US20110256718A1 - Thin films - Google Patents
Thin films Download PDFInfo
- Publication number
- US20110256718A1 US20110256718A1 US13/079,562 US201113079562A US2011256718A1 US 20110256718 A1 US20110256718 A1 US 20110256718A1 US 201113079562 A US201113079562 A US 201113079562A US 2011256718 A1 US2011256718 A1 US 2011256718A1
- Authority
- US
- United States
- Prior art keywords
- layer
- cycles
- deposition
- depositing
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
- C23C16/029—Graded interfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/452—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45529—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45531—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45534—Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/0214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02189—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02194—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/022—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28185—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28194—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28202—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/3141—Deposition using atomic layer deposition techniques [ALD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/3143—Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
- H01L21/3145—Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31608—Deposition of SiO2
- H01L21/31612—Deposition of SiO2 on a silicon body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31616—Deposition of Al2O3
- H01L21/3162—Deposition of Al2O3 on a silicon body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31641—Deposition of Zirconium oxides, e.g. ZrO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/318—Inorganic layers composed of nitrides
- H01L21/3185—Inorganic layers composed of nitrides of siliconnitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
- H01L21/76846—Layer combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76873—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76879—Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/691—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/10—Applying interconnections to be used for carrying current between separate components within a device
- H01L2221/1068—Formation and after-treatment of conductors
- H01L2221/1073—Barrier, adhesion or liner layers
- H01L2221/1084—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L2221/1089—Stacks of seed layers
Definitions
- the present invention relates generally to forming layers in integrated circuits. More particularly, the invention relates to thin films with controlled composition by atomic layer deposition.
- a basic building block of the integrated circuit is the thin film transistor (TFT).
- the transistor includes a gate dielectric layer sandwiched between a “metal” layer and the semiconductor substrate, thus the acronym “MOS” for metal-oxide-semiconductor.
- MOS metal-oxide-semiconductor
- the gate electrode is typically formed of conductively doped silicon rather than metal.
- the gate dielectric most commonly employed is SiO 2 or silicon dioxide.
- Extremely thin silicon dioxide gate dielectrics exhibit undesirable phenomena such as quantum-mechanical tunneling.
- the oxide represents a relatively impenetrable barrier to injection of electrons into the conduction-band of the silicon if they possess kinetic energies smaller than 3.1 eV.
- the electron exhibits a finite probability of crossing the barrier even if the electron does not possess sufficient kinetic energy. This probability increases with larger gate electric fields and/or thinner gate oxides.
- oxide thicknesses smaller than 3 nm the direct tunneling current becomes large enough that it removes carriers faster than they can be supplied by thermal generation.
- silicon dioxide gate dielectrics are likely to reach a lower scaling limit of about 1.5 nm to 2 nm.
- a polysilicon gate electrode layer is typically doped with boron for its enhanced conductivity. As the gate oxide thickness is scaled down, boron can easily penetrate through the gate oxide, resulting in instabilities in device properties. Boron penetration into gate dielectrics has such undesirable consequences as positive shifts in threshold voltage, increases in sub-threshold swing, increases in charge trapping, decreases in low-field hole mobility, and degradation of current drive due to polysilicon depletion in p-MOSFETs.
- Silicon nitride (Si 3 N 4 ) has a higher dielectric constant than SiO 2 , theoretically enabling thinner equivalent oxide thickness for gate dielectrics that are not tunnel-limited, and furthermore serves as an effective barrier against impurity diffusion.
- the interfaces between silicon nitride films and the underlying semiconductor substrate are generally of poor quality, resulting in a high density of charge trapping sites and pinholes, and attendant current leakage.
- attempts have been made to create SiO 2 and Si 3 N 4 hybrids, such as silicon oxynitride films, for use as gate dielectrics.
- Conventional methods of incorporating nitrogen into silicon oxide gate dielectrics are difficult to control, however, particularly for ultra-thin gate dielectrics of future generation devices
- high K high permittivity materials
- SBT strontium bismuth tantalate
- BST barium strontium tantalate
- damascene processing involves forming templates for wiring by way of trenches in an insulating layer. Metal overfills the trenches and a polishing step removes excess metal outside the trenches. Metal is thus left in a desired wiring pattern within the trenches. Where contact holes or vias extending from the floor of the trenches to lower conductive elements are simultaneously filled with metal, the method is known as dual damascene processing.
- one or more lining layers are formed within the trenches (and vias, in dual damascene processing) prior to metal fill.
- metal adhesion layers and metal nitride barrier layers are employed.
- a metal seed layer may also be needed if the trenches are to be filled by electroplating.
- metal nitride liners though advantageously containing the metal filler and preventing short circuits, has been known to induce electromigration during circuit operation, leading to voids and further reduced conductivity along the metal lines.
- a thin film is provided in an integrated circuit.
- the film has a small thickness, defined between an upper surface and a lower surface.
- a controlled, varying composition is provided through this small thickness.
- Exemplary thicknesses are preferably less than about 100 ⁇ , more preferably less than about 50 ⁇ and can be on the order of 10 ⁇ .
- the film comprises a gate dielectric for an integrated thin film transistor.
- a silicon oxide layer is provided with a graded concentration of nitrogen. Despite the thinness of the layer, such a gradient can be maintained.
- a relatively pure silicon dioxide can be provided at the lower level for a high quality channel interface, while a high nitrogen content at the upper surface aids in resisting boron diffusion from the polysilicon gate electrode.
- other dielectric materials can be mixed in a graded fashion to obtain desirable interface properties from one material and desirable bulk properties from another material, without undesirable sharp interfaces within the gate dielectric.
- Al 2 O 3 has a high dielectric constant and desirable interface properties, while ZrO 2 has yet a higher dielectric constant, which is desirable for the “bulk” of the gate dielectric.
- the film comprises a transition layer between a barrier film and a more conductive wiring material.
- a thin metal nitride layer is provided with a graded concentration of copper.
- the nitride layer can be made exceedingly thin, leaving more room for more conductive metal within a damascene trench, for example.
- an effective diffusion barrier with metal nitride can be provided at the lower surface, while a high copper content at the upper surface provides the conductivity needed for service as an electroplating seed layer. The gradual transition also reduces electromigration, as compared to structures having sharp barrier-metal interfaces.
- a method for forming a thin film in an integrated circuit, with varying composition through its thickness.
- the method includes alternatingly introducing at least a first species and a second species to a substrate in each of a plurality of deposition cycles while the substrate is supported within a reaction chamber.
- a third species is introduced to the substrate in a plurality of the deposition cycles.
- the amount of the third species can vary in the different cycles in which it is introduced.
- the third species is supplied in its own source gas pulse, which pulse is employed with increasing or decreasing frequency as the thin film deposition proceeds (e.g., none during a first stage, every fourth cycle during a second stage, every cycle during a third stage, etc.).
- the amount of the impurity varies between zero during early deposition cycles and a maximum amount during late deposition cycles.
- a silicon source gas adsorbs upon the substrate in a first phase of each cycle, while an oxidant source gas in a second phase of the cycle forms silicon oxide.
- small amounts of a nitrogen source gas are introduced during the second phase.
- the amount of nitrogen source gas increases with each cycle thereafter.
- the amount of oxidant during the second phase can also decrease, such that a pure silicon nitride upper surface most preferably results, with graded nitrogen content between the upper and lower surfaces of the dielectric.
- tungsten, reducing and nitrogen sources provide metal nitride in first through third phases.
- a copper source and reducing agents in fourth and fifth phases provide copper.
- the relative proportions of the first through third phases (producing no more than about one monolayer of WN) and the fourth through fifth phases (producing no more than about one monolayer of Cu) changed.
- the increases/reductions can be altered step-wise, e.g., every two cycles, every three cycles, every five cycles, etc.
- selectively introduced impurity phases or pulses can replace atoms of a previous phase in a thermodynamically favored substitution reaction.
- Grading can be accomplished by varying the frequency of the impurity phase through the atomic layer deposition process.
- the frequency of the impurity phase can be kept constant while the duration of the impurity phase is varied throughout the deposition process, or a combination of varying frequency and duration can be employed.
- this grading can be provided in very thin layers. Moreover, the low temperatures during the process enables maintenance of the desired impurity content profile.
- the invention is a method of forming a liner layer with a varying composition in a damascene trench.
- the method comprises placing a substrate in a reaction chamber, introducing first metal and a non-metal vapor phase reactants in alternate and temporally separated pulses to the substrate in a plurality of atomic layer deposition (ALD) cycles, and introducing varying amounts of a second metal vapor phase reactant to the substrate during said plurality of deposition cycles.
- ALD atomic layer deposition
- the invention is a method of forming a metal, non-metal, and copper containing thin film in a dual damascene trench.
- the method comprises placing a substrate in a reaction chamber and introducing varying amounts of a metal precursor, a non-metal precursor, and a copper precursor in alternate and temporally separated pulses to the substrate in a plurality of atomic layer deposition (ALD) cycles, wherein a lower surface of the thin film and an upper surface of the thin film have different copper concentrations.
- ALD atomic layer deposition
- the invention is a method of producing a liner layer.
- the method comprises depositing a first layer via an atomic layer deposition (ALD) process onto a substrate, wherein the first layer comprises tungsten, nitrogen, and carbon.
- the method further comprises depositing a second layer via an ALD process over the first layer, wherein the second layer comprises tungsten, and depositing a third layer via an ALD process over the second layer, wherein the third layer comprises copper.
- ALD atomic layer deposition
- the invention is a graded liner layer in a damascene trench.
- the liner comprises a first non-graded layer.
- the first non-graded layer comprises a first compound.
- the liner further comprises a second non-graded layer, above the first non-graded layer.
- the second non-graded layer comprises a first metal.
- Between the first and second non-graded layers is a first transition layer comprising both the first compound and the first metal, and wherein the first transition layer has greater than 90% step coverage.
- the liner further comprising a third non-graded layer, above the second non-graded layer.
- the third non-graded layer comprises a second metal, wherein between the second and third non-graded layers is a second transition layer that comprises the first metal and the second metal.
- the layers are located within a damascene trench.
- the invention is a liner layer.
- the layer comprises a first non-graded layer comprising a barrier compound, a second non-graded layer, above the first non-graded layer, the second non-graded layer essentially consisting of tungsten, and a third non-graded layer comprising a seed compound, wherein the third non-graded layer is above the second non-graded layer.
- the invention is a method of forming a thin film.
- the method comprises placing a substrate in a reaction chamber and introducing a first and a second vapor phase reactant in alternate and temporally separated pulses to the substrate in a plurality of first deposition cycles.
- the method further comprises introducing varying amounts of a third vapor phase reactant and a fourth vapor phase reactant in a plurality of second deposition cycles to the substrate during the plurality of first deposition cycles and introducing a fifth and a sixth vapor phase reactants in alternate and temporally separated pulses to the substrate in a plurality of third deposition cycles.
- FIG. 1 is a partially schematic, sectional view of a single-substrate reaction chamber, including some surrounding reactor components, for use in conjunction with preferred embodiments of the present invention.
- FIG. 2 is a schematic sectional view of a partially fabricated integrated circuit, illustrating a gate dielectric layer sandwiched between a gate electrode and a semiconductor layer.
- FIGS. 3-6 schematically illustrate monolayer-by-monolayer deposition of a gate dielectric, in accordance with a preferred embodiment of the invention.
- a “monolayer” is formed every few cycles in an alternating, cyclical process.
- FIG. 7 is an exemplary gas flow diagram in accordance with a method of depositing ultrathin graded dielectric layers.
- FIG. 8 is a theoretical reverse Auger profile of a graded dielectric layer constructed in accordance with a preferred embodiment.
- FIG. 9 is a schematic cross-section of a wire and contact formed in a dual damascene trench and via, respectively, including barrier and metal layers.
- FIG. 10 is an enlarged view of the section 10 - 10 in FIG. 9 , illustrating a graded transition layer formed between the barrier and metal layers.
- FIG. 11 is a theoretical Auger profile of a graded barrier-to-metal transition region, constructed in accordance with a preferred embodiment.
- FIG. 12 is an exemplary gas flow diagram in accordance with one embodiment for depositing graded conductive layers.
- FIG. 13 is an exemplary gas flow diagram in accordance with another embodiment for depositing graded conductive layers.
- FIG. 14 illustrates the presence of a base seed layer in one embodiment.
- FIG. 15A depicts one embodiment of a liner layer.
- FIG. 15B depicts another embodiment of a liner layer.
- FIG. 15C depicts another embodiment of a liner layer.
- FIG. 15D depicts another embodiment of a liner layer.
- FIG. 15E depicts another embodiment of a liner layer.
- a transition can occur between an adhesion layer, a barrier layer, a seed layer, various subparts of a layer, and/or between multiple layers of the same type (e.g., two seed layers). Additionally, in some embodiments, more than one transition layer occurs in a single compound layer, such as a liner layer.
- ALD atomic layer deposition
- the capability of layering atomically thin monolayers enables forming more precise concentration gradients from the lower surface (e.g., gate oxide/Si substrate interface) to the upper surface (e.g., gate electrode/gate dielectric interface).
- the preferred embodiments provide methods of more precisely tailoring impurity content in thin layers formed within integrated circuits.
- the illustrated embodiments described below thus include methods of building up a thin film in discrete steps of monolayers of material and are thus species of atomic layer deposition (ALD).
- ALD atomic layer deposition
- the composition of each discrete layer can be tailored by selectively introducing the desired chemistry for each monolayer to be deposited. For example, by means of ALD, a particular combination of introduced gases react with, deposit or adsorb upon the workpiece until, by the nature of the deposition chemistry itself, the process self-terminates. Regardless of the length of exposure, the process gases do not contribute further to the deposition.
- the second chemistry or a subsequent chemistry forms another monolayer, also in a self-limiting manner.
- These self-limiting monolayers are alternated as many times as desired to form a film of suitable thickness.
- the composition of the resulting thin film can be changed incrementally, for example, in each cycle, in every second cycle, or in any other desired progression.
- ALD can be conducted at very low temperatures, relative to conventional thermal oxidation and conventional CVD processes, diffusion during the process can be effectively limited.
- a thin film of 2 nm silicon oxide for example, contains about seven (7) monolayers.
- seven monolayers of silicon oxide can be formed in about 18-22 cycles of an ALD process.
- the composition can be changed such that a different impurity concentration can be incorporated into the first monolayer as compared to that incorporated into the seventh monolayer.
- compositions and methods for assisting in the deposition of the seed layers for electroplating are also contemplated.
- ALD metal processes are facilitated on relatively pure metallic surfaces compared to metal nitride or oxide surfaces.
- a pure metal layer that serves as an initial base for a seed layer, or a “base seed layer,” is also provided.
- a liner layer created through multiple rounds of ALD is improved through the use of two seed layers, including an initial base seed layer, which sits directly on the barrier layer, and the normal or external seed layer, that is the top surface of the liner layer.
- Copper deposited by metal-organic chemical vapor deposition (MOCVD) can be used also as a normal or external seed layer.
- MOCVD metal-organic chemical vapor deposition
- FIG. 1 shows a chemical vapor deposition (CVD) reactor 10 , including a quartz process or reaction chamber 12 , constructed in accordance with a preferred embodiment, and for which the methods disclosed herein have particular utility.
- the illustrated reactor 10 comprises a process module commercially available under the trade name EpsilonTM from ASM America, Inc., of Phoenix, Ariz., adapted to include a remote plasma source. While the preferred embodiments are discussed in the context of a single-substrate CVD reactor, it will be understood that the disclosed processes will have application in CVD reactors of other types, having reaction chambers of different geometries from those discussed herein. In other arrangements, the preferred processes can be conducted in a reactor commercially available under the trade name PulsarTM 2000 from ASM Microchemistry, Ltd. of Finland, specifically designed for ALD.
- PulsarTM 2000 from ASM Microchemistry, Ltd. of Finland
- a plurality of radiant heat sources are supported outside the chamber 12 , to provide heat energy to the chamber 12 without appreciable absorption by the quartz chamber 12 walls. While the preferred embodiments are described in the context of a “cold wall” CVD reactor for processing semiconductor wafers, it will be understood that the processing methods described herein will have utility in conjunction with other heating/cooling systems, such as those employing inductive or resistive heating.
- the illustrated radiant heat sources comprise an upper heating assembly of elongated tube-type radiant heating elements 13 .
- the upper heating elements 13 are preferably disposed in spaced-apart parallel relationship and also substantially parallel with the reactant gas flow path through the underlying reaction chamber 12 .
- a lower heating assembly comprises similar elongated tube-type radiant heating elements 14 below the reaction chamber 12 , preferably oriented transverse to the upper heating elements 13 .
- a portion of the radiant heat is diffusely reflected into the chamber 12 by rough specular reflector plates above and below the upper and lower lamps 13 , 14 , respectively.
- a plurality of spot lamps 15 supply concentrated heat to the underside of the wafer support structure, to counteract a heat sink effect created by cold support structures extending through the bottom of the reaction chamber 12 .
- Each of the elongated tube type heating elements 13 , 14 is preferably a high intensity tungsten filament lamp having a transparent quartz envelope containing a halogen gas, such as iodine. Such lamps produce full-spectrum radiant heat energy transmitted through the walls of the reaction chamber 12 without appreciable absorption. As is known in the art of semiconductor processing equipment, the power of the various lamps 13 , 14 , 15 can be controlled independently or in grouped zones in response to temperature sensors.
- a workpiece or substrate preferably comprising a silicon wafer 16
- a substrate or wafer support structure 18 is shown supported within the reaction chamber 12 upon a substrate or wafer support structure 18 .
- the support structure 18 includes a susceptor 20 , a quartz support spider 22 extending from a shaft 24 through a depending tube 26 , and numerous surrounding elements that facilitate laminar gas flow and uniform temperatures across the wafer 16 .
- the illustrated reaction chamber 12 includes an inlet port 40 for the introduction of reactant and carrier gases, and the wafer 16 can also be received therethrough.
- An outlet port 42 is on the opposite side of the chamber 12 , with the wafer support structure 18 positioned between the inlet 40 and outlet 42 .
- An inlet component 44 is fitted to the reaction chamber, adapted to surround the inlet port 40 , and includes a horizontally elongated slot 45 through which the wafer 16 can be inserted.
- the slot 45 is selectively sealed by a gate valve (not shown) during operation.
- a generally vertical inlet 46 receives gases from remote sources, and communicates such gases with the slot 45 and the inlet port 40 .
- the reactor also includes remote sources (not shown) of process gases, which communicate with the inlet 46 via gas lines with attendant safety and control valves, as well as mass flow controllers (“MFCs”) that are coordinated at a gas panel, as will be understood by one of skill in the art.
- MFCs mass flow controllers
- gas sources include tanks holding a silicon-containing gas, preferably a silane such as monosilane (SiH 4 ), silicon tetrachloride (SiCl 4 ), dichlorosilane (DCS or SiH 2 Cl 2 ), trichlorosilane (TCS or SiHCl 3 ), or other silane or halosilane silicon sources; an oxidant source gas, such as O 2 , O 3 , O radicals, H 2 O, NO or N 2 O; and a nitrogen source gas, such as NH 3 .
- a silane such as monosilane (SiH 4 ), silicon tetrachloride (SiCl 4 ), dichlorosilane (DCS or SiH 2 Cl 2 ), trichlorosilane (TCS or SiHCl 3 ), or other silane or halosilane silicon sources
- an oxidant source gas such as O 2 , O 3 , O radicals, H 2 O, NO or N 2 O
- source gases include one or more metal source gases (e.g., WF 6 , TiCl 4 , CuCl, etc.), a nitrogen source gas (e.g., NH 3 ) and a reducing agent (e.g., triethyl boron or TEB).
- metal source gases e.g., WF 6 , TiCl 4 , CuCl, etc.
- nitrogen source gas e.g., NH 3
- a reducing agent e.g., triethyl boron or TEB
- the silicon sources can include a bubbler and a gas line for bubbling H 2 through a liquid solution such as TCS, to more effectively transport silicon-containing gas molecules to the reaction chamber in gaseous form.
- Many metal sources can similarly include liquid solutions and bubblers.
- the reactor 10 can also include other source gases, such as dopant gases, including phosphine (PH 3 ), arsine (AsH 3 ), and/or diborane (B 2 H 6 ); etchants for cleaning the reactor walls (e.g., HCl); a germanium source for doping or formation of SiGe films; etc.
- dopant gases including phosphine (PH 3 ), arsine (AsH 3 ), and/or diborane (B 2 H 6 ); etchants for cleaning the reactor walls (e.g., HCl); a germanium source for doping or formation of SiGe films; etc.
- an optional generator of excited species is provided remotely or upstream from the reaction area, and preferably upstream from the chamber 12 .
- An exemplary remote excited species generator is available commercially under the trade name TR-850 from Rapid Reactive Radicals Technology GmbH of Kunststoff, Germany.
- the generator 60 couples power to a gas to generate excited species.
- the generator 60 couples microwave energy from a magnetron to a flowing gas in an applicator along a gas line 62 .
- a source of precursor gases 63 is coupled to the gas line 62 for introduction into the excited species generator 60 .
- a source of carrier gas 64 is also coupled to the gas line 62 .
- One or more further branch lines 65 can also be provided for additional reactants.
- the gas sources 63 , 64 can comprise gas bombs, bubblers, etc., depending upon the form and volatility of the reactant species.
- Each gas line can be provided with separate mass flow controllers (MFC) and valves, as shown, to allow selection of relative amounts of carrier and reactant species introduced to the generation 60 and thence into the reaction chamber 12 .
- MFC mass flow controllers
- An outlet component 48 mounts to the process chamber 12 such that an exhaust opening 49 aligns with the outlet port 42 and leads to exhaust conduits 50 .
- the conduits 50 in turn, communicate with suitable vacuum means (not shown) for drawing process gases through the chamber 12 and to reduce pressure, if desired.
- Gate dielectrics in integrated transistors should not only have low defect densities but should also resist diffusion of impurities from the overlying gate electrode into the gate dielectric.
- Silicon oxide has been successfully used now for decades as a gate dielectric material, but today's circuit designs impose the use of thinner and thinner layers. As a result of the thinner layers, dopant (e.g., boron) diffusion becomes more of a problem.
- silicon oxide gate dielectric films are made by thermal oxidation of the underlying silicon substrate.
- nitrogen-containing gases can be added to the main oxygen stream, and/or a post-deposition treatment can be performed with nitrogen-containing gases or nitrogen implantation.
- Such methods can either incorporate nitrogen into the oxide material to form silicon oxynitride (SiO x N y ) or form a Si 3 N 4 layer over the oxide.
- SiO x N y silicon oxynitride
- Si 3 N 4 layer over the oxide.
- it is difficult to control the nitrogen content in the film especially for current and future generation of integrated circuit devices where the gate dielectric material is very thin (e.g., less than 7 nm).
- conventional methods of incorporating nitrogen into a gate dielectric cannot be controlled to produce uniform electrical characteristics across the substrate while still minimizing nitrogen content at the interface with the substrate.
- the first embodiment involves alternating adsorption of no more than about a monolayer of silicon with oxidation of the previously adsorbed monolayer in an alternating layer silicon oxide process.
- nitrogen can also be selectively incorporated.
- oxynitride films with any desired ratio of oxygen to nitrogen can be grown.
- reactant ratios during the cyclical process the composition formed by each cycle can be tailored. Most preferably, the deposition begins with pure silicon oxide and ends with pure silicon nitride, with any desired grading through the thickness.
- the substrate upon which deposition is to occur is initially prepared for the self-limiting deposition process.
- the substrate is a semiconductor material in which a transistor channel is formed.
- the semiconductor substrate can be formed of an epitaxial layer or formed of the top portions of an intrinsically doped silicon wafer. In other arrangements, the substrate can comprise alternative materials, such as III-V semiconductors.
- Surface preparation desirably leaves a surface termination that readily reacts with the first reactant in the preferred ALD process.
- the bare silicon surface preferably is terminated with hydroxyl (OH) tails.
- OH hydroxyl
- At least one workpiece or wafer is loaded into the process chamber and readied for processing.
- Purge gas is preferably flowed through the chamber to remove any atmospheric contaminants.
- Temperature and pressure process parameters can be modified to attain the desired film characteristics. If necessary, the wafer is ramped to the desired process temperature by increasing power output to the lamps 13 , 14 and 15 .
- the illustrated self-limiting reaction can be conducted at low temperatures, such that the reactor can be maintained constantly at the reaction temperature without ramping between workpiece changes.
- the desired pressure level if other than atmospheric, can be attained using a conventional vacuum pump as known by those skilled in the art.
- the process is also relatively insensitive to pressure, though the preferable pressure range is between about 1 Torr and 100 Torr, and more preferably between about 5 Torr and 15 Torr.
- the self-limiting reaction can take place at even lower temperatures.
- remote-plasma excited oxygen and/or nitrogen sources even room temperature processing is plausible. Consequently, inter-diffusion of the discrete layers can be avoided and as long as post-treatments at high temperatures do not take place in an environment of oxygen or nitrogen containing gases, the deposited composition profile will stay intact.
- the plasma generator 60 of FIG. 1 can couple microwave energy to flowing reactant gases to ignite a plasma. Desirably, ionic species recombine prior to entering the process chamber, thereby minimizing damage to the workpiece and the chamber itself, while radicals such as N and O survive to provide boosted reactivity to the oxygen and/or N phases of the process.
- the carrier gas can comprise any of a number of known non-reactive gases, such as H 2 N 2 , Ar, He, etc. In the illustrated embodiment, N 2 is used as the carrier gas.
- the first species comprises a silicon-containing species, and includes at least one other ligand that results in a self-terminating monolayer of the silicon-containing species.
- the silicon source gas for the deposition of silicon oxide can include: silanes of the formula Si m L 2m+2 wherein m is an integer 1-3; siloxanes of the formula Si y O y ⁇ 1 L 2y+2 wherein y is an integer 2-4; and silazanes of the Si y (NH) y ⁇ 1 L 2y+2 wherein y is an integer 2-4.
- each L can independently be H, F, Cl, Br, I, alkyl, aryl, alkoxy, vinyl (—CH ⁇ CH 2 ), cyano (—CN), isocyanato (—NCO), amino, silyl (H 3 Si—), alkylsilyl, alkoxysilyl, silylene or alkylsiloxane, whereby alkyl and alkoxy groups can be linear or branched and may contain at least one substitute.
- Volatile silanols and cyclic silicon compounds are examples of other suitable silicon source compounds.
- silicon compounds preferably silanes and silazanes are used for the deposition of pure silicon nitride because siloxanes have a rather strong Si—O bond.
- Silicon compounds can be purchased, e.g., from Gelest, Inc., 612 William Leigh Drive, Tullytown, Pa. 19007-6308, United States of America.
- the silicon source gas comprises dichlorosilane (DCS) or trichlorosilane (TCS) which is introduced into the carrier gas flow.
- the silicon source gas is flowed at a rate of between about 10 sccm and 500 sccm, more preferably between about 100 sccm and 300 sccm.
- the silicon source gas is maintained for between about 0.1 second and 1 second under the preferred temperature and pressure conditions, and more preferably for between about 0.3 second and 0.7 second.
- the second species comprises an oxidant, most preferably comprising pure H 2 O vapor.
- the H 2 O is preferably introduced into the carrier gas flow at a rate of between about 10 sccm and 500 sccm, more preferably between about 100 sccm and 300 sccm.
- the H 2 O pulse is maintained for between about 0.1 second and 1 second under the preferred temperature and pressure conditions, and more preferably for between about 0.3 second and 0.7 second.
- carrier gas is preferably allowed to flow for sufficient time to purge the oxidant from the chamber prior to the next reactant pulse.
- the chamber can be evacuated to remove the second reactant species.
- the oxidant reacts with the chloride termination of the previous pulse, leaving oxygen atoms in place of the ligands.
- oxygen atoms in place of the ligands.
- stoichiometric or near stoichiometric SiO 2 is left.
- a second pulse of the silicon source gas is then introduced into the carrier gas flow, the pulse is stopped and the silicon source gas removed from the chamber, followed by a second oxidant source gas pulse, which is then in turn stopped and removed from the chamber.
- These pulses are then continually alternated until the dielectric layer attains its desired thickness.
- an impurity source gas is also provided to at least one of the cycles in the alternating process.
- the impurity preferably comprises nitrogen
- the impurity source gas preferably comprises ammonia (NH 3 ) or hydrazine (N 2 H 4 ) added to the alternating process. Both ammonia and hydrazine are fairly reactive gases, making them suitable for low temperature ALD processing. It will be understood, in view of the disclosed embodiment of FIGS. 9-13 below, that in one embodiment, the ammonia is added in separate ammonia phases (each comprising an ammonia pulse and a purge pulse) following silicon phases.
- the ammonia phases can gradually replace oxidant source gas phases, such as one every ten cycles, gradually increasing to one every other cycle and preferably ending with complete replacement of the oxidant phases.
- the alternating process begins depositing silicon oxide (by alternating silicon and oxidant phases); deposits a graded silicon oxynitride with increasing levels of nitrogen in an intermediate portion of the process (by gradually replacing an increasing proportion of the oxidant phases with nitrogen and particularly ammonia phases); and, by the time the desired dielectric thickness is reached, the alternating process deposits silicon nitride (by alternating silicon and ammonia phases).
- ammonia is added to the oxygen phase.
- Different amounts of NH 3 are added to different oxidant source gas pulses throughout the process.
- a desired amount of nitrogen can be selectively incorporated into each monolayer of silicon dioxide and a silicon oxynitride layer results with a tailored nitrogen content profile.
- the reaction between ammonia and the silicon complex will have a different thermodynamic favorability, as compared to the reaction between the oxidant and the silicon complex. Accordingly, the proportions of ammonia to oxidant do not necessarily equal the proportions of nitrogen to oxygen in the resultant silicon oxynitride.
- the skilled artisan can readily account for thermodynamic competition through routine experimentation to determine the appropriate parameters for the desired levels of nitrogen incorporation. Providing nitrogen active species through a remote plasma generator, particularly in conjunction with oxygen active species, can maximize the effect of varying the ratio of oxygen to nitrogen sources.
- FIG. 7 is a gas flow diagram in accordance with one embodiment, illustrating the first four cycles 301 a - 301 d in an exemplary self-limiting deposition sequence.
- the illustrated sequence includes a constant flow of a carrier gas 300 .
- a first pulse or spike 302 a of the silicon source gas is provided to form the first self-terminated silicon monolayer.
- a first purge step 303 during which carrier gas continues to flow until the silicon source gas has been removed from the chamber, a first oxidant source gas pulse or spike 304 a is provided.
- a second silicon source gas pulse 302 b is provided, followed by a second oxidant source gas 304 b, a third silicon source gas pulse 302 c, a third oxidant source gas pulse 304 c, etc. in alternating pulses separated by purge steps 303 .
- a first impurity source gas pulse 306 b is provided, preferably during an oxidant source gas pulse 304 b.
- a relatively low percentage of the impurity source gas (preferably comprising NH 3 ) is provided during this first pulse 306 b.
- progressively greater flows of the impurity source gas are provided in pulses 306 c, 306 d, etc.
- reactants perpendicularly to the substrate surface, such as by way of an overhead showerhead.
- all of the substrate surface is preferably exposed simultaneously to the gas mixture. Thus concentration gradients from the inlet side to the exhaust side of the substrate can be avoided.
- FIG. 7 is schematic only, and not drawn to scale. Additionally, the preferred process conditions actually result in a full monolayer formed after a plurality of cycles. While theoretically the reactants will chemisorb at each available site on the exposed layer of the workpiece, physical size of the adsorbed species (and particularly with terminating ligands) will generally limit coverage with each cycle to a fraction of a monolayer. In the illustrated embodiment, on average roughly 1 ⁇ of SiO 2 forms per cycle, whereas a true monolayer of SiO 2 is about 3 ⁇ in thickness, such that a full monolayer effectively forms approximately every three cycles, where each cycle is represented by a pair of silicon source gas and oxidant source gas pulses.
- the first impurity source gas pulse 306 b is preferably conducted after three silicon source gas pulses alternated with three oxidant source gas pulses. In this manner, at least a full monolayer of silicon dioxide is provided prior to introduction of nitrogen doping. More preferably, the first ammonia pulse 306 b is provided after six cycles, thereby providing additional insurance against nitrogen diffusion through to the substrate-dielectric interface. In the illustrated embodiment, ammonia is flowed in the first pulse 306 b at between about 0 sccm and 10 sccm, more preferably between about 0 sccm and 5 sccm. Thereafter, the ammonia pulses are increased in each cycle by about 50 sccm.
- the oxidant source gas pulses 304 a, 304 b, etc. can be reduced in the course of increasing the impurity source gas flow. Accordingly, nitrogen content in the resultant silicon oxynitride dielectric layer can be increased from 0 percent at the lower surface up to stoichiometric Si 3 N 4 at the upper surface.
- FIG. 2 shows a schematic sectional view of a transistor structure 70 in a partially fabricated integrated circuit, constructed in accordance with a preferred embodiment, and for which the methods disclosed herein have particular utility.
- a gate dielectric layer 72 is sandwiched between a gate electrode 74 and a semiconductor substrate 76 .
- the gate dielectric 72 thus extends between a substrate interface 78 and an electrode interface 80 .
- the gate electrode 74 comprises a polysilicon layer.
- the substrate 76 comprises any suitable semiconductor material and in the illustrated embodiment comprises a layer of intrinsically doped single-crystal silicon.
- the gate dielectric 72 comprises silicon oxide having a varying and preferably graded nitrogen content through the thickness thereof.
- Al 2 O 3 can serve as a pure interface with silicon, graded into a higher dielectric constant material such as ZrO 2 to provide a higher overall dielectric constant.
- the gate electrode 74 is additionally protected by sidewall spacers 82 and a dielectric cap layer 84 , each of which can comprise conventional insulating materials such as silicon oxide or silicon nitride.
- the gate electrode 74 can also include high conductivity strapping layers, such as metal nitrides, metal silicides and pure metals, for faster lateral signal transmission.
- FIGS. 3 through 5 illustrate a sequence of forming the preferred gate dielectric 72 one monolayer at a time. Note that the figures are schematic representations only. In general, the concentration of impurities in each monolayer can vary as desired. In the illustrated embodiment, a linear profile of impurity concentration is preferred. In other arrangements, the impurity concentration can vary exponentially, by step function, etc. through the thickness of thin film.
- FIG. 3 illustrates a first monolayer 102 of silicon oxide formed directly on the surface of the semiconductor substrate 76 .
- a monolayer can be formed after an average of about three cycles of the ALD alternating silicon and oxidant source gas pulses.
- the first or substrate interface monolayer 102 has little or no impurity concentration, preferably lower than about 0.1% impurity, and more preferably the monolayer 102 is formed of pure SiO 2 .
- FIG. 4 illustrates a second monolayer 104 of silicon oxide formed directly on the surface of the first monolayer 102 of silicon oxide.
- the second monolayer 104 preferably has a low impurity concentration (nitrogen in the preferred embodiment), but greater than the concentration in the preceding monolayer 102 .
- a third monolayer 106 is deposited directly on the surface of the second monolayer 104 .
- the third monolayer 106 has yet a higher impurity (nitrogen) concentration than the second monolayer 104 .
- a plurality of additional monolayers are deposited one at a time until the desired final thickness is achieved.
- Each monolayer can have a different impurity concentration and the impurity profile through the thickness of the film can be tailored accordingly.
- a last monolayer 114 is deposited to complete formation of the gate dielectric layer.
- the last monolayer 114 thus defines the gate electrode interface 80 with conductive material to be deposited thereover.
- FIG. 6 is merely schematic and that many more monolayers than the seven illustrated can be employed to form the desired final thickness. Moreover, individual monolayers 102 to 114 would not be sharply definable in the final structure, contrary to the schematic illustration.
- the impurity concentration is controlled to vary from a lowest concentration at the substrate interface 78 to a highest concentration at the gate electrode interface 80 .
- the gate dielectric 72 has a nitrogen concentration at the substrate interface 78 of less than about 0.1%, and more preferably about 0%.
- Nitrogen content at the gate electrode interface 80 is preferably greater than about 5%, more preferably greater than about 8%, and most preferably greater than about 10%.
- the nitrogen content between these two interfaces 78 , 80 is roughly linearly graded. It will be understood, however, that any other desired grading profile (e.g., parabolic, exponential, elliptical, etc.) can be achieved by tailoring the percentage of nitrogen source gas during each oxidation phase.
- the resultant thin film has an actual thickness of less than about 7 nm.
- the gate dielectric has an actual thickness of less than about 6 nm, more preferably less than about 5 nm, and in the illustrated embodiment has a thickness of about 2 nm, including about 7 monolayers. Since the illustrated gate dielectric 72 incorporates a significant nitrogen content, it preferably exhibits an equivalent oxide thickness of less than 2.0 nm, more preferably less than about 1.7 nm and most preferably less than about 1.6 nm.
- the illustrated linearly graded oxynitride has an equivalent oxide thickness of about 1.7 nm.
- FIG. 8 is a theoretical reverse Auger profile of a dielectric layer constructed in accordance with a preferred embodiment, illustrating the percentage of impurity content in a dielectric layer as a function of the distance from the semiconductor substrate interface.
- the impurity content 350 i.e., nitrogen
- the oxygen content 340 is at a maximum.
- the impurity concentration 350 increases roughly linearly to a maximum, whereas the oxygen content 340 decrease to a minimum.
- the gate dielectric preferably comprises nearly pure silicon dioxide (SiO 2 ), whereas near the top of the layer (gate electrode interface) the gate dielectric comprises nearly pure silicon nitride (Si 3 N 4 ). It will be understood that such a structure can be created by an ALD process similar to FIG. 7 , but where the oxidant pulse amplitudes decrease with every cycle or every few cycles.
- the interface properties of silicon dioxide are obtained at the substrate surface, while nitrogen is incorporated in the remainder of the gate dielectric to reduce boron penetration and to increase the overall effective dielectric constant of the gate dielectric.
- Employing ALD enables precise control at the level of atomic layers.
- the low temperatures involved in the deposition allow maintenance of any desired impurity concentration at various points in the thickness, without interdiffusion.
- conventional techniques cannot be so precisely controlled, and tend to result in even distribution of any impurity in such a thin layer, due to diffusion during processing and/or an inherent lack of control during the formation of such a thin gate dielectric layer.
- the gate dielectric is typically etched over active areas (e.g., source and drain regions of the transistor) in order to form electrical contact to these areas of the substrate.
- active areas e.g., source and drain regions of the transistor
- a gradual change in nitrogen content from the upper surface of the gate dielectric down to the substrate interface allows greater control over such etch processes as will be understood by the skilled artisan. Accordingly, damage to the substrate is minimized.
- the skilled artisan will recognize other advantages to grading profiles in thin films used in integrated circuits.
- a pure aluminum oxide (Al 2 O 3 ) layer can be first formed by ALD using alternating pulses of an aluminum source gas and an oxidant.
- Exemplary aluminum source gases include alkyl aluminum compounds, such as trimethylaluminum (CH 3 ) 3 Al, triethylaluminum (CH 3 CH 2 ) 3 Al, tri-n-butylaluminum (n-C 4 H 9 ) 3 Al, diisobutylaluminum hydride (i-C 4 H 9 ) 2 AlH, diethylaluminum ethoxide (C 2 H 5 ) 2 AlOC 2 H 5 , ethylaluminum dichloride (C 2 H 5 ) 2 AlCl 2 , ethylaluminum sesquichloride (C 2 H 5 ) 3 Al 2 Cl 3 , diisobutylaluminum chloride (i-C 4 H 9 ) 2 AlCl and diethylaluminum iodide (C 2 H 5 ) 2 AlI.
- alkyl aluminum compounds such as trimethylaluminum (CH 3 ) 3 Al, triethylaluminum (CH 3
- Aluminum source gases include aluminum alkoxides containing Al—O—C bonds, such as ethoxide Al(OC 2 H 5 ) 3 , aluminum isopropoxide Al[OCH(CH 3 ) 2 ] 3 and aluminum s-butoxide Al(OC 4 H 9 ) 3 . These compounds are commercially available from, e.g., Strem Chemicals, Inc., USA.
- the aluminum source can also comprise aluminum beta-diketonates, such as aluminum acetylacetonate Al(CH 3 COCHCOCH 3 ) 3 , often shortened as Al(acac) 3 , and tris-(2,2,6,6-tetramethyl-3,5-heptanedionato)aluminum, usually shortened as Al(thd) 3 , Al(TMHD) 3 or Al(DPM) 3 .
- Volatile halogenated aluminum beta-diketonates are also commercially available, such as aluminum hexafluoroacetylacetonate Al(CF 3 COCHCOCF 3 ) 3 , often shortened as Al(hfac) 3 .
- anhydrous aluminum nitrate can be used as an aluminum source chemical for ALD.
- the synthesis of anhydrous Al(NO 3 ) 3 has been described by G. N. Shirokova, S. Ya. Zhuk and V. Ya. Rosolovskii in Russian Journal of Inorganic Chemistry, vol. 21, 1976, pp. 799-802, the disclosure of which is incorporated herein by reference.
- the aluminum nitrate molecule breaks into aluminum oxide when it is contacted with organic compounds, such as ethers.
- oxygen source gases include oxygen, water, hydrogen peroxide, ozone, alcohols (e.g., methanol, ethanol, isopropanol), etc.
- An exemplary process comprises alternating trimethyl aluminum or TMA with water, with purge pulses or evacuation steps therebetween.
- Each pulse can have a duration of about 0.5 seconds, and the substrate can be maintained at about 300° C.
- This process deposits an Al 2 O 3 layer, which is followed by grading by gradually supplying to the ALD process a source gas that results in more desirable bulk properties (e.g., higher dielectric constant).
- the TMA pulse can be substituted for a zirconium source gas pulse every few cycles, with increasing frequency until pure zirconium dioxide (ZrO 2 ) is formed.
- ZrCl 4 serves as a zirconium source gas and can be deposited at the same temperature (e.g., 300° C.) is the aluminum oxide ALD process.
- zirconium source gas can be introduced simultaneously and as an increasing proportion of the aluminum source gas during a metal pulse, which is continually alternating with an oxidant pulse.
- the skilled artisan can determine through routine experimentation what proportions of aluminum source gas to zirconium source gas should be used to obtain the desired material proportions in the layer.
- the skilled artisan will readily appreciate that other gate dielectric materials can also be created in this fashion.
- aluminum oxide serves as a good barrier diffusion with good electrical interface properties
- zirconium dioxide provides a higher overall dielectric constant value for the dielectric.
- the gate dielectric can again be graded from ZrO 2 until aluminum oxide forms for the upper interface, providing a good diffusion barrier against downward boron (B) diffusion from the gate electrode into the gate dielectric.
- a graded material for the gate dielectric is silicon oxide at the lower interface, graded into a pure aluminum oxide for the bulk and upper surface of the gate dielectric.
- FIGS. 9 through 13 illustrate a second embodiment of the present invention.
- the second embodiment involves a graded conductive film, for example, a graded transition between a barrier layer (e.g., metal nitride, nitride carbide, or more preferably a metal nitride carbide) and a more conductive filler layer (e.g., elemental metal).
- a barrier layer e.g., metal nitride, nitride carbide, or more preferably a metal nitride carbide
- a more conductive filler layer e.g., elemental metal
- a dual damascene structure 400 is shown, constructed in accordance with a preferred embodiment.
- an upper insulating layer 402 and a lower insulating layer 404 are formed above a conductive circuit element 406 .
- the insulating layers 402 , 404 can comprise conventional oxides, such as oxide from tetraethylorthosilicate (TEOS) or borophosphosilicate glass (BPSG), or they can comprise “low k” dielectrics in accordance with advanced process technology.
- the lower circuit element 406 typically comprises a lower metal layer or landing pad, but in some instances can comprise a semiconductor layer.
- the structure 400 is also shown with an etch stop layer 408 between the insulating layers 402 , 404 , which can serve as a hard mask in the formation of the dual damascene structure, as will be appreciated by the skilled artisan.
- a lower insulating barrier layer 410 is also shown between the lower insulating layer 404 and the lower conductive layer 406 . Such a layer is particularly advisable when the lower conductive element 406 or overlying metal layers comprise copper, which can easily diffuse through typical interlevel dielectrics and cause short circuits.
- Each of the hard mask 408 and barrier 410 can comprise silicon nitride or silicon oxynitride.
- the dual damascene structure 400 is formed by providing trenches 420 in the upper insulating layer 402 .
- the trenches 420 are typically formed in a desired pattern across the workpiece.
- a plurality of contact vias 422 (one shown) extend downwardly from the trenches 420 in discrete locations along the trenches 420 to expose underlying circuit nodes. Together, the trenches 420 and contact vias 422 are arranged in paths to interconnect underlying and overlying circuit elements in accordance with an integrated circuit design.
- the trenches and contacts are filled with conductive material to form these interconnects.
- the conductive material filling trenches 420 are referred to as metal runners, while the portions filling contact vias 422 are referred to as contacts.
- both trenches 420 and vias 422 are filled simultaneously, whereas in other schemes, the contacts and runners can be separately formed.
- the dual damascene trenches and vias are first lined with lining layers 424 and then filled with a highly conductive material 426 .
- the liners 424 are conductive. In other arrangements, where the liners are selectively formed only on insulating surfaces, the liners need not be conductive.
- Lining layers can include adhesion layers, barrier layers and/or seed layers.
- the lining layers 424 include at least two of adhesion, barrier and seed layers. In some embodiments, there is at least one interface region among the layers comprising a graded region or “transition layer” produced by an alternating layer deposition (ALD).
- ALD alternating layer deposition
- transition layer(s) there are multiple transition layers.
- the transition layer(s) can be between the adhesion layer and the barrier layer, the barrier layer and the seed layer, between subparts of any of the above layers, or any other layers deposited via an ALD type process.
- the transition layer is between a barrier layer and a first seed layer, and/or a first seed layer and a second seed layer.
- the lining layers 424 of the illustrated embodiment include an optional adhesion layer 430 , characterized by good adhesion with the insulating surfaces 402 , 404 , 408 , 410 (see FIG. 9 ) of the dual damascene structure.
- the adhesion layer can be formed by ALD processes, as disclosed in the provisional patent Application No. 60/159,799 of Raaijmakers et al., filed Oct. 15, 1999 and entitled CONFORMAL LINING LAYERS FOR DAMASCENE METALLIZATION, and the corresponding utility application Ser. No. 09/644,416 of Raaijmakers et al., filed Aug. 23, 2000 of the same title.
- the disclosure of the '799 application and corresponding '416 U.S. utility application is incorporated herein by reference.
- the illustrated lining layers 424 further comprise a barrier region 432 , a transition region 434 and a seed layer region 436 .
- the barrier region 432 comprises a conductive nitride, and particularly a metal nitride (e.g., WN, TiN, TaN, etc.).
- the transition region 434 also comprises a conductive nitride, but with varying levels of nitrogen through its thickness and/or different metal content.
- the seed region 436 preferably comprises a highly conductive “elemental” metal, having conductivity suitable for electroplating the filler metal 426 thereover.
- the actual addition of the filler material can be achieved in a variety of ways, including, for example, electroplating or metal organic chemical vapor deposition (MOCVD).
- the adhesion layer 430 comprises tungsten (W); the barrier region 432 comprises tungsten nitride (WN x ); the transition region 434 comprises a graded layer of tungsten copper nitride [(WN x ) y Cu z ], where y and z vary through the thickness of the transition region 434 ; and the seed region 436 comprises copper (Cu).
- W tungsten
- the barrier region 432 , transition 434 and seed 436 regions are formed in a continuous process without removing the workpiece from the reaction chamber, and so from a process standpoint can be considered regions within a single deposited layer 438 having varying composition through its thickness.
- the regions 432 , 434 , 436 can have any desired thickness suited to the particular application.
- the liners are preferably as thin as possible while accomplishing their respective purposes.
- the barrier region 432 serves as a diffusion barrier but preferably occupies as little of the trench and vias as possible. Accordingly, the barrier region 432 is preferably between about 20 ⁇ and 200 ⁇ , more preferably between about 40 ⁇ and 80 ⁇ , with an exemplary thickness for WN of about 50 ⁇ .
- the transition region 434 transitions from metal nitride to pure metal while desirably avoiding electromigration during circuit operation and other deficiencies of sharp metal/metal nitride boundaries and minimizing overall thickness.
- the transition region 434 is preferably between about 7 ⁇ and 200 ⁇ , more preferably between about 10 ⁇ and 80 ⁇ .
- the transition region has a thickness of about 10 ⁇ and a copper content of about 0% at the interface with the barrier region 432 and a copper content of about 50% at the interface with the seed region 436 (or with the copper filler, in the absence of a seed layer).
- the seed region 436 should provide sufficient conductivity for uniform electroplating across the workpiece. While too thick a seed region 436 is not a functional disadvantage, throughput can be increased by depositing a minimum amount of copper by ALD while completing the fill by electroplating.
- the seed region 436 is preferably greater than about 100 ⁇ , with an exemplary thickness for Cu of about 150 ⁇ .
- multiple seed layers are used.
- Each of the layers has extremely good step coverage of the dual damascene trenches and vias, preferably greater than about 90% (ratio of sidewall coverage to field coverage), more preferably greater than about 93%, and most preferably greater than about 97%.
- FIG. 11 a theoretical Auger profile is shown for an exemplary transition region 434 of FIG. 10 . While FIG. 11 depicts a TiN and copper profile, it can also describe a WN and copper profile.
- the right side of the graph represents the lower surface of the transition region 434 as it blends into the underlying WN barrier region 432 .
- the left side of the graph represents the top surface of the transition region 434 as it blends into the overlying Cu seed region 436 .
- the transition region has a gradually reduced W and N content, going from right to left, with a simultaneously increasing Cu concentration. It will be understood that the shape of the curves can take on any desired shape and the illustrated rates of content grading are merely exemplary.
- the process employs an intermediate reduction phase to remove halide tails between metal and nitrogen source phases.
- This intermediate reduction phase avoids build up of hydrogen halides that could be harmful to metal later to be formed, such as copper. It will be understood, however, that in other arrangements the intermediate reduction phase can be omitted.
- a first metal phase e.g., WF 6 pulse+purge
- a first reduction phase e.g., TEB pulse+purge pulse
- a nitrogen phase e.g., NH 3 pulse+purge pulse
- a second metal phase e.g., CuCI pulse+purge pulse
- a second reduction phase (e.g., TEB pulse+purge pulse).
- Varying proportions of these phases are utilized during the continuous deposition process, depending upon the stage of the deposition process.
- a barrier stage for example, only phases (1)-(3) are employed, together representing one cycle that leaves no more than about one monolayer of WN.
- varying proportions of phases (1)-(3) and (4)-(5) are employed.
- phases (4)-(5) are employed, together representing one cycle that leaves no more than about one monolayer of Cu.
- the amount and order of the administration of the reactants is adjusted so that metal, nitrogen, and carbon; nitrogen and carbon; and metal and carbon liner layers can be part of the transition layers.
- a barrier material preferably metal nitride, metal carbide, or metal nitride carbide.
- a barrier material preferably metal nitride, metal carbide, or metal nitride carbide.
- phases (1)-(3) in Table 1 above are alternated.
- about 50 ⁇ of WN are produced. Each cycle can be identical.
- WF 6 chemisorbs upon the underlying substrate, which in the illustrated embodiment comprises a previously formed metal nitride.
- the metal nitride was most preferably formed by a similar ALD process.
- the first metal source gas preferably comprises a sufficient percentage of the carrier flow and is provided for sufficient time, given the other process parameters, to saturate the underlying barrier layer. No more than about a monolayer of tungsten complex is left upon the barrier layer, and this monolayer is self-terminated with fluoride tails. As noted above, though typically less than one monolayer, this complex will be referred to herein as a “monolayer” for convenience.
- a second phase (2) comprising a pulse of reducing gas (TEB)
- TEB reducing gas
- the reducing gas removes the fluoride tails from the tungsten complex, avoiding the formation of hydrogen halides that could etch copper. It will be understood that, in other arrangements, this reducing phase may not be necessary, or the addition of TEB can actually lead to depositing about a monolayer of carbon on the surface.
- a third phase (3) comprising a pulse of nitrogen source gas (NH 3 ), is supplied to the workpiece.
- ammonia preferably comprises a sufficient percentage of the carrier flow and is provided for sufficient time, given the other process parameters, to saturate the surface of the metal-containing monolayer.
- the NH 3 readily reacts with the tungsten left exposed by the reducing phase, forming a monolayer of tungsten nitride (WN).
- the reaction is self-limiting. Neither ammonia nor the carrier gas further reacts with the resulting tungsten nitride monolayer, and the monolayer is left with a nitrogen and NH x bridge termination.
- the preferred temperature and pressure parameters moreover, inhibit diffusion of ammonia through the metal monolayer.
- a new cycle is started with the first phase (1), i.e., with a pulse of the first metal source gas (WF 6 ).
- this three-phase cycle (1)-(3) is repeated in a plurality of first cycles until sufficient barrier material is formed, preferably between about 20 ⁇ and 200 ⁇ , more preferably between about 40 ⁇ and 80 ⁇ , with an exemplary thickness of about 50 ⁇ .
- this thin layer is provided with excellent step coverage.
- carrier gas continues to flow at a constant rate during all phases of each cycle. It will be understood, however, that reactants can be removed by evacuation of the chamber between alternating gas pulses.
- the preferred reactor incorporates hardware and software to maintain a constant pressure during the pulsed deposition.
- the above protocol can be adjusted as required to achieve the desired type of barrier layer.
- tungsten can be replaced with other metals, such as molybdenum, niobium, tantalum and/or titanium.
- the barrier layer comprises tungsten, nitrogen, and carbon.
- the barrier layer comprises tungsten carbide. Carbon, can be supplied in the process along with either 1) tungsten or 2) tungsten and nitrogen. In one embodiment, this can be done through the addition of sufficient pulses of TEB in a specific sequence.
- phases 1) and 2) above can be reversed i.e., 1) TEB+Purge, followed by 2) WF 6 +Purge, followed by 3) NH 3 +Purge, for one full cycle.
- the nitrogen is omitted from the barrier layer completely; thus, phases 1) and 2) can be reversed, and phase three removed (i.e., 1) TEB+purge, followed by 2) WF 6 +purge, for one full cycle layer).
- phases 1) and 2) can be reversed, and phase three removed (i.e., 1) TEB+purge, followed by 2) WF 6 +purge, for one full cycle layer).
- the cycles are altered to incorporate new phases during formation of the transition region.
- the fourth and fifth phases (4), (5) are introduced into the cycles in a plurality of second cycles, thereby introducing copper to the transition region. At least two, and preferably more than ten cycles, include the phases (4) and (5).
- the introduction can be gradual. For example, two cycles can include only phases (1)-(3) as described above, producing WN, followed by a third cycle that includes all five phases (1)-(5), producing a mixture of WN and Cu, followed again by two cycles that include only phases (1)-(3). Gradually, the frequency of Cu introduction is increased. At some point, several cycles in a row would include all five phases (1)-(5). In some embodiments, eventually the fourth and fifth phases would be the primary phases that occur. Eventually, the fourth and fifth cycles can be the only phases that occur.
- Table 1 above presents parameters for one cycle of an ALD process for depositing of a graded layer of tungsten nitride (WN) and copper (Cu).
- WN tungsten nitride
- Cu copper
- the layer serves as an interface between a tungsten nitride barrier layer and a copper seed layer in trenches and contact vias of a dual damascene structure.
- a first metal source gas comprises tungsten hexafluoride (WF 6 ); a carrier gas comprises nitrogen (N 2 ); a first reducing agent comprises triethyl boron (TEB), a nitrogen source gas comprises ammonia (NH 3 ); a second metal source gas comprises copper chloride (CuCl); and a second reducing agent comprises triethyl boron (TEB).
- a first five-phase cycle 450 is shown in FIG. 12 .
- the first three cycles (1)-(3) are conducted as described above with respect to the formation of the barrier region.
- a fourth phase (4) comprises flowing the second metal source gas.
- Copper chloride preferably comprises a sufficient portion of the carrier flow and is provided for sufficient time to saturate the surface left by the previous phase. No more than about a monolayer of self-terminated metal complex, particularly chloride-terminated copper, is left over the metal nitride formed by the previous two phases.
- the second metal source gas is then removed from the chamber, preferably purged by continued carrier gas flow.
- a fifth phase (5) the chloride-terminated surface is then reduced by flowing the reducing agent.
- TEB flows to remove the chloride tails left by the previous phase.
- the first phase (1) again introduces the first metal source gas, which readily reacts with the surface of the copper monolayer, again leaving a fluoride-terminated tungsten layer.
- the second through fifth phases of the second cycle can then be added as described with respect to the cycle 450 . These cycles can be repeated as often as desired to ensure sufficient intermixture of copper and metal nitride to avoid electromigration.
- a highly conductive layer can be deposited over the interface material by any suitable manner.
- some cycles are introduced that omit the WN formation, such that only phases (4) and (5) are included.
- this is represented by a truncated cycle 460 , which omits the WN phases and instead consists of phases (4)-(5), producing no more than a monolayer of elemental Cu.
- the process then continues on with another five-phase cycle 470 , mixing WN with Cu.
- the frequency of WN phases (1)-(3) can be gradually reduced during progressive cycles, thereby increasing the Cu percentage of the growing layer. Eventually, only Cu deposition results. It will be understood that the relative proportion of WN to Cu in the transition region, and its profile, can be finely controlled by controlling the relative frequency of WN phases (1)-(3) as compared to Cu phases (4)-(5). Accordingly, any desirable content profile can be achieved by the methods disclosed herein.
- this transition region can have composition variation through a very small thickness of the material.
- the transition region of the illustrated embodiment between a metal nitride barrier region and a metal seed region, is between about 7 ⁇ and 200 ⁇ , more preferably between about 10 ⁇ and 80 ⁇ , and particularly less than about 50 ⁇ .
- An exemplary thickness for a metal/metal nitride transition region is about 10 ⁇ .
- this thin layer is provided with excellent step coverage.
- the process can be described in terms of pluralities of different types of cycles used for creating the various non-graded layers and how these various cycles overlap with one another.
- the above method can also be described as a plurality of first cycles (phases 1, 2, and 3 occurring repeatedly) that are repeated intermittently along with a plurality of second cycles (phases 4 and 5 occurring repeatedly).
- non-graded layer refers to a layer that is generally composed of the same set of reactants throughout the whole layer and does not preclude local non-uniformities in composition; rather the term refers to a layer without a discernible trend in change of composition from the lower interface to the upper surface.
- phase 1 510 , phase 2 520 , and phase 3 530 in a first cycle 500 are followed by phase 4 540 and phase 5 550 in a second cycle 600
- the second cycle 600 has occurred “during” a plurality of first cycles, because there is a first cycle 500 before the second cycle 600 and there is a first cycle 500 ′ after the second cycle 600 .
- second cycles 600 , 600 ′, 600 ′′, 600 ′′′ during the plurality of second cycles 601 .
- a second cycle 600 can occur during a plurality of first cycles 500 and 500 ′ as shown 501 ′.
- a first cycle 500 ′ can occur during a plurality of second cycles 600 , 600 ′, 600 ′′ as shown 601 ′.
- the following cycle need not occur immediately, as shown in FIG. 13 , where two second cycles 600 ′ and 600 ′′, occur consecutively before the next first cycle, 500 ′′.
- other metals can be used instead of tungsten and include, for example, molybdenum, niobium, tantalum and/or titanium.
- barrier layers such as a tungsten, nitrogen, and carbon layer or a nitrogen and carbon layer.
- TEB in the method described above acts as a reducing agent, by reversing the sequence of phase 1 and phase 2, so that TEB is applied and then the tungsten precursor, one can apply a similar method to achieve a transition layer between a WNC layer and a seed layer.
- the barrier layer deposition process will still comprise three phases and the seed layer deposition process will also still comprise two phases so that the above discussion still applies; however, phase one and phase two have been reversed in their order.
- FIGS. 9 , 10 , and 12 can also depict one method of depositing a WNC barrier and transition layer that comprises WNC and copper.
- FIG. 11 would be adjusted in that there would be a third element (namely carbon) in the barrier layer. Additionally, the depth can be increased, as additional layers are being added for each full barrier cycle.
- a plurality of first deposition cycles (e.g., one cycle is TEB+purge, WF 6 +purge, and NH 3 +purge, which is repeated a number of times) allows for the formation of the barrier layer.
- a plurality of second deposition cycles (e.g., the second cycles are copper-precursor+purge and reducing precursor+purge, which is repeated a number of times) is commenced, as described above.
- An example of this process follows.
- an ALD process is used to deposit a non-graded layer of tungsten nitride carbide as a barrier layer.
- This is achieved through a first cycle that comprises supplying TEB, purging, supplying WF 6 , purging, supplying NH 3 , and purging.
- This first cycle is repeated a number of times, in a plurality of first cycles, to establish the barrier layer.
- a second cycle is interspersed between the first cycles in the plurality of first cycles. In other words, the second cycle is added intermittently with the plurality of first cycles.
- This second cycle comprises supplying a copper-precursor, purging, supplying a reducing precursor, and purging.
- This second cycle is repeated a number of times, in a plurality of second cycles, which occurs during the plurality of first cycles to establish a transition layer.
- the transition layer will comprise both WNC and copper.
- the frequency of the plurality of second cycles starts off initially low, e.g., occurring once for every ten times the first cycle occurs; however, this frequency is preferably increased from the initial frequency over numerous cycles. Thus, after several cycles, the second cycle occurs ten times for every time the first cycle occurs.
- the barrier layer is a metal carbide instead of a metal nitride carbide.
- the plurality of first cycles will comprise a metal phase and a carbon depositing phase, but not the nitrogen depositing phase. Otherwise, this plurality of first cycles (TEB+purge and WF 6 +purge) will occur intermittently during a plurality of second cycles, as described above.
- a seed layer can be deposited in situ over the transition region.
- a seed layer is desired prior to electroplating.
- the fourth and fifth phases of the illustrated WN barrier ALD process are repeated after the interface has formed.
- copper can be deposited by ALD over the interface of the mixed or compound layer (i.e., over the transition region) to provide a uniformly thick electroplating seed layer.
- the two-phase cycles are then continued without first metal and nitrogen phases until a copper layer is formed that is sufficiently thick to serve as an electroplating seed layer.
- This seed layer is preferably greater than about 50 ⁇ , more preferably greater than about 100 ⁇ , and in the exemplary embodiment is about 150 ⁇ .
- the wafer can then be removed from the chamber and the trenches and contact vias filled with a highly conductive metal.
- a highly conductive metal Preferably, copper is electroplated over the copper seed layer.
- the metal nitride barrier, the graded interface or transition region and the copper seed region can all be deposited in situ in a continuous process, under the same temperature and pressure conditions.
- the mixed and more preferably graded interface or transition region avoids problems of electromigration that can occur at sharp metal/metal nitride interfaces during electrical operation of the integrated circuit.
- the relative level of reactants can be controlled by varying the constituents of a single reaction phase, as disclosed with respect to FIG. 7 . Due to the complications of thermodynamic competition between simultaneously exposed reactants in an ALD process, however, it is more preferred to introduce constituent variation into the growing layer of by varying the number and/or type of phases in each cycle of the continuous process, as shown in FIG. 12 .
- the seed layer is more complex than the relatively simple seed layers 436 discussed above and comprises multiple layers.
- the seed layer can be a compound seed layer 436 , as shown in FIG. 14 .
- these more complex seed layers also comprise a “base seed layer” 436 b. This base seed layer 436 b is positioned between the barrier layer 434 and the seed layer 436 .
- These more complex seed layers can be used with the transition layers described above, or in situations where each of the layers in the liner layer are non-graded layers.
- the base seed layer 436 b comprises a metallic layer, preferably with a metal upper surface.
- the base seed layer 436 b is relatively free of nitrides or oxides, more preferably, it comprises tungsten, and most preferably, it consists essentially of tungsten.
- FIG. 15A One such embodiment is shown in FIG. 15A .
- a barrier layer 432 upon which is a base seed layer of tungsten 436 b.
- an exterior seed layer 436 a upon which is an electroplated layer of conductive filler material 426 , such as copper.
- the base seed layer 436 b comprises a metal that is present in the barrier layer 432 but not in the external seed layer 436 a.
- both seed layers 436 a, 436 b are deposited via an ALD process, thereby achieving high conformality for both the base seed layer 436 b and the external seed layer 436 a.
- the liner layers that involve base seed layers can still comprise one or more transition layers (discussed in greater detail below), such liner layers do not have to comprise a transition layer to have advantageous properties.
- the liner layer can comprise a non-graded barrier layer, e.g., a metal/nitride/carbide layer, with a base seed layer on top of it (e.g., a first metal layer), which then has the external seed layer on top of it (e.g., a second metal layer).
- the liner layer comprises a first WNC layer, a second layer essentially consisting of tungsten, and a third layer comprising copper. Most preferably, all three layers have greater than 90% step coverage.
- This liner layer with the base seed layer can be created by administering three types of cycles to a substrate.
- One type first creates the barrier layer in a plurality of first cycles.
- one first introduces a carbon source onto a surface by atomic layer deposition (ALD), followed by introducing a metal source onto the surface, followed by introducing a nitrogen source onto the substrate.
- ALD atomic layer deposition
- the reaction chamber is preferably purged, but can also be pumped down to vacuum.
- the carbon source is TEB
- the metal source is WF 6
- the nitrogen source is NH 3 . This completes a first cycle. This cycle can be repeated until the desired thickness of tungsten nitride carbide barrier layer is achieved.
- a second type of cycle can be commenced to establish the base seed layer 436 b.
- the plurality of second cycles comprises first introducing a metal source, purging the chamber, introducing a reducing agent, and then purging the chamber.
- the metal source is WF 6 and the reducing agent is either disilane or diborane. This second cycle can be repeated until the desired thickness of W is achieved.
- the plurality of third cycles can comprise introducing a metal source, purging, introducing a reducing precursor, and finally purging.
- the metal source is an organometallic precursor, such as metal aminidinates (general formula [M(R—R′AMD) n ] x , and more preferably a copper source, such as, Copper (N,N′-Diisopropylacetamidinate) ([Cu(iPr-MeAMD)] 2 ).
- the reducing precursor is hydrogen, although other reducing precursors such as H 2 -plasma alcohols, boranes, silanes and ammonia can be used.
- H 2 -plasma alcohols such as boranes, silanes and ammonia
- boranes such as boranes, silanes and ammonia
- ammonia can be used.
- the temperature during the first, second and third cycles is between 50° C. and 400° C., more preferably, between 150° C. and 350° C.
- the thickness of the entire layer created by all of the three cycles is between 10 ⁇ and 500 ⁇ , more preferably between 30 ⁇ and 100 ⁇ , and most preferably between 40 ⁇ and 80 ⁇ .
- the thickness of the non-graded layer from the first cycle (e.g., the barrier layer, e.g., WNC) is between 5 ⁇ and 100 ⁇ , more preferably between 10 ⁇ and 60 ⁇ , and most preferably between 15 ⁇ and 40 ⁇ .
- the thickness of the non-graded layer involving the second cycle (e.g., base seed layer, e.g., W) is between 5 ⁇ and 200 ⁇ , more preferably between 10 ⁇ and 100 ⁇ , and most preferably between 20 ⁇ and 60 ⁇ .
- the thickness of the non-graded layer involving the third cycle is between 5 ⁇ and 500 ⁇ , more preferably between 10 ⁇ and 100 ⁇ , and most preferably between 20 ⁇ and 100 ⁇ .
- Tables 2-4 presents some of the above ranges in a tabular format, as well as additional guidance for other relevant variables.
- Table 2 summarizes the ranges for the first cycle, in this case for the deposition of a barrier layer.
- Table 3 summarizes the ranges for the second cycle, in this case for the deposition of a base seed layer.
- Table 4 summarizes the ranges for the third cycle, in this case for the deposition of an external seed layer. The ranges in the present tables are arranged from a preferred, to a most preferred range.
- the deposition of the base seed layer 436 b is via an ALD process. In a more preferred embodiment, the deposition of each of the base seed layers 436 b and the external seed layer 436 a occurs via an ALD process.
- This Example describes how a WNC, W, Cu layer can be created, as shown in FIG. 15A .
- WNC is deposited via cycles of ALD until a desired thickness is achieved.
- TEB is introduced to the chamber at a flow rate of 200 sccm for 2.0 seconds.
- the substrate is set to a temperature of 300° C., purged, WF 6 is introduced at a flow rate of 50 sccm for 0.3 seconds, purged, NH 3 is introduced at a flow rate of 200 sccm for 1.0 seconds, and then purged in a first cycle. This cycle is repeated until the desired thickness is achieved. Following this, the plurality of second cycles is started.
- WF 6 is introduced at a flow rate of 30 sccm for 0.5 seconds, purged, disilane or diborane is introduced at a flow rate of 500 sccm for 2 seconds, and then purged. This is repeated until the desired thickness is achieved. Following this, the plurality of third cycles is started.
- Cu-precursor is introduced at a flow rate of 100 sccm for 2 seconds, purged, the reducing precursor is introduced at a flow rate of 500 sccm for 2 seconds, and purged. This is repeated until the desired thickness is achieved.
- transition layers can easily be added.
- a transition layer between the WNC layer and the W layer (as shown in FIG. 15B and Example 3), and/or a transition layer between the W layer and the copper layer (as shown in FIG. 15C and Example 4) can be created.
- only a single transition layer is desired; for example, a transition layer between the first layer, e.g., WNC, and the second layer, e.g., W.
- the following example describes one method of making such a structure.
- a substrate is placed into a reaction chamber.
- a cycle involving introducing TEB, purging, introducing WF 6 , purging, introducing NH 3 , and purging is performed and repeated.
- the cycle is repeated a sufficient number of times to create a desired thickness.
- a graded layer between the WNC layer and the following W layer is created.
- This process comprises alternating between the first cycle described above and a second cycle with varying frequencies.
- the second cycle comprises introducing WF 6 , purging, introducing disilane or diborane, and purging.
- the frequency of the occurrence of the first cycle initially, is very high, while the frequency of occurrence of the second cycle, over the same time period is relatively low. However, as additional layers are added, the frequency of occurrence of the second cycle increases and the frequency of occurrence of the first cycle decreases.
- the first cycle occurs 10 times for every time the second cycle occurs.
- the second cycle occurs 10 times for every time the first cycle occurs. This can be viewed as intermittently (and with greater frequency) omitting the nitrogen and carbon phases as the deposition proceeds.
- a layer of copper is deposited.
- This comprises introducing a Cu-precursor, e.g., Copper (N,N′-Diisopropylacetamidinate), purging, introducing a reducing precursor, e.g., hydrogen, and purging.
- a reducing precursor e.g., hydrogen
- the liner layer can comprise a WNC barrier layer 432 , on top of a low-k layer 402 .
- a transition layer 436 b ′ that also serves as a base seed layer and is a graded mix of tungsten and WNC, preferably with a high percent or pure section of tungsten at the top surface.
- the external seed layer 436 a that includes copper, upon which sits an electroplated layer of copper 426 .
- the first layer and cycle comprises a metal carbide (e.g., tungsten and nitrogen) but lacks the nitride.
- the first layer and cycle will lack any nitrogen reactant.
- the liner layer can have multiple transition layers.
- the process for generating a liner layer with multiple transition layers is similar to that described above, involving multiple cycles with multiple phases (phases 1-5, described above and e.g., phases 6 and 7 for the additional layer and transition layer) and changing the frequencies of the phases or cycles to gradually increase the amount of one element or compound compared to another element or compound.
- a plurality of first cycles can be used to establish a first layer of non-graded material.
- the plurality of first cycles can continue to occur, but is interspersed with a plurality of second cycles, with increasing frequency as deposition proceeds, allowing for a transition layer to be formed.
- a plurality of third cycles is interspersed, with increasing frequency as deposition proceeds, with an ongoing plurality of cycles. This will allow one to add a second transition layer.
- the second transition layer can comprise the material from the plurality of second cycles and the material from the plurality of third cycles.
- the plurality of first cycles is stopped before the plurality of third cycles is commenced.
- the plurality of third cycles is to deposit an external seed layer and the plurality of second cycles is to deposit a base seed layer.
- the plurality of third cycles can be similar to that of the plurality of second cycles described above, e.g., a copper and reducing precursor combination.
- the plurality of second cycles will be different, for example, it can essentially consist of tungsten, a reducing precursor, and purges.
- the plurality of second cycles can comprise a phase of supplying WF 6 and purging and a phase of supplying disilane/diborane and purging.
- the plurality of third cycles can comprise a phase of supplying a copper precursor and purging and a phase of supplying a reducing precursor and purging. An example of this process is demonstrated below.
- This example demonstrates one method of making a graded liner layer with two transition layers.
- the transition layers are involved in seed layers.
- This combination of phases represents one complete cycle.
- the cycle is repeated, in a plurality of first deposition cycles, until a barrier layer of a desired depth is achieved.
- the second cycle comprises supplying WF 6 , purging, supplying disilane or diborane and purging. This second cycle is repeated, thus establishing a plurality of second cycles. Both the first and the plurality of second cycles occur over a set number of cycles, thus establishing a first transition layer. Initially, the frequency of the first cycle is greater than the frequency of the second cycle (e.g., >5:1); eventually, this frequency is reversed (e.g., ⁇ 1:5) towards the top of the transition layer.
- the third cycle comprises supplying a copper-precursor, purging, supplying a reducing precursor, and purging.
- This third cycle is repeated, thus establishing a plurality of third cycles.
- Both the second and the plurality of third cycles occur over a set number of cycles, thus establishing a second transition layer.
- the frequency of the second cycle is greater than the frequency of the third cycle (e.g., >5:1); eventually, this frequency is reversed (e.g., ⁇ 1:5) towards the top of the transition layer.
- the liner layer can include a WNC barrier layer 432 , on top of a low-k layer 402 .
- a transition layer 436 b ′ On top of the barrier layer 432 is a transition layer 436 b ′ that also serves as a base seed layer and is a graded mix of tungsten and WNC, with increasing W content toward the top surface, preferably terminating in an essentially pure W surface.
- a graded external seed layer 436 a ′ that includes a graded layer of copper and tungsten with increasing copper content toward the top surface, upon which sits an electroplated layer of copper 426 .
- the liner layer that is created has a first non-graded layer that essentially consists of a first metal and nitrogen; a first metal, nitrogen, and carbon; or a first metal and carbon.
- a first non-graded layer On top of this first non-graded layer is a second non-graded layer 720 , of the first metal.
- a third non-graded layer 730 On top of the second non-graded layer is a third non-graded layer 730 .
- the third non-graded layer 730 includes a second metal, and in one embodiment consists essentially of copper or a copper alloy.
- the liner layers described in FIG. 15D can have multiple transition layers.
- a bottom barrier layer 710 that includes a metal (e.g., W, Ti, or Ta) combined with either, nitrogen, carbon, or nitrogen and carbon.
- a metal layer 720 On top of the barrier layer 710 is a metal layer 720 , which includes the same metal (e.g., W, Ti, or Ta) that is present in the barrier layer 710 .
- a transition layer (not shown) that includes both the metal and 1) nitrogen, 2) nitrogen and carbon, or 3) carbon, in a graded manner.
- metal layer 720 On top of the metal layer 720 is another metal layer 730 that includes a different metal (e.g., Ru or Cu). Between the two different metal layers 720 , 730 can be another transition layer (not shown), which again includes both metals in a graded manner.
- a different metal e.g., Ru or Cu.
- the above process can also be used for different liner layers.
- the liner layer can include three different metals in three non-graded layers.
- the bottom metal 760 is tungsten, with a second metal layer 770 , e.g., ruthenium, placed over the bottom layer, and a third metal layer 780 , e.g., copper, placed over the second metal layer.
- the liner layer in FIG. 15E includes two transition layers (not shown) between the three non-graded layers of each of the metals.
- the bottom metal 760 is tungsten, with a second metal layer 770 , e.g., ruthenium, placed over the bottom layer, and a third metal layer 780 , e.g., copper, placed over the second metal layer.
- a first transition layer of tungsten and ruthenium and a second transition layer of copper and ruthenium there is a first transition layer of tungsten and ruthenium and a second transition layer of copper and ruthenium.
- the above transition layers can gradually and consistently transition between the two non-graded layers.
- the transition between materials in the layer can be linear, parabolic, or any other gradation between a starting point and an ending point.
- the majority of the transition can be either earlier or later in the transition layer. This can be determined by altering the frequencies of the relevant cycles.
- the above graded liner layers and layers with containing multiple seed layers can be especially useful for lining a damascene trench.
- an impurity is described as being introduced in the gas phase as one of the primary reactants (e.g., increasing proportions of nitrogen provided as the same time as the oxidant in the process of FIG. 7 ).
- the impurity e.g., second or third cycles
- Impurity pulses can substitute for pulses in the initial process, or can be provided in addition to the primary reactants, and these pulse introductions can be provided with increasing frequency throughout the process (e.g., the copper source gas pulses can be added to or substituted for tungsten and nitrogen source gas pulses in the process of FIG. 12 ).
- the impurity can be introduced by way of the thermodynamically favored replacement of already-adsorbed species in the growing film.
- introduction of an aluminum chloride (AlCl 3 ) gas pulse can replace Ti—O bonds with Al—O bonds, which are thermodynamically favored, and in the process liberate volatile TiCl 4 gas.
- AlCl 3 aluminum chloride
- a pulse of AlCl 3 can convert surface SiO 2 to Al 2 O 3 , liberating SiCl 4 gas.
- ZrO 2 surface of a growing layer can be exposed to AlCl 3 to form Al 2 O 3 .
- an extended exposure can replace one or two molecular layers of the less favored oxide with Al 2 O 3 . If such full layer replacement is desired in the grading process, such exposures can be infrequently introduced in the ALD process early in the deposition, with the greater frequency towards the end of the process to produce a largely or purely Al 2 O 3 upper surface. Conversely, such exposures can be frequently introduced early in the ALD process, and with less frequency later in the process to produce a largely or purely Al 2 O 3 lower surface graded into the bulk dielectric.
- less than full substitution of Al 2 O 3 for TiO 2 , SiO 2 or ZrO 2 can be accomplished in each AlCl 3 pulse by selecting a shortened time span for the AlCl 3 pulse.
- the exposure time for the substitution reaction can be progressively increased with each cycle or every few cycles during the process, thus accomplishing a greater proportion of Al 2 O 3 at the upper surface of the growing dielectric layer.
- grading is accomplished by varying exposure time, it is advantageous to supply reactant gases perpendicularly to the substrate, such as by way of an overhead showerhead inlet. Thus concentration gradients from the inlet side to the exhaust side of the substrate can be avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Thin films are formed by formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO2) to pure high k material and back to aluminum oxide. In another embodiment, metal nitride (e.g., WN) is first formed as a barrier for lining dual damascene trenches and vias. During the alternating deposition process, copper can be introduced, e.g., in separate pulses, and the copper source pulses can gradually increase in frequency, forming a transition region, until pure copper is formed at the upper surface. Advantageously, graded compositions in these and a variety of other contexts help to avoid such problems as etch rate control, electromigration and non-ohmic electrical contact that can occur at sharp material interfaces. In some embodiments additional seed layers or additional transition layers are provided.
Description
- The present application is a continuation of U.S. patent application Ser. No. 12/202,132, filed Aug. 29, 2008, which is a continuation of U.S. patent application Ser. No. 11/106,220, filed Apr. 13, 2005 which is a continuation in part of U.S. patent application Ser. No. 10/253,859, filed Sep. 23, 2002, issued as U.S. Pat. No. 6,933,225, on Aug. 23, 2005, which is a continuation of application Ser. No. 09/800,757, filed Mar. 6, 2001, which issued as U.S. Pat. No. 6,534,395, on Mar. 18, 2003, which claims priority benefit under 35 U.S.C. §119(e) to provisional application No. 60/187,423, filed Mar. 7, 2000, all hereby incorporated by reference in their entireties.
- The present invention relates generally to forming layers in integrated circuits. More particularly, the invention relates to thin films with controlled composition by atomic layer deposition.
- There are numerous semiconductor process steps involved in the development of modern day integrated circuits (ICs). From the initial fabrication of silicon substrates to final packaging and testing, integrated circuit manufacturing involves many fabrication steps, including photolithography, doping, etching and thin film deposition. As a result of these processes, integrated circuits are formed of microscopic devices and wiring amid multiple layers.
- A basic building block of the integrated circuit is the thin film transistor (TFT). The transistor includes a gate dielectric layer sandwiched between a “metal” layer and the semiconductor substrate, thus the acronym “MOS” for metal-oxide-semiconductor. In reality, the gate electrode is typically formed of conductively doped silicon rather than metal. The gate dielectric most commonly employed is SiO2 or silicon dioxide.
- Today's market demands more powerful and faster integrated circuits. In pursuit of such speed and lower power consumption, device packing densities are continually being increased by scaling down device dimensions. To date, this scaling has reduced gate electrode widths to less than 0.25 μm. Currently, commercial products are available employing gate widths or critical dimensions of 0.18 μm or less. The scaling rules that apply to these small devices call for very thin gate oxide layers, which have grown smaller with each generation of MOS integrated circuits. The thickness of gate oxides is made as small as possible, thereby increasing switching speed. Conventional gate oxide layers may be inadequate in several respects as dimensions are continuously scaled.
- Extremely thin silicon dioxide gate dielectrics exhibit undesirable phenomena such as quantum-mechanical tunneling. In the classical sense, the oxide represents a relatively impenetrable barrier to injection of electrons into the conduction-band of the silicon if they possess kinetic energies smaller than 3.1 eV. However, the electron exhibits a finite probability of crossing the barrier even if the electron does not possess sufficient kinetic energy. This probability increases with larger gate electric fields and/or thinner gate oxides. For oxide thicknesses smaller than 3 nm the direct tunneling current becomes large enough that it removes carriers faster than they can be supplied by thermal generation. As a result, silicon dioxide gate dielectrics are likely to reach a lower scaling limit of about 1.5 nm to 2 nm.
- Another problem with thin gate oxides is their susceptibility to dopant diffusion from the overlying gate electrode. A polysilicon gate electrode layer is typically doped with boron for its enhanced conductivity. As the gate oxide thickness is scaled down, boron can easily penetrate through the gate oxide, resulting in instabilities in device properties. Boron penetration into gate dielectrics has such undesirable consequences as positive shifts in threshold voltage, increases in sub-threshold swing, increases in charge trapping, decreases in low-field hole mobility, and degradation of current drive due to polysilicon depletion in p-MOSFETs.
- Efforts to address deficiencies of silicon dioxide include nitrogen incorporation into the gate dielectric. Silicon nitride (Si3N4) has a higher dielectric constant than SiO2, theoretically enabling thinner equivalent oxide thickness for gate dielectrics that are not tunnel-limited, and furthermore serves as an effective barrier against impurity diffusion. However, the interfaces between silicon nitride films and the underlying semiconductor substrate are generally of poor quality, resulting in a high density of charge trapping sites and pinholes, and attendant current leakage. As a consequence, attempts have been made to create SiO2 and Si3N4 hybrids, such as silicon oxynitride films, for use as gate dielectrics. Conventional methods of incorporating nitrogen into silicon oxide gate dielectrics are difficult to control, however, particularly for ultra-thin gate dielectrics of future generation devices
- Other solutions to scaling problems include the use of high permittivity materials (high K), such as tantalum pentoxide, strontium bismuth tantalate (SBT), barium strontium tantalate (BST), etc. While exhibiting greatly increased dielectric strength, these materials have been difficult to integrate with existing fabrication technology.
- Another issue raised by the continual scaling of integrated circuit dimensions is the difficulty of producing adequately conductive metal lines for wiring the circuitry within integrated circuits. One manner of simplifying the process of metallization is by employing damascene techniques. Rather than depositing blanket metal layers and etching away excess metal to leave wiring patterns, damascene processing involves forming templates for wiring by way of trenches in an insulating layer. Metal overfills the trenches and a polishing step removes excess metal outside the trenches. Metal is thus left in a desired wiring pattern within the trenches. Where contact holes or vias extending from the floor of the trenches to lower conductive elements are simultaneously filled with metal, the method is known as dual damascene processing.
- Unfortunately, scaling introduces difficulties with damascene processes, particularly when fast diffusing metals like copper are employed for the metal lines and contacts. In order to prevent peeling of metal lines from the surrounding insulation and to prevent diffusion spikes causing shorts across lines, one or more lining layers are formed within the trenches (and vias, in dual damascene processing) prior to metal fill. Typically, metal adhesion layers and metal nitride barrier layers are employed. A metal seed layer may also be needed if the trenches are to be filled by electroplating.
- These lining layers occupy a considerable volume of the available trenches, reducing room available for the more highly conductive metal filler. Conductivity is thus reduced relative to the same trenches filled completely with metal. Moreover, employing metal nitride liners, though advantageously containing the metal filler and preventing short circuits, has been known to induce electromigration during circuit operation, leading to voids and further reduced conductivity along the metal lines.
- Accordingly, a need exists for thin films that overcome problems associated with gate dielectrics constructed of traditional materials such as silicon nitride and silicon oxide. A need also exists for improved structures and methods for containing metal within damascene trenches without excessive losses in conductivity.
- The aforementioned and other needs are satisfied by several aspects of the present invention.
- In accordance with one aspect of the invention, a thin film is provided in an integrated circuit. The film has a small thickness, defined between an upper surface and a lower surface. A controlled, varying composition is provided through this small thickness. Exemplary thicknesses are preferably less than about 100 Å, more preferably less than about 50 Å and can be on the order of 10 Å.
- In accordance with one embodiment, the film comprises a gate dielectric for an integrated thin film transistor. In one arrangement, a silicon oxide layer is provided with a graded concentration of nitrogen. Despite the thinness of the layer, such a gradient can be maintained. Advantageously, a relatively pure silicon dioxide can be provided at the lower level for a high quality channel interface, while a high nitrogen content at the upper surface aids in resisting boron diffusion from the polysilicon gate electrode. In another arrangement, other dielectric materials can be mixed in a graded fashion to obtain desirable interface properties from one material and desirable bulk properties from another material, without undesirable sharp interfaces within the gate dielectric. For example, Al2O3 has a high dielectric constant and desirable interface properties, while ZrO2 has yet a higher dielectric constant, which is desirable for the “bulk” of the gate dielectric.
- In accordance with a second embodiment, the film comprises a transition layer between a barrier film and a more conductive wiring material. In the illustrated embodiment, a thin metal nitride layer is provided with a graded concentration of copper. The nitride layer can be made exceedingly thin, leaving more room for more conductive metal within a damascene trench, for example. Advantageously, an effective diffusion barrier with metal nitride can be provided at the lower surface, while a high copper content at the upper surface provides the conductivity needed for service as an electroplating seed layer. The gradual transition also reduces electromigration, as compared to structures having sharp barrier-metal interfaces.
- In accordance with another aspect of the invention, a method is provided for forming a thin film in an integrated circuit, with varying composition through its thickness. The method includes alternatingly introducing at least a first species and a second species to a substrate in each of a plurality of deposition cycles while the substrate is supported within a reaction chamber. A third species is introduced to the substrate in a plurality of the deposition cycles. The amount of the third species can vary in the different cycles in which it is introduced. Alternatively, the third species is supplied in its own source gas pulse, which pulse is employed with increasing or decreasing frequency as the thin film deposition proceeds (e.g., none during a first stage, every fourth cycle during a second stage, every cycle during a third stage, etc.).
- Advantageously, the amount of the impurity varies between zero during early deposition cycles and a maximum amount during late deposition cycles. In one example, a silicon source gas adsorbs upon the substrate in a first phase of each cycle, while an oxidant source gas in a second phase of the cycle forms silicon oxide. After a relatively pure silicon oxide covers the substrate surface, small amounts of a nitrogen source gas are introduced during the second phase. The amount of nitrogen source gas increases with each cycle thereafter. The amount of oxidant during the second phase can also decrease, such that a pure silicon nitride upper surface most preferably results, with graded nitrogen content between the upper and lower surfaces of the dielectric. Similarly, in a second example, tungsten, reducing and nitrogen sources provide metal nitride in first through third phases. A copper source and reducing agents in fourth and fifth phases provide copper. In successive cycles, the relative proportions of the first through third phases (producing no more than about one monolayer of WN) and the fourth through fifth phases (producing no more than about one monolayer of Cu) changed. The increases/reductions can be altered step-wise, e.g., every two cycles, every three cycles, every five cycles, etc.
- According to another aspect of the invention, selectively introduced impurity phases or pulses can replace atoms of a previous phase in a thermodynamically favored substitution reaction. Grading can be accomplished by varying the frequency of the impurity phase through the atomic layer deposition process. Alternatively, the frequency of the impurity phase can be kept constant while the duration of the impurity phase is varied throughout the deposition process, or a combination of varying frequency and duration can be employed.
- Due to the fine control provided by atomic layer deposition, this grading can be provided in very thin layers. Moreover, the low temperatures during the process enables maintenance of the desired impurity content profile.
- In some aspects, the invention is a method of forming a liner layer with a varying composition in a damascene trench. The method comprises placing a substrate in a reaction chamber, introducing first metal and a non-metal vapor phase reactants in alternate and temporally separated pulses to the substrate in a plurality of atomic layer deposition (ALD) cycles, and introducing varying amounts of a second metal vapor phase reactant to the substrate during said plurality of deposition cycles.
- In some aspects, the invention is a method of forming a metal, non-metal, and copper containing thin film in a dual damascene trench. The method comprises placing a substrate in a reaction chamber and introducing varying amounts of a metal precursor, a non-metal precursor, and a copper precursor in alternate and temporally separated pulses to the substrate in a plurality of atomic layer deposition (ALD) cycles, wherein a lower surface of the thin film and an upper surface of the thin film have different copper concentrations.
- In some aspects, the invention is a method of producing a liner layer. The method comprises depositing a first layer via an atomic layer deposition (ALD) process onto a substrate, wherein the first layer comprises tungsten, nitrogen, and carbon. The method further comprises depositing a second layer via an ALD process over the first layer, wherein the second layer comprises tungsten, and depositing a third layer via an ALD process over the second layer, wherein the third layer comprises copper.
- In some aspects, the invention is a graded liner layer in a damascene trench. The liner comprises a first non-graded layer. The first non-graded layer comprises a first compound. The liner further comprises a second non-graded layer, above the first non-graded layer. The second non-graded layer comprises a first metal. Between the first and second non-graded layers is a first transition layer comprising both the first compound and the first metal, and wherein the first transition layer has greater than 90% step coverage. The liner further comprising a third non-graded layer, above the second non-graded layer. The third non-graded layer comprises a second metal, wherein between the second and third non-graded layers is a second transition layer that comprises the first metal and the second metal. The layers are located within a damascene trench.
- In some aspects, the invention is a liner layer. The layer comprises a first non-graded layer comprising a barrier compound, a second non-graded layer, above the first non-graded layer, the second non-graded layer essentially consisting of tungsten, and a third non-graded layer comprising a seed compound, wherein the third non-graded layer is above the second non-graded layer.
- In some aspects, the invention is a method of forming a thin film. The method comprises placing a substrate in a reaction chamber and introducing a first and a second vapor phase reactant in alternate and temporally separated pulses to the substrate in a plurality of first deposition cycles. The method further comprises introducing varying amounts of a third vapor phase reactant and a fourth vapor phase reactant in a plurality of second deposition cycles to the substrate during the plurality of first deposition cycles and introducing a fifth and a sixth vapor phase reactants in alternate and temporally separated pulses to the substrate in a plurality of third deposition cycles.
- These and further aspects of the invention will be readily apparent to those skilled in the art from the following description and the attached drawings, wherein:
-
FIG. 1 is a partially schematic, sectional view of a single-substrate reaction chamber, including some surrounding reactor components, for use in conjunction with preferred embodiments of the present invention. -
FIG. 2 is a schematic sectional view of a partially fabricated integrated circuit, illustrating a gate dielectric layer sandwiched between a gate electrode and a semiconductor layer. -
FIGS. 3-6 schematically illustrate monolayer-by-monolayer deposition of a gate dielectric, in accordance with a preferred embodiment of the invention. In the illustrated embodiments, a “monolayer” is formed every few cycles in an alternating, cyclical process. -
FIG. 7 is an exemplary gas flow diagram in accordance with a method of depositing ultrathin graded dielectric layers. -
FIG. 8 is a theoretical reverse Auger profile of a graded dielectric layer constructed in accordance with a preferred embodiment. -
FIG. 9 is a schematic cross-section of a wire and contact formed in a dual damascene trench and via, respectively, including barrier and metal layers. -
FIG. 10 is an enlarged view of the section 10-10 inFIG. 9 , illustrating a graded transition layer formed between the barrier and metal layers. -
FIG. 11 is a theoretical Auger profile of a graded barrier-to-metal transition region, constructed in accordance with a preferred embodiment. -
FIG. 12 is an exemplary gas flow diagram in accordance with one embodiment for depositing graded conductive layers. -
FIG. 13 is an exemplary gas flow diagram in accordance with another embodiment for depositing graded conductive layers. -
FIG. 14 illustrates the presence of a base seed layer in one embodiment. -
FIG. 15A depicts one embodiment of a liner layer. -
FIG. 15B depicts another embodiment of a liner layer. -
FIG. 15C depicts another embodiment of a liner layer. -
FIG. 15D depicts another embodiment of a liner layer. -
FIG. 15E depicts another embodiment of a liner layer. - Although described in the context of graded gate dielectric layers in an integrated transistor stack and graded transitions from barrier to metal layers, the skilled artisan will readily find application for the principals disclosed here in a number of other contexts. The processes and layer structures disclosed herein have particular utility where extremely thin layers are desired with tailored concentrations of impurities through the thickness of the layer. For example, a transition can occur between an adhesion layer, a barrier layer, a seed layer, various subparts of a layer, and/or between multiple layers of the same type (e.g., two seed layers). Additionally, in some embodiments, more than one transition layer occurs in a single compound layer, such as a liner layer.
- It is often desirable to provide a graded or otherwise varying composition through the thickness of a film in an integrated circuit. Sharp boundaries between different layers can disadvantageously demonstrate poor adhesion, undesirable electrical qualities, lack of process control, etc.
- For very thin films, for example thinner than 10 nm, it is very difficult to realize precisely tailored profiles with conventional fabrication methods. The preferred embodiments, however, employ atomic layer deposition (ALD), which facilitates the formation of thin films monolayer by monolayer. Indeed, control exists on a smaller than monolayer scale, due to steric hindrance of bulky source chemical molecules producing less than one monolayer per cycle. The capability of layering atomically thin monolayers enables forming more precise concentration gradients from the lower surface (e.g., gate oxide/Si substrate interface) to the upper surface (e.g., gate electrode/gate dielectric interface).
- Accordingly, the preferred embodiments provide methods of more precisely tailoring impurity content in thin layers formed within integrated circuits. The illustrated embodiments described below thus include methods of building up a thin film in discrete steps of monolayers of material and are thus species of atomic layer deposition (ALD). The composition of each discrete layer can be tailored by selectively introducing the desired chemistry for each monolayer to be deposited. For example, by means of ALD, a particular combination of introduced gases react with, deposit or adsorb upon the workpiece until, by the nature of the deposition chemistry itself, the process self-terminates. Regardless of the length of exposure, the process gases do not contribute further to the deposition. To deposit subsequent monolayers, different chemical combinations are introduced in the process chamber such as will react with or adsorb upon the previously formed monolayer. Desirably, the second chemistry or a subsequent chemistry forms another monolayer, also in a self-limiting manner. These self-limiting monolayers are alternated as many times as desired to form a film of suitable thickness.
- The very nature of this method allows a change of chemistry for each discrete cycle. Accordingly, the composition of the resulting thin film can be changed incrementally, for example, in each cycle, in every second cycle, or in any other desired progression. Additionally, because ALD can be conducted at very low temperatures, relative to conventional thermal oxidation and conventional CVD processes, diffusion during the process can be effectively limited. For the purpose of illustrating a ratio between oxide thickness and corresponding number of layers, a thin film of 2 nm silicon oxide, for example, contains about seven (7) monolayers. In accordance with the illustrated embodiment, seven monolayers of silicon oxide can be formed in about 18-22 cycles of an ALD process. Thus, even for such an extremely thin layer, the composition can be changed such that a different impurity concentration can be incorporated into the first monolayer as compared to that incorporated into the seventh monolayer.
- In addition to the transition layers described above, other layers and methods of making such layers with superior properties are also contemplated. In particular, herein provided are other compositions and methods for assisting in the deposition of the seed layers for electroplating. It has been discovered that ALD metal processes are facilitated on relatively pure metallic surfaces compared to metal nitride or oxide surfaces. Thus, a pure metal layer that serves as an initial base for a seed layer, or a “base seed layer,” is also provided. Thus, in some embodiments, a liner layer created through multiple rounds of ALD is improved through the use of two seed layers, including an initial base seed layer, which sits directly on the barrier layer, and the normal or external seed layer, that is the top surface of the liner layer. Copper deposited by metal-organic chemical vapor deposition (MOCVD) can be used also as a normal or external seed layer. In some embodiments, there is a transition layer between these seed layers.
-
FIG. 1 shows a chemical vapor deposition (CVD)reactor 10, including a quartz process orreaction chamber 12, constructed in accordance with a preferred embodiment, and for which the methods disclosed herein have particular utility. The illustratedreactor 10 comprises a process module commercially available under the trade name Epsilon™ from ASM America, Inc., of Phoenix, Ariz., adapted to include a remote plasma source. While the preferred embodiments are discussed in the context of a single-substrate CVD reactor, it will be understood that the disclosed processes will have application in CVD reactors of other types, having reaction chambers of different geometries from those discussed herein. In other arrangements, the preferred processes can be conducted in a reactor commercially available under the trade name Pulsar™ 2000 from ASM Microchemistry, Ltd. of Finland, specifically designed for ALD. - A plurality of radiant heat sources are supported outside the
chamber 12, to provide heat energy to thechamber 12 without appreciable absorption by thequartz chamber 12 walls. While the preferred embodiments are described in the context of a “cold wall” CVD reactor for processing semiconductor wafers, it will be understood that the processing methods described herein will have utility in conjunction with other heating/cooling systems, such as those employing inductive or resistive heating. - The illustrated radiant heat sources comprise an upper heating assembly of elongated tube-type
radiant heating elements 13. Theupper heating elements 13 are preferably disposed in spaced-apart parallel relationship and also substantially parallel with the reactant gas flow path through theunderlying reaction chamber 12. A lower heating assembly comprises similar elongated tube-typeradiant heating elements 14 below thereaction chamber 12, preferably oriented transverse to theupper heating elements 13. Desirably, a portion of the radiant heat is diffusely reflected into thechamber 12 by rough specular reflector plates above and below the upper andlower lamps spot lamps 15 supply concentrated heat to the underside of the wafer support structure, to counteract a heat sink effect created by cold support structures extending through the bottom of thereaction chamber 12. - Each of the elongated tube
type heating elements reaction chamber 12 without appreciable absorption. As is known in the art of semiconductor processing equipment, the power of thevarious lamps - A workpiece or substrate, preferably comprising a
silicon wafer 16, is shown supported within thereaction chamber 12 upon a substrate or wafer support structure 18. Note that, while the substrate of the illustrated embodiment is a single-crystal silicon wafer, it will be understood that the term “substrate” broadly refers to any structure on which a layer is to be deposited. The support structure 18 includes asusceptor 20, aquartz support spider 22 extending from ashaft 24 through a depending tube 26, and numerous surrounding elements that facilitate laminar gas flow and uniform temperatures across thewafer 16. - The illustrated
reaction chamber 12 includes aninlet port 40 for the introduction of reactant and carrier gases, and thewafer 16 can also be received therethrough. Anoutlet port 42 is on the opposite side of thechamber 12, with the wafer support structure 18 positioned between theinlet 40 andoutlet 42. - An
inlet component 44 is fitted to the reaction chamber, adapted to surround theinlet port 40, and includes a horizontally elongatedslot 45 through which thewafer 16 can be inserted. Theslot 45 is selectively sealed by a gate valve (not shown) during operation. A generallyvertical inlet 46 receives gases from remote sources, and communicates such gases with theslot 45 and theinlet port 40. - The reactor also includes remote sources (not shown) of process gases, which communicate with the
inlet 46 via gas lines with attendant safety and control valves, as well as mass flow controllers (“MFCs”) that are coordinated at a gas panel, as will be understood by one of skill in the art. - For the first illustrated embodiment, gas sources include tanks holding a silicon-containing gas, preferably a silane such as monosilane (SiH4), silicon tetrachloride (SiCl4), dichlorosilane (DCS or SiH2Cl2), trichlorosilane (TCS or SiHCl3), or other silane or halosilane silicon sources; an oxidant source gas, such as O2, O3, O radicals, H2O, NO or N2O; and a nitrogen source gas, such as NH3. Metal source gases can also be employed for deposition of high k metal oxides. For the second embodiment, source gases include one or more metal source gases (e.g., WF6, TiCl4, CuCl, etc.), a nitrogen source gas (e.g., NH3) and a reducing agent (e.g., triethyl boron or TEB).
- The silicon sources can include a bubbler and a gas line for bubbling H2 through a liquid solution such as TCS, to more effectively transport silicon-containing gas molecules to the reaction chamber in gaseous form. Many metal sources can similarly include liquid solutions and bubblers. The
reactor 10 can also include other source gases, such as dopant gases, including phosphine (PH3), arsine (AsH3), and/or diborane (B2H6); etchants for cleaning the reactor walls (e.g., HCl); a germanium source for doping or formation of SiGe films; etc. - In the illustrated embodiment, an optional generator of excited species, commonly referred to as a
remote plasma generator 60, is provided remotely or upstream from the reaction area, and preferably upstream from thechamber 12. An exemplary remote excited species generator is available commercially under the trade name TR-850 from Rapid Reactive Radicals Technology GmbH of Munich, Germany. As known in the art, thegenerator 60 couples power to a gas to generate excited species. In the illustrated embodiment, thegenerator 60 couples microwave energy from a magnetron to a flowing gas in an applicator along agas line 62. A source ofprecursor gases 63 is coupled to thegas line 62 for introduction into theexcited species generator 60. A source ofcarrier gas 64 is also coupled to thegas line 62. One or morefurther branch lines 65 can also be provided for additional reactants. As is known in the art, thegas sources generation 60 and thence into thereaction chamber 12. - An
outlet component 48 mounts to theprocess chamber 12 such that anexhaust opening 49 aligns with theoutlet port 42 and leads toexhaust conduits 50. Theconduits 50, in turn, communicate with suitable vacuum means (not shown) for drawing process gases through thechamber 12 and to reduce pressure, if desired. - As noted above, the trend in integrated circuit fabrication is to further miniaturize devices. With devices getting smaller, it is becoming increasingly more difficult to deposit thin layers, such as gate oxide layers, by conventional means. Furthermore, the nature of silicon oxide layers will need to change to address desired electrical characteristics of gate dielectrics.
- Gate dielectrics in integrated transistors should not only have low defect densities but should also resist diffusion of impurities from the overlying gate electrode into the gate dielectric. Silicon oxide has been successfully used now for decades as a gate dielectric material, but today's circuit designs impose the use of thinner and thinner layers. As a result of the thinner layers, dopant (e.g., boron) diffusion becomes more of a problem.
- Incorporation of nitrogen into the gate dielectric film can effectively reduce boron diffusion. As has been recognized elsewhere in the art, however, nitride at the channel interface leads to poor interface properties and consequently poor electrical performance. Accordingly, a resultant dielectric structure has pure silicon oxide at the channel interface and silicon nitride at higher levels.
- Conventionally, silicon oxide gate dielectric films are made by thermal oxidation of the underlying silicon substrate. To incorporate nitrogen, nitrogen-containing gases can be added to the main oxygen stream, and/or a post-deposition treatment can be performed with nitrogen-containing gases or nitrogen implantation. Such methods can either incorporate nitrogen into the oxide material to form silicon oxynitride (SiOxNy) or form a Si3N4 layer over the oxide. In either case, it is difficult to control the nitrogen content in the film, especially for current and future generation of integrated circuit devices where the gate dielectric material is very thin (e.g., less than 7 nm). For such ultrathin dielectrics, conventional methods of incorporating nitrogen into a gate dielectric cannot be controlled to produce uniform electrical characteristics across the substrate while still minimizing nitrogen content at the interface with the substrate.
- The first embodiment involves alternating adsorption of no more than about a monolayer of silicon with oxidation of the previously adsorbed monolayer in an alternating layer silicon oxide process. During the oxidation stage, nitrogen can also be selectively incorporated. Essentially, by mixing these two gases, oxynitride films with any desired ratio of oxygen to nitrogen can be grown. In the preferred embodiment, varying reactant ratios during the cyclical process, the composition formed by each cycle can be tailored. Most preferably, the deposition begins with pure silicon oxide and ends with pure silicon nitride, with any desired grading through the thickness.
- The substrate upon which deposition is to occur is initially prepared for the self-limiting deposition process. In the illustrated embodiment, the substrate is a semiconductor material in which a transistor channel is formed. The semiconductor substrate can be formed of an epitaxial layer or formed of the top portions of an intrinsically doped silicon wafer. In other arrangements, the substrate can comprise alternative materials, such as III-V semiconductors.
- Surface preparation desirably leaves a surface termination that readily reacts with the first reactant in the preferred ALD process. In the illustrated embodiment, wherein a dielectric layer is to be formed over a single-crystal silicon layer or wafer, the bare silicon surface preferably is terminated with hydroxyl (OH) tails. As will be appreciated by the skilled artisan, such a surface termination can be readily obtained simply by exposure a clean room atmosphere after a wafer clean.
- In accordance with the preferred embodiment, at least one workpiece or wafer is loaded into the process chamber and readied for processing. Purge gas is preferably flowed through the chamber to remove any atmospheric contaminants.
- Temperature and pressure process parameters can be modified to attain the desired film characteristics. If necessary, the wafer is ramped to the desired process temperature by increasing power output to the
lamps - In an alternate embodiment of the present invention, the self-limiting reaction can take place at even lower temperatures. Using remote-plasma excited oxygen and/or nitrogen sources, even room temperature processing is plausible. Consequently, inter-diffusion of the discrete layers can be avoided and as long as post-treatments at high temperatures do not take place in an environment of oxygen or nitrogen containing gases, the deposited composition profile will stay intact. As noted above, the
plasma generator 60 ofFIG. 1 can couple microwave energy to flowing reactant gases to ignite a plasma. Desirably, ionic species recombine prior to entering the process chamber, thereby minimizing damage to the workpiece and the chamber itself, while radicals such as N and O survive to provide boosted reactivity to the oxygen and/or N phases of the process. - When the workpiece is at the desired reaction temperature and the chamber is at the desired pressure level, process and carrier gases are then communicated to the process chamber. Unreacted process and carrier gas and any gaseous reaction by-products are thus exhausted. The carrier gas can comprise any of a number of known non-reactive gases, such as H2 N2, Ar, He, etc. In the illustrated embodiment, N2 is used as the carrier gas.
- A first chemical species is then adsorbed upon the prepared deposition substrate. In the illustrated embodiment, the first species comprises a silicon-containing species, and includes at least one other ligand that results in a self-terminating monolayer of the silicon-containing species. For example, the silicon source gas for the deposition of silicon oxide can include: silanes of the formula SimL2m+2 wherein m is an integer 1-3; siloxanes of the formula SiyOy−1L2y+2 wherein y is an integer 2-4; and silazanes of the Siy(NH)y−1L2y+2 wherein y is an integer 2-4. In these formulae each L can independently be H, F, Cl, Br, I, alkyl, aryl, alkoxy, vinyl (—CH═CH2), cyano (—CN), isocyanato (—NCO), amino, silyl (H3Si—), alkylsilyl, alkoxysilyl, silylene or alkylsiloxane, whereby alkyl and alkoxy groups can be linear or branched and may contain at least one substitute. Volatile silanols and cyclic silicon compounds are examples of other suitable silicon source compounds.
- Of these silicon compounds, preferably silanes and silazanes are used for the deposition of pure silicon nitride because siloxanes have a rather strong Si—O bond. Silicon compounds can be purchased, e.g., from Gelest, Inc., 612 William Leigh Drive, Tullytown, Pa. 19007-6308, United States of America.
- Most preferably, the silicon source gas comprises dichlorosilane (DCS) or trichlorosilane (TCS) which is introduced into the carrier gas flow. In the preferred reactor, the silicon source gas is flowed at a rate of between about 10 sccm and 500 sccm, more preferably between about 100 sccm and 300 sccm. The silicon source gas is maintained for between about 0.1 second and 1 second under the preferred temperature and pressure conditions, and more preferably for between about 0.3 second and 0.7 second. A monolayer of silicon chemisorbs on the silicon substrate surface terminated with chloride tails or ligands. The surface termination desirably inhibits further reaction with the silicon source gas and carrier gas.
- After the pulse of the first species, a second species is provided to the substrate. In the illustrated embodiment, the second species comprises an oxidant, most preferably comprising pure H2O vapor. The H2O is preferably introduced into the carrier gas flow at a rate of between about 10 sccm and 500 sccm, more preferably between about 100 sccm and 300 sccm. Under the preferred temperature and pressure conditions, the H2O pulse is maintained for between about 0.1 second and 1 second under the preferred temperature and pressure conditions, and more preferably for between about 0.3 second and 0.7 second. After the oxidant pulse is turned off, carrier gas is preferably allowed to flow for sufficient time to purge the oxidant from the chamber prior to the next reactant pulse. In other arrangements, it will be understood that the chamber can be evacuated to remove the second reactant species.
- During the second reactant pulse, the oxidant reacts with the chloride termination of the previous pulse, leaving oxygen atoms in place of the ligands. Desirably, stoichiometric or near stoichiometric SiO2 is left.
- In accordance with the principals of atomic layer deposition, a second pulse of the silicon source gas is then introduced into the carrier gas flow, the pulse is stopped and the silicon source gas removed from the chamber, followed by a second oxidant source gas pulse, which is then in turn stopped and removed from the chamber. These pulses are then continually alternated until the dielectric layer attains its desired thickness.
- An impurity source gas is also provided to at least one of the cycles in the alternating process. In the dielectric embodiment shown, the impurity preferably comprises nitrogen, and the impurity source gas preferably comprises ammonia (NH3) or hydrazine (N2H4) added to the alternating process. Both ammonia and hydrazine are fairly reactive gases, making them suitable for low temperature ALD processing. It will be understood, in view of the disclosed embodiment of
FIGS. 9-13 below, that in one embodiment, the ammonia is added in separate ammonia phases (each comprising an ammonia pulse and a purge pulse) following silicon phases. The ammonia phases can gradually replace oxidant source gas phases, such as one every ten cycles, gradually increasing to one every other cycle and preferably ending with complete replacement of the oxidant phases. Thus, the alternating process begins depositing silicon oxide (by alternating silicon and oxidant phases); deposits a graded silicon oxynitride with increasing levels of nitrogen in an intermediate portion of the process (by gradually replacing an increasing proportion of the oxidant phases with nitrogen and particularly ammonia phases); and, by the time the desired dielectric thickness is reached, the alternating process deposits silicon nitride (by alternating silicon and ammonia phases). - In the illustrated embodiment, however, ammonia is added to the oxygen phase. Different amounts of NH3 are added to different oxidant source gas pulses throughout the process. Thus, a desired amount of nitrogen can be selectively incorporated into each monolayer of silicon dioxide and a silicon oxynitride layer results with a tailored nitrogen content profile.
- The skilled artisan will appreciate, in view of the present disclosure, that the reaction between ammonia and the silicon complex will have a different thermodynamic favorability, as compared to the reaction between the oxidant and the silicon complex. Accordingly, the proportions of ammonia to oxidant do not necessarily equal the proportions of nitrogen to oxygen in the resultant silicon oxynitride. The skilled artisan can readily account for thermodynamic competition through routine experimentation to determine the appropriate parameters for the desired levels of nitrogen incorporation. Providing nitrogen active species through a remote plasma generator, particularly in conjunction with oxygen active species, can maximize the effect of varying the ratio of oxygen to nitrogen sources.
-
FIG. 7 is a gas flow diagram in accordance with one embodiment, illustrating the first fourcycles 301 a-301 d in an exemplary self-limiting deposition sequence. The illustrated sequence includes a constant flow of acarrier gas 300. As shown, a first pulse or spike 302 a of the silicon source gas is provided to form the first self-terminated silicon monolayer. After afirst purge step 303, during which carrier gas continues to flow until the silicon source gas has been removed from the chamber, a first oxidant source gas pulse or spike 304 a is provided. After asecond purge 303, a second siliconsource gas pulse 302 b is provided, followed by a secondoxidant source gas 304 b, a third siliconsource gas pulse 302 c, a third oxidantsource gas pulse 304 c, etc. in alternating pulses separated by purge steps 303. - As shown, at some point after the first cycle 301 a (forming the first silicon oxide monolayer) a first impurity
source gas pulse 306 b is provided, preferably during an oxidantsource gas pulse 304 b. Desirably, a relatively low percentage of the impurity source gas (preferably comprising NH3) is provided during thisfirst pulse 306 b. During subsequent oxidantsource gas pulses pulses - Note that
FIG. 7 is schematic only, and not drawn to scale. Additionally, the preferred process conditions actually result in a full monolayer formed after a plurality of cycles. While theoretically the reactants will chemisorb at each available site on the exposed layer of the workpiece, physical size of the adsorbed species (and particularly with terminating ligands) will generally limit coverage with each cycle to a fraction of a monolayer. In the illustrated embodiment, on average roughly 1 Å of SiO2 forms per cycle, whereas a true monolayer of SiO2 is about 3 Å in thickness, such that a full monolayer effectively forms approximately every three cycles, where each cycle is represented by a pair of silicon source gas and oxidant source gas pulses. - Accordingly, the first impurity
source gas pulse 306 b is preferably conducted after three silicon source gas pulses alternated with three oxidant source gas pulses. In this manner, at least a full monolayer of silicon dioxide is provided prior to introduction of nitrogen doping. More preferably, thefirst ammonia pulse 306 b is provided after six cycles, thereby providing additional insurance against nitrogen diffusion through to the substrate-dielectric interface. In the illustrated embodiment, ammonia is flowed in thefirst pulse 306 b at between about 0 sccm and 10 sccm, more preferably between about 0 sccm and 5 sccm. Thereafter, the ammonia pulses are increased in each cycle by about 50 sccm. - Though not illustrated, the oxidant
source gas pulses -
FIG. 2 shows a schematic sectional view of atransistor structure 70 in a partially fabricated integrated circuit, constructed in accordance with a preferred embodiment, and for which the methods disclosed herein have particular utility. Agate dielectric layer 72 is sandwiched between agate electrode 74 and asemiconductor substrate 76. Thegate dielectric 72 thus extends between asubstrate interface 78 and anelectrode interface 80. In the illustrated embodiment, thegate electrode 74 comprises a polysilicon layer. Thesubstrate 76 comprises any suitable semiconductor material and in the illustrated embodiment comprises a layer of intrinsically doped single-crystal silicon. In accordance with one embodiment, thegate dielectric 72 comprises silicon oxide having a varying and preferably graded nitrogen content through the thickness thereof. In other embodiments, Al2O3 can serve as a pure interface with silicon, graded into a higher dielectric constant material such as ZrO2 to provide a higher overall dielectric constant. Thegate electrode 74 is additionally protected bysidewall spacers 82 and adielectric cap layer 84, each of which can comprise conventional insulating materials such as silicon oxide or silicon nitride. Thegate electrode 74 can also include high conductivity strapping layers, such as metal nitrides, metal silicides and pure metals, for faster lateral signal transmission. -
FIGS. 3 through 5 illustrate a sequence of forming thepreferred gate dielectric 72 one monolayer at a time. Note that the figures are schematic representations only. In general, the concentration of impurities in each monolayer can vary as desired. In the illustrated embodiment, a linear profile of impurity concentration is preferred. In other arrangements, the impurity concentration can vary exponentially, by step function, etc. through the thickness of thin film. -
FIG. 3 illustrates afirst monolayer 102 of silicon oxide formed directly on the surface of thesemiconductor substrate 76. In accordance with the preferred processing conditions, set forth above with respect toFIG. 7 , such a monolayer can be formed after an average of about three cycles of the ALD alternating silicon and oxidant source gas pulses. Desirably, the first orsubstrate interface monolayer 102 has little or no impurity concentration, preferably lower than about 0.1% impurity, and more preferably themonolayer 102 is formed of pure SiO2. -
FIG. 4 illustrates asecond monolayer 104 of silicon oxide formed directly on the surface of thefirst monolayer 102 of silicon oxide. Thesecond monolayer 104 preferably has a low impurity concentration (nitrogen in the preferred embodiment), but greater than the concentration in the precedingmonolayer 102. - With reference to
FIG. 5 , athird monolayer 106 is deposited directly on the surface of thesecond monolayer 104. In the illustrated embodiment, thethird monolayer 106 has yet a higher impurity (nitrogen) concentration than thesecond monolayer 104. Similarly, a plurality of additional monolayers are deposited one at a time until the desired final thickness is achieved. Each monolayer can have a different impurity concentration and the impurity profile through the thickness of the film can be tailored accordingly. - Referring to
FIG. 6 , alast monolayer 114 is deposited to complete formation of the gate dielectric layer. Thelast monolayer 114 thus defines thegate electrode interface 80 with conductive material to be deposited thereover. It will be understood, of course, thatFIG. 6 is merely schematic and that many more monolayers than the seven illustrated can be employed to form the desired final thickness. Moreover,individual monolayers 102 to 114 would not be sharply definable in the final structure, contrary to the schematic illustration. - In the illustrated embodiments, the impurity concentration is controlled to vary from a lowest concentration at the
substrate interface 78 to a highest concentration at thegate electrode interface 80. Preferably, thegate dielectric 72 has a nitrogen concentration at thesubstrate interface 78 of less than about 0.1%, and more preferably about 0%. Nitrogen content at thegate electrode interface 80, on the other hand, is preferably greater than about 5%, more preferably greater than about 8%, and most preferably greater than about 10%. The nitrogen content between these twointerfaces - The resultant thin film has an actual thickness of less than about 7 nm. Preferably, the gate dielectric has an actual thickness of less than about 6 nm, more preferably less than about 5 nm, and in the illustrated embodiment has a thickness of about 2 nm, including about 7 monolayers. Since the illustrated
gate dielectric 72 incorporates a significant nitrogen content, it preferably exhibits an equivalent oxide thickness of less than 2.0 nm, more preferably less than about 1.7 nm and most preferably less than about 1.6 nm. The illustrated linearly graded oxynitride has an equivalent oxide thickness of about 1.7 nm. -
FIG. 8 is a theoretical reverse Auger profile of a dielectric layer constructed in accordance with a preferred embodiment, illustrating the percentage of impurity content in a dielectric layer as a function of the distance from the semiconductor substrate interface. As shown, in the preferred embodiment, at or near the semiconductor substrate interface, the impurity content 350 (i.e., nitrogen) is at a minimum, whereas theoxygen content 340 is at a maximum. As the distance from the semiconductor substrate interface grows, theimpurity concentration 350 increases roughly linearly to a maximum, whereas theoxygen content 340 decrease to a minimum. - Thus, at the substrate interface the gate dielectric preferably comprises nearly pure silicon dioxide (SiO2), whereas near the top of the layer (gate electrode interface) the gate dielectric comprises nearly pure silicon nitride (Si3N4). It will be understood that such a structure can be created by an ALD process similar to
FIG. 7 , but where the oxidant pulse amplitudes decrease with every cycle or every few cycles. - Accordingly, despite the extremely low thickness of the preferred gate dielectrics, a precisely controlled impurity content throughout the thickness can be achieved. Thus, in the illustrated embodiment, the interface properties of silicon dioxide are obtained at the substrate surface, while nitrogen is incorporated in the remainder of the gate dielectric to reduce boron penetration and to increase the overall effective dielectric constant of the gate dielectric. Employing ALD enables precise control at the level of atomic layers. Moreover, the low temperatures involved in the deposition allow maintenance of any desired impurity concentration at various points in the thickness, without interdiffusion. In contrast, conventional techniques cannot be so precisely controlled, and tend to result in even distribution of any impurity in such a thin layer, due to diffusion during processing and/or an inherent lack of control during the formation of such a thin gate dielectric layer.
- Moreover, grading through the thickness of the layer advantageously enables better control of later processing. For example, the gate dielectric is typically etched over active areas (e.g., source and drain regions of the transistor) in order to form electrical contact to these areas of the substrate. A gradual change in nitrogen content from the upper surface of the gate dielectric down to the substrate interface allows greater control over such etch processes as will be understood by the skilled artisan. Accordingly, damage to the substrate is minimized. The skilled artisan will recognize other advantages to grading profiles in thin films used in integrated circuits.
- While the illustrated example comprises grading a nitrogen concentration in a silicon oxide layer, skilled artisan will readily appreciate, in due of the disclosure herein, that the same principles can be applied to forming graded profiles in other gate dielectric materials by ALD. For example, the inventors have found that aluminum oxide advantageously demonstrates a high dielectric constant (k) and also has good interface properties with silicon oxide and/or silicon substrates. Accordingly, a pure aluminum oxide (Al2O3) layer can be first formed by ALD using alternating pulses of an aluminum source gas and an oxidant.
- Exemplary aluminum source gases include alkyl aluminum compounds, such as trimethylaluminum (CH3)3Al, triethylaluminum (CH3CH2)3Al, tri-n-butylaluminum (n-C4H9)3Al, diisobutylaluminum hydride (i-C4H9)2AlH, diethylaluminum ethoxide (C2H5)2AlOC2H5, ethylaluminum dichloride (C2H5)2AlCl2, ethylaluminum sesquichloride (C2H5)3Al2Cl3, diisobutylaluminum chloride (i-C4H9)2AlCl and diethylaluminum iodide (C2H5)2AlI. These compounds are commercially available from, e.g., Albemarle Corporation, USA. Other aluminum source gases include aluminum alkoxides containing Al—O—C bonds, such as ethoxide Al(OC2H5)3, aluminum isopropoxide Al[OCH(CH3)2]3 and aluminum s-butoxide Al(OC4H9)3. These compounds are commercially available from, e.g., Strem Chemicals, Inc., USA. The aluminum source can also comprise aluminum beta-diketonates, such as aluminum acetylacetonate Al(CH3COCHCOCH3)3, often shortened as Al(acac)3, and tris-(2,2,6,6-tetramethyl-3,5-heptanedionato)aluminum, usually shortened as Al(thd)3, Al(TMHD)3 or Al(DPM)3. Volatile halogenated aluminum beta-diketonates are also commercially available, such as aluminum hexafluoroacetylacetonate Al(CF3COCHCOCF3)3, often shortened as Al(hfac)3. These compounds are commercially available from, e.g., Strem Chemicals, Inc., USA. Volatile, purely inorganic aluminum halides such as aluminum chloride AlCl3 or Al2Cl6, aluminum bromide AlBr3, and aluminum iodide AlI3 may also be used as precursors. At low substrate temperatures, anhydrous aluminum nitrate can be used as an aluminum source chemical for ALD. The synthesis of anhydrous Al(NO3)3 has been described by G. N. Shirokova, S. Ya. Zhuk and V. Ya. Rosolovskii in Russian Journal of Inorganic Chemistry, vol. 21, 1976, pp. 799-802, the disclosure of which is incorporated herein by reference. The aluminum nitrate molecule breaks into aluminum oxide when it is contacted with organic compounds, such as ethers.
- Exemplary oxygen source gases include oxygen, water, hydrogen peroxide, ozone, alcohols (e.g., methanol, ethanol, isopropanol), etc.
- An exemplary process comprises alternating trimethyl aluminum or TMA with water, with purge pulses or evacuation steps therebetween. Each pulse can have a duration of about 0.5 seconds, and the substrate can be maintained at about 300° C. This process deposits an Al2O3 layer, which is followed by grading by gradually supplying to the ALD process a source gas that results in more desirable bulk properties (e.g., higher dielectric constant). For example, the TMA pulse can be substituted for a zirconium source gas pulse every few cycles, with increasing frequency until pure zirconium dioxide (ZrO2) is formed. In an exemplary process, ZrCl4 serves as a zirconium source gas and can be deposited at the same temperature (e.g., 300° C.) is the aluminum oxide ALD process. Alternatively, zirconium source gas can be introduced simultaneously and as an increasing proportion of the aluminum source gas during a metal pulse, which is continually alternating with an oxidant pulse. In this case, the skilled artisan can determine through routine experimentation what proportions of aluminum source gas to zirconium source gas should be used to obtain the desired material proportions in the layer. Similarly, the skilled artisan will readily appreciate that other gate dielectric materials can also be created in this fashion.
- In the above example of aluminum oxide and zirconium oxide, aluminum oxide serves as a good barrier diffusion with good electrical interface properties, while zirconium dioxide provides a higher overall dielectric constant value for the dielectric. The gate dielectric can again be graded from ZrO2 until aluminum oxide forms for the upper interface, providing a good diffusion barrier against downward boron (B) diffusion from the gate electrode into the gate dielectric.
- Another example of a graded material for the gate dielectric is silicon oxide at the lower interface, graded into a pure aluminum oxide for the bulk and upper surface of the gate dielectric.
-
FIGS. 9 through 13 illustrate a second embodiment of the present invention. Rather than a dielectric layer, the second embodiment involves a graded conductive film, for example, a graded transition between a barrier layer (e.g., metal nitride, nitride carbide, or more preferably a metal nitride carbide) and a more conductive filler layer (e.g., elemental metal). - With reference initially to
FIGS. 9 and 10 , adual damascene structure 400 is shown, constructed in accordance with a preferred embodiment. In particular, an upper insulatinglayer 402 and a lower insulatinglayer 404 are formed above aconductive circuit element 406. The insulatinglayers lower circuit element 406 typically comprises a lower metal layer or landing pad, but in some instances can comprise a semiconductor layer. - The
structure 400 is also shown with anetch stop layer 408 between the insulatinglayers barrier layer 410 is also shown between the lower insulatinglayer 404 and the lowerconductive layer 406. Such a layer is particularly advisable when the lowerconductive element 406 or overlying metal layers comprise copper, which can easily diffuse through typical interlevel dielectrics and cause short circuits. Each of thehard mask 408 andbarrier 410 can comprise silicon nitride or silicon oxynitride. - The
dual damascene structure 400 is formed by providingtrenches 420 in the upper insulatinglayer 402. Thetrenches 420 are typically formed in a desired pattern across the workpiece. A plurality of contact vias 422 (one shown) extend downwardly from thetrenches 420 in discrete locations along thetrenches 420 to expose underlying circuit nodes. Together, thetrenches 420 and contact vias 422 are arranged in paths to interconnect underlying and overlying circuit elements in accordance with an integrated circuit design. The trenches and contacts are filled with conductive material to form these interconnects. The conductivematerial filling trenches 420 are referred to as metal runners, while the portions fillingcontact vias 422 are referred to as contacts. In dual damascene schemes, as shown, bothtrenches 420 and vias 422 are filled simultaneously, whereas in other schemes, the contacts and runners can be separately formed. - Typically, the dual damascene trenches and vias are first lined with lining
layers 424 and then filled with a highlyconductive material 426. In the illustrated embodiment, where theliners 424 are formed on all surfaces of thetrenches 420 and vias 422, theliners 424 are conductive. In other arrangements, where the liners are selectively formed only on insulating surfaces, the liners need not be conductive. Lining layers can include adhesion layers, barrier layers and/or seed layers. Preferably, the lining layers 424 include at least two of adhesion, barrier and seed layers. In some embodiments, there is at least one interface region among the layers comprising a graded region or “transition layer” produced by an alternating layer deposition (ALD). In some embodiments, there are multiple transition layers. The transition layer(s) can be between the adhesion layer and the barrier layer, the barrier layer and the seed layer, between subparts of any of the above layers, or any other layers deposited via an ALD type process. In some embodiments discussed in greater detail below, the transition layer is between a barrier layer and a first seed layer, and/or a first seed layer and a second seed layer. - With reference to
FIG. 10 , in one embodiment, the lining layers 424 of the illustrated embodiment include anoptional adhesion layer 430, characterized by good adhesion with the insulatingsurfaces FIG. 9 ) of the dual damascene structure. The adhesion layer can be formed by ALD processes, as disclosed in the provisional patent Application No. 60/159,799 of Raaijmakers et al., filed Oct. 15, 1999 and entitled CONFORMAL LINING LAYERS FOR DAMASCENE METALLIZATION, and the corresponding utility application Ser. No. 09/644,416 of Raaijmakers et al., filed Aug. 23, 2000 of the same title. The disclosure of the '799 application and corresponding '416 U.S. utility application is incorporated herein by reference. - The illustrated lining layers 424 further comprise a
barrier region 432, atransition region 434 and aseed layer region 436. Preferably, thebarrier region 432 comprises a conductive nitride, and particularly a metal nitride (e.g., WN, TiN, TaN, etc.). Thetransition region 434 also comprises a conductive nitride, but with varying levels of nitrogen through its thickness and/or different metal content. Theseed region 436 preferably comprises a highly conductive “elemental” metal, having conductivity suitable for electroplating thefiller metal 426 thereover. The actual addition of the filler material can be achieved in a variety of ways, including, for example, electroplating or metal organic chemical vapor deposition (MOCVD). - In one embodiment, the
adhesion layer 430 comprises tungsten (W); thebarrier region 432 comprises tungsten nitride (WNx); thetransition region 434 comprises a graded layer of tungsten copper nitride [(WNx)yCuz], where y and z vary through the thickness of thetransition region 434; and theseed region 436 comprises copper (Cu). Most preferably, thebarrier 432,transition 434 andseed 436 regions are formed in a continuous process without removing the workpiece from the reaction chamber, and so from a process standpoint can be considered regions within a single depositedlayer 438 having varying composition through its thickness. - The
regions barrier region 432 serves as a diffusion barrier but preferably occupies as little of the trench and vias as possible. Accordingly, thebarrier region 432 is preferably between about 20 Å and 200 Å, more preferably between about 40 Å and 80 Å, with an exemplary thickness for WN of about 50 Å. Thetransition region 434 transitions from metal nitride to pure metal while desirably avoiding electromigration during circuit operation and other deficiencies of sharp metal/metal nitride boundaries and minimizing overall thickness. Accordingly, thetransition region 434 is preferably between about 7 Å and 200 Å, more preferably between about 10 Å and 80 Å. In one embodiment, the transition region has a thickness of about 10 Å and a copper content of about 0% at the interface with thebarrier region 432 and a copper content of about 50% at the interface with the seed region 436 (or with the copper filler, in the absence of a seed layer). Theseed region 436 should provide sufficient conductivity for uniform electroplating across the workpiece. While too thick aseed region 436 is not a functional disadvantage, throughput can be increased by depositing a minimum amount of copper by ALD while completing the fill by electroplating. Accordingly, theseed region 436 is preferably greater than about 100 Å, with an exemplary thickness for Cu of about 150 Å. In some embodiments, discussed in more detail below, multiple seed layers are used. Each of the layers has extremely good step coverage of the dual damascene trenches and vias, preferably greater than about 90% (ratio of sidewall coverage to field coverage), more preferably greater than about 93%, and most preferably greater than about 97%. - With reference to
FIG. 11 , a theoretical Auger profile is shown for anexemplary transition region 434 ofFIG. 10 . WhileFIG. 11 depicts a TiN and copper profile, it can also describe a WN and copper profile. For the WN and copper embodiment the right side of the graph represents the lower surface of thetransition region 434 as it blends into the underlyingWN barrier region 432. The left side of the graph represents the top surface of thetransition region 434 as it blends into the overlyingCu seed region 436. As shown, the transition region has a gradually reduced W and N content, going from right to left, with a simultaneously increasing Cu concentration. It will be understood that the shape of the curves can take on any desired shape and the illustrated rates of content grading are merely exemplary. - Advantageously, the process employs an intermediate reduction phase to remove halide tails between metal and nitrogen source phases. This intermediate reduction phase avoids build up of hydrogen halides that could be harmful to metal later to be formed, such as copper. It will be understood, however, that in other arrangements the intermediate reduction phase can be omitted.
-
TABLE 1 Carrier Reactant Flow Reac- Flow Temperature Pressure Time Pulse (slm) tant (sccm) (° C.) (Torr) (sec) 1st metal 400 WF 620 350 10 0.25 purge 400 — — 350 10 1.0 1st reduce 400 TEB 40 350 10 0.05 purge 400 — — 350 10 1.0 nitrogen 400 NH 3100 350 10 0.75 purge 400 — — 350 10 1.0 2nd metal 400 CuCl 4 350 10 0.2 purge 400 — — 350 10 1.0 2nd reduce 400 TEB 40 350 10 0.2 purge 400 — — 350 10 1.0 - With reference to Table 1 above, an exemplary process recipe for forming the desired graded layer, including barrier, transition and seed regions, will be described below. Five phases (each phase defined, in the illustrated embodiment, as including purge following reactant pulses) are described:
- (1) a first metal phase (e.g., WF6 pulse+purge);
- (2) a first reduction phase (e.g., TEB pulse+purge pulse);
- (3) a nitrogen phase (e.g., NH3 pulse+purge pulse);
- (4) a second metal phase (e.g., CuCI pulse+purge pulse); and
- (5) a second reduction phase (e.g., TEB pulse+purge pulse).
- Varying proportions of these phases are utilized during the continuous deposition process, depending upon the stage of the deposition process. In the illustrated embodiment, during a barrier stage, for example, only phases (1)-(3) are employed, together representing one cycle that leaves no more than about one monolayer of WN. During a transition stage, varying proportions of phases (1)-(3) and (4)-(5) are employed. During a seed stage, only phases (4)-(5) are employed, together representing one cycle that leaves no more than about one monolayer of Cu.
- In an alternative embodiment, the amount and order of the administration of the reactants is adjusted so that metal, nitrogen, and carbon; nitrogen and carbon; and metal and carbon liner layers can be part of the transition layers. These embodiments are discussed in greater detail further below. Examples of the individual stages discussed above will now be described in more detail.
- Barrier Deposition Stage
- During an initial barrier deposition stage, only a barrier material, preferably metal nitride, metal carbide, or metal nitride carbide, is deposited. In the illustrated embodiment discussed above, only phases (1)-(3) in Table 1 above are alternated. In about 120-180 cycles, about 50 Å of WN are produced. Each cycle can be identical.
- In the first phase (1) of the first cycle, WF6 chemisorbs upon the underlying substrate, which in the illustrated embodiment comprises a previously formed metal nitride. The metal nitride was most preferably formed by a similar ALD process. The first metal source gas preferably comprises a sufficient percentage of the carrier flow and is provided for sufficient time, given the other process parameters, to saturate the underlying barrier layer. No more than about a monolayer of tungsten complex is left upon the barrier layer, and this monolayer is self-terminated with fluoride tails. As noted above, though typically less than one monolayer, this complex will be referred to herein as a “monolayer” for convenience.
- After the WF6 flow is stopped and purged by continued flow of carrier gas, a second phase (2), comprising a pulse of reducing gas (TEB), is supplied to the workpiece. Advantageously, the reducing gas removes the fluoride tails from the tungsten complex, avoiding the formation of hydrogen halides that could etch copper. It will be understood that, in other arrangements, this reducing phase may not be necessary, or the addition of TEB can actually lead to depositing about a monolayer of carbon on the surface.
- After TEB flow is stopped and purged, a third phase (3), comprising a pulse of nitrogen source gas (NH3), is supplied to the workpiece. In this third phase, ammonia preferably comprises a sufficient percentage of the carrier flow and is provided for sufficient time, given the other process parameters, to saturate the surface of the metal-containing monolayer. The NH3 readily reacts with the tungsten left exposed by the reducing phase, forming a monolayer of tungsten nitride (WN). The reaction is self-limiting. Neither ammonia nor the carrier gas further reacts with the resulting tungsten nitride monolayer, and the monolayer is left with a nitrogen and NHxbridge termination. The preferred temperature and pressure parameters, moreover, inhibit diffusion of ammonia through the metal monolayer.
- Following the nitrogen phase (3), i.e., after the nitrogen source gas has been removed from the chamber, preferably by purging with continued carrier gas flow, a new cycle is started with the first phase (1), i.e., with a pulse of the first metal source gas (WF6).
- Desirably, this three-phase cycle (1)-(3) is repeated in a plurality of first cycles until sufficient barrier material is formed, preferably between about 20 Å and 200 Å, more preferably between about 40 Å and 80 Å, with an exemplary thickness of about 50 Å. Advantageously, this thin layer is provided with excellent step coverage.
- In the illustrated embodiment, carrier gas continues to flow at a constant rate during all phases of each cycle. It will be understood, however, that reactants can be removed by evacuation of the chamber between alternating gas pulses. In one arrangement, the preferred reactor incorporates hardware and software to maintain a constant pressure during the pulsed deposition. The disclosures of U.S. Pat. No. 4,747,367, issued May 31, 1988 to Posa and U.S. Pat. No. 4,761,269, issued Aug. 2, 1988 to Conger et al., are incorporated herein by reference.
- As will be appreciated by one of skill in the art, the above protocol can be adjusted as required to achieve the desired type of barrier layer. In some embodiments, tungsten can be replaced with other metals, such as molybdenum, niobium, tantalum and/or titanium. In some embodiments, the barrier layer comprises tungsten, nitrogen, and carbon. In an alternative embodiment the barrier layer comprises tungsten carbide. Carbon, can be supplied in the process along with either 1) tungsten or 2) tungsten and nitrogen. In one embodiment, this can be done through the addition of sufficient pulses of TEB in a specific sequence. In such an embodiment, phases 1) and 2) above can be reversed i.e., 1) TEB+Purge, followed by 2) WF6+Purge, followed by 3) NH3+Purge, for one full cycle. In some embodiments, the nitrogen is omitted from the barrier layer completely; thus, phases 1) and 2) can be reversed, and phase three removed (i.e., 1) TEB+purge, followed by 2) WF6+purge, for one full cycle layer). Thus, there are various embodiments for the cycles involved in depositing the barrier layer.
- Transition Deposition Stage
- Following formation of the barrier region, in a continuous process, the cycles are altered to incorporate new phases during formation of the transition region. In particular, for the tungsten nitride (WN) barrier layer illustrated above, the fourth and fifth phases (4), (5) are introduced into the cycles in a plurality of second cycles, thereby introducing copper to the transition region. At least two, and preferably more than ten cycles, include the phases (4) and (5).
- The introduction can be gradual. For example, two cycles can include only phases (1)-(3) as described above, producing WN, followed by a third cycle that includes all five phases (1)-(5), producing a mixture of WN and Cu, followed again by two cycles that include only phases (1)-(3). Gradually, the frequency of Cu introduction is increased. At some point, several cycles in a row would include all five phases (1)-(5). In some embodiments, eventually the fourth and fifth phases would be the primary phases that occur. Eventually, the fourth and fifth cycles can be the only phases that occur.
- Two such five-phase cycles are shown in
FIG. 12 , and Table 1 above presents parameters for one cycle of an ALD process for depositing of a graded layer of tungsten nitride (WN) and copper (Cu). Preferably the layer serves as an interface between a tungsten nitride barrier layer and a copper seed layer in trenches and contact vias of a dual damascene structure. In the exemplary process recipe, a first metal source gas comprises tungsten hexafluoride (WF6); a carrier gas comprises nitrogen (N2); a first reducing agent comprises triethyl boron (TEB), a nitrogen source gas comprises ammonia (NH3); a second metal source gas comprises copper chloride (CuCl); and a second reducing agent comprises triethyl boron (TEB). - A first five-
phase cycle 450 is shown inFIG. 12 . Initially, the first three cycles (1)-(3) are conducted as described above with respect to the formation of the barrier region. Following the nitrogen phase (3), i.e., after the nitrogen source gas has been removed from the chamber, preferably by purging with continued carrier gas flow, a fourth phase (4) comprises flowing the second metal source gas. Copper chloride preferably comprises a sufficient portion of the carrier flow and is provided for sufficient time to saturate the surface left by the previous phase. No more than about a monolayer of self-terminated metal complex, particularly chloride-terminated copper, is left over the metal nitride formed by the previous two phases. The second metal source gas is then removed from the chamber, preferably purged by continued carrier gas flow. - In a fifth phase (5), the chloride-terminated surface is then reduced by flowing the reducing agent. Preferably, TEB flows to remove the chloride tails left by the previous phase.
- In the
next cycle 455, the first phase (1) again introduces the first metal source gas, which readily reacts with the surface of the copper monolayer, again leaving a fluoride-terminated tungsten layer. The second through fifth phases of the second cycle can then be added as described with respect to thecycle 450. These cycles can be repeated as often as desired to ensure sufficient intermixture of copper and metal nitride to avoid electromigration. A highly conductive layer can be deposited over the interface material by any suitable manner. - More preferably, some cycles are introduced that omit the WN formation, such that only phases (4) and (5) are included. In
FIG. 12 , this is represented by atruncated cycle 460, which omits the WN phases and instead consists of phases (4)-(5), producing no more than a monolayer of elemental Cu. The process then continues on with another five-phase cycle 470, mixing WN with Cu. - The frequency of WN phases (1)-(3) can be gradually reduced during progressive cycles, thereby increasing the Cu percentage of the growing layer. Eventually, only Cu deposition results. It will be understood that the relative proportion of WN to Cu in the transition region, and its profile, can be finely controlled by controlling the relative frequency of WN phases (1)-(3) as compared to Cu phases (4)-(5). Accordingly, any desirable content profile can be achieved by the methods disclosed herein.
- Advantageously, this transition region can have composition variation through a very small thickness of the material. Preferably, the transition region of the illustrated embodiment, between a metal nitride barrier region and a metal seed region, is between about 7 Å and 200 Å, more preferably between about 10 Å and 80 Å, and particularly less than about 50 Å. An exemplary thickness for a metal/metal nitride transition region is about 10 Å. Advantageously, this thin layer is provided with excellent step coverage.
- As will be appreciated by one of skill in the art in light of the present disclosure, the above process has been described in terms of individual phases that occur with changes in frequency or amount. As such, what is defined as a “cycle” can vary based on each round of application of material.
- Alternatively, the process can be described in terms of pluralities of different types of cycles used for creating the various non-graded layers and how these various cycles overlap with one another. Thus, the above method can also be described as a plurality of first cycles (phases 1, 2, and 3 occurring repeatedly) that are repeated intermittently along with a plurality of second cycles (phases 4 and 5 occurring repeatedly).
- The term “non-graded layer” refers to a layer that is generally composed of the same set of reactants throughout the whole layer and does not preclude local non-uniformities in composition; rather the term refers to a layer without a discernible trend in change of composition from the lower interface to the upper surface.
- When a plurality of first cycles and a plurality of second cycles are described to occur “at the same time,” it does not require that the reactants or agents be supplied or reacted simultaneously. Each phase is still carried out separately and ended with a purge before the next phase begins. Rather, when a plurality of first deposition cycles and a plurality of second deposition cycles occur at the same time, it means that a second cycle is conducted before and after a first cycle, or vice versa. In other words, the cycles occur intermittently at any desired level of relative frequency (i.e., any desired ratio of first cycles: second cycles). For example, as shown in
FIG. 13 , wherephase 1 510,phase 2 520, and phase 3 530 in afirst cycle 500 are followed byphase 4 540 and phase 5 550 in asecond cycle 600, thesecond cycle 600 has occurred “during” a plurality of first cycles, because there is afirst cycle 500 before thesecond cycle 600 and there is afirst cycle 500′ after thesecond cycle 600. Thus, in this example, there are threefirst cycles first cycles 501. Furthermore, there are foursecond cycles second cycles 601. Of course, the plurality of cycles can be divided into smaller parts as well, as long as the different types of cycles are intermittent at some point in the process. Thus, asecond cycle 600, can occur during a plurality offirst cycles first cycle 500′ can occur during a plurality ofsecond cycles FIG. 13 , where twosecond cycles 600′ and 600″, occur consecutively before the next first cycle, 500″. As mentioned above, other metals can be used instead of tungsten and include, for example, molybdenum, niobium, tantalum and/or titanium. - While the above section discusses creating a transition layer with respect to a two element barrier layer, one of skill in the art will recognize that this can be readily adjusted for alternative barrier layers, such as a tungsten, nitrogen, and carbon layer or a nitrogen and carbon layer. For example, while the TEB in the method described above acts as a reducing agent, by reversing the sequence of
phase 1 andphase 2, so that TEB is applied and then the tungsten precursor, one can apply a similar method to achieve a transition layer between a WNC layer and a seed layer. - In such an embodiment, the barrier layer deposition process will still comprise three phases and the seed layer deposition process will also still comprise two phases so that the above discussion still applies; however, phase one and phase two have been reversed in their order. Thus,
FIGS. 9 , 10, and 12, with the adjustments depicted above, can also depict one method of depositing a WNC barrier and transition layer that comprises WNC and copper.FIG. 11 would be adjusted in that there would be a third element (namely carbon) in the barrier layer. Additionally, the depth can be increased, as additional layers are being added for each full barrier cycle. - In such an embodiment, a plurality of first deposition cycles (e.g., one cycle is TEB+purge, WF6+purge, and NH3+purge, which is repeated a number of times) allows for the formation of the barrier layer. After the barrier layer has been formed, but while this plurality of first deposition cycles is continuing, a plurality of second deposition cycles (e.g., the second cycles are copper-precursor+purge and reducing precursor+purge, which is repeated a number of times) is commenced, as described above. An example of this process follows.
- First, an ALD process is used to deposit a non-graded layer of tungsten nitride carbide as a barrier layer. This is achieved through a first cycle that comprises supplying TEB, purging, supplying WF6, purging, supplying NH3, and purging. This first cycle is repeated a number of times, in a plurality of first cycles, to establish the barrier layer. Next, while the plurality of first cycles occurs, a second cycle is interspersed between the first cycles in the plurality of first cycles. In other words, the second cycle is added intermittently with the plurality of first cycles. This second cycle comprises supplying a copper-precursor, purging, supplying a reducing precursor, and purging. This second cycle is repeated a number of times, in a plurality of second cycles, which occurs during the plurality of first cycles to establish a transition layer. The transition layer will comprise both WNC and copper. The frequency of the plurality of second cycles starts off initially low, e.g., occurring once for every ten times the first cycle occurs; however, this frequency is preferably increased from the initial frequency over numerous cycles. Thus, after several cycles, the second cycle occurs ten times for every time the first cycle occurs.
- In alternative embodiments, the barrier layer is a metal carbide instead of a metal nitride carbide. Thus, the plurality of first cycles will comprise a metal phase and a carbon depositing phase, but not the nitrogen depositing phase. Otherwise, this plurality of first cycles (TEB+purge and WF6+purge) will occur intermittently during a plurality of second cycles, as described above.
- Seed Deposition Stage
- Seed Layer
- Following formation of the transition region, in a continuous process, a seed layer can be deposited in situ over the transition region. In the second embodiment discussed above, where a copper fill is desired within dual damascene trenches and contact vias, a seed layer is desired prior to electroplating.
- Accordingly, the fourth and fifth phases of the illustrated WN barrier ALD process are repeated after the interface has formed. Thus, copper can be deposited by ALD over the interface of the mixed or compound layer (i.e., over the transition region) to provide a uniformly thick electroplating seed layer.
- Desirably, the two-phase cycles are then continued without first metal and nitrogen phases until a copper layer is formed that is sufficiently thick to serve as an electroplating seed layer. This seed layer is preferably greater than about 50 Å, more preferably greater than about 100 Å, and in the exemplary embodiment is about 150 Å.
- The wafer can then be removed from the chamber and the trenches and contact vias filled with a highly conductive metal. Preferably, copper is electroplated over the copper seed layer.
- Thus, the metal nitride barrier, the graded interface or transition region and the copper seed region can all be deposited in situ in a continuous process, under the same temperature and pressure conditions. Advantageously, the mixed and more preferably graded interface or transition region avoids problems of electromigration that can occur at sharp metal/metal nitride interfaces during electrical operation of the integrated circuit.
- The skilled artisan will appreciate that, in some arrangements, the relative level of reactants can be controlled by varying the constituents of a single reaction phase, as disclosed with respect to
FIG. 7 . Due to the complications of thermodynamic competition between simultaneously exposed reactants in an ALD process, however, it is more preferred to introduce constituent variation into the growing layer of by varying the number and/or type of phases in each cycle of the continuous process, as shown inFIG. 12 . - Base Seed Layers
- In an alternative embodiment, the seed layer is more complex than the relatively
simple seed layers 436 discussed above and comprises multiple layers. For example, the seed layer can be acompound seed layer 436, as shown inFIG. 14 . In addition to the typicalexternal seed layer 436 a, these more complex seed layers also comprise a “base seed layer” 436 b. Thisbase seed layer 436 b is positioned between thebarrier layer 434 and theseed layer 436. These more complex seed layers can be used with the transition layers described above, or in situations where each of the layers in the liner layer are non-graded layers. - The
base seed layer 436 b comprises a metallic layer, preferably with a metal upper surface. In a preferred embodiment, thebase seed layer 436 b is relatively free of nitrides or oxides, more preferably, it comprises tungsten, and most preferably, it consists essentially of tungsten. One such embodiment is shown inFIG. 15A . On top of an insulatinglayer 402, there is abarrier layer 432 upon which is a base seed layer oftungsten 436 b. On top of thebase seed layer 436 b is anexterior seed layer 436 a, upon which is an electroplated layer ofconductive filler material 426, such as copper. In some embodiments, thebase seed layer 436 b comprises a metal that is present in thebarrier layer 432 but not in theexternal seed layer 436 a. - In a preferred embodiment, both
seed layers base seed layer 436 b and theexternal seed layer 436 a. - While some embodiments of the liner layers that involve base seed layers can still comprise one or more transition layers (discussed in greater detail below), such liner layers do not have to comprise a transition layer to have advantageous properties. Rather, the liner layer can comprise a non-graded barrier layer, e.g., a metal/nitride/carbide layer, with a base seed layer on top of it (e.g., a first metal layer), which then has the external seed layer on top of it (e.g., a second metal layer). More preferably, the liner layer comprises a first WNC layer, a second layer essentially consisting of tungsten, and a third layer comprising copper. Most preferably, all three layers have greater than 90% step coverage.
- This liner layer with the base seed layer can be created by administering three types of cycles to a substrate. One type first creates the barrier layer in a plurality of first cycles. In the plurality of first cycles, one first introduces a carbon source onto a surface by atomic layer deposition (ALD), followed by introducing a metal source onto the surface, followed by introducing a nitrogen source onto the substrate. Between each of the pulses, the reaction chamber is preferably purged, but can also be pumped down to vacuum. In a preferred embodiment, the carbon source is TEB, the metal source is WF6, and the nitrogen source is NH3. This completes a first cycle. This cycle can be repeated until the desired thickness of tungsten nitride carbide barrier layer is achieved.
- Next, a second type of cycle can be commenced to establish the
base seed layer 436 b. The plurality of second cycles comprises first introducing a metal source, purging the chamber, introducing a reducing agent, and then purging the chamber. In a preferred embodiment, the metal source is WF6 and the reducing agent is either disilane or diborane. This second cycle can be repeated until the desired thickness of W is achieved. - Next, a third type of cycle is commenced for establishing the second or
external seed layer 436 a. The plurality of third cycles can comprise introducing a metal source, purging, introducing a reducing precursor, and finally purging. In a preferred embodiment, the metal source is an organometallic precursor, such as metal aminidinates (general formula [M(R—R′AMD)n]x, and more preferably a copper source, such as, Copper (N,N′-Diisopropylacetamidinate) ([Cu(iPr-MeAMD)]2). In a preferred embodiment, the reducing precursor is hydrogen, although other reducing precursors such as H2-plasma alcohols, boranes, silanes and ammonia can be used. The following describes exemplary ranges for some of the parameters for each of the first, second and third cycles. - In a preferred embodiment, the temperature during the first, second and third cycles is between 50° C. and 400° C., more preferably, between 150° C. and 350° C. In a preferred embodiment the thickness of the entire layer created by all of the three cycles is between 10 Å and 500 Å, more preferably between 30 Å and 100 Å, and most preferably between 40 Å and 80 Å.
- 1. First Cycle
- In a preferred embodiment, the thickness of the non-graded layer from the first cycle (e.g., the barrier layer, e.g., WNC) is between 5 Å and 100 Å, more preferably between 10 Å and 60 Å, and most preferably between 15 Å and 40 Å.
- 2. Second Cycle
- In a preferred embodiment, the thickness of the non-graded layer involving the second cycle (e.g., base seed layer, e.g., W) is between 5 Å and 200 Å, more preferably between 10 Å and 100 Å, and most preferably between 20 Å and 60 Å.
- 3. Third Cycle
- In a preferred embodiment, the thickness of the non-graded layer involving the third cycle is between 5 Å and 500 Å, more preferably between 10 Å and 100 Å, and most preferably between 20 Å and 100 Å.
- An example of such a method is provided below. Tables 2-4 presents some of the above ranges in a tabular format, as well as additional guidance for other relevant variables. Table 2 summarizes the ranges for the first cycle, in this case for the deposition of a barrier layer. Table 3 summarizes the ranges for the second cycle, in this case for the deposition of a base seed layer. Table 4 summarizes the ranges for the third cycle, in this case for the deposition of an external seed layer. The ranges in the present tables are arranged from a preferred, to a most preferred range.
-
TABLE 2 Carrier Reactant Flow Reac- Flow Temperature Pressure Time Pulse (slm) tant (sccm) (° C.) (Torr) (sec) Carbon 0 to 100 TEB 5 to 5000 250 to 400 10−8 to 760 0.001 to 30 0 to 5 25 to 500 275 to 325— 0.1 to 10 0.3 to 5 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 1st metal 0 to 100 WF6 5 to 5000 — 10−8 to 760 0.001 to 30 0 to 5 5 to 100 0.1 to 10 0.05 to 2 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 Nitrogen 0 to 100 NH3 5 to 5000 — 10−8 to 760 0.001 to 30 0 to 5 25 to 500 0.1 to 10 0.3 to 5 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 -
TABLE 3 Carrier Reactant Flow Reac- Flow Temperature Pressure Time Pulse (slm) tant (sccm) (° C.) (Torr) (sec) 1st metal 0 to 100 WF6 5 to 5000 50 to 400 10−8 to 760 0.001 to 30 0 to 5 5 to 100 150 to 325 0.1 to 10 0.05 to 2 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 1st reduce 0 to 100 Disilane or 5 to 10000 — 10−8 to 760 0.001 to 30 0 to 5 diborane 25 to 1000 0.1 to 10 0.3 to 5 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 -
TABLE 4 Carrier Reactant Flow Reac- Flow Temperature Pressure Time Pulse (slm) tant (sccm) (° C.) (Torr) (sec) 2nd metal 0 to 100 [Cu(iPr— 5 to 5000 50 to 400 10−8 to 760 0.001 to 30 0 to 5 MeAMD)]2 5 to 100 150 to 250 0.1 to 10 0.1 to 5 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 2nd reduce 0 to 100 hydrogen 5 to 10000 — 10−8 to 760 0.001 to 30 0 to 5 25 to 1000 0.1 to 10 0.3 to 5 Purge 0 to 100 — — — 10−8 to 760 0.001 to 120 0 to 5 0.1 to 10 0.5 to 10 - In some embodiments, the deposition of the
base seed layer 436 b is via an ALD process. In a more preferred embodiment, the deposition of each of the base seed layers 436 b and theexternal seed layer 436 a occurs via an ALD process. - This Example describes how a WNC, W, Cu layer can be created, as shown in
FIG. 15A . First, WNC is deposited via cycles of ALD until a desired thickness is achieved. TEB is introduced to the chamber at a flow rate of 200 sccm for 2.0 seconds. The substrate is set to a temperature of 300° C., purged, WF6 is introduced at a flow rate of 50 sccm for 0.3 seconds, purged, NH3 is introduced at a flow rate of 200 sccm for 1.0 seconds, and then purged in a first cycle. This cycle is repeated until the desired thickness is achieved. Following this, the plurality of second cycles is started. WF6 is introduced at a flow rate of 30 sccm for 0.5 seconds, purged, disilane or diborane is introduced at a flow rate of 500 sccm for 2 seconds, and then purged. This is repeated until the desired thickness is achieved. Following this, the plurality of third cycles is started. Cu-precursor is introduced at a flow rate of 100 sccm for 2 seconds, purged, the reducing precursor is introduced at a flow rate of 500 sccm for 2 seconds, and purged. This is repeated until the desired thickness is achieved. - As will be appreciated by one of skill in the art, the above example concerning a W base seed layer and a Cu external seed layer does not contain a transition layer. However, such transition layers can easily be added. For example, as discussed below, a transition layer between the WNC layer and the W layer (as shown in
FIG. 15B and Example 3), and/or a transition layer between the W layer and the copper layer (as shown inFIG. 15C and Example 4) can be created. Additionally, in some embodiments, only a single transition layer is desired; for example, a transition layer between the first layer, e.g., WNC, and the second layer, e.g., W. The following example describes one method of making such a structure. - A substrate is placed into a reaction chamber. First, a cycle involving introducing TEB, purging, introducing WF6, purging, introducing NH3, and purging is performed and repeated. The cycle is repeated a sufficient number of times to create a desired thickness.
- Next a graded layer between the WNC layer and the following W layer is created. This process comprises alternating between the first cycle described above and a second cycle with varying frequencies. The second cycle comprises introducing WF6, purging, introducing disilane or diborane, and purging. The frequency of the occurrence of the first cycle, initially, is very high, while the frequency of occurrence of the second cycle, over the same time period is relatively low. However, as additional layers are added, the frequency of occurrence of the second cycle increases and the frequency of occurrence of the first cycle decreases. Initially, the first cycle occurs 10 times for every time the second cycle occurs. At the end of the formation of the transition layer, the second cycle occurs 10 times for every time the first cycle occurs. This can be viewed as intermittently (and with greater frequency) omitting the nitrogen and carbon phases as the deposition proceeds.
- Finally, by a third cycle, a layer of copper is deposited. This comprises introducing a Cu-precursor, e.g., Copper (N,N′-Diisopropylacetamidinate), purging, introducing a reducing precursor, e.g., hydrogen, and purging. As above, this is repeated until the desired thickness is achieved. This process can result in forming the structure depicted in
FIG. 15B . Thus, the liner layer can comprise aWNC barrier layer 432, on top of a low-k layer 402. On top of thebarrier layer 432 is atransition layer 436 b′ that also serves as a base seed layer and is a graded mix of tungsten and WNC, preferably with a high percent or pure section of tungsten at the top surface. On top of thislayer 436 b′, is theexternal seed layer 436 a that includes copper, upon which sits an electroplated layer ofcopper 426. - In alternative embodiments, the first layer and cycle comprises a metal carbide (e.g., tungsten and nitrogen) but lacks the nitride. Thus, the first layer and cycle will lack any nitrogen reactant.
- Complex Transition Liners
- While some of the previous sections discussed individual graded layers, one of skill in the art will realize that relatively complex liner layers are possible given the present teachings. For example, liner layers or other layers comprising multiple transition layers can also be created by the teachings herein.
- For example, in some embodiments, the liner layer can have multiple transition layers. In some embodiments, there is a transition layer on each side of the barrier layer. For example, there can be a transition layer between the barrier layer and the adhesion layer and there can also be a transition layer between the barrier layer and the seed layer. In some embodiments, where there are multiple seed layers as discussed above, there can be multiple transition layers, with and/or between the seed layers.
- In a preferred embodiment, the process for generating a liner layer with multiple transition layers is similar to that described above, involving multiple cycles with multiple phases (phases 1-5, described above and e.g., phases 6 and 7 for the additional layer and transition layer) and changing the frequencies of the phases or cycles to gradually increase the amount of one element or compound compared to another element or compound.
- For example, in a first part of the deposition, as above, a plurality of first cycles can be used to establish a first layer of non-graded material. In a second part of the deposition, as above, the plurality of first cycles can continue to occur, but is interspersed with a plurality of second cycles, with increasing frequency as deposition proceeds, allowing for a transition layer to be formed. In a new, third part, of the deposition, a plurality of third cycles is interspersed, with increasing frequency as deposition proceeds, with an ongoing plurality of cycles. This will allow one to add a second transition layer. The second transition layer can comprise the material from the plurality of second cycles and the material from the plurality of third cycles.
- In a preferred embodiment, the plurality of first cycles is stopped before the plurality of third cycles is commenced. In a more preferred embodiment, there are periods over which only the first, only the second, or only the plurality of third cycles occurs, thus allowing for non-graded layers of the material from the first, second and plurality of third cycles to be created.
- As will be appreciated by one of skill in the art, just like for the first and plurality of second cycles described above, the number and type of elements in each of the phases that make up the plurality of third cycles is only limited by what one wants incorporated into the completed layer.
- In one embodiment the plurality of third cycles is to deposit an external seed layer and the plurality of second cycles is to deposit a base seed layer. In such a situation, the plurality of third cycles can be similar to that of the plurality of second cycles described above, e.g., a copper and reducing precursor combination. In such a situation, the plurality of second cycles will be different, for example, it can essentially consist of tungsten, a reducing precursor, and purges. Thus, the plurality of second cycles can comprise a phase of supplying WF6 and purging and a phase of supplying disilane/diborane and purging. The plurality of third cycles can comprise a phase of supplying a copper precursor and purging and a phase of supplying a reducing precursor and purging. An example of this process is demonstrated below.
- This example demonstrates one method of making a graded liner layer with two transition layers. In particularly, the transition layers are involved in seed layers.
- First, one establishes a barrier layer in a damascene trench via an ALD process. One first supplies TEB to the substrate, purges, supplies WF6, purges, supplies NH3, and purges. This combination of phases represents one complete cycle. The cycle is repeated, in a plurality of first deposition cycles, until a barrier layer of a desired depth is achieved.
- Next, one continues the plurality of first deposition cycles described above, while also commencing a plurality of second deposition cycles, interspersed between completed first cycles. The second cycle comprises supplying WF6, purging, supplying disilane or diborane and purging. This second cycle is repeated, thus establishing a plurality of second cycles. Both the first and the plurality of second cycles occur over a set number of cycles, thus establishing a first transition layer. Initially, the frequency of the first cycle is greater than the frequency of the second cycle (e.g., >5:1); eventually, this frequency is reversed (e.g., <1:5) towards the top of the transition layer.
- Next, one continues the plurality of second deposition cycles, alone, a number of times to establish a desired thickness of the base seed layer.
- Next, one continues the plurality of second deposition cycles described above, while also commencing a plurality of third deposition cycles, interspersed between the second cycles. The third cycle comprises supplying a copper-precursor, purging, supplying a reducing precursor, and purging. This third cycle is repeated, thus establishing a plurality of third cycles. Both the second and the plurality of third cycles occur over a set number of cycles, thus establishing a second transition layer. Initially, the frequency of the second cycle is greater than the frequency of the third cycle (e.g., >5:1); eventually, this frequency is reversed (e.g., <1:5) towards the top of the transition layer.
- Next, one continues the plurality of third deposition cycles, alone, a number of times to establish a desired thickness of the external seed layer. This combined process can result in forming the structure depicted in
FIG. 15C . Thus, the liner layer can include aWNC barrier layer 432, on top of a low-k layer 402. On top of thebarrier layer 432 is atransition layer 436 b′ that also serves as a base seed layer and is a graded mix of tungsten and WNC, with increasing W content toward the top surface, preferably terminating in an essentially pure W surface. On top of thislayer 436 b′, is a gradedexternal seed layer 436 a′ that includes a graded layer of copper and tungsten with increasing copper content toward the top surface, upon which sits an electroplated layer ofcopper 426. - While the above example is directed to particular materials, the general method of creating compound layers with one or multiple transition layers can be expanded for different types of layers, for example, liner layers with or without nitride or carbide barrier layers.
- In some embodiments, the liner layer that is created has a first non-graded layer that essentially consists of a first metal and nitrogen; a first metal, nitrogen, and carbon; or a first metal and carbon. On top of this first non-graded layer is a second non-graded layer 720, of the first metal. On top of the second non-graded layer is a third non-graded layer 730. The third non-graded layer 730 includes a second metal, and in one embodiment consists essentially of copper or a copper alloy.
- In alternative embodiments, the liner layers described in
FIG. 15D can have multiple transition layers. As depicted inFIG. 15D , there is a bottom barrier layer 710 that includes a metal (e.g., W, Ti, or Ta) combined with either, nitrogen, carbon, or nitrogen and carbon. On top of the barrier layer 710 is a metal layer 720, which includes the same metal (e.g., W, Ti, or Ta) that is present in the barrier layer 710. Between the barrier layer 710 and the metal layer 720 can be a transition layer (not shown) that includes both the metal and 1) nitrogen, 2) nitrogen and carbon, or 3) carbon, in a graded manner. On top of the metal layer 720 is another metal layer 730 that includes a different metal (e.g., Ru or Cu). Between the two different metal layers 720, 730 can be another transition layer (not shown), which again includes both metals in a graded manner. - Likewise, while the above describes a liner with non-graded layers in it, these non-graded layers can be removed or effectively reduced to one cycle's worth of layer if so desired, so that the entire liner consists of various graded layers.
- Additionally, the above process can also be used for different liner layers. For example, as shown in
FIG. 15E , in one embodiment, the liner layer can include three different metals in three non-graded layers. In a preferred embodiment, thebottom metal 760 is tungsten, with asecond metal layer 770, e.g., ruthenium, placed over the bottom layer, and athird metal layer 780, e.g., copper, placed over the second metal layer. - In a preferred embodiment, the liner layer in
FIG. 15E includes two transition layers (not shown) between the three non-graded layers of each of the metals. In a more preferred embodiment, thebottom metal 760 is tungsten, with asecond metal layer 770, e.g., ruthenium, placed over the bottom layer, and athird metal layer 780, e.g., copper, placed over the second metal layer. Thus, there is a first transition layer of tungsten and ruthenium and a second transition layer of copper and ruthenium. - As will be appreciated by one of skill in the art, the above transition layers can gradually and consistently transition between the two non-graded layers. The transition between materials in the layer can be linear, parabolic, or any other gradation between a starting point and an ending point. For example, the majority of the transition can be either earlier or later in the transition layer. This can be determined by altering the frequencies of the relevant cycles. Additionally, the above graded liner layers and layers with containing multiple seed layers can be especially useful for lining a damascene trench.
- In the first of the above-described embodiments, an impurity is described as being introduced in the gas phase as one of the primary reactants (e.g., increasing proportions of nitrogen provided as the same time as the oxidant in the process of
FIG. 7 ). In the following embodiments, the impurity (e.g., second or third cycles) is introduced by separate pulses in selected cycles of the ALD process. Impurity pulses can substitute for pulses in the initial process, or can be provided in addition to the primary reactants, and these pulse introductions can be provided with increasing frequency throughout the process (e.g., the copper source gas pulses can be added to or substituted for tungsten and nitrogen source gas pulses in the process ofFIG. 12 ). - Additionally, the inventors have found that the impurity can be introduced by way of the thermodynamically favored replacement of already-adsorbed species in the growing film. For example, in the process of growing a TiO2 layer by ALD, introduction of an aluminum chloride (AlCl3) gas pulse can replace Ti—O bonds with Al—O bonds, which are thermodynamically favored, and in the process liberate volatile TiCl4 gas. Similarly, a pulse of AlCl3 can convert surface SiO2 to Al2O3, liberating SiCl4 gas. In another example, ZrO2 surface of a growing layer can be exposed to AlCl3 to form Al2O3. These examples are particularly advantageous in forming an upper interface between bulk TiO2, SiO2 or ZrO2 dielectric and the gate electrode to be formed thereover.
- Because the replacement reaction is thermodynamically favored, an extended exposure can replace one or two molecular layers of the less favored oxide with Al2O3. If such full layer replacement is desired in the grading process, such exposures can be infrequently introduced in the ALD process early in the deposition, with the greater frequency towards the end of the process to produce a largely or purely Al2O3 upper surface. Conversely, such exposures can be frequently introduced early in the ALD process, and with less frequency later in the process to produce a largely or purely Al2O3 lower surface graded into the bulk dielectric.
- Alternatively, less than full substitution of Al2O3 for TiO2, SiO2 or ZrO2 can be accomplished in each AlCl3 pulse by selecting a shortened time span for the AlCl3 pulse. The exposure time for the substitution reaction can be progressively increased with each cycle or every few cycles during the process, thus accomplishing a greater proportion of Al2O3 at the upper surface of the growing dielectric layer. Where grading is accomplished by varying exposure time, it is advantageous to supply reactant gases perpendicularly to the substrate, such as by way of an overhead showerhead inlet. Thus concentration gradients from the inlet side to the exhaust side of the substrate can be avoided.
- It has been shown that, even with a positive Gibb's free energy value for a substitution reaction, a long enough exposure to the substituting source gas can result in eventual replacement of the top molecular layer of the growing dielectric. See Jarkko Ihanus, Mikko Ritala, Markku Leskela and Eero Rauhala, ALE growth of ZnS1-xSex thin films by substituting surface sulfur with elemental selenium, “A
PPLIED SURFACE SCIENCE , Vol. 112, pp. 154-158 (1997). In that case, it was shown that exposure of a sulfide or —SH surface termination to pure selenium will result in replacement of the sulfur atoms with selenium. - It will be understood that similar substitution reactions can also be employed for grading conductive materials, such as metal nitrides with different metals per the graded barrier layer described above.
- Although the foregoing invention has been described in terms of certain preferred embodiments, other embodiments will become apparent to those of ordinary skill in the art in view of the disclosure herein. In particular, the number of phases for each cycle can be varied. Intermediate reduction phases, for example, may not be necessary in some arrangements. Additionally, while one embodiment is disclosed in the context of conductive thin films lining a dual damascene structure, and another embodiment is disclosed in the context of ultrathin gate dielectric films, the skilled artisan will readily find application for the principles disclosed herein in a number of different contexts.
- Accordingly, the present invention is not intended to be limited by the recitation of preferred embodiments, but is intended to be defined solely by reference to the dependent claims.
Claims (16)
1. A method of forming a liner layer with a varying composition in a damascene trench, comprising:
placing a substrate in a reaction chamber;
introducing first metal and a non-metal vapor phase reactants in alternate and temporally separated pulses to the substrate in a plurality of atomic layer deposition (ALD) cycles; and
introducing varying amounts of a second metal vapor phase reactant to the substrate during said plurality of deposition cycles.
2.-30. (canceled)
31. A method of producing a liner layer, said method comprising:
depositing a first layer via an atomic layer deposition (ALD) process onto a substrate, wherein the first layer comprises tungsten, nitrogen, and carbon;
depositing a second layer via an ALD process over the first layer, wherein the second layer comprises tungsten; and
depositing a third layer via an ALD process over the second layer, wherein the third layer comprises copper.
32. The method of claim 31 , wherein the ALD process for the first non-graded layer comprises:
introducinging TEB;
purging;
introducing WF6;
purging;
introducing NH3; and
purging over the substrate.
33. The method of claim 32 , wherein the first layer deposited is a non-graded layer of tungsten, nitride, and carbide.
34. The method of claim 33 , wherein the process for depositing the second layer comprises:
introducing WF6;
purging;
introducing disilane or diborane; and
purging over the substrate.
35. The method of claim 34 , wherein the second layer is a non-graded layer of tungsten.
36. The method of claim 34 , wherein the process for depositing the third layer comprises:
introducing copper precursor;
purging,
introducing reducing precursor; and
purging over the substrate.
37. The method of claim 36 , wherein the third layer is a non-graded layer of copper.
38. The method of claim 36 , further comprising, between the deposition of the first layer and the deposition of the second layer, depositing a first transition layer, wherein depositing the first transition layer comprises depositing tungsten, nitride, and carbide, with additional amounts of tungsten added progressively during the deposition of the first transition layer.
39. The method of claim 38 , further comprising, between the deposition of the second layer and the deposition of the third layer, depositing a second transition layer, wherein depositing the second transition layer comprises depositing tungsten and copper, with additional amounts of copper added progressively during the deposition of the second transition layer.
40. The method of claim 36 , further comprising, between the deposition of the second layer and the deposition of the third layer, depositing a first transition layer, wherein depositing the first transition layer comprises depositing tungsten and copper, with additional amounts of copper added progressively during the deposition of the first transition layer.
41. The method of claim 31 , further comprising the step of depositing an electroplated layer onto the third layer.
42. The method of claim 33 , wherein depositing the second layer comprises supplying TEB, WF6, and NH3 in a plurality of first cycles and supplying Cu-precursor and reducing precursor in a plurality of second cycles.
43. The method of claim 42 , wherein a frequency of supplying of TEB, WF6, and NH3 is initially high compared to a frequency of supplying Cu-precursor and reducing precursor, and wherein the frequency of supplying TEB, WF6, and NH3 is subsequently low compared to the frequency of supplying Cu-precursor and reducing precursor.
44. The method of claim 43 , wherein depositing the third layer comprises supplying a Cu-precursor and a reducing precursor in a plurality of third cycles. 45-65. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/079,562 US20110256718A1 (en) | 2000-03-07 | 2011-04-04 | Thin films |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18742300P | 2000-03-07 | 2000-03-07 | |
US09/800,757 US6534395B2 (en) | 2000-03-07 | 2001-03-06 | Method of forming graded thin films using alternating pulses of vapor phase reactants |
US10/253,859 US6933225B2 (en) | 2000-03-07 | 2002-09-23 | Graded thin films |
US11/106,220 US7419903B2 (en) | 2000-03-07 | 2005-04-13 | Thin films |
US12/202,132 US7981791B2 (en) | 2000-03-07 | 2008-08-29 | Thin films |
US13/079,562 US20110256718A1 (en) | 2000-03-07 | 2011-04-04 | Thin films |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/202,132 Continuation US7981791B2 (en) | 2000-03-07 | 2008-08-29 | Thin films |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110256718A1 true US20110256718A1 (en) | 2011-10-20 |
Family
ID=46304343
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/106,220 Expired - Lifetime US7419903B2 (en) | 2000-03-07 | 2005-04-13 | Thin films |
US12/202,132 Expired - Fee Related US7981791B2 (en) | 2000-03-07 | 2008-08-29 | Thin films |
US13/079,562 Abandoned US20110256718A1 (en) | 2000-03-07 | 2011-04-04 | Thin films |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/106,220 Expired - Lifetime US7419903B2 (en) | 2000-03-07 | 2005-04-13 | Thin films |
US12/202,132 Expired - Fee Related US7981791B2 (en) | 2000-03-07 | 2008-08-29 | Thin films |
Country Status (1)
Country | Link |
---|---|
US (3) | US7419903B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150194342A1 (en) * | 2014-01-08 | 2015-07-09 | Globalfoundries Inc. | Formation of carbon-rich contact liner material |
US9257519B2 (en) | 2012-04-23 | 2016-02-09 | GlobalFoundries, Inc. | Semiconductor device including graded gate stack, related method and design structure |
WO2016137747A1 (en) * | 2015-02-27 | 2016-09-01 | Applied Materials, Inc. | Aluminum nitride barrier layer |
US20180005878A1 (en) * | 2016-07-01 | 2018-01-04 | Semiconductor Manufacturing International (Beijing) Corporation | Semiconductor interconnect structure and manufacturing method thereof |
US9929006B2 (en) | 2016-07-20 | 2018-03-27 | Micron Technology, Inc. | Silicon chalcogenate precursors, methods of forming the silicon chalcogenate precursors, and related methods of forming silicon nitride and semiconductor structures |
WO2018063406A1 (en) * | 2016-09-30 | 2018-04-05 | Intel Corporation | Microelectronic devices and methods for enhancing interconnect reliability performance using tungsten containing adhesion layers to enable cobalt interconnects |
US10566241B1 (en) | 2018-11-19 | 2020-02-18 | Micron Technology, Inc. | Methods of forming a semiconductor device, and related semiconductor devices and systems |
US10923494B2 (en) | 2018-11-19 | 2021-02-16 | Micron Technology, Inc. | Electronic devices comprising a source below memory cells and related systems |
US11610918B2 (en) | 2008-09-19 | 2023-03-21 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
WO2024196766A1 (en) * | 2023-03-17 | 2024-09-26 | Lam Research Corporation | Sequence for tungsten nitride deposition |
Families Citing this family (451)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6727169B1 (en) * | 1999-10-15 | 2004-04-27 | Asm International, N.V. | Method of making conformal lining layers for damascene metallization |
US7419903B2 (en) * | 2000-03-07 | 2008-09-02 | Asm International N.V. | Thin films |
US7494927B2 (en) | 2000-05-15 | 2009-02-24 | Asm International N.V. | Method of growing electrical conductors |
US7192849B2 (en) * | 2003-05-07 | 2007-03-20 | Sensor Electronic Technology, Inc. | Methods of growing nitride-based film using varying pulses |
EP1652226A2 (en) * | 2003-08-04 | 2006-05-03 | ASM America, Inc. | Surface preparation prior to deposition on germanium |
JP4370206B2 (en) * | 2004-06-21 | 2009-11-25 | パナソニック株式会社 | Semiconductor device and manufacturing method thereof |
EP1851794A1 (en) * | 2005-02-22 | 2007-11-07 | ASM America, Inc. | Plasma pre-treating surfaces for atomic layer deposition |
US7608549B2 (en) * | 2005-03-15 | 2009-10-27 | Asm America, Inc. | Method of forming non-conformal layers |
US8025922B2 (en) | 2005-03-15 | 2011-09-27 | Asm International N.V. | Enhanced deposition of noble metals |
US7666773B2 (en) | 2005-03-15 | 2010-02-23 | Asm International N.V. | Selective deposition of noble metal thin films |
US20060292809A1 (en) * | 2005-06-23 | 2006-12-28 | Enicks Darwin G | Method for growth and optimization of heterojunction bipolar transistor film stacks by remote injection |
US20070054460A1 (en) * | 2005-06-23 | 2007-03-08 | Atmel Corporation | System and method for providing a nanoscale, highly selective, and thermally resilient silicon, germanium, or silicon-germanium etch-stop |
US20080050883A1 (en) * | 2006-08-25 | 2008-02-28 | Atmel Corporation | Hetrojunction bipolar transistor (hbt) with periodic multilayer base |
US20070014919A1 (en) * | 2005-07-15 | 2007-01-18 | Jani Hamalainen | Atomic layer deposition of noble metal oxides |
EP1998373A3 (en) * | 2005-09-29 | 2012-10-31 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device having oxide semiconductor layer and manufacturing method thereof |
US7550385B2 (en) * | 2005-09-30 | 2009-06-23 | Intel Corporation | Amine-free deposition of metal-nitride films |
US7215006B2 (en) * | 2005-10-07 | 2007-05-08 | International Business Machines Corporation | Plating seed layer including an oxygen/nitrogen transition region for barrier enhancement |
US8530934B2 (en) | 2005-11-07 | 2013-09-10 | Atmel Corporation | Integrated circuit structures containing a strain-compensated compound semiconductor layer and methods and systems related thereto |
US8053849B2 (en) * | 2005-11-09 | 2011-11-08 | Advanced Micro Devices, Inc. | Replacement metal gate transistors with reduced gate oxide leakage |
US20070148890A1 (en) * | 2005-12-27 | 2007-06-28 | Enicks Darwin G | Oxygen enhanced metastable silicon germanium film layer |
US8440268B2 (en) * | 2006-03-30 | 2013-05-14 | Mitsui Engineering & Shipbuilding Co., Ltd. | Method and apparatus for growing plasma atomic layer |
US20070262295A1 (en) * | 2006-05-11 | 2007-11-15 | Atmel Corporation | A method for manipulation of oxygen within semiconductor materials |
US20070277734A1 (en) * | 2006-05-30 | 2007-12-06 | Applied Materials, Inc. | Process chamber for dielectric gapfill |
US7825038B2 (en) | 2006-05-30 | 2010-11-02 | Applied Materials, Inc. | Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen |
US7790634B2 (en) * | 2006-05-30 | 2010-09-07 | Applied Materials, Inc | Method for depositing and curing low-k films for gapfill and conformal film applications |
US7902080B2 (en) | 2006-05-30 | 2011-03-08 | Applied Materials, Inc. | Deposition-plasma cure cycle process to enhance film quality of silicon dioxide |
US8232176B2 (en) | 2006-06-22 | 2012-07-31 | Applied Materials, Inc. | Dielectric deposition and etch back processes for bottom up gapfill |
KR100884339B1 (en) * | 2006-06-29 | 2009-02-18 | 주식회사 하이닉스반도체 | Tungsten film formation method of semiconductor device and tungsten wiring layer formation method using same |
KR100760920B1 (en) * | 2006-07-25 | 2007-09-21 | 동부일렉트로닉스 주식회사 | How to Form Copper Wiring in Semiconductor Integrated Circuit Devices |
US7435484B2 (en) * | 2006-09-01 | 2008-10-14 | Asm Japan K.K. | Ruthenium thin film-formed structure |
KR100819002B1 (en) * | 2006-10-20 | 2008-04-02 | 삼성전자주식회사 | Nonvolatile Memory Device Manufacturing Method |
KR100819003B1 (en) * | 2006-10-20 | 2008-04-02 | 삼성전자주식회사 | Nonvolatile Memory Device Manufacturing Method |
US7495250B2 (en) * | 2006-10-26 | 2009-02-24 | Atmel Corporation | Integrated circuit structures having a boron- and carbon-doped etch-stop and methods, devices and systems related thereto |
US7569913B2 (en) * | 2006-10-26 | 2009-08-04 | Atmel Corporation | Boron etch-stop layer and methods related thereto |
US7550758B2 (en) | 2006-10-31 | 2009-06-23 | Atmel Corporation | Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator |
US20080124484A1 (en) * | 2006-11-08 | 2008-05-29 | Asm Japan K.K. | Method of forming ru film and metal wiring structure |
KR100867633B1 (en) * | 2007-02-13 | 2008-11-10 | 삼성전자주식회사 | Method for forming titanium aluminum nitride film and method for forming phase change memory device using same |
US7745352B2 (en) * | 2007-08-27 | 2010-06-29 | Applied Materials, Inc. | Curing methods for silicon dioxide thin films deposited from alkoxysilane precursor with harp II process |
US20090087339A1 (en) * | 2007-09-28 | 2009-04-02 | Asm Japan K.K. | METHOD FOR FORMING RUTHENIUM COMPLEX FILM USING Beta-DIKETONE-COORDINATED RUTHENIUM PRECURSOR |
KR101544198B1 (en) * | 2007-10-17 | 2015-08-12 | 한국에이에스엠지니텍 주식회사 | Ruthenium film formation method |
US7943531B2 (en) * | 2007-10-22 | 2011-05-17 | Applied Materials, Inc. | Methods for forming a silicon oxide layer over a substrate |
US7803722B2 (en) * | 2007-10-22 | 2010-09-28 | Applied Materials, Inc | Methods for forming a dielectric layer within trenches |
US7867923B2 (en) | 2007-10-22 | 2011-01-11 | Applied Materials, Inc. | High quality silicon oxide films by remote plasma CVD from disilane precursors |
US7655564B2 (en) | 2007-12-12 | 2010-02-02 | Asm Japan, K.K. | Method for forming Ta-Ru liner layer for Cu wiring |
KR20090067505A (en) * | 2007-12-21 | 2009-06-25 | 에이에스엠지니텍코리아 주식회사 | Ruthenium film deposition method |
US7799674B2 (en) | 2008-02-19 | 2010-09-21 | Asm Japan K.K. | Ruthenium alloy film for copper interconnects |
US7993462B2 (en) | 2008-03-19 | 2011-08-09 | Asm Japan K.K. | Substrate-supporting device having continuous concavity |
US8357435B2 (en) | 2008-05-09 | 2013-01-22 | Applied Materials, Inc. | Flowable dielectric equipment and processes |
US8084104B2 (en) | 2008-08-29 | 2011-12-27 | Asm Japan K.K. | Atomic composition controlled ruthenium alloy film formed by plasma-enhanced atomic layer deposition |
US8198184B2 (en) * | 2008-09-30 | 2012-06-12 | Texas Instruments Incorporated | Method to maximize nitrogen concentration at the top surface of gate dielectrics |
US8133555B2 (en) | 2008-10-14 | 2012-03-13 | Asm Japan K.K. | Method for forming metal film by ALD using beta-diketone metal complex |
JP5665289B2 (en) * | 2008-10-29 | 2015-02-04 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US20100136313A1 (en) * | 2008-12-01 | 2010-06-03 | Asm Japan K.K. | Process for forming high resistivity thin metallic film |
US9379011B2 (en) | 2008-12-19 | 2016-06-28 | Asm International N.V. | Methods for depositing nickel films and for making nickel silicide and nickel germanide |
US8344513B2 (en) * | 2009-03-23 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Barrier for through-silicon via |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US20110020546A1 (en) * | 2009-05-15 | 2011-01-27 | Asm International N.V. | Low Temperature ALD of Noble Metals |
JP2012532993A (en) * | 2009-07-10 | 2012-12-20 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Bis-ketoiminate copper precursor for deposition of copper-containing films |
US8980382B2 (en) | 2009-12-02 | 2015-03-17 | Applied Materials, Inc. | Oxygen-doping for non-carbon radical-component CVD films |
US8329569B2 (en) | 2009-07-31 | 2012-12-11 | Asm America, Inc. | Deposition of ruthenium or ruthenium dioxide |
US7935643B2 (en) | 2009-08-06 | 2011-05-03 | Applied Materials, Inc. | Stress management for tensile films |
US8741788B2 (en) | 2009-08-06 | 2014-06-03 | Applied Materials, Inc. | Formation of silicon oxide using non-carbon flowable CVD processes |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US7989365B2 (en) | 2009-08-18 | 2011-08-02 | Applied Materials, Inc. | Remote plasma source seasoning |
JP5587116B2 (en) * | 2009-09-30 | 2014-09-10 | 京セラ株式会社 | Wiring board and mounting structure |
US8513535B2 (en) * | 2009-10-30 | 2013-08-20 | Kyocera Corporation | Circuit board and structure using the same |
US8449942B2 (en) | 2009-11-12 | 2013-05-28 | Applied Materials, Inc. | Methods of curing non-carbon flowable CVD films |
KR20120111738A (en) | 2009-12-30 | 2012-10-10 | 어플라이드 머티어리얼스, 인코포레이티드 | Dielectric film growth with radicals produced using flexible nitrogen/hydrogen ratio |
US8329262B2 (en) | 2010-01-05 | 2012-12-11 | Applied Materials, Inc. | Dielectric film formation using inert gas excitation |
JP2013517616A (en) | 2010-01-06 | 2013-05-16 | アプライド マテリアルズ インコーポレイテッド | Flowable dielectrics using oxide liners |
SG182333A1 (en) | 2010-01-07 | 2012-08-30 | Applied Materials Inc | In-situ ozone cure for radical-component cvd |
CN102844848A (en) | 2010-03-05 | 2012-12-26 | 应用材料公司 | Conformal layers by radical-component cvd |
US8236708B2 (en) | 2010-03-09 | 2012-08-07 | Applied Materials, Inc. | Reduced pattern loading using bis(diethylamino)silane (C8H22N2Si) as silicon precursor |
US7994019B1 (en) | 2010-04-01 | 2011-08-09 | Applied Materials, Inc. | Silicon-ozone CVD with reduced pattern loading using incubation period deposition |
US8476142B2 (en) | 2010-04-12 | 2013-07-02 | Applied Materials, Inc. | Preferential dielectric gapfill |
US8524004B2 (en) | 2010-06-16 | 2013-09-03 | Applied Materials, Inc. | Loadlock batch ozone cure |
KR20120000612A (en) * | 2010-06-28 | 2012-01-04 | 삼성전자주식회사 | Method for manufacturing semiconductor device |
US8318584B2 (en) | 2010-07-30 | 2012-11-27 | Applied Materials, Inc. | Oxide-rich liner layer for flowable CVD gapfill |
US9285168B2 (en) | 2010-10-05 | 2016-03-15 | Applied Materials, Inc. | Module for ozone cure and post-cure moisture treatment |
US8664127B2 (en) | 2010-10-15 | 2014-03-04 | Applied Materials, Inc. | Two silicon-containing precursors for gapfill enhancing dielectric liner |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US8450191B2 (en) | 2011-01-24 | 2013-05-28 | Applied Materials, Inc. | Polysilicon films by HDP-CVD |
US8716154B2 (en) | 2011-03-04 | 2014-05-06 | Applied Materials, Inc. | Reduced pattern loading using silicon oxide multi-layers |
US20120255612A1 (en) * | 2011-04-08 | 2012-10-11 | Dieter Pierreux | Ald of metal oxide film using precursor pairs with different oxidants |
US8461043B2 (en) * | 2011-04-11 | 2013-06-11 | Micron Technology, Inc. | Barrier layer for integrated circuit contacts |
US8445078B2 (en) | 2011-04-20 | 2013-05-21 | Applied Materials, Inc. | Low temperature silicon oxide conversion |
US8871617B2 (en) | 2011-04-22 | 2014-10-28 | Asm Ip Holding B.V. | Deposition and reduction of mixed metal oxide thin films |
US20120276730A1 (en) * | 2011-04-27 | 2012-11-01 | Nanya Technology Corporation | Methods for fabricating a gate dielectric layer and for fabricating a gate structure |
US8420477B2 (en) * | 2011-04-27 | 2013-04-16 | Nanya Technology Corporation | Method for fabricating a gate dielectric layer and for fabricating a gate structure |
US8466073B2 (en) | 2011-06-03 | 2013-06-18 | Applied Materials, Inc. | Capping layer for reduced outgassing |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US9404178B2 (en) | 2011-07-15 | 2016-08-02 | Applied Materials, Inc. | Surface treatment and deposition for reduced outgassing |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US8383490B2 (en) | 2011-07-27 | 2013-02-26 | International Business Machines Corporation | Borderless contact for ultra-thin body devices |
US8617989B2 (en) | 2011-09-26 | 2013-12-31 | Applied Materials, Inc. | Liner property improvement |
US8551891B2 (en) | 2011-10-04 | 2013-10-08 | Applied Materials, Inc. | Remote plasma burn-in |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9957618B2 (en) * | 2012-02-28 | 2018-05-01 | Massachusetts Institute Of Technology | Single-unit reactor design for combined oxidative, initiated, and plasma-enhanced chemical vapor deposition |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US8889566B2 (en) | 2012-09-11 | 2014-11-18 | Applied Materials, Inc. | Low cost flowable dielectric films |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9412581B2 (en) | 2014-07-16 | 2016-08-09 | Applied Materials, Inc. | Low-K dielectric gapfill by flowable deposition |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
WO2016061524A1 (en) * | 2014-10-17 | 2016-04-21 | Dickey Eric R | Deposition of high-quality mixed oxide barrier films |
WO2016081146A1 (en) * | 2014-11-21 | 2016-05-26 | Applied Materials, Inc. | Alcohol assisted ald film deposition |
KR102263121B1 (en) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor device and manufacuring method thereof |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US9607842B1 (en) | 2015-10-02 | 2017-03-28 | Asm Ip Holding B.V. | Methods of forming metal silicides |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102592471B1 (en) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming metal interconnection and method of fabricating semiconductor device using the same |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9711450B1 (en) | 2016-06-07 | 2017-07-18 | International Business Machines Corporation | Interconnect structures with enhanced electromigration resistance |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (en) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR102624631B1 (en) | 2016-12-02 | 2024-01-12 | 삼성전자주식회사 | Semiconductor devices |
KR102762543B1 (en) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) * | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
JP6814057B2 (en) * | 2017-01-27 | 2021-01-13 | 株式会社Kokusai Electric | Semiconductor device manufacturing methods, substrate processing devices, and programs |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10199267B2 (en) * | 2017-06-30 | 2019-02-05 | Lam Research Corporation | Tungsten nitride barrier layer deposition |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
WO2019099976A1 (en) | 2017-11-19 | 2019-05-23 | Applied Materials, Inc. | Methods for ald of metal oxides on metal surfaces |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
JP7206265B2 (en) | 2017-11-27 | 2023-01-17 | エーエスエム アイピー ホールディング ビー.ブイ. | Equipment with a clean mini-environment |
KR102597978B1 (en) | 2017-11-27 | 2023-11-06 | 에이에스엠 아이피 홀딩 비.브이. | Storage device for storing wafer cassettes for use with batch furnaces |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
WO2019142055A2 (en) | 2018-01-19 | 2019-07-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US20190249303A1 (en) * | 2018-02-09 | 2019-08-15 | Asm Ip Holding B.V. | Chemical precursors and methods for depositing a silicon oxide film on a substrate utilizing chemical precursors |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
KR102600229B1 (en) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate supporting device, substrate processing apparatus including the same and substrate processing method |
WO2019207864A1 (en) | 2018-04-27 | 2019-10-31 | 株式会社Kokusai Electric | Method for manufacturing semiconductor device, device for treating substrate, and program |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TWI871083B (en) | 2018-06-27 | 2025-01-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
CN112292477A (en) | 2018-06-27 | 2021-01-29 | Asm Ip私人控股有限公司 | Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (en) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI866480B (en) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR102727227B1 (en) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
TWI838458B (en) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for plug fill deposition in 3-d nand applications |
JP7603377B2 (en) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and apparatus for filling recesses formed in a substrate surface - Patents.com |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR102782593B1 (en) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR102762833B1 (en) | 2019-03-08 | 2025-02-04 | 에이에스엠 아이피 홀딩 비.브이. | STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME |
JP2020167398A (en) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | Door openers and substrate processing equipment provided with door openers |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP7598201B2 (en) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
JP7612342B2 (en) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141002A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of using a gas-phase reactor system including analyzing exhausted gas |
KR20200141931A (en) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for cleaning quartz epitaxial chambers |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
KR20210015655A (en) | 2019-07-30 | 2021-02-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (en) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | Liquid level sensor for a chemical source vessel |
KR20210018761A (en) | 2019-08-09 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | heater assembly including cooling apparatus and method of using same |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR102733104B1 (en) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
JP2021097227A (en) | 2019-12-17 | 2021-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride layer and structure including vanadium nitride layer |
KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
TW202142733A (en) | 2020-01-06 | 2021-11-16 | 荷蘭商Asm Ip私人控股有限公司 | Reactor system, lift pin, and processing method |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
KR102667792B1 (en) | 2020-02-03 | 2024-05-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming structures including a vanadium or indium layer |
KR20210100010A (en) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (en) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
TWI855223B (en) | 2020-02-17 | 2024-09-11 | 荷蘭商Asm Ip私人控股有限公司 | Method for growing phosphorous-doped silicon layer |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
KR102775390B1 (en) | 2020-03-12 | 2025-02-28 | 에이에스엠 아이피 홀딩 비.브이. | Method for Fabricating Layer Structure Having Target Topological Profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (en) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210130646A (en) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
CN113555279A (en) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | Methods of forming vanadium nitride-containing layers and structures comprising the same |
KR20210132605A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Vertical batch furnace assembly comprising a cooling gas supply |
TW202208671A (en) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods of forming structures including vanadium boride and vanadium phosphide layers |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR20210132612A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and apparatus for stabilizing vanadium compounds |
KR102783898B1 (en) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
TW202147543A (en) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing system |
KR102788543B1 (en) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
TW202147383A (en) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210145079A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Flange and apparatus for processing substrates |
TWI862836B (en) | 2020-05-21 | 2024-11-21 | 荷蘭商Asm Ip私人控股有限公司 | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202208659A (en) | 2020-06-16 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for depositing boron containing silicon germanium layers |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
KR20220011093A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for depositing molybdenum layers |
KR20220011092A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming structures including transition metal layers |
US11359282B2 (en) * | 2020-08-12 | 2022-06-14 | Applied Materials, Inc. | Methods for forming impurity free metal alloy films |
KR20220021863A (en) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (en) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for cleaning a substrate, method for selectively depositing, and reaction system |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
TW202217045A (en) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing gap filing fluids and related systems and devices |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (en) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
TW202218049A (en) | 2020-09-25 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220050048A (en) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat |
TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202229620A (en) | 2020-11-12 | 2022-08-01 | 特文特大學 | Deposition system, method for controlling reaction condition, method for depositing |
TW202229795A (en) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | A substrate processing apparatus with an injector |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (en) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
CN115818589B (en) * | 2022-12-07 | 2024-07-26 | 中国科学技术大学 | Method for synthesizing two-dimensional transition metal nitride material with room-temperature ferromagnetism through reaction gas flow rate regulation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1063687A2 (en) * | 1999-05-24 | 2000-12-27 | Lucent Technologies Inc. | Titanium-tantalum barrier layer film and method for forming the same |
US6534395B2 (en) * | 2000-03-07 | 2003-03-18 | Asm Microchemistry Oy | Method of forming graded thin films using alternating pulses of vapor phase reactants |
US6955986B2 (en) * | 2003-03-27 | 2005-10-18 | Asm International N.V. | Atomic layer deposition methods for forming a multi-layer adhesion-barrier layer for integrated circuits |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482262B1 (en) | 1959-10-10 | 2002-11-19 | Asm Microchemistry Oy | Deposition of transition metal carbides |
SE393967B (en) | 1974-11-29 | 1977-05-31 | Sateko Oy | PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE |
FI64878C (en) | 1982-05-10 | 1984-01-10 | Lohja Ab Oy | KOMBINATIONSFILM FOER ISYNNERHET TUNNFILMELEKTROLUMINENSSTRUKTURER |
US5294286A (en) | 1984-07-26 | 1994-03-15 | Research Development Corporation Of Japan | Process for forming a thin film of silicon |
US5769950A (en) | 1985-07-23 | 1998-06-23 | Canon Kabushiki Kaisha | Device for forming deposited film |
US4761269A (en) | 1986-06-12 | 1988-08-02 | Crystal Specialties, Inc. | Apparatus for depositing material on a substrate |
US4747367A (en) | 1986-06-12 | 1988-05-31 | Crystal Specialties, Inc. | Method and apparatus for producing a constant flow, constant pressure chemical vapor deposition |
US5158653A (en) | 1988-09-26 | 1992-10-27 | Lashmore David S | Method for production of predetermined concentration graded alloys |
US5071670A (en) | 1990-06-11 | 1991-12-10 | Kelly Michael A | Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means |
JPH05313193A (en) | 1992-05-12 | 1993-11-26 | Fujitsu Ltd | Thin-film transistor matrix device and its production |
US5306666A (en) | 1992-07-24 | 1994-04-26 | Nippon Steel Corporation | Process for forming a thin metal film by chemical vapor deposition |
JPH06232128A (en) | 1993-02-08 | 1994-08-19 | Hitachi Ltd | Semiconductor device and manufacturing method thereof |
JPH0774990A (en) * | 1993-08-31 | 1995-03-17 | Elmo Co Ltd | Imaging device |
US5795495A (en) | 1994-04-25 | 1998-08-18 | Micron Technology, Inc. | Method of chemical mechanical polishing for dielectric layers |
US5449314A (en) | 1994-04-25 | 1995-09-12 | Micron Technology, Inc. | Method of chimical mechanical polishing for dielectric layers |
US6342277B1 (en) | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US5916365A (en) | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
JP3277193B2 (en) | 1997-03-13 | 2002-04-22 | 三菱電機株式会社 | Semiconductor device and method of manufacturing semiconductor device |
US6124189A (en) | 1997-03-14 | 2000-09-26 | Kabushiki Kaisha Toshiba | Metallization structure and method for a semiconductor device |
KR100269328B1 (en) | 1997-12-31 | 2000-10-16 | 윤종용 | Method for forming conductive layer using atomic layer deposition process |
KR100319571B1 (en) | 1998-03-12 | 2002-01-09 | 루센트 테크놀러지스 인크 | Electronic Components With Doped Metal Oxide Dielectric Materials And A Process For Making Electronic Components With Doped Metal Oxide Dielectric Materials |
US6399522B1 (en) | 1998-05-11 | 2002-06-04 | Taiwan Semiconductor Manufacturing Company | PE-silane oxide particle performance improvement |
US6461675B2 (en) | 1998-07-10 | 2002-10-08 | Cvc Products, Inc. | Method for forming a copper film on a substrate |
KR100275738B1 (en) | 1998-08-07 | 2000-12-15 | 윤종용 | Method for producing thin film using atomatic layer deposition |
US6362526B1 (en) | 1998-10-08 | 2002-03-26 | Advanced Micro Devices, Inc. | Alloy barrier layers for semiconductors |
US6294836B1 (en) | 1998-12-22 | 2001-09-25 | Cvc Products Inc. | Semiconductor chip interconnect barrier material and fabrication method |
US6174799B1 (en) | 1999-01-05 | 2001-01-16 | Advanced Micro Devices, Inc. | Graded compound seed layers for semiconductors |
EE200100421A (en) | 1999-02-11 | 2002-12-16 | Hardide Limited | Tungsten carbide coating material, coating composition and process for making tungsten carbide and coating |
AU3229600A (en) | 1999-02-12 | 2000-08-29 | Gelest, Inc. | Chemical vapor deposition of tungsten nitride |
US6200893B1 (en) | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6391785B1 (en) | 1999-08-24 | 2002-05-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for bottomless deposition of barrier layers in integrated circuit metallization schemes |
US6153935A (en) | 1999-09-30 | 2000-11-28 | International Business Machines Corporation | Dual etch stop/diffusion barrier for damascene interconnects |
US6593653B2 (en) | 1999-09-30 | 2003-07-15 | Novellus Systems, Inc. | Low leakage current silicon carbonitride prepared using methane, ammonia and silane for copper diffusion barrier, etchstop and passivation applications |
WO2001029280A1 (en) | 1999-10-15 | 2001-04-26 | Asm America, Inc. | Deposition of transition metal carbides |
AU1208201A (en) | 1999-10-15 | 2001-04-30 | Asm America, Inc. | Method for depositing nanolaminate thin films on sensitive surfaces |
US6780704B1 (en) | 1999-12-03 | 2004-08-24 | Asm International Nv | Conformal thin films over textured capacitor electrodes |
US6329704B1 (en) | 1999-12-09 | 2001-12-11 | International Business Machines Corporation | Ultra-shallow junction dopant layer having a peak concentration within a dielectric layer |
US7419903B2 (en) | 2000-03-07 | 2008-09-02 | Asm International N.V. | Thin films |
US6482733B2 (en) | 2000-05-15 | 2002-11-19 | Asm Microchemistry Oy | Protective layers prior to alternating layer deposition |
US7494927B2 (en) | 2000-05-15 | 2009-02-24 | Asm International N.V. | Method of growing electrical conductors |
EP2293322A1 (en) | 2000-06-08 | 2011-03-09 | Genitech, Inc. | Method for forming a metal nitride layer |
US6368954B1 (en) | 2000-07-28 | 2002-04-09 | Advanced Micro Devices, Inc. | Method of copper interconnect formation using atomic layer copper deposition |
KR100768175B1 (en) | 2001-02-07 | 2007-10-17 | 삼성에스디아이 주식회사 | Functional thin film with optical and electrical properties |
KR100768176B1 (en) | 2001-02-07 | 2007-10-17 | 삼성에스디아이 주식회사 | Functional thin film with optical and electrical properties |
KR100708640B1 (en) | 2001-02-07 | 2007-04-18 | 삼성에스디아이 주식회사 | Functional thin film with optical and electrical properties |
US20020167005A1 (en) | 2001-05-11 | 2002-11-14 | Motorola, Inc | Semiconductor structure including low-leakage, high crystalline dielectric materials and methods of forming same |
WO2003025243A2 (en) | 2001-09-14 | 2003-03-27 | Asm International N.V. | Metal nitride deposition by ald using gettering reactant |
US6605549B2 (en) | 2001-09-29 | 2003-08-12 | Intel Corporation | Method for improving nucleation and adhesion of CVD and ALD films deposited onto low-dielectric-constant dielectrics |
US6787912B2 (en) | 2002-04-26 | 2004-09-07 | International Business Machines Corporation | Barrier material for copper structures |
US6933246B2 (en) | 2002-06-14 | 2005-08-23 | Trikon Technologies Limited | Dielectric film |
JP2004165634A (en) | 2002-08-15 | 2004-06-10 | Interuniv Micro Electronica Centrum Vzw | Plasma treatment for ALD surface treatment |
US6787453B2 (en) | 2002-12-23 | 2004-09-07 | Intel Corporation | Barrier film integrity on porous low k dielectrics by application of a hydrocarbon plasma treatment |
US7244683B2 (en) | 2003-01-07 | 2007-07-17 | Applied Materials, Inc. | Integration of ALD/CVD barriers with porous low k materials |
JP2007502551A (en) | 2003-06-13 | 2007-02-08 | アプライド マテリアルズ インコーポレイテッド | Integration of ALD tantalum nitride for copper metallization |
JP2007523994A (en) | 2003-06-18 | 2007-08-23 | アプライド マテリアルズ インコーポレイテッド | Atomic layer deposition of barrier materials |
US7405143B2 (en) | 2004-03-25 | 2008-07-29 | Asm International N.V. | Method for fabricating a seed layer |
US20050252449A1 (en) | 2004-05-12 | 2005-11-17 | Nguyen Son T | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
EP1851794A1 (en) | 2005-02-22 | 2007-11-07 | ASM America, Inc. | Plasma pre-treating surfaces for atomic layer deposition |
-
2005
- 2005-04-13 US US11/106,220 patent/US7419903B2/en not_active Expired - Lifetime
-
2008
- 2008-08-29 US US12/202,132 patent/US7981791B2/en not_active Expired - Fee Related
-
2011
- 2011-04-04 US US13/079,562 patent/US20110256718A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1063687A2 (en) * | 1999-05-24 | 2000-12-27 | Lucent Technologies Inc. | Titanium-tantalum barrier layer film and method for forming the same |
US6534395B2 (en) * | 2000-03-07 | 2003-03-18 | Asm Microchemistry Oy | Method of forming graded thin films using alternating pulses of vapor phase reactants |
US6955986B2 (en) * | 2003-03-27 | 2005-10-18 | Asm International N.V. | Atomic layer deposition methods for forming a multi-layer adhesion-barrier layer for integrated circuits |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11610918B2 (en) | 2008-09-19 | 2023-03-21 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US9257519B2 (en) | 2012-04-23 | 2016-02-09 | GlobalFoundries, Inc. | Semiconductor device including graded gate stack, related method and design structure |
US20150194342A1 (en) * | 2014-01-08 | 2015-07-09 | Globalfoundries Inc. | Formation of carbon-rich contact liner material |
US9130019B2 (en) * | 2014-01-08 | 2015-09-08 | Globalfoundries Inc. | Formation of carbon-rich contact liner material |
US20150357285A1 (en) * | 2014-01-08 | 2015-12-10 | Globalfoundries Inc. | Formation of carbon-rich contact liner material |
US9318440B2 (en) * | 2014-01-08 | 2016-04-19 | Globalfoundries Inc. | Formation of carbon-rich contact liner material |
WO2016137747A1 (en) * | 2015-02-27 | 2016-09-01 | Applied Materials, Inc. | Aluminum nitride barrier layer |
US9646876B2 (en) | 2015-02-27 | 2017-05-09 | Applied Materials, Inc. | Aluminum nitride barrier layer |
KR20170121236A (en) * | 2015-02-27 | 2017-11-01 | 어플라이드 머티어리얼스, 인코포레이티드 | Aluminum nitride barrier layer |
KR102585845B1 (en) | 2015-02-27 | 2023-10-11 | 어플라이드 머티어리얼스, 인코포레이티드 | Aluminum Nitride Barrier Layer |
US11069565B2 (en) | 2016-07-01 | 2021-07-20 | Semiconductor Manufacturing International (Beijing) Corporation | Semiconductor interconnect structure and manufacturing method thereof |
US10290539B2 (en) * | 2016-07-01 | 2019-05-14 | Semiconductor Manufacturing International (Beijing) Corporation | Semiconductor interconnect structure and manufacturing method thereof |
CN107564850A (en) * | 2016-07-01 | 2018-01-09 | 中芯国际集成电路制造(北京)有限公司 | Interconnection structure and its manufacture method |
US20180005878A1 (en) * | 2016-07-01 | 2018-01-04 | Semiconductor Manufacturing International (Beijing) Corporation | Semiconductor interconnect structure and manufacturing method thereof |
US9929006B2 (en) | 2016-07-20 | 2018-03-27 | Micron Technology, Inc. | Silicon chalcogenate precursors, methods of forming the silicon chalcogenate precursors, and related methods of forming silicon nitride and semiconductor structures |
US11152205B2 (en) | 2016-07-20 | 2021-10-19 | Micron Technology, Inc. | Silicon chalcogenate precursors comprising a chemical formula of si(XR1)nR24-n and methods of forming the silicon chalcogenate precursors |
WO2018063406A1 (en) * | 2016-09-30 | 2018-04-05 | Intel Corporation | Microelectronic devices and methods for enhancing interconnect reliability performance using tungsten containing adhesion layers to enable cobalt interconnects |
US10566241B1 (en) | 2018-11-19 | 2020-02-18 | Micron Technology, Inc. | Methods of forming a semiconductor device, and related semiconductor devices and systems |
US10923494B2 (en) | 2018-11-19 | 2021-02-16 | Micron Technology, Inc. | Electronic devices comprising a source below memory cells and related systems |
US11094592B2 (en) | 2018-11-19 | 2021-08-17 | Micron Technology, Inc. | Semiconductor devices and systems comprising memory cells and a source |
US11469249B2 (en) | 2018-11-19 | 2022-10-11 | Micron Technology, Inc. | Method of fabricating electronic devices comprising removing sacrificial structures to form a cavity |
WO2024196766A1 (en) * | 2023-03-17 | 2024-09-26 | Lam Research Corporation | Sequence for tungsten nitride deposition |
Also Published As
Publication number | Publication date |
---|---|
US7419903B2 (en) | 2008-09-02 |
US7981791B2 (en) | 2011-07-19 |
US20090068832A1 (en) | 2009-03-12 |
US20050181555A1 (en) | 2005-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7981791B2 (en) | Thin films | |
US6933225B2 (en) | Graded thin films | |
US6727169B1 (en) | Method of making conformal lining layers for damascene metallization | |
KR101263856B1 (en) | Method of depositing tungsten film with reduced resistivity and improved surface morphology | |
EP1221177B1 (en) | Conformal lining layers for damascene metallization | |
US6482733B2 (en) | Protective layers prior to alternating layer deposition | |
KR100974114B1 (en) | Periodic Deposition of Refractory Metal Silicon Nitride | |
US6720027B2 (en) | Cyclical deposition of a variable content titanium silicon nitride layer | |
US6759325B2 (en) | Sealing porous structures | |
US7569284B2 (en) | Incorporation of nitrogen into high k dielectric film | |
KR20190024834A (en) | Methods for filling a gap feature on a substrate surface and related semiconductor device structures | |
KR20190024841A (en) | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures | |
US9546419B2 (en) | Method of reducing tungsten film roughness and resistivity | |
TW202246575A (en) | Methods for filling a gap and related semiconductor processing apparatuses | |
US20220098731A1 (en) | Method Of Reducing Titanium Nitride Etching During Tungsten Film Formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |