US20120029181A1 - Synthesis of 5-azacytidine - Google Patents
Synthesis of 5-azacytidine Download PDFInfo
- Publication number
- US20120029181A1 US20120029181A1 US13/273,127 US201113273127A US2012029181A1 US 20120029181 A1 US20120029181 A1 US 20120029181A1 US 201113273127 A US201113273127 A US 201113273127A US 2012029181 A1 US2012029181 A1 US 2012029181A1
- Authority
- US
- United States
- Prior art keywords
- azacytidine
- product
- dichloromethane
- azacytosine
- silylated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 title claims abstract description 145
- 229960002756 azacitidine Drugs 0.000 title claims abstract description 134
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 title claims abstract description 131
- 230000015572 biosynthetic process Effects 0.000 title description 15
- 238000003786 synthesis reaction Methods 0.000 title description 13
- MFEFTTYGMZOIKO-UHFFFAOYSA-N 5-azacytosine Chemical compound NC1=NC=NC(=O)N1 MFEFTTYGMZOIKO-UHFFFAOYSA-N 0.000 claims abstract description 51
- 238000005859 coupling reaction Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 39
- 230000008878 coupling Effects 0.000 claims abstract description 31
- 238000010168 coupling process Methods 0.000 claims abstract description 31
- FTVLMFQEYACZNP-UHFFFAOYSA-N trimethylsilyl trifluoromethanesulfonate Chemical compound C[Si](C)(C)OS(=O)(=O)C(F)(F)F FTVLMFQEYACZNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000006884 silylation reaction Methods 0.000 claims abstract description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 102
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 97
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 69
- 239000000203 mixture Substances 0.000 claims description 35
- 239000003153 chemical reaction reagent Substances 0.000 claims description 34
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 33
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 28
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 26
- 238000010791 quenching Methods 0.000 claims description 21
- 230000000171 quenching effect Effects 0.000 claims description 21
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 claims description 18
- 239000011541 reaction mixture Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 17
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 16
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000002798 polar solvent Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 11
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 11
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 9
- 125000002252 acyl group Chemical group 0.000 claims description 8
- 238000005292 vacuum distillation Methods 0.000 claims description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 7
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 6
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 5
- 239000003495 polar organic solvent Substances 0.000 claims description 5
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 4
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims description 4
- -1 trimethylsilyl (TMS) Chemical group 0.000 claims description 4
- 239000012267 brine Substances 0.000 claims description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 5
- 239000002027 dichloromethane extract Substances 0.000 claims 4
- 239000007864 aqueous solution Substances 0.000 claims 3
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 3
- HMFHBZSHGGEWLO-TXICZTDVSA-N beta-D-ribose Chemical class OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-TXICZTDVSA-N 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 0 *S/C(N)=N/C(=O)N[C@@H]1O[C@H](CC)[C@H](C)C1OC(C)=O.*SC(=N)N.*SC1=NC(=O)N([C@@H]2O[C@H](CC)[C@H](C)C2OC(C)=O)C=N1.CCOC(OCC)OCC.CC[C@H]1O[C@@H](N=C=O)C(OC(C)=O)[C@H]1C.N.NC1=NC(=O)N([C@@H]2O[C@H](CO)[C@H](O)C2O)C=N1 Chemical compound *S/C(N)=N/C(=O)N[C@@H]1O[C@H](CC)[C@H](C)C1OC(C)=O.*SC(=N)N.*SC1=NC(=O)N([C@@H]2O[C@H](CC)[C@H](C)C2OC(C)=O)C=N1.CCOC(OCC)OCC.CC[C@H]1O[C@@H](N=C=O)C(OC(C)=O)[C@H]1C.N.NC1=NC(=O)N([C@@H]2O[C@H](CO)[C@H](O)C2O)C=N1 0.000 description 13
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 10
- 238000000605 extraction Methods 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- 238000005580 one pot reaction Methods 0.000 description 8
- 239000008186 active pharmaceutical agent Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 238000013341 scale-up Methods 0.000 description 5
- 238000010626 work up procedure Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- IHNHAHWGVLXCCI-FDYHWXHSSA-N [(2r,3r,4r,5s)-3,4,5-triacetyloxyoxolan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H]1OC(C)=O IHNHAHWGVLXCCI-FDYHWXHSSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical group C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- GCZABPLTDYVJMP-CBUXHAPBSA-N [(2r,3r,4r,5s)-5-acetyloxy-3,4-dibenzoyloxyoxolan-2-yl]methyl benzoate Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1OC(=O)C=1C=CC=CC=1)OC(=O)C=1C=CC=CC=1)OC(=O)C)OC(=O)C1=CC=CC=C1 GCZABPLTDYVJMP-CBUXHAPBSA-N 0.000 description 2
- NMUSYJAQQFHJEW-ZPQYLTHOSA-N [H]C1(O)[C@]([H])(O)[C@]([H])(N2C=NC(N)=NC2=O)O[C@]1([H])CO Chemical compound [H]C1(O)[C@]([H])(O)[C@]([H])(N2C=NC(N)=NC2=O)O[C@]1([H])CO NMUSYJAQQFHJEW-ZPQYLTHOSA-N 0.000 description 2
- IHNHAHWGVLXCCI-IBSWDFHHSA-N [H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(OC(C)=O)O[C@]1([H])COC(C)=O Chemical compound [H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(OC(C)=O)O[C@]1([H])COC(C)=O IHNHAHWGVLXCCI-IBSWDFHHSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- FKPJSVPFTSWELX-UHFFFAOYSA-N 6-(trimethylsilylamino)-1h-1,3,5-triazin-2-one Chemical class C[Si](C)(C)NC1=NC=NC(=O)N1 FKPJSVPFTSWELX-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- XPBUCSSWRPYZQZ-CORDWKEZSA-N C.C.CC#N.CC1=NC=NC(N[Si](C)(C)C)=N1.CC[C@H]1OC(Cl)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CO[Na].NC1=NC(=O)N([C@@H]2O[C@H](CO)[C@H](O)C2O)C=N1.[H]N1C=NC(N)=NC1=O Chemical compound C.C.CC#N.CC1=NC=NC(N[Si](C)(C)C)=N1.CC[C@H]1OC(Cl)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CO[Na].NC1=NC(=O)N([C@@H]2O[C@H](CO)[C@H](O)C2O)C=N1.[H]N1C=NC(N)=NC1=O XPBUCSSWRPYZQZ-CORDWKEZSA-N 0.000 description 1
- NIGPHZBHWJKOLF-OCYWZDQLSA-N C.CC#N.CC1=NC=NC(N[Si](C)(C)C)=N1.CC[C@H]1OC(Br)C(OC(C)=O)[C@H]1C.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(C)=O)[C@H]1C.CO.N.NC1=NC(=O)N([C@@H]2O[C@H](CO)[C@H](O)C2O)C=N1.[H]N1C=NC(N)=NC1=O Chemical compound C.CC#N.CC1=NC=NC(N[Si](C)(C)C)=N1.CC[C@H]1OC(Br)C(OC(C)=O)[C@H]1C.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(C)=O)[C@H]1C.CO.N.NC1=NC(=O)N([C@@H]2O[C@H](CO)[C@H](O)C2O)C=N1.[H]N1C=NC(N)=NC1=O NIGPHZBHWJKOLF-OCYWZDQLSA-N 0.000 description 1
- PWCANQGLMRJFLF-VWDAYKHGSA-N C=C1N=C(N[Si](C)(C)C)N=CN1.C[Si](C)(C)OS(=O)(=O)C(F)(F)F.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(N2C=NC(N[Si](C)(C)C)=NC2=O)O[C@]1([H])COC(C)=O.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(OC(C)=O)O[C@]1([H])COC(C)=O Chemical compound C=C1N=C(N[Si](C)(C)C)N=CN1.C[Si](C)(C)OS(=O)(=O)C(F)(F)F.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(N2C=NC(N[Si](C)(C)C)=NC2=O)O[C@]1([H])COC(C)=O.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(OC(C)=O)O[C@]1([H])COC(C)=O PWCANQGLMRJFLF-VWDAYKHGSA-N 0.000 description 1
- URWBSRDJGYGWOJ-DSQYPGCJSA-N CC(C)C(=O)C1=CC=CC=C1.[H]C1(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(C)=O)O[C@]1([H])CC.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(OC(C)=O)O[C@]1([H])COC(C)=O Chemical compound CC(C)C(=O)C1=CC=CC=C1.[H]C1(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(C)=O)O[C@]1([H])CC.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(OC(C)=O)O[C@]1([H])COC(C)=O URWBSRDJGYGWOJ-DSQYPGCJSA-N 0.000 description 1
- YCNHUBYFFNBHAN-FONMHAPLSA-F CC1=NC=NC(N[Si](C)(C)C)=N1.CC1=NC=NC(N[Si](C)(C)C)=N1.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(C)=O)[C@H]1C.CC[C@H]1O[C@@H](OC(C)=O)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CC[C@H]1O[C@@H](OC(C)=O)C(OC(C)=O)[C@H]1C.Cl[Sn](Cl)(Cl)Cl.Cl[Sn](Cl)(Cl)Cl Chemical compound CC1=NC=NC(N[Si](C)(C)C)=N1.CC1=NC=NC(N[Si](C)(C)C)=N1.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CC[C@H]1O[C@@H](N2C=NC(N)=NC2=O)C(OC(C)=O)[C@H]1C.CC[C@H]1O[C@@H](OC(C)=O)C(OC(=O)C2=CC=CC=C2)[C@H]1C.CC[C@H]1O[C@@H](OC(C)=O)C(OC(C)=O)[C@H]1C.Cl[Sn](Cl)(Cl)Cl.Cl[Sn](Cl)(Cl)Cl YCNHUBYFFNBHAN-FONMHAPLSA-F 0.000 description 1
- LGRQAJQRPDFHMN-UHFFFAOYSA-N CC[Si](=O)CC1N=C(N[Si](C)(C)C)N=CN1.NC1=NC(=O)NC=N1 Chemical compound CC[Si](=O)CC1N=C(N[Si](C)(C)C)N=CN1.NC1=NC(=O)NC=N1 LGRQAJQRPDFHMN-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 241000287433 Turdus Species 0.000 description 1
- WIDXXHUKKJXPEP-QHPFDFDXSA-N [(2r,3r,4r)-3,4-diacetyloxy-5-bromooxolan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1OC(Br)[C@H](OC(C)=O)[C@@H]1OC(C)=O WIDXXHUKKJXPEP-QHPFDFDXSA-N 0.000 description 1
- RNPJWTDNQMCUHP-YRNFEDNZSA-N [(2r,3r,4r)-3,4-dibenzoyloxy-5-chlorooxolan-2-yl]methyl benzoate Chemical compound C([C@H]1OC([C@@H]([C@@H]1OC(=O)C=1C=CC=CC=1)OC(=O)C=1C=CC=CC=1)Cl)OC(=O)C1=CC=CC=C1 RNPJWTDNQMCUHP-YRNFEDNZSA-N 0.000 description 1
- SFMDGBBHQLGXQY-CHLIKWGLSA-N [H]C1(O)[C@]([H])(O)[C@]([H])(N2C=NC(N)=NC2=O)O[C@]1([H])CO.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(N2C=NC(N[Si](C)(C)C)=NC2=O)O[C@]1([H])COC(C)=O Chemical compound [H]C1(O)[C@]([H])(O)[C@]([H])(N2C=NC(N)=NC2=O)O[C@]1([H])CO.[H]C1(OC(C)=O)[C@]([H])(OC(C)=O)[C@]([H])(N2C=NC(N[Si](C)(C)C)=NC2=O)O[C@]1([H])COC(C)=O SFMDGBBHQLGXQY-CHLIKWGLSA-N 0.000 description 1
- QQLKKGAVWJYBBH-XFCGAFINSA-N [H]C1(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(C)=O)O[C@]1([H])CC Chemical compound [H]C1(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(=O)C2=CC=CC=C2)[C@]([H])(OC(C)=O)O[C@]1([H])CC QQLKKGAVWJYBBH-XFCGAFINSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- CBHOOMGKXCMKIR-UHFFFAOYSA-N azane;methanol Chemical compound N.OC CBHOOMGKXCMKIR-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002026 chloroform extract Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000001455 metallic ions Chemical class 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/12—Triazine radicals
Definitions
- the invention relates to the synthesis of 5-azacytidine (also known as azacitidine and 4-amino-1- ⁇ -D-ribofuranosyl-S-triazin-2(1H)-one).
- 5-azacytidine may be used in the treatment of disease, including the treatment of myelodysplastic syndromes (MDS).
- 5-azacytidine also known as azacitidine and 4-amino-1- ⁇ -D-ribofuranosyl-S-triazin-2(1H)-one; National Service Center designation NSC-102816; CAS Registry Number 320-67-2) has undergone NCI-sponsored trials for the treatment of myelodysplastic syndromes (MDS). See Kornblith et al., J. Clin. Oncol. 20(10): 2441-2452 (2002) and Silverman et al., J. Clin. Oncol. 20(10): 2429-2440 (2002).
- 5-azacytidine may be defined as having a formula of C 8 H 12 N 4 O 5 , a molecular weight of 244.20 and a structure of
- the s-triazine ring of 5-azacytidine has a particular sensitivity to water (see J. A. Beisler, J. Med. Chem., 21, 204 (1978)); this characteristic has made the synthesis of 5-azacytidine a challenge, especially in manufacturing at commercial scale.
- a number of prior art methods have been developed in order to avoid the use of water; however, these methods all have additional problems that render them undesirable for the production of large-scale batches of 5-azacytidine.
- Piskala and Sorm teach the following synthesis scheme in (see U.S. Pat. No. 3,350,388; A. Piskala and F. Sorm, Collect. Czech. Chem. Commun., 29, 2060 (1964); and A. Piskala and F. Sorm, Ger. 1922702 (1969), each of which is incorporated herein by reference
- the overall yield of this scheme is 43.3%.
- This method involves a reactive starting material (isocyanate) with a controlled stereochemistry (1- ⁇ configuration). Such a compound cannot be regarded as a starting material.
- the drawbacks of this scheme include the presence of steps that are difficult to scale-up, the use of benzene as solvent in one step, and the requirement for a deprotection step performed in a closing pressure vessel using dry ammonia.
- the final 5-azacytidine product was isolated from the reaction mixture by filtration with no further purification; this is not acceptable for the synthesis of an Active Pharmaceutical Ingredient (API) for human use. The addition of further purification steps will further reduce the overall yield.
- API Active Pharmaceutical Ingredient
- Winkley and Robins teach an 5-azacytidine synthesis process that relies on the coupling of a “bromosugar” with a silyl derivative of 5-azacytosine (see M. W. Winkley and R. K. Robins, J. Org. Chem., 35, 491 (1970), incorporated by reference in its entirety):
- Piskala and Sorm also teach the following process for coupling involving the use of a “chlorosugar” (A. Piskala and F. Sorm, Nuci. Acid Chem. 1, 435 (1978), incorporated herein by reference in its entirety):
- 2,3,5-Tri-O-Benzoyl-D-ribofuranosyl chloride was prepared by saturating a solution of 1-O-acetyl-2,3,5-tri-O-benzoyl- ⁇ -D-ribose in ClCH 2 CH 2 Cl—AcCl with gaseous HCl (with ice-cooling) and then keeping the mixture overnight at room temperature. This procedure is difficult to scale-up with plant equipment due to the special handling requirements of gaseous HCl. Also, the typical ⁇ / ⁇ ratio in the chlorosugar is unknown, as is the impact of the ⁇ / ⁇ ratio on the yield and final purity of 5-azacytidine.
- Piskala, Fiedler and Sorm teach a procedure for the ribosylation of silver salts of 5-azapyrimidine nucleobases in A. Piskala, P. Fiedler and F. Sorm, Nucleic Acid Res., Spec. Publ. 1, 17 (1975), incorporated herein by reference in its entirety. Specifically, they teach that the ribosylation of the silver salt of 5-azacytosine with 2,4,5-tri-O-benzoyl-D-ribosyl chloride gives 5-azacytidine. This is clearly not a procedure that is amenable to scale up for the large-scale production of 5-azacytidine.
- Niedballa and Vorbrüggen teach the procedure that has been used historically for the large-scale synthesis of 5-azacytidine for the above-mentioned NCI-sponsored trials for the treatment of myelodysplastic syndromes. See H. Vorbrüggen and U. Niedballa, Ger. 2,012,888 (1971) and U. Niedballa and H. Vorbrüggen, J. Org. Chem., 39, 3672 (1974), each of which is incorporated herein by reference in its entirety. The procedure involves the following steps:
- phase separation of the emulsion is slow, so the water-sensitive protected 5-azacytidine was exposed to water for variable periods of time leading to variable amounts of decomposition.
- a filtration step was performed in order to isolate the insoluble tin salt. Typically, this filtration is very slow, and is likely the reason that variations in the final yield were noted.
- Vorbrüggen et al. in Chemische Berichte, 114: 1234-1255 (1981) teach the use of certain Lewis acids as Friedel-Crafts catalysts for the coupling of silylated bases with 1-O-acyl sugars.
- they teach the coupling of silylated bases with 1-O-acyl sugars in the presence of trimethylsilyl trifluoromethanesulfonate (TMS-Triflate) in 1,2-dichloroethane or acetonitrile.
- TMS-Triflate trimethylsilyl trifluoromethanesulfonate
- the reaction mixture was then diluted with dichloromethane and the organic phase extracted with ice-cold saturated NaHCO 3 . The use of this procedure to synthesize 5-azacytidine is not taught or suggested.
- Vorbrüggen and Bennua in Chemische Berichte, 114: 1279-1286 (1981) also teach a simplified version of this nucleoside synthesis method in which base silylation, generation of the Lewis acid Friedel-Crafts catalyst, and coupling of the silylated base to the 1-O-acyl sugar takes place in a one step/one pot procedure employing a polar solvent such as acetonitrile. Following reaction, dichloromethane is added, and the mixture is extracted with aqueous NaHCO 3 . The use of this procedure to synthesize 5-azacytidine is not taught or suggested.
- this one step/one pot reaction is not suitable for the synthesis of 5-azacytidine because the extraction is done is the presence of acetonitrile.
- Acetonitrile is a polar solvent, and is therefore miscible with water.
- the protected 5-azacytidine in the acetonitrile is exposed during extraction to the aqueous phase for variable amounts of time, which in turn leads to variable amounts of decomposition of the protected 5-azacytidine.
- the present invention provides for the first time a method that synthesizes 5-azacytidine that is suitable for use in humans and is amenable to large scale synthesis.
- 5-azacytidine is prepared by:
- each R 1 is an optionally substituted C 1 -C 20 alkyl group independently selected from the group consisting of straight chain alkyl groups, branched alkyl groups, and cyclic alkyl groups; b) coupling (A) with a compound of the structure:
- each R 2 is an optionally substituted C 1 -C 20 acyl group independently selected from the group consisting of straight chain acyl groups, branched acyl groups, and benzoyl groups, wherein the coupling of (A) and (B) is carried out in the presence of trimethylsilyl trifluoromethanesulfonate (TMS-Triflate), and wherein the coupling yields a compound of the structure
- TMS-Triflate trimethylsilyl trifluoromethanesulfonate
- the silylating reaction takes place in the absence of a solvent using an excess of silylating reagent, and optionally in the presence of a catalyst. If a catalyst is used, a preferred catalyst is ammonium sulfate.
- the silylating reagent is a trimethylsilyl (TMS) reagent (i.e., R 1 ⁇ CH 3 ), or a mixture of two or more TMS reagents in excess over the 5-azacytosine.
- TMS reagents include hexamethyldisilizane (HINDS) and chlorotrimethylsilane (TMSCl).
- HINDS hexamethyldisilizane
- TMSCl chlorotrimethylsilane
- the silylated 5-azacytosine is preferably isolated prior to coupling by removing the silylating reagents using vacuum distillation, or by filtration.
- the compound (B) of coupling step b) is
- a dry organic solvent more preferably a dry organic non-polar solvent that is not miscible with water.
- the TMS-Triflate is quenched by extracting the reaction product of b) with, for example, an aqueous bicarbonate solution.
- a “one pot” synthesis of 5-azacytidine is provided comprising the steps of:
- each R 1 is an optionally substituted C 1 -C 20 alkyl group independently selected from the group consisting of straight chain alkyl groups, branched alkyl groups, and cyclic alkyl groups;
- each R 2 is an optionally substituted C 1 -C 20 acyl group independently selected from the group consisting of straight chain acyl groups, branched acyl groups, and benzoyl group to yield a compound having the structure;
- the dry organic solvent of step a) is a polar solvent, most preferably acetonitrile.
- the polar solvent is removed between steps b) and c) and the reaction products of b) are dissolved in a dry organic non-polar solvent, most preferably dichloromethane of 1,2-dichlorethane, prior to step c).
- the crude 5-azacytidine produced by the above-described processes is subjected to one or more recrystallization procedures.
- the crude 5-azacytidine may be dissolved in dimethylsulfoxide (DMSO), and then recrystallized by the addition of methanol.
- DMSO dimethylsulfoxide
- the methods provided by the instant invention are amenable to scale-up, and avoid the use of tin catalysts and other metal ions, thereby providing 5-azacytidine that is suitable for use as an API.
- the methods also avoid the formation of emulsions during the work up (quenching/extraction) of the coupling reaction, thereby avoiding hydrolysis of the s-triazine ring.
- 5-azacytidine is synthesized according to the following process wherein each R 1 is an optionally substituted C 1 -C 20 alkyl group independently selected from the group consisting of straight chain alkyl groups, branched alkyl groups, and cyclic alkyl groups, and wherein each R2 is an optionally substituted C 1 -C 20 acyl group independently selected from the group consisting of straight chain acyl groups, branched acyl groups, and benzoyl (Bz) groups.
- the silylating reagent is a trimethylsilyl (TMS) reagent or a mixture of two or more TMS reagents.
- TMS reagents include hexamethyldisilizane (HMDS: (CH 3 )SiNHSi(CH 3 ) 3 ) and chlorotrimethylsilane (TMSCl: (CH 3 ) 3 SiCl).
- TMS-Triflate trimethylsilyl trifluoromethanesulfonate
- TMS-Triflate catalyzes the coupling reaction, resulting in the formation of a protected 5-azacytidine (4).
- the protecting groups can be removed by any technique known in the art, including, but not limited to, treatment with methanol/sodium methoxide. The individual reactions of the scheme will now be discussed in detail.
- the silylated 5-azacytosine is prepared by heating a suspension of 5-azacytosine (1), one or more TMS reagents (present in excess over the 5-azacytosine) and a catalyst, preferably ammonium sulfate, at reflux without a solvent until a clear solution results.
- the TMS reagent is HMDS, which produces a trimethylsilyl 5-azacytosine derivative (R 1 ⁇ CH 3 in the scheme above).
- the silylated 5-azacytosine crystallizes from the reaction mixture.
- the silylated 5-azacytosine can then be isolated by any technique known in the art.
- the silylated 5-azacytosine may be isolated by partially removing excess TMS reagent, followed by addition of a suitable solvent (for example, heptane) and filtration under inert atmosphere.
- a suitable solvent for example, heptane
- the silylated 5-azacytosine thus isolated is used with or without drying in the coupling step.
- silylated 5-azacytosine may be isolated by removing TMS reagent by vacuum distillation and then dissolving the residue is in dichloromethane, acetonitrile, or 1,2-dichloroethane for use in the coupling step.
- the silylated 5-azacytosine is prepared “in situ” from 5-azacytosine and an equivalent amount of one or more silylating reagents (preferably a mixture of HMDS and TMSCl) in a suitable solvent in the presence or absence of a catalyst at reflux.
- the solvent is a dry organic solvent, more preferably a dry polar organic solvent, including but not limited to acetonitrile.
- coupling of the silylated 5-azacytosine to the sugar is performed by first preparing a cooled mixture (preferably in the range of about 0° C. to about 5° C.) of silylated 5-azacytosine and 1,2,3,5-tetra-O-acetyl- ⁇ -D-ribofuranose (or 1-O-acetyl-2,3,5-tri-O-benzoyl- ⁇ -D-ribofuranose) in dichloromethane, acetonitrile, or 1,2-dichloroethane.
- the solvent for the coupling step is dichloromethane or 1,2-dichloroethane, most preferably dichloromethane.
- TMS-triflate is then added to the mixture, preferably at a rate that keeps the temperature below 25° C. After the addition is complete, the clear solution is stirred at ambient temperature for about 2 hours to about 3 hours.
- the coupling reaction mixture may instead be prepared by adding the sugar and TMS-Triflate directly to the silylation reagents (silylating agent and 5-azacytosine).
- the sugar and TMS-Triflate can be added concurrently with the silylating reagents, or they may be added at the conclusion of the silylation reaction.
- the TMS-Triflate and the sugar are in the same solvent as used in the silylation reaction, which solvent, as described above, is preferably a dry organic polar solvent including, but not limited to acetonitrile.
- acetonitrile or other polar solvent is present during the coupling reaction (for example, in embodiments where “one pot” silylation and coupling are performed in a polar solvent)
- the acetonitrile or other polar solvent is first removed, preferably in vacuum, and the residue is dissolved in dichloromethane or 1,2-dichloroethane prior to quenching.
- polar solvents such are acetonitrile are miscible with water, removing such solvents from the coupling product and then dissolving the product in dry organic non-polar solvents such as dichloromethane or 1,2-dichloromethane minimizes the exposure of the water-sensitive 5-azacytidine to the aqueous phase during extraction/quenching.
- Quenching/extraction preferably is performed in a 1/1 w/w NaHCO 3 /Na 2 CO 3 solution at about 0° C. to about 5° C.
- Using cooled quenching solution further minimizes the decomposition of the protected 5-azacytidine product during quenching.
- the organic phase of the quenched reaction is then separated and the water phase extracted with dichloromethane or 1,2-dichloroethane.
- the combined organic extract is washed with cooled (preferably in the range of about 0° C. to about 5° C.) NaHCO 3 solution (preferably 10%) and water, then dried over MgSO 4 , filtered, and the filtrate concentrated in vacuum.
- the residue is a protected 5-azacytidine (4).
- dichloromethane is used (either as the coupling solvent or following use of acetonitrile as the coupling solvent), the dichloromethane may be partially removed in vacuum, followed by charging methanol to the mixture, and finally by continued vacuum distillation was continued until substantially all dichloromethane is removed.
- the exposure of protected 5-azacytidine to water can be minimized by using a non-polar dry organic solvent for the coupling step.
- a dry organic polar solvent is present at the coupling step, that solvent can be removed and replaced with a dry non-polar organic solvent prior to quenching.
- the duration of exposure of the protected azacitidine to water also depends on the size of the batch that is processed as small batches can be processed in a shorter time than large batches.
- a single batch of coupling reaction product is split into smaller sub-batches, and each sub-batch is separately subjected to quenching/extraction.
- the protecting groups are removed from the protected 5-azacytidine (4) by diluting the methanolic solution of protected 5-azacytidine (4) with methanol, then adding sodium methoxide in methanol (preferably about 25% w/w) to the mixture with stirring at ambient temperature. During this procedure, a white solid separates. The mixture is preferably left stirring for about 8 hours to about 16 hours, following which the solid is filtered off and washed with methanol (until the filtrate is about pH 7). The solid is then dried, preferably in vacuum at about 55° C. to about 65° C. until the weight of the solid remains constant. The solid is crude 5-azacytidine (5).
- the crude 5-azacytidine (5) may be purified by any technique known in the art.
- purification is performed by dissolving the crude product in dimethyl sulfoxide (DMSO) at about 85° C. to about 90° C. under stirring and in an inert atmosphere. Methanol is gradually added to the resulting solution under slow heating, and the mixture is stirred at ambient temperature for about 8 hours to about 16 hours. The resulting recrystallized solid is filtered off, washed with methanol, and then dried, preferably under vacuum at about 85° C. to about 95° C. until the weight remains constant. The overall yield is about 30-40%.
- DMSO dimethyl sulfoxide
- the 5-azacytidine synthesis methods provided by the invention provides a number of clear advantages over the prior art methods.
- First, the methods allow the manufacturing of pilot plant scale uniform batches of 5-azacytidine.
- Second, the procedure assures an API without tin or other metallic ion contaminants.
- the decomposition of the water-sensitive 5-azacytidine is further minimized during the quenching/extraction step by using cooled quenching solutions.
- Trimethylsilylated 5-azacytosine (6) prepared according to the method of Example 1 was diluted with anhydrous dichloromethane (18.1 kg) in a 50 L, 3-necked, flask and solid, 1,2,3,5-Tetra-O-acetyl- ⁇ -D-ribofuranose (5.330 kg, 16.7 mol) (7) was charged to the mixture.
- An anhydrous dichloromethane rinse (0.533 kg) was used and the slurry was cooled to 0-5° C.
- TMS-triflate (4.75 kg, 1.2 molar eq.) was added to the mixture over 5-10 minutes. During the addition, the reaction temperature increased to 15-20° C., and the initial suspension turned into a clear, pale-yellow, solution.
- Crude 5-azacytidine was purified from DMSO/MeOH as follows: Crude 5-azacytidine (1.829 kg) was dissolved in preheated DMSO (5.016 kg; 87-90° C.) under nitrogen. The solution was diluted with methanol in portions at approximate 10-minute intervals (9 ⁇ 1.4 kg then 1 ⁇ 0.58 kg) while slowly cooling. After the addition, 45-55° C. was maintained for 1 hour and then the mixture was left to cool to ambient temperature overnight. The next day, the solids were isolated at ambient temperature, washed with MeOH (6 ⁇ 0.83 kg), and dried in vacuum ( ⁇ 30 in Hg and ⁇ 85° C.) to a constant weight to give 5-azacytidine (1.504 kg; 82.2% recovery).
- the reaction mixture was maintained under stirring for 20 hours, then poured over a pre-cooled (0-5° C.) sodium bicarbonate solution (10%, 500 mL). The resulting mixture was extracted with dichloromethane (3 ⁇ 75 mL). The combined organic extract was washed with cooled (0-5° C.) 10% sodium bicarbonate (2 ⁇ 25 mL) and brine (2 ⁇ 25 mL), then dried over magnesium sulfate (10.0 g), filtered, and the filtrate concentrated in vacuum to dryness. The off-white foam dissolved in methanol (120 mL) was treated with a solution of 25% sodium methoxide in methanol (1.0 g, 4.62 mmol). Soon a white solid started to separate.
- a mixture of 5-azacytosine, HMDS, and TMSCl in acetonitrile is heated to reflux for 20 hours under an inert atmosphere.
- TMS-triflate and 1,2,3,5-tetra-O-acetyl- ⁇ -D-ribofuranose are then added directly to the silylated 5-azacytosine in acetonitrile.
- the addition is performed at ambient temperature and under an inert atmosphere.
- the reaction mixture is maintained under stirring for 20 hours, then the acetonitrile is removed under vacuum.
- the solids are then dissolved in dichloromethane, and the mixture is poured over a pre-cooled (0-5° C.) sodium bicarbonate solution (10%).
- the resulting mixture is extracted with dichloromethane.
- the combined organic extract is washed with cooled (0-5° C.) 10% sodium bicarbonate and brine, then dried over magnesium sulfate, filtered, and the filtrate concentrated in vacuum to dryness.
- the off-white foam is dissolved in methanol and treated with a solution of 25% sodium methoxide in methanol. The suspension is stirred at ambient temperature for 15 hours, then the solid is filtered off, washed with methanol and anhydrous ether, then dried in vacuum.
- the crude 5-azacytidine is further purified from DMSO and methanol (for details see Example 4).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 11/381,275, filed May 2, 2006, entitled “Synthesis of 5-Azacytidine,” which is a continuation of U.S. application Ser. No. 10/390,526, filed Mar. 17, 2003, entitled “Synthesis of 5-Azacytidine,” now U.S. Pat. No. 7,038,038, issued on May 2, 2006. The foregoing reference is hereby incorporated by reference in its entirety.
- The invention relates to the synthesis of 5-azacytidine (also known as azacitidine and 4-amino-1-β-D-ribofuranosyl-S-triazin-2(1H)-one). 5-azacytidine may be used in the treatment of disease, including the treatment of myelodysplastic syndromes (MDS).
- 5-azacytidine (also known as azacitidine and 4-amino-1-β-D-ribofuranosyl-S-triazin-2(1H)-one; Nation Service Center designation NSC-102816; CAS Registry Number 320-67-2) has undergone NCI-sponsored trials for the treatment of myelodysplastic syndromes (MDS). See Kornblith et al., J. Clin. Oncol. 20(10): 2441-2452 (2002) and Silverman et al., J. Clin. Oncol. 20(10): 2429-2440 (2002). 5-azacytidine may be defined as having a formula of C8H12N4O5, a molecular weight of 244.20 and a structure of
- The s-triazine ring of 5-azacytidine has a particular sensitivity to water (see J. A. Beisler, J. Med. Chem., 21, 204 (1978)); this characteristic has made the synthesis of 5-azacytidine a challenge, especially in manufacturing at commercial scale. A number of prior art methods have been developed in order to avoid the use of water; however, these methods all have additional problems that render them undesirable for the production of large-scale batches of 5-azacytidine. For example, Piskala and Sorm teach the following synthesis scheme in (see U.S. Pat. No. 3,350,388; A. Piskala and F. Sorm, Collect. Czech. Chem. Commun., 29, 2060 (1964); and A. Piskala and F. Sorm, Ger. 1922702 (1969), each of which is incorporated herein by reference
- in its entirety):
- The overall yield of this scheme is 43.3%. This method involves a reactive starting material (isocyanate) with a controlled stereochemistry (1-β configuration). Such a compound cannot be regarded as a starting material. The drawbacks of this scheme include the presence of steps that are difficult to scale-up, the use of benzene as solvent in one step, and the requirement for a deprotection step performed in a closing pressure vessel using dry ammonia. Furthermore, the final 5-azacytidine product was isolated from the reaction mixture by filtration with no further purification; this is not acceptable for the synthesis of an Active Pharmaceutical Ingredient (API) for human use. The addition of further purification steps will further reduce the overall yield.
- Winkley and Robins teach an 5-azacytidine synthesis process that relies on the coupling of a “bromosugar” with a silyl derivative of 5-azacytosine (see M. W. Winkley and R. K. Robins, J. Org. Chem., 35, 491 (1970), incorporated by reference in its entirety):
- In this procedure, 5-azacytosine was treated with excess hexamethyldisilazane (HMDS) in the presence of catalytic amounts of ammonium sulfate at reflux until a complete solution was generated (TMS=(CH3)3Si). See E. Wittenburg, Z. Chem., 4, 303 (1964) for the general procedure. The excess HMDS was removed by vacuum distillation and the residue was used directly (without further purification) in the coupling with, 2,3,5-tri-O-acetyl-D-ribofuranosyl bromide in acetonitrile. The coupled product was deprotected with methanolic ammonia solution.
- There are many significant weaknesses in this procedure. First, the fact that the bromosugar was a mixture of anomers, which means that the final coupled product was also a mixture of anomers. Second, the work-up in the coupling step involved a great many steps, specifically: concentration of the reaction mixture to dryness; treatment of the residue with sodium bicarbonate, water and methanol; removal of the water by co-evaporation with absolute ethanol; extraction of the residue with chloroform twice; and finally the concentration to dryness of the combined chloroform extract. Third, ammonia in MeOH was used in the deprotection step, which requires the use of a pressure vessel. Fourth, the crude 5-azacytidine was isolated in only a 35% yield. This crude material was then dissolved in warm water and the solution was decolorized with charcoal. Evaporation then gave crystals of 5-azacytidine with a yield 11%. This material was further recrystallized from aqueous ethanol (charcoal). The low recovery during purification can be correlated with the poor anomeric ratio and with the known low stability of 5-azacytidine in water.
- Piskala and Sorm also teach the following process for coupling involving the use of a “chlorosugar” (A. Piskala and F. Sorm, Nuci. Acid Chem. 1, 435 (1978), incorporated herein by reference in its entirety):
- 2,3,5-Tri-O-Benzoyl-D-ribofuranosyl chloride was prepared by saturating a solution of 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribose in ClCH2CH2Cl—AcCl with gaseous HCl (with ice-cooling) and then keeping the mixture overnight at room temperature. This procedure is difficult to scale-up with plant equipment due to the special handling requirements of gaseous HCl. Also, the typical α/β ratio in the chlorosugar is unknown, as is the impact of the α/β ratio on the yield and final purity of 5-azacytidine.
- Piskala, Fiedler and Sorm teach a procedure for the ribosylation of silver salts of 5-azapyrimidine nucleobases in A. Piskala, P. Fiedler and F. Sorm, Nucleic Acid Res., Spec. Publ. 1, 17 (1975), incorporated herein by reference in its entirety. Specifically, they teach that the ribosylation of the silver salt of 5-azacytosine with 2,4,5-tri-O-benzoyl-D-ribosyl chloride gives 5-azacytidine. This is clearly not a procedure that is amenable to scale up for the large-scale production of 5-azacytidine.
- Niedballa and Vorbrüggen teach the procedure that has been used historically for the large-scale synthesis of 5-azacytidine for the above-mentioned NCI-sponsored trials for the treatment of myelodysplastic syndromes. See H. Vorbrüggen and U. Niedballa, Ger. 2,012,888 (1971) and U. Niedballa and H. Vorbrüggen, J. Org. Chem., 39, 3672 (1974), each of which is incorporated herein by reference in its entirety. The procedure involves the following steps:
- There are at least three major drawbacks to this procedure. First, and most importantly,
- after purification, variable amounts of tin from one batch to another were found in the API. The lack of control of the tin level means that the procedure is not suitable for producing an API for human use. Second, emulsions developed during the workup of the coupling mixture. Indeed, H. Vorbrüggen and C. Ruh-Pohlenz in Organic Reactions, Vol. 55, 2000 (L. A. Paquette Ed., John Wiley & Sons, New York), p 100, have previously noted that silylated heterocycles and protected 1-O-acyl or 1-O-alkyl sugars in the presence of Friedel-Crafts catalysts like SnCl4 often form emulsions and colloids during work-up. The phase separation of the emulsion is slow, so the water-sensitive protected 5-azacytidine was exposed to water for variable periods of time leading to variable amounts of decomposition. Third, a filtration step was performed in order to isolate the insoluble tin salt. Typically, this filtration is very slow, and is likely the reason that variations in the final yield were noted. These problems mean that the process is not conveniently amenable to scale-up.
- Vorbrüggen et al. in Chemische Berichte, 114: 1234-1255 (1981) teach the use of certain Lewis acids as Friedel-Crafts catalysts for the coupling of silylated bases with 1-O-acyl sugars. In particular, they teach the coupling of silylated bases with 1-O-acyl sugars in the presence of trimethylsilyl trifluoromethanesulfonate (TMS-Triflate) in 1,2-dichloroethane or acetonitrile. The reaction mixture was then diluted with dichloromethane and the organic phase extracted with ice-cold saturated NaHCO3. The use of this procedure to synthesize 5-azacytidine is not taught or suggested.
- Vorbrüggen and Bennua in Chemische Berichte, 114: 1279-1286 (1981) also teach a simplified version of this nucleoside synthesis method in which base silylation, generation of the Lewis acid Friedel-Crafts catalyst, and coupling of the silylated base to the 1-O-acyl sugar takes place in a one step/one pot procedure employing a polar solvent such as acetonitrile. Following reaction, dichloromethane is added, and the mixture is extracted with aqueous NaHCO3. The use of this procedure to synthesize 5-azacytidine is not taught or suggested. Moreover, this one step/one pot reaction is not suitable for the synthesis of 5-azacytidine because the extraction is done is the presence of acetonitrile. Acetonitrile is a polar solvent, and is therefore miscible with water. As a consequence, the protected 5-azacytidine in the acetonitrile is exposed during extraction to the aqueous phase for variable amounts of time, which in turn leads to variable amounts of decomposition of the protected 5-azacytidine.
- Thus, there is an unmet need in the field for the provision of a simple, controlled procedure for the synthesis of 5-azacytidine that provides an API that is suitable for use in humans, minimizes the exposure of 5-azacytidine to water, and is amenable to scaling-up for the production of large quantities of 5-azacytidine.
- The present invention provides for the first time a method that synthesizes 5-azacytidine that is suitable for use in humans and is amenable to large scale synthesis.
- In one series of embodiments, 5-azacytidine is prepared by:
- a) reacting 5-azacytosine with a silylating reagent to yield a compound of the structure:
- wherein each R1 is an optionally substituted C1-C20 alkyl group independently selected from the group consisting of straight chain alkyl groups, branched alkyl groups, and cyclic alkyl groups;
b) coupling (A) with a compound of the structure: - wherein each R2 is an optionally substituted C1-C20 acyl group independently selected from the group consisting of straight chain acyl groups, branched acyl groups, and benzoyl groups, wherein the coupling of (A) and (B) is carried out in the presence of trimethylsilyl trifluoromethanesulfonate (TMS-Triflate), and wherein the coupling yields a compound of the structure
- ; and
c) removing said Si(Ri)3 and R2 groups from (C). - In preferred embodiments, the silylating reaction takes place in the absence of a solvent using an excess of silylating reagent, and optionally in the presence of a catalyst. If a catalyst is used, a preferred catalyst is ammonium sulfate. Preferably the silylating reagent is a trimethylsilyl (TMS) reagent (i.e., R1═CH3), or a mixture of two or more TMS reagents in excess over the 5-azacytosine. Preferred TMS reagents include hexamethyldisilizane (HINDS) and chlorotrimethylsilane (TMSCl). The silylated 5-azacytosine is preferably isolated prior to coupling by removing the silylating reagents using vacuum distillation, or by filtration.
- Preferably, the compound (B) of coupling step b) is
- and the coupling reaction is carried out in a dry organic solvent, more preferably a dry organic non-polar solvent that is not miscible with water. Most preferably, the TMS-Triflate is quenched by extracting the reaction product of b) with, for example, an aqueous bicarbonate solution.
In another series of embodiments, a “one pot” synthesis of 5-azacytidine is provided comprising the steps of: - a) in a dry organic solvent, reacting 5-azacytosine with one or more silylating reagents toyield a compound having the structure;
- wherein each R1 is an optionally substituted C1-C20 alkyl group independently selected from the group consisting of straight chain alkyl groups, branched alkyl groups, and cyclic alkyl groups;
- b) adding directly to the reaction mixture of a) TMS-Triflate and a compound having the structure
- wherein each R2 is an optionally substituted C1-C20 acyl group independently selected from the group consisting of straight chain acyl groups, branched acyl groups, and benzoyl group to yield a compound having the structure;
- c) extracting the reaction mixture of b) with an aqueous quenching solution; and
- d) removing said Si(Ri)3 and R2 groups.
- Preferably, the dry organic solvent of step a) is a polar solvent, most preferably acetonitrile. Preferably the polar solvent is removed between steps b) and c) and the reaction products of b) are dissolved in a dry organic non-polar solvent, most preferably dichloromethane of 1,2-dichlorethane, prior to step c).
- In some embodiments, the crude 5-azacytidine produced by the above-described processes is subjected to one or more recrystallization procedures. For example, the crude 5-azacytidine may be dissolved in dimethylsulfoxide (DMSO), and then recrystallized by the addition of methanol.
- The methods provided by the instant invention are amenable to scale-up, and avoid the use of tin catalysts and other metal ions, thereby providing 5-azacytidine that is suitable for use as an API. The methods also avoid the formation of emulsions during the work up (quenching/extraction) of the coupling reaction, thereby avoiding hydrolysis of the s-triazine ring.
- In the most basic embodiment of the invention, 5-azacytidine is synthesized according to the following process wherein each R1 is an optionally substituted C1-C20 alkyl group independently selected from the group consisting of straight chain alkyl groups, branched alkyl groups, and cyclic alkyl groups, and wherein each R2 is an optionally substituted C1-C20 acyl group independently selected from the group consisting of straight chain acyl groups, branched acyl groups, and benzoyl (Bz) groups.
- According to this scheme, 5-azacytosine (1) is reacted with a silylating reagent to yield a silylated 5-azacytosine (2). Preferably, the silylating reagent is a trimethylsilyl (TMS) reagent or a mixture of two or more TMS reagents. Preferred TMS reagents include hexamethyldisilizane (HMDS: (CH3)SiNHSi(CH3)3) and chlorotrimethylsilane (TMSCl: (CH3)3SiCl). The silylated 5azacytosine is then reacted with a protected β-D-ribofuranose derivative (3) in the presence of TMS-Triflate (trimethylsilyl trifluoromethanesulfonate). TMS-Triflate catalyzes the coupling reaction, resulting in the formation of a protected 5-azacytidine (4). The protecting groups can be removed by any technique known in the art, including, but not limited to, treatment with methanol/sodium methoxide. The individual reactions of the scheme will now be discussed in detail.
- In one embodiment, the silylated 5-azacytosine is prepared by heating a suspension of 5-azacytosine (1), one or more TMS reagents (present in excess over the 5-azacytosine) and a catalyst, preferably ammonium sulfate, at reflux without a solvent until a clear solution results. Most preferably, the TMS reagent is HMDS, which produces a trimethylsilyl 5-azacytosine derivative (R1═CH3 in the scheme above). By cooling to ambient temperature, the silylated 5-azacytosine crystallizes from the reaction mixture. The silylated 5-azacytosine can then be isolated by any technique known in the art. For example, the silylated 5-azacytosine may be isolated by partially removing excess TMS reagent, followed by addition of a suitable solvent (for example, heptane) and filtration under inert atmosphere. The silylated 5-azacytosine thus isolated is used with or without drying in the coupling step. Alternatively, silylated 5-azacytosine may be isolated by removing TMS reagent by vacuum distillation and then dissolving the residue is in dichloromethane, acetonitrile, or 1,2-dichloroethane for use in the coupling step.
- In another embodiment, the silylated 5-azacytosine is prepared “in situ” from 5-azacytosine and an equivalent amount of one or more silylating reagents (preferably a mixture of HMDS and TMSCl) in a suitable solvent in the presence or absence of a catalyst at reflux. Preferably, the solvent is a dry organic solvent, more preferably a dry polar organic solvent, including but not limited to acetonitrile. The resulting silylated 5-azacytosine can be used directly in the coupling step without isolation as described below.
- In one embodiment of the invention, coupling of the silylated 5-azacytosine to the sugar is performed by first preparing a cooled mixture (preferably in the range of about 0° C. to about 5° C.) of silylated 5-azacytosine and 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (or 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose) in dichloromethane, acetonitrile, or 1,2-dichloroethane. Preferably, the solvent for the coupling step is dichloromethane or 1,2-dichloroethane, most preferably dichloromethane. TMS-triflate is then added to the mixture, preferably at a rate that keeps the temperature below 25° C. After the addition is complete, the clear solution is stirred at ambient temperature for about 2 hours to about 3 hours.
- In embodiments which the silylated 5-azacytosine is generated “in situ,” the coupling reaction mixture may instead be prepared by adding the sugar and TMS-Triflate directly to the silylation reagents (silylating agent and 5-azacytosine). The sugar and TMS-Triflate can be added concurrently with the silylating reagents, or they may be added at the conclusion of the silylation reaction. Preferably, the TMS-Triflate and the sugar are in the same solvent as used in the silylation reaction, which solvent, as described above, is preferably a dry organic polar solvent including, but not limited to acetonitrile. Using “in situ” generated silylated 5-azacytosine in this manner thus allows one to perform “one pot” silylation and coupling. See Examples 5 and 6.
- In embodiments where acetonitrile or other polar solvent is present during the coupling reaction (for example, in embodiments where “one pot” silylation and coupling are performed in a polar solvent), the acetonitrile or other polar solvent is first removed, preferably in vacuum, and the residue is dissolved in dichloromethane or 1,2-dichloroethane prior to quenching. Because polar solvents such are acetonitrile are miscible with water, removing such solvents from the coupling product and then dissolving the product in dry organic non-polar solvents such as dichloromethane or 1,2-dichloromethane minimizes the exposure of the water-sensitive 5-azacytidine to the aqueous phase during extraction/quenching.
- Quenching/extraction preferably is performed in a 1/1 w/w NaHCO3/Na2CO3 solution at about 0° C. to about 5° C. Using cooled quenching solution further minimizes the decomposition of the protected 5-azacytidine product during quenching. The organic phase of the quenched reaction is then separated and the water phase extracted with dichloromethane or 1,2-dichloroethane. The combined organic extract is washed with cooled (preferably in the range of about 0° C. to about 5° C.) NaHCO3 solution (preferably 10%) and water, then dried over MgSO4, filtered, and the filtrate concentrated in vacuum. The residue is a protected 5-azacytidine (4). Methanol is then charged to the residue. When dichloromethane is used (either as the coupling solvent or following use of acetonitrile as the coupling solvent), the dichloromethane may be partially removed in vacuum, followed by charging methanol to the mixture, and finally by continued vacuum distillation was continued until substantially all dichloromethane is removed.
- As described above, the exposure of protected 5-azacytidine to water can be minimized by using a non-polar dry organic solvent for the coupling step. Alternatively, if a dry organic polar solvent is present at the coupling step, that solvent can be removed and replaced with a dry non-polar organic solvent prior to quenching. The duration of exposure of the protected azacitidine to water (during quenching) also depends on the size of the batch that is processed as small batches can be processed in a shorter time than large batches. Thus, in preferred embodiments of the invention, a single batch of coupling reaction product is split into smaller sub-batches, and each sub-batch is separately subjected to quenching/extraction.
- In preferred embodiments, the protecting groups are removed from the protected 5-azacytidine (4) by diluting the methanolic solution of protected 5-azacytidine (4) with methanol, then adding sodium methoxide in methanol (preferably about 25% w/w) to the mixture with stirring at ambient temperature. During this procedure, a white solid separates. The mixture is preferably left stirring for about 8 hours to about 16 hours, following which the solid is filtered off and washed with methanol (until the filtrate is about pH 7). The solid is then dried, preferably in vacuum at about 55° C. to about 65° C. until the weight of the solid remains constant. The solid is crude 5-azacytidine (5).
- The crude 5-azacytidine (5) may be purified by any technique known in the art. In preferred embodiments, purification is performed by dissolving the crude product in dimethyl sulfoxide (DMSO) at about 85° C. to about 90° C. under stirring and in an inert atmosphere. Methanol is gradually added to the resulting solution under slow heating, and the mixture is stirred at ambient temperature for about 8 hours to about 16 hours. The resulting recrystallized solid is filtered off, washed with methanol, and then dried, preferably under vacuum at about 85° C. to about 95° C. until the weight remains constant. The overall yield is about 30-40%.
- The 5-azacytidine synthesis methods provided by the invention provides a number of clear advantages over the prior art methods. First, the methods allow the manufacturing of pilot plant scale uniform batches of 5-azacytidine. Second, the procedure assures an API without tin or other metallic ion contaminants. Third, there are no difficult to handle phase separation (emulsion) problems in the work-up of the coupling step. Fourth, by removing polar solvents from the coupling reaction prior to quenching/extraction and then dissolving the reaction product is dichloromethane or 1,2-dichloroethane, the exposure of the water-sensitive 5-azacytidine to the aqueous phase is minimized. Finally, the decomposition of the water-sensitive 5-azacytidine is further minimized during the quenching/extraction step by using cooled quenching solutions.
- The following examples are provided for illustrative purposes only. They are not to be interpreted as limiting the scope of the invention in any way.
-
- In a 22 L, 3-necked flask, a mixture of 5-azacytosine (1) (2.0 kg, 17.8 mol, 1.07 molar eq.), HMDS (9.162 kg) and ammonium sulfate (40.0 g) was heated at reflux for 2 hours. A fresh amount of ammonium sulfate (20.0 g) was added, and the reflux was continued for 6 hours longer. The initial slurry turned into a clear, pale-yellow, solution and no more gas evolved at the end of the reflux. The excess HMDS was evaporated off in vacuum to obtain an off-white residue, which is trimethylsilylated 5-azacytosine (6).
-
- Trimethylsilylated 5-azacytosine (6) prepared according to the method of Example 1 was diluted with anhydrous dichloromethane (18.1 kg) in a 50 L, 3-necked, flask and solid, 1,2,3,5-Tetra-O-acetyl-β-D-ribofuranose (5.330 kg, 16.7 mol) (7) was charged to the mixture. An anhydrous dichloromethane rinse (0.533 kg) was used and the slurry was cooled to 0-5° C. TMS-triflate (4.75 kg, 1.2 molar eq.) was added to the mixture over 5-10 minutes. During the addition, the reaction temperature increased to 15-20° C., and the initial suspension turned into a clear, pale-yellow, solution. After 2 hours of stirring, the solution was poured over a mixture of Na2CO3 (2.00 kg), NaHCO3 (2.00 kg), water (29.9 kg) and ice (20.0 kg). The layers were separated. The water layer was extracted with dichloromethane (8.0 kg). The combined organics were washed with cold (0-5° C.) 10% NaHCO3 (2×10 L). The combined washings were extracted with dichloromethane (8.0 kg). The combined organics were washed with cold water (2×5 kg), dried on MgSO4 (2.0 kg), and filtered. The filtrate and dichloromethane washes on the pad (2×1.32 kg) were combined and reduced in volume using vacuum (˜200 mmHg, 30° C.). The distillation was continued until the majority of dichloromethane (app. 85-95% total) was removed. The residue was taken up in methanol (4.0 kg) and the remaining dichloromethane was removed to give a protected 5-azacytidine (8) as an off-white to yellow foam.
-
- Protected 5-azacytidine (8) from Example 2 was diluted with methanol (35.5 kg), then 25% NaOMe in methanol (439 g, 0.11 mol. eq.) was charged. The initial clear solution became turbid and a solid started to precipitate. The slurry was left under nitrogen overnight. The solids were isolated and washed with methanol (7×2.4 kg). The solids were dried (˜28 in Hg and ˜85° C.) to a constant weight to give crude 5-azacytidine (1.835 kg; 44.9%) (5).
- Crude 5-azacytidine was purified from DMSO/MeOH as follows: Crude 5-azacytidine (1.829 kg) was dissolved in preheated DMSO (5.016 kg; 87-90° C.) under nitrogen. The solution was diluted with methanol in portions at approximate 10-minute intervals (9×1.4 kg then 1×0.58 kg) while slowly cooling. After the addition, 45-55° C. was maintained for 1 hour and then the mixture was left to cool to ambient temperature overnight. The next day, the solids were isolated at ambient temperature, washed with MeOH (6×0.83 kg), and dried in vacuum (˜30 in Hg and ˜85° C.) to a constant weight to give 5-azacytidine (1.504 kg; 82.2% recovery).
- A mixture of 5-azacytosine (5.0 g, 44.6 mol), HMDS (6.3 mL, 29.8 mol), and TMSCl (6 mL, 47.3 mmol) in acetonitrile (78 mL) was heated to reflux for 20 hours under an inert atmosphere. TMS-triflate (9 mL, 50 mmol) and 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (14.2 g, 44.6 mmol were added directly to the silylated 5-azacytosine in acetonitrile. The addition was performed at ambient temperature and under an inert atmosphere. The reaction mixture was maintained under stirring for 20 hours, then poured over a pre-cooled (0-5° C.) sodium bicarbonate solution (10%, 500 mL). The resulting mixture was extracted with dichloromethane (3×75 mL). The combined organic extract was washed with cooled (0-5° C.) 10% sodium bicarbonate (2×25 mL) and brine (2×25 mL), then dried over magnesium sulfate (10.0 g), filtered, and the filtrate concentrated in vacuum to dryness. The off-white foam dissolved in methanol (120 mL) was treated with a solution of 25% sodium methoxide in methanol (1.0 g, 4.62 mmol). Soon a white solid started to separate. The suspension was stirred at ambient temperature for 15 hours, then the solid was filtered off, washed with methanol (3×5 mL) and anhydrous ether (2×5 mL), then dried in vacuum. The crude 5-azacytidine (4.5 g, 41.3%) was further purified from DMSO and methanol (for details see Example 4).
- A mixture of 5-azacytosine, HMDS, and TMSCl in acetonitrile is heated to reflux for 20 hours under an inert atmosphere. TMS-triflate and 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose are then added directly to the silylated 5-azacytosine in acetonitrile. The addition is performed at ambient temperature and under an inert atmosphere. The reaction mixture is maintained under stirring for 20 hours, then the acetonitrile is removed under vacuum. The solids are then dissolved in dichloromethane, and the mixture is poured over a pre-cooled (0-5° C.) sodium bicarbonate solution (10%). The resulting mixture is extracted with dichloromethane. The combined organic extract is washed with cooled (0-5° C.) 10% sodium bicarbonate and brine, then dried over magnesium sulfate, filtered, and the filtrate concentrated in vacuum to dryness. The off-white foam is dissolved in methanol and treated with a solution of 25% sodium methoxide in methanol. The suspension is stirred at ambient temperature for 15 hours, then the solid is filtered off, washed with methanol and anhydrous ether, then dried in vacuum. The crude 5-azacytidine is further purified from DMSO and methanol (for details see Example 4).
Claims (59)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/273,127 US20120029181A1 (en) | 2003-03-17 | 2011-10-13 | Synthesis of 5-azacytidine |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/390,526 US7038038B2 (en) | 2003-03-17 | 2003-03-17 | Synthesis of 5-azacytidine |
US11/381,275 US20060247432A1 (en) | 2003-03-17 | 2006-05-02 | Synthesis of 5-Azacytidine |
US12/208,238 US7858774B2 (en) | 2003-03-17 | 2008-09-10 | Synthesis of 5-azacytidine |
US12/973,701 US8058424B2 (en) | 2003-03-17 | 2010-12-20 | Synthesis of 5-azacytidine |
US13/273,127 US20120029181A1 (en) | 2003-03-17 | 2011-10-13 | Synthesis of 5-azacytidine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/973,701 Continuation US8058424B2 (en) | 2003-03-17 | 2010-12-20 | Synthesis of 5-azacytidine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120029181A1 true US20120029181A1 (en) | 2012-02-02 |
Family
ID=32987548
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/390,526 Expired - Lifetime US7038038B2 (en) | 2003-03-17 | 2003-03-17 | Synthesis of 5-azacytidine |
US11/381,275 Abandoned US20060247432A1 (en) | 2003-03-17 | 2006-05-02 | Synthesis of 5-Azacytidine |
US12/208,238 Expired - Lifetime US7858774B2 (en) | 2003-03-17 | 2008-09-10 | Synthesis of 5-azacytidine |
US12/973,701 Expired - Lifetime US8058424B2 (en) | 2003-03-17 | 2010-12-20 | Synthesis of 5-azacytidine |
US13/273,127 Abandoned US20120029181A1 (en) | 2003-03-17 | 2011-10-13 | Synthesis of 5-azacytidine |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/390,526 Expired - Lifetime US7038038B2 (en) | 2003-03-17 | 2003-03-17 | Synthesis of 5-azacytidine |
US11/381,275 Abandoned US20060247432A1 (en) | 2003-03-17 | 2006-05-02 | Synthesis of 5-Azacytidine |
US12/208,238 Expired - Lifetime US7858774B2 (en) | 2003-03-17 | 2008-09-10 | Synthesis of 5-azacytidine |
US12/973,701 Expired - Lifetime US8058424B2 (en) | 2003-03-17 | 2010-12-20 | Synthesis of 5-azacytidine |
Country Status (2)
Country | Link |
---|---|
US (5) | US7038038B2 (en) |
WO (1) | WO2004082618A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8481715B2 (en) | 2003-03-17 | 2013-07-09 | Pharmion Llc | Methods for isolating crystalline form I of 5-azacytidine |
US8513406B2 (en) | 2003-03-17 | 2013-08-20 | Pharmion Llc | Pharmaceutical compositions comprising forms of 5-azacytidine |
US9951098B2 (en) | 2011-03-31 | 2018-04-24 | Pharmion Llc | Synthesis of 5-azacytidine |
US10220050B2 (en) | 2008-05-15 | 2019-03-05 | Celgene Corporation | Isotopologues of 5-azacytidine |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7038038B2 (en) * | 2003-03-17 | 2006-05-02 | Pharmion Corporation | Synthesis of 5-azacytidine |
JP5528806B2 (en) | 2006-10-12 | 2014-06-25 | アステックス、セラピューティックス、リミテッド | Compound drug |
JP5528807B2 (en) | 2006-10-12 | 2014-06-25 | アステックス、セラピューティックス、リミテッド | Compound drug |
CN101311184B (en) * | 2007-05-25 | 2011-05-04 | 上海医药工业研究院 | 2-deoxy-D-ribose derivates, preparation method and use thereof |
WO2009042766A1 (en) * | 2007-09-26 | 2009-04-02 | Mount Sinai School Of Medicine | Azacytidine analogues and uses thereof |
CN101821278B (en) * | 2008-01-03 | 2012-03-28 | 南京华狮化工有限公司 | Synthesis method of decitabine |
EP2321302B1 (en) | 2008-08-01 | 2014-10-29 | Dr. Reddy's Laboratories Ltd. | Azacitidine process and polymorphs |
US20100035354A1 (en) * | 2008-08-06 | 2010-02-11 | Ettore Bigatti | Process for preparing azacytidine intermediate |
KR101660549B1 (en) * | 2008-08-08 | 2016-09-27 | 시노팜 타이완 리미티드 | Process for making azacytosine nucleosides and their derivatives |
US8586729B2 (en) * | 2008-10-03 | 2013-11-19 | Scinopharm Taiwan Ltd. | Synthesis of decitabine |
MX2011009989A (en) * | 2009-03-23 | 2011-10-14 | Ambit Biosciences Corp | Methods of treatment using combination therapy. |
US20100249394A1 (en) * | 2009-03-26 | 2010-09-30 | Albemarle Corporation | Processes for producing decitabine |
EP2424845A4 (en) * | 2009-04-27 | 2014-03-05 | Reddys Lab Ltd Dr | Preparation of decitabine |
IT1399195B1 (en) * | 2010-03-30 | 2013-04-11 | Chemi Spa | PROCESS FOR THE SYNTHESIS OF AZACITIDINE AND DECITABINE |
CN101974051B (en) * | 2010-10-08 | 2012-08-08 | 重庆泰濠制药有限公司 | Method for synthesizing azacitidine |
EP2670396A1 (en) | 2011-01-31 | 2013-12-11 | Celgene Corporation | Pharmaceutical compositions of cytidine analogs and methods of use thereof |
CN102850418B (en) * | 2011-06-30 | 2016-01-06 | 杭州容立医药科技有限公司 | A kind of crystallization and drying means preparing high purity azacitidine |
WO2013022872A1 (en) | 2011-08-10 | 2013-02-14 | Celgene Corporation | Gene methylation biomarkers and methods of use thereof |
CA2849708A1 (en) | 2011-09-23 | 2013-03-28 | Celgene Corporation | Romidepsin and 5 - azacitidine for use in treating lymphoma |
WO2013049093A1 (en) | 2011-09-26 | 2013-04-04 | Celgene Corporation | Combination therapy for chemoresistant cancers |
WO2013067043A1 (en) | 2011-11-01 | 2013-05-10 | Celgene Corporation | Methods for treating cancers using oral formulations of cytidine analogs |
US9375443B2 (en) | 2012-02-24 | 2016-06-28 | Signal Pharmaceuticals, Llc | Method for treating advanced non-small cell lung cancer (NSCLC) by administering a combination of a TOR kinase inhibitor and azacitidine or erlotinib |
JP6042527B2 (en) | 2012-04-04 | 2016-12-14 | ハロザイム インコーポレイテッド | Combination treatment of anti-hyaluronan and tumor-targeted taxane |
CN102702292B (en) * | 2012-05-20 | 2015-04-29 | 湖州展望药业有限公司 | Preparation method of azacitidine |
CN103524584A (en) * | 2012-07-05 | 2014-01-22 | 天津九海医药科技有限公司 | Synthetic method of azacitidine |
WO2014160698A1 (en) | 2013-03-26 | 2014-10-02 | Celgene Corporation | SOLID FORMS COMPRISING 4-AMINO-I-β-D-RIBOFURANOSYL-1,3,5-TRIAZIN-2(1H)-ONE AND A COFORMER, COMPOSITIONS AND METHODS OF USE THEREOF |
CN105939745B (en) | 2013-10-10 | 2019-06-18 | 医疗部件有限公司 | With the Hans Huber's needle assemblies for safely capturing device |
CN104672289A (en) * | 2013-11-29 | 2015-06-03 | 南京圣和药业股份有限公司 | Preparation method of azacitidine impurity |
WO2015195634A1 (en) | 2014-06-17 | 2015-12-23 | Celgne Corporation | Methods for treating epstein-barr virus (ebv) associated cancers using oral formulations of 5-azacytidine |
EP3954412A1 (en) | 2014-08-29 | 2022-02-16 | Medical Components, Inc. | Huber safety needle |
USD804022S1 (en) | 2015-02-27 | 2017-11-28 | Medical Components, Inc. | Huber safety needle |
USD804021S1 (en) | 2015-02-27 | 2017-11-28 | Medical Components, Inc. | Huber safety needle |
JP6895956B2 (en) * | 2015-10-15 | 2021-06-30 | セルジーン コーポレイション | Combination therapy to treat malignant tumors |
JP7033061B2 (en) | 2015-10-15 | 2022-03-09 | アジオス ファーマシューティカルズ, インコーポレイテッド | Combination therapy to treat malignant tumors |
MX2018011221A (en) | 2016-03-18 | 2018-11-22 | Medical Components Inc | Huber safety needle. |
CN109651451B (en) * | 2017-10-10 | 2023-07-11 | 芜湖先声中人药业有限公司 | Azacitidine derivative preparation method and application thereof |
WO2019222435A1 (en) | 2018-05-16 | 2019-11-21 | Halozyme, Inc. | Methods of selecting subjects for combination cancer therapy with a polymer-conjugated soluble ph20 |
CA3103436A1 (en) | 2018-06-11 | 2019-12-19 | The Regents Of The University Of California | Demethylation to treat eye disease |
CN112300222B (en) * | 2020-11-26 | 2023-03-21 | 北京益佰医药研究有限公司 | Azacitidine refining method with high purity and low solvent residue |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1050899A (en) | 1963-12-22 | |||
CH527207A (en) | 1968-05-08 | 1972-08-31 | Ceskoslovenska Akademie Ved | Process for the preparation of 1-glycosyl-5-azacytosines |
CH507969A (en) | 1968-11-12 | 1971-05-31 | Ceskoslovenska Akademie Ved | Process for the preparation of 1-glycosyl-5-azacytosines |
DE2012888C3 (en) | 1970-03-14 | 1981-04-02 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Process for the preparation of 5-azapyrimidine nucleosides |
FR2123632A6 (en) | 1971-01-26 | 1972-09-15 | Ceskoslovenska Akademie Ved | Prepn of 5-azacytosines and 5-azacytidines - from bis trimethylsilyl-5-azacytosine |
DE2122991C2 (en) | 1971-05-04 | 1982-06-09 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Process for the preparation of cytosine and 6-azacytosine nucleosides |
DE2508312A1 (en) | 1975-02-24 | 1976-09-02 | Schering Ag | NEW PROCESS FOR THE PRODUCTION OF NUCLEOSIDES |
DE2757365A1 (en) | 1977-12-20 | 1979-06-21 | Schering Ag | NEW PROCESS FOR THE PRODUCTION OF NUCLEOSIDES |
PL187107B1 (en) | 1996-10-16 | 2004-05-31 | Icn Pharmaceuticals | Monocyclic l-nucleosides, their analoques and application of these compounds |
US6887855B2 (en) * | 2003-03-17 | 2005-05-03 | Pharmion Corporation | Forms of 5-azacytidine |
US7038038B2 (en) * | 2003-03-17 | 2006-05-02 | Pharmion Corporation | Synthesis of 5-azacytidine |
US6943249B2 (en) * | 2003-03-17 | 2005-09-13 | Ash Stevens, Inc. | Methods for isolating crystalline Form I of 5-azacytidine |
-
2003
- 2003-03-17 US US10/390,526 patent/US7038038B2/en not_active Expired - Lifetime
-
2004
- 2004-03-16 WO PCT/US2004/007894 patent/WO2004082618A2/en active Application Filing
-
2006
- 2006-05-02 US US11/381,275 patent/US20060247432A1/en not_active Abandoned
-
2008
- 2008-09-10 US US12/208,238 patent/US7858774B2/en not_active Expired - Lifetime
-
2010
- 2010-12-20 US US12/973,701 patent/US8058424B2/en not_active Expired - Lifetime
-
2011
- 2011-10-13 US US13/273,127 patent/US20120029181A1/en not_active Abandoned
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8481715B2 (en) | 2003-03-17 | 2013-07-09 | Pharmion Llc | Methods for isolating crystalline form I of 5-azacytidine |
US8513406B2 (en) | 2003-03-17 | 2013-08-20 | Pharmion Llc | Pharmaceutical compositions comprising forms of 5-azacytidine |
US8614313B2 (en) | 2003-03-17 | 2013-12-24 | Pharmion Llc | Pharmaceutical compositions comprising forms of 5-azacytidine |
US8975392B2 (en) | 2003-03-17 | 2015-03-10 | Pharmion Llc | Methods for isolating crystalline form I of 5-azacytidine |
US9192620B2 (en) | 2003-03-17 | 2015-11-24 | Pharmion Llc | Pharmaceutical compositions comprising forms of 5-azacytidine |
US10220050B2 (en) | 2008-05-15 | 2019-03-05 | Celgene Corporation | Isotopologues of 5-azacytidine |
US10463683B2 (en) | 2008-05-15 | 2019-11-05 | Celgene Corporation | Isotopologues of 5-azacytidine |
US10646503B2 (en) | 2008-05-15 | 2020-05-12 | Celgene Corporation | Isotopologues of 5-azacytidine |
US11571436B2 (en) | 2008-05-15 | 2023-02-07 | Celgene Corporation | Oral formulations of cytidine analogs and methods of use thereof |
US12053482B2 (en) | 2008-05-15 | 2024-08-06 | Celgene Corporation | Oral formulations of cytidine analogs and methods of use thereof |
US9951098B2 (en) | 2011-03-31 | 2018-04-24 | Pharmion Llc | Synthesis of 5-azacytidine |
Also Published As
Publication number | Publication date |
---|---|
US8058424B2 (en) | 2011-11-15 |
WO2004082618A3 (en) | 2004-12-29 |
US20090005551A1 (en) | 2009-01-01 |
US7858774B2 (en) | 2010-12-28 |
US7038038B2 (en) | 2006-05-02 |
US20060247432A1 (en) | 2006-11-02 |
WO2004082618A2 (en) | 2004-09-30 |
US20040186283A1 (en) | 2004-09-23 |
US20110092694A1 (en) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7858774B2 (en) | Synthesis of 5-azacytidine | |
Chou et al. | Stereospecific synthesis of 2-deoxy-2, 2-difluororibonolactone and its use in the preparation of 2′-deoxy-2′, 2′-difluoro-β-D-ribofuranosyl pyrimidine nucleosides: the key role of selective crystallization | |
KR920004486B1 (en) | Production of cytosine nucleosides | |
US8586729B2 (en) | Synthesis of decitabine | |
EP0389110B1 (en) | Process for the preparation of 2'-deoxy-5-trifluoromethyl-beta-uridine | |
WO2007097446A1 (en) | Method of capping oligonucleic acid | |
Hancox et al. | Some reactions of 4′-thionucleosides and their sulfones | |
KR100393913B1 (en) | Method for producing di 4-thiadiene from 5-methyluridine | |
US6579976B2 (en) | Process for producing 2′,3′-diethyl substituted nucleoside derivatives | |
PL166101B1 (en) | Method for the production of deoxynucleosides | |
Grotli et al. | Synthesis of 2'-Allyl-2'-Deoxynucleosides by Radical Reactions | |
EP0842942B1 (en) | D-pentofuranose derivatives and process for the preparation thereof | |
EP0990651A1 (en) | Process for producing 5-trifluoromethyluracil derivatives | |
EP1697393A1 (en) | Improved synthesis of 2-substituted adenosines | |
EP0495225A1 (en) | Process for the preparation of 3'fluoropyrimidine nucleosides | |
JPH11217396A (en) | Production of nucleoside derivative | |
FI92602B (en) | Process for the preparation of -2 ', 3'-dideoxyinosine by enzymatic deamination | |
JPH11322780A (en) | Nucleoside derivative and its production | |
JP2000198796A (en) | Production of nucleic acid derivative | |
JPH09110893A (en) | Production of 3'-amino-3'-deoxynucleoside |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELGENE INTERNATIONAL SARL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASH STEVENS, INC.;REEL/FRAME:027073/0352 Effective date: 20100604 Owner name: PHARMION LLC, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELGENE INTERNATIONAL SARL;REEL/FRAME:027073/0523 Effective date: 20100630 Owner name: ASH STEVENS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IONESCU, DUMITRU;BLUMBERGS, PETER;SIGNING DATES FROM 20030715 TO 20030717;REEL/FRAME:027073/0317 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |