US20100310851A1 - Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same - Google Patents
Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same Download PDFInfo
- Publication number
- US20100310851A1 US20100310851A1 US12/782,368 US78236810A US2010310851A1 US 20100310851 A1 US20100310851 A1 US 20100310851A1 US 78236810 A US78236810 A US 78236810A US 2010310851 A1 US2010310851 A1 US 2010310851A1
- Authority
- US
- United States
- Prior art keywords
- fiber glass
- glass strand
- coating composition
- weight percent
- polymeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011152 fibreglass Substances 0.000 title claims abstract description 251
- 239000002131 composite material Substances 0.000 title claims description 122
- 238000000034 method Methods 0.000 title claims description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 212
- 239000008199 coating composition Substances 0.000 claims abstract description 207
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 187
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 187
- 239000006185 dispersion Substances 0.000 claims abstract description 161
- 239000003365 glass fiber Substances 0.000 claims abstract description 104
- 239000007787 solid Substances 0.000 claims description 90
- 239000000203 mixture Substances 0.000 claims description 47
- 239000000314 lubricant Substances 0.000 claims description 43
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 43
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 43
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 42
- 239000007822 coupling agent Substances 0.000 claims description 38
- 239000002048 multi walled nanotube Substances 0.000 claims description 35
- 229920002635 polyurethane Polymers 0.000 claims description 27
- 239000004814 polyurethane Substances 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 239000002518 antifoaming agent Substances 0.000 claims description 17
- 239000002952 polymeric resin Substances 0.000 claims description 17
- 239000004094 surface-active agent Substances 0.000 claims description 17
- 229920003002 synthetic resin Polymers 0.000 claims description 17
- 150000002118 epoxides Chemical class 0.000 claims description 14
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 239000002109 single walled nanotube Substances 0.000 claims description 12
- 229920000728 polyester Polymers 0.000 claims description 11
- 239000004593 Epoxy Substances 0.000 claims description 10
- 150000001282 organosilanes Chemical class 0.000 claims description 10
- 239000003139 biocide Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- 229920000058 polyacrylate Polymers 0.000 claims description 5
- 150000004756 silanes Chemical class 0.000 claims description 5
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 4
- 239000011118 polyvinyl acetate Substances 0.000 claims description 4
- 230000003115 biocidal effect Effects 0.000 claims 2
- 239000000839 emulsion Substances 0.000 description 34
- 239000000243 solution Substances 0.000 description 33
- 239000000463 material Substances 0.000 description 30
- 239000000126 substance Substances 0.000 description 29
- -1 poly(vinyl acetates) Polymers 0.000 description 27
- 239000004615 ingredient Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- 238000001035 drying Methods 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 238000004513 sizing Methods 0.000 description 16
- 239000000835 fiber Substances 0.000 description 15
- 239000000969 carrier Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 229920001451 polypropylene glycol Polymers 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 9
- 238000003801 milling Methods 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 229920000098 polyolefin Polymers 0.000 description 8
- 239000004034 viscosity adjusting agent Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 229910001651 emery Inorganic materials 0.000 description 7
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 7
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 7
- 239000001993 wax Substances 0.000 description 7
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 6
- 125000002091 cationic group Chemical group 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 239000012948 isocyanate Substances 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- 229920006264 polyurethane film Polymers 0.000 description 6
- 229920003081 Povidone K 30 Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000013500 performance material Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- 229920002816 CELVOL ® 205 Polymers 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002071 nanotube Substances 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000003209 petroleum derivative Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920003224 poly(trimethylene oxide) Polymers 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- 229920013683 Celanese Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002887 hydroxy group Chemical class [H]O* 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920003009 polyurethane dispersion Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000004634 thermosetting polymer Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- BHWUCEATHBXPOV-UHFFFAOYSA-N 2-triethoxysilylethanamine Chemical compound CCO[Si](CCN)(OCC)OCC BHWUCEATHBXPOV-UHFFFAOYSA-N 0.000 description 1
- KSCAZPYHLGGNPZ-UHFFFAOYSA-N 3-chloropropyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)CCCCl KSCAZPYHLGGNPZ-UHFFFAOYSA-N 0.000 description 1
- VJAVYPBHLPJLSN-UHFFFAOYSA-N 3-dimethoxysilylpropan-1-amine Chemical compound CO[SiH](OC)CCCN VJAVYPBHLPJLSN-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- VLYDPWNOCPZGEV-UHFFFAOYSA-M benzyl-dimethyl-[2-[2-[2-methyl-4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethyl]azanium;chloride;hydrate Chemical compound O.[Cl-].CC1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 VLYDPWNOCPZGEV-UHFFFAOYSA-M 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012777 commercial manufacturing Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- ALBRJCDQTPMGHX-UHFFFAOYSA-N ethyl-dimethoxy-(7-oxabicyclo[4.1.0]heptan-4-ylmethoxy)silane Chemical compound C1C(CO[Si](OC)(OC)CC)CCC2OC21 ALBRJCDQTPMGHX-UHFFFAOYSA-N 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000001310 location test Methods 0.000 description 1
- 229920001911 maleic anhydride grafted polypropylene Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- HMNQINXLOIDXJF-UHFFFAOYSA-N n'-[[dimethoxy(propyl)silyl]oxymethyl]ethane-1,2-diamine Chemical compound CCC[Si](OC)(OC)OCNCCN HMNQINXLOIDXJF-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001709 polysilazane Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920001291 polyvinyl halide Polymers 0.000 description 1
- 229920006215 polyvinyl ketone Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- LFRDHGNFBLIJIY-UHFFFAOYSA-N trimethoxy(prop-2-enyl)silane Chemical compound CO[Si](OC)(OC)CC=C LFRDHGNFBLIJIY-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000004846 water-soluble epoxy resin Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/465—Coatings containing composite materials
- C03C25/47—Coatings containing composite materials containing particles, fibres or flakes, e.g. in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/42—Coatings containing inorganic materials
- C03C25/44—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/07—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2339/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
- C08J2339/04—Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
- C08J2339/06—Homopolymers or copolymers of N-vinyl-pyrrolidones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249948—Fiber is precoated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
- Y10T428/292—In coating or impregnation
Definitions
- the present invention relates generally to aqueous dispersions, methods of making aqueous dispersions, coating compositions for glass fibers, coated glass fibers, fiber glass strands, methods of making fiber glass strands, articles reinforced with coated glass fibers, and polymeric composites.
- Glass fiber reinforced polymeric composite materials find application in a wide variety of fields due to the excellent mechanical and cost efficient properties offered by such composites.
- One field, however, where the application of glass fiber reinforced polymeric composites is challenging is that of electrically conductive materials.
- Many glass fiber reinforced thermoplastic and thermoset composites are not electrically conductive thereby limiting their use in applications requiring materials having electrical conductivity.
- Polymeric composites can be fabricated to demonstrate some electrical conductivity by the use of conjugated polymer systems or by incorporating significant amounts of electrically conductive particles into the polymeric resin. Both of these solutions, however, have associated disadvantages. For example, conjugated polymeric systems can be susceptible to oxidation and other mechanisms of deterioration which substantially limit the conductive lifetimes of such systems. Moreover, incorporating large quantities of conductive particles into a polymeric resin can significantly compromise the mechanical properties of the resin leading to processing problems and premature failure of parts constructed therefrom. Additionally, conjugated polymeric materials and polymeric composites comprising high amounts of conductive particles can be expensive.
- an aqueous dispersion comprises carbon nanotubes and a polymeric carrier.
- An aqueous dispersion in some embodiments, comprises carbon nanotubes in an amount of at least about 1 weight percent on a total solids basis. In some embodiments, an aqueous dispersion comprises carbon nanotubes in an amount of at least about 5 weight percent or at least about 10 weight percent on a total solids basis. In some embodiments, an aqueous dispersion comprises carbon nanotubes in an amount ranging from about 5 weight percent to about 15 weight percent on a total solids basis.
- an aqueous coating composition comprises carbon nanotubes in a polymeric carrier.
- carbon nanotubes are present in an aqueous coating composition in an amount up to about 10 weight percent on a total solids basis.
- a coating composition comprises at least one additional component.
- the at least one additional component comprises one or more film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents of combinations thereof.
- the present invention provides fiber glass strands comprising an electrically conductive structure.
- Some embodiments of fiber glass strands of the present invention can be used in encapsulation, impregnation and reinforcement applications of a variety of polymeric resins, including thermoplastic and/or thermoset resins, in the production of electrically conductive polymeric composite materials.
- a fiber glass strand comprises an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier, the fiber glass strand having an electrical resistivity ranging from about 0.1 k ⁇ cm ⁇ 1 to about 20 M ⁇ cm ⁇ 1 . Resistivity of a fiber glass strand, according to embodiments of the present invention, is determined by measuring the electrical resistance along a 2.5 cm length of the strand.
- the coating composition comprises at least one component in addition to the carbon nanotubes and polymeric carrier.
- a fiber glass strand can have a volume resistivity ranging from about 2 ⁇ cm to about 0.1 M ⁇ cm.
- Fiber glass strand volume resistivity according to embodiments of the present invention can be calculated from fiber glass strand electrical resistance according to formula (I)
- R is the resistance of the fiber glass strand
- S is the cross-sectional area of the fiber glass strand
- L is the length of the fiber glass strand.
- the electrically conductive structure of a fiber glass strand comprises a plurality of glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier.
- the coating composition further comprises at least one component in addition to the carbon nanotubes and the polymeric carrier.
- Carbon nanotubes in some embodiments of compositions and methods described herein, can comprise single-walled carbon nanotubes (also referred to herein as “SWCNT”), multi-walled carbon nanotubes (also referred to herein as “MWCNT”) or mixtures thereof.
- the plurality of carbon nanotubes are dispersed in the polymeric carrier.
- the polymeric carrier in some embodiments, can demonstrate film forming properties and can serve as a film former.
- polymeric carriers comprise aqueous polymeric dispersions.
- a coating composition is applied to glass fibers of a fiber glass strand by drawing the fiber glass strand through a bath or reservoir of the coating composition.
- a coating composition comprising carbon nanotubes in a polymeric carrier can be applied to glass fibers as a primary sizing composition.
- a coating composition comprising carbon nanotubes in a polymeric carrier can be applied to glass fibers as a secondary sizing composition.
- the term “primary sizing composition” refers to a sizing composition applied to fibers immediately after formation of the fibers.
- secondary sizing refers to a composition applied to fibers after application of the primary sizing.
- fiber glass strands comprising an electrically conductive structure are continuous strands. In some embodiments, a plurality of continuous fiber glass strands comprising an electrically conductive structure are assembled into continuous rovings.
- the present invention provides electrically conductive glass fiber reinforced polymeric composites.
- the electrically conductive glass fiber reinforced polymeric composites can be thermoplastic composites or thermoset composites.
- Embodiments of polymeric composites comprise a polymeric resin and at least one fiber glass strand of the present invention comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising a plurality of carbon nanotubes and a polymeric carrier.
- one or more glass fibers are coated with a coating composition comprising a plurality of carbon nanotubes and a polymeric carrier and at least one additional component.
- the at least one addition component comprises one or more film formers, coupling agents, lubricants, biocides or anti-foaming agents of combinations thereof.
- continuous fiber glass strands comprising an electrically conductive structure can be used in winding applications wherein a polymeric composite is produced by continuous filament winding techniques.
- a polymeric composite comprising one or more electrically conductive continuous fiber glass strands has an electrical resistivity less than the resistivity of an individual electrically conductive continuous fiber glass strand used in the fabrication of the composite.
- a polymeric composite comprising one or more continuous fiber glass strands of the present invention displays a volume resistivity less than about 0.1 M ⁇ cm.
- a polymeric composite comprising one or more continuous fiber glass strands described herein displays a volume resistivity less than about 0.03 M ⁇ cm.
- a polymeric composite comprising one or more continuous fiber glass strands described herein displays a volume resistivity less than about 0.002 M ⁇ cm.
- a polymeric composite comprising one or more continuous fiber glass strands described herein has a volume resistivity ranging from about 0.002 M ⁇ cm to about 100 M ⁇ cm.
- the “volume resistivity” of a polymeric composite of the present invention means the volume resistivity as measured according to ASTM D257-07.
- the present invention provides methods of making an aqueous dispersion of carbon nanotubes.
- a method of making an aqueous dispersion of carbon nanotubes comprises providing a polymeric carrier and mixing the carbon nanotubes with the polymeric carrier, the polymeric carrier comprising an aqueous dispersion of one or more polymeric species.
- a method of making an aqueous dispersion of carbon nanotubes further comprises reducing the particle size of the carbon nanotubes and/or adding a viscosity modifier to the aqueous dispersion.
- the present invention provides methods of making coating compositions for glass fibers.
- a method of making a coating composition for glass fibers comprises providing an aqueous dispersion comprising carbon nanotubes and a polymeric carrier. Carbon nanotubes and polymeric carriers used in the present methods, in some embodiments, can comprise any of the same described herein.
- a method of making a coating composition for glass fibers further comprises providing at least one additional component and adding the at least one additional component to the aqueous dispersion comprising carbon nanotubes and a polymeric carrier.
- the present invention provides methods of making a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier.
- a method of making a fiber glass strand of the present invention comprises providing a coating composition comprising carbon nanotubes in a polymeric carrier, drawing a fiber glass strand through the coating composition, removing excess coating composition from the fiber glass strand and drying the fiber glass strand.
- the coating composition comprises at least one additional component as described herein.
- the present invention provides methods of making an electrically conductive glass fiber reinforced polymeric composite.
- a method of making an electrically conductive glass fiber reinforced polymeric composite comprises providing one or more continuous fiber glass strands of the present invention comprising an electrically conductive structure and disposing the one or more continuous fiber glass strands in a polymeric resin.
- glass fiber strands comprising an electrically conductive structure are combined with non-electrically conductive fiber glass strands in the production of a reinforced polymeric composite.
- the present invention will be discussed generally in the context of its use in the production, assembly, and application of glass fibers. However, one of ordinary skill in the art would understand that the present invention may be useful in the processing of other textile materials and, in particular, textile materials that are not generally considered to be electrically conductive.
- the present invention provides aqueous dispersions of electrically conductive particles.
- an aqueous dispersion comprises carbon nanotubes and a polymeric carrier.
- carbon nanotubes suitable for use in aqueous dispersions described herein comprise SWCNT, MWCNT or mixtures thereof.
- a majority of carbon nanotubes in the aqueous dispersion have an aspect ratio of at least 25.
- the aspect ratio of a carbon nanotube is the length of the carbon nanotube divided by the diameter of the carbon nanotube.
- a majority of carbon nanotubes have an aspect ratio of at least 100 or at least 500.
- a majority of carbon nanotubes of sizing compositions of the present invention have an aspect ratio greater than 1000.
- Carbon nanotubes are present in the aqueous dispersion in an amount of at least about 1 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount of at least about 5 weight percent or at least about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in amount of at least about 12 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in the aqueous dispersion in an amount of at least about 15 weight percent or at least about 20 weight percent on a total solids basis.
- carbon nanotubes are present in the aqueous dispersion in an amount less 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount less than about 3 weight percent or less than about 2 weight percent on a total solids basis.
- carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 30 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in am amount ranging from about 0.5 weight percent to about 15 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 1 weight percent to about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 2 weight percent to about 7 weight percent on a total solids basis.
- Carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 5 weight percent to about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 3.5 weight percent or from about 1 weight percent to about 3 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 2 weight percent on a total solids basis.
- an aqueous dispersion comprises SWCNT commercially available from Carbon Nanotechnologies Incorporated of Houston, Tex. under the HIPCO® trade designation.
- an aqueous dispersion comprises MWCNT commercially available from Bayer Material Science under the BAYTUBES® C150 HP trade designation.
- an aqueous dispersion described herein comprises a polymeric carrier.
- the carbon nanotubes are dispersed in the polymeric carrier.
- polymeric carriers can be used, and persons of ordinary skill in the art can identify a number of suitable polymeric carriers based on the present disclosure and the desired use of the aqueous carbon nanotube dispersion.
- Suitable polymeric carriers in some embodiments, for example, can be compatible with one or more polymeric resins and/or demonstrate advantageous properties for the dispersion of carbon nanotubes.
- polymeric carriers comprise aqueous dispersions of one or more polymeric species.
- polymeric carriers can be used in various embodiments of coating compositions of the present invention.
- Non-limiting examples of polymeric carriers comprise polyurethanes, epoxides, polyvinylpyrrolidone (PVP) or mixtures or aqueous dispersions thereof.
- a polymeric carrier can comprise one or more polyacrylates, polyesters or poly(vinyl acetates).
- polymeric carriers comprise conductive polymers including polypyrrole, polyaniline, polyphenylene, polythiophene or mixtures or aqueous dispersions thereof.
- a PVP carrier is provided as an aqueous dispersion such as, for example, PVP K15, PVP K30 or mixtures thereof.
- aqueous dispersions of PVP K15 and PVP K30 are commercially available from International Specialty Products of Wayne, N.J.
- a polyurethane carrier can be provided as aqueous dispersions such as, for example, the WITCOBOND® series provided by Chemtura Corporation of Middlebury, Conn., including, but not limited to, WITCOBOND® W-290H and WITCOBOND® W-296.
- aqueous dispersions such as, for example, the WITCOBOND® series provided by Chemtura Corporation of Middlebury, Conn., including, but not limited to, WITCOBOND® W-290H and WITCOBOND® W-296.
- Additional examples of commercially available polyurethane aqueous dispersions comprise Aquathane 516 from Reichhold Chemical Company and Hydrosize U2-01 from Hydrosize Technologies, Inc.
- polyurethane carriers comprise aqueous solutions of polyurethane polymers formed by a reaction between an organic isocyanate or polyisocyanate and an organic polyhydroxylated compound or hydroxyl terminated polyether or polyester polymer.
- the polyurethane dispersion may contain a crosslinking group, in some embodiments.
- a suitable polyurethane carrier is an aqueous emulsion of a polyether-polyurethane NAJ-1037 from Bayer Chemical.
- the polyurethane may be part of a dispersion comprising a polyurethane and a blocked isocyanate.
- the following polyurethane/blocked isocyanate emulsions may be suitable for use in the coating compositions of the present invention: WITCOBOND 60X (Chemtura), Baybond 403 (Bayer), Baybond PU-130 (Bayer), Baybond XP-7055 (Bayer), Nopco D641 (Henkel), Neoxil 6158 (DSM), and Vestanat EP-DS-1205 (Degussa).
- a polymeric carrier can comprise epoxide compositions.
- Suitable epoxide compositions for use as carbon nanotube carriers comprise EPON epoxides and EPI-REZ epoxides commercially available Hexion Specialty Chemicals of Columbus, Ohio.
- a polymeric carrier is an aqueous dispersion of a reaction product of an alkoxylated amine and a polycarboxylic acid, which is further reacted with an epoxy compound.
- reaction product is available from Hexion Specialty Chemicals of Columbus, Ohio under the RD1135-B trade designation.
- a reaction product of an alkoxylated amine and a polycarboxylic acid, which is further reacted with an epoxy compound comprises the same product described in U.S. patent application Ser. No. 12/002,320, which is incorporated herein by reference in its entirety.
- an aqueous dispersion comprises at least one polymeric carrier in an amount up to 99.9 weight percent on a total solids basis.
- a coating composition comprises at least one polymeric carrier in an amount up to about 99.5 weight percent on a total solids basis.
- a coating composition comprises at least one polymeric carrier in an amount of at least about 90 weight percent on a total solids basis.
- a coating composition comprises at least one polymeric carrier in an amount of at least about 95 or at least about 97 weight percent on a total solids basis.
- carbon nanotubes of an aqueous dispersion described herein are in agglomerate form to provide carbon nanotube particles.
- a carbon nanotube particle for example, is composed of a plurality of carbon nanotubes.
- An aqueous dispersion in some embodiments, has an average carbon nanotube particle size less than about 2 ⁇ m. In some embodiments, an aqueous dispersion has an average carbon nanotube particle size less than about 1 ⁇ m. In some embodiments, an aqueous dispersion has an average carbon nanotube particle size less than about 750 nm or less than about 500 nm. In some embodiments, an aqueous dispersion has an average carbon nanotube particle size ranging from about 250 nm to about 1 ⁇ m. Moreover, in some embodiments, aqueous dispersion comprising particles of carbon nanotubes has a rating on the Hegman scale or National Standard scale of 8.
- An aqueous dispersion comprising carbon nanotubes and a polymeric carrier in some embodiments, has a viscosity falling within a range set forth in Table 1.
- Viscosities of aqueous dispersions comprising carbon nanotubes and a polymeric carrier are determined using a Brookfield DV-II+CP viscometer at 25° C.
- the present invention provides methods of making an aqueous dispersion of carbon nanotubes.
- a method of making an aqueous dispersion of carbon nanotubes comprises providing a polymeric carrier and mixing the carbon nanotubes with the polymeric carrier, the polymeric carrier comprising an aqueous dispersion of one more polymeric species.
- Carbon nanotubes and polymeric carriers used in the present methods can comprise any of the same described herein.
- carbon nanotubes are mixed with a polymeric carrier in an amount of up to about 30 weight percent on a total solids basis of the resulting mixture.
- Carbon nanotubes in some embodiments, are mixed with a polymeric carrier in an amount of up to about 20 weight percent or up to about 15 weight percent on a total solids basis of the resulting mixture.
- carbon nanotubes are mixed with a polymeric carrier in an amount of up to about 10 weight percent on a total solids basis of the resulting mixture.
- Carbon nanotubes in some embodiments, are mixed with a polymeric carrier in an amount ranging from about 1 weight percent to about 30 weight percent on a total solids basis of the resulting mixture.
- carbon nanotubes are mixed with a polymeric carrier in an amount ranging from about 1 weight percent to about 15 weight percent on a total solids basis of the resulting mixture. In some embodiments, carbon nanotubes are mixed with a polymeric carrier in an amount ranging from about 5 weight percent to about 13 weight percent on a total solids basis of the resulting mixture.
- carbon nanotubes are provided in agglomerate form.
- An agglomerate of carbon nanotubes in some embodiments, has a size of less than 1 mm. In some embodiments, an agglomerate of carbon nanotubes has a size less than 750 ⁇ m or less than 500 ⁇ m. In some embodiments, an agglomerate of carbon nanotubes has a size ranging from about 100 ⁇ m to about 1 mm.
- Mixing carbon nanotubes with a polymeric carrier can be administered for any period of time achieving the desired consistency and/or viscosity. In some embodiments, mixing times are dependent on one or more factors including nanotube loading, identity of the polymeric carrier and batch size of the aqueous dispersion.
- mixing of the carbon nanotubes and the polymeric carrier is administered for at least 10 minutes. In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for at least 30 minutes. Mixing of the carbon nanotubes and the polymeric carrier, in some embodiments, is administered for at least 60 minutes or at least 90 minutes. In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for at least 120 minutes or at least 150 minutes. In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for a time period ranging from about 1 minute to about 150 minutes.
- carbon nanotubes are mixed with a polymeric carrier in one or more mixing apparatus.
- suitable mixing apparatus comprise rotor-stator assemblies such as a Ross ME 400 DLA In-line Mixer/Emulsifier. Mixing speeds of rotor-stator assemblies, in some embodiments, can be determined according to a variety of considerations including nanotube loading, identity of the polymeric carrier and batch size of the aqueous dispersion.
- a method of making an aqueous dispersion comprising carbon nanotubes and a polymeric carrier further comprises reducing the particle size of the carbon nanotubes.
- Reducing carbon nanotube particle size comprises milling the aqueous dispersion.
- the aqueous dispersion comprising carbon nanotubes and a polymeric carrier is milled for any amount of time achieving the desired particle size of carbon nanotubes.
- a Hegman grind bar is used to monitor the progression of the particle size of carbon nanotubes during milling.
- an aqueous dispersion comprising carbon nanotubes and a polymeric carrier is milled until a reading of 8 on the Hegman or National Standard scale is reached.
- a suitable milling apparatus for aqueous dispersions described herein is a Premier HM Series horizontal media mill commercially available from Premier Mill of Delavan, Wis.
- suitable milling apparatus comprise an Eiger 250 ml Mini Motor Mill from Eiger Machinery Inc. of Graylake, Ill. or a DISPERMAT® CN10/VMA Torusmill from VMA-Getzman GmbH.
- suitable milling apparatus comprises a rotor/stator assembly with a slotted screen. In some embodiments, such an assembly is available from Charles Ross and Son Company of Hauppauge, N.Y. under trade designation Ross HSM-100L Mixer/Emulsifier.
- a suitable milling apparatus comprises a high speed mixer/disperser such as an Air-powered laboratory stirrer Model 102A from Fawcett Co., Inc. of Richfield, Ohio.
- a method of making an aqueous dispersion comprising carbon nanotubes and a polymeric carrier further comprises adding a viscosity modifier to the aqueous dispersion.
- a viscosity modifier in some embodiments, can reduce the viscosity of the aqueous dispersion comprising the carbon nanotubes and the polymeric carrier.
- suitable viscosity modifiers do not disturb or do not substantially disturb the stability of the aqueous dispersion.
- a viscosity modifier comprises an aqueous dispersion of one or more polymeric species.
- additional polymeric carrier can be added to the aqueous dispersion of carbon nanotubes as a viscosity modifier.
- a viscosity modifier can be added to an aqueous dispersion described herein in any amount to achieve any desired viscosity of the aqueous dispersion.
- a coating composition comprises an aqueous dispersion comprising carbon nanotubes in a polymeric carrier.
- a coating composition for glass fibers comprises an aqueous dispersion described in Section I hereinabove.
- Carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount of at least about 1 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount of at least about 5 weight percent or at least about 7 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion of a coating composition in an amount less 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount less than about 3 weight percent or less than about 2 weight percent on a total solids basis.
- carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.1 weight percent to about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.5 weight percent to about 7 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 1 weight percent to about 5 weight percent on a total solids basis.
- carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 1 weight percent to about 3.5 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 2 weight percent to about 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.1 weight percent to about 3.5 weight percent or from about 1 weight percent to about 3 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.1 weight percent to about 2 weight percent on a total solids basis.
- a coating composition in addition to an aqueous dispersion comprising carbon nanotubes and a polymeric carrier, a coating composition further comprises at least one additional component.
- the at least one additional component comprises one or more film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents or combinations thereof.
- the at least one additional component of a coating composition for glass fibers described herein comprises one or more film formers.
- Any film former known to one of skill in the art not inconsistent with the objectives of the present invention can be used.
- Suitable film formers in some embodiments, for example, can be compatible with one or more polymeric resins.
- a film former may depend on the polymeric resin to be reinforced to enhance compatibility between the resin and glass fibers coated with a coating comprising described herein. Additionally, selection of a film former may depend on the type of fiber to be sized. In some embodiments, a film former does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- a number of film formers can used in various embodiments of the present invention.
- Non-limiting examples of film formers for use in various embodiments of the present invention comprise chemically modified polyolefins, polyurethanes, epoxides, or mixtures or aqueous dispersions thereof.
- a film former can comprise one or more polyacrylates, polyesters, poly(vinyl acetates), polyvinyl alcohols or polyvinylpyrrolidones.
- a film former comprising a chemically modified polyolefin in some embodiments, is provided as an aqueous emulsion.
- chemically-modified polyolefin refers to acid or acid anhydride modified polyolefins either amorphous or crystalline, such as those produced by the method detailed in U.S. Pat. No. 3,416,990, U.S. Pat. No. 3,437,550 and U.S. Pat. No. 3,483,276, each of which is incorporated herein by reference.
- a discussion of these polyolefins, their modification and emulsification can be found in U.S. Pat. No. 5,130,197, which is incorporated herein by reference.
- An example of a crystalline carboxylated polypropylene polymer useful as a film former, in some embodiments of the present invention is the HERCOPRIME® type resin commercially available from Hercules, Inc. of Bloomington, Del.
- An example of an amorphous carboxylated polypropylene polymer is EPOLENE® E-43 resin commercially available from the Westlake Chemical Corporation of Longview, Tex.
- Another suitable film former material is an aqueous emulsion of the EPOLENE E-43 resin, commercially available from Byk-Cera under the trade designation Novacer 1841 emulsion.
- CHEMCOR 43C30 amorphous carboxylated polypropylene aqueous emulsion commercially available from Chemical Corporation of America is another example of a film former suitable for use in some embodiments.
- Another commercially available version of an aqueous polyolefin emulsion useful as a film former in some embodiments is the carboxylated amorphous polypropylene from National Starch, Procter Division, sold under the trade designation Protolube RL-5440 polypropylene emulsion.
- a further suitable film former is an aqueous emulsion of a high molecular weight maleic anhydride grafted polypropylene emulsion commercially available from DSM, B.V. of the Netherlands under the Neoxil 605 trade designation.
- Suitable film formers for some embodiments comprise polyurethanes.
- Polyurethane film forming materials in some embodiments, are useful for polyamide resin reinforcement applications.
- polyurethane film forming compositions are provided as aqueous dispersions such as, for example, the WITCOBOND® series provided by Crompton Corporation-Uniroyal Chemical, including, but not limited to, WITCOBOND® W-290H and WITCOBOND® W-296.
- WITCOBOND® W-290H and WITCOBOND® W-296 Additional examples of commercially available polyurethane aqueous dispersions comprise Aquathane 516 from Reichhold Chemical Company and Hydrosize U2-01 from Hydrosize Technologies, Inc.
- polyurethane film formers comprise aqueous solutions of polyurethane polymers formed by a reaction between an organic isocyanate or polyisocyanate and an organic polyhydroxylated compound or hydroxyl terminated polyether or polyester polymer.
- the polyurethane dispersion may contain a crosslinking group, in some embodiments.
- a suitable polyurethane is an aqueous emulsion of a polyether-polyurethane NAJ-1037 from Bayer Chemical.
- the polyurethane may be part of a dispersion comprising a polyurethane and a blocked isocyanate.
- the following polyurethane/blocked isocyanate emulsions may be suitable for use in the sizing compositions of the present invention: WITCOBOND 60X (Crompton), Baybond 403 (Bayer), Baybond PU-130 (Bayer), Baybond XP-7055 (Bayer), Nopco D641 (Henkel), Neoxil 6158 (DSM), and Vestanat EP-DS-1205 (Degussa).
- a film former in some embodiments, comprises a polyester.
- a polyester film former in some embodiments, can be provided as an aqueous dispersion or emulsion.
- An aqueous polyester dispersion is commercially available from DSM, B.V. of the Netherlands under the trade designation Neoxil 9166.
- polyesters comprise aromatic structures such as phenolic moieties.
- Neoxil 954D an aqueous emulsion of a bisphenol-A polyester, for example, is commercially available from DSM, B.V.
- a polyester film former comprises a polyester-polyurethane film former.
- a polyester-polyurethane film former is commercially available from DSM B.V. under the Neoxil 9851 trade designation.
- a film former can comprise epoxide compositions.
- Suitable epoxide compositions for use as film formers comprise EPON epoxides and EPI-REZ epoxides commercially available Hexion Specialty Chemicals of Columbus, Ohio.
- epoxide compositions comprise aromatic structures including phenolic moieties, such as bisphenol and/or bisphenol novolac epoxides.
- an phenolic epoxide composition is commercially available from DSM B.V. under the Neoxil 8294 trade designation or commercially available from Hexion Specialty chemicals under the EPI-REZ RSW-4254 trade designation.
- a film former in some embodiments, comprises a polyvinylpyrrolidone.
- a polyvinylpyrrolidone film former is provided as an aqueous dispersion such as, for example, PVP K15, PVP K30 or mixtures thereof.
- Aqueous dispersions of PVP K15 and PVP K30 are commercially available from International Specialty Products of Wayne, N.J.
- a film former in some embodiments, comprises a chemically modified wood rosin.
- a chemically modified wood rosin is commercially available from Eka Chemicals AB, Sweden, under the Dynakoll SI 100T trade designation.
- a film former comprises a chemically modified wood rosin as disclosed in United States Patent Application Publication 20070079730, which is hereby incorporated by reference in its entirety.
- a film former comprises polyvinylacetate aqueous dispersions or emulsions.
- a polyvinylacetate film former is commercially available from Celanese Emulsions under the trade designation RESYN® 1037.
- a film former comprises one or more polyols.
- polyols useful in some embodiments of the present invention can include various polyvinyl alcohols (PVA), polyethylenevinyl alcohols (EVOH), polyethylene glycols (PEG), and/or mixtures thereof.
- Polyols used in some embodiments of the present invention can be hydrolyzed to different extents depending on the desired application.
- a polymeric film-former can comprise polyvinyl alcohol that is greater than 80% hydrolyzed.
- the polyvinyl alcohol can be greater than 85% hydrolyzed.
- a polymeric film-former can comprise polyvinyl alcohol greater than 95% hydrolyzed.
- Non-limiting examples of commercially available polymeric film-formers for use in some embodiments of coating compositions described herein comprise CELVOL® 205 available from Celanese Corporation and ELVANOL® 85-82 available from DUPONT®.
- a single polyol e.g., CELVOL® 205 or ELVANOL® 85-82 can be used, while in other embodiments, multiple polyols (e.g., CELVOL® 205 and ELVANOL® 85-82) can be used.
- a film former in some embodiments, comprises aqueous olefinic emulsions or dispersions.
- an aqueous olefinic emulsion comprises a polyethylene emulsion.
- an aqueous olefinic emulsion comprises a polypropylene emulsion.
- An aqueous polypropylene emulsion is commercially available from BYK USA, Inc. under the trade designation AQUACER® 1500.
- a film former comprises an acrylate latex.
- an acrylate latex is commercially available from H. B. Fuller under the trade designation FULATEX® PD2163.
- a film former is present in a coating composition for glass fibers described herein in an amount of up to about 99 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount of up to about 90 weight percent on a total solids basis. A film former, in some embodiments, is present in a coating composition in an amount of up to about 80 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount of at least about 50 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount of at least about 60 weight percent on a total solids basis.
- a film former is present in a coating composition in an amount ranging from about 50 weight percent to about 99 weight percent on a total solids basis.
- a film former in some embodiments, is present in a coating composition in an amount ranging from about 70 weight percent to about 90 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount ranging from about 60 weight percent to about 80 weight percent on a total solids basis.
- the at least one additional component of a coating composition described herein comprises one or more coupling agents.
- the selection of a coupling agent may depend on the polymeric resin to be reinforced to enhance compatibility between the resin and glass fibers coated with a coating composition described herein. Additionally, selection of a coupling agent may depend on the type of fiber to be sized. In some embodiments, a coupling does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- a coupling agent comprises one or more organosilanes.
- organosilanes comprise aminosilanes.
- An aminosilane can comprise any aminosilane for use in sizing compositions known to one of skill in the art.
- an aminosilane can comprise aminopropyltrialkoxysilanes such as ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane, ⁇ -aminoethyltriethoxysilane, N- ⁇ -aminoethylamino-propyltrimethoxysilane, 3-aminopropyldimethoxysilane, or mixtures thereof.
- aminopropyltrialkoxysilanes such as ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane, ⁇ -aminoethyltriethoxysilane, N- ⁇ -aminoethylamino-propyltrimethoxysilane, 3-aminopropyldimethoxysilane, or mixtures thereof.
- Non-limiting examples of commercially available aminosilanes include A-1100 ⁇ -aminopropyltriethoxysilane, A-1120 N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, and other aminofunctional silanes in the A-1100 series from OSi Specialties, as well as DYNASYLAN® AMEO 3-aminopropyltriethoxysilane from Degussa AG of Dusseldorf, Germany.
- organosilanes comprise one or more non-aminofunctional coupling agents.
- non-aminofunctional coupling agents comprise ⁇ -isocyanatopropyltriethoxysilane, vinyl-trimethoxysilane, vinyl-triethoxysilane, allyl-trimethoxysilane, mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropyltrimethoxysilane, 4,5-epoxycyclohexyl-ethyltrimethoxysilane, chloropropyltriemethoxysilane, and chloropropyltriethoxysilane.
- a coupling agent is present in a coating composition in an amount of up to about 10 weight percent on a total solids basis.
- a coupling agent in some embodiments, is present in a coating composition in an amount of up to about 5 weight percent on a total solids basis.
- a coupling agent is present in a coating composition in an amount ranging from about 0.01 weight percent to about 10 weight percent on a total solids basis.
- a coupling agent in some embodiments, is present in a coating composition in an amount ranging from about 1 weight percent to about 5 weight percent on a total solids basis.
- the at least one additional component of a coating composition described herein comprises one or more lubricants. Any lubricant not inconsistent with the objectives of the present invention can be used. In some embodiments, a lubricant does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- Lubricants can be used, for example, in sizing compositions of the present invention to assist with internal lubrication (e.g., fiber-to-fiber abrasion) and to assist with external lubrication (e.g., glass-to-contact point abrasion).
- the at least one lubricant may comprise at least one cationic lubricant.
- the at least one lubricant may comprise at least one non-ionic lubricant.
- the at least one lubricant may comprise at least one cationic lubricant and at least one nonionic lubricant.
- Cationic lubricants may be used in embodiments of the present invention, for example, to assist with internal lubrication, such as by reducing filament-to-filament or glass-to-glass abrasion.
- most cationic lubricants known to those of skill in the art can be used in embodiments of the present invention.
- Non-limiting examples of cationic lubricants suitable for use in sizing compositions of the present invention include lubricants with amine groups, lubricants with ethoxylated amine oxides, and lubricants with ethoxylated fatty amides.
- a non-limiting example of a lubricant with an amine group is a modified polyethylenimine, e.g.
- EMERY 6717 which is a partially amidated polyethylenimine commercially available from Pulcra Chemicals of Charlotte, N.C.
- a lubricant comprises one or more partial esters of a branched carboxylic acid copolymer.
- the partial ester and derivatives thereof are polymers with pendant hydrocarbon and ethoxylated ester chains.
- a commercially available version of a suitable partial ester of a branched carboxylic acid copolymer is that from Akzo Chemie America of Chicago, Ill. under the trade designation Ketjenlube 522 partial ester. (formerly sold as DAPRAL® GE 202 partial ester.)
- Non-ionic lubricants in some embodiments, comprise at least one wax.
- waxes suitable for use in the present invention include polyethylene wax, paraffin wax, polypropylene wax, microcrystalline waxes, and oxidized derivatives of these waxes.
- a polyethylene wax suitable for use in the present invention is Protolube HD-A, which is a high density polyethylene wax commercially available from Bayer Corporation of Pittsburgh, Pa.
- An example of a paraffin wax suitable in embodiments of the present invention is Elon PW, which is a paraffin wax emulsion commercially available from Elon Specialties of Concord, N.C.
- a lubricant is present in a coating composition in an amount of up to about 3 weight percent on a total solids basis.
- a lubricant in some embodiments, is present in a coating composition in an amount of up to about 2.5 weight percent on a total solids basis.
- a lubricant is present in a coating composition in an amount ranging from about 0.01 weight percent to about 5 weight percent on a total solids basis.
- a lubricant in some embodiments, is present in an amount ranging from about 0.5 weight to about 1.5 weight percent on a total solids basis.
- the at least one additional component of a coating composition described herein comprises one or more surfactants. Any surfactant not inconsistent with the objectives of the present invention can be used. In some embodiments, a surfactant does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- a surfactant is present in a coating composition in an amount of up to about 3 weight percent on a total solids basis.
- a surfactant in some embodiments, is present in a coating composition in an amount of up to about 2 weight percent on a total solids basis.
- a surfactant is present in a coating composition in an amount ranging from about 0.01 weight percent to about 4 weight percent on a total solids basis.
- a surfactant in some embodiments, is present in an amount ranging from about 0.5 weight to about 2 weight percent on a total solids basis.
- the at least one additional component of a coating composition described herein comprises one or more anti-foaming agents. Any anti-foaming agent not inconsistent with the objectives of the present invention can be used. In some embodiments, an anti-foaming agent does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition. In some embodiments, an antifoaming agent comprises Sag 10 from Momentive Performance Materials.
- an anti-foaming agent is present in a coating composition in an amount of up to about 0.1 weight percent on a total solids basis.
- An anti-foaming agent in some embodiments, is present in a coating composition in an amount of up to about 0.05 weight percent on a total solids basis.
- an antifoaming agent is present in a coating composition in an amount ranging from about 0.001 weight percent to about 0.02 weight percent on a total solids basis.
- An antifoaming agent in some embodiments, is present in an amount ranging from about 0.005 weight to about 0.01 weight percent on a total solids basis.
- the at least one additional component comprises various combinations of one or more film formers, coupling agents, lubricants, surfactants, anti-foaming agent and/or biocides.
- the present invention provides methods of making coating compositions for glass fibers.
- a method of making a coating composition for glass fibers comprises providing an aqueous dispersion comprising carbon nanotubes comprises and a polymeric carrier.
- an aqueous dispersion comprising carbon nanotubes and a polymeric carrier is provided according to the same described in Section II hereinabove.
- Carbon nanotubes and polymeric carriers used in the present methods can comprise any of the same described herein.
- a method of making a coating composition for glass fibers further comprises providing at least one additional component and adding the at least one additional component to the aqueous dispersion comprising carbon nanotubes and a polymeric carrier.
- at least one additional component comprises one or more film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents of combinations thereof.
- the at least one additional component comprises one or more of the film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents described in Section III hereinabove.
- a solution of the at least one additional component in some embodiments, is combined with the aqueous dispersion of carbon nanotubes and a polymeric carrier.
- the solution of the at least one additional component is combined with the aqueous dispersion of carbon nanotubes and a polymeric carrier with mechanical agitation such as stirring and/or high shear for a time period of at least about 10 minutes.
- the solution of the at least one additional component is combined with the aqueous dispersion of carbon nanotubes and a polymeric carrier with mechanical agitation such as stirring and/or high shear for a time period of at least about 20 minutes.
- embodiments of the present invention provide fiber glass strands comprising an electrically conductive structure.
- Fiber glass strands of the present invention in some embodiments, can be used in polymeric resin reinforcement applications in the production of electrically conductive polymeric composite materials.
- Fiber glass strands described herein can comprise any type of glass fibers, and persons of ordinary skill in the art can readily identify a variety of potential glass fibers based on the present disclosure and the desired fiber glass strand, composite, or end product.
- electrically conductive polymeric composite materials of the present invention find application in a variety of fields which demand materials having high mechanical performance coupled with the ability to resist or dissipate static charge accumulation on surfaces or in the bulk of the materials.
- Electrically conductive polymeric composite materials for example, can be used in the storage and transport of flammable materials, such as in fuel pipes and fuel containers.
- electrically conductive polymeric composite materials of the present invention can find application in device housings requiring electromagnetic interference (EMI) or radio frequency interference (RFI) shielding.
- EMI electromagnetic interference
- RFID radio frequency interference
- the present invention provides a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition described herein, the fiber glass strand having an electrical resistivity ranging form about 0.1 k ⁇ cm ⁇ 1 to about 20 M ⁇ cm ⁇ 1 .
- a coating composition of a fiber glass strand having an electrically conductive structure comprises any of the same described in Section III hereinabove.
- embodiments of the present invention characterize the one or more fibers as being “coated” with a coating composition
- the use of the word “coated” is intended to cover embodiments in which the coating composition does not cover a surface of one or more fibers.
- the fiber glass strand can have an electrical resistivity provided in Table 2.
- a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 0.5 k ⁇ cm ⁇ 1 to about 1 M ⁇ cm ⁇ 1 . In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 10 k ⁇ cm ⁇ 1 to about 0.75 M ⁇ cm ⁇ 1 . In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 10 k ⁇ cm ⁇ 1 to about 0.75 M ⁇ cm ⁇ 1 . In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 20 k ⁇ cm ⁇ 1 to about 0.5 M ⁇ cm ⁇ 1 .
- a fiber glass strand can have a volume resistivity ranging from about 2 ⁇ cm to about 0.1 M ⁇ cm. In some embodiments, a fiber glass strand can have an volume resistivity provided in Table 3.
- a fiber glass strand comprising an electrically conductive structure has an volume resistivity ranging from about 0.1 ⁇ cm to about 10 k ⁇ cm. In some embodiments, a fiber glass strand comprising an electrically conductive structure has an volume resistivity ranging from about 0.2 ⁇ cm to about 20 k ⁇ cm. In some embodiments, a fiber glass strand comprising an electrically conductive structure has a volume resistivity ranging from about 5 ⁇ cm to about 0.5 k ⁇ cm. In some embodiments, a fiber glass strand comprising an electrically conductive structure has a volume resistivity ranging from about 10 ⁇ cm to about 100 ⁇ cm ⁇ 1 . In some embodiments, a fiber glass strand comprising an electrically conductive structure has a volume resistivity ranging from about 20 ⁇ cm to about 80 ⁇ cm.
- the electrically conductive structure of a fiber glass strand comprises a plurality of glass fibers coated with a coating composition described herein comprising carbon nanotubes in a polymeric carrier.
- the coating composition comprises at least one additional component.
- components of a primary and/or secondary sizing composition of the glass fibers constituting the strand can be selected based on a number of factors.
- the primary and/or secondary sizing composition components can be selected based on a component's ability to enhance compatibility with the coating composition comprising carbon nanotubes in a polymeric carrier.
- components of the primary and/or secondary sizing composition in some embodiments, can be selected to enhance wet out of the coating composition comprising carbon nanotubes in a polymeric carrier when the coating composition is applied to the fiber glass strand.
- Components of the primary and/or secondary sizing composition can also be selected to assist with processing of the glass fibers (e.g., to reduce fuzz, broken filaments, etc.).
- Non-limiting examples of potential components of a primary and/or secondary sizing composition for use in some embodiments comprise wetting agents, lubricants, surfactants, emulsifiers, coupling agents and/or film formers.
- the amount of comprising carbon nanotubes in a polymeric carrier on fiber glass may be measured as “loss on ignition” or “LOI”.
- LOI loss on ignition
- the term “loss on ignition” or “LOI” means the weight percent of dried coating composition present on the fiber glass as determined by Equation 1:
- W dry is the weight of the fiber glass plus the weight of the coating after drying in an oven at 220° F. (about 104° C.) for 60 minutes
- W bare is the weight of the bare fiber glass after heating the fiber glass in an oven at 1150° F. (about 621° C.) for 20 minutes and cooling to room temperature in a dessicator.
- LOI can affect the electrical resistivity of a fiber glass strand in some embodiments of the present invention.
- a high LOI can result in an increase in the resistivity of a fiber glass strand of the present invention to a point where the strand is no longer considered electrically conductive.
- an amount of composition producing a high LOI can provide sufficient spacing between individual or clusters of carbon nanotubes in the polymeric carrier such that one or more electrically conductive pathways are not created along the glass fibers of the strand. As a result, electrical charge is localized on individual or clusters of carbon nanotubes leading to increases in resistivity.
- the potential carbon nanotube spacing problems associated with a high LOI may be exacerbated when the glass fibers are drawn through a die or an orifice to remove excess coating composition.
- the individual or clusters of carbon nanotubes can experience shear forces.
- a large amount of coating composition associated with a high LOI can provide sufficient polymeric carrier volume to permit even further spacing of individual or clusters of carbon nanotubes as a result of the shearing forces.
- the foregoing problems associated with high LOI can be mitigated by increasing the carbon nanotube concentration in the polymeric carrier.
- Increasing carbon nanotube concentration in some embodiments, can increase the probability of contact between individual or clusters of carbon nanotubes in the formation of an electrically conductive structure.
- a high carbon nanotube concentration can permit lower amounts of coating composition to be applied to glass fibers of a fiber glass strand thereby lowering the LOI.
- Increases in carbon nanotube concentration in some embodiments, can be limited by the ability to disperse the carbon nanotubes in the polymeric carrier.
- An additional method of mitigating potential problems with high LOI is to provide a coating composition wherein carbon nantoubes are highly dispersed in a polymeric carrier.
- Carbon nanotubes highly dispersed in a polymeric carrier resist the formation of clusters of carbon nanotubes. Clustering of carbon nanotubes can increase the volume of polymeric carrier devoid of carbon nanotubes thereby contributing to the failure to form an electrically conductive structure through nanotubes in contact with one another.
- Carbon nanotubes highly dispersed throughout a polymeric carrier can reduce the volume of polymeric carrier devoid of carbon nanotubes thereby requiring lower amounts of coating composition in order to provide a glass fiber with an electrically conductive structure.
- subjecting the coated glass fibers to shearing forces can facilitate the formation of an electrically conductive structure.
- Shearing forces in some embodiments, can align carbon nanotubes and/or spread clusters of carbon nanotubes to provide an electrically conductive structure wherein the carbon nanotubes are in contact with one another.
- the ability of shearing forces to enhance or degrade electrical conductivity of a fiber glass strand of the present invention can be dependent on the amount of carbon nanotubes present in the coating composition relative to the volume of polymeric carrier.
- a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier, has a LOI up to about 25.
- an electrically conductive fiber glass strand described herein has a LOI up to about 15.
- an electrically conductive fiber glass strand described herein has an LOI up to about 14.
- an electrically conductive fiber glass strand described herein has an LOI of at least about 1.
- an electrically conductive fiber glass strand described herein has an LOI of at least about 3.
- an electrically conductive fiber glass strand described herein has a LOI of at least about 5. In some embodiments, an electrically conductive fiber glass strand described herein has an LOI ranging from about 2 to about 9. In some embodiments, an electrically conductive fiber glass strand described herein has an LOI ranging from about 2.5 to about 6.
- the present invention provides electrically conductive glass fiber reinforced polymeric composites.
- electrically conductive glass fiber reinforced polymeric composites comprise thermoplastic composites or thermoset composites.
- Embodiments of electrically conductive polymeric composites of the present invention comprise a polymeric resin and at least one fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier.
- thermoset resins reinforced with electrically conductive glass fiber strands of the present invention comprise epoxy resins, polyester resins, polyimide resins, phenolic resins, allyl resins such as diallyl phthalate and diallyl isophthalate, urea formaldehyde, melamine formaldehyde, cyanates, bismaleimides, polyurethanes, silicones, vinyl esters or urethane acrylic polymers.
- thermoplastic resins reinforced with electrically conductive glass fiber strands comprise polyolefins such as polyethylene and polypropylene, polyamides, polyphenylene oxide, polystyrenics and polyesters such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
- polyolefins such as polyethylene and polypropylene, polyamides, polyphenylene oxide, polystyrenics and polyesters such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
- thermoplastic resins reinforced with electrically conductive glass fiber strands of the present invention comprise polyarylene sulfides, polyalkyds, polyaramides, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyphenylene sulfides, polysulfones, polyimides, polyetherimides, polytetrafluoroethylenes, polyetherketones, polyether etherketones, polyether ketone ketones, polybenzoxazoles, polyoxadiazoles, polybenzothiazinophenothiazines, polybenzothiazoles, polypyrazinoquinoxalines, polypyromellitimides, polyquinoxalines, polybenzimidazoles, polyoxindoles, polyoxoisoindolines, polydioxoisoindolines, polytriazines, polypyridazines, polypiperazines, polypyridines, polypiperidines
- fiber glass strands comprising an electrically conductive structure for polymeric reinforcement applications can be continuous strands.
- the continuous strands can, for example, be wound into a package.
- Such continuous strands can be used in a number of applications including, for example, winding applications wherein a polymeric composite is fabricated on a mandrel.
- a continuous fiber glass strand comprising an electrically conductive structure intersects with itself at one more locations in a polymeric composite material.
- a plurality of continuous fiber glass strands comprising an electrically conductive structure intersect with one another at one or more points in a polymeric composite.
- a continuous strand typically has a length between about 40,000 and about 160,000 meters.
- electrically conductive polymeric composites comprising one or more electrically conductive continuous fiber glass strands can have an electrical conductivity greater than an individual electrically conductive continuous fiber glass strand used in the fabrication of the composite.
- the electrical conductivity of a polymeric composite can be expressed in a number of ways including, for example, in terms of its volume resistivity and/or its surface resistivity. Unless otherwise indicated, the volume resistivity of a polymeric composite means the volume resistivity according to ASTM D 257-07. In some embodiments, for example, a polymeric composite comprising electrically conductive fiber glass strands of the present invention can have any of the volume resistivity according to ASTM D 257-07 provided in Table 4.
- the surface resistivity of a polymeric composite means the surface resistivity according to ASTM D 257-07.
- a polymeric composite comprising electrically conductive fiber glass strands of the present invention can have any of the surface resistivities according to ASTM D 257-07 provided in Table 5.
- a polymeric composite comprises any desired amount of fiber glass strands of the present invention comprising an electrically conductive structure.
- a polymeric composite comprises fiber glass strands comprising an electrically conductive structure in an amount up to about 5 weight percent of the composite.
- a polymeric composite comprises fiber glass strands comprising an electrically conductive structure in an amount up to about 4 weight percent of the composite.
- a polymeric composite comprises fiber glass strands comprising an electrically conductive structure in an amount of at least about 1 weight percent of the composite.
- a polymeric composite in some embodiments, comprises fiber glass strands comprising an electrically conductive structure in an amount of at least about 2 weight percent of the composite.
- an electrically conductive polymeric composite of the present invention further comprises fiber glass strands not having an electrically conductive structure (in addition to the fiber glass strands having an electrically conductive structure).
- a polymeric composite in some embodiments, further comprises non-electrically conductive fiber glass strands in an amount up to about 70 weight percent of the composite. In other embodiments, a polymeric composite further comprises non-electrically conductive fiber glass strands in an amount up to about 65 weight percent of the composite. In some embodiments, a polymeric composite further comprises non-electrically conductive fiber glass strands in an amount up to about 55 weight percent of the composite.
- electrically conductive polymeric composite materials of the present invention can find application in a variety of fields. For example, some embodiments may be useful in applications demanding materials having high mechanical performance coupled with the ability to resist or dissipate static charge accumulation on surfaces or in the bulk of the materials. Electrically conductive polymeric composite materials, for example, can be used in the storage and transport of flammable materials, such as in fuel pipes and fuel containers.
- the electrically conductive polymeric composite material demonstrates a surface resistivity according to ASTM D257-01 that meets or exceeds one or more industrial specifications addressing the transport or storage of flammable materials, such as DNV Classification Note No. 5, Clause 4.2.2 and/or specifications provided by Lloyds of London regarding fiber glass pipes used to handle petroleum products on ships.
- an electrically conductive polymeric composite material of the present invention can be in the form of a pipe.
- the pipe can be used, for example, in transporting fuels and/or other flammable materials.
- a pipe constructed from an electrically conductive polymeric composite material of the present invention can have dimensions consistent with BONDSTRAND® 7000 and 7000M fiber glass pipes and fittings commercially available from Ameron International Corporation of Pasadena, Calif. Such fiber glass pipes, for example, might have the following dimensions.
- a pipe constructed from an electrically conductive polymeric composite material of the present invention has an electrical resistance according to ASTM F1173-01 provided in Table 6.
- electrically conductive polymeric composite materials of the present invention can also find application in device housings requiring electromagnetic interference (EMI) shielding or radio frequency interference (RFI) shielding.
- EMI electromagnetic interference
- RFID radio frequency interference
- the present invention provides methods of making a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier.
- a method of making a fiber glass strand of the present invention comprises providing a coating composition comprising carbon nanotubes in a polymeric carrier, drawing a fiber glass strand through the coating composition, removing excess coating composition from the fiber glass strand and drying the fiber glass strand.
- a coating composition applied to the fiber glass strands can comprise any of the same described herein, including the coating compositions described in Section III hereinabove.
- Fiber glass strands suitable for use in methods of the present invention can comprise any type of glass fibers, and persons of ordinary skill in the art can readily identify a variety of potential glass fibers based on the present disclosure and the desired fiber glass strand, composite, or end product.
- the coating composition comprises a dispersion of carbon nanotubes in a polymeric carrier.
- a coating composition comprises at least one additional component as described in Section III hereinabove.
- dispersion of carbon nanotubes in a polymeric carrier can be accomplished by several techniques.
- carbon nanotubes can be dispersed in a polymeric carrier by mechanical agitation as described in Sections II and IV hereinabove.
- surfactants and other dispersants can be used to assist in the dispersion of carbon nanotubes in a polymeric carrier.
- surfaces of the carbon nanotubes can be chemically modified to assist in the dispersion of the carbon nanotubes in a polymeric carrier.
- Surfactants, dispersants and/or carbon nanotube surface modification in some embodiments, can be selected according to identity of the polymeric carrier.
- a fiber glass strand can be drawn through the coating composition comprising carbon nanotubes in a polymeric carrier at any rate not inconsistent with producing a fiber glass strand having the electrical structure and conductivities described herein.
- a fiber glass strand is drawn through the coating composition at any of the rates provided in Table 7.
- excess coating composition is removed from the fiber glass strand to provide the fiber glass strand with a LOI having a value described herein.
- Excess coating composition can be removed by a variety of techniques in order to provide a fiber glass strand with a LOI having a value described herein.
- excess coating composition can be removed by drawing the coated fiber glass strand through an orifice or die. The proper size of the orifice or die can be determined according to principles known to one of skill in the art such as strand diameter, number of filaments in a strand, drawing speed and/or coating composition viscosity.
- the ratio of the diameter of the die opening to the diameter of the fiber glass strand ranges from about 1.4 to about 2.
- excess coating composition comprising carbon nanotubes in a polymeric carrier removed from a fiber glass strand is returned to the coating composition bath or reservoir through which the fiber glass strand is drawn for use in coating additional fiber glass strands.
- excess coating composition is returned to the coating composition bath, the excess coating is first combined with an aqueous dispersion comprising a carbon nanotube concentration higher than that of the coating composition. Combining excess coating composition with such an aqueous dispersion, in some embodiments, can return the carbon nanotube concentration in the excess coating composition to levels consistent with that of the coating composition in the bath or reservoir.
- excess coating composition removed from fiber glass strands is not returned to the coating composition bath or reservoir and is instead captured in a container separate from the coating composition bath or reservoir.
- the removed excess coating composition is not recombined with the coating composition bath or reservoir for coating additional fiber glass strands.
- Embodiments wherein removed excess coating composition is not recombined with the coating composition bath contemplate any method of keeping the removed excess coating composition separate from the coating composition bath.
- excess coating composition that is removed from a fiber glass strand and recombined with the coating composition bath can increase the electrical resistivity of fiber glass strands drawn through the bath subsequent to the recombination. While not wishing to be bound by any theory, it is believed that recombining removed excess coating composition with the coating composition bath or reservoir reduces the concentration of carbon nanotubes in the bath or reservoir. In some embodiments, carbon nanotubes adhere to glass fibers when a coating composition of the present invention is applied to a fiber glass strand. As a result of this adherence, excess removed coating composition can have a lower concentration of carbon nanotubes.
- the removed coating composition When the removed coating composition is recombined with the coating composition bath or reservoir, the removed coating composition can dilute the carbon nanotube concentration in the bath.
- the reduction in carbon nanotube concentration can become significant over extended periods of time as additional coating composition is removed from a fiber glass strand and returned to the bath or reservoir. Consequently, glass fibers drawn though the coating composition in a bath having a reduced carbon nanotube concentration receive less carbon nanotubes, which thereby inhibits or precludes the formation of one or more electrically conductive pathways along the glass fibers.
- the absence of electrically conductive pathways can increase charge localization and resistivity.
- coated fiber glass strands are dried.
- coated fiber glass strands are dried at a temperature ranging from about 120° C. to about 460° C. In some embodiments coated fiber glass strands are dried at a temperature ranging from about 180° C. to about 200° C. In some embodiments, coated fiber glass strands are dried at a temperature ranging from about 240° C. to about 270° C. In another embodiment, coated fiber glass strands are dried at a temperature ranging from about 350° C. to about 400° C. In some embodiments, coated fiber glass strands are dried at a temperature ranging from about 400° C. to about 460° C. In some embodiments, coated fiber glass strands are dried at a temperature less than about 120° C. or greater than about 460° C.
- the drying temperature for the fiber glass strands is selected with reference to the drawing speed of the fiber glass strands. In one embodiment, for example, the drying temperature is directly proportional to the drawing speed of the fiber glass strands.
- multiple drying apparatus are used in the drying of fiber glass strands of the present invention.
- the coated fiber glass strands are drawn through a plurality of ovens or furnaces.
- the plurality of ovens or furnaces are set to the same temperature.
- the plurality of ovens or furnaces are set to different temperatures.
- the fiber glass strands are subjected to temperature gradients during the drying process.
- the present invention provides methods of making a glass fiber reinforced polymeric composite.
- a method of making a glass fiber reinforced polymeric composite comprises providing one or more fiber glass strands of the present invention comprising an electrically conductive structure and disposing the one or more fiber glass strands in a polymeric resin.
- the fiber glass strands comprising an electrically conductive structure are continuous.
- fiber glass strands comprising an electrically conductive structure are combined with non-electrically conductive fiber glass strands in the production of a electrically polymeric composite.
- Conductive and non-conductive fiber glass strands in some embodiments, can be combined according to their respective weight percents in a polymeric composite as provided herein.
- a method of making an electrically conductive glass fiber reinforced polymeric composite further comprises curing the polymeric resin.
- electrically conductive fiber glass strands of the present invention and non-electrically conductive fiber glass strands can be disposed in a polymeric resin and wound around a mandrel in the production of an electrically conductive glass fiber reinforced composite.
- electrically conductive and non-electrically conductive fiber glass strands are wound around a mandrel in overlapping helical patterns in the production of a polymeric composite as described in U.S. Pat. No. 4,330,811, which is hereby incorporated by reference in its entirety.
- a coating composition comprising 1 weight percent SWCNT dispersed in an aqueous polyurethane carrier was provided in a reservoir.
- the SWCNT were obtained from Carbon Nanotechnologies Inc. of Houston, Tex. and the polyurethane film former was WITCOBOND® W-290H commercially available from Chemtura Corporation of Middlebury, Conn.
- the foregoing dispersion was obtained from PolyOne Corporation of Avon Lake, Ohio.
- a HYBON® 2026 continuous fiber glass strand of 450 yield and 1100 tex commercially available from PPG Industries of Pittsburgh, Pa. was drawn through the coating composition in the reservoir at a rate of 0.75 ft/min to coat glass fibers of the strand with the coating composition.
- the fiber glass strand was subsequently drawn through a die to remove excess coating composition.
- the excess coating composition removed from the fiber glass strand was collected in a container separate from the coating composition reservoir. As a result, the excess coating composition removed from the fiber glass strand was not returned to the coating composition reservoir.
- the continuous glass fiber strand was then dried by passing through a first furnace having a temperature of 180° C. and second furnace having a temperature of 200° C. before being wound onto a package.
- the completed fiber glass strand demonstrated a resistivity of 3.4 M ⁇ cm ⁇ 1 and volume resistivity of 0.0193 M ⁇ cm.
- the completed fiber glass strand additionally had an LOI of 14.0.
- 3 continuous fiber glass strands of the present invention made in accordance with Example 1 along with 83 strands of E-glass roving commercially available from PPG under the HYBON® 2006-450 trade designation were drawn through an epoxy resin and wound on a mandrel in accordance with U.S. Pat. No. 4,330,811 to produce an electrically conductive glass fiber reinforced polymeric composite pipe having a length of 9 m, an inner diameter of 100 mm and a wall thickness of 2 mm.
- the composite pipe comprised about 63 weight percent glass fibers with 3.3 weight percent of the glass fibers coming from the 3 fiber glass strands produced in accordance with Example 1.
- a control glass fiber reinforced polymeric composite pipe having a length of 9 m, an inner diameter of 100 mm and a wall thickness of 2 mm was also produced in accordance with U.S. Pat. No. 4,330,811.
- the control glass fiber reinforced polymeric composite comprised about 63 weight percent HYBON® 2006-450 glass fibers and no glass fibers produced in accordance with Example 1.
- the conductivity of the electrically conductive glass fiber reinforced polymeric composite pipe was tested according the ASTM F1173-01. The results of the electrical conductivity testing are provided in Table 8.
- the surface resistivities of the electrically conductive glass fiber reinforced polymeric composite pipe were additionally measured and compared with the surface resistivities of the control glass fiber reinforced pipe.
- the surface resistivities of the electrically conductive fiber glass reinforced polymeric composite pipe and the control glass fiber reinforced pipe were measured in accordance with ASTM D257-01. The results are provided in Table 9.
- the electrically conductive fiber glass reinforced polymeric composite pipe exceeds the requirements of DNV Classification Note No. 5, Clause 4.2.2 requiring the surface resistivity of pipes used gas dangerous spaces be less than 1E 7 according to ASTM D257-01.
- the surface resistivities of the electrically conductive fiber glass reinforced polymeric composite pipe of the present example exceed the surface resistivity requirements of Lloyds of London regarding fiber glass pipes handling petroleum products on board a ship by at least two (2) orders of magnitude. Lloyds of London, for example, requires the surface resistivity of a fiber glass pipe handling petroleum products on board a ship to be less than 1E 9 according to ASTM D257-01.
- the volume resistivities of the electrically conductive glass fiber reinforced polymeric composite pipe were additionally measured and compared with the volume resistivities of the control glass fiber reinforced pipe.
- the volume resistivities of the electrically conductive glass fiber reinforced polymeric composite pipe and the control pipe were measured in accordance with ASTM D257-01.
- Sample pipe preparation for measurement of volume resistivity according to ASTM D257-01 was administered as follows. A 1 meter length of pipe was cut. Each fresh cut end of the pipe was polished and cleaned with alcohol. Aluminum contact surfaces were cleaned with alcohol and adhered to each end of the pipe. The adhesive used to adhere the aluminum contacts was a silver epoxy resin with hardener in a 3:1 ratio. The epoxy resin was then cured at 24° C. for 4.5 hours or at 38° C. for 3 hours. The reported volume resistance values were at 500V. The volume resistivity was subsequently calculated according to the formula
- the glass fiber reinforced polymeric composite pipe of the present invention incorporating continuous fiber glass strands having an electrically conductive structure displayed significantly lower surface and volume resistivities, and concomitantly higher conductivities, in comparison with the control polymeric composite pipe not comprising fiber glass strands having an electrically conductive structure.
- the glass fiber reinforced polymeric composite pipe of the present invention exhibited significantly higher conductivities with only about 0.0034 weight percent of SWCNT present in the composite.
- a glass fiber reinforced polymeric composite pipe of the present invention incorporating continuous fiber glass strands having an electrically conductive structure meets the requirements for conductive piping systems in marine applications. Moreover, a glass fiber reinforced polymeric composite pipe of the present invention demonstrates one or more mechanical properties at least equal to mechanical properties of existing pipe structures. As a result, glass reinforced polymeric composite pipes of the present invention have the potential to replace existing electrically conductive pipes which incorporate expensive conductive materials such as continuous carbon fiber strands.
- An aqueous dispersion of carbon nanotubes was prepared according to the following procedure.
- a polymeric carrier comprising an aqueous dispersion of PVP was obtained from International Specialty Products under the PVP K15 trade designation.
- MWCNTs were obtained from Bayer Material Science under the BAYTUBES® C 150 HP trade designation.
- a blend of the PVP K15 solution and MWCNT made at 11.7 wt. % MWCNT to resin solids was prepared in a glove bag. 25% of the initial charge of PVP resin was held out to rinse the glove bag upon transfer of the PVP/MWCNT blend to a recycle tank. An additional 25% of the initial charge of PVP resin was added to the recycle tank. The PVP/MWCNT blend was removed from the glove bag and placed into the recycle tank.
- the PVP/MWCNT blend was mixed in the recycle tank for a period of 10 minutes using a Ross ME400 DLA in line mixer-emulsifier with the rotor-stator set at 7000 rpm.
- the paste outlet of the rotor-stator was set to less than 77° F.
- a visual evaluation of the PVP/MWCNT aqueous dispersion was conducted by examining the softness of the MWCNT granules on a substrate.
- the PVP/MWCNT aqueous dispersion was moved to a new tank for milling.
- a Premier HM-1.5 horizontal media mill with 75% loading of 1.2-1.7 mm Zirconox grinding media was used to mill the PVP/MWCNT blend.
- the mill ran at 2400 feet per minute tip speed and 22.5 gallon/hr flow rate.
- a Hegman grind bar was used to check reduction in particle size of the PVP/MWCNT aqueous dispersion. Milling was continued until a Hegman reading of 8 was achieved.
- a viscosity modifier of PVP K30 Solution A was added to the PVP/MWCNT aqueous dispersion to maintain a desirable rheology during milling.
- Viscosity characteristics of the aqueous dispersion of Table 12 are provided in Table 13.
- Viscosity characteristics of the aqueous dispersion of Table 14 are provided in Table 15.
- a coating composition of Table 16 was prepared by diluting an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition in Table 16 had 30 weight percent solids.
- the coating composition was applied to two HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa.
- the continuous fiber glass strands were drawn through the coating composition in a reservoir at a rate of 0.5 ft/min and through a die opening.
- the ratio of the die opening to the diameter of the fiber glass strand was within 1.4-2.
- Glass fiber strand 1 was dried by passing through a first furnace having a temperature of 180° C. and a second furnace having a temperature of 200° C.
- Glass fiber strand 2 was dried by passing through a first furnace having a temperature of 240° C. and a second furnace having a temperature of 260° C. Electrical properties of the coated fiber glass strands are provided in Table 17.
- a coating composition of Table 18 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition in Table 18 had 15.5 weight percent solids.
- the coating composition of Table 18 was applied to a HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strand are provided in Table 19. For examples provided herein, recitation of more than one drying temperature indicates the glass fiber strand was passed through a plurality of ovens of the temperatures recited.
- a coating composition of Table 20 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition of Table 20 had 15.5 weight percent solids.
- the coating composition of Table 20 was applied to three HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the three coated fiber glass strands are provided in Table 21.
- a coating composition of Table 22 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition of Table 22 had 11.5 weight percent solids.
- the coating composition of Table 22 was applied to a HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the three coated fiber glass strands are provided in Table 23.
- a coating composition of Table 24 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition of Table 24 had 11.5 weight percent solids.
- the coating composition of Table 24 was applied to three HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the three coated fiber glass strands are provided in Table 25.
- a coating composition of Table 26 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition of Table 26 had 9.5 weight percent solids.
- the coating composition of Table 26 was applied to a HYBON® 2026 continuous fiber glass strand (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strand are provided in Table 27.
- a coating composition of Table 28 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition of Table 28 had 11.5 weight percent solids.
- the coating composition of Table 28 was applied to two HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strands are provided in Table 29.
- a coating composition of Table 30 was prepared by combining the listed ingredients with an aqueous RD1135-B/MWCNT dispersion prepared in accordance with the procedures of Example 3.
- the coating composition of Table 30 had 15.6 weight percent solids.
- the coating composition of Table 30 was applied to two HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strands are provided in Table 31.
- Desirable characteristics which can be exhibited by embodiments of the present invention, can include, but are not limited to, the provision of electrically conductive glass fiber reinforced polymeric composite materials combining desirable mechanical properties with the ability to dissipate and/or resist the accumulation of static electrical charges resulting from use in a variety of applications and environments.
- electrically conductive fiber glass strands of the present invention can provide cost efficient alternatives to more expensive electrically conductive species previously used in the production of conductive glass fiber reinforced polymeric composite materials without sacrifice in mechanical or electrical performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Paints Or Removers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
The present invention, in one aspect, provides a fiber glass strand comprising an electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising an aqueous dispersion, the aqueous dispersion comprising carbon nanotubes and a polymeric carrier.
Description
- The present application claims priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/179,138, filed May 18, 2009 which is hereby incorporated by reference in its entirety.
- The present invention relates generally to aqueous dispersions, methods of making aqueous dispersions, coating compositions for glass fibers, coated glass fibers, fiber glass strands, methods of making fiber glass strands, articles reinforced with coated glass fibers, and polymeric composites.
- Glass fiber reinforced polymeric composite materials find application in a wide variety of fields due to the excellent mechanical and cost efficient properties offered by such composites. One field, however, where the application of glass fiber reinforced polymeric composites is challenging is that of electrically conductive materials. Many glass fiber reinforced thermoplastic and thermoset composites are not electrically conductive thereby limiting their use in applications requiring materials having electrical conductivity.
- Polymeric composites can be fabricated to demonstrate some electrical conductivity by the use of conjugated polymer systems or by incorporating significant amounts of electrically conductive particles into the polymeric resin. Both of these solutions, however, have associated disadvantages. For example, conjugated polymeric systems can be susceptible to oxidation and other mechanisms of deterioration which substantially limit the conductive lifetimes of such systems. Moreover, incorporating large quantities of conductive particles into a polymeric resin can significantly compromise the mechanical properties of the resin leading to processing problems and premature failure of parts constructed therefrom. Additionally, conjugated polymeric materials and polymeric composites comprising high amounts of conductive particles can be expensive.
- In one aspect, the present invention provides aqueous dispersions of electrically conductive particles. In some embodiments, an aqueous dispersion comprises carbon nanotubes and a polymeric carrier. An aqueous dispersion, in some embodiments, comprises carbon nanotubes in an amount of at least about 1 weight percent on a total solids basis. In some embodiments, an aqueous dispersion comprises carbon nanotubes in an amount of at least about 5 weight percent or at least about 10 weight percent on a total solids basis. In some embodiments, an aqueous dispersion comprises carbon nanotubes in an amount ranging from about 5 weight percent to about 15 weight percent on a total solids basis.
- In another aspect, the present invention provides aqueous coating compositions for glass fibers. In some embodiments, an aqueous coating composition comprises carbon nanotubes in a polymeric carrier. In some embodiments, carbon nanotubes are present in an aqueous coating composition in an amount up to about 10 weight percent on a total solids basis. Moreover, in some embodiments, a coating composition comprises at least one additional component. In some embodiments, the at least one additional component comprises one or more film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents of combinations thereof.
- In another aspect, the present invention provides fiber glass strands comprising an electrically conductive structure. Some embodiments of fiber glass strands of the present invention can be used in encapsulation, impregnation and reinforcement applications of a variety of polymeric resins, including thermoplastic and/or thermoset resins, in the production of electrically conductive polymeric composite materials.
- In some embodiments, a fiber glass strand comprises an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier, the fiber glass strand having an electrical resistivity ranging from about 0.1 kΩ·cm−1 to about 20 MΩ·cm−1. Resistivity of a fiber glass strand, according to embodiments of the present invention, is determined by measuring the electrical resistance along a 2.5 cm length of the strand. In some embodiments of a fiber glass strand comprising an electrically conductive structure, the coating composition comprises at least one component in addition to the carbon nanotubes and polymeric carrier.
- Moreover, in some embodiments, a fiber glass strand can have a volume resistivity ranging from about 2 Ω·cm to about 0.1 MΩ·cm. Fiber glass strand volume resistivity, according to embodiments of the present invention can be calculated from fiber glass strand electrical resistance according to formula (I)
-
(R·S)/L (I) - wherein R is the resistance of the fiber glass strand, S is the cross-sectional area of the fiber glass strand and L is the length of the fiber glass strand.
- In some embodiments, the electrically conductive structure of a fiber glass strand comprises a plurality of glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier. In some embodiments, the coating composition further comprises at least one component in addition to the carbon nanotubes and the polymeric carrier.
- Carbon nanotubes, in some embodiments of compositions and methods described herein, can comprise single-walled carbon nanotubes (also referred to herein as “SWCNT”), multi-walled carbon nanotubes (also referred to herein as “MWCNT”) or mixtures thereof. In some embodiments, as described herein, the plurality of carbon nanotubes are dispersed in the polymeric carrier. The polymeric carrier, in some embodiments, can demonstrate film forming properties and can serve as a film former. Moreover, in some embodiments, polymeric carriers comprise aqueous polymeric dispersions.
- In some embodiments, a coating composition is applied to glass fibers of a fiber glass strand by drawing the fiber glass strand through a bath or reservoir of the coating composition. In another embodiment, a coating composition comprising carbon nanotubes in a polymeric carrier can be applied to glass fibers as a primary sizing composition. In some embodiments, a coating composition comprising carbon nanotubes in a polymeric carrier can be applied to glass fibers as a secondary sizing composition. As used herein, the term “primary sizing composition” refers to a sizing composition applied to fibers immediately after formation of the fibers. As used herein, the term “secondary sizing” refers to a composition applied to fibers after application of the primary sizing.
- In some embodiments, fiber glass strands comprising an electrically conductive structure are continuous strands. In some embodiments, a plurality of continuous fiber glass strands comprising an electrically conductive structure are assembled into continuous rovings.
- In another aspect, the present invention provides electrically conductive glass fiber reinforced polymeric composites. In various embodiments, the electrically conductive glass fiber reinforced polymeric composites can be thermoplastic composites or thermoset composites. Embodiments of polymeric composites comprise a polymeric resin and at least one fiber glass strand of the present invention comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising a plurality of carbon nanotubes and a polymeric carrier. In some embodiments of a polymeric composite, one or more glass fibers are coated with a coating composition comprising a plurality of carbon nanotubes and a polymeric carrier and at least one additional component. As described herein, in some embodiments, the at least one addition component comprises one or more film formers, coupling agents, lubricants, biocides or anti-foaming agents of combinations thereof.
- In some embodiments, continuous fiber glass strands comprising an electrically conductive structure can be used in winding applications wherein a polymeric composite is produced by continuous filament winding techniques.
- In some embodiments, a polymeric composite comprising one or more electrically conductive continuous fiber glass strands has an electrical resistivity less than the resistivity of an individual electrically conductive continuous fiber glass strand used in the fabrication of the composite. In one embodiment, for example, a polymeric composite comprising one or more continuous fiber glass strands of the present invention displays a volume resistivity less than about 0.1 MΩ·cm. In another embodiment, a polymeric composite comprising one or more continuous fiber glass strands described herein displays a volume resistivity less than about 0.03 MΩ·cm. In some embodiments, a polymeric composite comprising one or more continuous fiber glass strands described herein displays a volume resistivity less than about 0.002 MΩ·cm. In some embodiments, a polymeric composite comprising one or more continuous fiber glass strands described herein has a volume resistivity ranging from about 0.002 MΩ·cm to about 100 MΩ·cm. As used herein, the “volume resistivity” of a polymeric composite of the present invention means the volume resistivity as measured according to ASTM D257-07.
- In another aspect, the present invention provides methods of making an aqueous dispersion of carbon nanotubes. In some embodiments, a method of making an aqueous dispersion of carbon nanotubes comprises providing a polymeric carrier and mixing the carbon nanotubes with the polymeric carrier, the polymeric carrier comprising an aqueous dispersion of one or more polymeric species. In some embodiments, a method of making an aqueous dispersion of carbon nanotubes further comprises reducing the particle size of the carbon nanotubes and/or adding a viscosity modifier to the aqueous dispersion.
- In another aspect, the present invention provides methods of making coating compositions for glass fibers. In some embodiments, a method of making a coating composition for glass fibers comprises providing an aqueous dispersion comprising carbon nanotubes and a polymeric carrier. Carbon nanotubes and polymeric carriers used in the present methods, in some embodiments, can comprise any of the same described herein. In some embodiments, a method of making a coating composition for glass fibers further comprises providing at least one additional component and adding the at least one additional component to the aqueous dispersion comprising carbon nanotubes and a polymeric carrier.
- In another aspect, the present invention provides methods of making a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier. In one embodiment, a method of making a fiber glass strand of the present invention comprises providing a coating composition comprising carbon nanotubes in a polymeric carrier, drawing a fiber glass strand through the coating composition, removing excess coating composition from the fiber glass strand and drying the fiber glass strand. In some embodiment, the coating composition comprises at least one additional component as described herein.
- In another aspect, the present invention provides methods of making an electrically conductive glass fiber reinforced polymeric composite. In one embodiment, a method of making an electrically conductive glass fiber reinforced polymeric composite comprises providing one or more continuous fiber glass strands of the present invention comprising an electrically conductive structure and disposing the one or more continuous fiber glass strands in a polymeric resin. Moreover, in some embodiments, glass fiber strands comprising an electrically conductive structure are combined with non-electrically conductive fiber glass strands in the production of a reinforced polymeric composite.
- These and other embodiments are described in greater detail in the Detailed Description which follows.
- For the purposes of this specification, unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification are approximations that can vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
- Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, e.g. 1 to 6.1, and ending with a maximum value of 10 or less, e.g., 5.5 to 10. Additionally, any reference referred to as being “incorporated herein” is to be understood as being incorporated in its entirety.
- It is further noted that, as used in this specification, the singular forms “a,” “an,” and “the” include plural referents unless expressly and unequivocally limited to one referent.
- The present invention will be discussed generally in the context of its use in the production, assembly, and application of glass fibers. However, one of ordinary skill in the art would understand that the present invention may be useful in the processing of other textile materials and, in particular, textile materials that are not generally considered to be electrically conductive.
- In one aspect, the present invention provides aqueous dispersions of electrically conductive particles. In some embodiments, an aqueous dispersion comprises carbon nanotubes and a polymeric carrier.
- In some embodiments, carbon nanotubes suitable for use in aqueous dispersions described herein comprise SWCNT, MWCNT or mixtures thereof. In some embodiments, a majority of carbon nanotubes in the aqueous dispersion have an aspect ratio of at least 25. The aspect ratio of a carbon nanotube is the length of the carbon nanotube divided by the diameter of the carbon nanotube. In some embodiments, a majority of carbon nanotubes have an aspect ratio of at least 100 or at least 500. In another embodiment, a majority of carbon nanotubes of sizing compositions of the present invention have an aspect ratio greater than 1000.
- Carbon nanotubes, in some embodiments, are present in the aqueous dispersion in an amount of at least about 1 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount of at least about 5 weight percent or at least about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in amount of at least about 12 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in the aqueous dispersion in an amount of at least about 15 weight percent or at least about 20 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount less 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount less than about 3 weight percent or less than about 2 weight percent on a total solids basis.
- In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 30 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in am amount ranging from about 0.5 weight percent to about 15 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 1 weight percent to about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 2 weight percent to about 7 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in the aqueous dispersion in an amount ranging from about 5 weight percent to about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 3.5 weight percent or from about 1 weight percent to about 3 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 2 weight percent on a total solids basis.
- In some embodiments, an aqueous dispersion comprises SWCNT commercially available from Carbon Nanotechnologies Incorporated of Houston, Tex. under the HIPCO® trade designation. In some embodiments, an aqueous dispersion comprises MWCNT commercially available from Bayer Material Science under the BAYTUBES® C150 HP trade designation.
- In addition to a plurality of carbon nanotubes, an aqueous dispersion described herein comprises a polymeric carrier. In some embodiments, the carbon nanotubes are dispersed in the polymeric carrier.
- A wide variety of polymeric carriers can be used, and persons of ordinary skill in the art can identify a number of suitable polymeric carriers based on the present disclosure and the desired use of the aqueous carbon nanotube dispersion. Suitable polymeric carriers, in some embodiments, for example, can be compatible with one or more polymeric resins and/or demonstrate advantageous properties for the dispersion of carbon nanotubes. In some embodiments, polymeric carriers comprise aqueous dispersions of one or more polymeric species.
- A number of polymeric carriers can be used in various embodiments of coating compositions of the present invention. Non-limiting examples of polymeric carriers comprise polyurethanes, epoxides, polyvinylpyrrolidone (PVP) or mixtures or aqueous dispersions thereof. In some embodiments, a polymeric carrier can comprise one or more polyacrylates, polyesters or poly(vinyl acetates). In some embodiments, polymeric carriers comprise conductive polymers including polypyrrole, polyaniline, polyphenylene, polythiophene or mixtures or aqueous dispersions thereof.
- In some embodiments, a PVP carrier is provided as an aqueous dispersion such as, for example, PVP K15, PVP K30 or mixtures thereof. Aqueous dispersions of PVP K15 and PVP K30 are commercially available from International Specialty Products of Wayne, N.J.
- As provided herein, in some embodiments utilizing polyurethane as a polymeric carrier, a polyurethane carrier can be provided as aqueous dispersions such as, for example, the WITCOBOND® series provided by Chemtura Corporation of Middlebury, Conn., including, but not limited to, WITCOBOND® W-290H and WITCOBOND® W-296. Additional examples of commercially available polyurethane aqueous dispersions comprise Aquathane 516 from Reichhold Chemical Company and Hydrosize U2-01 from Hydrosize Technologies, Inc.
- In some embodiments, polyurethane carriers comprise aqueous solutions of polyurethane polymers formed by a reaction between an organic isocyanate or polyisocyanate and an organic polyhydroxylated compound or hydroxyl terminated polyether or polyester polymer. The polyurethane dispersion may contain a crosslinking group, in some embodiments.
- Another example of a suitable polyurethane carrier is an aqueous emulsion of a polyether-polyurethane NAJ-1037 from Bayer Chemical. Further, the polyurethane may be part of a dispersion comprising a polyurethane and a blocked isocyanate. For example, the following polyurethane/blocked isocyanate emulsions may be suitable for use in the coating compositions of the present invention: WITCOBOND 60X (Chemtura), Baybond 403 (Bayer), Baybond PU-130 (Bayer), Baybond XP-7055 (Bayer), Nopco D641 (Henkel), Neoxil 6158 (DSM), and Vestanat EP-DS-1205 (Degussa).
- In some embodiments, a polymeric carrier can comprise epoxide compositions. Suitable epoxide compositions for use as carbon nanotube carriers, according to some embodiments, comprise EPON epoxides and EPI-REZ epoxides commercially available Hexion Specialty Chemicals of Columbus, Ohio.
- In some embodiments, a polymeric carrier is an aqueous dispersion of a reaction product of an alkoxylated amine and a polycarboxylic acid, which is further reacted with an epoxy compound. In some embodiments, such as reaction product is available from Hexion Specialty Chemicals of Columbus, Ohio under the RD1135-B trade designation. In some embodiments, a reaction product of an alkoxylated amine and a polycarboxylic acid, which is further reacted with an epoxy compound comprises the same product described in U.S. patent application Ser. No. 12/002,320, which is incorporated herein by reference in its entirety.
- In some embodiments, an aqueous dispersion comprises at least one polymeric carrier in an amount up to 99.9 weight percent on a total solids basis. In some embodiments, a coating composition comprises at least one polymeric carrier in an amount up to about 99.5 weight percent on a total solids basis. In another embodiment, a coating composition comprises at least one polymeric carrier in an amount of at least about 90 weight percent on a total solids basis. In some embodiments, a coating composition comprises at least one polymeric carrier in an amount of at least about 95 or at least about 97 weight percent on a total solids basis.
- In some embodiments, carbon nanotubes of an aqueous dispersion described herein are in agglomerate form to provide carbon nanotube particles. A carbon nanotube particle, for example, is composed of a plurality of carbon nanotubes. An aqueous dispersion, in some embodiments, has an average carbon nanotube particle size less than about 2 μm. In some embodiments, an aqueous dispersion has an average carbon nanotube particle size less than about 1 μm. In some embodiments, an aqueous dispersion has an average carbon nanotube particle size less than about 750 nm or less than about 500 nm. In some embodiments, an aqueous dispersion has an average carbon nanotube particle size ranging from about 250 nm to about 1 μm. Moreover, in some embodiments, aqueous dispersion comprising particles of carbon nanotubes has a rating on the Hegman scale or National Standard scale of 8.
- An aqueous dispersion comprising carbon nanotubes and a polymeric carrier, in some embodiments, has a viscosity falling within a range set forth in Table 1.
-
TABLE 1 Aqueous Dispersion Viscosities RPM Viscosity Range (cP) Viscosity Range (cP) 0.5 2500-7000 >2500 1 2200-6600 >2200 2.5 1800-30,000 >1800 5 1100-4500 >1100 10 750-7500 15-500 20 500-2500 10-300 50 300-1500 10-150 - Viscosities of aqueous dispersions comprising carbon nanotubes and a polymeric carrier, in some embodiments, are determined using a Brookfield DV-II+CP viscometer at 25° C.
- In another aspect, the present invention provides methods of making an aqueous dispersion of carbon nanotubes. In some embodiments, a method of making an aqueous dispersion of carbon nanotubes comprises providing a polymeric carrier and mixing the carbon nanotubes with the polymeric carrier, the polymeric carrier comprising an aqueous dispersion of one more polymeric species. Carbon nanotubes and polymeric carriers used in the present methods, in some embodiments, can comprise any of the same described herein.
- In some embodiments, carbon nanotubes are mixed with a polymeric carrier in an amount of up to about 30 weight percent on a total solids basis of the resulting mixture. Carbon nanotubes, in some embodiments, are mixed with a polymeric carrier in an amount of up to about 20 weight percent or up to about 15 weight percent on a total solids basis of the resulting mixture. In some embodiments, carbon nanotubes are mixed with a polymeric carrier in an amount of up to about 10 weight percent on a total solids basis of the resulting mixture. Carbon nanotubes, in some embodiments, are mixed with a polymeric carrier in an amount ranging from about 1 weight percent to about 30 weight percent on a total solids basis of the resulting mixture. In some embodiments, carbon nanotubes are mixed with a polymeric carrier in an amount ranging from about 1 weight percent to about 15 weight percent on a total solids basis of the resulting mixture. In some embodiments, carbon nanotubes are mixed with a polymeric carrier in an amount ranging from about 5 weight percent to about 13 weight percent on a total solids basis of the resulting mixture.
- In some embodiments, carbon nanotubes are provided in agglomerate form. An agglomerate of carbon nanotubes, in some embodiments, has a size of less than 1 mm. In some embodiments, an agglomerate of carbon nanotubes has a size less than 750 μm or less than 500 μm. In some embodiments, an agglomerate of carbon nanotubes has a size ranging from about 100 μm to about 1 mm.
- Mixing carbon nanotubes with a polymeric carrier can be administered for any period of time achieving the desired consistency and/or viscosity. In some embodiments, mixing times are dependent on one or more factors including nanotube loading, identity of the polymeric carrier and batch size of the aqueous dispersion.
- In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for at least 10 minutes. In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for at least 30 minutes. Mixing of the carbon nanotubes and the polymeric carrier, in some embodiments, is administered for at least 60 minutes or at least 90 minutes. In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for at least 120 minutes or at least 150 minutes. In some embodiments, mixing of the carbon nanotubes and the polymeric carrier is administered for a time period ranging from about 1 minute to about 150 minutes.
- Moreover, in some embodiments, carbon nanotubes are mixed with a polymeric carrier in one or more mixing apparatus. In some embodiments, suitable mixing apparatus comprise rotor-stator assemblies such as a Ross ME 400 DLA In-line Mixer/Emulsifier. Mixing speeds of rotor-stator assemblies, in some embodiments, can be determined according to a variety of considerations including nanotube loading, identity of the polymeric carrier and batch size of the aqueous dispersion.
- In some embodiments, a method of making an aqueous dispersion comprising carbon nanotubes and a polymeric carrier further comprises reducing the particle size of the carbon nanotubes. Reducing carbon nanotube particle size, in some embodiments, comprises milling the aqueous dispersion. In some embodiments, the aqueous dispersion comprising carbon nanotubes and a polymeric carrier is milled for any amount of time achieving the desired particle size of carbon nanotubes. In some embodiments, a Hegman grind bar is used to monitor the progression of the particle size of carbon nanotubes during milling. In some embodiments, an aqueous dispersion comprising carbon nanotubes and a polymeric carrier is milled until a reading of 8 on the Hegman or National Standard scale is reached.
- In some embodiments, a suitable milling apparatus for aqueous dispersions described herein is a Premier HM Series horizontal media mill commercially available from Premier Mill of Delavan, Wis. In some embodiments, suitable milling apparatus comprise an Eiger 250 ml Mini Motor Mill from Eiger Machinery Inc. of Graylake, Ill. or a DISPERMAT® CN10/VMA Torusmill from VMA-Getzman GmbH. In some embodiments, suitable milling apparatus comprises a rotor/stator assembly with a slotted screen. In some embodiments, such an assembly is available from Charles Ross and Son Company of Hauppauge, N.Y. under trade designation Ross HSM-100L Mixer/Emulsifier. Additionally, in some embodiments, a suitable milling apparatus comprises a high speed mixer/disperser such as an Air-powered laboratory stirrer Model 102A from Fawcett Co., Inc. of Richfield, Ohio.
- In some embodiments, a method of making an aqueous dispersion comprising carbon nanotubes and a polymeric carrier further comprises adding a viscosity modifier to the aqueous dispersion. A viscosity modifier, in some embodiments, can reduce the viscosity of the aqueous dispersion comprising the carbon nanotubes and the polymeric carrier. In some embodiments, suitable viscosity modifiers do not disturb or do not substantially disturb the stability of the aqueous dispersion. In some embodiments, a viscosity modifier comprises an aqueous dispersion of one or more polymeric species. In some embodiments, additional polymeric carrier can be added to the aqueous dispersion of carbon nanotubes as a viscosity modifier.
- A viscosity modifier can be added to an aqueous dispersion described herein in any amount to achieve any desired viscosity of the aqueous dispersion.
- In another aspect, the present invention provides coating compositions for glass fibers. In some embodiments, a coating composition comprises an aqueous dispersion comprising carbon nanotubes in a polymeric carrier. In some embodiments, a coating composition for glass fibers comprises an aqueous dispersion described in Section I hereinabove.
- Carbon nanotubes, in some embodiments, are present in an aqueous dispersion of a coating composition in an amount of at least about 1 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount of at least about 5 weight percent or at least about 7 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in the aqueous dispersion of a coating composition in an amount less 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount less than about 3 weight percent or less than about 2 weight percent on a total solids basis.
- In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.1 weight percent to about 10 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.5 weight percent to about 7 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 1 weight percent to about 5 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 1 weight percent to about 3.5 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 2 weight percent to about 4 weight percent on a total solids basis. In some embodiments, carbon nanotubes are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.1 weight percent to about 3.5 weight percent or from about 1 weight percent to about 3 weight percent on a total solids basis. Carbon nanotubes, in some embodiments, are present in an aqueous dispersion of a coating composition in an amount ranging from about 0.1 weight percent to about 2 weight percent on a total solids basis.
- In some embodiments, in addition to an aqueous dispersion comprising carbon nanotubes and a polymeric carrier, a coating composition further comprises at least one additional component. In some embodiments, the at least one additional component comprises one or more film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents or combinations thereof.
- In some embodiments, the at least one additional component of a coating composition for glass fibers described herein comprises one or more film formers. Any film former known to one of skill in the art not inconsistent with the objectives of the present invention can be used. Suitable film formers, in some embodiments, for example, can be compatible with one or more polymeric resins.
- The selection of a film former may depend on the polymeric resin to be reinforced to enhance compatibility between the resin and glass fibers coated with a coating comprising described herein. Additionally, selection of a film former may depend on the type of fiber to be sized. In some embodiments, a film former does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- A number of film formers can used in various embodiments of the present invention. Non-limiting examples of film formers for use in various embodiments of the present invention comprise chemically modified polyolefins, polyurethanes, epoxides, or mixtures or aqueous dispersions thereof. In some embodiments, a film former can comprise one or more polyacrylates, polyesters, poly(vinyl acetates), polyvinyl alcohols or polyvinylpyrrolidones.
- A film former comprising a chemically modified polyolefin, in some embodiments, is provided as an aqueous emulsion. The term “chemically-modified polyolefin” refers to acid or acid anhydride modified polyolefins either amorphous or crystalline, such as those produced by the method detailed in U.S. Pat. No. 3,416,990, U.S. Pat. No. 3,437,550 and U.S. Pat. No. 3,483,276, each of which is incorporated herein by reference. A discussion of these polyolefins, their modification and emulsification can be found in U.S. Pat. No. 5,130,197, which is incorporated herein by reference.
- An example of a crystalline carboxylated polypropylene polymer useful as a film former, in some embodiments of the present invention, is the HERCOPRIME® type resin commercially available from Hercules, Inc. of Bloomington, Del. An example of an amorphous carboxylated polypropylene polymer is EPOLENE® E-43 resin commercially available from the Westlake Chemical Corporation of Longview, Tex. Another suitable film former material is an aqueous emulsion of the EPOLENE E-43 resin, commercially available from Byk-Cera under the trade designation Novacer 1841 emulsion. CHEMCOR 43C30 amorphous carboxylated polypropylene aqueous emulsion commercially available from Chemical Corporation of America is another example of a film former suitable for use in some embodiments. Another commercially available version of an aqueous polyolefin emulsion useful as a film former in some embodiments is the carboxylated amorphous polypropylene from National Starch, Procter Division, sold under the trade designation Protolube RL-5440 polypropylene emulsion. A further suitable film former is an aqueous emulsion of a high molecular weight maleic anhydride grafted polypropylene emulsion commercially available from DSM, B.V. of the Netherlands under the Neoxil 605 trade designation.
- Suitable film formers for some embodiments comprise polyurethanes. Polyurethane film forming materials, in some embodiments, are useful for polyamide resin reinforcement applications. In some embodiments, polyurethane film forming compositions are provided as aqueous dispersions such as, for example, the WITCOBOND® series provided by Crompton Corporation-Uniroyal Chemical, including, but not limited to, WITCOBOND® W-290H and WITCOBOND® W-296. Additional examples of commercially available polyurethane aqueous dispersions comprise Aquathane 516 from Reichhold Chemical Company and Hydrosize U2-01 from Hydrosize Technologies, Inc.
- In some embodiments, polyurethane film formers comprise aqueous solutions of polyurethane polymers formed by a reaction between an organic isocyanate or polyisocyanate and an organic polyhydroxylated compound or hydroxyl terminated polyether or polyester polymer. The polyurethane dispersion may contain a crosslinking group, in some embodiments.
- Another example of a suitable polyurethane is an aqueous emulsion of a polyether-polyurethane NAJ-1037 from Bayer Chemical. Further, the polyurethane may be part of a dispersion comprising a polyurethane and a blocked isocyanate. For example, the following polyurethane/blocked isocyanate emulsions may be suitable for use in the sizing compositions of the present invention: WITCOBOND 60X (Crompton), Baybond 403 (Bayer), Baybond PU-130 (Bayer), Baybond XP-7055 (Bayer), Nopco D641 (Henkel), Neoxil 6158 (DSM), and Vestanat EP-DS-1205 (Degussa).
- A film former, in some embodiments, comprises a polyester. A polyester film former, in some embodiments, can be provided as an aqueous dispersion or emulsion. An aqueous polyester dispersion is commercially available from DSM, B.V. of the Netherlands under the trade designation Neoxil 9166. In some embodiments, polyesters comprise aromatic structures such as phenolic moieties. Neoxil 954D, an aqueous emulsion of a bisphenol-A polyester, for example, is commercially available from DSM, B.V. In some embodiments, a polyester film former comprises a polyester-polyurethane film former. A polyester-polyurethane film former is commercially available from DSM B.V. under the Neoxil 9851 trade designation.
- In some embodiments, a film former can comprise epoxide compositions. Suitable epoxide compositions for use as film formers, according some embodiments, comprise EPON epoxides and EPI-REZ epoxides commercially available Hexion Specialty Chemicals of Columbus, Ohio. In some embodiments, epoxide compositions comprise aromatic structures including phenolic moieties, such as bisphenol and/or bisphenol novolac epoxides. In one embodiment, for example, an phenolic epoxide composition is commercially available from DSM B.V. under the Neoxil 8294 trade designation or commercially available from Hexion Specialty chemicals under the EPI-REZ RSW-4254 trade designation.
- A film former, in some embodiments, comprises a polyvinylpyrrolidone. In some embodiments, a polyvinylpyrrolidone film former is provided as an aqueous dispersion such as, for example, PVP K15, PVP K30 or mixtures thereof. Aqueous dispersions of PVP K15 and PVP K30 are commercially available from International Specialty Products of Wayne, N.J.
- A film former, in some embodiments, comprises a chemically modified wood rosin. In some embodiments, a chemically modified wood rosin is commercially available from Eka Chemicals AB, Sweden, under the Dynakoll SI 100T trade designation. In some embodiments, a film former comprises a chemically modified wood rosin as disclosed in United States Patent Application Publication 20070079730, which is hereby incorporated by reference in its entirety.
- In some embodiments, a film former comprises polyvinylacetate aqueous dispersions or emulsions. A polyvinylacetate film former is commercially available from Celanese Emulsions under the trade designation RESYN® 1037.
- In some embodiments, a film former comprises one or more polyols. Examples of polyols useful in some embodiments of the present invention can include various polyvinyl alcohols (PVA), polyethylenevinyl alcohols (EVOH), polyethylene glycols (PEG), and/or mixtures thereof. Polyols used in some embodiments of the present invention can be hydrolyzed to different extents depending on the desired application. In some embodiments, for example, a polymeric film-former can comprise polyvinyl alcohol that is greater than 80% hydrolyzed. In other embodiments, for example, the polyvinyl alcohol can be greater than 85% hydrolyzed. In another embodiment, a polymeric film-former can comprise polyvinyl alcohol greater than 95% hydrolyzed.
- Non-limiting examples of commercially available polymeric film-formers for use in some embodiments of coating compositions described herein comprise CELVOL® 205 available from Celanese Corporation and ELVANOL® 85-82 available from DUPONT®. In some embodiments, a single polyol (e.g., CELVOL® 205 or ELVANOL® 85-82) can be used, while in other embodiments, multiple polyols (e.g., CELVOL® 205 and ELVANOL® 85-82) can be used.
- A film former, in some embodiments, comprises aqueous olefinic emulsions or dispersions. In some embodiments, an aqueous olefinic emulsion comprises a polyethylene emulsion. In some embodiments, an aqueous olefinic emulsion comprises a polypropylene emulsion. An aqueous polypropylene emulsion is commercially available from BYK USA, Inc. under the trade designation AQUACER® 1500.
- In some embodiments, a film former comprises an acrylate latex. In some embodiments, an acrylate latex is commercially available from H. B. Fuller under the trade designation FULATEX® PD2163.
- In some embodiments, a film former is present in a coating composition for glass fibers described herein in an amount of up to about 99 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount of up to about 90 weight percent on a total solids basis. A film former, in some embodiments, is present in a coating composition in an amount of up to about 80 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount of at least about 50 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount of at least about 60 weight percent on a total solids basis.
- In some embodiments, a film former is present in a coating composition in an amount ranging from about 50 weight percent to about 99 weight percent on a total solids basis. A film former, in some embodiments, is present in a coating composition in an amount ranging from about 70 weight percent to about 90 weight percent on a total solids basis. In some embodiments, a film former is present in a coating composition in an amount ranging from about 60 weight percent to about 80 weight percent on a total solids basis.
- In some embodiments, the at least one additional component of a coating composition described herein comprises one or more coupling agents. The selection of a coupling agent may depend on the polymeric resin to be reinforced to enhance compatibility between the resin and glass fibers coated with a coating composition described herein. Additionally, selection of a coupling agent may depend on the type of fiber to be sized. In some embodiments, a coupling does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- In some embodiments, a coupling agent comprises one or more organosilanes. In some embodiments, organosilanes comprise aminosilanes. An aminosilane can comprise any aminosilane for use in sizing compositions known to one of skill in the art. In some embodiments, for example, an aminosilane can comprise aminopropyltrialkoxysilanes such as γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane, β-aminoethyltriethoxysilane, N-β-aminoethylamino-propyltrimethoxysilane, 3-aminopropyldimethoxysilane, or mixtures thereof.
- Non-limiting examples of commercially available aminosilanes include A-1100 γ-aminopropyltriethoxysilane, A-1120 N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, and other aminofunctional silanes in the A-1100 series from OSi Specialties, as well as DYNASYLAN® AMEO 3-aminopropyltriethoxysilane from Degussa AG of Dusseldorf, Germany.
- In some embodiments, organosilanes comprise one or more non-aminofunctional coupling agents. Non-limiting examples of non-aminofunctional coupling agents comprise γ-isocyanatopropyltriethoxysilane, vinyl-trimethoxysilane, vinyl-triethoxysilane, allyl-trimethoxysilane, mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropyltrimethoxysilane, 4,5-epoxycyclohexyl-ethyltrimethoxysilane, chloropropyltriemethoxysilane, and chloropropyltriethoxysilane.
- In some embodiments, a coupling agent is present in a coating composition in an amount of up to about 10 weight percent on a total solids basis. A coupling agent, in some embodiments, is present in a coating composition in an amount of up to about 5 weight percent on a total solids basis. In some embodiments, a coupling agent is present in a coating composition in an amount ranging from about 0.01 weight percent to about 10 weight percent on a total solids basis. A coupling agent, in some embodiments, is present in a coating composition in an amount ranging from about 1 weight percent to about 5 weight percent on a total solids basis.
- In some embodiments, the at least one additional component of a coating composition described herein comprises one or more lubricants. Any lubricant not inconsistent with the objectives of the present invention can be used. In some embodiments, a lubricant does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- Lubricants can be used, for example, in sizing compositions of the present invention to assist with internal lubrication (e.g., fiber-to-fiber abrasion) and to assist with external lubrication (e.g., glass-to-contact point abrasion). In some embodiments, the at least one lubricant may comprise at least one cationic lubricant. In other embodiments, the at least one lubricant may comprise at least one non-ionic lubricant. In a further embodiment, the at least one lubricant may comprise at least one cationic lubricant and at least one nonionic lubricant.
- Cationic lubricants may be used in embodiments of the present invention, for example, to assist with internal lubrication, such as by reducing filament-to-filament or glass-to-glass abrasion. In general, most cationic lubricants known to those of skill in the art can be used in embodiments of the present invention. Non-limiting examples of cationic lubricants suitable for use in sizing compositions of the present invention include lubricants with amine groups, lubricants with ethoxylated amine oxides, and lubricants with ethoxylated fatty amides. A non-limiting example of a lubricant with an amine group is a modified polyethylenimine, e.g. EMERY 6717, which is a partially amidated polyethylenimine commercially available from Pulcra Chemicals of Charlotte, N.C. Another example of a cationic lubricant useful in embodiments of the present invention is ALUBRASPIN 226, which is a partially amidated polyethylenimine commercially available from BASF Corp. of Parsippany, N.J.
- In some embodiments, a lubricant comprises one or more partial esters of a branched carboxylic acid copolymer. The partial ester and derivatives thereof are polymers with pendant hydrocarbon and ethoxylated ester chains. A commercially available version of a suitable partial ester of a branched carboxylic acid copolymer is that from Akzo Chemie America of Chicago, Ill. under the trade designation Ketjenlube 522 partial ester. (formerly sold as DAPRAL® GE 202 partial ester.)
- Non-ionic lubricants, in some embodiments, comprise at least one wax. Examples of waxes suitable for use in the present invention include polyethylene wax, paraffin wax, polypropylene wax, microcrystalline waxes, and oxidized derivatives of these waxes. One example of a polyethylene wax suitable for use in the present invention is Protolube HD-A, which is a high density polyethylene wax commercially available from Bayer Corporation of Pittsburgh, Pa. An example of a paraffin wax suitable in embodiments of the present invention is Elon PW, which is a paraffin wax emulsion commercially available from Elon Specialties of Concord, N.C.
- In some embodiments, a lubricant is present in a coating composition in an amount of up to about 3 weight percent on a total solids basis. A lubricant, in some embodiments, is present in a coating composition in an amount of up to about 2.5 weight percent on a total solids basis. In some embodiments, a lubricant is present in a coating composition in an amount ranging from about 0.01 weight percent to about 5 weight percent on a total solids basis. A lubricant, in some embodiments, is present in an amount ranging from about 0.5 weight to about 1.5 weight percent on a total solids basis.
- In some embodiments, the at least one additional component of a coating composition described herein comprises one or more surfactants. Any surfactant not inconsistent with the objectives of the present invention can be used. In some embodiments, a surfactant does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition.
- In some embodiments, a surfactant is present in a coating composition in an amount of up to about 3 weight percent on a total solids basis. A surfactant, in some embodiments, is present in a coating composition in an amount of up to about 2 weight percent on a total solids basis. In some embodiments, a surfactant is present in a coating composition in an amount ranging from about 0.01 weight percent to about 4 weight percent on a total solids basis. A surfactant, in some embodiments, is present in an amount ranging from about 0.5 weight to about 2 weight percent on a total solids basis.
- In some embodiments, the at least one additional component of a coating composition described herein comprises one or more anti-foaming agents. Any anti-foaming agent not inconsistent with the objectives of the present invention can be used. In some embodiments, an anti-foaming agent does not disturb or substantially disturb the stability of the aqueous dispersion of carbon nanotubes in the coating composition. In some embodiments, an antifoaming agent comprises Sag 10 from Momentive Performance Materials.
- In some embodiments, an anti-foaming agent is present in a coating composition in an amount of up to about 0.1 weight percent on a total solids basis. An anti-foaming agent, in some embodiments, is present in a coating composition in an amount of up to about 0.05 weight percent on a total solids basis. In some embodiments, an antifoaming agent is present in a coating composition in an amount ranging from about 0.001 weight percent to about 0.02 weight percent on a total solids basis. An antifoaming agent, in some embodiments, is present in an amount ranging from about 0.005 weight to about 0.01 weight percent on a total solids basis.
- As described herein, in some embodiments, the at least one additional component comprises various combinations of one or more film formers, coupling agents, lubricants, surfactants, anti-foaming agent and/or biocides.
- In another aspect, the present invention provides methods of making coating compositions for glass fibers. In some embodiments, a method of making a coating composition for glass fibers comprises providing an aqueous dispersion comprising carbon nanotubes comprises and a polymeric carrier. In some embodiments, an aqueous dispersion comprising carbon nanotubes and a polymeric carrier is provided according to the same described in Section II hereinabove. Carbon nanotubes and polymeric carriers used in the present methods, in some embodiments, can comprise any of the same described herein.
- In some embodiments, a method of making a coating composition for glass fibers further comprises providing at least one additional component and adding the at least one additional component to the aqueous dispersion comprising carbon nanotubes and a polymeric carrier. In some embodiments, at least one additional component comprises one or more film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents of combinations thereof. In some embodiments, the at least one additional component comprises one or more of the film formers, coupling agents, lubricants, surfactants, biocides or anti-foaming agents described in Section III hereinabove.
- A solution of the at least one additional component, in some embodiments, is combined with the aqueous dispersion of carbon nanotubes and a polymeric carrier. In some embodiments, the solution of the at least one additional component is combined with the aqueous dispersion of carbon nanotubes and a polymeric carrier with mechanical agitation such as stirring and/or high shear for a time period of at least about 10 minutes. In some embodiments, the solution of the at least one additional component is combined with the aqueous dispersion of carbon nanotubes and a polymeric carrier with mechanical agitation such as stirring and/or high shear for a time period of at least about 20 minutes.
- In another aspect, embodiments of the present invention provide fiber glass strands comprising an electrically conductive structure. Fiber glass strands of the present invention, in some embodiments, can be used in polymeric resin reinforcement applications in the production of electrically conductive polymeric composite materials. Fiber glass strands described herein can comprise any type of glass fibers, and persons of ordinary skill in the art can readily identify a variety of potential glass fibers based on the present disclosure and the desired fiber glass strand, composite, or end product.
- Some embodiments of electrically conductive polymeric composite materials of the present invention find application in a variety of fields which demand materials having high mechanical performance coupled with the ability to resist or dissipate static charge accumulation on surfaces or in the bulk of the materials. Electrically conductive polymeric composite materials, for example, can be used in the storage and transport of flammable materials, such as in fuel pipes and fuel containers. Moreover, some embodiments of electrically conductive polymeric composite materials of the present invention can find application in device housings requiring electromagnetic interference (EMI) or radio frequency interference (RFI) shielding.
- In some embodiments, the present invention provides a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition described herein, the fiber glass strand having an electrical resistivity ranging form about 0.1 kΩ·cm−1 to about 20 MΩ·cm−1. In some embodiments, a coating composition of a fiber glass strand having an electrically conductive structure comprises any of the same described in Section III hereinabove.
- While embodiments of the present invention characterize the one or more fibers as being “coated” with a coating composition, the use of the word “coated” is intended to cover embodiments in which the coating composition does not cover a surface of one or more fibers.
- In some embodiments, the fiber glass strand can have an electrical resistivity provided in Table 2.
-
TABLE 2 Electrical Resistivity of Fiber Glass Strand ≦20 MΩ · cm−1 ≦15 MΩ · cm−1 ≦10 MΩ · cm−1 ≦5 MΩ · cm−1 ≦1 MΩ · cm−1 ≦0.1 MΩ · cm−1 ≦0.8 MΩ · cm−1 ≦0.5 MΩ · cm−1 ≦0.1 MΩ · cm−1 ≦50 kΩ · cm−1 ≦30 kΩ · cm−1 ≦20 kΩ · cm−1 ≦10 kΩ · cm−1 ≦1 kΩ · cm−1 ≦0.75 kΩ · cm−1 ≦0.5 kΩ · cm−1 ≦0.1 kΩ · cm−1 - In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 0.5 kΩ·cm−1 to about 1 MΩ·cm−1. In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 10 kΩ·cm−1 to about 0.75 MΩ·cm−1. In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 10 kΩ·cm−1 to about 0.75 MΩ·cm−1. In some embodiments, a fiber glass strand comprising an electrically conductive structure has an electrical resistivity ranging from about 20 kΩ·cm−1 to about 0.5 MΩ·cm−1.
- Moreover, in some embodiments, a fiber glass strand can have a volume resistivity ranging from about 2 Ω·cm to about 0.1 MΩ·cm. In some embodiments, a fiber glass strand can have an volume resistivity provided in Table 3.
-
TABLE 3 Volume Resistivity of Fiber Glass Strand ≦0.1 MΩ · cm ≦0.05 MΩ · cm ≦0.01 MΩ · cm ≦1 kΩ · cm ≦750 Ω · cm ≦500 Ω · cm ≦250 Ω · cm ≦100 Ω · cm ≦75 Ω · cm ≦50 Ω · cm ≦20 kΩ · cm ≦15 Ω · cm ≦10 Ω · cm ≦5 Ω · cm ≦3 Ω · cm - In some embodiments, a fiber glass strand comprising an electrically conductive structure has an volume resistivity ranging from about 0.1 Ω·cm to about 10 kΩ·cm. In some embodiments, a fiber glass strand comprising an electrically conductive structure has an volume resistivity ranging from about 0.2 Ω·cm to about 20 kΩ·cm. In some embodiments, a fiber glass strand comprising an electrically conductive structure has a volume resistivity ranging from about 5 Ω·cm to about 0.5 kΩ·cm. In some embodiments, a fiber glass strand comprising an electrically conductive structure has a volume resistivity ranging from about 10 Ω·cm to about 100 Ω·cm−1. In some embodiments, a fiber glass strand comprising an electrically conductive structure has a volume resistivity ranging from about 20 Ω·cm to about 80 Ω·cm.
- In some embodiments, the electrically conductive structure of a fiber glass strand comprises a plurality of glass fibers coated with a coating composition described herein comprising carbon nanotubes in a polymeric carrier. In some embodiments, the coating composition comprises at least one additional component.
- In some embodiments wherein a coating composition comprising carbon nanotubes in a polymeric carrier is applied to fiber glass strands, components of a primary and/or secondary sizing composition of the glass fibers constituting the strand can be selected based on a number of factors. For example, the primary and/or secondary sizing composition components can be selected based on a component's ability to enhance compatibility with the coating composition comprising carbon nanotubes in a polymeric carrier. Moreover, components of the primary and/or secondary sizing composition, in some embodiments, can be selected to enhance wet out of the coating composition comprising carbon nanotubes in a polymeric carrier when the coating composition is applied to the fiber glass strand. Components of the primary and/or secondary sizing composition can also be selected to assist with processing of the glass fibers (e.g., to reduce fuzz, broken filaments, etc.). Non-limiting examples of potential components of a primary and/or secondary sizing composition for use in some embodiments comprise wetting agents, lubricants, surfactants, emulsifiers, coupling agents and/or film formers.
- The amount of comprising carbon nanotubes in a polymeric carrier on fiber glass may be measured as “loss on ignition” or “LOI”. As used herein, the term “loss on ignition” or “LOI” means the weight percent of dried coating composition present on the fiber glass as determined by Equation 1:
-
LOI=100×[(W dry −W bare)/W dry] (Eq. 1) - wherein Wdry is the weight of the fiber glass plus the weight of the coating after drying in an oven at 220° F. (about 104° C.) for 60 minutes, and Wbare is the weight of the bare fiber glass after heating the fiber glass in an oven at 1150° F. (about 621° C.) for 20 minutes and cooling to room temperature in a dessicator.
- LOI can affect the electrical resistivity of a fiber glass strand in some embodiments of the present invention. In some embodiments, for example, a high LOI can result in an increase in the resistivity of a fiber glass strand of the present invention to a point where the strand is no longer considered electrically conductive. While not wishing to be bound by any theory, it is believed that an amount of composition producing a high LOI can provide sufficient spacing between individual or clusters of carbon nanotubes in the polymeric carrier such that one or more electrically conductive pathways are not created along the glass fibers of the strand. As a result, electrical charge is localized on individual or clusters of carbon nanotubes leading to increases in resistivity.
- The potential carbon nanotube spacing problems associated with a high LOI may be exacerbated when the glass fibers are drawn through a die or an orifice to remove excess coating composition. When the coated glass fibers are drawn through a die or an orifice, the individual or clusters of carbon nanotubes can experience shear forces. A large amount of coating composition associated with a high LOI can provide sufficient polymeric carrier volume to permit even further spacing of individual or clusters of carbon nanotubes as a result of the shearing forces.
- The foregoing problems associated with high LOI, in some embodiments, can be mitigated by increasing the carbon nanotube concentration in the polymeric carrier. Increasing carbon nanotube concentration, in some embodiments, can increase the probability of contact between individual or clusters of carbon nanotubes in the formation of an electrically conductive structure. A high carbon nanotube concentration can permit lower amounts of coating composition to be applied to glass fibers of a fiber glass strand thereby lowering the LOI. Increases in carbon nanotube concentration, in some embodiments, can be limited by the ability to disperse the carbon nanotubes in the polymeric carrier.
- An additional method of mitigating potential problems with high LOI, in some embodiments, is to provide a coating composition wherein carbon nantoubes are highly dispersed in a polymeric carrier. Carbon nanotubes highly dispersed in a polymeric carrier resist the formation of clusters of carbon nanotubes. Clustering of carbon nanotubes can increase the volume of polymeric carrier devoid of carbon nanotubes thereby contributing to the failure to form an electrically conductive structure through nanotubes in contact with one another. Carbon nanotubes highly dispersed throughout a polymeric carrier can reduce the volume of polymeric carrier devoid of carbon nanotubes thereby requiring lower amounts of coating composition in order to provide a glass fiber with an electrically conductive structure.
- Moreover, in some embodiments, subjecting the coated glass fibers to shearing forces can facilitate the formation of an electrically conductive structure. Shearing forces, in some embodiments, can align carbon nanotubes and/or spread clusters of carbon nanotubes to provide an electrically conductive structure wherein the carbon nanotubes are in contact with one another. As provided herein, however, the ability of shearing forces to enhance or degrade electrical conductivity of a fiber glass strand of the present invention can be dependent on the amount of carbon nanotubes present in the coating composition relative to the volume of polymeric carrier.
- In some embodiments, a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier, has a LOI up to about 25. In other embodiments, an electrically conductive fiber glass strand described herein has a LOI up to about 15. In another embodiment, an electrically conductive fiber glass strand described herein has an LOI up to about 14. In some embodiments, an electrically conductive fiber glass strand described herein has an LOI of at least about 1. In some embodiments, an electrically conductive fiber glass strand described herein has an LOI of at least about 3. In other embodiments, an electrically conductive fiber glass strand described herein has a LOI of at least about 5. In some embodiments, an electrically conductive fiber glass strand described herein has an LOI ranging from about 2 to about 9. In some embodiments, an electrically conductive fiber glass strand described herein has an LOI ranging from about 2.5 to about 6.
- While high LOI can adversely increase electrical resistivities of fiber glass strands of the present invention, low LOT can lead to processing problems including fiber glass strand degradation due to broken filaments and frictional forces.
- In another aspect, the present invention provides electrically conductive glass fiber reinforced polymeric composites. In some embodiments, electrically conductive glass fiber reinforced polymeric composites comprise thermoplastic composites or thermoset composites. Embodiments of electrically conductive polymeric composites of the present invention comprise a polymeric resin and at least one fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier.
- In general, various polymeric resins can be used with electrically conductive fiber glass strands of the present invention. The particular resin can be selected based on a number of factors including, for example, the desired strength of the composite, the contemplated end-use of the composite, temperature requirements for the composite, and other factors. In some embodiments, thermoset resins reinforced with electrically conductive glass fiber strands of the present invention comprise epoxy resins, polyester resins, polyimide resins, phenolic resins, allyl resins such as diallyl phthalate and diallyl isophthalate, urea formaldehyde, melamine formaldehyde, cyanates, bismaleimides, polyurethanes, silicones, vinyl esters or urethane acrylic polymers. In some embodiments, thermoplastic resins reinforced with electrically conductive glass fiber strands comprise polyolefins such as polyethylene and polypropylene, polyamides, polyphenylene oxide, polystyrenics and polyesters such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
- In some embodiments, thermoplastic resins reinforced with electrically conductive glass fiber strands of the present invention comprise polyarylene sulfides, polyalkyds, polyaramides, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyphenylene sulfides, polysulfones, polyimides, polyetherimides, polytetrafluoroethylenes, polyetherketones, polyether etherketones, polyether ketone ketones, polybenzoxazoles, polyoxadiazoles, polybenzothiazinophenothiazines, polybenzothiazoles, polypyrazinoquinoxalines, polypyromellitimides, polyquinoxalines, polybenzimidazoles, polyoxindoles, polyoxoisoindolines, polydioxoisoindolines, polytriazines, polypyridazines, polypiperazines, polypyridines, polypiperidines, polytriazoles, polypyrazoles, polycarboranes, polyoxabicyclononanes, polydibenzofurans, polyphthalides, polyacetals, polyanhydrides, polyvinyl ethers, polyvinyl thioethers, polyvinyl alcohols, polyvinyl ketones, polyvinyl halides, polyvinyl nitriles, polyvinyl esters, polysulfonates, polysulfides, polythioesters, polysulfones, polysulfonamides, polyureas, polyphosphazenes, polysilazanes, polyolefins, polysiloxanes, polybutadienes, or polyisoprenes.
- In some embodiments, fiber glass strands comprising an electrically conductive structure for polymeric reinforcement applications can be continuous strands. The continuous strands can, for example, be wound into a package. Such continuous strands can be used in a number of applications including, for example, winding applications wherein a polymeric composite is fabricated on a mandrel. In some embodiments, a continuous fiber glass strand comprising an electrically conductive structure intersects with itself at one more locations in a polymeric composite material. In some embodiments, a plurality of continuous fiber glass strands comprising an electrically conductive structure intersect with one another at one or more points in a polymeric composite.
- While it might be desirable to have a strand that does not break, breaks in strands do occur on occasion, such that it is difficult to supply a literally continuous strand. In today's commercial manufacturing environment, in embodiments where continuous strand is supplied from a package or a plurality of packages, a continuous strand typically has a length between about 40,000 and about 160,000 meters.
- In some embodiments, electrically conductive polymeric composites comprising one or more electrically conductive continuous fiber glass strands can have an electrical conductivity greater than an individual electrically conductive continuous fiber glass strand used in the fabrication of the composite.
- The electrical conductivity of a polymeric composite can be expressed in a number of ways including, for example, in terms of its volume resistivity and/or its surface resistivity. Unless otherwise indicated, the volume resistivity of a polymeric composite means the volume resistivity according to ASTM D 257-07. In some embodiments, for example, a polymeric composite comprising electrically conductive fiber glass strands of the present invention can have any of the volume resistivity according to ASTM D 257-07 provided in Table 4.
-
TABLE 4 Volume Resistivity according to ASTM D 257-07 ≦10 MΩ · cm ≦5 MΩ · cm ≦1 MΩ · cm ≦0.5 MΩ · cm ≦0.1 MΩ · cm ≦0.05 MΩ · cm ≦0.02 MΩ · cm ≦0.01 MΩ · cm ≦0.005 MΩ · cm ≦0.002 MΩ · cm ≦0.001 MΩ · cm - Unless otherwise indicated, the surface resistivity of a polymeric composite means the surface resistivity according to ASTM D 257-07. In some embodiments, a polymeric composite comprising electrically conductive fiber glass strands of the present invention can have any of the surface resistivities according to ASTM D 257-07 provided in Table 5.
-
TABLE 5 Surface Resistivity according to ASTM D 257-07 ≦10 MΩ/sq ≦5 MΩ/sq ≦1 MΩ/sq ≦0.5 MΩ/sq ≦0.25 MΩ/sq ≦0.1 MΩ/sq ≦0.05 MΩ/sq ≦0.02 MΩ/sq ≦0.01 MΩ/sq - In some embodiments, a polymeric composite comprises any desired amount of fiber glass strands of the present invention comprising an electrically conductive structure. In some embodiments, a polymeric composite comprises fiber glass strands comprising an electrically conductive structure in an amount up to about 5 weight percent of the composite. In another embodiment, a polymeric composite comprises fiber glass strands comprising an electrically conductive structure in an amount up to about 4 weight percent of the composite. In some embodiments, a polymeric composite comprises fiber glass strands comprising an electrically conductive structure in an amount of at least about 1 weight percent of the composite. A polymeric composite, in some embodiments, comprises fiber glass strands comprising an electrically conductive structure in an amount of at least about 2 weight percent of the composite.
- In some embodiments, an electrically conductive polymeric composite of the present invention further comprises fiber glass strands not having an electrically conductive structure (in addition to the fiber glass strands having an electrically conductive structure). A polymeric composite, in some embodiments, further comprises non-electrically conductive fiber glass strands in an amount up to about 70 weight percent of the composite. In other embodiments, a polymeric composite further comprises non-electrically conductive fiber glass strands in an amount up to about 65 weight percent of the composite. In some embodiments, a polymeric composite further comprises non-electrically conductive fiber glass strands in an amount up to about 55 weight percent of the composite.
- As provided herein, some embodiments of electrically conductive polymeric composite materials of the present invention can find application in a variety of fields. For example, some embodiments may be useful in applications demanding materials having high mechanical performance coupled with the ability to resist or dissipate static charge accumulation on surfaces or in the bulk of the materials. Electrically conductive polymeric composite materials, for example, can be used in the storage and transport of flammable materials, such as in fuel pipes and fuel containers. In some embodiments wherein an electrically conductive polymeric composite material of the present invention is used in the storage and/or transport of flammable materials, the electrically conductive polymeric composite material demonstrates a surface resistivity according to ASTM D257-01 that meets or exceeds one or more industrial specifications addressing the transport or storage of flammable materials, such as DNV Classification Note No. 5, Clause 4.2.2 and/or specifications provided by Lloyds of London regarding fiber glass pipes used to handle petroleum products on ships.
- In some embodiments, an electrically conductive polymeric composite material of the present invention can be in the form of a pipe. The pipe can be used, for example, in transporting fuels and/or other flammable materials. In some embodiments a pipe constructed from an electrically conductive polymeric composite material of the present invention can have dimensions consistent with BONDSTRAND® 7000 and 7000M fiber glass pipes and fittings commercially available from Ameron International Corporation of Pasadena, Calif. Such fiber glass pipes, for example, might have the following dimensions.
-
Nominal Pipe Size (mm) Length (m) 25-40 3.0 50-200 9.1 250-400 6.1 450-1000 12.2 - In some embodiments, a pipe constructed from an electrically conductive polymeric composite material of the present invention has an electrical resistance according to ASTM F1173-01 provided in Table 6.
-
TABLE 6 Electrical Resistance according to ASTM F1173-01 ≦1 MΩ/m ≦0.5 MΩ/m ≦0.3 MΩ/m ≦0.1 MΩ/m - Some embodiments of electrically conductive polymeric composite materials of the present invention can also find application in device housings requiring electromagnetic interference (EMI) shielding or radio frequency interference (RFI) shielding.
- In another aspect, the present invention provides methods of making a fiber glass strand comprising an electrically conductive structure, the electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising carbon nanotubes in a polymeric carrier. In one embodiment, a method of making a fiber glass strand of the present invention comprises providing a coating composition comprising carbon nanotubes in a polymeric carrier, drawing a fiber glass strand through the coating composition, removing excess coating composition from the fiber glass strand and drying the fiber glass strand. In some embodiments of methods of making fiber glass strands comprising an electrically conductive structure, a coating composition applied to the fiber glass strands can comprise any of the same described herein, including the coating compositions described in Section III hereinabove. Fiber glass strands suitable for use in methods of the present invention can comprise any type of glass fibers, and persons of ordinary skill in the art can readily identify a variety of potential glass fibers based on the present disclosure and the desired fiber glass strand, composite, or end product.
- In some embodiments of methods of making fiber glass strands comprising a conductive structure, the coating composition comprises a dispersion of carbon nanotubes in a polymeric carrier. In some embodiments, a coating composition comprises at least one additional component as described in Section III hereinabove.
- As provided herein, dispersion of carbon nanotubes in a polymeric carrier, such as an aqueous polymeric dispersion, can be accomplished by several techniques. For example, carbon nanotubes can be dispersed in a polymeric carrier by mechanical agitation as described in Sections II and IV hereinabove. Moreover, surfactants and other dispersants can be used to assist in the dispersion of carbon nanotubes in a polymeric carrier. In another embodiment, surfaces of the carbon nanotubes can be chemically modified to assist in the dispersion of the carbon nanotubes in a polymeric carrier. Surfactants, dispersants and/or carbon nanotube surface modification, in some embodiments, can be selected according to identity of the polymeric carrier.
- A fiber glass strand can be drawn through the coating composition comprising carbon nanotubes in a polymeric carrier at any rate not inconsistent with producing a fiber glass strand having the electrical structure and conductivities described herein. In some embodiments, a fiber glass strand is drawn through the coating composition at any of the rates provided in Table 7.
-
TABLE 7 Fiber Glass Stand Drawing Rates (ft/min) ≧0.5 ≧1 1-5 5-150 150-300 300-400 400-500 ≧500 - Subsequent to the fiber glass strand being drawn through the coating composition comprising carbon nanotubes in a polymeric carrier, excess coating composition is removed from the fiber glass strand to provide the fiber glass strand with a LOI having a value described herein. Excess coating composition can be removed by a variety of techniques in order to provide a fiber glass strand with a LOI having a value described herein. In one embodiment, for example, excess coating composition can be removed by drawing the coated fiber glass strand through an orifice or die. The proper size of the orifice or die can be determined according to principles known to one of skill in the art such as strand diameter, number of filaments in a strand, drawing speed and/or coating composition viscosity.
- In some embodiments, for example, the ratio of the diameter of the die opening to the diameter of the fiber glass strand ranges from about 1.4 to about 2.
- In some embodiments, excess coating composition comprising carbon nanotubes in a polymeric carrier removed from a fiber glass strand is returned to the coating composition bath or reservoir through which the fiber glass strand is drawn for use in coating additional fiber glass strands. In some embodiments wherein excess coating composition is returned to the coating composition bath, the excess coating is first combined with an aqueous dispersion comprising a carbon nanotube concentration higher than that of the coating composition. Combining excess coating composition with such an aqueous dispersion, in some embodiments, can return the carbon nanotube concentration in the excess coating composition to levels consistent with that of the coating composition in the bath or reservoir.
- In other embodiments, excess coating composition removed from fiber glass strands is not returned to the coating composition bath or reservoir and is instead captured in a container separate from the coating composition bath or reservoir. In such embodiments, the removed excess coating composition is not recombined with the coating composition bath or reservoir for coating additional fiber glass strands. Embodiments wherein removed excess coating composition is not recombined with the coating composition bath contemplate any method of keeping the removed excess coating composition separate from the coating composition bath.
- In some embodiments, excess coating composition that is removed from a fiber glass strand and recombined with the coating composition bath can increase the electrical resistivity of fiber glass strands drawn through the bath subsequent to the recombination. While not wishing to be bound by any theory, it is believed that recombining removed excess coating composition with the coating composition bath or reservoir reduces the concentration of carbon nanotubes in the bath or reservoir. In some embodiments, carbon nanotubes adhere to glass fibers when a coating composition of the present invention is applied to a fiber glass strand. As a result of this adherence, excess removed coating composition can have a lower concentration of carbon nanotubes.
- When the removed coating composition is recombined with the coating composition bath or reservoir, the removed coating composition can dilute the carbon nanotube concentration in the bath. The reduction in carbon nanotube concentration can become significant over extended periods of time as additional coating composition is removed from a fiber glass strand and returned to the bath or reservoir. Consequently, glass fibers drawn though the coating composition in a bath having a reduced carbon nanotube concentration receive less carbon nanotubes, which thereby inhibits or precludes the formation of one or more electrically conductive pathways along the glass fibers. The absence of electrically conductive pathways can increase charge localization and resistivity.
- After removal of excess coating composition comprising carbon nanotubes in a polymeric carrier, the fiber glass strands are dried. In some embodiments, coated fiber glass strands are dried at a temperature ranging from about 120° C. to about 460° C. In some embodiments coated fiber glass strands are dried at a temperature ranging from about 180° C. to about 200° C. In some embodiments, coated fiber glass strands are dried at a temperature ranging from about 240° C. to about 270° C. In another embodiment, coated fiber glass strands are dried at a temperature ranging from about 350° C. to about 400° C. In some embodiments, coated fiber glass strands are dried at a temperature ranging from about 400° C. to about 460° C. In some embodiments, coated fiber glass strands are dried at a temperature less than about 120° C. or greater than about 460° C.
- In some embodiments, the drying temperature for the fiber glass strands is selected with reference to the drawing speed of the fiber glass strands. In one embodiment, for example, the drying temperature is directly proportional to the drawing speed of the fiber glass strands.
- Moreover, in some embodiments, multiple drying apparatus are used in the drying of fiber glass strands of the present invention. In some embodiments, the coated fiber glass strands are drawn through a plurality of ovens or furnaces. In some embodiments, the plurality of ovens or furnaces are set to the same temperature. In other embodiments, the plurality of ovens or furnaces are set to different temperatures. In embodiments, wherein the plurality of ovens or furnaces are set to different temperatures, the fiber glass strands are subjected to temperature gradients during the drying process.
- In another aspect, the present invention provides methods of making a glass fiber reinforced polymeric composite. In one embodiment, a method of making a glass fiber reinforced polymeric composite comprises providing one or more fiber glass strands of the present invention comprising an electrically conductive structure and disposing the one or more fiber glass strands in a polymeric resin. As provided herein, in some embodiments, the fiber glass strands comprising an electrically conductive structure are continuous.
- Moreover, in some embodiments, fiber glass strands comprising an electrically conductive structure are combined with non-electrically conductive fiber glass strands in the production of a electrically polymeric composite. Conductive and non-conductive fiber glass strands, in some embodiments, can be combined according to their respective weight percents in a polymeric composite as provided herein.
- In some embodiments, a method of making an electrically conductive glass fiber reinforced polymeric composite further comprises curing the polymeric resin.
- In some embodiments, electrically conductive fiber glass strands of the present invention and non-electrically conductive fiber glass strands can be disposed in a polymeric resin and wound around a mandrel in the production of an electrically conductive glass fiber reinforced composite. In some embodiments, electrically conductive and non-electrically conductive fiber glass strands are wound around a mandrel in overlapping helical patterns in the production of a polymeric composite as described in U.S. Pat. No. 4,330,811, which is hereby incorporated by reference in its entirety.
- Some embodiments of the present invention are further illustrated in the following non-limiting examples.
- A coating composition comprising 1 weight percent SWCNT dispersed in an aqueous polyurethane carrier was provided in a reservoir. The SWCNT were obtained from Carbon Nanotechnologies Inc. of Houston, Tex. and the polyurethane film former was WITCOBOND® W-290H commercially available from Chemtura Corporation of Middlebury, Conn. The foregoing dispersion was obtained from PolyOne Corporation of Avon Lake, Ohio. A HYBON® 2026 continuous fiber glass strand of 450 yield and 1100 tex commercially available from PPG Industries of Pittsburgh, Pa. was drawn through the coating composition in the reservoir at a rate of 0.75 ft/min to coat glass fibers of the strand with the coating composition. The fiber glass strand was subsequently drawn through a die to remove excess coating composition. The excess coating composition removed from the fiber glass strand was collected in a container separate from the coating composition reservoir. As a result, the excess coating composition removed from the fiber glass strand was not returned to the coating composition reservoir.
- The continuous glass fiber strand was then dried by passing through a first furnace having a temperature of 180° C. and second furnace having a temperature of 200° C. before being wound onto a package.
- The completed fiber glass strand demonstrated a resistivity of 3.4 MΩ·cm−1 and volume resistivity of 0.0193 MΩ·cm. The completed fiber glass strand additionally had an LOI of 14.0.
- 3 continuous fiber glass strands of the present invention made in accordance with Example 1 along with 83 strands of E-glass roving commercially available from PPG under the HYBON® 2006-450 trade designation were drawn through an epoxy resin and wound on a mandrel in accordance with U.S. Pat. No. 4,330,811 to produce an electrically conductive glass fiber reinforced polymeric composite pipe having a length of 9 m, an inner diameter of 100 mm and a wall thickness of 2 mm. The composite pipe comprised about 63 weight percent glass fibers with 3.3 weight percent of the glass fibers coming from the 3 fiber glass strands produced in accordance with Example 1.
- A control glass fiber reinforced polymeric composite pipe having a length of 9 m, an inner diameter of 100 mm and a wall thickness of 2 mm was also produced in accordance with U.S. Pat. No. 4,330,811. The control glass fiber reinforced polymeric composite comprised about 63 weight percent HYBON® 2006-450 glass fibers and no glass fibers produced in accordance with Example 1.
- The conductivity of the electrically conductive glass fiber reinforced polymeric composite pipe was tested according the ASTM F1173-01. The results of the electrical conductivity testing are provided in Table 8.
-
TABLE 8 Electrical Conductivity According to ASTM F1173-01 1 m of Pipe Test Voltage (V) Resistance (MΩ/m) Inner Diameter to Inner 485 0.238 Diameter of Pipe Inner Diameter to Outer 508 0.276 Diameter of Pipe Outer Diameter to Outer 504 0.318 Diameter of Pipe - The surface resistivities of the electrically conductive glass fiber reinforced polymeric composite pipe were additionally measured and compared with the surface resistivities of the control glass fiber reinforced pipe. The surface resistivities of the electrically conductive fiber glass reinforced polymeric composite pipe and the control glass fiber reinforced pipe were measured in accordance with ASTM D257-01. The results are provided in Table 9.
-
TABLE 9 Surface Resistivities Measurement Surface Resistivity Location Test Voltage (V) (Ω/sq) Outside Surface of 287 1.27E6 SWCNT/FG Pipe Inside Surface of 22 2.4E5 SWCNT/FG Pipe Outside Surface of 8,000 >1.7E14 Control Pipe - By demonstrating outside and inside surface resistivities according to ASTM D257-01 of 1.27 E6 and 2.4 E5 respectively, the electrically conductive fiber glass reinforced polymeric composite pipe exceeds the requirements of DNV Classification Note No. 5, Clause 4.2.2 requiring the surface resistivity of pipes used gas dangerous spaces be less than 1E7 according to ASTM D257-01. Additionally, the surface resistivities of the electrically conductive fiber glass reinforced polymeric composite pipe of the present example exceed the surface resistivity requirements of Lloyds of London regarding fiber glass pipes handling petroleum products on board a ship by at least two (2) orders of magnitude. Lloyds of London, for example, requires the surface resistivity of a fiber glass pipe handling petroleum products on board a ship to be less than 1E9 according to ASTM D257-01.
- The volume resistivities of the electrically conductive glass fiber reinforced polymeric composite pipe were additionally measured and compared with the volume resistivities of the control glass fiber reinforced pipe. The volume resistivities of the electrically conductive glass fiber reinforced polymeric composite pipe and the control pipe were measured in accordance with ASTM D257-01.
- Sample pipe preparation for measurement of volume resistivity according to ASTM D257-01 was administered as follows. A 1 meter length of pipe was cut. Each fresh cut end of the pipe was polished and cleaned with alcohol. Aluminum contact surfaces were cleaned with alcohol and adhered to each end of the pipe. The adhesive used to adhere the aluminum contacts was a silver epoxy resin with hardener in a 3:1 ratio. The epoxy resin was then cured at 24° C. for 4.5 hours or at 38° C. for 3 hours. The reported volume resistance values were at 500V. The volume resistivity was subsequently calculated according to the formula
-
Volume Resistivity (Ω·cm)=R*A/L - wherein R=resistance (Ω), A=cross-sectional area of the sample, and L is the distance between the 2 aluminum contacts.
The results are provided in Table 10. -
TABLE 10 Volume Resistivities Volume Resistivity Composite Pipe Test Voltage (V) (Ω · cm) SWCNT/FG Pipe 343 V 1.16E4 Control Pipe 5 kV >7E13 - As illustrated by the results summarized in Tables IX and X, the glass fiber reinforced polymeric composite pipe of the present invention incorporating continuous fiber glass strands having an electrically conductive structure displayed significantly lower surface and volume resistivities, and concomitantly higher conductivities, in comparison with the control polymeric composite pipe not comprising fiber glass strands having an electrically conductive structure. Moreover, the glass fiber reinforced polymeric composite pipe of the present invention exhibited significantly higher conductivities with only about 0.0034 weight percent of SWCNT present in the composite.
- The mechanical properties of an electrically conductive glass fiber reinforced polymeric composite pipe were additionally measured and compared with the mechanical properties of a control glass fiber reinforced pipe fabricated as described in the present Example. The horizontal shear strengths of the electrically conductive fiber glass reinforced polymeric composite pipe and the control pipe were measured in accordance with ASTM D2344. The results are provided in Table 11.
-
TABLE 11 Horizontal Shear Strength Horizontal Shear Strength Fiber Glass Content Composite Pipe (ASTM D2344) (ISO 1172) SWCNT/FG Pipe 4.3-4.92 kpsi 74.9 Control Pipe 3.75-4.36 kpsi 74.7 - In view of the conductivity testing administered according to ASTM F1173-01, a glass fiber reinforced polymeric composite pipe of the present invention incorporating continuous fiber glass strands having an electrically conductive structure meets the requirements for conductive piping systems in marine applications. Moreover, a glass fiber reinforced polymeric composite pipe of the present invention demonstrates one or more mechanical properties at least equal to mechanical properties of existing pipe structures. As a result, glass reinforced polymeric composite pipes of the present invention have the potential to replace existing electrically conductive pipes which incorporate expensive conductive materials such as continuous carbon fiber strands.
- An aqueous dispersion of carbon nanotubes was prepared according to the following procedure. A polymeric carrier comprising an aqueous dispersion of PVP was obtained from International Specialty Products under the PVP K15 trade designation. MWCNTs were obtained from Bayer Material Science under the BAYTUBES® C 150 HP trade designation. A blend of the PVP K15 solution and MWCNT made at 11.7 wt. % MWCNT to resin solids was prepared in a glove bag. 25% of the initial charge of PVP resin was held out to rinse the glove bag upon transfer of the PVP/MWCNT blend to a recycle tank. An additional 25% of the initial charge of PVP resin was added to the recycle tank. The PVP/MWCNT blend was removed from the glove bag and placed into the recycle tank.
- The PVP/MWCNT blend was mixed in the recycle tank for a period of 10 minutes using a Ross ME400 DLA in line mixer-emulsifier with the rotor-stator set at 7000 rpm. The paste outlet of the rotor-stator was set to less than 77° F. A visual evaluation of the PVP/MWCNT aqueous dispersion was conducted by examining the softness of the MWCNT granules on a substrate.
- The PVP/MWCNT aqueous dispersion was moved to a new tank for milling. A Premier HM-1.5 horizontal media mill with 75% loading of 1.2-1.7 mm Zirconox grinding media was used to mill the PVP/MWCNT blend. The mill ran at 2400 feet per minute tip speed and 22.5 gallon/hr flow rate. A Hegman grind bar was used to check reduction in particle size of the PVP/MWCNT aqueous dispersion. Milling was continued until a Hegman reading of 8 was achieved. In some batches, a viscosity modifier of PVP K30 Solution A was added to the PVP/MWCNT aqueous dispersion to maintain a desirable rheology during milling.
- The aqueous dispersion of Table 12 was made in accordance with the procedures of Example 3.
-
TABLE 12 Aqueous Dispersion of Carbon Nanotubes Ingredient Weight % Solids MWCNT1 10.49 Polyvinylpyrrolidone Solution2 89.51 1BAYTUBES ® C 150 HP - Bayer Material Science 2PVP K15 - Viscosity characteristics of the aqueous dispersion of Table 12 are provided in Table 13.
-
TABLE 13 Viscosity of Aqueous Dispersion of Carbon Nanotubes RPM 0.5 1 2.5 5 10 20 50 100 cP 2778 2679 1905 1290 814 551 335 251 - The aqueous dispersion of Table 14 was made in accordance with the procedures of Example 3.
-
TABLE 14 Aqueous Dispersion of Carbon Nanotubes Ingredient Weight % Solids MWCNT3 14.71 Polyvinylpyrrolidone Solution4 85.29 3BAYTUBES ® C 150 HP - Bayer Material Science 4PVP K15 - Viscosity characteristics of the aqueous dispersion of Table 14 are provided in Table 15.
-
TABLE 15 Viscosity of Aqueous Dispersion of Carbon Nanotubes RPM 0.5 1 2.5 5 10 20 50 100 cP 6549 6549 5239 4286 3304 2495 1709 EEE - A coating composition of Table 16 was prepared by diluting an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition in Table 16 had 30 weight percent solids.
-
TABLE 16 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT5 1.0 Polyvinylpyrrolidone Solution6 99.0 5BAYTUBES ® C 150 HP - Bayer Material Science 6PVP K15 - The coating composition was applied to two HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. The continuous fiber glass strands were drawn through the coating composition in a reservoir at a rate of 0.5 ft/min and through a die opening. The ratio of the die opening to the diameter of the fiber glass strand was within 1.4-2. Glass fiber strand 1 was dried by passing through a first furnace having a temperature of 180° C. and a second furnace having a temperature of 200° C. Glass fiber strand 2 was dried by passing through a first furnace having a temperature of 240° C. and a second furnace having a temperature of 260° C. Electrical properties of the coated fiber glass strands are provided in Table 17.
-
TABLE 17 Coated Fiber Glass Strand Properties Strand Linear Resistivity Stand Volume Fiber Glass Strand LOI % (kΩ/cm) Resistivity (kΩ · cm) 1 6.73 1.46E4 8.29E1 2 7.20 8E1 4.54E−1 - A coating composition of Table 18 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition in Table 18 had 15.5 weight percent solids.
-
TABLE 18 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT7 3.00 Polyvinylpyrrolidone Solution8 25.05 Polyvinylpyrrolidone Solution9 21.15 Epoxy Emulsion10 43.77 Ester Resin11 1.47 Coupling Agent12 3.21 Coupling Agent13 2.12 Lubricant14 0.21 Defoaming Agent15 0.02 7BAYTUBES ® C 150 HP - Bayer Material Science 8PVP K15 Solution - International Specialty Products 9PVP K30 Solution - International Specialty Products 10K80-203 - Franklin Adhesives and Polymers 11PEG-600ML - Stepan Chemical Company 123-methacryloxypropyltrimethoxysilane - SCA 503 from Huarong New Chemical Materials 133-glycidoxypropyltrimethoxysilane - GLYMO from Sivento Inc. DeGussa 14Polyethyleneimine - Emery 6717L from Pulcra Chemicals 15Silicon Emulsion - Sag 10 from Chemtura, Inc. - The coating composition of Table 18 was applied to a HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strand are provided in Table 19. For examples provided herein, recitation of more than one drying temperature indicates the glass fiber strand was passed through a plurality of ovens of the temperatures recited.
-
TABLE 19 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 100 1.4-2 1.88 372/372/372 6.86 E1 3.89 E−1 - A coating composition of Table 20 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition of Table 20 had 15.5 weight percent solids.
-
TABLE 20 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT16 3.00 Polyvinylpyrrolidone Solution17 25.05 Polyvinylpyrrolidone Solution18 21.15 Epoxy Emulsion19 43.77 Ester Resin20 1.47 Coupling Agent21 3.21 Coupling Agent22 2.12 Lubricant23 0.23 16BAYTUBES ® C 150 HP - Bayer Material Science 17PVP K15 Solution - International Specialty Products 18PVP K30 Solution - International Specialty Products HU 19K80-203 - Franklin Adhesives and Polymers 20PEG-600ML - Stepan Chemical Company 213-methacryloxypropyltrimethoxysilane - SCA 503 from Huarong New Chemical Materials 223-glycidoxypropyltrimethoxysilane - GLYMO from Sivento Inc. DeGussa 23Polyethyleneimine - Emery 6717L from Pulcra Chemicals - The coating composition of Table 20 was applied to three HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the three coated fiber glass strands are provided in Table 21.
-
TABLE 21 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 6 1.4-2 8.36 390/390 2.59 E1 1.47 E−1 2 6 1.4-2 4.84 390/390 1.57 E1 8.91 E−2 3 6 1.4-2 3.10 440/390 3.84 2.18 E−2 - A coating composition of Table 22 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition of Table 22 had 11.5 weight percent solids.
-
TABLE 22 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT24 3.00 Polyvinylpyrrolidone Solution25 25.05 Polyvinylpyrrolidone Solution26 21.15 Epoxy Emulsion27 43.77 Ester Resin28 1.47 Coupling Agent29 3.21 Coupling Agent30 2.12 Lubricant31 0.23 24BAYTUBES ® C 150 HP - Bayer Material Science 25PVP K15 Solution - International Specialty Products 26PVP K30 Solution - International Specialty Products 27K80-203 - Franklin Adhesives and Polymers 28PEG-600ML - Stepan Chemical Company 293-methacryloxypropyltrimethoxysilane - SCA 503 from Huarong New Chemical Materials 303-glycidoxypropyltrimethoxysilane - GLYMO from Sivento Inc. DeGussa 31Polyethyleneimine - Emery 6717L from Pulcra Chemicals - The coating composition of Table 22 was applied to a HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the three coated fiber glass strands are provided in Table 23.
-
TABLE 23 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 6 1.4-2 1.88 440/390 6.77 3.84 E−2 - A coating composition of Table 24 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition of Table 24 had 11.5 weight percent solids.
-
TABLE 24 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT32 3.49 Polyvinylpyrrolidone Solution33 29.08 Polyvinylpyrrolidone Solution34 24.89 Epoxy Emulsion35 35.13 Coupling Agent36 2.33 Coupling Agent37 0.94 Coupling Agent38 0.78 Ester Resin39 1.19 Lubricant40 0.13 Lubricant41 2.05 32BAYTUBES ® C 150 HP - Bayer Material Science 33PVP K15 Solution - International Specialty Products 34PVP K30 Solution - International Specialty Products 35K80-203 - Franklin Adhesives and Polymers 363-glycidoxypropyltrimethoxysilane - GLYMO from Sivento Inc. DeGussa 37Dynasylan PTMO 383-aminopropyltriethoxysilane - AMEO from DeGussa 39PEG-600ML - Stepan Chemical Company 40Polyethyleneimine - Emery 6717L from Pulcra Chemicals 41Organomodified Polydimethylsiloxane Emulsion - CoatOSil 9300 from Momentive Performance Materials - The coating composition of Table 24 was applied to three HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the three coated fiber glass strands are provided in Table 25.
-
TABLE 25 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 6 1.4-2 5.69 390/390 2.22 E1 1.26 E−1 2 6 1.4-2 2.7 440/390 6.52 3.70 E−2 3 0.5 1.4-2 3.67 330/330 4.65 E−1 2.64 E−3 - A coating composition of Table 26 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition of Table 26 had 9.5 weight percent solids.
-
TABLE 26 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT42 3.49 Polyvinylpyrrolidone Solution43 29.08 Polyvinylpyrrolidone Solution44 24.89 Epoxy Emulsion45 35.13 Coupling Agent46 2.33 Coupling Agent47 0.94 Coupling Agent48 0.78 Ester Resin49 1.19 Lubricant50 0.13 Lubricant51 2.05 42BAYTUBES ® C 150 HP - Bayer Material Science 43PVP K15 Solution - International Specialty Products 44PVP K30 Solution - International Specialty Products 45K80-203 - Franklin Adhesives and Polymers 463-glycidoxypropyltrimethoxysilane - GLYMO from Sivento Inc. DeGussa 47Dynasylan PTMO 483-aminopropyltriethoxysilane - AMEO from DeGussa 49PEG-600ML - Stepan Chemical Company 50Polyethyleneimine - Emery 6717L from Pulcra Chemicals 51Organomodified Polydimethylsiloxane Emulsion - CoatOSil 9300 from Momentive Performance Materials - The coating composition of Table 26 was applied to a HYBON® 2026 continuous fiber glass strand (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strand are provided in Table 27.
-
TABLE 27 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 6 1.4-2 4.36 390/390 2.71 E1 1.54 E−1 - A coating composition of Table 28 was prepared by combining the listed ingredients with an aqueous PVP/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition of Table 28 had 11.5 weight percent solids.
-
TABLE 28 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT52 3.0 Polyvinylpyrrolidone Solution53 29.08 Polyvinylpyrrolidone Solution54 24.89 Epoxy Emulsion55 35.13 Coupling Agent56 2.33 Coupling Agent57 0.94 Coupling Agent58 0.78 Ester Resin59 1.19 Lubricant60 0.13 Lubricant61 2.05 52BAYTUBES ® C 150 HP - Bayer Material Science 53PVP K15 Solution - International Specialty Products 54PVP K30 Solution - International Specialty Products 55K80-203 - Franklin Adhesives and Polymers 563-glycidoxypropyltrimethoxysilane - GLYMO from Sivento Inc. DeGussa 57Dynasylan PTMO 583-aminopropyltriethoxysilane - AMEO from DeGussa 59PEG-600ML - Stepan Chemical Company 60Polyethyleneimine - Emery 6717L from Pulcra Chemicals 61Organomodified Polydimethylsiloxane Emulsion - CoatOSil 9300 from Momentive Performance Materials - The coating composition of Table 28 was applied to two HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strands are provided in Table 29.
-
TABLE 29 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 6 1.4-2 7.38 390/390 3.55 E2 2.01 2 6 1.4-2 4.7 390/390 2.21 E1 1.25 E−1 - A coating composition of Table 30 was prepared by combining the listed ingredients with an aqueous RD1135-B/MWCNT dispersion prepared in accordance with the procedures of Example 3. The coating composition of Table 30 had 15.6 weight percent solids.
-
TABLE 30 Glass Fiber Coating Composition Ingredient Weight % Solids MWCNT62 3.4 Water Soluble Epoxy Resin63 19.53 Polyurethane Emulsion64 77.07 62BAYTUBES ® C 150 HP - Bayer Material Science 63RD 1135-B from Hexion Specialty Chemicals 64WITCOBOND W-290H from Chemtura - The coating composition of Table 30 was applied to two HYBON® 2026 continuous fiber glass strands (450 yield and 1100 tex) commercially available from PPG Industries of Pittsburgh, Pa. Coating composition application conditions and the resulting electrical properties of the coated fiber glass strands are provided in Table 31.
-
TABLE 31 Coated Fiber Glass Strand Properties Draw Speed through Ratio of die opening Drying Strand Linear Stand Volume Fiber Glass Coating Composition to diameter of fiber temperature Resistivity Resistivity Strand (ft/min) glass strand LOI % (C. °) (kΩ/cm) (kΩ · cm) 1 3 1.4-2 7.06 120-140 8.90 E1 5.05 E−1 - Desirable characteristics, which can be exhibited by embodiments of the present invention, can include, but are not limited to, the provision of electrically conductive glass fiber reinforced polymeric composite materials combining desirable mechanical properties with the ability to dissipate and/or resist the accumulation of static electrical charges resulting from use in a variety of applications and environments. Moreover, electrically conductive fiber glass strands of the present invention can provide cost efficient alternatives to more expensive electrically conductive species previously used in the production of conductive glass fiber reinforced polymeric composite materials without sacrifice in mechanical or electrical performance.
- Various embodiments of the invention have been described in fulfillment of the various objectives of the invention. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations thereof will be readily apparent to those skilled in the art without departing from the spirit and scope of the invention.
Claims (42)
1. A fiber glass strand comprising:
an electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising an aqueous dispersion, the aqueous dispersion comprising carbon nanotubes and a polymeric carrier, wherein the fiber glass strand has an electrical resistivity ranging from about 0.1 k≠·cm−1 to about 20 MΩ·cm−1.
2. The fiber glass strand of claim 1 , wherein the fiber glass strand has an electrical resistivity less than about 10 kΩ·cm−1.
3. The fiber glass strand of claim 1 , wherein the strand has a volume resistivity ranging from about 2 Ω·cm to about 0.1 MΩ·cm.
4. The fiber glass strand of claim 1 , wherein the carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 3.5 weight percent on a total solids basis.
5. The fiber glass strand of claim 1 , wherein the polymeric carrier comprises an aqueous dispersion of one or more polymeric species.
6. The fiber glass strand of claim 5 , wherein the one or more polymeric species comprises a polyvinylpyrrolidone, a polyurethane, an epoxy or combinations thereof.
7. The fiber glass strand of claim 1 , wherein the strand has a loss on ignition (LOI) ranging from about 2 to about 9.
8. The fiber glass strand of claim 1 , wherein the carbon nanotubes comprise single-walled carbon nanotubes, multi-walled carbon nanotubes or mixtures thereof.
9. The fiber glass strand of claim 1 , wherein the aqueous dispersion further comprises at least one additional component, the at least one additional component comprising a film former, a coupling agent, a lubricant, a surfactant, a biocide or an anti-foaming agent or mixtures thereof.
10. The fiber glass strand of claim 9 , wherein the at least one additional component comprises a film former, the film former comprising polyurethane, epoxide, polyvinylpyrrolidone, polyacrylate, polyester, polyvinylacetate or polyvinyl alcohol or combinations thereof.
11. The fiber glass strand of claim 10 , wherein the film former is present in the aqueous dispersion in an amount of at least about 50 weight percent on a total solids basis.
12. The fiber glass strand of claim 10 , wherein the film former is present in an amount ranging from about 60 weight percent to about 80 weight percent on a total solids basis.
13. The fiber glass strand of claim 9 , wherein the at least one additional component comprises a coupling agent, the coupling agent comprising one or more organosilanes.
14. The fiber glass strand of claim 13 , wherein the one or more organosilanes comprise aminofunctional silanes, non-aminofunctional silanes or combinations thereof.
15. The fiber glass strand of claim 13 , wherein the one or more organosilanes are present in an amount up to about 10 weight percent on a total solids basis.
16. The fiber glass strand of claim 13 , wherein the one or more organosilanes are present in an amount ranging from about 1 weight percent to about 5 weight percent on a total solids basis.
17. A method of making a fiber glass strand comprising an electrically conductive structure, the method comprising:
providing a coating composition comprising an aqueous dispersion, the aqueous dispersion comprising carbon nanotubes and a polymeric carrier;
drawing the fiber glass strand through a bath of the coating composition; and
removing excess coating composition from the fiber glass strand.
18. The method of claim 17 , wherein the carbon nanotubes are present in the aqueous dispersion in an amount ranging from about 0.1 weight percent to about 3.5 weight percent on a total solids basis.
19. The method of claim 17 , wherein the polymeric carrier comprises an aqueous dispersion of one or more polymeric species.
20. The method of claim 19 , wherein the one or more polymeric species comprises a polyvinylpyrrolidone, a polyurethane, an epoxy or combinations thereof.
21. The method of claim 17 , wherein the aqueous dispersion further comprises at least one additional component, the at least one additional component comprising a film former, a coupling agent, a lubricant, a surfactant, a biocide or an anti-foaming agent or mixtures thereof.
22. The method of claim 21 , wherein the at least one additional component comprises a film former, the film former comprising polyurethane, epoxide, polyvinylpyrrolidone, polyacrylate, polyester, polyvinylacetate or polyvinyl alcohol or combinations thereof.
23. The method of claim 22 , wherein the film former is present in the aqueous dispersion in an amount of at least about 50 weight percent on a total solids basis.
24. The method of claim 21 , wherein the at least one additional component comprises a coupling agent, the coupling agent comprising one or more organosilanes.
25. The method of claim 24 , wherein the one or more organosilanes comprise aminofunctional silanes, non-aminofunctional silanes or combinations thereof.
26. The method of claim 24 , wherein the one or more organosilanes are present in an amount ranging from about 1 weight percent to about 5 weight percent on a total solids basis.
27. The method of claim 17 , wherein removing excess coating composition from the fiber glass strand comprises passing the fiber glass strand through a die.
28. The method of claim 27 , wherein a ratio of an opening of the die to a diameter of the fiber glass strand ranges from about 1.4 to about 2.
29. The method of claim 17 , wherein the excess coating removed from the fiber glass strand is not returned directly to the bath of the coating composition.
30. The method of claim 17 , wherein the fiber glass strand has a LOI ranging from about 2 to about 9.
31. The method of claim 17 , wherein the fiber glass strand has an electrical resistivity ranging from about 0.1 kΩ·cm−1 to about 20 MΩ·cm−1.
32. The method of claim 17 , wherein the fiber glass strand has an electrical resistivity less than about 10 kΩ·cm−1.
33. The method of claim 17 , wherein the strand has a volume resistivity ranging from about 2 Ω·cm to about 0.1 MΩ·cm.
34. A polymeric composite comprising:
a polymeric resin; and
at least one fiber glass strand disposed in the polymeric resin, the fiber glass strand comprising an electrically conductive structure comprising one or more glass fibers coated with a coating composition comprising an aqueous dispersion, the aqueous dispersion comprising carbon nanotubes and a polymeric carrier.
35. The polymeric composite of claim 34 , wherein the polymeric composite has a volume resistivity less than about 0.1 MΩ·cm.
36. The polymeric composite of claim 34 , wherein the polymeric composite has a volume resistivity less than about 0.002 MΩ·cm.
37. The polymeric composite of claim 34 , wherein the polymeric composite has a surface resistivity less than about 0.5 MΩ/sq.
38. The polymeric composite of claim 34 , wherein the polymeric composite has a surface resistivity less than about 0.25 MΩ/sq.
39. The polymeric composite of claim 34 , wherein the at least one fiber glass strand comprises a continuous fiber glass strand.
40. The polymeric composite of claim 34 , wherein the at least one fiber glass strand is present in an amount of at least about 2 weight percent of the polymeric composite.
41. The polymeric composite of claim 34 further comprising non-electrically conductive fiber glass strands.
42. The polymeric composite of claim 41 , wherein the non-electrically conductive fiber glass strands are present in an amount of up to about 70 weight percent of the polymeric composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/782,368 US20100310851A1 (en) | 2009-05-18 | 2010-05-18 | Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17913809P | 2009-05-18 | 2009-05-18 | |
US12/782,368 US20100310851A1 (en) | 2009-05-18 | 2010-05-18 | Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100310851A1 true US20100310851A1 (en) | 2010-12-09 |
Family
ID=42651105
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/782,368 Abandoned US20100310851A1 (en) | 2009-05-18 | 2010-05-18 | Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same |
US12/782,278 Expired - Fee Related US9242897B2 (en) | 2009-05-18 | 2010-05-18 | Aqueous dispersions and methods of making same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/782,278 Expired - Fee Related US9242897B2 (en) | 2009-05-18 | 2010-05-18 | Aqueous dispersions and methods of making same |
Country Status (2)
Country | Link |
---|---|
US (2) | US20100310851A1 (en) |
WO (1) | WO2010135335A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100311872A1 (en) * | 2009-05-18 | 2010-12-09 | Xiaoyun Lai | Aqueous Dispersions And Methods Of Making Same |
US20120043415A1 (en) * | 2010-08-20 | 2012-02-23 | Airbus Operations Ltd. | Bond lead |
US20150135978A1 (en) * | 2011-12-09 | 2015-05-21 | Flint Group Germany Gmbh | Glass fiber-reinforced sleeve for the printing industry |
US9347591B2 (en) | 2011-08-12 | 2016-05-24 | Chevron U.S.A. Inc. | Static dissipation in composite structural components |
US9506194B2 (en) | 2012-09-04 | 2016-11-29 | Ocv Intellectual Capital, Llc | Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media |
CN116444988A (en) * | 2023-04-07 | 2023-07-18 | 长三角碳纤维及复合材料技术创新中心 | A conductive composite material impregnated with slurry and its preparation method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009012674A1 (en) * | 2009-03-13 | 2010-09-16 | Bayer Materialscience Ag | Polyurethane compounds with carbon nanotubes |
US8540902B2 (en) * | 2010-01-13 | 2013-09-24 | CNano Technology Limited | Carbon nanotube based pastes |
WO2013085498A1 (en) * | 2011-12-06 | 2013-06-13 | CNano Technology Limited | Carbon nanotube based pastes |
FR2992321B1 (en) * | 2012-06-22 | 2015-06-05 | Arkema France | METHOD FOR MANUFACTURING PRE-IMPREGNATED FIBROUS MATERIAL OF THERMOPLASTIC POLYMER |
CN103570255B (en) * | 2012-08-07 | 2016-08-10 | 重庆国际复合材料有限公司 | A kind of glass fiber infiltration agent composition, preparation method and application |
KR20150072402A (en) * | 2012-08-27 | 2015-06-29 | 가부시키가이샤 메이조 나노 카본 | Carbon nanotube dispersion and method for manufacturing dispersion |
CN102898044B (en) * | 2012-10-19 | 2015-01-21 | 四川航天拓鑫玄武岩实业有限公司 | Basalt fiber surface modification impregnating compound and preparation method thereof |
CN103159413B (en) * | 2012-12-19 | 2015-11-18 | 东华大学 | A kind of glass fibre adds treating compound and the preparation thereof of carbon nanotube |
CN104086094B (en) * | 2014-07-16 | 2016-09-14 | 哈尔滨工业大学 | A kind of glass fiber infiltration agent of carbon nanotubes and preparation method thereof |
WO2023187731A1 (en) * | 2022-03-31 | 2023-10-05 | Asian Paints Limited | Coating composition and a process for its preparation |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3247020A (en) * | 1962-01-02 | 1966-04-19 | Owens Corning Fiberglass Corp | Electrically-conductive elements and their manufacture |
US3269883A (en) * | 1961-02-10 | 1966-08-30 | Owens Corning Fiberglass Corp | Method for producing electrically-conductive elements |
US3416990A (en) * | 1965-08-06 | 1968-12-17 | Hercules Inc | Glass fiber-reinforced polymers |
US3437550A (en) * | 1966-01-07 | 1969-04-08 | Hercules Inc | Glass fiber reinforced crystalline polypropylene composition and laminate |
US3483276A (en) * | 1964-12-04 | 1969-12-09 | Hercules Inc | Blends of modified and unmodified polypropylene |
US3783746A (en) * | 1971-03-03 | 1974-01-08 | Greer Hydraulics Inc | Rotary actuator |
US4090984A (en) * | 1977-02-28 | 1978-05-23 | Owens-Corning Fiberglas Corporation | Semi-conductive coating for glass fibers |
US4209425A (en) * | 1977-04-22 | 1980-06-24 | Owens-Corning Fiberglas Corporation | Conductive coating composition |
US4330811A (en) * | 1978-04-03 | 1982-05-18 | Ameron, Inc. | Filament-reinforced plastic article |
US5130197A (en) * | 1985-03-25 | 1992-07-14 | Ppg Industries, Inc. | Glass fibers for reinforcing polymers |
US5591382A (en) * | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
US6734262B2 (en) * | 2002-01-07 | 2004-05-11 | General Electric Company | Methods of forming conductive thermoplastic polyetherimide polyester compositions and articles formed thereby |
US20040150312A1 (en) * | 2002-11-26 | 2004-08-05 | Mcelrath Kenneth O. | Carbon nanotube particulate electron emitters |
US20040167264A1 (en) * | 2002-11-25 | 2004-08-26 | Marc Vathauer | Impact-strength-modified polymer compositions |
US20050266605A1 (en) * | 2004-06-01 | 2005-12-01 | Canon Kabushiki Kaisha | Process for patterning nanocarbon material, semiconductor device, and method for manufacturing semiconductor device |
US20060052509A1 (en) * | 2002-11-01 | 2006-03-09 | Mitsubishi Rayon Co., Ltd. | Composition containing carbon nanotubes having coating thereof and process for producing them |
US7014794B1 (en) * | 1999-07-13 | 2006-03-21 | Commissariat A L'energie Atomique And Centre National De La Recherche Scientifique | Use of sulphonic and phosphonic acids as dopants of conductive polyaniline films and conductive composite material based on polyaniline |
US20060147707A1 (en) * | 2004-12-30 | 2006-07-06 | Jian Meng | Compacted, chopped fiber glass strands |
US7078098B1 (en) * | 2000-06-30 | 2006-07-18 | Parker-Hannifin Corporation | Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conducive fiber |
US20060188723A1 (en) * | 2005-02-22 | 2006-08-24 | Eastman Kodak Company | Coating compositions containing single wall carbon nanotubes |
US7118693B2 (en) * | 2001-07-27 | 2006-10-10 | Eikos, Inc. | Conformal coatings comprising carbon nanotubes |
US20060237688A1 (en) * | 2005-04-22 | 2006-10-26 | Joerg Zimmermann | Composite hydrogen storage material and methods related thereto |
US20060280938A1 (en) * | 2005-06-10 | 2006-12-14 | Atkinson Paul M | Thermoplastic long fiber composites, methods of manufacture thereof and articles derived thererom |
WO2007004652A1 (en) * | 2005-07-05 | 2007-01-11 | National University Corporation NARA Institute of Science and Technology | Method for producing carbon nanotube dispersion liquid |
US7192642B2 (en) * | 2002-03-22 | 2007-03-20 | Georgia Tech Research Corporation | Single-wall carbon nanotube film having high modulus and conductivity and process for making the same |
US20070079730A1 (en) * | 2005-10-12 | 2007-04-12 | Puckett Garry D | Compounds, rosins, and sizing compositions |
US20070128960A1 (en) * | 2005-11-28 | 2007-06-07 | Ghasemi Nejhad Mohammad N | Three-dimensionally reinforced multifunctional nanocomposites |
US20070224106A1 (en) * | 2003-11-27 | 2007-09-27 | Youichi Sakakibara | Carbon Nanotube Dispersed Polar Organic Solvent and Method for Producing the Same |
US7282260B2 (en) * | 1998-09-11 | 2007-10-16 | Unitech, Llc | Electrically conductive and electromagnetic radiation absorptive coating compositions and the like |
US20070292622A1 (en) * | 2005-08-04 | 2007-12-20 | Rowley Lawrence A | Solvent containing carbon nanotube aqueous dispersions |
US20080075954A1 (en) * | 2006-05-19 | 2008-03-27 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
US20080118728A1 (en) * | 2006-10-20 | 2008-05-22 | Dow Global Technologies Inc. | Aqueous dispersions disposed on glass-based fibers and glass-containing substrates |
US20080123560A1 (en) * | 2006-11-27 | 2008-05-29 | Canon Kabushiki Kaisha | Methods and devices for the dynamic management of transmission errors by network points of interconnections |
US20080213498A1 (en) * | 2006-05-16 | 2008-09-04 | Board Of Trustees Of Michigan State University | Reinforced composite with a tow of fibers and process for the preparation thereof |
US20080213560A1 (en) * | 2004-02-12 | 2008-09-04 | Saint- Gobain Vetrotex France S.A. | Electrically Conductive Glass Yarn and Constructions Including Same |
US20080241533A1 (en) * | 2006-12-15 | 2008-10-02 | Jacob Cornelis Dijt | Sizing compositions and glass fiber reinforced thermoplastic composites |
US20090014691A1 (en) * | 2004-10-01 | 2009-01-15 | Imperial Chemical Industries Plc. | Dispersions, films, coatings and compositions |
US20090124705A1 (en) * | 2007-09-14 | 2009-05-14 | Bayer Materialscience Ag | Carbon nanotube powder, carbon nanotubes, and processes for their production |
US20090126412A1 (en) * | 2007-11-21 | 2009-05-21 | Porcher Industries | Yarn fabric and manufacturing process thereof |
US20090202764A1 (en) * | 2007-11-26 | 2009-08-13 | Porcher Industries | RFL film or adhesive dip coating comprising carbon nanotubes and yarn comprising such a coating |
US20090239056A1 (en) * | 2004-10-21 | 2009-09-24 | Saint-Gobain Vetrotex France S.A. | Lubricated electrically conductive glass fibers |
US20100006442A1 (en) * | 2006-08-03 | 2010-01-14 | Basf Se | Process for application of a metal layer on a substrate |
US20100203328A1 (en) * | 2007-06-27 | 2010-08-12 | Arkema France | Method for impregnating continuous fibres with a composite polymer matrix containing a thermoplastic polymer |
US20100215948A1 (en) * | 2009-02-20 | 2010-08-26 | University Of Delaware | Rubbery-block containing polymers, fiber sizings thereof and composites thereof |
US20100222480A1 (en) * | 2009-02-27 | 2010-09-02 | Christiansen Iii Walter Henry | Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same |
US20100260998A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Fiber sizing comprising nanoparticles |
US20100311872A1 (en) * | 2009-05-18 | 2010-12-09 | Xiaoyun Lai | Aqueous Dispersions And Methods Of Making Same |
US20110017957A1 (en) * | 2009-05-27 | 2011-01-27 | Arkema France | Method of manufacturing conductive composite fibres with a high proportion of nanotubes |
US20110198543A1 (en) * | 2008-10-10 | 2011-08-18 | Hodogaya Chemical Co., Ltd., | Aqueous dispersion of fine carbon fibers, method for preparing the aqueous dispersion, and articles using thereof |
US20110281071A1 (en) * | 2009-01-30 | 2011-11-17 | Bayer Materialscience Ag | Process for incorporating carbon particles into a polyurethane surface layer |
US20120112133A1 (en) * | 2009-03-13 | 2012-05-10 | Bayer Materialscience Ag | Polyurethane materials comprising carbon nanotubes |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783746B1 (en) * | 2000-12-12 | 2004-08-31 | Ashland, Inc. | Preparation of stable nanotube dispersions in liquids |
CA2489423A1 (en) * | 2002-06-14 | 2003-12-24 | Hyperion Catalysis International, Inc. | Electroconductive carbon fibril-based inks and coatings |
JP2009506973A (en) | 2005-09-01 | 2009-02-19 | セルドン テクノロジーズ,インコーポレイテッド | Large-scale production of nanostructured materials |
DE102005048190A1 (en) | 2005-09-30 | 2007-04-05 | Leibniz-Institut Für Polymerforschung Dresden E.V. | Reinforced composites with concrete matrix have fibers with a sizing composition and a further coating forming an acid barrier layer interacting with the concrete |
DE102005049428A1 (en) | 2005-10-15 | 2007-06-06 | Schürmann, Heinrich | Plate-shaped electrical resistance heater for e.g. building, has interconnecting structural panel provided with thermal insulation building material and coated with structural panel that is made from plaster, cement and ceramic compound |
DE102006048920B3 (en) | 2006-10-10 | 2008-05-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrically conductive lightweight component and method for its production |
DE102007010540B4 (en) | 2007-03-05 | 2015-06-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for high-strength bonding of components |
KR100839173B1 (en) | 2007-03-21 | 2008-06-17 | 신일화학공업(주) | Modified polyphenylene oxide resin composition containing carbon nanotubes |
-
2010
- 2010-05-18 WO PCT/US2010/035271 patent/WO2010135335A1/en active Application Filing
- 2010-05-18 US US12/782,368 patent/US20100310851A1/en not_active Abandoned
- 2010-05-18 US US12/782,278 patent/US9242897B2/en not_active Expired - Fee Related
Patent Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3269883A (en) * | 1961-02-10 | 1966-08-30 | Owens Corning Fiberglass Corp | Method for producing electrically-conductive elements |
US3247020A (en) * | 1962-01-02 | 1966-04-19 | Owens Corning Fiberglass Corp | Electrically-conductive elements and their manufacture |
US3483276A (en) * | 1964-12-04 | 1969-12-09 | Hercules Inc | Blends of modified and unmodified polypropylene |
US3416990A (en) * | 1965-08-06 | 1968-12-17 | Hercules Inc | Glass fiber-reinforced polymers |
US3437550A (en) * | 1966-01-07 | 1969-04-08 | Hercules Inc | Glass fiber reinforced crystalline polypropylene composition and laminate |
US3783746A (en) * | 1971-03-03 | 1974-01-08 | Greer Hydraulics Inc | Rotary actuator |
US4090984A (en) * | 1977-02-28 | 1978-05-23 | Owens-Corning Fiberglas Corporation | Semi-conductive coating for glass fibers |
US4209425A (en) * | 1977-04-22 | 1980-06-24 | Owens-Corning Fiberglas Corporation | Conductive coating composition |
US4330811A (en) * | 1978-04-03 | 1982-05-18 | Ameron, Inc. | Filament-reinforced plastic article |
US5130197A (en) * | 1985-03-25 | 1992-07-14 | Ppg Industries, Inc. | Glass fibers for reinforcing polymers |
US5591382A (en) * | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
US7282260B2 (en) * | 1998-09-11 | 2007-10-16 | Unitech, Llc | Electrically conductive and electromagnetic radiation absorptive coating compositions and the like |
US7014794B1 (en) * | 1999-07-13 | 2006-03-21 | Commissariat A L'energie Atomique And Centre National De La Recherche Scientifique | Use of sulphonic and phosphonic acids as dopants of conductive polyaniline films and conductive composite material based on polyaniline |
US7078098B1 (en) * | 2000-06-30 | 2006-07-18 | Parker-Hannifin Corporation | Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conducive fiber |
US7118693B2 (en) * | 2001-07-27 | 2006-10-10 | Eikos, Inc. | Conformal coatings comprising carbon nanotubes |
US6734262B2 (en) * | 2002-01-07 | 2004-05-11 | General Electric Company | Methods of forming conductive thermoplastic polyetherimide polyester compositions and articles formed thereby |
US7192642B2 (en) * | 2002-03-22 | 2007-03-20 | Georgia Tech Research Corporation | Single-wall carbon nanotube film having high modulus and conductivity and process for making the same |
US20060052509A1 (en) * | 2002-11-01 | 2006-03-09 | Mitsubishi Rayon Co., Ltd. | Composition containing carbon nanotubes having coating thereof and process for producing them |
US20040167264A1 (en) * | 2002-11-25 | 2004-08-26 | Marc Vathauer | Impact-strength-modified polymer compositions |
US20040150312A1 (en) * | 2002-11-26 | 2004-08-05 | Mcelrath Kenneth O. | Carbon nanotube particulate electron emitters |
US7811542B1 (en) * | 2002-11-26 | 2010-10-12 | Unidym, Inc. | Carbon nanotube particulates, compositions and use thereof |
US20070224106A1 (en) * | 2003-11-27 | 2007-09-27 | Youichi Sakakibara | Carbon Nanotube Dispersed Polar Organic Solvent and Method for Producing the Same |
US20080213560A1 (en) * | 2004-02-12 | 2008-09-04 | Saint- Gobain Vetrotex France S.A. | Electrically Conductive Glass Yarn and Constructions Including Same |
US20050266605A1 (en) * | 2004-06-01 | 2005-12-01 | Canon Kabushiki Kaisha | Process for patterning nanocarbon material, semiconductor device, and method for manufacturing semiconductor device |
US20090014691A1 (en) * | 2004-10-01 | 2009-01-15 | Imperial Chemical Industries Plc. | Dispersions, films, coatings and compositions |
US20090239056A1 (en) * | 2004-10-21 | 2009-09-24 | Saint-Gobain Vetrotex France S.A. | Lubricated electrically conductive glass fibers |
US20060147707A1 (en) * | 2004-12-30 | 2006-07-06 | Jian Meng | Compacted, chopped fiber glass strands |
US20060188723A1 (en) * | 2005-02-22 | 2006-08-24 | Eastman Kodak Company | Coating compositions containing single wall carbon nanotubes |
US20060237688A1 (en) * | 2005-04-22 | 2006-10-26 | Joerg Zimmermann | Composite hydrogen storage material and methods related thereto |
US20060280938A1 (en) * | 2005-06-10 | 2006-12-14 | Atkinson Paul M | Thermoplastic long fiber composites, methods of manufacture thereof and articles derived thererom |
WO2007004652A1 (en) * | 2005-07-05 | 2007-01-11 | National University Corporation NARA Institute of Science and Technology | Method for producing carbon nanotube dispersion liquid |
US20070292622A1 (en) * | 2005-08-04 | 2007-12-20 | Rowley Lawrence A | Solvent containing carbon nanotube aqueous dispersions |
US20070079730A1 (en) * | 2005-10-12 | 2007-04-12 | Puckett Garry D | Compounds, rosins, and sizing compositions |
US20070128960A1 (en) * | 2005-11-28 | 2007-06-07 | Ghasemi Nejhad Mohammad N | Three-dimensionally reinforced multifunctional nanocomposites |
US20080213498A1 (en) * | 2006-05-16 | 2008-09-04 | Board Of Trustees Of Michigan State University | Reinforced composite with a tow of fibers and process for the preparation thereof |
US20080075954A1 (en) * | 2006-05-19 | 2008-03-27 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
US20100006442A1 (en) * | 2006-08-03 | 2010-01-14 | Basf Se | Process for application of a metal layer on a substrate |
US20080118728A1 (en) * | 2006-10-20 | 2008-05-22 | Dow Global Technologies Inc. | Aqueous dispersions disposed on glass-based fibers and glass-containing substrates |
US20080123560A1 (en) * | 2006-11-27 | 2008-05-29 | Canon Kabushiki Kaisha | Methods and devices for the dynamic management of transmission errors by network points of interconnections |
US20080241533A1 (en) * | 2006-12-15 | 2008-10-02 | Jacob Cornelis Dijt | Sizing compositions and glass fiber reinforced thermoplastic composites |
US20100203328A1 (en) * | 2007-06-27 | 2010-08-12 | Arkema France | Method for impregnating continuous fibres with a composite polymer matrix containing a thermoplastic polymer |
US20090124705A1 (en) * | 2007-09-14 | 2009-05-14 | Bayer Materialscience Ag | Carbon nanotube powder, carbon nanotubes, and processes for their production |
US20090126412A1 (en) * | 2007-11-21 | 2009-05-21 | Porcher Industries | Yarn fabric and manufacturing process thereof |
US20090202764A1 (en) * | 2007-11-26 | 2009-08-13 | Porcher Industries | RFL film or adhesive dip coating comprising carbon nanotubes and yarn comprising such a coating |
US20110198543A1 (en) * | 2008-10-10 | 2011-08-18 | Hodogaya Chemical Co., Ltd., | Aqueous dispersion of fine carbon fibers, method for preparing the aqueous dispersion, and articles using thereof |
US20110281071A1 (en) * | 2009-01-30 | 2011-11-17 | Bayer Materialscience Ag | Process for incorporating carbon particles into a polyurethane surface layer |
US20100215948A1 (en) * | 2009-02-20 | 2010-08-26 | University Of Delaware | Rubbery-block containing polymers, fiber sizings thereof and composites thereof |
US20100222480A1 (en) * | 2009-02-27 | 2010-09-02 | Christiansen Iii Walter Henry | Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same |
US20120112133A1 (en) * | 2009-03-13 | 2012-05-10 | Bayer Materialscience Ag | Polyurethane materials comprising carbon nanotubes |
US20100260998A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Fiber sizing comprising nanoparticles |
US20100311872A1 (en) * | 2009-05-18 | 2010-12-09 | Xiaoyun Lai | Aqueous Dispersions And Methods Of Making Same |
US20110017957A1 (en) * | 2009-05-27 | 2011-01-27 | Arkema France | Method of manufacturing conductive composite fibres with a high proportion of nanotubes |
Non-Patent Citations (5)
Title |
---|
Christiansen PG pub 2010/0222480 * |
Krause, et al., "Dispersability and Particle Size Distribution of CNTs in an Aqueous Surfactant Dispersion as a function of ultrasonic treatment time"; 04-2010; pg.2746-2754 * |
Meng PG pub 2006/0147707 * |
Nahass US Patent 5,591,382 * |
Sakakibara PG pub 2007/0224106 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100311872A1 (en) * | 2009-05-18 | 2010-12-09 | Xiaoyun Lai | Aqueous Dispersions And Methods Of Making Same |
US9242897B2 (en) | 2009-05-18 | 2016-01-26 | Ppg Industries Ohio, Inc. | Aqueous dispersions and methods of making same |
US20120043415A1 (en) * | 2010-08-20 | 2012-02-23 | Airbus Operations Ltd. | Bond lead |
US8854787B2 (en) * | 2010-08-20 | 2014-10-07 | Airbus Operations Limited | Bond lead |
US9347591B2 (en) | 2011-08-12 | 2016-05-24 | Chevron U.S.A. Inc. | Static dissipation in composite structural components |
US20150135978A1 (en) * | 2011-12-09 | 2015-05-21 | Flint Group Germany Gmbh | Glass fiber-reinforced sleeve for the printing industry |
US9506194B2 (en) | 2012-09-04 | 2016-11-29 | Ocv Intellectual Capital, Llc | Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media |
CN116444988A (en) * | 2023-04-07 | 2023-07-18 | 长三角碳纤维及复合材料技术创新中心 | A conductive composite material impregnated with slurry and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
US9242897B2 (en) | 2016-01-26 |
WO2010135335A1 (en) | 2010-11-25 |
US20100311872A1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9242897B2 (en) | Aqueous dispersions and methods of making same | |
US4681802A (en) | Treated glass fibers and aqueous dispersion and nonwoven mat of the glass fibers | |
CA2704484C (en) | Sizing composition for glass fibers, sized glass fibers, and reinforced products comprising the same | |
US20090239056A1 (en) | Lubricated electrically conductive glass fibers | |
TWI599687B (en) | Aqueous sizing agent and glass fiber and glass fiber cloth using the same | |
US8791195B2 (en) | Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same | |
CA2831141C (en) | Fiber glass strands and reinforced products comprising the same | |
JP5199366B2 (en) | Sizing composition in the form of a physical gel for glass strands, the resulting glass strand and a composite comprising the strand | |
US20150284289A1 (en) | Sizing Compositions for Wet and Dry Filament Winding | |
US9506194B2 (en) | Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media | |
US4592956A (en) | Treated glass fibers and aqueous dispersion and nonwoven mat of the glass fibers | |
US20050255316A1 (en) | Sizing compositions for glass fibers and sized fiber glass products | |
US20040191514A1 (en) | Sizing formulation for phenolic pultrusion and method of forming same | |
US20030172683A1 (en) | Rovings and methods and systems for producing rovings | |
EP2437936B1 (en) | Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same | |
US20140290534A1 (en) | Sizing Compositions For Glass Fibers And Sized Fiber Glass Products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PPG INDUSTRIES OHIO, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAI, XIAOYUN;PETERS, JAMES CARL;GILMORE, DENNIS;AND OTHERS;SIGNING DATES FROM 20100804 TO 20100810;REEL/FRAME:024844/0028 |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |