US20120037067A1 - Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method - Google Patents
Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method Download PDFInfo
- Publication number
- US20120037067A1 US20120037067A1 US13/189,776 US201113189776A US2012037067A1 US 20120037067 A1 US20120037067 A1 US 20120037067A1 US 201113189776 A US201113189776 A US 201113189776A US 2012037067 A1 US2012037067 A1 US 2012037067A1
- Authority
- US
- United States
- Prior art keywords
- silicon carbide
- cubic
- carbide film
- silicon
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 207
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 207
- 239000000758 substrate Substances 0.000 title claims abstract description 118
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 128
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 126
- 239000010703 silicon Substances 0.000 claims abstract description 126
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 82
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 75
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 27
- 230000007547 defect Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 19
- 238000003763 carbonization Methods 0.000 description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 10
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 8
- 239000005977 Ethylene Substances 0.000 description 5
- 238000010924 continuous production Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 2
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910007245 Si2Cl6 Inorganic materials 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- 229910005096 Si3H8 Inorganic materials 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910003822 SiHCl3 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
Definitions
- the present invention relates to cubic silicon carbide film manufacturing methods, and cubic silicon carbide film-attached substrate manufacturing methods. Specifically, the invention relates to a cubic silicon carbide film manufacturing method that forms a cubic silicon carbide (SiC) film, an expected wide bandgap semiconductor, on a silicon substrate or on a monocrystalline silicon film formed on the substrate, and to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate.
- SiC cubic silicon carbide
- Silicon carbide SiC
- SiC Silicon carbide
- a wide bandgap semiconductor having a bandgap of 2.2 eV (300 K) more than twice as large as that of silicon (Si) has generated interest as semiconductor material for power devices, or as material for high-voltage devices.
- the crystal forming temperature of silicon carbide (SiC) is higher than that of silicon (Si), and obtaining silicon carbide (SiC) single crystal ingots by a pull method from a liquid phase is not as easy as in silicon.
- An alternative method, called a sublimation method is thus used to form silicon carbide (SiC) single crystal ingots.
- SiC silicon carbide
- the heteroepitaxial technique has thus been studied as one way of increasing the diameter of silicon carbide (SiC) substrates.
- the cubic silicon carbide has a lattice constant of 4.359 angstroms, about 20% smaller than the lattice constant (5.4307 angstroms) of monocrystalline silicon. This, combined with different coefficients of thermal expansion, makes it very difficult to obtain a high-quality epitaxial film that has few crystal defects.
- the monocrystalline silicon and the cubic silicon carbide have different coefficients of thermal expansion, bending of the silicon substrate generates stress while the substrate is cooled to room temperature after the epitaxial growth of the cubic silicon carbide film.
- the stress translates into crystal defects in the cubic silicon carbide film. The adverse effect of such stress can be effectively avoided by lowering the epitaxial growth temperature.
- epitaxial growth involves growth in a gas phase (CVD method).
- the growth temperature can be lowered, for example, by (1) allowing growth under a high vacuum, or (2) by using a source gas that easily decomposes at low temperatures, or a source gas that has Si—C bonds.
- a drawback of lowering growth temperature is that it slows the growth rate.
- the epitaxial growth temperature of the cubic silicon carbide (3C—SiC) remains at 1,200° C. to 1,300° C., a temperature range no different from the epitaxial growth temperatures of common cubic silicon carbides (3C—SiC).
- the different coefficients of thermal expansion cause stress while cooling the substrate, and the stress translates into crystal defects. It has thus been difficult to reduce the crystal defects of the cubic silicon carbide film.
- An advantage of some aspects of the invention is to provide a cubic silicon carbide film manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed, and a cubic silicon carbide film-attached substrate manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed on a silicon substrate, or on a monocrystalline silicon film formed on the substrate.
- An aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film, the method including: a first step of introducing a carbon-containing gas onto a silicon substrate or onto a monocrystalline silicon film formed on the substrate, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form a cubic silicon carbide film; and a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
- a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of the cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- a high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
- the cubic silicon carbide film manufacturing method may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
- the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step.
- the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can easily be obtained at high speed.
- the rapid heating may be performed at a rate of temperature increase of from 5° C./sec to 200° C./sec.
- the carbon-containing gas and the silicon-containing gas may be switched by controlling a flow rate of the carbon-containing gas and a flow rate of the silicon-containing gas.
- switching between the carbon-containing gas and the silicon-containing gas can be easily and conveniently performed by controlling the flow rate of the carbon-containing gas and the flow rate of the silicon-containing gas.
- the carbon-containing gas may contain hydrocarbon gas.
- the carbon atoms contained in the carbon-containing gas bind to the silicon atoms in the monocrystalline silicon film to generate a cubic silicon carbide film. In this way, a cubic silicon carbide film can easily be formed on the surface of the silicon substrate.
- the silicon-containing gas may contain silane gas.
- the silicon atoms generated by the decomposition of the silicon-containing gas form a monocrystalline silicon film on the silicon substrate or the monocrystalline silicon film. In this way, the monocrystalline silicon film can easily be formed.
- Another aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate, the method including: a first step of introducing a carbon-containing gas onto the silicon substrate or the monocrystalline silicon film, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form the cubic silicon carbide film; a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
- a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- a substrate including such a high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
- the cubic silicon carbide film-attached substrate manufacturing method may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
- the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step.
- the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a substrate including a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can be obtained at high speed.
- FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention.
- FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 1 of the invention.
- FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 2 of the invention.
- FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 3 of the invention.
- FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 4 of the invention.
- FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 5 of the invention.
- FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 6 of the invention.
- FIG. 8 is a diagram representing the growth time dependence of the thickness of a cubic silicon carbide film formed in Example 6 of the invention, and of the thickness of a cubic silicon carbide film formed by a continuous process.
- FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7 of the invention.
- FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C.
- FIG. 11 is a diagram representing the thickness of a carbide layer formed by the rapid heating of a substrate from 900° C. to 950° C., and of a carbide layer formed by low-speed heating.
- FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention.
- a cubic silicon carbide film-attached substrate 1 includes a cubic silicon carbide (3C—SiC) film 3 as a 20-layer laminate of cubic silicon carbide (3C—SiC) films 3 a to 3 t formed on a surface 2 a of a silicon (Si) substrate 2 .
- the lamination of the cubic silicon carbide (3C—SiC) films 3 a to 3 t in 20 layers forms the cubic silicon carbide (3C—SiC) film 3 as a high-quality laminate of a desired thickness with few crystal defects.
- a method for manufacturing the cubic silicon carbide film-attached substrate 1 is described below.
- the silicon substrate 2 is prepared, and housed in the chamber of a heat treatment furnace. After creating a vacuum in the chamber, the silicon substrate 2 is heated to raise the substrate temperature to a predetermined temperature of, for example, 750° C., and heat-treated for a predetermined time period of, for example, 5 minutes to clean the natural oxide film and the like on the surface 2 a of the silicon substrate 2 .
- the temperature of the silicon substrate 2 is set to a temperature of from room temperature to the epitaxial growth temperature T 1 of monocrystalline silicon.
- the epitaxial growth of the cubic silicon carbide proceeds slowly, and thus the temperature T 1 set for the temperature of the silicon substrate 2 can limit the epitaxial growth to only the monocrystalline silicon.
- the silicon substrate 2 is rapidly heated to the epitaxial growth temperature T 2 of cubic silicon carbide higher than the epitaxial growth temperature T 1 of monocrystalline silicon while introducing a carbon source gas (carbon-containing gas) onto the silicon substrate 2 .
- a carbon source gas carbon-containing gas
- the carbon source gas is preferably hydrocarbon gas.
- Preferred examples include methane (CH 4 ), ethane (C 2 H 6 ) acethylene (C 2 H 2 ) ethylene (C 2 H 4 ), propane (C 3 H 8 ), n-butane (n-C 4 H 10 ), isobutane (i-C 4 H 10 ), and neopentane (neo-C 5 H 12 ). These may be used either alone or as a mixture of two or more.
- the rapid heating is the heating that raises the temperature at a rate of temperature increase that exceeds the reference rate of temperature increase of, for example, 10° C./min.
- the rate of temperature increase in rapid heating is preferably from 5° C./sec to 200° C./sec.
- a rate of temperature increase below 5° C./sec is too slow, and may cause silicon to sublime from the surface of the silicon substrate 2 and roughen the surface, if the carbon gas supply is small. With a large carbon gas supply, such a slow rate may lead to formation of a thin carbide layer on the surface of the silicon substrate 2 , preventing further growth and impairing the growth rate increasing effect.
- a rate of temperature increase in excess of 200° C./sec in rapid heating makes the heating too rapid, and fails to sufficiently carbonize the surface of the silicon substrate 2 , resulting in insufficient silicon carbide generation.
- the carbon source gas For the introduction of the carbon source gas, only the carbon source gas can be introduced by separately controlling the flow rates of the carbon source gas and the silicon source gas (silicon-containing gas).
- the carbon source gas carbonizes the surface of the silicon substrate 2 , and forms a cubic silicon carbide film.
- the temperature of the silicon substrate 2 is held at epitaxial growth temperature T 2 , and the flow rates of the carbon source gas and the silicon source gas are set to the flow rates suitable for the epitaxial growth of cubic silicon carbide.
- the silicon source gas is preferably silane gas.
- Preferred examples include monosilane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), tetrasilane (Si 4 H 10 ) dichlorosilane (SiH 2 Cl 2 ), tetrachlorosilane (SiCl 4 ) trichlorosilane (SiHCl 3 ), and hexachlorodisilane (Si 2 Cl 6 ). These may be used either alone or as a mixture of two or more.
- the cubic silicon carbide film 3 a is formed on the cubic silicon carbide film by the epitaxial growth of cubic silicon carbide.
- the flow rate of the silicon source gas is set to the flow rate suitable for the epitaxial growth of monocrystalline silicon.
- a monocrystalline silicon film is formed on the cubic silicon carbide film 3 a by the epitaxial growth of monocrystalline silicon.
- the monocrystalline silicon epitaxial growth and the subsequent steps are repeated until the resulting cubic silicon carbide film has a desired thickness.
- the cubic silicon carbide film-attached substrate 1 can be obtained that has the cubic silicon carbide film 3 of a desired thickness.
- the cubic silicon carbide film-attached substrate 1 can be obtained that has the cubic silicon carbide film 3 formed as a 20-layer laminate of the cubic silicon carbide films 3 a to 3 t , as illustrated in FIG. 1 .
- the cubic silicon carbide film-attached substrate manufacturing method of the present embodiment the cubic silicon carbide film-attached substrate 1 including the cubic silicon carbide film formed in high quality with few crystal defects can be quickly obtained at a low epitaxial growth temperature after the repeated steps of generating and growing the cubic silicon carbide film, generating a monocrystalline silicon film on the cubic silicon carbide film, and generating and growing the cubic silicon carbide film by the carbonization of the monocrystalline silicon film.
- FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 1.
- neopentane neo-C 5 H 12
- dichlorosilane SiH 2 Cl 2
- the monocrystalline silicon epitaxial growth temperature T 1 and cubic silicon carbide epitaxial growth temperature T 2 were 800° C. and 1,000° C., respectively.
- the carbon source gas and the silicon source gas were set to have optimum flow rates Fc 1 to Fc 4 and Fsi 1 to Fsi 4 , respectively, for section S 1 (rapid heating carbonization process), section S 2 (cubic silicon carbide film epitaxial growth process), section S 3 (substrate temperature lowering process), and section S 4 (monocrystalline silicon epitaxial growth process).
- the carbon source gas flow rate Fc 1 3 sccm
- the silicon source gas flow rate Fsi 1 0 sccm.
- section S 4 monocrystalline silicon epitaxial growth process
- FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 2.
- FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 3.
- section S 1 rapid heating carbonization process
- both the carbon source gas and the silicon source gas are introduced.
- the introduction of the silicon source gas does not pose any problem, because the effect of carbonization by the carbon source gas far exceeds the growth by the silicon source gas.
- FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 4.
- section S 4 (monocrystalline silicon epitaxial growth process) both the carbon source gas and the silicon source gas are introduced.
- the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
- FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 5.
- both the carbon source gas and the silicon source gas are introduced in section S 4 (monocrystalline silicon epitaxial growth process).
- the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
- a cubic silicon carbide film can be quickly obtained in high quality with few crystal defects at a low epitaxial growth temperature also in Examples 2 to 5, by optimally setting the carbon source gas flow rates Fc 1 , Fc 2 , Fc 3 , Fc 4 , and the silicon source gas flow rates Fsi 1 , Fsi 2 , Fsi 3 , Fsi 4 for each section.
- FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 6.
- neopentane neo-C 5 H 12
- dichlorosilane SiH 2 Cl 2
- Section S 1 rapid heating carbonization process
- section S 2 cubic silicon carbide film epitaxial growth process
- section S 3 substrate temperature lowering process
- section S 4 monocrystalline silicon epitaxial growth process
- Fc 4 0 sccm
- the epitaxial growth was also performed in 10 cycles and in 20 cycles using the same temperature cycle.
- FIG. 8 is a diagram representing the growth time dependence of the thickness of the cubic silicon carbide film formed by the cycle process of FIG. 7 , and of the cubic silicon carbide film formed by a common continuous process that involves epitaxial growth at constant temperature.
- the cycle process time is represented by the product of the number of cycles and the total growth time in section S 1 (rapid heating carbonization process), section (cubic silicon carbide film epitaxial, growth process), and section S 3 (substrate temperature lowering process).
- the growth rate in the cycle process was 33.1 nm/hour, as opposed to 25.1 nm/hour in the continuous process, demonstrating that the growth rate can be increased by performing the cycle process, given the same process conditions.
- the increase in growth rate over the continuous process is only slightly higher than 1.3 fold in FIG. 8 . This is because the process time was not optimized for each section.
- the growth rate can be further improved by optimizing the process time of each section.
- FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7.
- the figure represents the thickness of the cubic silicon carbide film formed after heating the silicon substrate to 600° C., when (1) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 180° C./sec, and carbonized at 1,000° C. for 10 minutes while introducing the carbon source gas ethylene (C 2 H 4 ) at a flow rate of 3 sccm, (2) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 150° C./sec, and carbonized at 1,000° C.
- C 2 H 4 carbon source gas
- FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C.
- the solid line indicates temperature changes in carbonization performed by increasing the temperature at a slow rate of temperature increase of 10° C./min until the substrate temperature of 900° C., followed by rapid heating from the substrate temperature of 900° C. to 950° C. at a rate of temperature increase of 5° C./sec.
- the broken line indicates temperature changes in the case where the temperature was increased at a slow rate of temperature increase of 10° C./min until the substrate temperature reached 950° C.
- FIG. 11 represents the thicknesses of carbide layers formed after the carbonization performed at 950° C. for 5 minutes upon the temperature reaching 950° C. along the paths of the solid line and broken line in the presence of the carbon source gas ethylene (C 2 H 4 ) flowed at a rate of 10 sccm. It can be seen from the figure that the rapid heating of the substrate from 900° C. to 950° C. promoted the carbonization reaction further compared to the gradual heating, and formed the carbide film in a shorter time period.
- C 2 H 4 carbon source gas
- the rapid heating allows the cubic silicon carbide film to be formed more quickly than the common process, and thus enables formation of the cubic silicon carbide film at high speed even at relatively low temperatures.
- the cubic silicon carbide film can be formed at low temperature, generation of crystal defects due to the difference in the thermal expansion of the silicon substrate and the cubic silicon carbide film can be suppressed, and a high-quality cubic silicon carbide film with few crystal defects can be formed.
- the cubic silicon carbide film-attached substrate 1 of the present embodiment is configured to include the cubic silicon carbide film 3 formed as a 20-layer laminate of the cubic silicon carbide films 3 a to 3 t on the surface 2 a of the silicon substrate 2 .
- the number of the laminated layers in the cubic silicon carbide film may be decided according to the required characteristics.
- the invention is equally effective when the silicon substrate 2 is replaced with a substrate that includes a monocrystalline silicon film formed on the substrate surface.
- the monocrystalline silicon film needs to be sufficiently thick to allow carbonization by rapid heating.
- the monocrystalline silicon carbide film-attached substrate 1 also can be used as semiconductor material for the next generation of low-loss power devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
A method for manufacturing a cubic silicon carbide film includes: a first step of introducing a carbon-containing gas onto a silicon substrate and rapidly heating the silicon substrate to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate and form a cubic silicon carbide film; and a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
Description
- The entire disclosure of Japanese Patent Application No. 2010-181206, filed Aug. 13, 2010 is expressly incorporated by reference herein.
- 1. Technical Field
- The present invention relates to cubic silicon carbide film manufacturing methods, and cubic silicon carbide film-attached substrate manufacturing methods. Specifically, the invention relates to a cubic silicon carbide film manufacturing method that forms a cubic silicon carbide (SiC) film, an expected wide bandgap semiconductor, on a silicon substrate or on a monocrystalline silicon film formed on the substrate, and to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate.
- 2. Related Art
- Silicon carbide (SiC), a wide bandgap semiconductor having a bandgap of 2.2 eV (300 K) more than twice as large as that of silicon (Si), has generated interest as semiconductor material for power devices, or as material for high-voltage devices.
- The crystal forming temperature of silicon carbide (SiC) is higher than that of silicon (Si), and obtaining silicon carbide (SiC) single crystal ingots by a pull method from a liquid phase is not as easy as in silicon. An alternative method, called a sublimation method, is thus used to form silicon carbide (SiC) single crystal ingots. However, it is difficult with the sublimation method to obtain large-diameter silicon carbide (SiC) single crystal ingots that have few crystal defects. This has limited the diameter of the currently available silicon carbide (SiC) substrates in the market to 3 to 4 inches, and has made the price of these products very expensive.
- Cubic silicon carbide (3C—SiC), a variation of silicon carbide (SiC), has relatively low crystal forming temperature, and can be epitaxially grown (heteroepitaxy growth) on inexpensive silicon substrates. The heteroepitaxial technique has thus been studied as one way of increasing the diameter of silicon carbide (SiC) substrates.
- The cubic silicon carbide has a lattice constant of 4.359 angstroms, about 20% smaller than the lattice constant (5.4307 angstroms) of monocrystalline silicon. This, combined with different coefficients of thermal expansion, makes it very difficult to obtain a high-quality epitaxial film that has few crystal defects.
- Further, because the monocrystalline silicon and the cubic silicon carbide have different coefficients of thermal expansion, bending of the silicon substrate generates stress while the substrate is cooled to room temperature after the epitaxial growth of the cubic silicon carbide film. The stress translates into crystal defects in the cubic silicon carbide film. The adverse effect of such stress can be effectively avoided by lowering the epitaxial growth temperature.
- Generally, epitaxial growth involves growth in a gas phase (CVD method). In the CVD method, the growth temperature can be lowered, for example, by (1) allowing growth under a high vacuum, or (2) by using a source gas that easily decomposes at low temperatures, or a source gas that has Si—C bonds. A drawback of lowering growth temperature is that it slows the growth rate.
- As a countermeasure, a method has been proposed in which silicon source gas and carbon source gas are alternately flowed to enable formation of a cubic silicon carbide (3C—SiC) epitaxial film with few crystal defects at a practical growth rate (see JP-A-2001-335935).
- While the method of the foregoing publication enables formation of an epitaxial film with few crystal defects with the alternately flowed silicon source gas and carbon source gas, the epitaxial growth temperature of the cubic silicon carbide (3C—SiC) remains at 1,200° C. to 1,300° C., a temperature range no different from the epitaxial growth temperatures of common cubic silicon carbides (3C—SiC). Thus, the different coefficients of thermal expansion cause stress while cooling the substrate, and the stress translates into crystal defects. It has thus been difficult to reduce the crystal defects of the cubic silicon carbide film.
- An advantage of some aspects of the invention is to provide a cubic silicon carbide film manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed, and a cubic silicon carbide film-attached substrate manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed on a silicon substrate, or on a monocrystalline silicon film formed on the substrate.
- An aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film, the method including: a first step of introducing a carbon-containing gas onto a silicon substrate or onto a monocrystalline silicon film formed on the substrate, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form a cubic silicon carbide film; and a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- According to the cubic silicon carbide film manufacturing method of the aspect of the invention, a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
- Further, a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of the cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- In this way, a high-quality cubic silicon carbide film with few crystal defects can be formed more quickly than when the cubic silicon carbide film is epitaxially grown at a constant temperature.
- A high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
- The cubic silicon carbide film manufacturing method according to the aspect of the invention may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
- In the cubic silicon carbide film manufacturing method of this configuration, the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step. Thus, the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can easily be obtained at high speed.
- In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the rapid heating may be performed at a rate of temperature increase of from 5° C./sec to 200° C./sec.
- With the rapid heating being performed a rate of temperature increase of from 5° C./sec to 200° C./sec, in the cubic silicon carbide film manufacturing method according to the aspect of the invention, a high-quality cubic silicon carbide film with few crystal defects can be obtained at even higher speed.
- In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the carbon-containing gas and the silicon-containing gas may be switched by controlling a flow rate of the carbon-containing gas and a flow rate of the silicon-containing gas.
- In the cubic silicon carbide film manufacturing method of this configuration, switching between the carbon-containing gas and the silicon-containing gas can be easily and conveniently performed by controlling the flow rate of the carbon-containing gas and the flow rate of the silicon-containing gas.
- In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the carbon-containing gas may contain hydrocarbon gas.
- In the cubic silicon carbide film manufacturing method of this configuration, the carbon atoms contained in the carbon-containing gas bind to the silicon atoms in the monocrystalline silicon film to generate a cubic silicon carbide film. In this way, a cubic silicon carbide film can easily be formed on the surface of the silicon substrate.
- In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the silicon-containing gas may contain silane gas.
- In the cubic silicon carbide film manufacturing method of this configuration, the silicon atoms generated by the decomposition of the silicon-containing gas form a monocrystalline silicon film on the silicon substrate or the monocrystalline silicon film. In this way, the monocrystalline silicon film can easily be formed.
- Another aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate, the method including: a first step of introducing a carbon-containing gas onto the silicon substrate or the monocrystalline silicon film, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form the cubic silicon carbide film; a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- According to the cubic silicon carbide film-attached substrate manufacturing method of the aspect of the invention, a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
- Further, a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
- In this way, a high-quality cubic silicon carbide film with few crystal defects can be formed more quickly than when the cubic silicon carbide film is epitaxially grown at a constant temperature.
- A substrate including such a high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
- The cubic silicon carbide film-attached substrate manufacturing method according to the aspect of the invention may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
- In the cubic silicon carbide film-attached substrate manufacturing method of this configuration, the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step. Thus, the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a substrate including a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can be obtained at high speed.
- The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
-
FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention. -
FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 1 of the invention. -
FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 2 of the invention. -
FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 3 of the invention. -
FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 4 of the invention. -
FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 5 of the invention. -
FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 6 of the invention. -
FIG. 8 is a diagram representing the growth time dependence of the thickness of a cubic silicon carbide film formed in Example 6 of the invention, and of the thickness of a cubic silicon carbide film formed by a continuous process. -
FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7 of the invention. -
FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C. -
FIG. 11 is a diagram representing the thickness of a carbide layer formed by the rapid heating of a substrate from 900° C. to 950° C., and of a carbide layer formed by low-speed heating. - An embodiment of a cubic silicon carbide film manufacturing method and a cubic silicon carbide film-attached substrate manufacturing method according to the invention is described below.
- For ease of explaining the content of the invention, the dimensions including the shapes of the structural components described herein do not necessarily reflect the actual measurements.
-
FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention. As illustrated in the figure, a cubic silicon carbide film-attachedsubstrate 1 includes a cubic silicon carbide (3C—SiC)film 3 as a 20-layer laminate of cubic silicon carbide (3C—SiC)films 3 a to 3 t formed on a surface 2 a of a silicon (Si)substrate 2. - In the cubic silicon carbide film-attached
substrate 1, the lamination of the cubic silicon carbide (3C—SiC)films 3 a to 3 t in 20 layers forms the cubic silicon carbide (3C—SiC)film 3 as a high-quality laminate of a desired thickness with few crystal defects. - A method for manufacturing the cubic silicon carbide film-attached
substrate 1 is described below. - First, the
silicon substrate 2 is prepared, and housed in the chamber of a heat treatment furnace. After creating a vacuum in the chamber, thesilicon substrate 2 is heated to raise the substrate temperature to a predetermined temperature of, for example, 750° C., and heat-treated for a predetermined time period of, for example, 5 minutes to clean the natural oxide film and the like on the surface 2 a of thesilicon substrate 2. - Then, the temperature of the
silicon substrate 2 is set to a temperature of from room temperature to the epitaxial growth temperature T1 of monocrystalline silicon. At temperature T1, the epitaxial growth of the cubic silicon carbide proceeds slowly, and thus the temperature T1 set for the temperature of thesilicon substrate 2 can limit the epitaxial growth to only the monocrystalline silicon. - Thereafter, the
silicon substrate 2 is rapidly heated to the epitaxial growth temperature T2 of cubic silicon carbide higher than the epitaxial growth temperature T1 of monocrystalline silicon while introducing a carbon source gas (carbon-containing gas) onto thesilicon substrate 2. - The carbon source gas is preferably hydrocarbon gas. Preferred examples include methane (CH4), ethane (C2H6) acethylene (C2H2) ethylene (C2H4), propane (C3H8), n-butane (n-C4H10), isobutane (i-C4H10), and neopentane (neo-C5H12). These may be used either alone or as a mixture of two or more.
- The rapid heating is the heating that raises the temperature at a rate of temperature increase that exceeds the reference rate of temperature increase of, for example, 10° C./min. The rate of temperature increase in rapid heating is preferably from 5° C./sec to 200° C./sec.
- In rapid heating, a rate of temperature increase below 5° C./sec is too slow, and may cause silicon to sublime from the surface of the
silicon substrate 2 and roughen the surface, if the carbon gas supply is small. With a large carbon gas supply, such a slow rate may lead to formation of a thin carbide layer on the surface of thesilicon substrate 2, preventing further growth and impairing the growth rate increasing effect. On the other hand, a rate of temperature increase in excess of 200° C./sec in rapid heating makes the heating too rapid, and fails to sufficiently carbonize the surface of thesilicon substrate 2, resulting in insufficient silicon carbide generation. - For the introduction of the carbon source gas, only the carbon source gas can be introduced by separately controlling the flow rates of the carbon source gas and the silicon source gas (silicon-containing gas).
- In the process of rapid heating, the carbon source gas carbonizes the surface of the
silicon substrate 2, and forms a cubic silicon carbide film. - Upon the substrate temperature reaching the cubic silicon carbide epitaxial growth temperature T2, the temperature of the
silicon substrate 2 is held at epitaxial growth temperature T2, and the flow rates of the carbon source gas and the silicon source gas are set to the flow rates suitable for the epitaxial growth of cubic silicon carbide. - The silicon source gas is preferably silane gas. Preferred examples include monosilane (SiH4), disilane (Si2H6), trisilane (Si3H8), tetrasilane (Si4H10) dichlorosilane (SiH2Cl2), tetrachlorosilane (SiCl4) trichlorosilane (SiHCl3), and hexachlorodisilane (Si2Cl6). These may be used either alone or as a mixture of two or more. During this process, the cubic
silicon carbide film 3 a is formed on the cubic silicon carbide film by the epitaxial growth of cubic silicon carbide. - Thereafter, the supply of the carbon source gas and the silicon source gas is stopped, and the temperature of the
silicon substrate 2 is lowered to the epitaxial growth temperature T1 of monocrystalline silicon. - Upon the
silicon substrate 2 reaching the monocrystalline silicon epitaxial growth temperature T1, the flow rate of the silicon source gas is set to the flow rate suitable for the epitaxial growth of monocrystalline silicon. - During this process, a monocrystalline silicon film is formed on the cubic
silicon carbide film 3 a by the epitaxial growth of monocrystalline silicon. - The monocrystalline silicon epitaxial growth and the subsequent steps are repeated until the resulting cubic silicon carbide film has a desired thickness.
- In this embodiment, the following steps (1) to (4) are repeated.
-
- (1) The step of allowing monocrystalline silicon to epitaxially grow on the cubic
silicon carbide film 3 a while introducing silicon source gas, upon the substrate temperature reaching the monocrystalline silicon epitaxial growth temperature T1. - (2) The step of rapidly heating the substrate to the epitaxial growth temperature T2 of cubic silicon carbide while introducing carbon source gas onto the monocrystalline silicon film formed on the cubic
silicon carbide film 3 a. - (3) The step of allowing the cubic silicon carbide film to epitaxially grow while introducing carbon source gas and silicon source gas at predetermined flow rates, upon the substrate temperature reaching the epitaxial growth temperature T2.
- (4) The step of stopping the supply of the carbon source gas and the silicon source gas, and lowering the substrate temperature to the monocrystalline silicon epitaxial growth temperature T1.
- (1) The step of allowing monocrystalline silicon to epitaxially grow on the cubic
- By repeating these steps (1) to (4) multiple times, the cubic silicon carbide film-attached
substrate 1 can be obtained that has the cubicsilicon carbide film 3 of a desired thickness. - For example, by repeating these steps 19 times, the cubic silicon carbide film-attached
substrate 1 can be obtained that has the cubicsilicon carbide film 3 formed as a 20-layer laminate of the cubicsilicon carbide films 3 a to 3 t, as illustrated inFIG. 1 . - With the cubic silicon carbide film-attached substrate manufacturing method of the present embodiment, the cubic silicon carbide film-attached
substrate 1 including the cubic silicon carbide film formed in high quality with few crystal defects can be quickly obtained at a low epitaxial growth temperature after the repeated steps of generating and growing the cubic silicon carbide film, generating a monocrystalline silicon film on the cubic silicon carbide film, and generating and growing the cubic silicon carbide film by the carbonization of the monocrystalline silicon film. - The invention is described below in more detail based on Examples. Note, however, that the invention is not limited by the following Examples.
-
FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 1. In this example, neopentane (neo-C5H12) and dichlorosilane (SiH2Cl2) were used as carbon source gas and silicon source gas, respectively. The monocrystalline silicon epitaxial growth temperature T1 and cubic silicon carbide epitaxial growth temperature T2 were 800° C. and 1,000° C., respectively. - The carbon source gas and the silicon source gas were set to have optimum flow rates Fc1 to Fc4 and
Fsi 1 toFsi 4, respectively, for section S1 (rapid heating carbonization process), section S2 (cubic silicon carbide film epitaxial growth process), section S3 (substrate temperature lowering process), and section S4 (monocrystalline silicon epitaxial growth process). - Here, because only the carbon source gas needs to be introduced in section S1 (rapid heating carbonization process), the carbon source gas flow rate Fc1=3 sccm, and the silicon source gas
flow rate Fsi 1=0 sccm. - In section S2 (cubic silicon carbide film epitaxial growth process), both the carbon source gas and the silicon source gas need to be introduced in good balance. Accordingly, the carbon source gas flow rate Fc2=5 sccm, and the silicon source gas
flow rate Fsi 2=5 sccm. - Section S3 (substrate temperature lowering process) does not require the supply of carbon source gas and silicon source gas. Accordingly, the carbon source gas flow rate Fc3=0 sccm, and the silicon source gas
flow rate Fsi 3=0 sccm. - In section S4 (monocrystalline silicon epitaxial growth process), only the silicon source gas needs to be introduced. Accordingly, the carbon source gas flow rate Fc4=0 sccm, and the silicon source gas
flow rate Fsi 4=20 sccm. - By optimally setting the carbon source gas flow rates Fc1, Fc2, Fc3, Fc4, and the silicon source gas
flow rates Fsi 1,Fsi 2,Fsi 3,Fsi 4 for sections S1 to S4, a cubic silicon carbide film was quickly obtained in high quality with few crystal defects at a low epitaxial growth temperature. -
FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 2. Example 2 differs from Example 1 in that the carbon source gas flow rate Fc2=3 sccm, and that the silicon source gasflow rate Fsi 2=0 sccm. - In section S2 (cubic silicon carbide film epitaxial growth process), the carbon source gas flow rate Fc2=3 sccm, and the silicon source gas
flow rate Fsi 2=0 sccm. This creates an atmosphere with the excess carbon source gas, and promotes carbonization and thus the generation of the cubic silicon carbide film. -
FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 3. Example 3 differs from Example 1 in that the carbon source gas flow rate Fc1=Fc2=5 sccm, and Fc3=Fc4=0 sccm, and that the silicon source gasflow rate Fsi 1=Fsi 2=Fsi 3=Fc4=20 sccm. - In section S1 (rapid heating carbonization process), here, both the carbon source gas and the silicon source gas are introduced. However, the introduction of the silicon source gas does not pose any problem, because the effect of carbonization by the carbon source gas far exceeds the growth by the silicon source gas.
-
FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 4. Example 4 differs from Example 1 in that the carbon source gas flow rate Fc1=Fc2=Fc3=Fc4=5 sccm, and that the silicon source gasflow rate Fsi 1=Fsi 2=Fsi 3=Fc4=20 sccm. - In section S4 (monocrystalline silicon epitaxial growth process), both the carbon source gas and the silicon source gas are introduced. However, the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
-
FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 5. Example 5 differs from Example 1 in that the carbon source gas flow rate Fc1=Fc2=Fc3=Fc4=5 sccm, and that the silicon source gasflow rate Fsi 1=Fsi 2=Fsi 3=0 scam, Fc4=20 scam. - As in Example 4, both the carbon source gas and the silicon source gas are introduced in section S4 (monocrystalline silicon epitaxial growth process). However, the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
- As in Example 1, a cubic silicon carbide film can be quickly obtained in high quality with few crystal defects at a low epitaxial growth temperature also in Examples 2 to 5, by optimally setting the carbon source gas flow rates Fc1, Fc2, Fc3, Fc4, and the silicon source gas
flow rates Fsi 1,Fsi 2,Fsi 3,Fsi 4 for each section. -
FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 6. In this example, neopentane (neo-C5H12) and dichlorosilane (SiH2Cl2) were used as carbon source gas and silicon source gas, respectively, and 5 cycles of epitaxial growth were performed at the monocrystalline silicon epitaxial growth temperature T1 and cubic silicon carbide epitaxial growth temperature T2 of 900° C. and 1,000° C., respectively. - Section S1 (rapid heating carbonization process), section S2 (cubic silicon carbide film epitaxial growth process), section S3 (substrate temperature lowering process), and section S4 (monocrystalline silicon epitaxial growth process) were set to 60 seconds, 300 seconds, 120 seconds, and 300 seconds, respectively. The flow rates of the carbon source gas were Fc1=1 sccm, Fc2=Fc3=5 sccm, Fc4=0 sccm. The flow rates of the silicon source gas were
Fsi 1=0 sccm,Fsi 2=Fsi 3=Fsi 4=20 sccm. - The epitaxial growth was also performed in 10 cycles and in 20 cycles using the same temperature cycle.
-
FIG. 8 is a diagram representing the growth time dependence of the thickness of the cubic silicon carbide film formed by the cycle process ofFIG. 7 , and of the cubic silicon carbide film formed by a common continuous process that involves epitaxial growth at constant temperature. - The continuous process was performed under the conditions of: substrate temperature=1,000° C.; the flow rate of the carbon source gas (neopentane (neo-C5H12))=5 sccm; and the flow rate of the silicon source gas (dichlorosilane (SiH2Cl2))=20 sccm.
- The cycle process time is represented by the product of the number of cycles and the total growth time in section S1 (rapid heating carbonization process), section (cubic silicon carbide film epitaxial, growth process), and section S3 (substrate temperature lowering process).
- The growth rate in the cycle process was 33.1 nm/hour, as opposed to 25.1 nm/hour in the continuous process, demonstrating that the growth rate can be increased by performing the cycle process, given the same process conditions.
- The increase in growth rate over the continuous process is only slightly higher than 1.3 fold in
FIG. 8 . This is because the process time was not optimized for each section. The growth rate can be further improved by optimizing the process time of each section. -
FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7. The figure represents the thickness of the cubic silicon carbide film formed after heating the silicon substrate to 600° C., when (1) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 180° C./sec, and carbonized at 1,000° C. for 10 minutes while introducing the carbon source gas ethylene (C2H4) at a flow rate of 3 sccm, (2) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 150° C./sec, and carbonized at 1,000° C. for 5 minutes while introducing the ethylene (C2H4) gas at a flow rate of 10 sccm, and (3) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 10′C/sec, and carbonized at 1,000° C. for 5 minutes while introducing the ethylene (C2H4) gas at a flow rate of 10 sccm. - It can be seen from the figure that the rapid heating to 1,000° C. at the rate of temperature increase of 150° C./sec or more quickly forms a cubic silicon carbide film that is about three times as thick as that formed without rapid heating.
-
FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C. - In the figure, the solid line indicates temperature changes in carbonization performed by increasing the temperature at a slow rate of temperature increase of 10° C./min until the substrate temperature of 900° C., followed by rapid heating from the substrate temperature of 900° C. to 950° C. at a rate of temperature increase of 5° C./sec.
- The broken line indicates temperature changes in the case where the temperature was increased at a slow rate of temperature increase of 10° C./min until the substrate temperature reached 950° C.
-
FIG. 11 represents the thicknesses of carbide layers formed after the carbonization performed at 950° C. for 5 minutes upon the temperature reaching 950° C. along the paths of the solid line and broken line in the presence of the carbon source gas ethylene (C2H4) flowed at a rate of 10 sccm. It can be seen from the figure that the rapid heating of the substrate from 900° C. to 950° C. promoted the carbonization reaction further compared to the gradual heating, and formed the carbide film in a shorter time period. - At temperatures of 900° C. and lower, there was epitaxial growth of monocrystalline silicon, but substantially no epitaxial growth of the cubic silicon carbide film was observed. Thus, by subjecting the substrate to repeated temperature changes between the monocrystalline silicon epitaxial growth temperature range of 900° C. or less and the rapid heating range of from 900° C. to 950° C., it is possible to alternately perform (1) the epitaxial growth of monocrystalline silicon, and (2) the generation of the cubic silicon carbide film by the carbonization of the monocrystalline silicon, and the epitaxial growth of the cubic silicon carbide film.
- The rapid heating allows the cubic silicon carbide film to be formed more quickly than the common process, and thus enables formation of the cubic silicon carbide film at high speed even at relatively low temperatures.
- Further, because the cubic silicon carbide film can be formed at low temperature, generation of crystal defects due to the difference in the thermal expansion of the silicon substrate and the cubic silicon carbide film can be suppressed, and a high-quality cubic silicon carbide film with few crystal defects can be formed.
- The cubic silicon carbide film-attached
substrate 1 of the present embodiment is configured to include the cubicsilicon carbide film 3 formed as a 20-layer laminate of the cubicsilicon carbide films 3 a to 3 t on the surface 2 a of thesilicon substrate 2. However, the number of the laminated layers in the cubic silicon carbide film may be decided according to the required characteristics. - Further, the invention is equally effective when the
silicon substrate 2 is replaced with a substrate that includes a monocrystalline silicon film formed on the substrate surface. In this case, the monocrystalline silicon film needs to be sufficiently thick to allow carbonization by rapid heating. - The monocrystalline silicon carbide film-attached
substrate 1 also can be used as semiconductor material for the next generation of low-loss power devices.
Claims (8)
1. A method of manufacturing a cubic silicon carbide film, comprising:
introducing a first gas that contains carbon onto a silicon substrate or onto a monocrystalline silicon film disposed on the substrate,
forming a first cubic silicon carbide film by heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film; and
forming a second cubic carbide film by introducing the first gas that contains carbon and a second gas that contains silicon onto the first cubic silicon carbide film while maintaining the first cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of cubic silicon carbide film.
2. The method according to claim 1 , further comprising:
forming a monocrystalline silicon film on the second cubic silicon carbide film by introducing the second gas that contains silicon onto the second cubic silicon carbide film, a temperature of the second cubic silicon carbide film being set to the epitaxial growth temperature of monocrystalline silicon;
after the forming the monocrystalline silicon on the second cubic silicon carbide film, introducing the first gas that contains the carbon;
forming a third cubic silicon carbide film by heating the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the monocrystalline silicon film; and
forming a fourth cubic carbide film by introducing the first gas that contains the carbon and the second gas that contains silicon onto the third cubic silicon carbide film while maintaining the third cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of the cubic silicon carbide film.
3. The method according to claim 1 ,
a rate of temperature rising of the heating being in a range of 5° C./sec to 200° C./sec.
4. The method according to claim 1 ,
switching of the first gas and the second gas being performed by controlling a flow rate of the first gas and a flow rate of the second gas.
5. The method according to claim 1 ,
the first gas containing hydrocarbon.
6. The method according to claim 1 ,
the second gas containing silane.
7. A method of manufacturing a substrate including cubic silicon carbide film the method comprising:
introducing a first gas that contains carbon onto a silicon substrate or onto a monocrystalline silicon film disposed on the substrate,
forming a first cubic silicon carbide film by heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film; and
forming a second cubic carbide film by introducing the first gas that contains carbon and the second gas that contains silicon onto the first cubic silicon carbide film while maintaining the first cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of cubic silicon carbide film.
8. The method according to claim 7 , further comprising:
forming a monocrystalline silicon film on the second cubic silicon carbide film by introducing a second gas that contains silicon onto the second cubic silicon carbide film, a temperature of the second cubic silicon carbide film being set to the epitaxial growth temperature of monocrystalline silicon;
after the forming the monocrystalline silicon on the second cubic silicon carbide film, introducing the first gas that contains the carbon;
forming a third cubic silicon carbide film by heating the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the monocrystalline silicon film; and
forming a fourth cubic carbide film by introducing the first gas that contains the carbon and the second gas that contains the silicon onto the third cubic silicon carbide film while maintaining the third cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of the cubic silicon carbide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/737,281 US9732439B2 (en) | 2010-08-13 | 2015-06-11 | Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-181206 | 2010-08-13 | ||
JP2010181206A JP5720140B2 (en) | 2010-08-13 | 2010-08-13 | Method for manufacturing cubic silicon carbide film and method for manufacturing substrate with cubic silicon carbide film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/737,281 Division US9732439B2 (en) | 2010-08-13 | 2015-06-11 | Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120037067A1 true US20120037067A1 (en) | 2012-02-16 |
Family
ID=45563841
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/189,776 Abandoned US20120037067A1 (en) | 2010-08-13 | 2011-07-25 | Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method |
US14/737,281 Active 2031-08-20 US9732439B2 (en) | 2010-08-13 | 2015-06-11 | Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/737,281 Active 2031-08-20 US9732439B2 (en) | 2010-08-13 | 2015-06-11 | Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers |
Country Status (2)
Country | Link |
---|---|
US (2) | US20120037067A1 (en) |
JP (1) | JP5720140B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150287613A1 (en) * | 2014-04-04 | 2015-10-08 | Marko J. Tadjer | Basal plane dislocation elimination in 4h-sic by pulsed rapid thermal annealing |
CN117293015A (en) * | 2023-11-23 | 2023-12-26 | 希科半导体科技(苏州)有限公司 | Growth method of silicon carbide epitaxial layer of silicon substrate and silicon-based silicon carbide epitaxial wafer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6628673B2 (en) * | 2016-04-05 | 2020-01-15 | 昭和電工株式会社 | Manufacturing method of epitaxial silicon carbide single crystal wafer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623425A (en) * | 1983-04-28 | 1986-11-18 | Sharp Kabushiki Kaisha | Method of fabricating single-crystal substrates of silicon carbide |
JP2002057109A (en) * | 2000-08-10 | 2002-02-22 | Hoya Corp | Silicon carbide manufacturing method, silicon carbide and semiconductor device |
US20020096104A1 (en) * | 2001-01-19 | 2002-07-25 | Hoya Corporation | Single crystal SiCand method of producing the same as well as SiC semiconductor device and SiC composite material |
US6821340B2 (en) * | 2000-05-31 | 2004-11-23 | Hoya Corporation | Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element |
US7416605B2 (en) * | 2007-01-08 | 2008-08-26 | Freescale Semiconductor, Inc. | Anneal of epitaxial layer in a semiconductor device |
US7763529B2 (en) * | 2008-10-01 | 2010-07-27 | National Tsing Hua University | Method of fabricating silicon carbide (SiC) layer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004343133A (en) * | 2004-06-21 | 2004-12-02 | Hoya Corp | Manufacturing method of silicon carbide, silicon carbide, and semiconductor device |
WO2008123213A1 (en) * | 2007-03-26 | 2008-10-16 | Kyoto University | Semiconductor device and semiconductor manufacturing method |
JP2009158702A (en) * | 2007-12-26 | 2009-07-16 | Kyushu Institute Of Technology | Light emitting device |
-
2010
- 2010-08-13 JP JP2010181206A patent/JP5720140B2/en not_active Expired - Fee Related
-
2011
- 2011-07-25 US US13/189,776 patent/US20120037067A1/en not_active Abandoned
-
2015
- 2015-06-11 US US14/737,281 patent/US9732439B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623425A (en) * | 1983-04-28 | 1986-11-18 | Sharp Kabushiki Kaisha | Method of fabricating single-crystal substrates of silicon carbide |
US6821340B2 (en) * | 2000-05-31 | 2004-11-23 | Hoya Corporation | Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element |
JP2002057109A (en) * | 2000-08-10 | 2002-02-22 | Hoya Corp | Silicon carbide manufacturing method, silicon carbide and semiconductor device |
US20020096104A1 (en) * | 2001-01-19 | 2002-07-25 | Hoya Corporation | Single crystal SiCand method of producing the same as well as SiC semiconductor device and SiC composite material |
US7416605B2 (en) * | 2007-01-08 | 2008-08-26 | Freescale Semiconductor, Inc. | Anneal of epitaxial layer in a semiconductor device |
US7763529B2 (en) * | 2008-10-01 | 2010-07-27 | National Tsing Hua University | Method of fabricating silicon carbide (SiC) layer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150287613A1 (en) * | 2014-04-04 | 2015-10-08 | Marko J. Tadjer | Basal plane dislocation elimination in 4h-sic by pulsed rapid thermal annealing |
US10403509B2 (en) * | 2014-04-04 | 2019-09-03 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Basal plane dislocation elimination in 4H—SiC by pulsed rapid thermal annealing |
CN117293015A (en) * | 2023-11-23 | 2023-12-26 | 希科半导体科技(苏州)有限公司 | Growth method of silicon carbide epitaxial layer of silicon substrate and silicon-based silicon carbide epitaxial wafer |
Also Published As
Publication number | Publication date |
---|---|
JP5720140B2 (en) | 2015-05-20 |
JP2012041204A (en) | 2012-03-01 |
US20150275394A1 (en) | 2015-10-01 |
US9732439B2 (en) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10199219B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
CN103228827B (en) | Method for producing epitaxial silicon carbide single crystal substrate | |
CN105441902B (en) | A kind of preparation method of epitaxial silicon carbide graphene composite film | |
WO2016010126A1 (en) | Method for producing epitaxial silicon carbide wafers | |
JP2011135051A5 (en) | ||
JP7290135B2 (en) | Semiconductor substrate manufacturing method and SOI wafer manufacturing method | |
US9732439B2 (en) | Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers | |
US20150108504A1 (en) | Method for producing 3c-sic epitaxial layer, 3c-sic epitaxial substrate, and semiconductor device | |
US7763529B2 (en) | Method of fabricating silicon carbide (SiC) layer | |
JP5024886B2 (en) | Planarization processing method and crystal growth method | |
JP5573725B2 (en) | Method for manufacturing cubic silicon carbide semiconductor substrate | |
Hernandez et al. | Study of surface defects on 3C–SiC films grown on Si (1 1 1) by CVD | |
Kubo et al. | Epitaxial growth of 3C-SiC on Si (111) using hexamethyldisilane and tetraethylsilane | |
JP7218832B1 (en) | Manufacturing method of heteroepitaxial wafer | |
WO2019224953A1 (en) | PRODUCTION METHOD FOR SiC EPITAXIAL SUBSTRATE | |
JP2006253617A (en) | SiC semiconductor and manufacturing method thereof | |
WO2023079880A1 (en) | Method for producing heteroepitaxial wafer | |
JP4916479B2 (en) | Manufacturing method of silicon carbide epitaxial substrate | |
JP5471258B2 (en) | Semiconductor substrate and manufacturing method thereof | |
WO2023047755A1 (en) | Method for producing heteroepitaxial wafer | |
WO2012090268A1 (en) | Monocrystalline silicon carbide epitaxial substrate, method for producing same, and monocrystalline sic device | |
WO2015097852A1 (en) | METHOD FOR FORMING SINGLE CRYSTAL SiC EPITAXIAL FILM | |
JP4766642B2 (en) | SiC semiconductor and SiC epitaxial growth method | |
JP5315944B2 (en) | Manufacturing method of silicon epitaxial wafer | |
JP2015078094A (en) | Sic layer forming method, 3c-sic epitaxial substrate manufacturing method, and 3c-sic epitaxial substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEIKO EPSON CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WATANABE, YUKIMUNE;REEL/FRAME:026645/0733 Effective date: 20110623 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |