 25-12 sold by Shell Chemical Company.
- secondary ethoxylated alcohols include Tergitol® 15-S-9 and Tergitol® 15-S-15 sold by Union Carbide Company.
- the amount of surfactant is broadly in the range of 0 to 50 weight percent and is preferably in the range of 0 to 25 weight percent, based on the weight of the modified carboxylated polyolefin.
- Other examples of surfactants include those described in U.S. Pat. No. 5,663,266, incorporated herein by reference.
- the amine may be a primary, secondary, or tertiary amine.
- the amine may be aromatic or aliphatic, but aliphatic amines are preferred.
- the amount of amine may be in the range of 4 to 30 weight percent and preferably is in the range of 6 to 20 weight percent, based on the weight of the modified carboxylated polyolefin.
- Typical amines include ammonia, ammonium hydroxide, trimethylamine, diethylamine, monoethanolamine, monoisopropanolamine, morpholine, ethanolamine, diethanolamine, triethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine,
- N-methyl-diethanolamine 2-amino-2-methyl-1-propanol and the like.
- Other examples of amines include those described in U.S. Pat. No. 5,373,048, incorporated herein by reference.
- Inorganic bases that may be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and the like.
- the amount of water may vary widely and there is no upper limit on the amount of water used. There may be a lower limit on the amount of water because sufficient water should be present in the composition to result in the formation of an admixture of the components. Generally, there should be at least 50 weight percent water in the composition, based on the weight of the total composition.
- the polyfunctional alcohol-modified carboxylated polyolefins of the present invention are useful, for example, in primers for plastic and metal substrates prior to painting.
- the polyfunctional alcohol-modified carboxylated polyolefins may be used as prepared in solvent, or may be further diluted with any of the solvents listed previously. Dispersions of the polyfunctional alcohol-modified carboxylated polyolefins may also be applied to the substrate as prepared, or they may be further diluted with water. Both the solvent- and water-based materials may be applied to the substrate by spray application, dipping, or any other means available, which allows for a uniform coating of the polyfunctional alcohol-modified carboxylated polyolefin onto the substrate. Subsequent topcoats, such as paints, adhesives, and inks, can then be applied on top of the primers of the present invention.
- a co-solvent may be utilized in the waterborne compositions.
- suitable co-solvents for the water-borne compositions of the present invention include ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, ethylene glycol monobutyl ether, propylene glycol n-butyl ether, propylene glycol methyl ether, propylene glycol monopropyl ether, dipropylene glycol methyl ether, diacetone alcohol, and other water-miscible solvents.
- polyfunctional alcohol-modified carboxylated polyolefins may also be used as additives for paint topcoats.
- the polyfunctional alcohol-modified carboxylated polyolefin may be added to the coating prior to application on a substrate.
- Painted test samples are scribed with a sharp knife to make 100 squares.
- the scribed test samples are immersed in a 55/45 VM&P naphtha/toluene mixture and covered with aluminum foil. After 15 minutes immersion, the test samples are evaluated for number of squares removed or blistered. This is repeated every 15 minutes until the test samples have been immersed for 60 minutes, or all squares are removed. The percent paint removed and the percent paint retained is reported at each evaluation period, and the blistering.
- Painted test samples are scribed with a sharp knife to make 25 squares. The center of a piece of tape is placed over the scribed area and the tape is rubbed firmly into place with a pencil eraser or other object. The tape is removed by seizing the free end and by rapidly peeling it back on itself as close to a 90-degree angle as possible. The percent paint retained is reported.
- Test specimens are mounted, with the painted side facing the inside of the Cleveland Humidity cabinet. All cracks are closed between specimens to prevent vapor loss and temperature variation. The thermostat is adjusted to set the vapor temperature at 120° C. The test specimens are removed periodically, and tested by the cross-cut tape test method for adhesion and blister formation.
- This differential scanning calorimetry (DSC) method allows for the measurement of the amount of energy absorbed (endothermic) or emitted (exothermic) by a sample as a function of temperature.
- DSC differential scanning calorimetry
- thermo-mechanical history of the sample was unknown, a heat-cool-heat method was applied on each sample used in this study.
- Sample was cooled from room temperature to ⁇ 75° C. held for 30 seconds, then heated from ⁇ 75° C. to 200° C. at a scanning rate of 20° C./min. in the presence of nitrogen with a purging rate of 25 cc/min.
- sample was held at 200° C. for 2 minutes in order to erase any thermo-mechanical history along with any crystallinity inherited from sample itself and/or generated by any annealing effect.
- the sample was cooled down from 200° C. to ⁇ 75° C. at the same rate as 20° C./min.
- sample was held at ⁇ 75° C. for 30 seconds, then heated to 200° C. at the same rate of 20° C./min. for the second heating scan.
- the transitions along with the heats, heat of fusion for endothermic peak and heat of crystallization of exothermic peak, occurred on the second heating scan were measured.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This example demonstrates the ability to disperse the polyfunctional alcohol modified carboxylated polyolefins of the present invention into water using a surfactant, amine, and water.
- This example demonstrates the ability to disperse the polyfunctional alcohol modified carboxylated polyolefin of the present invention into water using a surfactant, amine, and water.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: percent retained adhesion on Montell Hifax CA 187 AC TPO: 100%.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: percent retained adhesion on Montell Hifax CA 187 AC TPO: 100%.
- this example shows that this carboxylated polyolefin adhesion promoter does not provide good high temperature and humidity resistance with the melamine-cured coating.
- a propylene-ethylene copolymer comprised of approximately 80 mole percent propylene and 20-mole percent ethylene and having a heat of fusion of approximately 5.2 calories/gram was dissolved in xylene at 5% solids. The solution was filtered to remove any undissolved polymer that might be present in the mixture. This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in
- the primed panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-part urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-part urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Paints Or Removers (AREA)
Abstract
The present invention provides solvent- and water-based primer compositions that include at least one carboxylated polyolefin that has been modified with one or more polyfunctional alcohols. The carboxylated polyolefins are obtained by the reaction of polyolefins with at least one of unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, acrylic monomers, and mixtures thereof. The carboxylated polyolefins are then further modified by reaction with one or more polyfunctional alcohols. These polyfunctional alcohol-modified polyolefins may also contain pendant carboxyl groups, which have the propensity to form hydrophilic salts with amines or inorganic bases, thereby rendering the polyfunctional alcohol-modified polyolefins water-dispersible. These primer compositions are useful for significantly improving the adhesion of paints, adhesives, and inks to various plastic and metal substrates.
Description
- This application is a divisional application of U.S. Ser. No. 10/610,238 filed on Jun. 30, 2003, which is a continuation-in-part application of U.S. Ser. Nos. 10/068,630, filed Feb. 6, 2002 and 10/208,642, filed Jul. 30, 2002, which are continuation-in-part applications of U.S. Ser. No. 09/943,561 filed Aug. 30, 2001, which claims the benefit of U.S. Ser. No. 60/267,829 filed Feb. 9, 2001.
- This invention relates to the field of coating compositions, and in particular, to modified polyolefins useful as primers.
- Molded plastic parts are widely used in automobiles, trucks, household appliances, graphic arts, and the like. Frequently these plastic parts are made from polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends with other polymers. One such blend is a thermoplastic polyolefin (TPO), which is a rubber-modified polypropylene. Frequently, these plastic parts must be painted to match the color of painted metal parts that are also present in the automobile, appliance, or other item. Typical paints do not adhere well to these plastic parts. Thus, adhesion-promoting primers are needed to improve the adhesion of the paints to the polyolefin materials.
- Although chlorinated polyolefins, particularly chlorinated, maleated crystalline polypropylene polymers, are effective for this purpose, they have very limited solubility in anything other than aromatic or chlorinated solvents. The U.S. Federal Clean Air Act of 1990 limits the amounts of solvents on the Hazardous Air Pollutants (HAPs) list that can be used in some areas, and most practical aromatic and chlorinated solvents for use in coatings applications are on the HAPs list. There are some applications where a non-chlorinated adhesion promoter is desired. Other systems proposed for use as primers are based on maleated amorphous polyolefins, which are dissolved in aromatic solvents such as xylene and toluene.
- Attempts have been made to provide water-based paints and primers for the automotive and appliance industries, but these systems generally are not thought to be as effective as solvent-based systems. There have been several patents issued pertaining to the modification of polyolefins to provide an adhesion-promoting primer composition for paint topcoats onto polyolefin surfaces.
- U.S. Pat. No. 4,146,590 describes reacting crystalline polyolefins in the molten state with an alicyclic carboxylic acid having a cis form
- non-conjugated double bond in the ring, such as cis-4-cyclohexene-1,2-dicarboxylic acid or endobicyclo[2,2,1]-5-heptene-2,3-dicarboxylic acid, or the anhydride of either; or an unsaturated carboxylic acid or anhydride, such as maleic anhydride or acrylic acid, resulting in a modified crystalline polyolefin having residual carboxylic acid monomer present. The polyolefin is thereafter reacted with a polyhydric alcohol or a polyamine, to thereby fix the residual monomer into the polymer. The crystalline nature of these modified polyolefins makes them practically insoluble in solvents used for liquid coatings, and therefore unsuitable for liquid coating compositions. These polymers are instead used as coatings in the solid state, requiring further heating, melting, and molding of the polymer. The fixing of the residual monomer to the polymer is taught to decrease the odor that would otherwise result from release of the monomer during the subsequent heating, melting, and molding of the polymer.
- U.S. Pat. No. 4,299,754 describes a method for producing a modified propylene-ethylene copolymer, by graft copolymerization with maleic acid or anhydride. The propylene ethylene copolymer has a propylene content of 50 to 75 mole percent and a crystallinity, determined by an X-ray diffraction method, of 2 to 20%. The amount of maleic acid or maleic anhydride grafted is 0.5 to 15% by weight. The modified polymer has an intrinsic viscosity of at least 0.3, and is dissolved in the organic solvent in a concentration of 10 to 100 kg/m3 of solvent. The resulting treating agent is suitable as an undercoat of the polyolefin articles and permits coating of a paint with markedly improved adhesion.
- U.S. Pat. No. 4,461,809 describes a surface-treating agent used as an undercoat on the surface of a polyolefin shaped article to be coated with paint. This surface-treating agent is composed of a solution of a modified polymer in organic solvent. The modified polymer is prepared by graft copolymerization of a propylene-ethylene copolymer with an alkyl ester of a monolefinic dicarboxylic acid. The alkyl moiety of the alkyl ester is described by the general formula CnH2n, such as methyl, ethyl, n-propyl, n-butyl, isopropyl, octyl, or 2-ethylhexyl.
- U.S. Pat. No. 4,632,962 describes a method for graft modifying a polyolefin with hydroxyl functional groups through an imide linkage. These modified polyolefins are made by grafting an anhydride functional group to a polyolefin chain and then reacting the anhydride group with an amine substituted organic alcohol to produce an imide. The resulting imide group on the polyolefin contains hydroxyl groups for crosslinking with various topcoats. The polyolefins are taught to be useful to produce a thermoplastic molding composition.
- U.S. Pat. No. 4,966,947 describes a method for graft modifying a chlorinated polyolefin with hydroxyl functional groups through an imide linkage. These modified polyolefins are made by grafting an anhydride functional group to a chlorinated polyolefin, and then reacting the anhydride group with an amine-substituted organic alcohol to produce an imide. The resulting imide group on the chlorinated polyolefin contains hydroxyl groups for crosslinking with various topcoats.
- U.S. Pat. No. 4,997,882 describes an acid- or anhydride-grafted chlorinated polyolefin that has been reacted with a monoalcohol and a polyepoxide. The composition described in this patent is prepared by grafting an unsaturated acid or anhydride onto a chlorinated polyolefin to
- form an acid- or anhydride-modified chlorinated polyolefin resin. This resin is then reacted with an organic monohydric alcohol to form an esterified product containing acid functionality. The resulting esterified product is then further reacted with a polyepoxide to form the ungelled modified chlorinated polyolefin resin. The resulting product is then formulated into a coating composition for a thermoplastic polyolefin substrate.
- U.S. Pat. No. 5,030,681 discloses a coating resin composition obtained by graft-polymerizing an unsaturated carboxylic acid to a chlorinated polyolefin in a solvent, esterifying all unsaturated carboxylic acid present in the reaction system, and mixing the obtained composition with a urethane prepolymer.
- U.S. Pat. No. 5,135,984 describes a method for modifying a chlorinated polyolefin with maleic anhydride and an acrylic-modified hydrogenated polybutadiene. This method involves the graft copolymerization of the chlorinated polyolefin with the maleic acid anhydride and acrylate modified hydrogenated polybutadiene by heating the mixture in the presence of a peroxide initiator. This results in an acrylic- and maleic anhydride-modified chlorinated polyolefin.
- U.S. Pat. No. 5,143,976 describes a resin composition containing graft copolymers of acrylic monomers (A) and polydiene (B) grafted onto a chlorinated polyolefin (C). The polyolefin resin compositions composed of the acrylic oligomers contain hydroxyl or carboxyl groups and/or certain acrylic oligomers.
- U.S. Pat. No. 5,523,358 describes the grafting of various unsaturated monomers to polyolefins in which an organic solvent is used to swell the polyolefin during the grafting step.
- U.S. Pat. No. 5,587,418 describes a method for producing a graft copolymer for use as a primerless colored basecoat on polyolefin surfaces. The graft copolymer is obtained by copolymerizing acrylic monomers, unsaturated carboxylic acids, and acrylic monomers containing hydroxyl groups, with certain chlorinated polyolefins.
- U.S. Pat. No. 5,811,489 describes a method for producing a coating resin composition based on a graft-copolymerized resin. This coating resin composition comprises a graft copolymerized resin prepared by graft copolymerizing a monomer containing an ethylenic unsaturated bond, and a monomer containing both an ethylenic unsaturated bond and a hydroxyl group, onto a mixed resin of (1) a carboxyl group-containing chlorinated polyolefin resin obtained by graft copolymerizing an unsaturated carboxylic acid or anhydride onto a polyolefin followed by chlorination and (2) a chlorinated polyolefin resin obtained by simultaneously oxidizing and chlorinating a polyolefin using at least one oxidizing agent selected from air, oxygen and ozone, an isocyanate compound or an alkyl-etherified amino resin as a curing agent.
- U.S. Pat. No. 5,863,646 describes a liquid coating composition comprising a mixture of a substantially saturated polyhydroxylated polydiene polymer, having terminal hydroxyl groups, with a chlorinated polyolefin, a film forming polymer, and a carrier material. The coating can be applied to plastic substrates to improve the adhesion of subsequently applied coatings.
- U.S. Pat. No. 6,001,469 describes a composition similar to that described in U.S. Pat. No. 5,863,646, and describes its use as an adhesion promoting coating that can be applied directly onto thermoplastic and thermosetting plastic substrates.
- European patent application 1036817 A1 discloses a polyamide-modified polyolefin composition, which is obtained by reacting an unsaturated carboxylic acid anhydride modified polyolefin, having a specified molecular weight range, with a polyamide, having a specified molecular weight range. The resulting composition is described as having excellent adherence to polyolefin substrates without tack. U.S. Pat. No. 6,310,134, describes solvent-based primer compositions containing 0.5 to 40 weight percent of a modified polyolefin and a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents, and mixtures thereof. The polyolefins described in this report have been graft-modified with unsaturated acids, anhydrides, or esters. These modified polyolefins are reported to have good utility as primers for polyolefins substrates when topcoated with melamine based and 2-part polyurethane paints. Although these modified polyolefins provide good initial crosshatch adhesion of melamine based topcoats and good solvent resistance after application, they are deficient in water resistance, especially under high temperature and humidity conditions. U.S. Pat. No. 6,262,182 describes a solution process for the modification of certain polyolefins with an unsaturated anhydride, unsaturated acid or unsaturated ester.
- The present invention provides polyfunctional alcohol-modified carboxylated polyolefins, and their use in solvent- and water-based, adhesion-promoting primer compositions. The polyfunctional alcohol-modified carboxylated polyolefins of the present invention are prepared by reacting polyolefins, having a heat of fusion (ΔHf) of 0 to 10 calories/gram, with unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, vinyl monomers, acrylic monomers, or mixtures thereof, to provide a carboxylated polyolefin. The carboxylated polyolefins are then further modified by reaction with one or more polyfunctional alcohols. The polyfunctional alcohol-modified carboxylated polyolefins are useful in solvent- and water-based coating compositions, ink compositions, and adhesive compositions.
- The present invention provides polyfunctional alcohol-modified carboxylated polyolefins and their use in solvent- and water-based, adhesion-promoting primer compositions. Thus, in a first embodiment, the present invention provides a polyfunctional alcohol-modified carboxylated polyolefin comprising the reaction product of at least one carboxylated polyolefin with at least one polyfunctional alcohol, wherein the carboxylated polyolefin is prepared from a polyolefin having a heat of fusion of 0 to 10 calories/gram, preferably 0 to 8 calories/gram.
- The carboxylated polyolefins are prepared by reacting polyolefins having a heat of fusion of 0 to 10 calories/gram, preferably 0 to 8 calories/gram, with unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, vinyl monomers, acrylic monomers, or mixtures thereof. The carboxylated polyolefins are then further modified by reaction with one or more polyfunctional alcohols.
- The polyolefins useful as starting materials in the present invention are preferably amorphous, to be suitably soluble in the intended solvents, but may exhibit some measurable crystallinity. In this regard, the starting material polyolefins will exhibit a heat of fusion (ΔHf) of 0 to 10 calories/gram, preferably 0 to 8 calories/gram, as indicated by differential scanning calorimetry (DSC). The methodology for determination of heat of fusion is described below. Exemplary starting material polyolefin polymers for practice of the invention include ethylene copolymers prepared from ethylene and alpha olefins having 3 to about 10 carbon atoms, polypropylene, propylene copolymers prepared from ethylene or alpha olefins having from 4 to about 10 carbon atoms, poly(1-butene), 1-butene copolymers prepared from ethylene or alpha olefins having 3 to about 10 carbon atoms, propylene terpolymers prepared from ethylene and/or alpha olefins having from 4 to about 10 carbon atoms, and the like. In addition, mixtures of the previously mentioned polyolefins may be used in this process, as opposed to using a single polyolefin.
- Preferred copolymers include propylene-ethylene copolymers comprising 70-90 mole percent propylene and about 10-30 mole percent ethylene, and having a heat of fusion of 0 to 8 calories/gram. Preferred terpolymers include propylene-butylene-ethylene terpolymers comprising 55-75 mole percent propylene, 15-30 mole percent butylene, and 5-25 mole percent ethylene, and having a heat of fusion of 0 to 8 calories/gram.
- Exemplary monomers useful in the carboxylation of the starting material polyolefin include unsaturated carboxylic esters, unsaturated carboxylic acids, unsaturated carboxylic anhydrides, vinyl monomers, and acrylic monomers. Preferred monomers include, but are not limited to, maleic anhydride, citraconic anhydride, itaconic anhydride, glutaconic anhydride, 2,3-dimethylmaleic anhydride, maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, acrylic acid, methacrylic acid, crotonic acid, 2-pentenoic acid, 2-methyl-2-pentenoic acid, dimethyl maleate, diethyl maleate, di-n-propyl maleate, diisopropyl maleate, dimethyl fumarate, diethyl fumarate, di-n-propyl fumarate, diisopropyl fumarate, dimethyl itaconate, hydroxyethyl acrylate, and mixtures thereof.
- Preferably, the concentration of the carboxylating monomer is in the range of from about 1 to about 25 weight percent based on the weight of polyolefin. A more preferred range is from about 2 to about 20 weight percent. A range of about 4 to about 18 weight percent is especially preferred.
- The monomers are readily grafted to polyolefins, in the solution or melt phase, using radical initiators such as organic peroxides or azo compounds as the initiator. A preferred method includes the grafting of the monomers in a solution process according to the procedure described in U.S. Pat. No. 6,262,182, incorporated herein by reference.
- For grafting in the solution or melt phase, the reaction temperature is usually controlled by the half-life of the peroxide initiator. The half-life of the initiator at a given reaction temperature should be about one third to about one sixth of the reaction time. By knowing the half-life of the initiator at a specific temperature, a suitable reaction time can be quickly determined. The more stable the initiator, the longer the reaction time will be.
- Examples of organic peroxides which may be used include, but are not limited to, dibenzoyl peroxide, tert-amylperoxy 2-ethylhexanoate, tert-butylperoxy 2-ethyl hexanoate, tert-butylperoxy isobutyrate, and tert-butylperoxy isopropyl carbonate, tert-butylperoxy 3,5,5-trimethyl-hexanoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, tert-butylperoxy acetate, tert-butylperoxy benzoate, n-butyl 4,4-di(tert-butylperoxy)valerate, dicumyl peroxide, tert-butylcumyl peroxide, di(2-tert-butylperoxy isopropyl)benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, di(tert-butyl)peroxide, 2,5-dimethyl-2,5-di(tert-butylperoxy)-3-hexyne, tert-butyl hydroperoxide, cumyl hydroperoxide, and mixtures thereof.
- Examples of azo compounds useful as radical initiators include, but are not limited to, 2,2′-azobisisopropionitrile, 2,2′-azobisisobutyronitrile (AIBN), dimethyl azoisobutyrate, 1,1′ azobis(cyclohexanecarbonitrile), 2,2′-azobis(2-methylpropane), and mixtures thereof.
- Typical concentrations of radical initiators range from about 0.1 to about 20 weight %, based on the weight of the polyolefin. A more preferred range is from about 0.2 to about 10 weight percent.
- The addition of the monomers and a radical initiator can be carried out under numerous scenarios. For example, these monomers can be added before the radical initiator, concurrent with the radical initiator, or subsequent to the radical initiator. The monomer can be added in either the molten state, or as a solution in a solvent that does not interfere with the carboxylating or grafting reaction. Likewise, the radical initiator can be added in either solid or liquid form. It is also possible to charge a solution of the grafting monomer containing the initiator in a solvent that does not interfere with the desired reaction. The solvent used for this purpose can be the same as or different from the reaction solvent. The solvent preferably has a low volatility such that it flashes off and does not dilute or contaminate the reaction solvent. Preferred solvents for dissolving the grafting monomer include, but are not limited to, ketone solvents such as acetone and methyl ethyl ketone. In general, ketone solvents are used in amounts that do not cause the polyolefin to precipitate.
- The carboxylating or grafting process is typically conducted in solution at temperatures ranging from about 50° C. to about 300° C., depending on the choice of reaction solvent. The carboxylating reaction may be carried out at temperatures up to and including the boiling point of the reaction solvent. A more preferable temperature range is from about 70° C. to about 240° C., and a most preferred range is from about 80° C. to about 220° C.
- Following the completion of the carboxylating or grafting reaction, the reaction product may be used as is, or optionally the solvent used in the reaction may be removed by distillation at either ambient pressure, or more preferably, at reduced pressure. As a way of reducing cost in the process, the solvent may be recovered and recycled in subsequent batches. Solvents with relatively low boiling points are typically easier to remove and consequently more desirable for use in this process. Preferred solvents include tert-butylbenzene (b.p. 169° C.) and anisole (b.p. 154° C.).
- In the process of the present invention, the carboxylated polyolefin is further reacted with one or more polyfunctional alcohols. Suitable alcohols will have at least two hydroxyl groups or at least one hydroxyl group and another functional group capable of reacting with the carboxylated polyolefin, such as amino, epoxy, isocyanato, and the like.
- Exemplary polyfunctional alcohols include, but are not limited to, trimethylolethane, pentaerythritol, trimethylolpropane, 1,6-hexanediol, 1,4-cyclohexanediol, 1,2-propylene glycol, 1,4-cyclohexanedimethanol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, diethylene glycol, triethylene glycol, polyethylene glycols, glycerol, polyester polyols, acrylic polyols, polyurethanepolyols, glucose, sucrose, 2-amino-1-propanol, ethanolamine, and the like. Preferred for use are 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, and 1,6-hexanediol. Especially preferred are those polyfunctional alcohols having one primary hydroxyl group, and one secondary or tertiary hydroxyl group. The primary hydroxyl group, being less sterically hindered and consequently more reactive, will preferentially react with the carboxylated polyolefin, leaving the secondary or tertiary hydroxyl group pendant. These especially preferred polyfunctional alcohols include 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1,2-propylene glycol. The amount of polyol used to modify the carboxylated polyolefin will generally be in the range of about 0.01 to about 60 weight %, based on the weight of the carboxylated polyolefin.
- The polyfunctional alcohol modification reaction may be carried out in the presence or absence of a solvent. When using a solvent, the reaction is conducted at temperatures in the range of about 10° C. to about 250° C. The reaction temperature chosen will affect the time necessary to complete the reaction. Any solvent in which the carboxylated polyolefin is soluble may be used. Exemplary solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, tert-butylbenzene, chlorinated solvents, aliphatic hydrocarbon solvents such as naphtha, mineral spirits, and hexane, ester solvents such as propyl acetate and butyl acetate as well as ketones such as methyl amyl ketone. Mixtures of solvents may be used if desired.
- If desired, the polyfunctional alcohol may be reacted with the carboxylated polyolefin in the solvent used to prepare the carboxylated polyolefin. Alternatively, solvent may be removed from the carboxylated polyolefin and replaced with any suitable solvent for the reaction with the polyfunctional alcohol.
- If the carboxylated polyolefin contains anhydride groups, no catalyst is required to react this material with the polyfunctional alcohols to yield the corresponding monoester and half acid groups. However, if desired, the remaining half acid groups on the polyolefin may then be further reacted with polyfunctional alcohol in the presence of excess polyfunctional alcohol and at higher temperature to yield the corresponding diester. A catalyst may or may not be needed to completely esterify all of the half acid groups.
- If the carboxylated polyolefin is prepared by grafting an ester monomer such as dimethyl maleate to the polyolefin substrate, then it may be desirable to use a catalyst such as a titanium catalyst in the polyol modification reaction. Suitable titanium catalysts include titanium tetraisopropoxide, titanium tetraisobutoxide, and the like.
- The polyfunctional alcohol-modified carboxylated polyolefin resins are soluble in typical coating solvents such as toluene, xylene, naphtha, mineral spirits, hexane, and ester solvents such as propyl acetate and butyl acetate as well as ketones such as methyl amyl ketone. Mixtures of solvents may be used if desired. As noted above, these polyolefins are especially useful as primers for coating substrates which suffer from poor paint adhesion. Accordingly, such resins may be applied to, for example, a plastic substrate, allowed to dry, and a conventional topcoat coating composition applied thereto. Alternatively, the polyolefins of the invention may be blended with various coating compositions to afford a self-priming composition useful for coating such substrates. In this regard, such topcoat compositions may be any coating composition, typically comprised of any number of traditional resins, for example, polyesters, acrylics, urethanes, melamines, alkyds, etc. In addition, such compositions may also further comprise one or more typical coatings additives. Thus, as a further aspect of the present invention there is provided a coating composition comprising the polyolefins of the present invention as described herein, further comprising one or more coatings additives such as leveling, rheology, and flow control agents such as silicones, fluorocarbons or cellulosics; neutralized carboxylic acid-containing latex particles with highly crosslinked particles; associative thickeners; flatting agents; pigment wetting and dispersing agents and surfactants; ultraviolet (UV) absorbers; UV light stabilizers; tinting pigments; defoaming and antifoaming agents; anti-settling, anti-sag, and bodying agents; anti-skinning agents; anti-flooding and anti-floating agents; fungicides and mildewcides; corrosion inhibitors; thickening agents; or coalescing agents.
- Specific examples of such additives can be found in Raw Materials Index, published by the National Paint & Coatings Association, 1500 Rhode Island Avenue, N.W., Washington, D.C. 20005.
- Examples of flatting agents include synthetic silica, available from the Davison Chemical Division of W. R. Grace & Company under the trademark Syloid®; polypropylene, available from Hercules Inc., under the trademark Hercoflat®; and synthetic silicate, available from J. M. Huber Corporation under the trademark Zeolex®.
- Examples of dispersing agents and surfactants include sodium bis(tridecyl)sulfosuccinnate, di(2-ethylhexyl)sodium sulfosuccinnate, sodium dihexylsulfosuccinnate, sodium dicyclohexyl sulfosuccinnate, diamyl sodium sulfosuccinnate, sodium diisobutyl sulfosuccinnate, disodium iso-decyl sulfosuccinnate, disodium ethoxylated alcohol half ester of sulfosuccinnic acid, disodium alkyl amido polyethoxy sulfosuccinnate, tetrasodium N-(1,2-dicarboxy-ethyl)-N-octadecyl sulfosuccinnamate, disodium N-octasulfosuccinnamate, sulfated ethoxylated nonylphenol, 2-amino-2-methyl-1-propanol, and the like.
- Examples of viscosity, suspension, and flow control agents include polyaminoamide phosphate, high molecular weight carboxylic acid salts of polyamine amides, and alkylene amine salts of an unsaturated fatty acid, all available from BYK Chemie U.S.A. under the trademark Anti Terra®. Further examples include polysiloxane copolymers, polyacrylate solution, cellulose esters, hydroxyethyl cellulose, hydrophobically-modified hydroxyethyl cellulose, hydroxypropyl cellulose, polyamide wax, polyolefin wax, carboxymethyl cellulose, ammonium polyacrylate, sodium polyacrylate, and polyethylene oxide. Other examples of thickeners include the methane/ethylene oxide associative thickeners and water soluble carboxylated thickeners, for example, those sold under the UCAR POLYPHOBE trademark by Union Carbide.
- Several proprietary antifoaming agents are commercially available, for example, under the trademark BRUBREAK of Buckman Laboratories Inc., under the BYK® trademark of BYK Chemie, U.S.A., under the Foamaster® and Nopco® trademark of Henkel Corp./Coating Chemicals, under the Drewplus® trademark of the Drew Industrial Division of Ashland Chemical Company, under the Troysol® and Troykyd® trademarks of Troy Chemical Corporation, and under the Sag® trademark of Union Carbide Corporation.
- Examples of fungicides, mildewcides, and biocides include 4,4-dimethyloxazolidine, 3,4,4-trimethyloxazolidine, modified barium metaborate, potassium N-hydroxy-methyl-N-methyldithiocarbamate, 2-(thiocyanomethylthio)benzothiazole, potassium dimethyl dithiocarbamate, adamantane, N-(trichloromethylthio)phthalimide, 2,4,5,6-tetrachloroisophthalonitrile, orthophenyl phenol, 2,4,5-trichlorophenol, dehydroacetic acid, copper naphthenate, copper octoate, organic arsenic compounds, tributyl tin oxide, zinc naphthenate, and copper 8-quinolinate.
- Examples of U.V. absorbers and U.V. light stabilizers include substituted benzophenones, substituted benzotriazoles, hindered amines, and hindered benzoates, available from American Cyanamid Company under the trademark CYASORB UV, and diethyl-3-acetyl-4-hydroxy-benzyl-phosphonate, 4-dodecyloxy-2-hydroxy benzophenone, and resorcinol monobenzoate.
- Such paint or coating additives as described above form a relatively minor proportion of the coating composition, preferably about 0.05 weight % to about 5.00 weight %.
- As a further aspect of the present invention, there is provided a coating composition as set forth above, further comprising one or more pigments and/or fillers in a concentration of about 1 to about 70 weight percent, preferably about 30 to about 60 weight percent, based on the total weight of the components of the composition.
- Pigments suitable for use in the coating compositions envisioned by the present invention are the typical organic and inorganic pigments, well-known to one of ordinary skill in the art of surface coatings, especially those set forth by the Colour Index, 3d Ed., 2d Rev., 1982, published by the Society of Dyers and Colourists in association with the American Association of Textile Chemists and Colorists. Examples include, but are not limited to the following: CI Pigment White 6 (titanium dioxide); CI Pigment Red 101 (red iron Oxide); CI Pigment Yellow 42, CI Pigment Blue 15, 15:1, 15:2, 15:3, 15:4 (copper phthalocyanines); CI Pigment Red 49:1; and CI Pigment Red 57:1.
- The polyfunctional alcohol modified carboxylated polyolefins of the present invention may also contain pendant carboxylic acid groups, which have the propensity to form hydrophilic salts with amines and therefore may allow the modified polyolefins of the present invention to be rendered water-dispersible. The modified carboxylated polyolefin may contain a combination of both hydroxyester and carboxylic acid functional groups. For example, this can be accomplished by reacting an anhydride functional polyolefin with 2,2,4-trimethyl-1,3-pentanediol or 2-ethyl-1,3-hexanediol to yield a modified carboxylated polyolefin containing both hydroxyester and carboxylic acid functional groups.
- It is readily understood by one skilled in the art that the modified carboxylated polyolefins, having pendant carboxyl groups, may also be rendered water-dispersible by neutralization of at least a portion of the carboxyl groups with an amine (organic amine or inorganic amine) or other inorganic base (i.e., sodium hydroxide, potassium hydroxide, etc.). These modified carboxylated polyolefins may be dispersed by emulsifying the modified carboxylated polyolefin in the presence of an amine, or other inorganic base, and water; depending on molecular weight and acid number, it may be desirable or even necessary to utilize at least one surfactant, at least one amine, and water. This method for dispersing carboxylated resins is described in U.S. Pat. No. 5,373,048, incorporated herein by reference.
- One group of surfactants useful in this invention may be broadly described as nonionic surfactants. The surfactants may have a molecular weight of up to 500 or greater and may include polymeric materials. The surfactants include materials that contain groups of varying polarity whereby one part of the molecule is hydrophilic and the other part of the molecule is hydrophobic. Examples of such materials include polyethyleneoxy polyols and ethoxylated alkyl phenols. Particularly preferred classes of surfactants include alkyl phenoxy poly(ethyleneoxy)alcohols, primary ethoxylated alcohols and secondary ethoxylated alcohols. Preferably the surfactant is a primary ethoxylated alcohol having 12 to 15 carbon atoms or a secondary ethoxylated alcohol having 11 to 15 carbon atoms. Examples of alkyl phenoxy poly(ethyleneoxy)alcohols include Igepal® CO-710 sold by Rhone Poulenc. Examples of primary ethoxylated alcohols include Neodol® 25-9 and Neodol® 25-12 sold by Shell Chemical Company. Examples of secondary ethoxylated alcohols include Tergitol® 15-S-9 and Tergitol® 15-S-15 sold by Union Carbide Company. The amount of surfactant is broadly in the range of 0 to 50 weight percent and is preferably in the range of 0 to 25 weight percent, based on the weight of the modified carboxylated polyolefin. Other examples of surfactants include those described in U.S. Pat. No. 5,663,266, incorporated herein by reference.
- The amine may be a primary, secondary, or tertiary amine. The amine may be aromatic or aliphatic, but aliphatic amines are preferred. The amount of amine may be in the range of 4 to 30 weight percent and preferably is in the range of 6 to 20 weight percent, based on the weight of the modified carboxylated polyolefin. Typical amines include ammonia, ammonium hydroxide, trimethylamine, diethylamine, monoethanolamine, monoisopropanolamine, morpholine, ethanolamine, diethanolamine, triethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine,
- N-methyl-diethanolamine, 2-amino-2-methyl-1-propanol and the like. Other examples of amines include those described in U.S. Pat. No. 5,373,048, incorporated herein by reference.
- Inorganic bases that may be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and the like.
- The amount of water may vary widely and there is no upper limit on the amount of water used. There may be a lower limit on the amount of water because sufficient water should be present in the composition to result in the formation of an admixture of the components. Generally, there should be at least 50 weight percent water in the composition, based on the weight of the total composition.
- The polyfunctional alcohol-modified carboxylated polyolefins of the present invention are useful, for example, in primers for plastic and metal substrates prior to painting. The polyfunctional alcohol-modified carboxylated polyolefins may be used as prepared in solvent, or may be further diluted with any of the solvents listed previously. Dispersions of the polyfunctional alcohol-modified carboxylated polyolefins may also be applied to the substrate as prepared, or they may be further diluted with water. Both the solvent- and water-based materials may be applied to the substrate by spray application, dipping, or any other means available, which allows for a uniform coating of the polyfunctional alcohol-modified carboxylated polyolefin onto the substrate. Subsequent topcoats, such as paints, adhesives, and inks, can then be applied on top of the primers of the present invention.
- If desired, a co-solvent may be utilized in the waterborne compositions. In this regard, suitable co-solvents for the water-borne compositions of the present invention include ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, ethylene glycol monobutyl ether, propylene glycol n-butyl ether, propylene glycol methyl ether, propylene glycol monopropyl ether, dipropylene glycol methyl ether, diacetone alcohol, and other water-miscible solvents.
- These polyfunctional alcohol-modified carboxylated polyolefins may also be used as additives for paint topcoats. In this instance, the polyfunctional alcohol-modified carboxylated polyolefin may be added to the coating prior to application on a substrate.
- This invention can be further illustrated by the following examples of preferred embodiments thereof, although it will be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention.
- The following tests were used to evaluate the performance of the various modified polyolefins of the present invention:
- Painted test samples are scribed with a sharp knife to make 100 squares. The scribed test samples are immersed in a 55/45 VM&P naphtha/toluene mixture and covered with aluminum foil. After 15 minutes immersion, the test samples are evaluated for number of squares removed or blistered. This is repeated every 15 minutes until the test samples have been immersed for 60 minutes, or all squares are removed. The percent paint removed and the percent paint retained is reported at each evaluation period, and the blistering.
- Painted test samples are scribed with a sharp knife to make 25 squares. The center of a piece of tape is placed over the scribed area and the tape is rubbed firmly into place with a pencil eraser or other object. The tape is removed by seizing the free end and by rapidly peeling it back on itself as close to a 90-degree angle as possible. The percent paint retained is reported.
- Test specimens are mounted, with the painted side facing the inside of the Cleveland Humidity cabinet. All cracks are closed between specimens to prevent vapor loss and temperature variation. The thermostat is adjusted to set the vapor temperature at 120° C. The test specimens are removed periodically, and tested by the cross-cut tape test method for adhesion and blister formation.
- Determination of the Thermal Properties of Material With a TA Instruments Model 2920 Dual Sample Auto Differential Scanning Calorimeter with a Liquid Nitrogen Cooling Accessory
- This differential scanning calorimetry (DSC) method allows for the measurement of the amount of energy absorbed (endothermic) or emitted (exothermic) by a sample as a function of temperature. A maximum of three separately sealed aluminum pans, two containing materials of interest and one sealed empty aluminum pan as reference, are heated and cooled at a constant rate. The pans sit on raised platforms of the thermoelectric disc (constantan) which transfers heat to the sample(s) and reference positions. As heat is transferred through the disc, the differential heat flow to the sample(s) and reference is monitored by thermocouples attached to the bases of the samples and reference platforms. Data are analyzed using Universal V2.4F software of TA Instruments. Since the thermo-mechanical history of the sample was unknown, a heat-cool-heat method was applied on each sample used in this study. Sample was cooled from room temperature to −75° C. held for 30 seconds, then heated from −75° C. to 200° C. at a scanning rate of 20° C./min. in the presence of nitrogen with a purging rate of 25 cc/min. At the end of the first heating scan, sample was held at 200° C. for 2 minutes in order to erase any thermo-mechanical history along with any crystallinity inherited from sample itself and/or generated by any annealing effect. The sample was cooled down from 200° C. to −75° C. at the same rate as 20° C./min. At the end of cooling scan, sample was held at −75° C. for 30 seconds, then heated to 200° C. at the same rate of 20° C./min. for the second heating scan. The transitions along with the heats, heat of fusion for endothermic peak and heat of crystallization of exothermic peak, occurred on the second heating scan were measured.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 138.9 grams of a maleic anhydride modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 1.7 grams of trimethylolethane (1,1,1-tris (hydroxymethyl)ethane). The mixture was heated to 120° C. and held there with stirring for 40 minutes. The reaction mixture was cooled to 80-90° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides excellent adhesion of urethane and melamine-cured coatings onto polyolefin surfaces and provides excellent high temperature and humidity resistance.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 197.3 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 2.36 grams of 1,6-hexanediol. The mixture was heated to 120° C. and held there with stirring for 30 minutes. The reaction mixture was cooled to 80-90° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides excellent adhesion of urethane and melamine-cured coatings onto polyolefin surfaces and provides excellent high temperature and humidity resistance.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 250.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 3.80 grams of 2,2,4-trimethyl-1,3-pentanediol. The mixture was heated to 80° C. and held there with stirring for 1.5 hours. The reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides improved high temperature and humidity resistance of a melamine cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 250.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 7.60 grams of 2,2,4-trimethyl-1,3-pentanediol. The mixture was heated to 80° C. and held there with stirring for 1.5 hours. The reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides improved high temperature and humidity resistance of a melamine cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 250.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 3.88 grams of propylene glycol. The mixture was heated to 80° C. and held there with stirring for 1.5 hours. The reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides improved high temperature and humidity resistance of a melamine cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 25.0 g of methyl ethyl ketone and 3.72 grams of trimethylolethane (1,1,1-tris (hydroxymethyl)ethane). The mixture was heated to 75-80° C. and was stirred at this temperature until the trimethylolethane had dissolved. To this mixture was added, over approximately 35 minutes, 125.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below). After the addition the mixture was stirred at 85° C. for 2 hours. After 2 hours the addition funnel was replaced with a Dean-Stark trap and the low-boilers (MEK) were removed using a nitrogen sparge. The reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides improved high temperature and humidity resistance of a melamine cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 250.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 4.60 grams of 1,3-butanediol. The mixture was heated to 80° C. and held there with stirring for 1.5 hours. The reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides improved high temperature and humidity resistance of a melamine cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 250.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 7.46 grams of 2-ethyl-1,3-hexanediol. The mixture was heated to 85° C. and held there with stirring for 1.5 hours. The reaction mixture was cooled to 50-60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides excellent high temperature and humidity resistance of a melamine cured coating and urethane cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 150.0 grams of a maleic anhydride-modified (carboxylated) polymer (25% in xylene) prepared as described in Comparative Example 1 (below) and 7.50 grams of Eastman REACTOL 100 (acrylic polyol; hydroxyl #=100). The mixture was heated to 85° C. and held there with stirring for 2.0 hours. The reaction mixture was cooled to 60-70° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides excellent high temperature and humidity resistance of a melamine cured coating and urethane cured coating onto polyolefin surfaces relative to Comparative Examples 1, 2, 3, and 4.
- To a 1-L, 3-neck round bottom flask equipped with a mechanical overhead stirrer, condenser, addition funnel, and a nitrogen inlet was charged 550 grams tert-butyl benzene and 300.0 grams of a propylene-ethylene copolymer comprised of about 80 mole percent propylene and about 20 mole percent ethylene and having a heat of fusion of approximately 5.2 calories/gram. The copolymer had a Ring and Ball Softening Point of 135° C. The mixture was heated to 150° C. over 45 minutes to provide a colorless solution. Maleic anhydride (36.0 grams) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (14.4 grams, radical initiator) were dissolved in 46.2 grams of acetone. The resulting solution of maleic anhydride/acetone/radical initiator was transferred to the addition funnel and charged to the reaction flask over 60 minutes. The contents of the flask were stirred for an additional 4 hours at 150° C. following the addition of the maleic anhydride and the radical initiator. The tert-butylbenzene was distilled from the reaction mixture under vacuum until nothing else distilled from the pot at a temperature of 150° C. and a pressure of 50 mm Hg. Xylene (960 grams, mixed isomers) was charged to the molten carboxylated polyolefin over 30 minutes while maintaining the temperature at 125° C. The resulting solution of the carboxylated polyolefin in xylene was cooled to room temperature and bottled.
- To a 500-ml, 3-neck round bottom flask equipped with an overhead stirrer, condenser, thermocouple, and a nitrogen inlet was charged 150.0 grams of the carboxylated polyolefin solution prepared as described above, 12.3 grams of 2-ethyl-1,3-hexanediol, and 0.05 grams of p-toluenesulfonic acid. The mixture was heated to 100° C. and held at this temperature with stirring for 5 hours. The reaction mixture was cooled to 60-70° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a carboxylated polyolefin that has been modified with a polyfunctional alcohol to yield an adhesion promoter that provides excellent high temperature and humidity resistance of a melamine cured coating and urethane cured coating onto polyolefin surfaces.
- To a 5-L, 3-neck round bottom flask equipped with a mechanical overhead stirrer, condenser, thermocouple, and a nitrogen inlet was added 525.0 grams of propylene-ethylene-butylene terpolymer (Vestoplast 750 available from Degussa AG, heat of fusion of approximately 6.7 calories/gram) and 927 grams of tert-butylbenzene. The mixture was heated to 150° C. over 45 minutes and held at this temperature for 1.5 hours. During the hold period, a solution of maleic anhydride (65.7 grams) in acetone (88.9 grams) was prepared. To this solution was charged
- 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (25.7 grams, radical initiator). The resulting solution of maleic anhydride/acetone/radical initiator was transferred to an addition funnel and charged to the reaction flask over
2.5 hours. Following the addition, the contents of the reaction flask were stirred an additional 4 hours at 150° C. The tert-butylbenzene was distilled from the reaction mixture under vacuum until nothing else distilled from the reaction flask at a temperature of 150° C. and a pressure of 50 mm Hg. Xylene (1850 grams, mixed isomers) was charged to the molten carboxylated polyolefin over approximately 55 minutes. The resulting solution was heated to reflux and excess xylene (108 grams) was distilled out. The contents of the flask were cooled to about 60° C. and bottled. This afforded 2342 grams of a solution that had a solids content of 25.1% and an acid number of 16.9 mg KOH/gram (67.3 mg KOH/gram on a 100% solids basis). - To a 2-L, 3-neck round bottom flask equipped with an overhead stirrer, condenser, thermocouple, and a nitrogen inlet was charged 669.7 grams of the carboxylated polyolefin solution prepared as described above. The contents of the flask were heated to 90° C. and 58.7 grams of 2-butyl-2-ethyl-1,3-propanediol (BEPD) was then charged. The mixture was held at 90° C. with stirring for 8 hours. The reaction mixture was cooled to 50° C. and poured into a glass jar. This afforded 714 grams of a solution of a BEPD-modified carboxylated polyolefin.
- This is an example of a terpolymer of propylene, ethylene, and butylene with a heat of fusion of approximately 6.7 cal/gram that has been maleated then modified with a polyfunctional alcohol to yield an adhesion promoter.
- In this example there is described the preparation of a dispersion of a polyfunctional alcohol-modified carboxylated polyolefin of the present invention.
- To a 3-L, 3-neck round bottom flask equipped with a mechanical overhead stirrer, condenser, thermocouple, and a nitrogen inlet was added 2250 grams of a commercially available carboxylated polyolefin, AP 440-1 (25% in xylene), available from Eastman Chemical Company. This material was heated to 90° C. To this material was added, at 90° C., 134.2 grams of 2-ethyl-1,3-hexanediol over approximately 15 minutes. The mixture was stirred at 90° C. for 4 hours. The mixture was cooled to 60-70° C. and poured into a glass container. To a 500-ml, 3-neck round bottom flask equipped with a vacuum distilling head, overhead stirrer, and a thermocouple was added 350.0 g of the solution prepared as described above. This mixture was heated to 90° C. and the pressure inside the reactor was gradually reduced to strip off the solvent (xylene) from the carboxylated polyolefin solution. The pressure inside the reactor was gradually reduced from 760 to 19 mmHg. The temperature was gradually increased to 120° C. to help remove any of the remaining solvent. To a Parr Reactor was added 25.0 grams of solid 2-ethyl-1,3-hexanediol modified carboxylated polyolefin (recovered from the solvent-stripping step above), 6.0 grams of Triton N-101 (ethoxylated alkylphenol surfactant), 1.75 grams of 2-amino-2-methyl-1-propanol, and 97.0 grams of water. The reactor was sealed and heated to 150° C. The mixture was held at 150° C. with stirring for 2 hours. The mixture was then heated to 170° C. and was held at this temperature for another hour. The mixture was then cooled as quickly as possible and was poured into a glass container. The mixture was very translucent and there was only a small amount (<1.0 g) of solid remaining on the walls of the reactor. The pH of the emulsion was approximately 10.
- This example demonstrates the ability to disperse the polyfunctional alcohol modified carboxylated polyolefins of the present invention into water using a surfactant, amine, and water.
- To a 5-L, 3-neck round bottom flask equipped with a mechanical overhead stirrer, condenser, thermocouple, and a nitrogen inlet was added 525.0 grams of propylene-ethylene-butylene terpolymer (Vestoplast 792 available from Degussa AG, heat of fusion of approximately 7.4 calories/gram) and 928 grams of tert-butylbenzene. The mixture was heated to 150° C. over 45 minutes and held at this temperature for 1.5 hours. During the hold period, a solution of maleic anhydride (65.6 grams) in acetone (89.4 grams) was prepared. To this solution was charged 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (25.7 grams, radical initiator). The resulting solution of maleic anhydride/acetone/radical initiator was transferred to an addition funnel and charged to the reaction flask over 2.5 hours. Following the addition, the contents of the reaction flask were stirred an additional 4 hours at 150° C. The tert-butylbenzene was distilled from the reaction mixture under vacuum until nothing else distilled from the reaction flask at a temperature of 149° C. and a pressure of 43 mm Hg. Xylene (1850 grams, mixed isomers) was charged to the molten carboxylated polyolefin over approximately 65 minutes. The resulting solution was heated to reflux and excess xylene (102 grams) was distilled out. The contents of the flask were cooled to about 60° C. and bottled. This afforded 2342 grams of a solution that had a solids content of 25.2% and an acid number of 17.4 mg KOH/gram (69.1 mg KOH/gram on a 100% solids basis).
- To a 2-L, 3-neck round bottom flask equipped with an overhead mechanical stirrer, condenser, thermocouple, and a nitrogen inlet was charged 718.6 grams of the carboxylated polyolefin solution prepared as described above. The contents of the flask were heated to 90° C. and 57.5 grams of 2,2,4-trimethyl-1,3-pentanediol (TMPD) was then charged. The mixture was held at 90° C. with stirring for 8 hours. The reaction mixture was cooled to 50° C. and poured into a glass jar. This afforded 762 grams of a solution of a TMPD-modified carboxylated polyolefin with a solids content of 25.0%.
- To a 1-L, 3-neck round bottom flask equipped with an overhead mechanical stirrer, distillation head and condenser, thermocouple, and a nitrogen adapter was charged 350 grams of the TMPD-modified carboxylated polyolefin, prepared as described above. To this solution was charged 7 grams of Triton N-101 (non-ionic surfactant available from Union Carbide). The resulting mixture was heated to 90° C. Pressure was reduced on the system to initiate distillation and the distillation was continued until no more distillate was collected at a temperature of 90° C. and a pressure of 20 mm Hg. Atmospheric pressure was reestablished on the system and a warm (65° C.) solution of 13.1 grams of N,N-dimethylethanolamine (DMEA) in 367.5 grams of water was charged to the reaction flask over approximately 20 minutes while maintaining the temperature above 85° C. The resulting dispersion was heated to reflux. Approximately 40 mL of distillate was collected. The dispersion was held at 90° C.-95° C. for 45 minutes, cooled to ambient temperature, then bottled in a glass jar. This resulted in a very translucent dispersion that had a solids content of 19.0% and a pH of 9.0.
- This example demonstrates the ability to disperse the polyfunctional alcohol modified carboxylated polyolefin of the present invention into water using a surfactant, amine, and water.
-
TABLE 1 Crosshatch Adhesion Tape Test and Gasoline Resistance Initial Adhesion After Humidity Gasoline Resistance Topcoat Adhesion (When failure occurred) (% adhesion and blistering) Example # System (ASTM 3359) (ASTM D4585) (GM 9501P) Comparative 2-package 100% 100% 100% Example 1 urethane (No failure at 504 Hrs.) (50% blistering) Comparative 1-package 100% 0% @ 24 Hrs. 100% Example 1 melamine (No blistering) Comparative 2-package 0% NA 0% Example 2 urethane (after 10 min.) Comparative 1-package 0% NA 0% Example 2 melamine (after 30 min.) Comparative 2-package 100% 100% 98% Example 3 urethane (No failure at 504 Hrs.) (after 60 min.) Comparative 1-package 100% 0% @ 48 Hrs. 100% Example 3 melamine (No blistering) Comparative 2-package 100% 100% 100% Example 4 urethane (No failure at 504 Hrs.) (No blistering) Comparative 1-package 100% 0% @ 120 Hrs. 100% Example 4 melamine (No blistering) 1 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 1 1-package 100% 100% 100% melamine (No failure at 504 Hrs.) (No blistering) 2 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (50% blistering) 2 1-package 100% 100% at 96 Hrs. 100% melamine (87% at 192 Hrs.) (No blistering) 3 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 3 1-package 100% 100% at 48 Hrs. 100% melamine (0% at 96 Hrs.) (No blistering) 4 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 4 1-package 100% 100% at 48 Hrs. 100% melamine (0% at 96 Hrs.) (No blistering) 5 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 5 1-package 100% 96% at 48 Hrs. 100% melamine (0% at 120 Hrs.) (No blistering) 6 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 6 1-package 100% 100% at 48 Hrs. 100% melamine (0% at 120 Hrs.) (No blistering) 7 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 7 1-package 100% 100% at 48 Hrs. 100% melamine (0% at 120 Hrs.) (No blistering) 8 2-package 100% 100% 100% urethane (No failure at 528 Hrs.) (No blistering) 8 1-package 100% 100% 100% melamine (Failure between (No blistering) 264-528 Hrs.) 9 2-package 100% 100% 100% urethane (No failure at 528 Hrs.) (No blistering) 9 1-package 100% 100% at 48 Hrs. 100% melamine (55% at 96 Hrs.) (No blistering) 10 2-package 100% 100% 100% urethane (No failure at 504 Hrs.) (No blistering) 10 1-package 100% 100% 100% melamine (No failure at 504 Hrs.) (No blistering) - To a 1-L, 3-neck round bottom flask equipped with a mechanical overhead stirrer, condenser, addition funnel, and a nitrogen inlet was charged 275 grams tert-butyl benzene and 150.0 grams of a propylene-ethylene copolymer comprised of about 80 mole percent propylene and about 20 mole percent ethylene and having a heat of fusion of approximately 5.2 calories/gram (available from Eastman Chemical Company as Eastman Eastoflex E-1200® propylene-ethylene copolymer). The copolymer had a Ring and Ball Softening Point of 135° C. The mixture was heated to 150° C. over 45 minutes to provide a colorless solution. Maleic anhydride (12.0 grams) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (4.8 grams, radical initiator) were dissolved in 15.0 grams of acetone. The resulting solution of maleic anhydride/acetone/radical initiator was transferred to the addition funnel and charged to the reaction flask over 40 minutes. The contents of the flask were stirred for an additional 4 hours at 150° C. following the addition of the maleic anhydride and the radical initiator. The tert-butylbenzene was distilled from the reaction mixture under vacuum until nothing else distilled from the pot at a temperature of 150° C. and a pressure of 50 mm Hg. Xylene (478 grams, mixed isomers) was charged to the molten carboxylated polyolefin over 20 minutes while maintaining the temperature between 116-145° C. The resulting solution of the carboxylated polyolefin in xylene was cooled to room temperature and bottled. Analysis of this material yielded an acid number of 11.6 mg KOH/gram with a solids level of 25.0%. Correcting for %-solids, the acid number value increases to 46.4 mg KOH/gram for 100 percent solid material. This material was reduced to 5% solids in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: percent retained adhesion on Montell Hifax CA 187 AC TPO: 100%.
- Cleveland humidity testing was conducted in accordance with ASTM D 4585 in conjunction with ASTM D 3359 at 49° C. The results were as follows: percent retained adhesion after 24 hours exposure: 0%.
- Gasoline Resistance was tested using General Motors test GM 9501P Method B. Results were as follows: Percent loss after 1 hour in synthetic fuel mixture (55/45 VM&P naphtha/toluene): 0% with no blistering observed.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: percent retained adhesion on Montell Hifax CA 187 AC TPO: 100%.
- Cleveland humidity testing was conducted in accordance with ASTM D 4585 in conjunction with ASTM D 3359 at 49° C. The results were as follows: percent retained adhesion after 48 hours exposure: 100%; percent retained adhesion after 192 hours exposure: 100%; percent retained adhesion after 504 hours exposure: 100%.
- Gasoline Resistance was tested using General Motors test GM 9501P Method B. Results were as follows: Percent loss after 1 hour in synthetic fuel mixture (55/45 VM&P naphtha/toluene): 0%, but with 50% blistering observed.
- Thus, this example shows that this carboxylated polyolefin adhesion promoter does not provide good high temperature and humidity resistance with the melamine-cured coating.
- A propylene-ethylene copolymer comprised of approximately 80 mole percent propylene and 20-mole percent ethylene and having a heat of fusion of approximately 5.2 calories/gram was dissolved in xylene at 5% solids. The solution was filtered to remove any undissolved polymer that might be present in the mixture. This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in
- The primed panels were topcoated with an OEM 2-package urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- This is an example of a propylene-ethylene copolymer that contains no hydroxyl or carboxyl functionality and that does not perform well as an adhesion promoter for polyolefin surfaces.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 150.0 grams of maleic anhydride modified polymer (25% in xylene) prepared as described in Example 1 and 2.0 grams of methanol. The mixture was heated to 130-135° C. and held there with stirring for 2 hours. The reaction mixture was cooled to room temperature and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-part urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- To a 500-ml, 3-neck round bottom flask equipped with a mechanical overhead stirrer, thermocouple, nitrogen purge, Dean-Stark trap, and a condenser was charged 500.0 grams of maleic anhydride modified polymer (25% in xylene) prepared as described in Example 1 and 15.9 grams of 2-ethylhexanol. The mixture was heated to 90° C. and held there with stirring for 2 hours. The reaction mixture was cooled to 60° C. and poured into a glass container. This reaction mixture was reduced to 5% in toluene for spray application.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM melamine-cured basecoat (DURETHANE 802) and clearcoat (UCC 1001) from PPG Industries. Test results are listed in Table 1.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels were topcoated with an OEM 2-part urethane basecoat (206LE19689K) and clearcoat (317LE19929) from Red Spot Paint & Varnish. Test results are listed in Table 1.
- The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Claims (14)
1. A water-based primer composition, comprising: the reaction product of an amine or inorganic base with the polyfunctional alcohol modified carboxylated polyolefin; water; and optionally, a surfactant;
wherein said polyfunctional alcohol-modified carboxylated polyolefin comprises the reaction product of: at least one carboxylated polyolefin prepared from a polyolefin having a heat of fusion of 0 to 10 calories/gram; and at least one polyfunctional alcohol.
2. The water-based primer composition of claim 1 , wherein the carboxylated polyolefin is the reaction product of: at least one polyolefin polymer selected from the group consisting of: ethylene copolymers prepared from ethylene and alpha olefins having 3 to about 10 carbon atoms; polypropylene; propylene copolymers containing ethylene or alpha olefins having from 4 to about 10 carbon atoms; poly(1-butene); propylene terpolymers prepared from ethylene and/or alpha olefins having from 4 to about 10 carbon atoms; and 1-butene copolymers prepared from 1-butene and ethylene or alpha olefins having 3 to about 10 carbon atoms; and at least one monomer selected from the group consisting of an unsaturated carboxylic acid ester, an unsaturated carboxylic acid, an unsaturated carboxylic anhydride, a vinyl monomer, and an acrylic monomer.
3. The water-based primer composition of claim 2 , wherein the polyolefin polymer is an ethylene-propylene copolymer comprised of about 80 mole percent propylene and about 20 mole percent ethylene.
4. The water-based primer composition of claim 2 , wherein the at least one monomer includes at least one member selected from the group consisting of maleic anhydride, citraconic anhydride, itaconic anhydride, glutaconic anhydride, 2,3-dimethylmaleic anhydride, maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, acrylic acid, methacrylic acid, crotonic acid, 2-pentenoic acid, 2-methyl-2-pentenoic acid, dimethyl maleate, diethyl maleate, di-n-propyl maleate, diisopropyl maleate, dimethyl fumarate, diethyl fumarate, di-n-propyl fumarate, diisopropyl fumarate, dimethyl itaconate, methyl acrylate, hydroxyethyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, methyl crotonate, ethyl crotonate, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, and mixtures thereof.
5. The water-based primer composition of claim 1 , wherein the at least one polyfunctional alcohol includes at least one member selected from the group consisting of trimethylolethane, pentaerythritol, trimethylolpropane, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-propylene glycol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, diethylene glycol, triethylene glycol, polyethylene glycols, glycerol, polyester polyols, acrylic polyols, polyurethanepolyols, glucose, and sucrose.
6. The water-based primer composition of claim 1 , wherein the polyfunctional alcohol comprises one primary hydroxyl group and one secondary or tertiary hydroxyl group.
7. The water-based primer composition of claim 6 , wherein the polyfunctional alcohol is at least one member selected from the group consisting of 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1,2-propylene glycol.
8. The water-based primer composition of claim 7 , wherein the surfactant is present and is a nonionic surfactant.
9. The water-based primer composition of claim 8 , wherein the amine is an aliphatic amine.
10. The water-based primer composition of claim 8 , wherein the amine is at least one member selected from the group consisting of ammonia, ammonium hydroxide, trimethylamine, diethylamine, monoethanolamine, monoisopropanolamine, morpholine, ethanolamine, diethanolamine, triethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, 2-amino-2-methyl-1-propanol, and N-methyldiethanolamine.
11. An article of manufacture, comprising a plastic or metal substrate, a primer coating comprising the water-based primer composition of claim 1 , and a topcoat.
12. The article of claim 11 , wherein the topcoat comprises at least one of melamine and urethane.
13. The article of claim 11 , wherein the article is comprised of at least one of metal and plastic.
14. A coating composition, comprising:
at least one coating resin;
a polyfunctional alcohol-modified carboxylated polyolefin; and,
optionally, one or more additives selected from the group consisting of a leveling agent, a rheology agent, a flow control agent; an associative thickener, a flatting agent, a pigment wetting and dispersing agent, a surfactant, an ultraviolet (UV) absorber, an ultraviolet (UV) light stabilizer, a tinting pigment, a defoaming agent, an antifoaming agent, an anti-settling agent, an anti-sag agent, a bodying agent, an anti-skinning agent, an anti-flooding agent, an anti-floating agent, a fungicide, a mildewcide, a corrosion inhibitor, a thickening agent, and a coalescing agent; wherein the polyfunctional alcohol-modified carboxylated polyolefin comprises the reaction product of: at least one carboxylated polyolefin prepared from a polyolefin having a heat of fusion of 0 to 10 calories/gram; and at least one polyfunctional alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/277,504 US20120040195A1 (en) | 2001-02-09 | 2011-10-20 | Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26782901P | 2001-02-09 | 2001-02-09 | |
US09/943,561 US20020151656A1 (en) | 2001-02-09 | 2001-08-30 | Modified Carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces |
US10/068,630 US20020198329A1 (en) | 2001-02-09 | 2002-02-06 | Modified carboxylated polyolefins and their use as adhesion promoters |
US10/208,642 US20030018139A1 (en) | 2001-02-09 | 2002-07-30 | Modified carboxylated polyolefins and their use as adhesion promoters |
US10/610,238 US8058354B2 (en) | 2001-02-09 | 2003-06-30 | Modified carboxylated polyolefins and their use as adhesion promoters |
US13/277,504 US20120040195A1 (en) | 2001-02-09 | 2011-10-20 | Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/610,238 Division US8058354B2 (en) | 2001-02-09 | 2003-06-30 | Modified carboxylated polyolefins and their use as adhesion promoters |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120040195A1 true US20120040195A1 (en) | 2012-02-16 |
Family
ID=46299525
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/610,238 Expired - Fee Related US8058354B2 (en) | 2001-02-09 | 2003-06-30 | Modified carboxylated polyolefins and their use as adhesion promoters |
US13/277,504 Abandoned US20120040195A1 (en) | 2001-02-09 | 2011-10-20 | Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/610,238 Expired - Fee Related US8058354B2 (en) | 2001-02-09 | 2003-06-30 | Modified carboxylated polyolefins and their use as adhesion promoters |
Country Status (1)
Country | Link |
---|---|
US (2) | US8058354B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170275471A1 (en) * | 2014-12-01 | 2017-09-28 | Dow Global Technologies Llc | Polyolefin Polyols as Surface Modifying Agents |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6841592B2 (en) * | 2001-07-23 | 2005-01-11 | Baker Hughes Incorporated | Waterfastness additives for aqueous jet inks |
JP2007112953A (en) * | 2005-10-24 | 2007-05-10 | Sumitomo Chemical Co Ltd | Propylene resin |
DE102009001886A1 (en) | 2009-03-26 | 2010-10-07 | Evonik Degussa Gmbh | Adhesion promoter for coating polyolefin surfaces based on polyolefin-graft-poly (meth) acrylate copolymers |
DE102009001885A1 (en) | 2009-03-26 | 2010-09-30 | Evonik Degussa Gmbh | Primer for polyolefin surfaces based on polyolefin-graft-poly (meth) acrylate copolymers |
US20200263040A1 (en) * | 2019-02-19 | 2020-08-20 | Ppg Industries Ohio, Inc. | Adhesion promoting compositions and method of improving fuel resistance of a coated article |
CN115491132B (en) * | 2021-06-18 | 2024-02-23 | 台湾永光化学工业股份有限公司 | Ultraviolet light curing composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4299754A (en) * | 1978-10-04 | 1981-11-10 | Mitsui Petrochemical Industries Ltd. | Surface treating agent and method for its production |
US4419105A (en) * | 1982-03-18 | 1983-12-06 | Texaco Inc. | Maleic anhydride-amine reaction product corrosion inhibitor for alcohols |
US4966947A (en) * | 1988-05-20 | 1990-10-30 | Eastman Kodak Company | Modified chlorinated polyolefins |
US5362788A (en) * | 1992-03-18 | 1994-11-08 | Nippon Paper Industries Co., Ltd. | Aqueous covering composition |
US5373048A (en) * | 1993-07-30 | 1994-12-13 | Eastman Chemical Company | Aqueous coating composition |
US8058355B2 (en) * | 2004-10-06 | 2011-11-15 | Eastman Chemical Company | Modified chlorinated carboxylated polyolefins and their use as adhesion promoters |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3642722A (en) * | 1967-11-29 | 1972-02-15 | Eastman Kodak Co | Process for preparing modified polyolefins |
US3579486A (en) * | 1967-12-22 | 1971-05-18 | Eastman Kodak Co | Maleated polyolefins |
US3579485A (en) * | 1969-02-07 | 1971-05-18 | Eastman Kodak Co | Chlorinated carboxyl group containing poly-alpha-olefins |
JPS569925B2 (en) * | 1974-06-19 | 1981-03-04 | ||
US4070421A (en) * | 1976-04-23 | 1978-01-24 | Eastman Kodak Company | Chlorinated polymeric compositions useful as primers for polyolefins |
NL7711351A (en) * | 1976-10-18 | 1978-04-20 | Shell Int Research | MODIFIED TERPOLYMER AS A V.I.-ENHANCING DISPENSER. |
US4033889A (en) * | 1976-10-18 | 1977-07-05 | Shell Oil Company | Terpolymer dispersant - VI improver |
US4229754A (en) * | 1978-12-26 | 1980-10-21 | Rockwell International Corporation | CCD Imager with multi-spectral capability |
US4303697A (en) | 1979-05-17 | 1981-12-01 | E. I. Du Pont De Nemours And Company | Process for improving the adhesion of paint to polyolefin surfaces |
US4286047A (en) * | 1979-07-25 | 1981-08-25 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive susceptible to ultraviolet light-induced detackification |
JPS5845235A (en) * | 1981-09-11 | 1983-03-16 | Mitsui Petrochem Ind Ltd | Surface treatment |
US4506056A (en) * | 1982-06-07 | 1985-03-19 | Gaylord Research Institute Inc. | Maleic anhydride-modified polymers and process for preparation thereof |
JPS5975958A (en) | 1982-10-26 | 1984-04-28 | Sanyo Kokusaku Pulp Co Ltd | Composition for polypropylene resin |
US4927888A (en) * | 1986-09-05 | 1990-05-22 | The Dow Chemical Company | Maleic anhydride graft copolymers having low yellowness index and films containing the same |
US4762890A (en) * | 1986-09-05 | 1988-08-09 | The Dow Chemical Company | Method of grafting maleic anhydride to polymers |
FR2570708B1 (en) | 1984-09-27 | 1987-03-06 | Atochem | POLYMERS OBTAINED FROM ANHYDRIDE-GRAFT POLYPROPYLENE OLIGOMERS, METHOD OF MANUFACTURE AND USE |
FR2572417B1 (en) * | 1984-10-30 | 1987-05-29 | Atochem | ADHESIVE COMPOSITIONS BASED ON POLYPROPYLENE MODIFIED BY Grafting of an Unsaturated Monomer |
DE3587822T2 (en) * | 1984-12-13 | 1994-10-27 | Morton Int Inc | Primer composition and process for making it. |
US4632962A (en) * | 1984-12-24 | 1986-12-30 | General Electric Company | Hydroxyl group graft modified polyolefins |
US4968559A (en) * | 1985-02-14 | 1990-11-06 | Bando Chemical Industries. Ltd. | Pressure sensitive adhesive film with barrier layer |
JPS61266411A (en) * | 1985-05-20 | 1986-11-26 | Mitsubishi Petrochem Co Ltd | Purification of maleic anhydride-modified polyolefin |
US5030681A (en) * | 1986-04-30 | 1991-07-09 | Nippon Bee Chemical Co., Ltd. | Coating resin composition |
JPS63117008A (en) * | 1986-11-05 | 1988-05-21 | Idemitsu Petrochem Co Ltd | Production of modified polyethylene |
DE3783031D1 (en) * | 1987-04-11 | 1993-01-21 | Dsm Nv | GRAFTED, LOW-DENSITY LINEAR POLYETHYLENE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE. |
US4880849A (en) * | 1988-03-14 | 1989-11-14 | Ppg Industries, Inc. | UV coatings containing chlorinated polyolefins, method of curing, and coated substrates therefrom |
US4954573A (en) * | 1988-05-20 | 1990-09-04 | Eastman Kodak Company | Modified chlorinated polyolefins |
US4857600A (en) * | 1988-05-23 | 1989-08-15 | Union Carbide Corporation | Process for grafting diacid anhydrides |
JPH0715087B2 (en) * | 1988-07-21 | 1995-02-22 | リンテック株式会社 | Adhesive tape and method of using the same |
GB8818711D0 (en) * | 1988-08-05 | 1988-09-07 | Shell Int Research | Lubricating oil dispersants |
US4999403A (en) * | 1988-10-28 | 1991-03-12 | Exxon Chemical Patents Inc. | Graft polymers of functionalized ethylene-alpha-olefin copolymer with polypropylene, methods of preparation, and use in polypropylene compositions |
CA2001656A1 (en) * | 1988-11-14 | 1990-05-14 | Frank J. Chen | Multifunctional viscosity index improver |
ES2069595T3 (en) * | 1988-11-21 | 1995-05-16 | Mitsui Petrochemical Ind | MODIFIED POLYOLEFIN PARTICLES AND THEIR PREPARATION PROCEDURE. |
GB8827335D0 (en) * | 1988-11-23 | 1988-12-29 | Du Pont Canada | Method for manufacture of modified polypropylene compositions |
US5059658A (en) * | 1989-04-07 | 1991-10-22 | Tonen Sekiyagaku Kabushiki Kaisha | Method of producing modified polypropylene |
US5300363A (en) * | 1989-04-20 | 1994-04-05 | A-Line Products Corporation | Aqueous coating composition |
US5756566A (en) * | 1989-04-20 | 1998-05-26 | A-Line Products Corp. | Aqueous coating composition |
US5227198A (en) * | 1989-04-20 | 1993-07-13 | A-Line Products Corporation | Aqueous coating composition and method of use |
US5001197A (en) * | 1989-05-10 | 1991-03-19 | Exxon Chemical Patents Inc. | Polypropylene composition and method for functionalization of polypropylene |
US5262075A (en) * | 1989-05-30 | 1993-11-16 | Exxon Chemical Patents Inc. | Multifunctional viscosity index improver exhibitng improved low temperature viscometric properties |
US4987190A (en) * | 1989-06-13 | 1991-01-22 | Union Carbide Chemicals And Plastics Company Inc. | Scorch control in the grafting of diacid anhydrides onto high density polyethylene |
US4997882A (en) | 1989-07-07 | 1991-03-05 | Ppg Industries, Inc. | Acid or anhydride grafted chlorinated polyolefin reacted with monoalcohol and polyepoxide |
US5130371A (en) * | 1989-10-24 | 1992-07-14 | Exxon Chemical Patents Inc. | Crystalline polyolefin graft copolymers |
JP2607965B2 (en) * | 1990-01-26 | 1997-05-07 | 東洋化成工業株式会社 | Polyolefin resin composition |
JP2524861B2 (en) * | 1990-04-27 | 1996-08-14 | 東洋化成工業株式会社 | Modified chlorinated polyolefin composition |
DE4026719A1 (en) * | 1990-08-24 | 1992-02-27 | Huels Chemische Werke Ag | MELT FLUFFICALLY APPLICABLE PROTECTION MEASURES |
US5109097A (en) * | 1990-09-07 | 1992-04-28 | Minnesota Mining And Manufacturing Company | Radiation curable coating |
US5102956A (en) * | 1990-11-08 | 1992-04-07 | Lord Corporation | Modified halogenated polyolefin adhesives |
US5310806A (en) * | 1991-05-22 | 1994-05-10 | Quantum Chemical Corporation | Process for preparing an ethylene-unsaturated polycarboxylic compound graft copolymer |
US5367022A (en) | 1991-11-27 | 1994-11-22 | Quantum Chemical Corporation | Grafted polymeric products, and adhesive blends |
US5552096A (en) * | 1991-12-13 | 1996-09-03 | Exxon Chemical Patents Inc. | Multiple reaction process in melt processing equipment |
US5424367A (en) * | 1991-12-13 | 1995-06-13 | Exxon Chemical Patents Inc. | Multiple reaction process in melt processing equipment |
US5286799A (en) * | 1992-07-23 | 1994-02-15 | Chevron Research And Technology Company | Two-step free radical catalyzed process for the preparation of alkenyl succinic anhydride |
US5290954A (en) * | 1992-08-13 | 1994-03-01 | Eastman Kodak Company | High clarity emulsions containing high melt viscosity maleated polypropylene wax |
DE4308591A1 (en) * | 1993-03-18 | 1994-09-22 | Basf Ag | Grafted propylene copolymers |
US5346963A (en) * | 1993-04-28 | 1994-09-13 | The Dow Chemical Company | Graft-modified, substantially linear ethylene polymers and methods for their use |
US5728776A (en) * | 1993-07-29 | 1998-03-17 | Kawasaki Steel Corporation | Process for producing graft modified polyolefins |
JP3326445B2 (en) | 1993-09-10 | 2002-09-24 | 日産自動車株式会社 | Thermosetting coating composition and coated body |
US5369170A (en) | 1993-12-13 | 1994-11-29 | Shell Oil Company | Composite systems of polyketone and aminated, modified polyolefins |
US5420303A (en) * | 1993-12-16 | 1995-05-30 | Eastman Chemical Company | Process for the maleation of polyethylene waxes |
BE1007888A3 (en) * | 1993-12-27 | 1995-11-14 | Solvay | Continuous process of polyolefin graft the grafted polyolefin obtained through this process. |
US5492976A (en) * | 1994-01-03 | 1996-02-20 | The Sherwin-Williams Company | Anhydride-functional polymers comprising ene reaction products of unsaturated anhydrides and polyolefins |
US5436079A (en) * | 1994-05-06 | 1995-07-25 | E. I. Du Pont De Nemours And Company | Gasoline resistant coated multilayer plastic substrate |
JP2848584B2 (en) * | 1994-06-23 | 1999-01-20 | 日本製紙株式会社 | Aqueous resin composition, its production method and use |
GB2298428B (en) * | 1994-08-04 | 1998-05-06 | Jujo Paper Co Ltd | Coating resin composition and method for producing the same |
WO1996006120A1 (en) * | 1994-08-25 | 1996-02-29 | Eastman Chemical Company | Maleated high acid number high molecular weight polypropylene of low color |
US5629048A (en) * | 1994-09-20 | 1997-05-13 | Sandoz Ltd. | Rapid setting cementitious compositions and method |
US5709946A (en) * | 1995-02-01 | 1998-01-20 | Bee Chemical Company | Chlorine-free, zero VOC, waterborne adhesion promoter for polyolefinic substrates |
US5663266A (en) * | 1995-04-12 | 1997-09-02 | Eastman Chemical Company | Waterborne coating compositions |
JP2000502114A (en) * | 1995-08-11 | 2000-02-22 | スミス アンド ネフュー ピーエルシー | adhesive |
US5759703A (en) * | 1995-10-25 | 1998-06-02 | Bee Chemical Company | Zero VOC aqueous dispersion of an acid-modified polyolefin and a monoepoxide/polymeric acid adduct |
US5821301A (en) * | 1996-05-15 | 1998-10-13 | Toyo Kasei Kogyo Company Limited | Modified polyolefin resin composition for polyolefin plastic paints, and method for producing the same |
US5863646A (en) * | 1996-03-25 | 1999-01-26 | Ppg Industries, Inc. | Coating composition for plastic substrates and coated plastic articles |
US6001469A (en) | 1996-03-28 | 1999-12-14 | Ppg Industries Ohio, Inc. | Thermosettable primer and topcoat for plastics, a method for applying and coated plastic articles |
US5910530A (en) * | 1997-05-19 | 1999-06-08 | Bridgestone Corporation | High damping gel derived from extending grafted elastomers and polypropylene |
US5912296A (en) * | 1997-05-19 | 1999-06-15 | Bridgestone Corporation | Extended polymer composition derived from grafted elastomers and polypropylene |
DE69839662D1 (en) * | 1997-10-01 | 2008-08-14 | Denki Kagaku Kogyo Kk | Foil and foil for clamping packaging |
ATE290027T1 (en) * | 1997-10-28 | 2005-03-15 | Castrol Ltd | METHOD FOR PRODUCING GRAFT COPOLYMERS |
US6593423B1 (en) * | 2000-05-03 | 2003-07-15 | Ppg Industries Ohio, Inc. | Adhesion promoting agent and coating compositions for polymeric substrates |
IT1297040B1 (en) * | 1997-12-31 | 1999-08-03 | Belantro International Corp | POLYOLEFINS FUNCTIONALIZED WITH MALEIC DIOXIDE AND ITS HIGH BOILING LIQUID ESTERS AND THEIR USE AS HIGH POWER PRODUCTS |
US6228948B1 (en) * | 1998-01-16 | 2001-05-08 | E. I. Du Pont De Nemours And Company | High melt flow, highly-grafted polypropylene |
WO1999046321A1 (en) * | 1998-03-10 | 1999-09-16 | Ferro Corporation | Polymer compositions comprising polyolefins and reaction products of a polyolefin and an unsaturated carboxylic reagent and articles made therefrom |
US6310134B1 (en) * | 1998-06-30 | 2001-10-30 | Eastman Chemical Company | Adhesion-promoting primer compositions for polyolefin substrates |
JP2000198807A (en) | 1998-10-30 | 2000-07-18 | Nippon Paper Industries Co Ltd | Binder resin for polyolefin resin, its production and use |
US6600725B1 (en) * | 1998-12-16 | 2003-07-29 | At&T Corp. | Apparatus and method for providing multimedia conferencing services with selective information services |
US6218476B1 (en) * | 1999-03-03 | 2001-04-17 | Eastman Chemical Company | Functionalized polypropylenes and process for production |
JP2000327789A (en) | 1999-03-18 | 2000-11-28 | Nippon Paper Industries Co Ltd | Polyamide modified polyolefin composition and use of the same |
BE1012638A3 (en) * | 1999-04-29 | 2001-01-09 | Solvay | Polyolefin compositions, method of preparation and use thereof. |
BE1012637A3 (en) | 1999-04-29 | 2001-01-09 | Solvay | Polyolefins and method of making. |
US6262182B1 (en) * | 1999-06-09 | 2001-07-17 | Eastman Chemical Co., Ltd. | Solution modification of polyolefins |
JP3470331B2 (en) | 1999-12-03 | 2003-11-25 | 日本製紙株式会社 | Aqueous dispersion |
JP3531159B2 (en) | 2000-03-31 | 2004-05-24 | 日本製紙株式会社 | Modified polyolefin resin composition and use thereof |
KR100451259B1 (en) * | 2000-09-12 | 2004-10-06 | 미쓰이 가가쿠 가부시키가이샤 | Branched polyolefin, process for producing the same, and thermoplastic resin composition containing branched polyolefin |
JP4441151B2 (en) * | 2000-09-29 | 2010-03-31 | 日本製紙株式会社 | Modified polyolefin resin, modified polyolefin resin composition and use thereof |
US6884850B2 (en) * | 2000-10-30 | 2005-04-26 | Exxonmobil Chemical Patents Inc. | Graft-modified polymers based on novel propylene ethylene copolymers |
US20020156144A1 (en) | 2001-02-09 | 2002-10-24 | Williams Kevin Alan | UV-curable, non-chlorinated adhesion promoters |
US20020151656A1 (en) | 2001-02-09 | 2002-10-17 | Williams Kevin Alan | Modified Carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces |
US6437049B1 (en) * | 2001-02-27 | 2002-08-20 | P. Group S.R.L. | Process for modifying polypropylene with maleic anhydride |
SG96272A1 (en) * | 2001-02-28 | 2003-05-23 | Sumitomo Chemical Co | Process for producing acid modified polypropylene resin |
US6699949B2 (en) * | 2001-05-30 | 2004-03-02 | Penn State Research Foundation | Process of preparing maleic anhydride modified polyolefins by the oxidation adducts of borane and maleic anhydride |
US6649694B2 (en) | 2001-12-21 | 2003-11-18 | Eastman Chemical Company | Process for producing ethylene-α-olefin interpolymer films |
US7300977B2 (en) | 2003-02-18 | 2007-11-27 | Fujikura Kasei Co., Ltd. | Acrylic modified chlorinated polyolefin resin, process for producing the same, and coating composition containing the same for polyolefin material |
-
2003
- 2003-06-30 US US10/610,238 patent/US8058354B2/en not_active Expired - Fee Related
-
2011
- 2011-10-20 US US13/277,504 patent/US20120040195A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4299754A (en) * | 1978-10-04 | 1981-11-10 | Mitsui Petrochemical Industries Ltd. | Surface treating agent and method for its production |
US4419105A (en) * | 1982-03-18 | 1983-12-06 | Texaco Inc. | Maleic anhydride-amine reaction product corrosion inhibitor for alcohols |
US4966947A (en) * | 1988-05-20 | 1990-10-30 | Eastman Kodak Company | Modified chlorinated polyolefins |
US5362788A (en) * | 1992-03-18 | 1994-11-08 | Nippon Paper Industries Co., Ltd. | Aqueous covering composition |
US5373048A (en) * | 1993-07-30 | 1994-12-13 | Eastman Chemical Company | Aqueous coating composition |
US8058355B2 (en) * | 2004-10-06 | 2011-11-15 | Eastman Chemical Company | Modified chlorinated carboxylated polyolefins and their use as adhesion promoters |
Non-Patent Citations (4)
Title |
---|
Felthouse et al., "Maleic Anhydride, Maleic Acid and Fumaric Acid," Kirk Online, publication date unknown. * |
http://en.wikipedia.org/wiki/Glycerol; 05-2014. * |
http://en.wikipedia.org/wiki/Propylene_glycol; 05-2014. * |
Tsiourvas et al., J. Applied Polymer Science 38 (1989) 257-264. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170275471A1 (en) * | 2014-12-01 | 2017-09-28 | Dow Global Technologies Llc | Polyolefin Polyols as Surface Modifying Agents |
US10266703B2 (en) * | 2014-12-01 | 2019-04-23 | Dow Global Technologies Llc | Polyolefin polyols as surface modifying agents |
Also Published As
Publication number | Publication date |
---|---|
US8058354B2 (en) | 2011-11-15 |
US20040072960A1 (en) | 2004-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1423441B1 (en) | Modified carboxylated polyolefins and their use as adhesion promoters | |
US6831115B2 (en) | UV-curable, non-chlorinated adhesion promoters | |
US20120040195A1 (en) | Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces | |
US8058355B2 (en) | Modified chlorinated carboxylated polyolefins and their use as adhesion promoters | |
JP4800480B2 (en) | Adhesion promoting primer composition for polyolefin substrate | |
US20090163635A1 (en) | Aqueous dispersions of adhesion promoters | |
JP2000198807A (en) | Binder resin for polyolefin resin, its production and use | |
US5801219A (en) | Zero VOC aqueous dispersion of an acid-modified polyolefin and a monoepoxide/polymeric acid adduct | |
US20020198329A1 (en) | Modified carboxylated polyolefins and their use as adhesion promoters | |
JP2002338877A (en) | Primer composition for polyolefin resin | |
CN101035815B (en) | Modified chlorinated carboxylated polyolefins and their use as adhesion promoters | |
US20070082209A1 (en) | Adhesion-promoting primer composition for non-olefin substrates | |
JP2001146565A (en) | Binder resin composition for base coat and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN CHEMICAL COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILLIAMS, KEVIN ALAN;EAGAN, ROBERT LEE;TEMPLETON, LISA KAY;AND OTHERS;SIGNING DATES FROM 20031104 TO 20031105;REEL/FRAME:028136/0671 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |