US20110113732A1 - Method of isolating column loading and mitigating deformation of shaped metal vessels - Google Patents
Method of isolating column loading and mitigating deformation of shaped metal vessels Download PDFInfo
- Publication number
- US20110113732A1 US20110113732A1 US12/618,396 US61839609A US2011113732A1 US 20110113732 A1 US20110113732 A1 US 20110113732A1 US 61839609 A US61839609 A US 61839609A US 2011113732 A1 US2011113732 A1 US 2011113732A1
- Authority
- US
- United States
- Prior art keywords
- vessel
- shaped metal
- carry ring
- closure
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002184 metal Substances 0.000 title claims abstract description 126
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000011068 loading method Methods 0.000 title claims abstract description 28
- 230000000116 mitigating effect Effects 0.000 title claims abstract description 19
- 238000000071 blow moulding Methods 0.000 claims description 6
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 claims description 6
- 241000237858 Gastropoda Species 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 238000004049 embossing Methods 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000000284 resting effect Effects 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 description 36
- 239000000463 material Substances 0.000 description 21
- 239000004033 plastic Substances 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 12
- 238000007493 shaping process Methods 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 235000013361 beverage Nutrition 0.000 description 5
- 238000005034 decoration Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 238000009966 trimming Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004553 extrusion of metal Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 235000021443 coca cola Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67B—APPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
- B67B3/00—Closing bottles, jars or similar containers by applying caps
- B67B3/20—Closing bottles, jars or similar containers by applying caps by applying and rotating preformed threaded caps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B7/00—Closing containers or receptacles after filling
- B65B7/16—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
- B65B7/28—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
- B65B7/2842—Securing closures on containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/28—Deep-drawing of cylindrical articles using consecutive dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B3/00—Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B3/00—Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B3/02—Machines characterised by the incorporation of means for making the containers or receptacles
- B65B3/022—Making containers by moulding of a thermoplastic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B7/00—Closing containers or receptacles after filling
- B65B7/16—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
- B65B7/28—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
- B65D1/023—Neck construction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
- B65D1/023—Neck construction
- B65D1/0246—Closure retaining means, e.g. beads, screw-threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67B—APPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
- B67B3/00—Closing bottles, jars or similar containers by applying caps
- B67B3/02—Closing bottles, jars or similar containers by applying caps by applying flanged caps, e.g. crown caps, and securing by deformation of flanges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B43/00—Forming, feeding, opening or setting-up containers or receptacles in association with packaging
- B65B43/42—Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation
- B65B43/54—Means for supporting containers or receptacles during the filling operation
Definitions
- This invention relates to a method of isolating column loading and mitigating deformation of shaped metal vessels, the method comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, an open end, and an integral carry ring proximate the open end.
- Column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring.
- the shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during application of the closure.
- a shortcoming is that in designing packaging with thinner walls to support column loads more material is used in the product packaging, which raises the cost of the packaging.
- a method of isolating column loading and mitigating deformation of shaped metal vessels comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, an open end, and an integral carry ring proximate the open end.
- Column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring.
- the shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during application of the closure.
- a method of isolating column loading and mitigating deformation of shaped metal vessels comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, and an open end.
- An outsert is applied around the open end of the shaped metal vessel, the outsert comprising a carry ring.
- Column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring.
- the shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during application of the closure.
- a method of isolating column loading and mitigating deformation of shaped metal vessels comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, an and open end.
- a carry ring is pinched or adhered around the open end of the shaped metal vessel.
- the column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring.
- the shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during fill and application of the closure.
- FIG. 1 illustrates one example of a system and method of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application
- FIG. 2A-2C illustrates one example of product packaging comprising a column load-bearing outsert with a carry ring;
- FIG. 3A-3B illustrates one example of product packaging comprising a column load-bearing outsert
- FIG. 4A-4B illustrates one example of product packaging comprising an integral thread and integral carry ring
- FIG. 5A-5B illustrates one example of product packaging comprising an inward extending integral carry ring
- FIG. 6A-6D illustrates one example of product packaging comprising symmetrical and asymmetrical carry rings pinched or adhered into product packaging;
- FIG. 7A-7B illustrates one example of product packaging comprising a integral outwardly extending carry ring
- FIG. 8 illustrates one example of column load-bearing outsert
- FIG. 9 illustrates one example of product packaging comprising an outsert and application of a threaded screw cap closure.
- FIG. 10A-10B illustrates one example of product packaging comprising a crown finish closure.
- FIG. 11 illustrates one example of a shaped vessel
- FIG. 12-14 illustrates one example of a method of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application
- FIG. 15 illustrates one example of a method of forming a carry ring in product packaging isolating column loading and mitigating deformation of shaped vessels during fill and or closure application
- FIG. 16 illustrates examples of exemplary embodiments of methods of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application.
- a shaped metal vessel is used in the present invention. Details of such shaped metal vessels can be found in the co-pending patent application entitled “SHAPED METAL VESSEL”, inventor John E. Adams et al., which was filed concurrently with the present application and is incorporated herein by reference in its entirety.
- FIG. 1 there is illustrated one example of a system and method of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application.
- a plurality of shaped vessels 102 A-C comprising outsert 106 A-C can be formed by way of a plurality of cylindrical tubes and conveyed on a carrier 304 .
- a carry ring can then be formed and or added to shaped vessel 102 A-C.
- a carry ring support 302 A-B can be used to support the shaped vessel during fill and or application of a closure 202 .
- a column load can be isolated between the carry ring and the open end of the shaped vessel 102 C during shaped vessel 102 filling and or when the closure 202 is being applied.
- column load also referred to as axially loading is defined as a load or force along or parallel to a concentric with a primary axis.
- the primary axis is from the top open end to the bottom sealed end of the shaped vessel 102 .
- such a column load is typically present during fill and or when the closure is being applied to the shaped vessel 102 and when the shaped vessels are stacked on top of each other, such as when forming pallets of stacked product, store displays, storage of finished product, and or is present in other situations, as may be required and or desired in a particular embodiment.
- a cylindrical tube is defined as the space enclosed by a cylindrical surface.
- a soda or vessel can be referred to as a cylindrical tube.
- shaped vessel 102 can be referred to as a shaped metal vessel.
- An advantage of isolating the column to the area between the carry ring and the open end of the shaped vessel 102 A-C is that such column loading does not get applied to the area of the shaped vessel below the carry ring.
- isolating the column load to the area between the carry ring and the open end of the shaped vessel effectuates the ability to manufacture a thinner walled shaped vessel, from metal or other materials, that might otherwise deform and or crush under high column loading.
- An economic advantage is that thinner walled vessels have less material and are less costly to manufacture. This is particularly true regarding metal vessels.
- a marketing and fabrication advantage is that the thinner walled vessels can be easier to shape and form, which effectuates the ability to create highly shaped vessels by numerous molding methods including blow molding, pressure ram, embossed, rolled, hydro formed, pneumatic formed, stamped halves, and or other methods, as may be required and or desired in a particular embodiment.
- FIG. 2A-2C there is illustrated one example of product packaging also referred to as shaped vessel 102 or shaped metal vessel 102 comprising a column load-bearing outsert 106 having a carry ring 108 .
- FIG. 2A illustrates a shaped vessel 102 with outsert 106 placed around the open end 124 of the vessel.
- FIG. 2B illustrates a thin wall cross section 110 view of the shaped vessel 102 with the outsert 106 being positioned under a rolled edge 104 .
- a shaped, polished, or other edge description can be referred to as a rolled edge.
- FIG. 2C illustrates a cross section view of the shaped vessel 102 with the outsert 106 being positioned under a rolled edge 104 .
- the rolled edge 104 interlocking with the outsert 106 to prevent outsert 106 slippage around the vessel neck during threaded closure application and removal.
- outsert 106 can be manufactured from polymers, metal, or glass and or other materials, as may be required and or desired ion a particular embodiment. Furthermore, the outsert 106 can be used with a closure such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment. Crown finishes can be metal, plastic, and or other materials, as may be required and or desired. Plastic closures can be threaded, twist-off, and or other types of closure, as may be required and or desired in a particular embodiment. In an exemplary embodiment, a carry ring length ‘Q’ can be in the range of 1 mm to 10 mm, with a preferred length of less than 5 mm.
- a closure ring length ‘Q’ can be in the range of 1 mm to 10 mm, with a preferred length of less than 5 mm.
- outsert 106 can be manufactured from polymers, metal, or glass and or other materials, as may be required and or desired ion a particular embodiment. Furthermore, the outsert can be used with a closure such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment. Crown finishes can be metal, plastic, and or other materials, as may be required and or desired. Plastic closures can be threaded, twist-off, and or other types of closure, as may be required and or desired in a particular embodiment.
- a closure such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment.
- Crown finishes can be metal, plastic, and or
- the step at the top of the outsert allows the vessel material to be rolled over the outsert upper edge which grips the outsert and aids in securing the outsert from rotation and slippage when the closure is applied and or removed from the vessel.
- FIG. 3A-3B there is illustrated one example of product packaging also referred to as shaped vessel 102 comprising a column load-bearing outsert 106 .
- the outsert 106 further comprising optional threads 122 for engaging and securing a removable closure 202 (closure 202 not shown in this Figure).
- the optional threads can be a plurality of threads spirally affixed to the outer surface of the outsert to engage and secure a separate vessel closure to the shaped metal vessel body.
- the vessel 102 further comprising a rolled edge 104 .
- FIG. 3A illustrates a shaped vessel 102 with outsert 106 placed around the open end of the vessel.
- FIG. 3B illustrates a cross section view of the shaped vessel 102 with the outsert 106 being positioned under a rolled edge 104 .
- FIG. 3B also illustrates how a shaped vessel 102 thin wall cross section 110 can be a rolled edge 104 or otherwise shape edge 104 at the top of the open end 124 of the vessel 102 .
- the rolled edge 104 secures the outsert 106 from slipping off the shaped vessel 102 , open end 124 , as well as provides a smooth edge to effectuate good consumer experience when pouring and drinking from the shaped vessel 102 .
- FIGS. 4A-4B there is illustrated one example of product packaging also referred to as shaped vessel 102 comprising an integral thread and integral carry ring.
- threads 122 , rolled edge 104 , and carry ring 114 can be formed integral to the vessel 102 .
- An advantage of this embodiment is that no additional outsert or separate carry ring such as carry ring 114 A-B shown in FIGS. 6A-6B . This can lead to faster manufacturing line speeds, less complicated assembly, and lower cost vessels 102 .
- Closures such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment.
- Crown finishes can be metal, plastic, and or other materials, as may be required and or desired.
- Plastic closures can be threaded, twist-off, and or other types of closure, as may be required and or desired in a particular embodiment.
- FIG. 4B also illustrates how a shaped vessel 102 thin wall cross section 110 can be a rolled edge 104 or otherwise shape edge 104 at the top of the open end 124 of the vessel 102 .
- Threads 122 and a carry ring 114 are integral to the vessel wall 110 eliminating in this embodiment the need for an outsert.
- FIG. 5A-5B there is illustrated one example of product packaging also referred to as shaped vessel 102 comprising an inward extending integral carry ring 120 .
- FIG. 5B illustrates a cross sectional view of the open end 124 of the shaped vessel 102 , illustrating the side wall 110 , formed edge 104 , and the formed carry ring 120 .
- a carry ring 120 can be formed in the side wall of the shaped vessel 102 .
- a length of outsert 106 ‘B’ can be in the range of 5 mm to 30 mm, with a preferred length of less than 20 mm.
- An opening ‘H’ length can be in the range of 13 mm to 50 mm.
- a rolled edge ‘I’ length can be in the range of 0.25 mm to 5 mm, with a preferred length of less than 3 mm.
- An opening diameter ‘K’ can be in the range of 10 mm to 47 mm, with a preferred diameter of less than 32 mm.
- a carry ring of length ‘J’ can be in the range of 1 mm to 8 mm, with a preferred length of less than 5 mm.
- FIGS. 6A-6D there is illustrated one example of product packaging also referred to as shaped vessel 102 comprising symmetrical 114 B or asymmetrical 114 A carry ring pinched or adhered to the product packaging 102 .
- FIG. 6A-6B illustrates a shaped vessel 102 with outsert 106 placed around the open end of the vessel.
- FIG. 6A illustrates an asymmetrical carry ring 114 A having a shaped outer circumference edge other than the continuous circular circumference outer edge such as shown in FIG. 6B carry ring 114 B.
- the inner circumference is sized to fit around the open end of the shaped vessel 102 .
- the shaped outer edge can be any shape, as may be required and or desired in a particular embodiment.
- FIG. 6B illustrates a symmetrical carry ring 114 B.
- Symmetrical refers to the outer circumference edge of carry ring 114 B being continuous circular in shape.
- the inner circumference is sized to fit around the open end of the shaped vessel 102 .
- FIG. 6C illustrates a shaped vessel 102 with a carry ring 114 pinched or adhered between a formed upper edge 118 A and a formed lower edge 118 B being positioned proximate the rolled edge 104 .
- the upper edge 118 A and lower edge 188 B are integral to the tapered body of the shaped metal vessel body.
- FIG. 6D illustrates a shaped vessel 102 with a carry ring 114 pinched or adhered between a lower ledge integrally formed in the tapered body portion of the vessel 102 a carry ring 114 resting on top of the integral lower ledge and formed integral upper edge 118 B pinches and or adheres the carry ring 114 in place between the formed lower ledge and the upper edge 118 .
- the upper edge 118 A and lower ledge are integral to the tapered body of the shaped metal vessel body.
- the lower ledge can be referred to as the lower edge.
- a length of the open end ‘B’ can be in the range of 5 mm to 30 mm, with a preferred length of less than 20 mm.
- An opening ‘H’ length can be in the range of 13 mm to 50 mm.
- a rolled edge ‘I’ length can be in the range of 0.25 mm to 5 mm, with a preferred length of less than 3 mm.
- An opening diameter ‘K’ can be in the range of 10 mm to 47 mm, with a preferred diameter of less than 32 mm.
- a carry ring being pinched or adhered between the lower edge and the upper edge, the lower edge, the upper edger, and the carry ring combination of length T can be in the range of 1 mm to 8 mm, with a preferred length of less than 5 mm.
- FIG. 7A-7B there is illustrated one example of product packaging also referred to as shaped vessel 102 comprising an integral outwardly extending carry ring.
- FIG. 7A illustrated the shaped vessel 102 comprising the integral outwardly extending carry ring 120 .
- FIG. 7B illustrates a cross sectional view of the open end 124 of the shaped vessel 102 , illustrating the side wall 110 , formed edge 104 , and the formed carry ring 120 .
- a carry ring 120 can be integrally formed in the side wall of the shaped vessel 102 .
- the outsert 106 is positioned around the open end of a shaped vessel 102 , optional threads 122 for engaging and securing a removable closure 202 (closure 202 not shown in this Figure), and designed to provide a carry ring or carry ring edge to support column load during the application of a closure onto the open end of the shaped vessel.
- the optional threads can be a plurality of threads spirally affixed to the outer surface of the outsert to engage and secure a separate vessel closure to the shaped body.
- Such an outsert can be manufactured from plastic, metal, or other material, as may be required and or desired in a particular embodiment.
- column load also referred to as axially loading is defined as a load or force along or parallel to a concentric with a primary axis.
- the primary axis is from the top open end to the bottom sealed end of the shaped vessel 102 .
- such a column load is typically present during fill and or when the closure is being applied to the shaped vessel 102 and when the shaped vessels are stacked on top of each other, such as when forming pallets of stacked product, store displays, storage of finished product, and or in present in other situations, as may be required and or desired in a particular embodiment.
- FIG. 9 there is illustrated one example of product packaging also referred to as a shaped vessel 102 comprising an outsert 106 and application of a threaded screw cap closure 202 .
- the product package 102 supporting column loads through use of carry ring support 302 .
- a carry ring support 302 can be associated with a system for conveying the shaped vessel 102 to the closure application location or station.
- a capping system can apply the closure 202 creating a column load in the range of 600 pounds (lbs) to 800 lbs for crown type closures, 300 lbs to 500 lbs for ROPP type closures, 30 lbs to 80 lbs for plastic threaded or twist off closures in general varying in accordance with the type and or kind of closure utilized.
- FIG. 10A-10B there is illustrated one example of product packaging also referred to as a shaped vessel 102 comprising a crown finish closure 202 .
- FIG. 10A illustrates a shaped vessel 102 comprising a rolled edge 104 being supported by a carry ring support 302 .
- FIG. 10B illustrates a cross section of the carry support 302 shaped to fit the shaped vessel 102 comprising carry ring 120 .
- Shaped vessel 102 can be characterized with certain preferred embodiment dimensional ratios. Such shaped vessel 102 can also utilize straight walls, as may be required and or desired in a particular embodiment.
- a length of the outsert 106 ‘B’ can be in the range of 5 mm to 30 mm, with a preferred length of less than 20 mm.
- An opening ‘H’ length can be in the range of 13 mm to 50 mm.
- a rolled edge ‘I’ length can be in the range of 0.25 mm to 5 mm, with a preferred length of less than 3 mm.
- An opening diameter ‘K’ can be in the range of 10 mm to 47 mm, with a preferred diameter of less than 27 mm.
- the size of the shaped vessel can vary to accommodate shaped vessels that are small, medium, and large, as may be required and or desired in a particular embodiment.
- dimensional aspect for a typical 500 milliliter (ml) vessel can be as follows.
- the total length of the shaped vessel 120 ‘A’ can be in the range of 230 mm to 280 mm, with a preferred length in the range of 251 mm.
- a tapered body minimum diameter ‘L’ can be in the range of 20 mm to 30 mm, with a preferred diameter in the range of 25 mm.
- a mid body maximum diameter ‘M’ can be in the range of 50 mm to 80 mm with a preferred diameter in the range of 68 mm.
- a low body minimum diameter ‘N’ can be in the range of 45 mm to 70 mm, with a preferred diameter in the range of 59 mm.
- a base maximum diameter ‘O’ can be in the range of 50 mm to 75 mm, with a preferred diameter of in the range of 69 mm.
- a tapered body ‘C’ length can be in the range of 80 mm to 100, with a preferred length in the range of 80 mm.
- a mid body ‘D’ length can be in the range of 20 mm to 50 mm, with a preferred length in the range of 30 mm.
- a low body ‘E’ length can be in the range of 100 mm to 120 mm, with a preferred length in the range of 106 mm.
- a base ‘F’ length can be in the range of 18 mm to 30 mm, with a preferred length in the range of 22 mm.
- a shaped vessel 102 length ‘G’ can be in the range of 50 mm to 75 mm, with a preferred length of less than 69 mm.
- the thickness of the metal can be in the range of 0.0030 inch to 0.0250 inch.
- FIG. 12 there is illustrated one example of a method of isolating column loading and mitigating deformation of shaped vessels 102 during closure 202 applications.
- a cylindrical tube fabricated from metal, or other material can be molded and or formed into a shaped vessel 102 .
- a carry ring can then be formed in the shaped vessel 102 proximate the open end of the shaped vessel 102 .
- the contour vessel 102 can then supported by the carry ring to isolate the column load associated with the application of a closure 202 to the region between the open end and the carry ring.
- isolating the column load to the open end of the shaped vessel 102 minimizes deformation of the shaped vessel 102 resultant from column loading during application of the closure 202 .
- the shaped vessel 102 can then be sealed with the application of a closure 202 .
- the method begins in block 1002 .
- a cylindrical tube is formed or otherwise shaped into a shaped vessel 102 .
- a cylindrical tube can be formed by injection molding, cupping, drawn and ironing (D&I), draw or re-draw (DRD) of sheet metal, impact extrusion of metal slugs, and or by other methods, as may be required and or desired in a particular embodiment.
- the cylindrical tube can be formed into a shaped vessel 102 by way of one or more or the following methods blow molding, pressure ram, embossing or de-embossing, die forming, trimming, shaping, hydro forming, pneumatic forming, rolled, necking or contouring, stamped halves, and or by other methods, as may be required and or desired in a particular embodiment.
- the method of the present invention forms the carry ring either as a separate step after the vessel is formed or during the forming of the vessel.
- This is considered an advantage in the present invention and is due in part to the fact that no preform exists and often the starting material is sheet metal or metal slug and as such molding or forming of the vessel is required prior to being able to add and or form a carry ring.
- embossed is defined as an embellishment such as indicia having a raised pattern on a surface.
- De-embossed is defined as an embellishment such as indicia having a sunken pattern on a surface.
- a surface can be the surface of the shaped vessel 102 , the closure 202 , and or other surfaces, as may be required and or desired in a particular embodiment.
- the vessel 102 can create an iconic shaped vessel, the trade off can be a very thin walled vessel that can no longer support a column load that is generated while applying the closure to the vessel.
- the cost of the shaped vessel 102 may be directly proportional to the amount of material such as aluminum or other material used to form the vessel.
- the more metal needed to make the vessel the higher the cost of the vessel.
- such shaped vessels 102 fabricated form metal or metal alloy can be shaped with wall thicknesses in the range of 0.0030 inch to 0.0250 inch.
- the shaped vessel 102 has a sealed end and an open end.
- product can be put into the shaped vessel 102 and with a closure 202 seal the product into the shaped vessel 102 .
- the method continues in block 1004 .
- a carry ring is formed proximate the open end of the shaped vessel 102 .
- a carry ring can be used to support the shaped vessel during fill and or application of the closure 202 .
- Such application of a closure 202 can introduce a column load in the range of generally 30 lbs to 800 lbs depending on the type, kind, and manner that the closure is applied. In this regard, without supporting the shaped vessel 102 by the carry ring, such a column load could be sufficient to deform and or crush the thin walled shaped vessel 102 .
- a carry ring can be formed into the wall of the shaped vessel and illustrated in FIGS. 7A-7B and or formed by other methods, as may be required and or desired in a particular embodiment. The method then continues in block 1006 .
- the column load is isolated between the carry ring and the open end of the vessel by supporting the shaped vessel with a carry ring support 302 .
- the shaped vessel below the carry ring does not receive sufficient column load during application of the closure 202 to cause deformation and or crushing of the thin walled body portion of the shaped vessel 102 .
- the method continues in block 1008 .
- the shaped vessel 102 is sealed with a closure 202 .
- the shaped vessel can be filled with a product such as a refreshing COCA-COLA product prior to the shaped vessel being sealed.
- a product such as a refreshing COCA-COLA product prior to the shaped vessel being sealed.
- Column load can range generally from 30 lbs to 800 lbs depending on the type, kind, and manner that the closure is applied.
- An advantage with the present invention is that with the use of a carry ring, significantly higher column load forces can be used in the application of putting the closure onto the shaped vessel 102 .
- other types and kinds of closure 202 that currently cannot be used to seal vessels due to high column load damaging the vessel, can be used with the present invention due in part to the fact that the column load can be isolated between the carry ring, by way of the carry ring support 302 and the open end of the shaped vessel 102 . The method is then exited.
- FIG. 13 there is illustrated one example of a method of isolating column loading and mitigating deformation of shaped vessels 102 during closure 202 applications.
- a cylindrical tube fabricated from metal, or other material can be molding into a shaped vessel 102 .
- An outsert can be applied around the open end of the shaped vessel 102 .
- the outsert comprising a carry ring.
- the contour vessel 102 is then supported by the carry ring to isolate the column load associated with the application of a closure 202 to the region between the open end and the carry ring.
- isolating the column load to the open end of the shaped vessel 102 minimizes deformation of the shaped vessel 102 resultant from column loading during application of the closure 202 .
- the shaped vessel 102 can then be sealed with the application of a closure 202 .
- the method begins in block 2002 .
- the shaped vessel is formed with the methods detailed in block 1002 or by other methods, as may be required and or desired in a particular embodiment.
- the method continues in block 2004 .
- an outsert is applied around the open end of the shaped vessel 102 .
- the outsert comprising a carry ring.
- a carry ring can be formed into the outsert as a pronounced ledge such as ledge 108 illustrated in FIG. 2A-2B or other ledge, as may be required and or desired in a particular embodiment.
- a carry ring edge can be exposed such as carry ring 114 illustrated in FIG. 3B or other carry ring edge, as may be required and or desired in a particular embodiment.
- the method continues in block 2006 .
- the column load is isolated between the carry ring and the open end of the shaped vessel 102 with the methods detailed in block 1006 or by other methods, as may be required and or desired in a particular embodiment.
- the method continues in block 2008 .
- the shaped vessel 102 can be sealed with a closure 202 with the methods detailed in block 1008 or by other methods, as may be required and or desired in a particular embodiment. The method is then exited.
- FIG. 14 there is illustrated one example of a method of isolating column loading and mitigating deformation of shaped vessels 102 during closure 202 applications.
- a cylindrical tube fabricated from metal, or other material can be molding into a shaped vessel 102 .
- a carry ring can added to the shaped vessel 102 and pinched or adhered to the shaped vessel 102 to secure the carry ring in place proximate the open end of the shaped vessel 102 .
- the contour vessel 102 is then supported by the carry ring to isolate the column load associated with the application of a closure 202 to the region between the open end and the carry ring.
- isolating the column load to the open end of the shaped vessel 102 minimizes deformation of the shaped vessel 102 resultant from column loading during application of the closure 202 .
- the shaped vessel 102 can then be sealed with the application of a closure 202 .
- the method begins in block 3002 .
- the shaped vessel is formed with the methods detailed in block 1002 or by other methods, as may be required and or desired in a particular embodiment.
- the method continues in block 3004 .
- a carry ring can be pinched or adhered to the shaped vessel 102 to create and or retain the carry ring around the neck area proximate the open end of the shaped vessel 102 .
- Such a carry ring can be partially formed in the material of the shaped vessel 102 and or have added to the vessel assemble additional material such as a separate carry ring and or other materials, as may be required and or desired in a particular embodiment.
- the method continues in block 3006 .
- the column load is isolated between the carry ring and the open end of the shaped vessel 102 with the methods detailed in block 1006 or by other methods, as may be required and or desired in a particular embodiment.
- the method continues in block 3008 .
- the shaped vessel 102 can be sealed with a closure 202 with the methods detailed in block 1008 or by other methods, as may be required and or desired in a particular embodiment. The method is then exited.
- FIG. 15 there is illustrated one example of a method of forming a carry ring in product packaging isolating column loading and mitigating deformation of shaped vessels during closure application.
- a cylindrical tube fabricated from metal, or other material can be formed into a shaped vessel 102 .
- a lower edge 118 B can be formed in the side wall of the shaped vessel 102 proximate the open end of the vessel.
- a carry ring can added to the shaped vessel 102 .
- the carry ring 114 , 114 A-B can be asymmetrical 114 A or symmetrical 114 B as illustrated in FIG. 6A-6C .
- An upper edge 118 A is then formed in the vessel wall above the lower edge and carry ring to secure by pinching or adhesion the added carry ring in place.
- the contour vessel 102 is then supported by the carry ring to isolate the column load associated with the application of a closure 202 to the region between the open end and the carry ring. In this regard, isolating the column load to the open end of the shaped vessel 102 minimizes deformation of the shaped vessel 102 resultant from column loading during application of the closure 202 .
- the shaped vessel 102 can then be sealed with the application of a closure 202 .
- the method begins in block 4002 .
- the shaped vessel is formed with the methods detailed in block 1002 or by other methods, as may be required and or desired in a particular embodiment.
- the method continues in block 4004 .
- a lower edge can be formed on the shaped vessel 102 side walls. Such a lower edge can be formed by way of necking, blow molding, pressure ram, embossed, rolled, hydro formed, pneumatic formed, stamped halves, or other shaping type operations, as may be required and or desired in a particular embodiment.
- the method continues in block 4006 .
- a carry ring 114 is placed around the open end of the shaped vessel 102 .
- the carry ring rests on the lower edge which keeps the ring from sliding down the neck of the contour vessel.
- the method continues in block 4008 .
- an upper edge is formed on the shaped vessel 102 side walls above the lower edge and the carry ring. The method continues in block 4010 .
- the carry ring is pinched or adhered between the lower and upper edge proximate the open end of the shaped vessel 102 .
- the column load is isolated between the carry ring and the open end of the shaped vessel 102 with the methods detailed in block 1006 or by other methods, as may be required and or desired in a particular embodiment.
- FIGS. 6A-6D illustrates the carry ring 114 , 114 A-B and the pinched or adhered position between the upper edge 118 A and the lower edge 118 B. The method is then exited.
- FIG. 16 there is illustrated examples of exemplary embodiments of methods of isolating column loading and mitigating deformation of shaped vessels during closure application. Such exemplary embodiments can be selectively utilized with the methods of the present invention.
- an outsert can be applied around the open end of the shaped vessel 102 .
- Such application can be by press fitting, adhering, roll formed, and or by other methods, as may be required and or desired in a particular embodiment.
- the shaped vessel can be filled with a product.
- a product can be filled through the open end of the shaped vessel 102 .
- Such products can include food, beverage, and or other products, as may be required and or desired in a particular embodiment.
- the cylindrical tube can be heated to increase the workability of the vessel material prior to and or during the step of molding.
- a metal cylindrical tube can be heated to soften the metal prior to and or during molding.
- molding methods can include blow molding, pressure ram, embossed, rolled, hydro formed, pneumatic formed, stamped halves, and or other types and kinds of molding, as may be required and or desired in a particular embodiment.
- the shaped vessel can be decorated.
- decoration can be brand name indicia, product indicia, nutrition content indicia, and or other indicia and or decoration, as may be required and or desired in a particular embodiment.
- indicia and or decoration can be applied to the shaped vessel by way of printing, screening, ink jet, application on a pre printed label, and or by other methods, as may be required and or desired in a particular embodiment.
- the cylindrical tube is formed from a sheet metal or metal slug.
- sheet metal can be formed into a cylindrical tube by way of cupping, drawn and ironing (D&I), impact extrusion of metal slugs formed, and or by way of other types and kinds of methods, as may be required and or desired in a particular embodiment.
- D&I drawn and ironing
- the formed shaped vessel 102 can be heat treated to strengthen the vessel walls or improve the metal for future forming operations.
- heating methods can include annealing, tempering, re-crystallizing, and or other methods, as may be required and or desired in a particular embodiment.
- the shaped vessel can be trimmed.
- the open end of the shaped vessel can be trimmed to create a uniform even open end edge.
- trimming of the open end edge can be effectuated prior to rolling the edge such as illustrated in FIGS. 2A-2C and 3 A-B, 4 A- 4 B, 5 A- 5 B, 6 C- 6 D, and 7 A- 7 B shown as rolled edge 104 .
- the shaped vessel can have the interior of the vessel coated to prevent the contents of the vessel such as a food, beverage, or other packaging contents, as may be required and or desired in a particular embodiment from coming in contact with the metal side walls of the vessel.
- such metal vessel can leach into the packaging contents and or the packaging contents can adversely interact with the metal that forms the vessel.
- a coating such as epoxies, acrylics, polyesters, polymer laminates, and others can be used to insure separation of the metal vessel surface from the vessel contents such as a food or a beverage.
- a coating can be applied to the sheet metal prior to forming the cylindrical tube, to the cylindrical tube prior to shaping into a shaped vessel, and or to the shape vessel after shaping, as may be required and of desired in a particular embodiment.
- the shaped vessel can be cleaned to remove any process films, oils, dirt and or debris, contamination, sterilization, and or cleaned for other purposes, as may be required and or desired in a particular embodiment.
- final shaping can be provided after initial shaping processes are performed.
- other non-shaping steps can be performed such as decoration, trimming, cleaning, and other non-shaping steps, as may be required and or desired in a particular embodiment.
- additional shaping steps can be performed.
- the capabilities of the present invention can be implemented in software, firmware, hardware or some combination thereof.
- one or more aspects of the present invention can be included in an article of manufacture (e.g., one or more computer program products) having, for instance, computer usable media.
- the media has embodied therein, for instance, computer readable program code means for providing and facilitating the capabilities of the present invention.
- the article of manufacture can be included as a part of a computer system or sold separately.
- At least one program storage device readable by a machine, tangibly embodying at least one program of instructions executable by the machine to perform the capabilities of the present invention can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Closures For Containers (AREA)
- Particle Accelerators (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Sealing Of Jars (AREA)
Abstract
Description
- This invention relates to a method of isolating column loading and mitigating deformation of shaped metal vessels, the method comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, an open end, and an integral carry ring proximate the open end. Column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring. The shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during application of the closure.
- Before our invention product packaging, often formed from sheet metal or metal slugs had to be designed with wall thicknesses sufficient to avoid deformation or crushing when high column loads were applied to the top of the product packaging. Such high column loads can typically occur while the packaging closure is being applied thus sealing the product packaging on a filling line. In this regard, often loading forces in excess of 175 pounds (lbs) can be applied to the top of the product packaging to apply and seal the packaging with a closure.
- A shortcoming is that in designing packaging with thinner walls to support column loads more material is used in the product packaging, which raises the cost of the packaging.
- Another shortcoming is that product packaging with thicker walls can be more difficult to shape and as such can limit the types and or kinds of possible functional and ornamental product packaging design options.
- There is a long felt need for a system and method to enable the high column load during filling and closure application to be isolated to the top portion of the product packaging and to avoid packaging deformation or crushing during the fill and or application of the closure to seal the beverage. In addition, there is a long felt need for a low cost metal package well suited for food and beverage applications, as well as a need for other types and kinds of packages that have thin and or weaker side wall constructions. In addition, there is a need to overcome the shortcomings mentioned above as well as to overcome other shortcomings. All of which gives rise to the present invention.
- The shortcomings of the prior art are overcome and additional advantages are provided through the provision of a method of isolating column loading and mitigating deformation of shaped metal vessels, the method comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, an open end, and an integral carry ring proximate the open end. Column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring. The shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during application of the closure.
- Additional shortcomings of the prior art are overcome and additional advantages are provided through the provision of a method of isolating column loading and mitigating deformation of shaped metal vessels, the method comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, and an open end. An outsert is applied around the open end of the shaped metal vessel, the outsert comprising a carry ring. Column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring. The shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during application of the closure.
- Additional shortcomings of the prior art are overcome and additional advantages are provided through the provision of a method of isolating column loading and mitigating deformation of shaped metal vessels, the method comprising forming a cylindrical metal tube into a shaped metal vessel, the shaped metal vessel comprising a sealed end, an and open end. A carry ring is pinched or adhered around the open end of the shaped metal vessel. The column load is isolated between the open end and the carry ring by supporting the shaped metal vessel by the carry ring. The shaped metal vessel is sealed with a closure, wherein deformation of the shaped metal vessel between the sealed end and the carry ring due to column load is minimized during fill and application of the closure.
- System and computer program products corresponding to the above-summarized methods are also described and claimed herein.
- Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with advantages and features, refer to the description and to the drawings.
- The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
-
FIG. 1 illustrates one example of a system and method of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application; -
FIG. 2A-2C illustrates one example of product packaging comprising a column load-bearing outsert with a carry ring; -
FIG. 3A-3B illustrates one example of product packaging comprising a column load-bearing outsert; -
FIG. 4A-4B illustrates one example of product packaging comprising an integral thread and integral carry ring; -
FIG. 5A-5B illustrates one example of product packaging comprising an inward extending integral carry ring; -
FIG. 6A-6D illustrates one example of product packaging comprising symmetrical and asymmetrical carry rings pinched or adhered into product packaging; -
FIG. 7A-7B illustrates one example of product packaging comprising a integral outwardly extending carry ring; -
FIG. 8 illustrates one example of column load-bearing outsert; -
FIG. 9 illustrates one example of product packaging comprising an outsert and application of a threaded screw cap closure. The product package supporting column load through use of carry ring support; -
FIG. 10A-10B illustrates one example of product packaging comprising a crown finish closure. The product package supporting column load through use of carry ring support; -
FIG. 11 illustrates one example of a shaped vessel; -
FIG. 12-14 illustrates one example of a method of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application; -
FIG. 15 illustrates one example of a method of forming a carry ring in product packaging isolating column loading and mitigating deformation of shaped vessels during fill and or closure application; and -
FIG. 16 illustrates examples of exemplary embodiments of methods of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application. - The detailed description explains the preferred embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
- A. Shaped Metal Vessel
- A shaped metal vessel is used in the present invention. Details of such shaped metal vessels can be found in the co-pending patent application entitled “SHAPED METAL VESSEL”, inventor John E. Adams et al., which was filed concurrently with the present application and is incorporated herein by reference in its entirety.
- Turning now to the drawings in greater detail, it will be seen that in
FIG. 1 there is illustrated one example of a system and method of isolating column loading and mitigating deformation of shaped vessels during fill and or closure application. In an exemplary embodiment, a plurality ofshaped vessels 102A-C comprising outsert 106A-C can be formed by way of a plurality of cylindrical tubes and conveyed on acarrier 304. A carry ring can then be formed and or added to shapedvessel 102A-C. Acarry ring support 302A-B can be used to support the shaped vessel during fill and or application of aclosure 202. In this regard, a column load can be isolated between the carry ring and the open end of theshaped vessel 102C duringshaped vessel 102 filling and or when theclosure 202 is being applied. - For purposes of disclosure, column load also referred to as axially loading is defined as a load or force along or parallel to a concentric with a primary axis. In this regard, the primary axis is from the top open end to the bottom sealed end of the shaped
vessel 102. In an exemplary embodiment, such a column load is typically present during fill and or when the closure is being applied to the shapedvessel 102 and when the shaped vessels are stacked on top of each other, such as when forming pallets of stacked product, store displays, storage of finished product, and or is present in other situations, as may be required and or desired in a particular embodiment. - In addition, for purposes of disclosure, a cylindrical tube is defined as the space enclosed by a cylindrical surface. As example, a soda or vessel can be referred to as a cylindrical tube. Furthermore, shaped
vessel 102 can be referred to as a shaped metal vessel. - An advantage of isolating the column to the area between the carry ring and the open end of the shaped
vessel 102A-C is that such column loading does not get applied to the area of the shaped vessel below the carry ring. As such, isolating the column load to the area between the carry ring and the open end of the shaped vessel effectuates the ability to manufacture a thinner walled shaped vessel, from metal or other materials, that might otherwise deform and or crush under high column loading. An economic advantage is that thinner walled vessels have less material and are less costly to manufacture. This is particularly true regarding metal vessels. A marketing and fabrication advantage is that the thinner walled vessels can be easier to shape and form, which effectuates the ability to create highly shaped vessels by numerous molding methods including blow molding, pressure ram, embossed, rolled, hydro formed, pneumatic formed, stamped halves, and or other methods, as may be required and or desired in a particular embodiment. - Referring to
FIG. 2A-2C there is illustrated one example of product packaging also referred to as shapedvessel 102 or shapedmetal vessel 102 comprising a column load-bearing outsert 106 having acarry ring 108.FIG. 2A illustrates a shapedvessel 102 withoutsert 106 placed around theopen end 124 of the vessel.FIG. 2B illustrates a thinwall cross section 110 view of the shapedvessel 102 with theoutsert 106 being positioned under arolled edge 104. For purposes of disclosure a shaped, polished, or other edge description can be referred to as a rolled edge. -
FIG. 2C illustrates a cross section view of the shapedvessel 102 with theoutsert 106 being positioned under arolled edge 104. Therolled edge 104 interlocking with theoutsert 106 to preventoutsert 106 slippage around the vessel neck during threaded closure application and removal. - Referring to
FIG. 2B , in an exemplary embodiment,outsert 106 can be manufactured from polymers, metal, or glass and or other materials, as may be required and or desired ion a particular embodiment. Furthermore, theoutsert 106 can be used with a closure such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment. Crown finishes can be metal, plastic, and or other materials, as may be required and or desired. Plastic closures can be threaded, twist-off, and or other types of closure, as may be required and or desired in a particular embodiment. In an exemplary embodiment, a carry ring length ‘Q’ can be in the range of 1 mm to 10 mm, with a preferred length of less than 5 mm. - Referring to
FIG. 2C , in an exemplary embodiment,outsert 106 can be manufactured from polymers, metal, or glass and or other materials, as may be required and or desired ion a particular embodiment. Furthermore, the outsert can be used with a closure such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment. Crown finishes can be metal, plastic, and or other materials, as may be required and or desired. Plastic closures can be threaded, twist-off, and or other types of closure, as may be required and or desired in a particular embodiment. The step at the top of the outsert allows the vessel material to be rolled over the outsert upper edge which grips the outsert and aids in securing the outsert from rotation and slippage when the closure is applied and or removed from the vessel. - Referring to
FIG. 3A-3B there is illustrated one example of product packaging also referred to as shapedvessel 102 comprising a column load-bearing outsert 106. Theoutsert 106 further comprisingoptional threads 122 for engaging and securing a removable closure 202 (closure 202 not shown in this Figure). In an exemplary embodiment, the optional threads can be a plurality of threads spirally affixed to the outer surface of the outsert to engage and secure a separate vessel closure to the shaped metal vessel body. Thevessel 102 further comprising arolled edge 104.FIG. 3A illustrates a shapedvessel 102 withoutsert 106 placed around the open end of the vessel.FIG. 3B illustrates a cross section view of the shapedvessel 102 with theoutsert 106 being positioned under arolled edge 104. -
FIG. 3B also illustrates how a shapedvessel 102 thinwall cross section 110 can be a rollededge 104 or otherwise shapeedge 104 at the top of theopen end 124 of thevessel 102. In this regard, the rollededge 104 secures theoutsert 106 from slipping off the shapedvessel 102,open end 124, as well as provides a smooth edge to effectuate good consumer experience when pouring and drinking from the shapedvessel 102. - Referring to
FIGS. 4A-4B there is illustrated one example of product packaging also referred to as shapedvessel 102 comprising an integral thread and integral carry ring. Referring toFIG. 4A , in an exemplary embodiment,threads 122, rollededge 104, and carryring 114 can be formed integral to thevessel 102. An advantage of this embodiment is that no additional outsert or separate carry ring such ascarry ring 114A-B shown inFIGS. 6A-6B . This can lead to faster manufacturing line speeds, less complicated assembly, andlower cost vessels 102. Closures such as a crown finish type, a threaded finish type, a rolled-on pilfer proof (ROPP) type, a plastic closure, snap-on closure finish, and or other types and kinds of closures, as may be required and or desired in a particular embodiment. Crown finishes can be metal, plastic, and or other materials, as may be required and or desired. Plastic closures can be threaded, twist-off, and or other types of closure, as may be required and or desired in a particular embodiment. -
FIG. 4B also illustrates how a shapedvessel 102 thinwall cross section 110 can be a rollededge 104 or otherwise shapeedge 104 at the top of theopen end 124 of thevessel 102.Threads 122 and acarry ring 114 are integral to thevessel wall 110 eliminating in this embodiment the need for an outsert. - Referring to
FIG. 5A-5B there is illustrated one example of product packaging also referred to as shapedvessel 102 comprising an inward extendingintegral carry ring 120.FIG. 5B illustrates a cross sectional view of theopen end 124 of the shapedvessel 102, illustrating theside wall 110, formededge 104, and the formedcarry ring 120. In an exemplary embodiment, acarry ring 120 can be formed in the side wall of the shapedvessel 102. An advantage of the present invention is that by forming the carry ring in the side wall of the shaped vessel no separate carry ring or outsert is required. - Referring to
FIG. 5A , in an exemplary embodiment, a length of outsert 106 ‘B’ can be in the range of 5 mm to 30 mm, with a preferred length of less than 20 mm. An opening ‘H’ length can be in the range of 13 mm to 50 mm. A rolled edge ‘I’ length can be in the range of 0.25 mm to 5 mm, with a preferred length of less than 3 mm. An opening diameter ‘K’ can be in the range of 10 mm to 47 mm, with a preferred diameter of less than 32 mm. A carry ring of length ‘J’ can be in the range of 1 mm to 8 mm, with a preferred length of less than 5 mm. - Referring to
FIGS. 6A-6D there is illustrated one example of product packaging also referred to as shapedvessel 102 comprising symmetrical 114B or asymmetrical 114A carry ring pinched or adhered to theproduct packaging 102.FIG. 6A-6B illustrates a shapedvessel 102 withoutsert 106 placed around the open end of the vessel.FIG. 6A illustrates anasymmetrical carry ring 114A having a shaped outer circumference edge other than the continuous circular circumference outer edge such as shown inFIG. 6B carryring 114B. The inner circumference is sized to fit around the open end of the shapedvessel 102. In an exemplary embodiment, the shaped outer edge can be any shape, as may be required and or desired in a particular embodiment. -
FIG. 6B illustrates asymmetrical carry ring 114B. Symmetrical refers to the outer circumference edge ofcarry ring 114B being continuous circular in shape. The inner circumference is sized to fit around the open end of the shapedvessel 102. -
FIG. 6C illustrates a shapedvessel 102 with acarry ring 114 pinched or adhered between a formedupper edge 118A and a formedlower edge 118B being positioned proximate therolled edge 104. Theupper edge 118A and lower edge 188B are integral to the tapered body of the shaped metal vessel body. -
FIG. 6D illustrates a shapedvessel 102 with acarry ring 114 pinched or adhered between a lower ledge integrally formed in the tapered body portion of the vessel 102 acarry ring 114 resting on top of the integral lower ledge and formed integralupper edge 118B pinches and or adheres thecarry ring 114 in place between the formed lower ledge and the upper edge 118. Theupper edge 118A and lower ledge are integral to the tapered body of the shaped metal vessel body. For purposes of disclosure the lower ledge can be referred to as the lower edge. - Referring to
FIGS. 6C-6D , in an exemplary embodiment, a length of the open end ‘B’ can be in the range of 5 mm to 30 mm, with a preferred length of less than 20 mm. An opening ‘H’ length can be in the range of 13 mm to 50 mm. A rolled edge ‘I’ length can be in the range of 0.25 mm to 5 mm, with a preferred length of less than 3 mm. An opening diameter ‘K’ can be in the range of 10 mm to 47 mm, with a preferred diameter of less than 32 mm. A carry ring being pinched or adhered between the lower edge and the upper edge, the lower edge, the upper edger, and the carry ring combination of length T can be in the range of 1 mm to 8 mm, with a preferred length of less than 5 mm. - Referring to
FIG. 7A-7B there is illustrated one example of product packaging also referred to as shapedvessel 102 comprising an integral outwardly extending carry ring.FIG. 7A illustrated the shapedvessel 102 comprising the integral outwardly extendingcarry ring 120.FIG. 7B illustrates a cross sectional view of theopen end 124 of the shapedvessel 102, illustrating theside wall 110, formededge 104, and the formedcarry ring 120. In an exemplary embodiment, acarry ring 120 can be integrally formed in the side wall of the shapedvessel 102. - Referring to
FIG. 8 there is illustrated one example of a column load-bearing outsert 106. In an exemplary embodiment, theoutsert 106 is positioned around the open end of a shapedvessel 102,optional threads 122 for engaging and securing a removable closure 202 (closure 202 not shown in this Figure), and designed to provide a carry ring or carry ring edge to support column load during the application of a closure onto the open end of the shaped vessel. The optional threads can be a plurality of threads spirally affixed to the outer surface of the outsert to engage and secure a separate vessel closure to the shaped body. Such an outsert can be manufactured from plastic, metal, or other material, as may be required and or desired in a particular embodiment. - For purposes of disclosure column load also referred to as axially loading is defined as a load or force along or parallel to a concentric with a primary axis. In this regard, the primary axis is from the top open end to the bottom sealed end of the shaped
vessel 102. In an exemplary embodiment, such a column load is typically present during fill and or when the closure is being applied to the shapedvessel 102 and when the shaped vessels are stacked on top of each other, such as when forming pallets of stacked product, store displays, storage of finished product, and or in present in other situations, as may be required and or desired in a particular embodiment. - Referring to
FIG. 9 there is illustrated one example of product packaging also referred to as ashaped vessel 102 comprising anoutsert 106 and application of a threadedscrew cap closure 202. Theproduct package 102 supporting column loads through use ofcarry ring support 302. In an exemplary embodiment, acarry ring support 302 can be associated with a system for conveying the shapedvessel 102 to the closure application location or station. A capping system can apply theclosure 202 creating a column load in the range of 600 pounds (lbs) to 800 lbs for crown type closures, 300 lbs to 500 lbs for ROPP type closures, 30 lbs to 80 lbs for plastic threaded or twist off closures in general varying in accordance with the type and or kind of closure utilized. - Referring to
FIG. 10A-10B there is illustrated one example of product packaging also referred to as ashaped vessel 102 comprising acrown finish closure 202.FIG. 10A illustrates a shapedvessel 102 comprising arolled edge 104 being supported by acarry ring support 302.FIG. 10B illustrates a cross section of thecarry support 302 shaped to fit the shapedvessel 102 comprisingcarry ring 120. - Referring to
FIG. 11 there is illustrated one example of a shapedvessel 102.Shaped vessel 102 can be characterized with certain preferred embodiment dimensional ratios. Such shapedvessel 102 can also utilize straight walls, as may be required and or desired in a particular embodiment. In this regard, a length of the outsert 106 ‘B’ can be in the range of 5 mm to 30 mm, with a preferred length of less than 20 mm. An opening ‘H’ length can be in the range of 13 mm to 50 mm. A rolled edge ‘I’ length can be in the range of 0.25 mm to 5 mm, with a preferred length of less than 3 mm. An opening diameter ‘K’ can be in the range of 10 mm to 47 mm, with a preferred diameter of less than 27 mm. - In a plurality of exemplary embodiments the size of the shaped vessel can vary to accommodate shaped vessels that are small, medium, and large, as may be required and or desired in a particular embodiment. As example and not a limitation such dimensional aspect for a typical 500 milliliter (ml) vessel can be as follows. The total length of the shaped vessel 120 ‘A’ can be in the range of 230 mm to 280 mm, with a preferred length in the range of 251 mm. A tapered body minimum diameter ‘L’ can be in the range of 20 mm to 30 mm, with a preferred diameter in the range of 25 mm. A mid body maximum diameter ‘M’ can be in the range of 50 mm to 80 mm with a preferred diameter in the range of 68 mm. A low body minimum diameter ‘N’ can be in the range of 45 mm to 70 mm, with a preferred diameter in the range of 59 mm. A base maximum diameter ‘O’ can be in the range of 50 mm to 75 mm, with a preferred diameter of in the range of 69 mm. A tapered body ‘C’ length can be in the range of 80 mm to 100, with a preferred length in the range of 80 mm. A mid body ‘D’ length can be in the range of 20 mm to 50 mm, with a preferred length in the range of 30 mm. A low body ‘E’ length can be in the range of 100 mm to 120 mm, with a preferred length in the range of 106 mm. A base ‘F’ length can be in the range of 18 mm to 30 mm, with a preferred length in the range of 22 mm. A shaped
vessel 102 length ‘G’ can be in the range of 50 mm to 75 mm, with a preferred length of less than 69 mm. In an exemplary embodiment where the shapedvessel 102 is fabricated from metal the thickness of the metal can be in the range of 0.0030 inch to 0.0250 inch. - B. Method of Making the Shaped Metal Vessel
- Referring to
FIG. 12 there is illustrated one example of a method of isolating column loading and mitigating deformation of shapedvessels 102 duringclosure 202 applications. In an exemplary embodiment, a cylindrical tube fabricated from metal, or other material can be molded and or formed into a shapedvessel 102. A carry ring can then be formed in the shapedvessel 102 proximate the open end of the shapedvessel 102. Thecontour vessel 102 can then supported by the carry ring to isolate the column load associated with the application of aclosure 202 to the region between the open end and the carry ring. In this regard, isolating the column load to the open end of the shapedvessel 102 minimizes deformation of the shapedvessel 102 resultant from column loading during application of theclosure 202. The shapedvessel 102 can then be sealed with the application of aclosure 202. The method begins inblock 1002. - In block 1002 a cylindrical tube is formed or otherwise shaped into a shaped
vessel 102. In an exemplary embodiment, a cylindrical tube can be formed by injection molding, cupping, drawn and ironing (D&I), draw or re-draw (DRD) of sheet metal, impact extrusion of metal slugs, and or by other methods, as may be required and or desired in a particular embodiment. The cylindrical tube can be formed into a shapedvessel 102 by way of one or more or the following methods blow molding, pressure ram, embossing or de-embossing, die forming, trimming, shaping, hydro forming, pneumatic forming, rolled, necking or contouring, stamped halves, and or by other methods, as may be required and or desired in a particular embodiment. - In contrast to polyethylene terephthalate (PET) vessel forming, wherein the carry ring can be part of the injection molded preform and thus present prior to the step of molding, the method of the present invention forms the carry ring either as a separate step after the vessel is formed or during the forming of the vessel. This is considered an advantage in the present invention and is due in part to the fact that no preform exists and often the starting material is sheet metal or metal slug and as such molding or forming of the vessel is required prior to being able to add and or form a carry ring.
- For purposes of disclosure embossed is defined as an embellishment such as indicia having a raised pattern on a surface. De-embossed is defined as an embellishment such as indicia having a sunken pattern on a surface. In the present invention such a surface can be the surface of the shaped
vessel 102, theclosure 202, and or other surfaces, as may be required and or desired in a particular embodiment. - Though advantageously the
vessel 102 can create an iconic shaped vessel, the trade off can be a very thin walled vessel that can no longer support a column load that is generated while applying the closure to the vessel. In other embodiments, the cost of the shapedvessel 102 may be directly proportional to the amount of material such as aluminum or other material used to form the vessel. As an example and not a limitation, the more metal needed to make the vessel the higher the cost of the vessel. As such, it may be highly desirable to minimize vessel cost by making the shaped vessel with wall thicknesses as thin as possible to save material costs. In an exemplary embodiment, such shapedvessels 102 fabricated form metal or metal alloy can be shaped with wall thicknesses in the range of 0.0030 inch to 0.0250 inch. - In an exemplary embodiment, the shaped
vessel 102 has a sealed end and an open end. In this regard, product can be put into the shapedvessel 102 and with aclosure 202 seal the product into the shapedvessel 102. The method continues inblock 1004. - In block 1004 a carry ring is formed proximate the open end of the shaped
vessel 102. In this regard, a carry ring can be used to support the shaped vessel during fill and or application of theclosure 202. Such application of aclosure 202 can introduce a column load in the range of generally 30 lbs to 800 lbs depending on the type, kind, and manner that the closure is applied. In this regard, without supporting the shapedvessel 102 by the carry ring, such a column load could be sufficient to deform and or crush the thin walled shapedvessel 102. - In an exemplary embodiment, a carry ring can be formed into the wall of the shaped vessel and illustrated in
FIGS. 7A-7B and or formed by other methods, as may be required and or desired in a particular embodiment. The method then continues inblock 1006. - In
block 1006 the column load is isolated between the carry ring and the open end of the vessel by supporting the shaped vessel with acarry ring support 302. As such, resultant from the shapedvessel 102 being supported by thecarry ring support 302, the shaped vessel below the carry ring does not receive sufficient column load during application of theclosure 202 to cause deformation and or crushing of the thin walled body portion of the shapedvessel 102. The method continues inblock 1008. - In
block 1008 the shapedvessel 102 is sealed with aclosure 202. In an exemplary embodiment, for example and not a limitation, the shaped vessel can be filled with a product such as a refreshing COCA-COLA product prior to the shaped vessel being sealed. During such shapedvessel 102 sealing, depending on the closure type, for example a threaded closure, a crown type finish, metal or plastic closure, and or other types and kinds of closures, as may be required and or desired in a particular embodiment. Column load can range generally from 30 lbs to 800 lbs depending on the type, kind, and manner that the closure is applied. - An advantage with the present invention is that with the use of a carry ring, significantly higher column load forces can be used in the application of putting the closure onto the shaped
vessel 102. In this regard, other types and kinds ofclosure 202 that currently cannot be used to seal vessels due to high column load damaging the vessel, can be used with the present invention due in part to the fact that the column load can be isolated between the carry ring, by way of thecarry ring support 302 and the open end of the shapedvessel 102. The method is then exited. - Referring to
FIG. 13 there is illustrated one example of a method of isolating column loading and mitigating deformation of shapedvessels 102 duringclosure 202 applications. In an exemplary embodiment, a cylindrical tube fabricated from metal, or other material can be molding into a shapedvessel 102. An outsert can be applied around the open end of the shapedvessel 102. The outsert comprising a carry ring. Thecontour vessel 102 is then supported by the carry ring to isolate the column load associated with the application of aclosure 202 to the region between the open end and the carry ring. In this regard, isolating the column load to the open end of the shapedvessel 102 minimizes deformation of the shapedvessel 102 resultant from column loading during application of theclosure 202. The shapedvessel 102 can then be sealed with the application of aclosure 202. The method begins inblock 2002. - In
block 2002 the shaped vessel is formed with the methods detailed inblock 1002 or by other methods, as may be required and or desired in a particular embodiment. The method continues inblock 2004. - In
block 2004 an outsert is applied around the open end of the shapedvessel 102. The outsert comprising a carry ring. Such a carry ring can be formed into the outsert as a pronounced ledge such asledge 108 illustrated inFIG. 2A-2B or other ledge, as may be required and or desired in a particular embodiment. In another exemplary embodiment, a carry ring edge can be exposed such ascarry ring 114 illustrated inFIG. 3B or other carry ring edge, as may be required and or desired in a particular embodiment. The method continues inblock 2006. - In
block 2006 the column load is isolated between the carry ring and the open end of the shapedvessel 102 with the methods detailed inblock 1006 or by other methods, as may be required and or desired in a particular embodiment. The method continues inblock 2008. - In
block 2008 the shapedvessel 102 can be sealed with aclosure 202 with the methods detailed inblock 1008 or by other methods, as may be required and or desired in a particular embodiment. The method is then exited. - Referring to
FIG. 14 there is illustrated one example of a method of isolating column loading and mitigating deformation of shapedvessels 102 duringclosure 202 applications. In an exemplary embodiment, a cylindrical tube fabricated from metal, or other material can be molding into a shapedvessel 102. A carry ring can added to the shapedvessel 102 and pinched or adhered to the shapedvessel 102 to secure the carry ring in place proximate the open end of the shapedvessel 102. Thecontour vessel 102 is then supported by the carry ring to isolate the column load associated with the application of aclosure 202 to the region between the open end and the carry ring. In this regard, isolating the column load to the open end of the shapedvessel 102 minimizes deformation of the shapedvessel 102 resultant from column loading during application of theclosure 202. The shapedvessel 102 can then be sealed with the application of aclosure 202. The method begins inblock 3002. - In
block 3002 the shaped vessel is formed with the methods detailed inblock 1002 or by other methods, as may be required and or desired in a particular embodiment. The method continues inblock 3004. - In block 3004 a carry ring can be pinched or adhered to the shaped
vessel 102 to create and or retain the carry ring around the neck area proximate the open end of the shapedvessel 102. Such a carry ring can be partially formed in the material of the shapedvessel 102 and or have added to the vessel assemble additional material such as a separate carry ring and or other materials, as may be required and or desired in a particular embodiment. The method continues inblock 3006. - In
block 3006 the column load is isolated between the carry ring and the open end of the shapedvessel 102 with the methods detailed inblock 1006 or by other methods, as may be required and or desired in a particular embodiment. The method continues inblock 3008. - In
block 3008 the shapedvessel 102 can be sealed with aclosure 202 with the methods detailed inblock 1008 or by other methods, as may be required and or desired in a particular embodiment. The method is then exited. - Referring to
FIG. 15 there is illustrated one example of a method of forming a carry ring in product packaging isolating column loading and mitigating deformation of shaped vessels during closure application. In an exemplary embodiment, a cylindrical tube fabricated from metal, or other material can be formed into a shapedvessel 102. Alower edge 118B can be formed in the side wall of the shapedvessel 102 proximate the open end of the vessel. A carry ring can added to the shapedvessel 102. Thecarry ring FIG. 6A-6C . Anupper edge 118A is then formed in the vessel wall above the lower edge and carry ring to secure by pinching or adhesion the added carry ring in place. Thecontour vessel 102 is then supported by the carry ring to isolate the column load associated with the application of aclosure 202 to the region between the open end and the carry ring. In this regard, isolating the column load to the open end of the shapedvessel 102 minimizes deformation of the shapedvessel 102 resultant from column loading during application of theclosure 202. The shapedvessel 102 can then be sealed with the application of aclosure 202. The method begins inblock 4002. - In
block 4002 the shaped vessel is formed with the methods detailed inblock 1002 or by other methods, as may be required and or desired in a particular embodiment. The method continues inblock 4004. - In block 4004 a lower edge can be formed on the shaped
vessel 102 side walls. Such a lower edge can be formed by way of necking, blow molding, pressure ram, embossed, rolled, hydro formed, pneumatic formed, stamped halves, or other shaping type operations, as may be required and or desired in a particular embodiment. The method continues inblock 4006. - In block 4006 a
carry ring 114 is placed around the open end of the shapedvessel 102. The carry ring rests on the lower edge which keeps the ring from sliding down the neck of the contour vessel. The method continues inblock 4008. - In
block 4008 an upper edge is formed on the shapedvessel 102 side walls above the lower edge and the carry ring. The method continues inblock 4010. - In
block 4010 the carry ring is pinched or adhered between the lower and upper edge proximate the open end of the shapedvessel 102. In an exemplary embodiment, the column load is isolated between the carry ring and the open end of the shapedvessel 102 with the methods detailed inblock 1006 or by other methods, as may be required and or desired in a particular embodiment.FIGS. 6A-6D illustrates thecarry ring upper edge 118A and thelower edge 118B. The method is then exited. - Referring to
FIG. 16 there is illustrated examples of exemplary embodiments of methods of isolating column loading and mitigating deformation of shaped vessels during closure application. Such exemplary embodiments can be selectively utilized with the methods of the present invention. - In
block 5002 an outsert can be applied around the open end of the shapedvessel 102. Such application can be by press fitting, adhering, roll formed, and or by other methods, as may be required and or desired in a particular embodiment. - In
block 5004 the shaped vessel can be filled with a product. In an exemplary embodiment, such a product can be filled through the open end of the shapedvessel 102. Such products can include food, beverage, and or other products, as may be required and or desired in a particular embodiment. - In
block 5006 the cylindrical tube can be heated to increase the workability of the vessel material prior to and or during the step of molding. In an exemplary embodiment, a metal cylindrical tube can be heated to soften the metal prior to and or during molding. Furthermore, such molding methods can include blow molding, pressure ram, embossed, rolled, hydro formed, pneumatic formed, stamped halves, and or other types and kinds of molding, as may be required and or desired in a particular embodiment. - In
block 5008 the shaped vessel can be decorated. Such decoration can be brand name indicia, product indicia, nutrition content indicia, and or other indicia and or decoration, as may be required and or desired in a particular embodiment. In an exemplary embodiment, such indicia and or decoration can be applied to the shaped vessel by way of printing, screening, ink jet, application on a pre printed label, and or by other methods, as may be required and or desired in a particular embodiment. - In
block 5010 the cylindrical tube is formed from a sheet metal or metal slug. In an exemplary embodiment, sheet metal can be formed into a cylindrical tube by way of cupping, drawn and ironing (D&I), impact extrusion of metal slugs formed, and or by way of other types and kinds of methods, as may be required and or desired in a particular embodiment. - In
block 5012 the formed shapedvessel 102 can be heat treated to strengthen the vessel walls or improve the metal for future forming operations. In an exemplary embodiment, such heating methods can include annealing, tempering, re-crystallizing, and or other methods, as may be required and or desired in a particular embodiment. - In
block 5014 the shaped vessel can be trimmed. In an exemplary the open end of the shaped vessel can be trimmed to create a uniform even open end edge. As an example and not a limitation, trimming of the open end edge can be effectuated prior to rolling the edge such as illustrated inFIGS. 2A-2C and 3A-B, 4A-4B, 5A-5B, 6C-6D, and 7A-7B shown as rollededge 104. - In
block 5016 the shaped vessel can have the interior of the vessel coated to prevent the contents of the vessel such as a food, beverage, or other packaging contents, as may be required and or desired in a particular embodiment from coming in contact with the metal side walls of the vessel. In this regard, such metal vessel can leach into the packaging contents and or the packaging contents can adversely interact with the metal that forms the vessel. In an exemplary embodiment a coating such as epoxies, acrylics, polyesters, polymer laminates, and others can be used to insure separation of the metal vessel surface from the vessel contents such as a food or a beverage. Such a coating can be applied to the sheet metal prior to forming the cylindrical tube, to the cylindrical tube prior to shaping into a shaped vessel, and or to the shape vessel after shaping, as may be required and of desired in a particular embodiment. - In
block 5018 the shaped vessel can be cleaned to remove any process films, oils, dirt and or debris, contamination, sterilization, and or cleaned for other purposes, as may be required and or desired in a particular embodiment. - In
block 5020 final shaping can be provided after initial shaping processes are performed. In this regard, after the vessel has been initially shaped, other non-shaping steps can be performed such as decoration, trimming, cleaning, and other non-shaping steps, as may be required and or desired in a particular embodiment. After such non-shaping steps additional shaping steps can be performed. - The capabilities of the present invention can be implemented in software, firmware, hardware or some combination thereof.
- As one example, one or more aspects of the present invention can be included in an article of manufacture (e.g., one or more computer program products) having, for instance, computer usable media. The media has embodied therein, for instance, computer readable program code means for providing and facilitating the capabilities of the present invention. The article of manufacture can be included as a part of a computer system or sold separately.
- Additionally, at least one program storage device readable by a machine, tangibly embodying at least one program of instructions executable by the machine to perform the capabilities of the present invention can be provided.
- The flow diagrams depicted herein are just examples. There may be many variations to these diagrams or the steps (or operations) described therein without departing from the spirit of the invention. For instance, the steps may be performed in a differing order, or steps may be added, deleted or modified. All of these variations are considered a part of the claimed invention.
- While the preferred embodiment to the invention has been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.
Claims (20)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/618,396 US20110113732A1 (en) | 2009-11-13 | 2009-11-13 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
KR1020127015198A KR101882929B1 (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
PH1/2012/500959A PH12012500959A1 (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
CA2780798A CA2780798C (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
MX2012005587A MX351318B (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels. |
PCT/US2010/055052 WO2011059852A1 (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
AU2010319766A AU2010319766B2 (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
CN201080060778.1A CN102686482B (en) | 2009-11-13 | 2010-11-02 | Insulated column load and the method alleviating shaped metal containers distortion |
JP2012538855A JP2013510726A (en) | 2009-11-13 | 2010-11-02 | Method for reducing deformation of container by blocking vertical load on molded metal container |
BR112012011396A BR112012011396B1 (en) | 2009-11-13 | 2010-11-02 | method for isolating column loading and mitigating deformation of molded metal containers |
EP10830527.7A EP2499049B1 (en) | 2009-11-13 | 2010-11-02 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
IL219762A IL219762A (en) | 2009-11-13 | 2012-05-13 | Method for isolating column loading and mitigating deformation of shaped metal vessels |
ZA2012/03956A ZA201203956B (en) | 2009-11-13 | 2012-05-30 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
JP2015222562A JP6238948B2 (en) | 2009-11-13 | 2015-11-13 | Method for reducing deformation of container by blocking vertical load on molded metal container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/618,396 US20110113732A1 (en) | 2009-11-13 | 2009-11-13 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110113732A1 true US20110113732A1 (en) | 2011-05-19 |
Family
ID=43991959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/618,396 Abandoned US20110113732A1 (en) | 2009-11-13 | 2009-11-13 | Method of isolating column loading and mitigating deformation of shaped metal vessels |
Country Status (13)
Country | Link |
---|---|
US (1) | US20110113732A1 (en) |
EP (1) | EP2499049B1 (en) |
JP (2) | JP2013510726A (en) |
KR (1) | KR101882929B1 (en) |
CN (1) | CN102686482B (en) |
AU (1) | AU2010319766B2 (en) |
BR (1) | BR112012011396B1 (en) |
CA (1) | CA2780798C (en) |
IL (1) | IL219762A (en) |
MX (1) | MX351318B (en) |
PH (1) | PH12012500959A1 (en) |
WO (1) | WO2011059852A1 (en) |
ZA (1) | ZA201203956B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013102217A1 (en) * | 2011-12-30 | 2013-07-04 | The Coca-Cola Company | System and method for forming a metal beverage container using blow molding |
CN104058249A (en) * | 2014-06-17 | 2014-09-24 | 广州丽盈塑料有限公司 | Automatic inner plug locating and installing mechanism |
JP2015511562A (en) * | 2012-03-15 | 2015-04-20 | アルダフ エムピー グループ ネザーランド ベー.ヴェー. | Metal package with tubular part |
WO2015143540A1 (en) | 2014-03-25 | 2015-10-01 | Betty Jean Pilon | Method for blow molding metal containers |
US20150314900A1 (en) * | 2011-03-04 | 2015-11-05 | Express Scripts, Inc. | Systems and methods for capping |
US9517498B2 (en) | 2013-04-09 | 2016-12-13 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US9663846B2 (en) | 2011-09-16 | 2017-05-30 | Ball Corporation | Impact extruded containers from recycled aluminum scrap |
US10875684B2 (en) | 2017-02-16 | 2020-12-29 | Ball Corporation | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers |
US11148847B2 (en) | 2019-05-01 | 2021-10-19 | Pepsico, Inc. | Plastic neck outsert for metal beverage container |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
US11383281B2 (en) | 2014-12-30 | 2022-07-12 | 1949467 Ontario Inc. | Impact extrusion method, tooling and product |
US11459223B2 (en) | 2016-08-12 | 2022-10-04 | Ball Corporation | Methods of capping metallic bottles |
US11519057B2 (en) | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US12291371B2 (en) | 2022-02-04 | 2025-05-06 | Ball Corporation | Method for forming a curl and a threaded metallic container including the same |
US12330201B2 (en) | 2021-03-18 | 2025-06-17 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH707062A1 (en) * | 2012-10-04 | 2014-04-15 | Alpla Werke | Support Ring Clear plastic containers, especially plastic bottles. |
DE202014104284U1 (en) * | 2014-09-10 | 2015-12-14 | Mapa Gmbh | nutrition bottle |
CN111532474B (en) * | 2020-05-08 | 2021-12-28 | 徐州市不一科技有限公司 | Automatic joint sealing device of feeding |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1912677A (en) * | 1930-09-16 | 1933-06-06 | Williams Sealing Corp | Mechanism for applying caps to containers |
US3245569A (en) * | 1964-08-17 | 1966-04-12 | Essich Helmut | Bottle stopper arrangement |
US4007851A (en) * | 1975-05-09 | 1977-02-15 | Zapata Industries, Inc. | Anti-missiling bottle closure |
US4075820A (en) * | 1976-07-28 | 1978-02-28 | Abbott Laboratories | Spin welding apparatus |
US4822326A (en) * | 1987-08-20 | 1989-04-18 | Boardman Molded Products, Inc. | Method of forming a tamper evident sealing liner |
US4939890A (en) * | 1989-04-14 | 1990-07-10 | Fci, Inc. | Anti-rotation method and apparatus for bottle capping machines |
US5249449A (en) * | 1992-04-23 | 1993-10-05 | Reynolds Metals Company | Can necking apparatus with spindle containing pressurizing gas reservoir |
US5398485A (en) * | 1994-03-31 | 1995-03-21 | H & K Inc. | Bottle support mechanism for a capping machine |
US5408801A (en) * | 1994-10-03 | 1995-04-25 | Molinaro; Luca | Outboard bottle support apparatus for bottle capping machines |
US5448903A (en) * | 1994-01-25 | 1995-09-12 | Ball Corporation | Method for necking a metal container body |
US5718352A (en) * | 1994-11-22 | 1998-02-17 | Aluminum Company Of America | Threaded aluminum cans and methods of manufacture |
US5823372A (en) * | 1998-01-28 | 1998-10-20 | Levine; Alan | Pump insert for bottle caps |
US5832769A (en) * | 1996-05-01 | 1998-11-10 | Coors Brewing Company | Apparatus for necking can bodies |
US6010028A (en) * | 1994-11-22 | 2000-01-04 | Aluminum Company Of America | Lightweight reclosable can with attached threaded pour spout and methods of manufacture |
US6010026A (en) * | 1994-11-22 | 2000-01-04 | Aluminum Company Of America | Assembly of aluminum can and threaded sleeve |
US6375020B1 (en) * | 1999-07-12 | 2002-04-23 | Cebal Entec, S.A. | Cap system for aluminum and/or steel bottles |
US6442988B1 (en) * | 2001-05-01 | 2002-09-03 | Alcan International Limited | Methods of spin forming initially cylindrical containers and the like |
US6442991B1 (en) * | 1999-10-27 | 2002-09-03 | Metalgrafica Rojek Ltda. | Device for stretching and molding can bodies |
US6474368B2 (en) * | 2000-02-23 | 2002-11-05 | Khs Maschinen- Und Anlagenbau Aktiengesellschaft | Beverage container filling machine, and method for filling containers with a liquid filling material in a beverage container filling machine |
US20020162371A1 (en) * | 2001-05-01 | 2002-11-07 | Peter Hamstra | Method of pressure-ram-forming metal containers and the like |
US6499329B1 (en) * | 1999-08-30 | 2002-12-31 | Daiwa Can Company | Production method for bottle type can and form-working tool |
US20030102278A1 (en) * | 2001-12-04 | 2003-06-05 | Thomas Chupak | Aluminum receptacle with threaded outsert |
US20030154694A1 (en) * | 2002-02-19 | 2003-08-21 | Fci, Inc., An Ohio Corporation | Apparatus and method to prevent bottle rotation |
US6620473B2 (en) * | 1998-10-15 | 2003-09-16 | Yupo Corporation | Label for in-mold decorating |
US6662526B2 (en) * | 2001-11-27 | 2003-12-16 | Alcoa Closure Systems International, Inc. | Modular turret cage for a capping machine |
US6748983B2 (en) * | 2002-02-25 | 2004-06-15 | Sig Hamba Filltec Gmbh & Co. Kg | Conveyor for bottle-filling machine |
US6752000B2 (en) * | 2002-11-27 | 2004-06-22 | Delaware Capital Formation, Inc. | Single cam container necking apparatus and method |
US6772799B1 (en) * | 2003-03-21 | 2004-08-10 | Coca-Cola Enterprises Inc. | Bottle neck ring and method of its use in the processing of drinks |
US20040173560A1 (en) * | 2002-08-20 | 2004-09-09 | Thomas Chupak | Aluminum aerosol can and aluminum bottle and method of manufacture from coil feedstock |
US20040187536A1 (en) * | 2001-05-01 | 2004-09-30 | Kevin Gong | Methods of pressure-ram-forming metal containers and the like |
US6857304B2 (en) * | 1999-08-30 | 2005-02-22 | Daiwa Can Company | Bottle-shaped can manufacturing method |
US6973761B2 (en) * | 2000-03-29 | 2005-12-13 | Fci, Inc. | Anti-rotation wear plate for capping machine |
US20060043054A1 (en) * | 2001-12-10 | 2006-03-02 | Karl Matheis | Sealable beverage bottle |
US7028857B2 (en) * | 2003-05-28 | 2006-04-18 | Fci, Inc. | Plastic water bottle and apparatus and method to convey the bottle and prevent bottle rotation |
US7073365B2 (en) * | 2002-06-03 | 2006-07-11 | Novelis, Inc. | Linear drive metal forming machine |
US20060159797A1 (en) * | 2004-10-22 | 2006-07-20 | Lee Robert A | Apparatus and method of molding preforms having a crystalline neck |
US7191032B2 (en) * | 2004-05-14 | 2007-03-13 | Novelis Inc. | Methods of and apparatus for forming hollow metal articles |
US7308915B2 (en) * | 2005-04-21 | 2007-12-18 | Jpro Dairy International, Inc. | Packaging system for storing and mixing separate ingredient components |
US20080006072A1 (en) * | 2004-11-08 | 2008-01-10 | Roberto Frattini | Process for the Shaping of the Surface of a Metal Container |
US7552575B1 (en) * | 2005-11-14 | 2009-06-30 | Martin Wendell S | Method of controlling rotation of lifter ring |
US20090293436A1 (en) * | 2006-07-03 | 2009-12-03 | Hokkai Can Co., Ltd. | Method and Device for Producing Content Filling Bottle |
US7798357B2 (en) * | 2001-12-28 | 2010-09-21 | Universal Can Corporation | Bottle can member, bottle, and thread forming device |
US8381561B2 (en) * | 2008-10-16 | 2013-02-26 | The Coca-Cola Company | Vessel forming production line |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4114347A (en) * | 1977-05-09 | 1978-09-19 | Pepsico, Inc. | Capping apparatus having means for conveying containers while suspended by a flange |
JPS6160439A (en) * | 1984-08-20 | 1986-03-28 | 東洋製罐株式会社 | Vessel and manufacture thereof |
JPS60120920U (en) * | 1984-08-20 | 1985-08-15 | 東洋製罐株式会社 | metal container |
JPS6193093A (en) * | 1984-10-01 | 1986-05-12 | 日本クラウンコルク株式会社 | Method of sealing resin bottle |
DE4208441A1 (en) * | 1992-03-17 | 1993-09-23 | Kronseder Maschf Krones | METHOD AND DEVICE FOR CLOSING BOTTLES |
JP4416222B2 (en) * | 1999-10-13 | 2010-02-17 | 大和製罐株式会社 | Manufacturing method for printed bottle-shaped cans |
AU779821B2 (en) * | 1999-09-30 | 2005-02-10 | Daiwa Can Company Limited | Method of manufacturing bottle type can |
JP4647799B2 (en) * | 2000-02-21 | 2011-03-09 | 株式会社町山製作所 | Method for manufacturing liquid filling container |
NZ521694A (en) * | 2002-09-30 | 2005-05-27 | Co2 Pac Ltd | Container structure for removal of vacuum pressure |
JP4115133B2 (en) | 2002-01-17 | 2008-07-09 | 大和製罐株式会社 | Bottle-type can and manufacturing method thereof |
JP4218001B2 (en) * | 2002-01-30 | 2009-02-04 | 武内プレス工業株式会社 | Metal container and method for manufacturing metal container |
JP3788376B2 (en) * | 2002-03-26 | 2006-06-21 | 三菱マテリアル株式会社 | Metal bottle can manufacturing equipment |
NZ550936A (en) * | 2004-05-05 | 2009-04-30 | Coca Cola Co | Carbonated beverage dispenser |
JP4667854B2 (en) * | 2004-12-24 | 2011-04-13 | ユニバーサル製缶株式会社 | Bottle can and manufacturing method thereof |
CN101032727A (en) * | 2006-03-06 | 2007-09-12 | 谢靖佳 | Hot pressure blowing method of forming metal bottle |
CN101037143A (en) * | 2006-03-13 | 2007-09-19 | 刘宝玉 | Running method of the clamping mechanism and the clamping mechanism and the incasement system |
JP4837593B2 (en) * | 2006-05-31 | 2011-12-14 | 昭和アルミニウム缶株式会社 | Metal can having stereoscopic display and embossing method |
-
2009
- 2009-11-13 US US12/618,396 patent/US20110113732A1/en not_active Abandoned
-
2010
- 2010-11-02 WO PCT/US2010/055052 patent/WO2011059852A1/en active Application Filing
- 2010-11-02 CN CN201080060778.1A patent/CN102686482B/en active Active
- 2010-11-02 KR KR1020127015198A patent/KR101882929B1/en active Active
- 2010-11-02 MX MX2012005587A patent/MX351318B/en active IP Right Grant
- 2010-11-02 PH PH1/2012/500959A patent/PH12012500959A1/en unknown
- 2010-11-02 CA CA2780798A patent/CA2780798C/en active Active
- 2010-11-02 AU AU2010319766A patent/AU2010319766B2/en active Active
- 2010-11-02 BR BR112012011396A patent/BR112012011396B1/en active IP Right Grant
- 2010-11-02 EP EP10830527.7A patent/EP2499049B1/en active Active
- 2010-11-02 JP JP2012538855A patent/JP2013510726A/en active Pending
-
2012
- 2012-05-13 IL IL219762A patent/IL219762A/en active IP Right Grant
- 2012-05-30 ZA ZA2012/03956A patent/ZA201203956B/en unknown
-
2015
- 2015-11-13 JP JP2015222562A patent/JP6238948B2/en active Active
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1912677A (en) * | 1930-09-16 | 1933-06-06 | Williams Sealing Corp | Mechanism for applying caps to containers |
US3245569A (en) * | 1964-08-17 | 1966-04-12 | Essich Helmut | Bottle stopper arrangement |
US4007851A (en) * | 1975-05-09 | 1977-02-15 | Zapata Industries, Inc. | Anti-missiling bottle closure |
US4075820A (en) * | 1976-07-28 | 1978-02-28 | Abbott Laboratories | Spin welding apparatus |
US4822326A (en) * | 1987-08-20 | 1989-04-18 | Boardman Molded Products, Inc. | Method of forming a tamper evident sealing liner |
US4939890A (en) * | 1989-04-14 | 1990-07-10 | Fci, Inc. | Anti-rotation method and apparatus for bottle capping machines |
US5249449A (en) * | 1992-04-23 | 1993-10-05 | Reynolds Metals Company | Can necking apparatus with spindle containing pressurizing gas reservoir |
US5448903A (en) * | 1994-01-25 | 1995-09-12 | Ball Corporation | Method for necking a metal container body |
US5398485A (en) * | 1994-03-31 | 1995-03-21 | H & K Inc. | Bottle support mechanism for a capping machine |
US5408801A (en) * | 1994-10-03 | 1995-04-25 | Molinaro; Luca | Outboard bottle support apparatus for bottle capping machines |
US5718352A (en) * | 1994-11-22 | 1998-02-17 | Aluminum Company Of America | Threaded aluminum cans and methods of manufacture |
US5822843A (en) * | 1994-11-22 | 1998-10-20 | Aluminum Company Of America | Method of making bottle-shaped metal cans |
US6010028A (en) * | 1994-11-22 | 2000-01-04 | Aluminum Company Of America | Lightweight reclosable can with attached threaded pour spout and methods of manufacture |
US6010026A (en) * | 1994-11-22 | 2000-01-04 | Aluminum Company Of America | Assembly of aluminum can and threaded sleeve |
US5832769A (en) * | 1996-05-01 | 1998-11-10 | Coors Brewing Company | Apparatus for necking can bodies |
US5823372A (en) * | 1998-01-28 | 1998-10-20 | Levine; Alan | Pump insert for bottle caps |
US6620473B2 (en) * | 1998-10-15 | 2003-09-16 | Yupo Corporation | Label for in-mold decorating |
US6375020B1 (en) * | 1999-07-12 | 2002-04-23 | Cebal Entec, S.A. | Cap system for aluminum and/or steel bottles |
US6499329B1 (en) * | 1999-08-30 | 2002-12-31 | Daiwa Can Company | Production method for bottle type can and form-working tool |
US6857304B2 (en) * | 1999-08-30 | 2005-02-22 | Daiwa Can Company | Bottle-shaped can manufacturing method |
US6442991B1 (en) * | 1999-10-27 | 2002-09-03 | Metalgrafica Rojek Ltda. | Device for stretching and molding can bodies |
US6474368B2 (en) * | 2000-02-23 | 2002-11-05 | Khs Maschinen- Und Anlagenbau Aktiengesellschaft | Beverage container filling machine, and method for filling containers with a liquid filling material in a beverage container filling machine |
US6973761B2 (en) * | 2000-03-29 | 2005-12-13 | Fci, Inc. | Anti-rotation wear plate for capping machine |
US7107804B2 (en) * | 2001-05-01 | 2006-09-19 | Novelis Inc. | Methods of and apparatus for pressure-ram-forming metal containers and the like |
US20020162371A1 (en) * | 2001-05-01 | 2002-11-07 | Peter Hamstra | Method of pressure-ram-forming metal containers and the like |
US20040187536A1 (en) * | 2001-05-01 | 2004-09-30 | Kevin Gong | Methods of pressure-ram-forming metal containers and the like |
US6442988B1 (en) * | 2001-05-01 | 2002-09-03 | Alcan International Limited | Methods of spin forming initially cylindrical containers and the like |
US6662526B2 (en) * | 2001-11-27 | 2003-12-16 | Alcoa Closure Systems International, Inc. | Modular turret cage for a capping machine |
US6779677B2 (en) * | 2001-12-04 | 2004-08-24 | Exal Corporation | Aluminum receptacle with threaded outsert |
US20050127077A1 (en) * | 2001-12-04 | 2005-06-16 | Exal Corporation | Method of manufacturing an aluminum receptacle with threaded outsert |
US6907653B2 (en) * | 2001-12-04 | 2005-06-21 | Exal Corporation | Method of affixing a threaded sleeve to the neck of an aluminum container |
US20030102278A1 (en) * | 2001-12-04 | 2003-06-05 | Thomas Chupak | Aluminum receptacle with threaded outsert |
US20060043054A1 (en) * | 2001-12-10 | 2006-03-02 | Karl Matheis | Sealable beverage bottle |
US7798357B2 (en) * | 2001-12-28 | 2010-09-21 | Universal Can Corporation | Bottle can member, bottle, and thread forming device |
US8037734B2 (en) * | 2001-12-28 | 2011-10-18 | Universal Can Corporation | Bottle can member, bottle, and thread forming device |
US6698160B2 (en) * | 2002-02-19 | 2004-03-02 | Fci, Inc. | Apparatus and method to prevent bottle rotation |
US20030154694A1 (en) * | 2002-02-19 | 2003-08-21 | Fci, Inc., An Ohio Corporation | Apparatus and method to prevent bottle rotation |
US6834478B2 (en) * | 2002-02-19 | 2004-12-28 | Fci, Inc. | Apparatus and method to prevent bottle rotation |
US6748983B2 (en) * | 2002-02-25 | 2004-06-15 | Sig Hamba Filltec Gmbh & Co. Kg | Conveyor for bottle-filling machine |
US7073365B2 (en) * | 2002-06-03 | 2006-07-11 | Novelis, Inc. | Linear drive metal forming machine |
US20040173560A1 (en) * | 2002-08-20 | 2004-09-09 | Thomas Chupak | Aluminum aerosol can and aluminum bottle and method of manufacture from coil feedstock |
US7140223B2 (en) * | 2002-08-20 | 2006-11-28 | Exal Corporation | Method of producing aluminum container from coil feedstock |
US6752000B2 (en) * | 2002-11-27 | 2004-06-22 | Delaware Capital Formation, Inc. | Single cam container necking apparatus and method |
US6772799B1 (en) * | 2003-03-21 | 2004-08-10 | Coca-Cola Enterprises Inc. | Bottle neck ring and method of its use in the processing of drinks |
US7681749B2 (en) * | 2003-05-28 | 2010-03-23 | Fci, Inc. | Plastic water bottle and apparatus and method to convey the bottle and prevent bottle rotation |
US7028857B2 (en) * | 2003-05-28 | 2006-04-18 | Fci, Inc. | Plastic water bottle and apparatus and method to convey the bottle and prevent bottle rotation |
US7191032B2 (en) * | 2004-05-14 | 2007-03-13 | Novelis Inc. | Methods of and apparatus for forming hollow metal articles |
US20060159797A1 (en) * | 2004-10-22 | 2006-07-20 | Lee Robert A | Apparatus and method of molding preforms having a crystalline neck |
US20080006072A1 (en) * | 2004-11-08 | 2008-01-10 | Roberto Frattini | Process for the Shaping of the Surface of a Metal Container |
US7308915B2 (en) * | 2005-04-21 | 2007-12-18 | Jpro Dairy International, Inc. | Packaging system for storing and mixing separate ingredient components |
US7552575B1 (en) * | 2005-11-14 | 2009-06-30 | Martin Wendell S | Method of controlling rotation of lifter ring |
US20090293436A1 (en) * | 2006-07-03 | 2009-12-03 | Hokkai Can Co., Ltd. | Method and Device for Producing Content Filling Bottle |
US8381561B2 (en) * | 2008-10-16 | 2013-02-26 | The Coca-Cola Company | Vessel forming production line |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150314900A1 (en) * | 2011-03-04 | 2015-11-05 | Express Scripts, Inc. | Systems and methods for capping |
US10370190B2 (en) * | 2011-03-04 | 2019-08-06 | Express Scripts Strategic Development, Inc. | Systems and methods for capping |
US10584402B2 (en) | 2011-09-16 | 2020-03-10 | Ball Corporation | Aluminum alloy slug for impact extrusion |
US9663846B2 (en) | 2011-09-16 | 2017-05-30 | Ball Corporation | Impact extruded containers from recycled aluminum scrap |
US9321093B2 (en) | 2011-12-30 | 2016-04-26 | The Coca-Cola Company | System and method for forming a metal beverage container using blow molding |
US10328477B2 (en) | 2011-12-30 | 2019-06-25 | The Coca-Cola Company | System and method for forming a metal beverage container using pressure molding |
WO2013102217A1 (en) * | 2011-12-30 | 2013-07-04 | The Coca-Cola Company | System and method for forming a metal beverage container using blow molding |
CN104144755A (en) * | 2011-12-30 | 2014-11-12 | 可口可乐公司 | System and method for forming a metal beverage container using pressure molding |
JP2015511562A (en) * | 2012-03-15 | 2015-04-20 | アルダフ エムピー グループ ネザーランド ベー.ヴェー. | Metal package with tubular part |
US9517498B2 (en) | 2013-04-09 | 2016-12-13 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US9844805B2 (en) | 2013-04-09 | 2017-12-19 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US11040387B2 (en) | 2014-03-25 | 2021-06-22 | Montebello Technology Services Ltd. | Method for blow molding metal containers |
WO2015143540A1 (en) | 2014-03-25 | 2015-10-01 | Betty Jean Pilon | Method for blow molding metal containers |
US9943899B2 (en) | 2014-03-25 | 2018-04-17 | Montebello Technology Services Ltd. | Method for blow molding metal containers |
CN104058249A (en) * | 2014-06-17 | 2014-09-24 | 广州丽盈塑料有限公司 | Automatic inner plug locating and installing mechanism |
US11383281B2 (en) | 2014-12-30 | 2022-07-12 | 1949467 Ontario Inc. | Impact extrusion method, tooling and product |
US11865600B2 (en) | 2014-12-30 | 2024-01-09 | Montebello Technology Services Ltd. | Impact extrusion method, tooling and product |
US11459223B2 (en) | 2016-08-12 | 2022-10-04 | Ball Corporation | Methods of capping metallic bottles |
US20220324689A1 (en) * | 2016-08-12 | 2022-10-13 | Ball Corporation | Methods of capping metallic bottles |
US11970381B2 (en) * | 2016-08-12 | 2024-04-30 | Ball Corporation | Methods of capping metallic bottles |
US11519057B2 (en) | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US12110574B2 (en) | 2016-12-30 | 2024-10-08 | Ball Corporation | Aluminum container |
US10875684B2 (en) | 2017-02-16 | 2020-12-29 | Ball Corporation | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
US11148847B2 (en) | 2019-05-01 | 2021-10-19 | Pepsico, Inc. | Plastic neck outsert for metal beverage container |
US12330201B2 (en) | 2021-03-18 | 2025-06-17 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US12291371B2 (en) | 2022-02-04 | 2025-05-06 | Ball Corporation | Method for forming a curl and a threaded metallic container including the same |
Also Published As
Publication number | Publication date |
---|---|
AU2010319766B2 (en) | 2016-02-18 |
MX351318B (en) | 2017-09-25 |
BR112012011396A2 (en) | 2016-04-26 |
JP2013510726A (en) | 2013-03-28 |
KR101882929B1 (en) | 2018-08-30 |
EP2499049A4 (en) | 2015-09-16 |
ZA201203956B (en) | 2013-02-27 |
WO2011059852A1 (en) | 2011-05-19 |
JP6238948B2 (en) | 2017-11-29 |
CA2780798C (en) | 2017-10-31 |
IL219762A (en) | 2017-10-31 |
CN102686482B (en) | 2015-12-16 |
CA2780798A1 (en) | 2011-05-19 |
AU2010319766A1 (en) | 2012-07-12 |
EP2499049B1 (en) | 2019-06-12 |
BR112012011396B1 (en) | 2020-02-04 |
WO2011059852A8 (en) | 2012-08-02 |
EP2499049A1 (en) | 2012-09-19 |
IL219762A0 (en) | 2012-07-31 |
MX2012005587A (en) | 2012-06-27 |
JP2016074037A (en) | 2016-05-12 |
CN102686482A (en) | 2012-09-19 |
PH12012500959A1 (en) | 2015-08-26 |
KR20120082948A (en) | 2012-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010319766B2 (en) | Method of isolating column loading and mitigating deformation of shaped metal vessels | |
US8360266B2 (en) | Shaped metal vessel | |
TW462935B (en) | Method of manufacturing bottle type can | |
MXPA04005442A (en) | Aluminum receptacle with threaded neck. | |
EP2123568B1 (en) | Method for indicating of pressure in a bottled beverage using a crown-type metal cap | |
WO2012009156A1 (en) | Extrusion blow molded pet container having superior column strength | |
US20110272316A1 (en) | Labeling device for container, and related manufacturing method | |
EP3099591B1 (en) | Metallic screw cap for bottle | |
AU2012249485B2 (en) | Double-wall closure | |
US12023955B2 (en) | Method for texturizing capsules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE COCA-COLA COMPANY, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAMS, JOHN E., MR.;REEL/FRAME:023592/0457 Effective date: 20091202 |
|
AS | Assignment |
Owner name: THE COCA-COLA COMPANY, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:D.M. OPERATIONS, INC.;REEL/FRAME:024745/0771 Effective date: 20100426 Owner name: D.M. OPERATIONS, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TOSINI, GIANCARLO, MR.;REEL/FRAME:024745/0706 Effective date: 20100426 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |