US20110094557A1 - Method of forming semiconductor film and photovoltaic device including the film - Google Patents
Method of forming semiconductor film and photovoltaic device including the film Download PDFInfo
- Publication number
- US20110094557A1 US20110094557A1 US12/606,210 US60621009A US2011094557A1 US 20110094557 A1 US20110094557 A1 US 20110094557A1 US 60621009 A US60621009 A US 60621009A US 2011094557 A1 US2011094557 A1 US 2011094557A1
- Authority
- US
- United States
- Prior art keywords
- source
- particles
- dispersion
- substrate
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000004065 semiconductor Substances 0.000 title description 5
- 239000002245 particle Substances 0.000 claims abstract description 43
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000006185 dispersion Substances 0.000 claims abstract description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 20
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 19
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 18
- 238000000151 deposition Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 238000000137 annealing Methods 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000011669 selenium Substances 0.000 claims description 31
- 239000011701 zinc Substances 0.000 claims description 27
- 239000002904 solvent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 8
- 239000011135 tin Substances 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 238000007766 curtain coating Methods 0.000 claims description 2
- 238000003618 dip coating Methods 0.000 claims description 2
- 238000007646 gravure printing Methods 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 238000007641 inkjet printing Methods 0.000 claims description 2
- 230000005499 meniscus Effects 0.000 claims description 2
- 238000007649 pad printing Methods 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 2
- 150000003346 selenoethers Chemical class 0.000 claims description 2
- 238000007767 slide coating Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000010345 tape casting Methods 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000002041 carbon nanotube Substances 0.000 claims 1
- 229910021393 carbon nanotube Inorganic materials 0.000 claims 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 31
- 239000010949 copper Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000000976 ink Substances 0.000 description 12
- 239000002243 precursor Substances 0.000 description 12
- 230000008021 deposition Effects 0.000 description 11
- 238000013459 approach Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000004770 chalcogenides Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- -1 chalcogenide anions Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002475 Cu2ZnSnS4 Inorganic materials 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000000224 chemical solution deposition Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007647 flexography Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000013090 high-throughput technology Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000008137 solubility enhancer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02568—Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02601—Nanoparticles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Definitions
- the present invention further provides a composition, which includes a dispersion of Zn-containing solid particles formed from hydrazine, a source of Cu, a source of Sn, a source of Zn, and a source of at least one of S and Se; which when annealed, forms a compound of the formula: Cu 2 ⁇ x Zn 1+y Sn(S 1 ⁇ z Se z ) 4+q wherein 0 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 1; 0 ⁇ z ⁇ 1; ⁇ 1 ⁇ q ⁇ 1.
- the ink, or functional liquid used to deposit an inorganic, substantially single-phase compound film by a liquid-coating method includes at least one of each 3 following categories:
- the dissolved components preferably include Cu, and Sn in combination with S and/or Se in total concentration of from about 5 to about 1000 mg/ml.
- the dissolved components include an element, selected from the group: Li, Na, K, Mg, Ca, Sr, Ba, Sb, Bi, and B; and
- the obtained film on substrate may then be used for the desired application, such as, optical, electrical, anti-friction, bactericidal, catalytic, photo-catalytic, electromagnetic shielding, wear-resistance, and diffusion barrier.
- Solar cells were fabricated from the above-described Cu 2 ZnSn(Se,S) 4 films by deposition of 60 nm CdS buffer layer by chemical bath deposition, 100 nm insulating ZnO and 130 nm ITO (indium-doped zinc oxide) by sputtering ( FIG. 2 ).
- Ni/Al metal contacts and 110 nm MgF coatings were deposited by electron-beam evaporation.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a liquid-based method for deposition of inorganic films having Cu, Zn, Sn, and at least one of S and Se, and more particularly to a method of deposition of kesterite-type Cu—Zn—Sn—(Se,S) materials and improved photovoltaic devices based on these films.
- 2. Description of Related Art
- Large-scale production of photovoltaic devices requires high-throughput technologies and abundant environmentally friendly materials. Thin-film chalcogenide-based solar cells provide a promising pathway to cost parity between photovoltaic and conventional energy sources.
- Currently, only Cu(In,Ga)(S,Se)2 and CdTe technologies have reached commercial production and offer over 10 percent power conversion efficiency. These technologies generally employ (i) indium and tellurium, which are relatively rare elements in the earth's crust, or (ii) cadmium, which is a highly toxic heavy metal.
- Copper-zinc-tin-chalcogenide kesterites have been investigated as potential alternatives because they are based on abundant elements. However, photovoltaic cells with kesterites, even when produced using high cost vacuum-based methods, have so far achieved at best only <6.7 percent efficiencies, see Katagiri, H. et. al. Development of CZTS-based thin film solar cells; Thin Solid Films 517, 2455-2460 (2009).
- K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Solar Energy Mater. Sol. Cells 2009, 93, 583-587 describe a solution-based approach for an indium-free material which produced a photovoltaic device with efficiency of only 1%.
- T. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 2009, 517, 2541-2544 describe a deposition approach based on quaternary Cu—Zn—Sn—S precursors formed by reacting metal acetates and chlorides with elemental sulfur in ethylene glycol at 170° C.
- Guo et. al, J. AM. CHEM. SOC. 2009, 131, 11672-11673 have reported films deposited by a similar approach, subsequently subjected to selenization treatment. They have also reported that devices based on the Cu2ZnSnSySe1−y films yield efficiencies of 0.74%, a level that is lower than the above solution approach for Cu2ZnSnS4.
- However, there are no reports of hydrazine-based deposition approaches of depositing homogeneous chalcogenide layers from dispersions of metal chalcogenides in systems that are not strictly soluble in hydrazine. Further, there are no reports to extend the nanoparticle- and microparticle-based approaches to systems without organic binders in a manner that particle-based precursors can readily react with solution component and form large-grained films with good electrical characteristics.
- The disadvantages associated with the prior art are overcome by embodiments of the present invention by the introduction of hybrid precursor inks including both dissolved and solid components of the targeted material, where the dissolved component acts as a binder, without introducing extraneous elements into the solution that would generally end up as impurities in the final film.
- The present method provides a method of depositing a kesterite film including a compound of the formula:
-
Cu2−xZn1+ySn(S1−zSez)4+q - wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1
- The method includes the steps of contacting hydrazine, a source of Cu, a source of Sn, a source of Zn and a source of at least one of S and Se under conditions sufficient to form a dispersion including Zn-containing solid particles. In a preferred embodiment, the method includes the steps of contacting hydrazine, a source of Cu, and a source of at least one of S and Se forming solution A; contacting hydrazine, a source of Sn, a source of at least one of S and Se, and a source of Zn form dispersion B; mixing solution A and dispersion B under conditions sufficient to form a dispersion including Zn-containing solid particles; applying the dispersion onto a substrate to form a thin layer of the dispersion on the substrate; and annealing at a temperature, pressure, and length of time sufficient to form the kesterite film.
- The present invention further provides a composition, which includes a dispersion of Zn-containing solid particles formed from hydrazine, a source of Cu, a source of Sn, a source of Zn, and a source of at least one of S and Se; which when annealed, forms a compound of the formula: Cu2−xZn1+ySn(S1−zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1.
- The present invention still further provides a photovoltaic device, including a top electrode having transparent conductive material; an n-type semiconducting layer; a kesterite film on the substrate formed by the above described method; and a substrate having an electrically conductive surface.
- The present invention provides a non-vacuum slurry-based coating method that enables fabrication of Cu2ZnSn(Se,S)4 devices with 9.6% percent efficiency, almost an order of magnitude improvement over previous attempts to use high-throughput non-vacuum approaches and sufficient performance enhancement to suggest direct commercial utility for this material system.
- The hybrid deposition process combines advantages of both a recently described hydrazine-based solution approach, enabling the incorporation of select metal chalcogenide anions directly in solution, and particle-based deposition, which allows the incorporation of additional otherwise insoluble components. The described modified slurry method enables the high-throughput low-capital-cost fabrication of thin films of different semiconductor materials, ranging from new chalcogenide-based photovoltaic absorbers to a broader range of materials employed in the optical, electronic and other semiconductor industries.
-
FIG. 1 is a TEM image of solid particles filtered out of the hybrid deposition solution in Example 1. -
FIG. 2 shows an X-ray diffraction pattern of CZTSe film prepared on molybdenum-coated glass substrate according to Example 1. -
FIG. 3 is Scanning electron microscopy image of CZTSe kesterite film of Example 1 in a solar cell prepared according to Example 3. -
FIG. 4 depicts the Current-voltage curve of a CZTSe solar cell, prepared according to Example 3, having Voc=0.5160 V, Isc=12.481 mA, Jsc=28.612 mA/cm2, Fill Factor=65.43%. - The details given in this section are non-limiting and for exemplary purpose only, demonstrating various modes of applying the invention. When components of the invention are defined as containing elements, it must be understood that these elements can be present in either isolated or in compound form, (e.g., a Zn-containing component may contain Zn, ZnS, ZnSe or any other known Zn compound).
- The present invention provides a liquid (ink-based) method for light absorbing semiconductor film formation suitable for ultrahigh throughput production. The ink is based on a hybrid precursor containing at least a dissolved component and at least a solid component (particles) whereas elements from both components are incorporated into the final film composition by a reactive anneal. The dissolved component provides effective binding media surrounding the particles while the particles have stress-relief and crack-deflection effect permitting the deposition of thicker films in a single coating.
- The present invention provides a method for coating a substrate with a Cu—Zn—Sn—(S,Se) based compound film. The method is suitable for ultrahigh-throughput fabrication and overcomes the disadvantages associated with the prior art by:
- Forming a hybrid precursor ink composed of both solid (particle-based) and dissolved precursor component in a suitable liquid media (solvent), where both the solid and dissolved components preferably contain metal atoms and both are aimed to be substantially incorporated into a final nominally single-phase composition;
- Coating and drying the hybrid precursor ink on a substrate to produce a coated substrate. As the solvent(s) evaporate, dissolved components act as binders forming continuous media around the solid particles, which in turn, as non-compressible components have stress-relief and crack-deflecting effect, permitting the formation of a thicker layer in single coating; and
- Heating the coated substrate in a desired atmosphere to induce chemical reaction between the precursor particles and the binding (formerly dissolved) precursor component. The intimate contact between the two phases provides conditions for homogeneous reaction yielding a substantially single-phase film. In specific embodiments, the atmosphere may contain additional reactants, e.g., sulfur or selenium or compounds thereof.
- The obtained film on a substrate can further be used for diverse applications, including improved photovoltaic devices.
- A specific embodiment of the invention provides Cu—Zn—Sn—S(Se) compound films and high-efficiency photovoltaic devices based on these compounds.
- The ink, or functional liquid used to deposit an inorganic, substantially single-phase compound film by a liquid-coating method includes at least one of each 3 following categories:
- The solvent can be water or non-aqueous liquid, the second being either organic or inorganic liquid. Preferably, the solvent can be substantially eliminated by evaporation, i.e., it has sufficient vapor pressure below its decomposition temperature and/or upon thermal anneal that it is substantially converted to gas phase and does not leave residual contamination of elements foreign to the targeted composition.
- In the specific embodiment where a non-oxide (e.g., selenide, sulfide, phosphide, nitride, telluride) compound is targeted, particularly when anneals in oxidation atmosphere are undesirable, the solvent and its coordination compounds with the dissolved component preferably do not retain carbon or oxygen, except in the cases when this is strictly desirable.
- In one specific embodiment, the solvent, for example hydrazine, does not contain carbon or oxygen elements. Other examples of solvents include but are not limited to: alcohols, ethers, glycols, aldehydes, ketones, alkanes, amines, dimethylsulfoxide (DMSO), cyclic compounds, halogenated organic compounds;
- The dissolved components preferably include Cu, and Sn in combination with S and/or Se in total concentration of from about 5 to about 1000 mg/ml. Optionally, the dissolved components include an element, selected from the group: Li, Na, K, Mg, Ca, Sr, Ba, Sb, Bi, and B; and
- The solid components, referred to herein as “particles,” are defined as solid structures of crystalline or amorphous nature are dispersed in the solvent. The solid components are detectable by any analytical technique know to those skilled in the art, and include techniques, such as, but not limited to, x-ray diffraction; optical (laser) scattering; and optical, electron or atomic force microscopy.
- Preferably the particles are in concentration from about 5 to about 1000 mg/ml.
- The particle size preferably is from about 2 nm to about 2000 nm and ranges therebetween. More preferably, the particle size is from about 10 nm to about 1000 nm and most preferably, the particle size is from about 10 nm to about to about 500 nm.
- In a preferred embodiment, the dimensions of these particles are represented by the formula:
-
d≧2e - wherein d is at least one dimension of the particles; and e is any other dimension of the particles.
- The particles may be of various shapes, e.g., elongated, spherical, rod-like, planar, cubic, tetrapod, flake-like etc., and of various sizes, e.g., 2 nm-100 micron, or otherwise they can be nanoparticles and/or microparticles. However, preferably, the particle size is smaller than the thickness of the film being deposited.
- The particles can be prepared by any standard technique known to the skilled in the art, such as, but not limited to, solution-based, e.g., controlled precipitation, sol-gel, wet atomization, gas-phase reactions, optical, e.g., laser ablation, electrical, e.g., electro explosion, plasma jet, electric arc, or mechanical, e.g., grinding, ablation, milling, and water-jet.
- Optionally, the particles can contain an element selected from the group: Li, Na, K, Mg, Ca, Sr, Ba, Sb, and Bi.
- An advantage of the process is the possibility to deposit highly pure semiconductor layers by printing techniques without the necessity to use organic enhancers, such as, polymeric binders known to produce carbon and/or oxygen contamination upon thermal decomposition. A specific embodiment of the invention is a Cu—Zn—Sn—Se—S based film deposited by use of the hybrid ink and an improved photovoltaic cell base on the film.
- Another advantage of the present invention is to avoid or reduce the necessity of enhancing additives, in particular organic polymers acting as binders, surfactants and/or extenders, as their function can be substantially engineered by adequate introduction of desirable dissolved components that are subsequently incorporated into the final composition.
- Nevertheless, in cases where additive use is desirable or in cases where such additives can be conveniently eliminated, e.g., by thermal anneal in oxidizing atmosphere when oxide materials are targeted, these can be readily used. Therefore, in addition to the above 3 principle components the ink may optionally contain enhancing additives that improve the dispersion of the solid phase and/or the solubility of the liquid phase and/or the rheological properties of the ink.
- Some non-limiting examples of such additives include: binders, viscosity modifiers, pH modifiers, dispersants, wetting agents and/or solubility enhancers, such as, polymers, surface active compounds, complex forming agents, e.g., amines, and acidic and basic substances.
- The deposition of the prepared ink on a substrate can be accomplished by forming a liquid layer of the ink by any standard liquid-coating technique, such as, but not limited to, spin coating, dip coating, doctor blading, curtain coating, slide coating, spraying, slit casting, meniscus coating, screen printing, ink jet printing, pad printing, flexography, and gravure printing.
- The substrate may be made of glass, metal, ceramics, polymers, or a combination thereof including composite materials. In one embodiment the substrate is metal or alloy foil containing as non-limiting examples molybdenum, aluminum, titanium, iron, copper, tungsten, steel or combinations thereof. In another embodiment the metal or alloy foil is coated with an ion diffusion barrier and/or an insulating layer succeeded by a conductive layer. In another embodiment the substrate is polymeric foil with a metallic or other conductive layer, e.g., transparent conductive oxide, carbon) deposited on the top of it. In one preferred embodiment, regardless of the nature of the underlying substrate material or materials, the surface contacting the liquid layer contains molybdenum.
- After a liquid layer of the ink is deposited on the surface of the substrate, the solvent is subjected to evaporation by means of exposure to ambient or controlled atmosphere or vacuum that may be accompanied with a thermal treatment, referred to as preliminary anneal, to fabricate substrate coated with a hybrid precursor including discrete particles and surrounding media. This surrounding media is formed by solidification of the dissolved component.
- The substrate thus coated with a hybrid precursor is then subjected to recrystallization or reactive anneal producing a nominally single-phase material. The nominally single-phase material preferably contains at least 80% of the targeted compound, more preferably at least 90% and even more preferably at least 95% by mass of the targeted compound.
- The reactive anneal can be carried out in inert, e.g., nitrogen, helium or argon, atmosphere or reactive atmosphere inducing oxidation, reduction or otherwise introduction or elimination of a specific element into the final composition. The reactive atmosphere may contain as non-limiting examples S and Se. The thermal anneal is carried at temperatures from about 200° C. to about 800° C., preferably from about 400° C. to about 600° C. Most preferably, the anneal temperature is from about 500 to about 600° C.
- The preliminary and/or reactive anneal can be carried our by any technique known to the skilled in the art, including but not limited to: furnace, hot plate, infrared or visible radiation, e.g., laser, lamp furnace, rapid thermal anneal unit, resistive heating of the substrate, heated gas stream, flame burner, electric arc and plasma jet. The duration of this anneal can vary depending on the process and typically is from about 0.1 sec. to about 72 hr.
- The intimate contact between the two components of the hybrid precursor for most embodiments allows to limit the anneal duration to less than 30 min.
- The obtained film on substrate may then be used for the desired application, such as, optical, electrical, anti-friction, bactericidal, catalytic, photo-catalytic, electromagnetic shielding, wear-resistance, and diffusion barrier.
- All operations were performed in nitrogen-filled glove box. The deposition solution was prepared in two parts in glass vials under magnetic stirring: A1, by dissolving Cu2S, 0.573 g and sulfur, 0.232 g in 3 ml of hydrazine and B1, by mixing SnSe, 0.790 g, Se, 1.736 g and Zn, 0.32 g with 7 ml of hydrazine. After 3 days under magnetic stirring, solution A had an orange transparent aspect, while B1 was dark green and opaque. Solutions A1 and B1 were mixed (C1) before deposition.
- A sample of the mixed solution was filtered through a syringe filter and the filtered particles were observed by Transmission Electron Microscopy (
FIG. 1 ). Particles are elongated with dimensions that can be represented by the formula d≧2 e wherein d is at least one dimension of the particles and e is any other dimension of the particles. For example, where d can be the length and e can be the width. EDX analysis confirmed presence of Zn and Se in the solid particles and the X-ray powder diffraction pattern matched that for ZnSeN2H4, JCPDS 37-0619 (FIG. 2 ). - Films were deposited on soda lime glass substrates coated with 700 nm molybdenum by spin coating at 800 rpm and heated at 540° C. for 2 minutes. The coating and heating cycle was repeated 5 times before a final anneal was carried out for 10 minutes.
- Repeating the procedure of Example 1, atmosphere containing elemental sulfur vapor (0.12 g/l N2) was used for the final anneal.
- Solar cells were fabricated from the above-described Cu2ZnSn(Se,S)4 films by deposition of 60 nm CdS buffer layer by chemical bath deposition, 100 nm insulating ZnO and 130 nm ITO (indium-doped zinc oxide) by sputtering (
FIG. 2 ). In addition to the shown structure, Ni/Al metal contacts and 110 nm MgF coatings were deposited by electron-beam evaporation. - Photovoltaic performance was measured (NREL CERTIFIED,
FIG. 4 ) under ASTM G173 global spectrum, yielding 9.3% efficiency with films prepared according to Example 1 and 9.66% total area, including metal contacts, i.e., about 5% of the total area, conversion efficiency with films prepared according to example 2, with Voc=0.5160 V, Isc=12.481 mA, Jsc=28.612 mA/cm2, Fill Factor=65.43% (FIG. 4 ). - The potential advantage of this process is that it would be much lower cost than the traditional approaches. This performance is a world record for the category of indium and cadmium-free photovoltaic absorbers deposited by any method, including vacuum-based and makes this material already eligible for commercial consideration.
- The present invention has been described with particular reference to the preferred embodiments. It should be understood that variations and modifications thereof can be devised by those skilled in the art without departing from the spirit and scope of the present invention. Accordingly, the present invention embraces all such alternatives, modifications and variations that fall within the scope of the appended claims.
Claims (27)
Cu2−xZn1+ySn(S1−zSez)4+q
d≧2e
Cu2−xZn1+ySn(S1−zSez)4+q
d≧2e
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/606,210 US20110094557A1 (en) | 2009-10-27 | 2009-10-27 | Method of forming semiconductor film and photovoltaic device including the film |
US12/718,039 US10147604B2 (en) | 2009-10-27 | 2010-03-05 | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
JP2012535693A JP5963088B2 (en) | 2009-10-27 | 2010-08-24 | Method for forming a semiconductor film and photovoltaic device comprising the film |
GB1201821.4A GB2486352B (en) | 2009-10-27 | 2010-08-24 | Method of forming semiconductor film and photovoltaic device including the film |
PCT/EP2010/062353 WO2011051012A1 (en) | 2009-10-27 | 2010-08-24 | Method of forming semiconductor film and photovoltaic device including the film |
DE112010004154.7T DE112010004154B4 (en) | 2009-10-27 | 2010-08-24 | A method of manufacturing a semiconductor thin film and a photovoltaic device containing the thin film |
CN201080048458.4A CN102598209B (en) | 2009-10-27 | 2010-08-24 | Method of forming semiconductor film and photovoltaic device including the film |
TW099136064A TW201131665A (en) | 2009-10-27 | 2010-10-22 | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US13/552,080 US9390919B2 (en) | 2009-10-27 | 2012-07-18 | Method of forming semiconductor film and photovoltaic device including the film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/606,210 US20110094557A1 (en) | 2009-10-27 | 2009-10-27 | Method of forming semiconductor film and photovoltaic device including the film |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/718,039 Continuation-In-Part US10147604B2 (en) | 2009-10-27 | 2010-03-05 | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US13/552,080 Division US9390919B2 (en) | 2009-10-27 | 2012-07-18 | Method of forming semiconductor film and photovoltaic device including the film |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110094557A1 true US20110094557A1 (en) | 2011-04-28 |
Family
ID=43064437
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/606,210 Abandoned US20110094557A1 (en) | 2009-10-27 | 2009-10-27 | Method of forming semiconductor film and photovoltaic device including the film |
US13/552,080 Expired - Fee Related US9390919B2 (en) | 2009-10-27 | 2012-07-18 | Method of forming semiconductor film and photovoltaic device including the film |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/552,080 Expired - Fee Related US9390919B2 (en) | 2009-10-27 | 2012-07-18 | Method of forming semiconductor film and photovoltaic device including the film |
Country Status (6)
Country | Link |
---|---|
US (2) | US20110094557A1 (en) |
JP (1) | JP5963088B2 (en) |
CN (1) | CN102598209B (en) |
DE (1) | DE112010004154B4 (en) |
GB (1) | GB2486352B (en) |
WO (1) | WO2011051012A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110097496A1 (en) * | 2009-10-27 | 2011-04-28 | International Business Machines Corporation | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US20110287573A1 (en) * | 2010-05-21 | 2011-11-24 | E.I. Du Pont De Nemours And Company | Atypical kesterite compositions |
US20120061790A1 (en) * | 2010-09-09 | 2012-03-15 | International Business Machines Corporation | Structure and Method of Fabricating a CZTS Photovoltaic Device by Electrodeposition |
CN102569443A (en) * | 2012-01-04 | 2012-07-11 | 范东华 | Band gap tunable copper zinc tin sulfur semiconductor film and preparation method thereof |
US20120220066A1 (en) * | 2009-11-25 | 2012-08-30 | E.I. Du Pont De Nemours And Company | Czts/se precursor inks and methods for preparing czts/se thin films and czts/se-based photovoltaic cells |
US20120219491A1 (en) * | 2009-11-25 | 2012-08-30 | E.I. Du Ponat De Nemours and Company | Preparation of copper zinc tin sulfide |
US20120313044A1 (en) * | 2011-06-10 | 2012-12-13 | Tokyo Ohka Kogyo Co., Ltd. | Coating solution for forming light-absorbing layer, and method for producing coating solution for forming light-absorbing layer |
WO2012174551A2 (en) * | 2011-06-17 | 2012-12-20 | The Regents Of The University Of California | Inorganic solution and solution process for electronic and electro-optic devices |
US20130217175A1 (en) * | 2012-02-21 | 2013-08-22 | Aqt Solar, Inc. | Closed-Space Sublimation Process for Production of CZTS Thin-Films |
WO2013126542A1 (en) * | 2012-02-21 | 2013-08-29 | Zetta Research And Development Llc - Aqt Series | Controlled-pressure process for production of czts thin-films |
US20130269783A1 (en) * | 2010-11-18 | 2013-10-17 | Tdk Corporation | Semiconductor Material and Method of Production |
WO2013168845A1 (en) * | 2012-05-11 | 2013-11-14 | 연세대학교 산학협력단 | Target for light absorbing layer of thin film solar cell, method for manufacturing same and thin film solar cell |
US20130312831A1 (en) * | 2012-05-24 | 2013-11-28 | International Business Machines Corporation | Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor |
US8642884B2 (en) | 2011-09-09 | 2014-02-04 | International Business Machines Corporation | Heat treatment process and photovoltaic device based on said process |
FR2996060A1 (en) * | 2012-09-21 | 2014-03-28 | Saint Gobain Ct Recherches | Manufacturing a semiconductor solar absorbing material of e.g. copper indium gallium selenide type, in a photovoltaic cell, comprises mixing metal elements, dry grinding the mixture, and suspending the powder in an organic solvent |
US20140096826A1 (en) * | 2012-10-04 | 2014-04-10 | International Business Machines Corporation | Solution processing of kesterite semiconductors |
US20140220728A1 (en) * | 2011-02-18 | 2014-08-07 | Hugh Hillhouse | Methods of forming semiconductor films including i2-ii-iv-vi4 and i2-(ii,iv)-iv-vi4 semiconductor films and electronic devices including the semiconductor films |
US8809113B2 (en) * | 2012-11-10 | 2014-08-19 | Sharp Laboratories Of America, Inc. | Solution-processed metal-selenide semiconductor using selenium nanoparticles |
US8828767B2 (en) | 2011-12-30 | 2014-09-09 | Industrial Technology Research Institute | Fabriation method for light absorption layer of solar cell |
US8871560B2 (en) * | 2012-08-09 | 2014-10-28 | International Business Machines Corporation | Plasma annealing of thin film solar cells |
US8889466B2 (en) | 2013-04-12 | 2014-11-18 | International Business Machines Corporation | Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells |
CN104393096A (en) * | 2014-09-29 | 2015-03-04 | 上海科慧太阳能技术有限公司 | Preparation method of copper zinc tin sulfur selenium (CZTSSe) thin film material with controllable band gap |
US8999746B2 (en) | 2013-08-08 | 2015-04-07 | Tokyo Ohka Kogyo Co., Ltd. | Method of forming metal chalcogenide dispersion, metal chalcogenide dispersion, method of producing light absorbing layer of solar cell, method of producing solar cell |
US20150118144A1 (en) * | 2012-05-14 | 2015-04-30 | E I Du Pont Nemours And Company | Dispersible metal chalcogenide nanoparticles |
EP2858119A4 (en) * | 2012-05-30 | 2015-06-17 | Toppan Printing Co Ltd | MANUFACTURING METHOD FOR COMPOUND SEMICONDUCTOR THIN LAYER, AND SOLAR CELL HAVING THOSE COMPOUND SEMICONDUCTOR THIN LAYER |
US9153729B2 (en) | 2012-11-26 | 2015-10-06 | International Business Machines Corporation | Atomic layer deposition for photovoltaic devices |
US20150333212A1 (en) * | 2013-01-29 | 2015-11-19 | Imra Europe Sas | Method for preparing a thin layer of an absorber made of copper, zinc and tin sulfide(s), annealed thin layer and photovoltaic device thus obtained |
US9368660B2 (en) | 2011-08-10 | 2016-06-14 | International Business Machines Corporation | Capping layers for improved crystallization |
US9530908B2 (en) | 2014-11-13 | 2016-12-27 | International Business Machines Corporation | Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance |
US20170194518A1 (en) * | 2015-12-30 | 2017-07-06 | International Business Machines Corporation | Formation of Ohmic Back Contact for Ag2ZnSn(S,Se)4 Photovoltaic Devices |
US10304979B2 (en) | 2015-01-30 | 2019-05-28 | International Business Machines Corporation | In situ nitrogen doping of co-evaporated copper-zinc-tin-sulfo-selenide by nitrogen plasma |
CN114122169A (en) * | 2021-11-10 | 2022-03-01 | 云南师范大学 | Method for preparing copper-zinc-tin-selenium absorption layer film by selenide target sputtering and application |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110094557A1 (en) | 2009-10-27 | 2011-04-28 | International Business Machines Corporation | Method of forming semiconductor film and photovoltaic device including the film |
US9105796B2 (en) | 2009-11-25 | 2015-08-11 | E I Du Pont De Nemours And Company | CZTS/Se precursor inks and methods for preparing CZTS/Se thin films and CZTS/Se-based photovoltaic cells |
JP5788832B2 (en) * | 2011-06-06 | 2015-10-07 | トヨタ自動車株式会社 | Method for producing sulfide compound semiconductor nanoparticles containing Cu, Zn, Sn and S using solvothermal method |
US20130074911A1 (en) * | 2011-09-23 | 2013-03-28 | Yueh-Chun Liao | Photovoltaic Device Including a CZTS Absorber Layer and Method of Manufacturing the Same |
CN102769046B (en) * | 2012-07-31 | 2015-04-15 | 深圳先进技术研究院 | Copper-zinc-tin-sulfide-selenium film and preparation method thereof, as well as copper-zinc-tin-sulfide-selenium film solar cell |
CN103094422A (en) * | 2013-01-29 | 2013-05-08 | 电子科技大学 | Doping craft in copper-zinc oxide tin sulphur selenium film preparation |
JP2014165352A (en) * | 2013-02-26 | 2014-09-08 | Toyota Central R&D Labs Inc | Photoelectric conversion material and process of manufacturing the same |
WO2014196311A1 (en) * | 2013-06-03 | 2014-12-11 | 東京応化工業株式会社 | Method for producing complex and solution thereof, method for producing light-absorbing layer for solar cell, and method for producing solar cell |
US9443997B2 (en) | 2013-06-28 | 2016-09-13 | International Business Machines Corporation | Hybrid CZTSSe photovoltaic device |
CN103400903A (en) * | 2013-08-15 | 2013-11-20 | 吉林大学 | Preparation method for improving grain size and density of CZTS film |
WO2016040690A1 (en) * | 2014-09-12 | 2016-03-17 | The Regents Of The University Of California | High performance thin films from solution processible two-dimensional nanoplates |
US9287426B1 (en) | 2014-09-29 | 2016-03-15 | International Business Machines Corporation | Epitaxial growth of CZT(S,Se) on silicon |
KR101708282B1 (en) * | 2014-09-29 | 2017-02-20 | 이화여자대학교 산학협력단 | Solar cell using -based film and preparing method of the same |
CN105513806B (en) * | 2016-01-11 | 2018-02-02 | 上海交通大学 | Copper selenide hollow tubular multilevel structure material and its preparation method and application |
WO2018224829A1 (en) * | 2017-06-07 | 2018-12-13 | Nanoco Technologies Ltd | Cigs nanoparticle ink formulation with a high crack-free limit |
CN107634107B (en) * | 2017-08-30 | 2019-03-26 | 中建材(合肥)新能源有限公司 | A kind of preparation method enhancing efficiency of light absorption type nano photovoltaic material |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242374A (en) * | 1979-04-19 | 1980-12-30 | Exxon Research & Engineering Co. | Process for thin film deposition of metal and mixed metal chalcogenides displaying semi-conductor properties |
US5436204A (en) * | 1993-04-12 | 1995-07-25 | Midwest Research Institute | Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications |
US5858121A (en) * | 1995-09-13 | 1999-01-12 | Matsushita Electric Industrial Co., Ltd. | Thin film solar cell and method for manufacturing the same |
US5958358A (en) * | 1992-07-08 | 1999-09-28 | Yeda Research And Development Co., Ltd. | Oriented polycrystalline thin films of transition metal chalcogenides |
US6107562A (en) * | 1998-03-24 | 2000-08-22 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method for manufacturing the same, and solar cell using the same |
US20040202789A1 (en) * | 2003-03-31 | 2004-10-14 | Council Of Scientific And Industrila Research | Process for preparing thin film solids |
US20050009225A1 (en) * | 2003-07-10 | 2005-01-13 | International Business Machines Corporation | Hydrazine-free solution deposition of chalcogenide films |
US20050043184A1 (en) * | 2000-07-31 | 2005-02-24 | Mccleskey Thomas M. | Polymer-assisted deposition of films |
US20050205958A1 (en) * | 2004-03-19 | 2005-09-22 | Fuji Photo Film., Ltd. | Multilayer deposition multipixel image pickup device and television camera |
US20070160747A1 (en) * | 2006-01-12 | 2007-07-12 | International Business Machines Corporation | Method for fabricating an inorganic nanocomposite |
US7390715B2 (en) * | 2006-04-11 | 2008-06-24 | Taiwan Tft Lcd Association | Method of fabricating active layer thin film by metal chalcogenide precursor solution |
US7393699B2 (en) * | 2006-06-12 | 2008-07-01 | Tran Bao Q | NANO-electronics |
US20080178927A1 (en) * | 2007-01-30 | 2008-07-31 | Thomas Brezoczky | Photovoltaic apparatus having an elongated photovoltaic device using an involute-based concentrator |
US20080238294A1 (en) * | 2007-03-30 | 2008-10-02 | The Penn State Research Foundation | Mist fabrication of quantum dot devices |
US20090098481A1 (en) * | 2005-02-15 | 2009-04-16 | Fujifilm Corporation | Photosensitive material for forming conductive film, conductive film, light transmitting electromagnetic wave shielding film and method for manufacturing the same |
US20090107550A1 (en) * | 2004-02-19 | 2009-04-30 | Van Duren Jeroen K J | High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles |
US20090114908A1 (en) * | 2006-03-24 | 2009-05-07 | Konica Minolta Holdings, Inc. | Organic semiconductor thin film, organic thin film transistor and method of manufacturing organic thin film transistor |
US7534490B1 (en) * | 2005-10-14 | 2009-05-19 | Northern Nanotechnologies, Inc. | Composite nanoparticles, nanoparticles and methods for producing same |
US20090205717A1 (en) * | 2008-02-15 | 2009-08-20 | Globe Union Industrial Corp. | Faucet structure having pressure balance valves |
US20110097496A1 (en) * | 2009-10-27 | 2011-04-28 | International Business Machines Corporation | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US20120279565A1 (en) * | 2009-10-27 | 2012-11-08 | International Business Machines Corporation | Method of forming semiconductor film and photovoltaic device including the film |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5863183A (en) * | 1981-10-09 | 1983-04-14 | Semiconductor Res Found | 2-6 group compound semiconductor device |
JPS6230693A (en) | 1985-08-02 | 1987-02-09 | Fujitsu Ltd | Liquid phase epitaxial growth method |
DE602007010141D1 (en) * | 2006-05-24 | 2010-12-09 | Atotech Deutschland Gmbh | COMPOSITION FOR ELECTRODE METAL SEPARATION AND METHOD FOR THE SEPARATION OF COPPER ZINC TIN, IGNET IS |
US8057850B2 (en) * | 2006-11-09 | 2011-11-15 | Alliance For Sustainable Energy, Llc | Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors |
JP2009105130A (en) * | 2007-10-22 | 2009-05-14 | Canon Inc | Manufacturing method of photoelectromotive element |
CN102439098A (en) * | 2009-05-21 | 2012-05-02 | 纳幕尔杜邦公司 | Copper zinc tin chalcogenide nanoparticles |
US8426241B2 (en) | 2010-09-09 | 2013-04-23 | International Business Machines Corporation | Structure and method of fabricating a CZTS photovoltaic device by electrodeposition |
-
2009
- 2009-10-27 US US12/606,210 patent/US20110094557A1/en not_active Abandoned
-
2010
- 2010-08-24 GB GB1201821.4A patent/GB2486352B/en not_active Expired - Fee Related
- 2010-08-24 DE DE112010004154.7T patent/DE112010004154B4/en not_active Expired - Fee Related
- 2010-08-24 WO PCT/EP2010/062353 patent/WO2011051012A1/en active Application Filing
- 2010-08-24 CN CN201080048458.4A patent/CN102598209B/en not_active Expired - Fee Related
- 2010-08-24 JP JP2012535693A patent/JP5963088B2/en not_active Expired - Fee Related
-
2012
- 2012-07-18 US US13/552,080 patent/US9390919B2/en not_active Expired - Fee Related
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242374A (en) * | 1979-04-19 | 1980-12-30 | Exxon Research & Engineering Co. | Process for thin film deposition of metal and mixed metal chalcogenides displaying semi-conductor properties |
US5958358A (en) * | 1992-07-08 | 1999-09-28 | Yeda Research And Development Co., Ltd. | Oriented polycrystalline thin films of transition metal chalcogenides |
US5436204A (en) * | 1993-04-12 | 1995-07-25 | Midwest Research Institute | Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications |
US5858121A (en) * | 1995-09-13 | 1999-01-12 | Matsushita Electric Industrial Co., Ltd. | Thin film solar cell and method for manufacturing the same |
US6107562A (en) * | 1998-03-24 | 2000-08-22 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method for manufacturing the same, and solar cell using the same |
US20050043184A1 (en) * | 2000-07-31 | 2005-02-24 | Mccleskey Thomas M. | Polymer-assisted deposition of films |
US20040202789A1 (en) * | 2003-03-31 | 2004-10-14 | Council Of Scientific And Industrila Research | Process for preparing thin film solids |
US20050009225A1 (en) * | 2003-07-10 | 2005-01-13 | International Business Machines Corporation | Hydrazine-free solution deposition of chalcogenide films |
US7094651B2 (en) * | 2003-07-10 | 2006-08-22 | International Business Machines Corporation | Hydrazine-free solution deposition of chalcogenide films |
US20090107550A1 (en) * | 2004-02-19 | 2009-04-30 | Van Duren Jeroen K J | High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles |
US20050205958A1 (en) * | 2004-03-19 | 2005-09-22 | Fuji Photo Film., Ltd. | Multilayer deposition multipixel image pickup device and television camera |
US20090098481A1 (en) * | 2005-02-15 | 2009-04-16 | Fujifilm Corporation | Photosensitive material for forming conductive film, conductive film, light transmitting electromagnetic wave shielding film and method for manufacturing the same |
US7534490B1 (en) * | 2005-10-14 | 2009-05-19 | Northern Nanotechnologies, Inc. | Composite nanoparticles, nanoparticles and methods for producing same |
US20070160747A1 (en) * | 2006-01-12 | 2007-07-12 | International Business Machines Corporation | Method for fabricating an inorganic nanocomposite |
US20090114908A1 (en) * | 2006-03-24 | 2009-05-07 | Konica Minolta Holdings, Inc. | Organic semiconductor thin film, organic thin film transistor and method of manufacturing organic thin film transistor |
US7390715B2 (en) * | 2006-04-11 | 2008-06-24 | Taiwan Tft Lcd Association | Method of fabricating active layer thin film by metal chalcogenide precursor solution |
US7393699B2 (en) * | 2006-06-12 | 2008-07-01 | Tran Bao Q | NANO-electronics |
US20080178927A1 (en) * | 2007-01-30 | 2008-07-31 | Thomas Brezoczky | Photovoltaic apparatus having an elongated photovoltaic device using an involute-based concentrator |
US20080238294A1 (en) * | 2007-03-30 | 2008-10-02 | The Penn State Research Foundation | Mist fabrication of quantum dot devices |
US20090205717A1 (en) * | 2008-02-15 | 2009-08-20 | Globe Union Industrial Corp. | Faucet structure having pressure balance valves |
US20110097496A1 (en) * | 2009-10-27 | 2011-04-28 | International Business Machines Corporation | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US20120279565A1 (en) * | 2009-10-27 | 2012-11-08 | International Business Machines Corporation | Method of forming semiconductor film and photovoltaic device including the film |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110097496A1 (en) * | 2009-10-27 | 2011-04-28 | International Business Machines Corporation | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US10147604B2 (en) | 2009-10-27 | 2018-12-04 | International Business Machines Corporation | Aqueous-based method of forming semiconductor film and photovoltaic device including the film |
US20120220066A1 (en) * | 2009-11-25 | 2012-08-30 | E.I. Du Pont De Nemours And Company | Czts/se precursor inks and methods for preparing czts/se thin films and czts/se-based photovoltaic cells |
US20120219491A1 (en) * | 2009-11-25 | 2012-08-30 | E.I. Du Ponat De Nemours and Company | Preparation of copper zinc tin sulfide |
US8470287B2 (en) * | 2009-11-25 | 2013-06-25 | E I Du Pont De Nemours And Company | Preparation of copper zinc tin sulfide |
US8366975B2 (en) * | 2010-05-21 | 2013-02-05 | E I Du Pont De Nemours And Company | Atypical kesterite compositions |
US20110287573A1 (en) * | 2010-05-21 | 2011-11-24 | E.I. Du Pont De Nemours And Company | Atypical kesterite compositions |
US8426241B2 (en) * | 2010-09-09 | 2013-04-23 | International Business Machines Corporation | Structure and method of fabricating a CZTS photovoltaic device by electrodeposition |
US8790956B2 (en) | 2010-09-09 | 2014-07-29 | International Business Machines Corporation | Structure and method of fabricating a CZTS photovoltaic device by electrodeposition |
US20120061790A1 (en) * | 2010-09-09 | 2012-03-15 | International Business Machines Corporation | Structure and Method of Fabricating a CZTS Photovoltaic Device by Electrodeposition |
US9041141B2 (en) | 2010-09-09 | 2015-05-26 | International Business Machines Corporation | Structure and method of fabricating a CZTS photovoltaic device by electrodeposition |
US20130269783A1 (en) * | 2010-11-18 | 2013-10-17 | Tdk Corporation | Semiconductor Material and Method of Production |
US9306111B2 (en) * | 2010-11-18 | 2016-04-05 | Universite Du Luxembourg | Semiconductor material and method of production |
US20140220728A1 (en) * | 2011-02-18 | 2014-08-07 | Hugh Hillhouse | Methods of forming semiconductor films including i2-ii-iv-vi4 and i2-(ii,iv)-iv-vi4 semiconductor films and electronic devices including the semiconductor films |
EP2706577A1 (en) * | 2011-06-10 | 2014-03-12 | Tokyo Ohka Kogyo Co., Ltd. | Application liquid for forming light-absorbing layer, and method for producing application liquid for forming light-absorbing layer |
US20120313044A1 (en) * | 2011-06-10 | 2012-12-13 | Tokyo Ohka Kogyo Co., Ltd. | Coating solution for forming light-absorbing layer, and method for producing coating solution for forming light-absorbing layer |
EP2706577A4 (en) * | 2011-06-10 | 2015-04-15 | Tokyo Ohka Kogyo Co Ltd | APPLICATION LIQUID FOR FORMING A PHOTO-ABSORBENT LAYER AND PROCESS FOR PRODUCING AN APPLICATION LIQUID FOR FORMING A PHOTO-ABSORBENT LAYER |
WO2012174551A2 (en) * | 2011-06-17 | 2012-12-20 | The Regents Of The University Of California | Inorganic solution and solution process for electronic and electro-optic devices |
WO2012174551A3 (en) * | 2011-06-17 | 2013-03-14 | The Regents Of The University Of California | Inorganic solution and solution process for electronic and electro-optic devices |
US9502600B2 (en) | 2011-06-17 | 2016-11-22 | The Regents Of The University Of California | Inorganic solution and solution process for electronic and electro-optic devices |
DE112012003297B4 (en) | 2011-08-10 | 2019-07-18 | International Business Machines Corporation | Cover layers for improved crystallization |
US9368660B2 (en) | 2011-08-10 | 2016-06-14 | International Business Machines Corporation | Capping layers for improved crystallization |
US10109755B2 (en) | 2011-08-10 | 2018-10-23 | International Business Machines Corporation | Capping layers for improved crystallization |
US8642884B2 (en) | 2011-09-09 | 2014-02-04 | International Business Machines Corporation | Heat treatment process and photovoltaic device based on said process |
US8828767B2 (en) | 2011-12-30 | 2014-09-09 | Industrial Technology Research Institute | Fabriation method for light absorption layer of solar cell |
CN102569443A (en) * | 2012-01-04 | 2012-07-11 | 范东华 | Band gap tunable copper zinc tin sulfur semiconductor film and preparation method thereof |
US9390917B2 (en) * | 2012-02-21 | 2016-07-12 | Zetta Research and Development LLC—AQT Series | Closed-space sublimation process for production of CZTS thin-films |
US20130217175A1 (en) * | 2012-02-21 | 2013-08-22 | Aqt Solar, Inc. | Closed-Space Sublimation Process for Production of CZTS Thin-Films |
WO2013126542A1 (en) * | 2012-02-21 | 2013-08-29 | Zetta Research And Development Llc - Aqt Series | Controlled-pressure process for production of czts thin-films |
WO2013126540A1 (en) * | 2012-02-21 | 2013-08-29 | Zetta Research And Development Llc - Aqt Series | Closed-space sublimation process for production of czts thin-films |
WO2013168845A1 (en) * | 2012-05-11 | 2013-11-14 | 연세대학교 산학협력단 | Target for light absorbing layer of thin film solar cell, method for manufacturing same and thin film solar cell |
US20150118144A1 (en) * | 2012-05-14 | 2015-04-30 | E I Du Pont Nemours And Company | Dispersible metal chalcogenide nanoparticles |
US20130312831A1 (en) * | 2012-05-24 | 2013-11-28 | International Business Machines Corporation | Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor |
US20130316519A1 (en) * | 2012-05-24 | 2013-11-28 | International Business Machines Corporation | Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor |
EP2858119A4 (en) * | 2012-05-30 | 2015-06-17 | Toppan Printing Co Ltd | MANUFACTURING METHOD FOR COMPOUND SEMICONDUCTOR THIN LAYER, AND SOLAR CELL HAVING THOSE COMPOUND SEMICONDUCTOR THIN LAYER |
TWI570949B (en) * | 2012-05-30 | 2017-02-11 | 凸版印刷股份有限公司 | Method for producing compound semiconductor film and solar cell having compound semiconductor film thereof |
US8871560B2 (en) * | 2012-08-09 | 2014-10-28 | International Business Machines Corporation | Plasma annealing of thin film solar cells |
FR2996060A1 (en) * | 2012-09-21 | 2014-03-28 | Saint Gobain Ct Recherches | Manufacturing a semiconductor solar absorbing material of e.g. copper indium gallium selenide type, in a photovoltaic cell, comprises mixing metal elements, dry grinding the mixture, and suspending the powder in an organic solvent |
US9252304B2 (en) * | 2012-10-04 | 2016-02-02 | International Business Machines Corporation | Solution processing of kesterite semiconductors |
US20140096826A1 (en) * | 2012-10-04 | 2014-04-10 | International Business Machines Corporation | Solution processing of kesterite semiconductors |
US8809113B2 (en) * | 2012-11-10 | 2014-08-19 | Sharp Laboratories Of America, Inc. | Solution-processed metal-selenide semiconductor using selenium nanoparticles |
US10355160B2 (en) | 2012-11-26 | 2019-07-16 | International Business Machines Corporation | Atomic layer deposition for photovoltaic devices |
US9153729B2 (en) | 2012-11-26 | 2015-10-06 | International Business Machines Corporation | Atomic layer deposition for photovoltaic devices |
US11527669B2 (en) | 2012-11-26 | 2022-12-13 | International Business Machines Corporation | Atomic layer deposition for photovoltaic devices |
US10008625B2 (en) | 2012-11-26 | 2018-06-26 | International Business Machines Corporation | Atomic layer deposition for photovoltaic devices |
US9391231B2 (en) * | 2013-01-29 | 2016-07-12 | Imra Europe Sas | Method for preparing a thin layer of an absorber made of copper, zinc and tin sulfide(s), annealed thin layer and photovoltaic device thus obtained |
US20150333212A1 (en) * | 2013-01-29 | 2015-11-19 | Imra Europe Sas | Method for preparing a thin layer of an absorber made of copper, zinc and tin sulfide(s), annealed thin layer and photovoltaic device thus obtained |
US9741890B2 (en) | 2013-04-12 | 2017-08-22 | International Business Machines Corporation | Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells |
US8889466B2 (en) | 2013-04-12 | 2014-11-18 | International Business Machines Corporation | Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells |
US8999746B2 (en) | 2013-08-08 | 2015-04-07 | Tokyo Ohka Kogyo Co., Ltd. | Method of forming metal chalcogenide dispersion, metal chalcogenide dispersion, method of producing light absorbing layer of solar cell, method of producing solar cell |
CN104393096A (en) * | 2014-09-29 | 2015-03-04 | 上海科慧太阳能技术有限公司 | Preparation method of copper zinc tin sulfur selenium (CZTSSe) thin film material with controllable band gap |
US10230014B2 (en) | 2014-11-13 | 2019-03-12 | International Business Machines Corporation | Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance |
US9530908B2 (en) | 2014-11-13 | 2016-12-27 | International Business Machines Corporation | Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance |
US10304979B2 (en) | 2015-01-30 | 2019-05-28 | International Business Machines Corporation | In situ nitrogen doping of co-evaporated copper-zinc-tin-sulfo-selenide by nitrogen plasma |
US10446704B2 (en) * | 2015-12-30 | 2019-10-15 | International Business Machines Corporation | Formation of Ohmic back contact for Ag2ZnSn(S,Se)4 photovoltaic devices |
US20170194518A1 (en) * | 2015-12-30 | 2017-07-06 | International Business Machines Corporation | Formation of Ohmic Back Contact for Ag2ZnSn(S,Se)4 Photovoltaic Devices |
CN114122169A (en) * | 2021-11-10 | 2022-03-01 | 云南师范大学 | Method for preparing copper-zinc-tin-selenium absorption layer film by selenide target sputtering and application |
Also Published As
Publication number | Publication date |
---|---|
CN102598209A (en) | 2012-07-18 |
JP5963088B2 (en) | 2016-08-03 |
WO2011051012A1 (en) | 2011-05-05 |
DE112010004154T5 (en) | 2012-09-13 |
US9390919B2 (en) | 2016-07-12 |
JP2013508988A (en) | 2013-03-07 |
GB201201821D0 (en) | 2012-03-21 |
DE112010004154T9 (en) | 2012-12-13 |
DE112010004154B4 (en) | 2018-01-11 |
CN102598209B (en) | 2015-04-22 |
GB2486352A (en) | 2012-06-13 |
US20120279565A1 (en) | 2012-11-08 |
GB2486352B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9390919B2 (en) | Method of forming semiconductor film and photovoltaic device including the film | |
McCarthy et al. | Solution processing of chalcogenide materials using thiol–amine “alkahest” solvent systems | |
Todorov et al. | High-efficiency solar cell with earth-abundant liquid-processed absorber | |
Zhou et al. | Colloidal CZTS nanoparticles and films: preparation and characterization | |
US10147604B2 (en) | Aqueous-based method of forming semiconductor film and photovoltaic device including the film | |
US8071875B2 (en) | Manufacture of thin solar cells based on ink printing technology | |
US20130316519A1 (en) | Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor | |
JP6312668B2 (en) | Method for preparing a colloidal solution of amorphous particles | |
CN103733320B (en) | capping layer for improved crystallinity | |
US9252304B2 (en) | Solution processing of kesterite semiconductors | |
TWI609840B (en) | Inorganic salt-nanoparticle ink for thin film photovoltaic device and related method | |
US20130037110A1 (en) | Particle-Based Precursor Formation Method and Photovoltaic Device Thereof | |
Hossain et al. | Ecofriendly and nonvacuum electrostatic spray-assisted vapor deposition of Cu (In, Ga)(S, Se) 2 thin film solar cells | |
WO2013047461A1 (en) | Ink for forming compound semiconductor thin film and method for producing same | |
TWI552373B (en) | CIGS nanoparticle ink formulation with high crack-free limit | |
Khavar et al. | Low-temperature solution-based processing to 7.24% efficient superstrate CuInS2 solar cells | |
JP2001274176A (en) | Method of manufacturing compound semiconductor film | |
Zhao et al. | Solution-based synthesis of dense, large grained CuIn (S, Se) 2 thin films using elemental precursor | |
Mazalan et al. | Influence of antimony dopant on CuIn (S, Se) 2 solar thin absorber layer deposited via solution-processed route | |
US20180248057A1 (en) | Preparation of Copper-Rich Copper Indium (Gallium) Diselenide/Disulphide Nanoparticles | |
Ginley et al. | Nanoparticle precursors for electronic materials | |
Zhang et al. | A Novel Ethanol-Based Non-Particulate Ink for Spin-Coating Cu2ZnSnS4 Thin Film | |
JP2014086527A (en) | Compound semiconductor thin film, manufacturing method of the same and solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MITZI, DAVID B;TODOROV, TEODOR K;REEL/FRAME:023425/0525 Effective date: 20091023 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ELPIS TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:052557/0327 Effective date: 20200306 |