US20100278668A1 - Fluid pump assembly - Google Patents
Fluid pump assembly Download PDFInfo
- Publication number
- US20100278668A1 US20100278668A1 US12/433,914 US43391409A US2010278668A1 US 20100278668 A1 US20100278668 A1 US 20100278668A1 US 43391409 A US43391409 A US 43391409A US 2010278668 A1 US2010278668 A1 US 2010278668A1
- Authority
- US
- United States
- Prior art keywords
- pump
- seal
- piston
- rod
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B3/00—Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/06—Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
Definitions
- the present invention relates to fluid pumps, and, more particularly, to reciprocating piston type fluid pumps.
- Fluid pumps are utilized for various purposes.
- One such use is to pump an epoxy into a crack in concrete, such as in a wall or floor of a building.
- the epoxy typically is a two-part epoxy with a catalyst and a base.
- the catalyst is kept in one supply hopper and the base is kept in another supply hopper.
- Separate pumps are usually used to separately pump the catalyst and base to a mixing unit immediately before application within the crack(s).
- An example of a pump arrangement used to pump an epoxy is disclosed in U.S. Pat. No. 4,828,148, also invented by the inventor of the present invention.
- the present invention provides a fluid pump with a reciprocating piston which is sealed within the pump body using a pressure loaded seal (e.g., chevron seal) and a wiper seal positioned on a side of the chevron seal opposite the pump chamber.
- a pressure loaded seal e.g., chevron seal
- a wiper seal positioned on a side of the chevron seal opposite the pump chamber.
- the invention in one form is directed to a fluid pump assembly including a double acting fluid cylinder, a first pump and a second pump.
- the fluid cylinder includes a housing, a piston reciprocally disposed within the housing, and a piston rod carrying the piston and extending from opposite ends of the housing.
- the piston rod has a first end and a second end.
- the first pump includes a pump body, a pressure loaded seal and a wiper seal.
- the pump body has a pump chamber and a rod port.
- the piston rod extends through the rod port and the first end is positioned within the pump chamber.
- the pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber.
- the wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber.
- the second pump likewise includes a pump body, a pressure loaded seal and a wiper seal.
- the pump body has a pump chamber and a rod port.
- the piston rod extends through the rod port and the second end is positioned within the pump chamber.
- the pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber.
- the wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber.
- the invention in another form is directed to a fluid pump assembly including a double acting fluid cylinder and a pump.
- the fluid cylinder includes a housing, a piston reciprocally disposed within the housing, and a piston rod carrying the piston and extending from the housing.
- the piston rod has an end.
- a pump includes a pump body, a pressure loaded seal and a wiper seal.
- the pump body has a pump chamber and a rod port.
- the piston rod extends through the rod port and the end is positioned within the pump chamber.
- the pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber.
- the wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber.
- An advantage of the present invention is that during the return stroke of the piston rod, the chevron seal does not effectively operate as a seal and allows the fluid which is wiped by the wiper seal to flow back into the pump chamber.
- Another advantage is that the pumps may be directly mounted to the fluid cylinder, thereby alleviating alignment and deflection problems of the piston rod.
- FIG. 1 is a perspective, partially exploded view of an embodiment of a fluid pump assembly of the present invention
- FIG. 2 is a side, partially sectioned view of the fluid pump assembly shown in FIG. 1 ;
- FIG. 3 is a side sectional view of a pump, taken along line 3 - 3 in FIG. 2 ;
- FIG. 4 is a sectional view illustrating in more detail the piston check
- FIG. 5 is a sectional view of the pressure loaded seal, taken along line 5 - 5 in FIG. 3 ;
- FIG. 6 is a sectional view of the wiper seal, also taken along line 5 - 5 in FIG. 3 ;
- FIG. 7 is a side, partially sectioned view of another embodiment of a fluid pump assembly of the present invention.
- fluid pump assembly 10 of the present invention which generally includes a double acting fluid cylinder 12 , a first pump 14 , and a second pump 16 .
- fluid pump assembly 10 is used for pumping one component of a two part epoxy from a hopper 18 .
- Hopper 18 is in fluid communication with each of first pump 14 and second pump 16 via a suitable fluid line 20 .
- Fluid cylinder 12 is configured as a double acting pneumatic cylinder in the embodiment shown, but could also be configured as a hydraulic cylinder, depending on the application.
- Fluid cylinder 12 generally includes a housing 22 , piston 24 , and piston rod 26 .
- Housing 22 includes a pair of end caps 28 mounted to opposite ends of a cylinder 30 .
- End caps 28 and cylinder 30 are constructed from a metal in the illustrated embodiment, but could also be constructed from a different type of material, such as a composite material.
- Piston 24 is reciprocally disposed within housing 22 .
- Piston rod 26 carries piston 24 and extends through opposite ends 32 of housing 22 defined by end caps 28 .
- Piston rod 26 has a first end 34 associated with first pump 14 and a second end 36 associated with second pump 16 , as will be described in greater detail below.
- first pump 14 and second pump 16 are directly mounted to respective end caps 28 to avoid alignment and deflection problems as piston rod 26 reciprocates during operation.
- First pump 14 and second pump 16 are configured substantially identical to each other in the illustrated embodiment. Accordingly, only first pump 14 will be described in detail herein, with it being understood that second pump 16 is substantially the same.
- First pump 14 generally includes a pump body 38 , a pressure loaded seal 40 , a wiper seal 42 , and a piston check 44 .
- Pump body 38 defines a pump chamber 46 , a rod port 48 , a piston check port 50 , an inlet 52 , and an outlet 54 .
- Piston rod 26 extends through rod port 48 and first end 34 of piston rod 26 reciprocates within pump chamber 46 . Piston rod 26 is sealed within rod port 48 using pressure loaded seal 40 and wiper seal 42 , as will be described in greater detail below.
- Piston check 44 is mounted within piston check port 50 and functions to selectively fluidly interconnect inlet 52 with pump chamber 46 during operation.
- Conventional piston pumps typically use a ball check allowing one way flow of the fluid through the inlet to the pump chamber.
- a ball check can be strongly influenced by the viscosity of the fluid flowing through the inlet. A thicker fluid tends to quickly close the ball check while a thinner fluid may allow an appreciable amount of the fluid to flow past the ball prior to being seated.
- Piston check 44 is controlled using a cylindroid valve or other suitable actuator to positively open and close the flow path between inlet 52 and pump chamber 46 .
- Piston check 44 is sealed within piston check point 50 using suitable seals carried by seal holders 56 .
- Pressure loaded seal 40 and wiper seal 42 together function to effectively seal pump chamber 46 during a compression stroke of piston rod 26 .
- Pressure loaded seal 40 and wiper seal 42 also function together to effectively wipe any of the fluid from the outside periphery of piston rod 26 during a return stroke of piston rod 26 .
- a “pressure loaded seal” is intended to mean an annular seal with an axial end face which expands to seal between a rod and surrounding body.
- a pressure loaded seal may have an axial end face which is generally U-shaped or V-shaped in cross section. Fluid under pressure adjacent the end face causes the seal to expand radially, thereby providing an effective seal.
- One such seal known in the industry as a “chevron seal”, and shown in the embodiment illustrated in FIGS. 3 and 5 , has a generally V-shaped cross section (the entire seal is generally V-shaped in cross section, rather than just the end face).
- a spring arrangement may be employed within the V-shaped cavity on the open face of the chevron seal to further assist in providing effective sealing.
- pressure loaded seal 40 is positioned within rod port 48 around piston rod 26 and has a pressure loaded end face 60 which faces toward pump chamber 46 .
- Pressure loaded seal 40 is configured as a “chevron” seal in the illustrated embodiment, and thus is generally V-shaped in cross section. It is also possible to use a pressure loaded seal with a different shape, such as a seal with a U-shaped cross section or a pressure loaded end face with a U-shaped cross section.
- Wiper seal 42 is positioned within rod port 48 around piston rod 26 on a side of pressure loaded seal 40 which is opposite from pump chamber 46 (i.e., closest to fluid cylinder 12 ). Wiper seal 42 has an annular lip 62 which functions to wipe fluid (e.g., epoxy component) from the outer periphery of piston rod 26 during a return stroke.
- fluid e.g., epoxy component
- lip 62 is usually oriented toward the outside of the pump body and simply acts to prevent foreign matter from entering the annular area around piston rod 26 and contaminating the interior of pump 14 .
- the orientation of wiper seal 42 is reversed such that lip 62 is at the axial end of wiper seal 42 which is closest to pump chamber 46 . This allows the epoxy component or other fluid to be effectively wiped from the outer periphery of piston rod 26 .
- Pressure loaded seal 40 and wiper seal 42 can be respectively carried within annular recesses which are directly formed in rod port 48 .
- a seal holder 64 forming part of housing 22 can be formed with the internal recesses for holding pressure loaded seal 40 and wiper seal 42 .
- first end 34 is drawn toward fluid cylinder 12 and piston check 44 is open to allow the epoxy component to flow into pump chamber 46 .
- piston check 44 is open to allow the epoxy component to flow into pump chamber 46 .
- pressure loaded seal 40 does not radially expand to prevent the epoxy component from flowing therepast toward wiper seal 42 .
- Lip 62 of wiper seal 42 effectively wipes the epoxy component from the outer periphery of piston rod 26 and the epoxy component returns past the relaxed chevron seal 40 to pump chamber 46 .
- first end 34 of piston rod 26 moves away from fluid cylinder 12 and the pressurized epoxy component is pumped from outlet 54 .
- Piston check 44 is closed during the compression stroke to prevent the epoxy component from flowing back out inlet 52 .
- first pump 14 pumps the epoxy component through outlet 54 while second pump 16 draws the epoxy component through inlet 52 , and vice versa.
- This provides a continuous flow of the epoxy component to other downstream devices, such as a mixing device for mixing the two epoxy components together.
- each piston check 44 is selectively actuated such that when one piston check is open, the other piston check is closed. During a compression stroke, the piston check is closed to force the epoxy component from the corresponding outlet, and during a return stroke the piston check is open to draw the epoxy component into pump chamber 46 .
- FIG. 7 is a side, partially sectioned view of another embodiment of a fluid pump assembly 70 of the present invention.
- fluid pump assembly 70 includes a pair of pressure loaded seals 72 and 74 , and a pair of wiper seals 76 and 78 .
- Pressure loaded seals 72 and 74 are each configured as U-cup seals in the illustrated embodiment, but could be differently configured, such as a chevron seal, etc.
- Pressure loaded seal 72 and wiper seal 76 are each carried by a seal holder 80 associated with pump 82
- wiper seal 78 is carried by a seal holder 84 at the interface between pump 82 and air cylinder housing 86 .
- the annular space 88 between seals 72 and 76 , as well as the annular space 90 radially outside of seal holder 80 , can optionally be in fluid communication with each other and with the ambient environment to bleed any fluid which might flow past seal 72 to the ambient environment or other suitable location.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Reciprocating Pumps (AREA)
- Reciprocating Pumps (AREA)
Abstract
A fluid pump assembly includes a double acting fluid cylinder and a pump. The fluid cylinder includes a housing, a piston reciprocally disposed within the housing, and a piston rod carrying the piston and extending from the housing. The piston rod has an end. A pump includes a pump body, a pressure loaded seal and a wiper seal. The pump body has a pump chamber and a rod port. The piston rod extends through the rod port and the end is positioned within the pump chamber. The pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber. The wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber.
Description
- 1. Field of the Invention
- The present invention relates to fluid pumps, and, more particularly, to reciprocating piston type fluid pumps.
- 2. Description of the Related Art
- Fluid pumps are utilized for various purposes. One such use is to pump an epoxy into a crack in concrete, such as in a wall or floor of a building. The epoxy typically is a two-part epoxy with a catalyst and a base. The catalyst is kept in one supply hopper and the base is kept in another supply hopper. Separate pumps are usually used to separately pump the catalyst and base to a mixing unit immediately before application within the crack(s). An example of a pump arrangement used to pump an epoxy is disclosed in U.S. Pat. No. 4,828,148, also invented by the inventor of the present invention.
- A problem with known pump arrangements of the type described above is that they tend to be relatively large, complex and expensive.
- What is needed in the art is a fluid pump which can accommodate fluids of different viscosities, simple to assemble, clean and operate, and economical.
- The present invention provides a fluid pump with a reciprocating piston which is sealed within the pump body using a pressure loaded seal (e.g., chevron seal) and a wiper seal positioned on a side of the chevron seal opposite the pump chamber.
- The invention in one form is directed to a fluid pump assembly including a double acting fluid cylinder, a first pump and a second pump. The fluid cylinder includes a housing, a piston reciprocally disposed within the housing, and a piston rod carrying the piston and extending from opposite ends of the housing. The piston rod has a first end and a second end. The first pump includes a pump body, a pressure loaded seal and a wiper seal. The pump body has a pump chamber and a rod port. The piston rod extends through the rod port and the first end is positioned within the pump chamber. The pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber. The wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber. The second pump likewise includes a pump body, a pressure loaded seal and a wiper seal. The pump body has a pump chamber and a rod port. The piston rod extends through the rod port and the second end is positioned within the pump chamber. The pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber. The wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber.
- The invention in another form is directed to a fluid pump assembly including a double acting fluid cylinder and a pump. The fluid cylinder includes a housing, a piston reciprocally disposed within the housing, and a piston rod carrying the piston and extending from the housing. The piston rod has an end. A pump includes a pump body, a pressure loaded seal and a wiper seal. The pump body has a pump chamber and a rod port. The piston rod extends through the rod port and the end is positioned within the pump chamber. The pressure loaded seal is positioned within the rod port around the piston rod and has a pressure loaded end face toward the pump chamber. The wiper seal is positioned within the rod port around the piston rod on a side of the pressure loaded seal opposite from the pump chamber.
- An advantage of the present invention is that during the return stroke of the piston rod, the chevron seal does not effectively operate as a seal and allows the fluid which is wiped by the wiper seal to flow back into the pump chamber.
- Another advantage is that the pumps may be directly mounted to the fluid cylinder, thereby alleviating alignment and deflection problems of the piston rod.
- Yet another advantage is that the fluid flow into each fluid pump is positively controlled using a selectively actuated piston check, rather than a ball type check valve.
- The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a perspective, partially exploded view of an embodiment of a fluid pump assembly of the present invention; -
FIG. 2 is a side, partially sectioned view of the fluid pump assembly shown inFIG. 1 ; -
FIG. 3 is a side sectional view of a pump, taken along line 3-3 inFIG. 2 ; -
FIG. 4 is a sectional view illustrating in more detail the piston check; -
FIG. 5 is a sectional view of the pressure loaded seal, taken along line 5-5 inFIG. 3 ; -
FIG. 6 is a sectional view of the wiper seal, also taken along line 5-5 inFIG. 3 ; and -
FIG. 7 is a side, partially sectioned view of another embodiment of a fluid pump assembly of the present invention. - Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
- Referring now to the drawings, and more particularly to
FIGS. 1 and 2 , there is shown an embodiment of afluid pump assembly 10 of the present invention which generally includes a double actingfluid cylinder 12, afirst pump 14, and asecond pump 16. In the embodiment shown,fluid pump assembly 10 is used for pumping one component of a two part epoxy from ahopper 18. However, it is to be understood thatfluid pump assembly 10 can be used for pumping other types of fluids, depending upon the application. Hopper 18 is in fluid communication with each offirst pump 14 andsecond pump 16 via asuitable fluid line 20. -
Fluid cylinder 12 is configured as a double acting pneumatic cylinder in the embodiment shown, but could also be configured as a hydraulic cylinder, depending on the application.Fluid cylinder 12 generally includes ahousing 22,piston 24, andpiston rod 26.Housing 22 includes a pair ofend caps 28 mounted to opposite ends of acylinder 30.End caps 28 andcylinder 30 are constructed from a metal in the illustrated embodiment, but could also be constructed from a different type of material, such as a composite material. Piston 24 is reciprocally disposed withinhousing 22. Pistonrod 26 carriespiston 24 and extends throughopposite ends 32 ofhousing 22 defined byend caps 28. Pistonrod 26 has afirst end 34 associated withfirst pump 14 and asecond end 36 associated withsecond pump 16, as will be described in greater detail below. - In a preferred embodiment, each of
first pump 14 andsecond pump 16 are directly mounted torespective end caps 28 to avoid alignment and deflection problems aspiston rod 26 reciprocates during operation. First pump 14 andsecond pump 16 are configured substantially identical to each other in the illustrated embodiment. Accordingly, only first pump 14 will be described in detail herein, with it being understood thatsecond pump 16 is substantially the same. - First pump 14 generally includes a
pump body 38, a pressure loadedseal 40, awiper seal 42, and apiston check 44.Pump body 38 defines apump chamber 46, arod port 48, apiston check port 50, aninlet 52, and anoutlet 54.Piston rod 26 extends throughrod port 48 andfirst end 34 ofpiston rod 26 reciprocates withinpump chamber 46.Piston rod 26 is sealed withinrod port 48 using pressure loadedseal 40 andwiper seal 42, as will be described in greater detail below. -
Piston check 44 is mounted withinpiston check port 50 and functions to selectivelyfluidly interconnect inlet 52 withpump chamber 46 during operation. Conventional piston pumps typically use a ball check allowing one way flow of the fluid through the inlet to the pump chamber. However, a ball check can be strongly influenced by the viscosity of the fluid flowing through the inlet. A thicker fluid tends to quickly close the ball check while a thinner fluid may allow an appreciable amount of the fluid to flow past the ball prior to being seated.Piston check 44 is controlled using a cylindroid valve or other suitable actuator to positively open and close the flow path betweeninlet 52 and pumpchamber 46.Piston check 44 is sealed withinpiston check point 50 using suitable seals carried byseal holders 56. - Pressure loaded
seal 40 andwiper seal 42 together function to effectively sealpump chamber 46 during a compression stroke ofpiston rod 26. Pressure loadedseal 40 andwiper seal 42 also function together to effectively wipe any of the fluid from the outside periphery ofpiston rod 26 during a return stroke ofpiston rod 26. - As used herein, a “pressure loaded seal” is intended to mean an annular seal with an axial end face which expands to seal between a rod and surrounding body. For example, a pressure loaded seal may have an axial end face which is generally U-shaped or V-shaped in cross section. Fluid under pressure adjacent the end face causes the seal to expand radially, thereby providing an effective seal. One such seal, known in the industry as a “chevron seal”, and shown in the embodiment illustrated in
FIGS. 3 and 5 , has a generally V-shaped cross section (the entire seal is generally V-shaped in cross section, rather than just the end face). A spring arrangement may be employed within the V-shaped cavity on the open face of the chevron seal to further assist in providing effective sealing. - Referring to
FIGS. 3 and 5 , conjunctively, pressure loadedseal 40 is positioned withinrod port 48 aroundpiston rod 26 and has a pressure loaded end face 60 which faces towardpump chamber 46. Pressure loadedseal 40 is configured as a “chevron” seal in the illustrated embodiment, and thus is generally V-shaped in cross section. It is also possible to use a pressure loaded seal with a different shape, such as a seal with a U-shaped cross section or a pressure loaded end face with a U-shaped cross section. -
Wiper seal 42 is positioned withinrod port 48 aroundpiston rod 26 on a side of pressure loadedseal 40 which is opposite from pump chamber 46 (i.e., closest to fluid cylinder 12).Wiper seal 42 has anannular lip 62 which functions to wipe fluid (e.g., epoxy component) from the outer periphery ofpiston rod 26 during a return stroke. - With a conventional wiper seal,
lip 62 is usually oriented toward the outside of the pump body and simply acts to prevent foreign matter from entering the annular area aroundpiston rod 26 and contaminating the interior ofpump 14. However, with the present invention, the orientation ofwiper seal 42 is reversed such thatlip 62 is at the axial end ofwiper seal 42 which is closest to pumpchamber 46. This allows the epoxy component or other fluid to be effectively wiped from the outer periphery ofpiston rod 26. - Pressure loaded
seal 40 andwiper seal 42 can be respectively carried within annular recesses which are directly formed inrod port 48. However, for manufacturing purposes, aseal holder 64 forming part ofhousing 22 can be formed with the internal recesses for holding pressure loadedseal 40 andwiper seal 42. - During a return stroke of
piston rod 26,first end 34 is drawn towardfluid cylinder 12 andpiston check 44 is open to allow the epoxy component to flow intopump chamber 46. During the return stroke, there is no pressure withinpump chamber 46 and, in fact, may be a slight vacuum pressure to assist in pulling the epoxy component intopump chamber 46. Without pressure withinpump 46, pressure loadedseal 40 does not radially expand to prevent the epoxy component from flowing therepast towardwiper seal 42.Lip 62 ofwiper seal 42 effectively wipes the epoxy component from the outer periphery ofpiston rod 26 and the epoxy component returns past therelaxed chevron seal 40 to pumpchamber 46. - During a compression stroke within
first pump 14,first end 34 ofpiston rod 26 moves away fromfluid cylinder 12 and the pressurized epoxy component is pumped fromoutlet 54.Piston check 44 is closed during the compression stroke to prevent the epoxy component from flowing back outinlet 52. - When
fluid pump assembly 10 is configured with both afirst pump 14 and asecond pump 16 as illustrated,first pump 14 pumps the epoxy component throughoutlet 54 whilesecond pump 16 draws the epoxy component throughinlet 52, and vice versa. This provides a continuous flow of the epoxy component to other downstream devices, such as a mixing device for mixing the two epoxy components together. To this end, eachpiston check 44 is selectively actuated such that when one piston check is open, the other piston check is closed. During a compression stroke, the piston check is closed to force the epoxy component from the corresponding outlet, and during a return stroke the piston check is open to draw the epoxy component intopump chamber 46. -
FIG. 7 is a side, partially sectioned view of another embodiment of a fluid pump assembly 70 of the present invention. In contrast withfluid pump assembly 10 described above, fluid pump assembly 70 includes a pair of pressure loadedseals seals seal 72 andwiper seal 76 are each carried by aseal holder 80 associated withpump 82, andwiper seal 78 is carried by aseal holder 84 at the interface betweenpump 82 andair cylinder housing 86. Theannular space 88 betweenseals annular space 90 radially outside ofseal holder 80, can optionally be in fluid communication with each other and with the ambient environment to bleed any fluid which might flowpast seal 72 to the ambient environment or other suitable location. - While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Claims (16)
1. A fluid pump assembly, comprising:
a double acting fluid cylinder including a housing, a piston reciprocally disposed within said housing, and a piston rod carrying said piston and extending from opposite ends of said housing, said piston rod having a first end and a second end;
a first pump including a pump body, a pressure loaded seal and a wiper seal, said pump body having a pump chamber and a rod port, said piston rod extending through said rod port and said first end positioned within said pump chamber, said pressure loaded seal positioned within said rod port around said piston rod and having a pressure loaded end face toward said pump chamber, said wiper seal positioned within said rod port around said piston rod on a side of said pressure loaded seal opposite from said pump chamber; and
a second pump including a pump body, a pressure loaded seal and a wiper seal, said pump body having a pump chamber and a rod port, said piston rod extending through said rod port and said second end positioned within said pump chamber, said pressure loaded seal positioned within said rod port around said piston rod and having a pressure loaded end face toward said pump chamber, said wiper seal positioned within said rod port around said piston rod on a side of said pressure loaded seal opposite from said pump chamber.
2. The fluid pump assembly of claim 1 , wherein each of said first pump and said second pump are mounted directly to said fluid cylinder.
3. The fluid pump assembly of claim 1 , wherein said first pump and said second pump each include an inlet and a piston check, each said piston check selectively fluidly interconnecting a respective said inlet and said pump chamber.
4. The fluid pump assembly of claim 3 , wherein said piston checks are selectively actuated such that when one said piston check is opened, the other said piston check is closed.
5. The fluid pump assembly of claim 3 , wherein each said piston check is closed when said corresponding piston rod is in a compression stroke, and opened when said corresponding piston rod is in a return stroke.
6. The fluid pump assembly of claim 1 , wherein said pressure loaded end face is one of V-shaped and U-shaped in cross section.
7. The fluid pump assembly of claim 6 , wherein said seal is a chevron seal.
8. The fluid pump assembly of claim 1 , wherein said fluid cylinder is an air cylinder.
9. A fluid pump assembly, comprising:
a double acting fluid cylinder including a housing, a piston reciprocally disposed within said housing, and a piston rod carrying said piston and extending from said housing, said piston rod having an end; and
a pump including a pump body, a pressure loaded seal and a wiper seal, said pump body having a pump chamber and a rod port, said piston rod extending through said rod port and said end positioned within said pump chamber, said pressure loaded seal positioned within said rod port around said piston rod and having a pressure loaded end face toward said pump chamber, said wiper seal positioned within said rod port around said piston rod on a side of said pressure loaded seal opposite from said pump chamber.
10. The fluid pump assembly of claim 9 , wherein said piston extends from opposite ends of said housing and has a second end; and further including a second pump assembly having a pump body, a pressure loaded seal and a wiper seal, said pump body having a pump chamber and a rod port, said piston rod extending through said rod port and said second end positioned within said pump chamber, said pressure loaded seal positioned within said rod port around said piston rod and having a pressure loaded end face toward said pump chamber, said wiper seal positioned within said rod port around said piston rod on a side of said pressure loaded seal opposite from said pump chamber.
11. The fluid pump assembly of claim 9 , wherein said pump is mounted directly to said fluid cylinder.
12. The fluid pump assembly of claim 9 , wherein said pump includes an inlet and a piston check, said piston check selectively fluidly interconnecting said inlet and said pump chamber.
13. The fluid pump assembly of claim 12 , wherein said piston check is closed when said piston rod is in a compression stroke, and opened when said piston rod is in a return stroke.
14. The fluid pump assembly of claim 9 , wherein said pressure loaded end face is one of V-shaped and U-shaped in cross section.
15. The fluid pump assembly of claim 14 , wherein said seal is a chevron seal.
16. The fluid pump assembly of claim 9 , wherein said fluid cylinder is an air cylinder.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/433,914 US20100278668A1 (en) | 2009-05-01 | 2009-05-01 | Fluid pump assembly |
US12/842,522 US20100290937A1 (en) | 2009-05-01 | 2010-07-23 | Fluid pump assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/433,914 US20100278668A1 (en) | 2009-05-01 | 2009-05-01 | Fluid pump assembly |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/842,522 Continuation-In-Part US20100290937A1 (en) | 2009-05-01 | 2010-07-23 | Fluid pump assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100278668A1 true US20100278668A1 (en) | 2010-11-04 |
Family
ID=43030478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/433,914 Abandoned US20100278668A1 (en) | 2009-05-01 | 2009-05-01 | Fluid pump assembly |
Country Status (1)
Country | Link |
---|---|
US (1) | US20100278668A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106194625A (en) * | 2016-08-13 | 2016-12-07 | 赵宽学 | Hydraulic drive fluid pump |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4509884A (en) * | 1983-05-02 | 1985-04-09 | Lily Corporation | Injection nozzle for adhesive materials |
US4778356A (en) * | 1985-06-11 | 1988-10-18 | Hicks Cecil T | Diaphragm pump |
US4798502A (en) * | 1985-06-18 | 1989-01-17 | Lily Corporation | Corner grouting nozzle |
US4828148A (en) * | 1987-01-28 | 1989-05-09 | Lily Corporation | Fluid mixing dispenser |
US6226948B1 (en) * | 1999-05-26 | 2001-05-08 | John F. Trout | Method and apparatus for waterproofing concrete |
-
2009
- 2009-05-01 US US12/433,914 patent/US20100278668A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4509884A (en) * | 1983-05-02 | 1985-04-09 | Lily Corporation | Injection nozzle for adhesive materials |
US4778356A (en) * | 1985-06-11 | 1988-10-18 | Hicks Cecil T | Diaphragm pump |
US4798502A (en) * | 1985-06-18 | 1989-01-17 | Lily Corporation | Corner grouting nozzle |
US4828148A (en) * | 1987-01-28 | 1989-05-09 | Lily Corporation | Fluid mixing dispenser |
US6226948B1 (en) * | 1999-05-26 | 2001-05-08 | John F. Trout | Method and apparatus for waterproofing concrete |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106194625A (en) * | 2016-08-13 | 2016-12-07 | 赵宽学 | Hydraulic drive fluid pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3887305A (en) | Reciprocating pump | |
US9394900B2 (en) | Internal bellows pump fluid path | |
US20150144826A1 (en) | Valve seats for use in fracturing pumps | |
JP4603031B2 (en) | Reciprocating pump | |
JP2008511794A (en) | Low friction reciprocating pump | |
US20100329911A1 (en) | Check valve and piston pump having check valve | |
US20150260178A1 (en) | Piston membrane pump | |
CA2574324C (en) | Plunger pump with atmospheric bellows | |
EP2684386B1 (en) | Pump head outlet port | |
JP2008208788A (en) | Piston pump | |
US6983682B2 (en) | Method and device at a hydrodynamic pump piston | |
CN110185607B (en) | Piston pump | |
US20100290937A1 (en) | Fluid pump assembly | |
US20100278668A1 (en) | Fluid pump assembly | |
US8123505B2 (en) | Reciprocating pump with sealing collar arrangement | |
US7377757B2 (en) | Fluid pump with enhanced seal | |
JP6650387B2 (en) | Reciprocating pump | |
US20120042773A1 (en) | Pump Piston Device | |
US20130139682A1 (en) | Single Sided, Dual Plunger Pump | |
US1060816A (en) | Pump. | |
KR20230040148A (en) | Plunger pump having structure of oil leakage prevention | |
KR101105151B1 (en) | Pump of brake system | |
JP2014240632A (en) | Piston pump device | |
KR20130031575A (en) | Multi stage cylinder apparatus | |
CN108799046A (en) | The reciprocating piston pump of electromagnetic drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LILY CORPORATION, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TROUT, JOHN F.;REEL/FRAME:022624/0431 Effective date: 20090424 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |