US20100242376A1 - Gutter cover system - Google Patents
Gutter cover system Download PDFInfo
- Publication number
- US20100242376A1 US20100242376A1 US12/802,167 US80216710A US2010242376A1 US 20100242376 A1 US20100242376 A1 US 20100242376A1 US 80216710 A US80216710 A US 80216710A US 2010242376 A1 US2010242376 A1 US 2010242376A1
- Authority
- US
- United States
- Prior art keywords
- gutter
- bracket
- lip
- swivel
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/04—Roof drainage; Drainage fittings in flat roofs, balconies or the like
- E04D13/076—Devices or arrangements for removing snow, ice or debris from gutters or for preventing accumulation thereof
Definitions
- This invention relates to gutter cover systems. More particularly, the invention relates to a gutter cover system with an improved gutter bracket and cover.
- gutter system For centuries, architects and builders have understood the beneficial value of directing rainwater away from structures to prevent damage to exterior walls, windows, doors, foundations, basements, landscaping, and to prevent erosion.
- the most popular and geographically accepted gutter system is the open channel gutter trough that runs parallel along the roof eaves of a building. Gutter systems are designed to direct rainwater away from buildings; however, if clogged with debris, they will fill up and overflow, and since the gutter is located at the buildings roof edge, overflowing water can now damage the interior, as well as the exterior, of the building. In order to accomplish the intended purposes, the gutter system must function properly, and to do this, the gutter trough must be free of any debris during rainfall.
- gutter cover systems which shield gutters from above, have become quite popular. In this fashion, debris does not accumulate in the gutters and additionally squirrels, birds and other wildlife are denied access to the gutter and therefore the unpleasant chore of gutter cleaning is eliminated or at least significantly delayed.
- the gutter cover must appropriately shield the gutter from debris yet avoid creating an undesirable alternative water drainage route from the roof, one which does not terminate in the gutter trough.
- Such an alternative route could lead to rotten wood along the fascia, etc., or could lead to deposition of water on the ground close to the foundation with the risk of structural damage over time.
- gutter covers may not only be attached to the roof or fascia or the like, but may be typically affixed to the gutter itself.
- Many such attempts have included a bracket mounted within the gutter, often spanning the gutter from the lip to the wall side. Installing such a bracket is not a trivial matter. In particular, installing the bracket so as to achieve the appropriate mechanical tension must be done in an extremely small space within the gutter at a roof-level elevation.
- a non-system approach of interest is the gutter hanger (note that a gutter hanger is merely for supporting the gutter, but not adapted for mounting a gutter cover thereon) disclosed in Winkel, U.S. Pat. No. 6,854,692 B1, describing a swivel gutter hanger.
- Winkel is not intended for supporting a gutter cover and presents certain problems discussed in more detail below, due to the swivel portion being located approximately at the midpoint of the bracket.
- a gutter cover system which provides a simple bracket suitable for installation in a small area, yet providing sufficient mechanical tension to support the gutter cover and strengthen the guttering system. Also needed is a gutter cover itself which is minimized in size and with a simple profile for easy installation and optimized water routing. Finally, a gutter hanger for retrofitting damaged gutters is also highly desirable.
- the present invention satisfies the need for a fast, convenient method of installing an improved gutter cover system with effective water routing.
- the invention provides an improved system which is relatively convenient to install, with an innovative gutter bracket and gutter cover that can be installed more quickly and effectively.
- the present gutter bracket has a bracket member, a tab member and a lip member.
- the bracket member has a wall end and a swivel end and presents a longitudinal axis aligning the wall end and the swivel end.
- the wall end has a flange opposite from the swivel end as well as a flat portion along the longitudinal axis.
- the tab member extends upwardly from the bracket member, to form a slot.
- the lip member is affixed to the swivel edge, preferably by a screw.
- the lip member is configured to be matingly received within the lip of the gutter.
- the improved gutter cover includes a planar upper panel for positioning on the roof, an arcuate nose at the lowest portion of the upper panel and disposed close to the gutter lip.
- the cover includes a planar lower member below the nose and a foot suitable for mating insertion into the slot.
- the system improvements include a modified nose with an arcuate profile, free of sharp or bent edges to avoid diversion of water from the intended drainage route, i.e. terminating in the gutter trough.
- the bracket member presents a raised elevation for easier installation of the cover.
- the present invention provides a gutter hanger and a gutter bracket which are both easier to install spanning the gutter from front to back, because of a swivel function preferably disposed relatively close to the front of the gutter, for easier installation, yet providing mechanical support for the gutter when the swivel portion is locked into rigid alignment.
- FIG. 2 is a perspective view of the inventive gutter cover
- FIG. 3 is a side elevational view of the inventive gutter bracket
- FIG. 4 is a side elevational view of the bracket of FIG. 3 , partially exploded;
- FIG. 5 is an exploded plan view of the bracket of FIG. 3 ;
- FIG. 6 is a partial plan view of the bracket of FIG. 3 ;
- FIG. 7 a is an alternative gutter bracket according to the invention, shown in a side elevational view
- FIG. 7 b is a partially exploded side elevational view of the alternative bracket of FIG. 7 a;
- FIG. 9 is a side elevational view of a gutter hanger in accordance with the present invention.
- FIG. 10 is a side elevational view, partially sectional, illustrating a prior art gutter cover system.
- FIG. 11 is a side elevational view of the prior art gutter bracket shown in FIG. 10 .
- House 22 includes a roof deck 26 , outer wall 28 , fascia 30 , roof edge 32 , shingles 34 , including a lower most shingle 36 .
- Gutter 24 includes a front wall 38 , a gutter floor 40 , back wall 42 , a K-style lip 44 and an interior gutter trough 46 .
- Lip 44 has uppermost portions 48 and an interior portion 50 .
- Backwall 42 of gutter 24 has an upper edge 52 .
- nose 60 is arcuate and preferably smooth in exterior surface.
- nose 60 presents an interior circular radius so that nose 60 is substantially semi-circular in profile shape, with a substantially constant radius.
- the constant radius of nose 60 is between 1 ⁇ 2 inch and two inches.
- nose 60 has a radius of about 1 ⁇ 2 inch, for purposes to be described below.
- lower member 62 of gutter cover 54 is also substantially flat, planar and imperforated in preferred embodiments, with a downward slope of about 40.degree. in particularly preferred embodiments.
- wall end 82 and swivel end 84 serve cooperatively to define a longitudinal axis as indicated at reference numeral 86 .
- Screw 80 has been omitted in FIG. 4 for ease of illustration.
- Lip member 78 is shown even further from bracket member 74 , again for ease of illustration.
- Wall end 82 includes an upwardly extending flange 88 , a shaft 90 and a curved member 92 .
- Flange 88 includes a flange hole 94 indicated by dotted lines (see also FIG. 8 ) and a top point 96 .
- Top point 96 of flange 88 presents a first elevation with respect to shaft 90 , as indicated by reference numeral 98 .
- Shaft 90 is substantially flat, but has a central ribbed area 100 for additional strength (see also FIG. 5 ).
- Curved member 92 includes a transitional region 102 , upwardly extending from shaft 90 .
- Transition region 102 of curved member 92 includes a supplemental ribbed area 104 which is integral and continuous with ribbed area 100 .
- Swivel end 84 has a swivel region 116 .
- Swivel region 116 includes a swivel ridge 118 and a swivel platform 120 .
- Swivel platform 120 includes a swivel screw hole 122 (see FIG. 5 ).
- Swivel platform 120 also includes two detents 124 and 126 formed so as to provide extensions below swivel platform 120 (see FIG. 4 for detent 124 in profile). As viewed from above in FIG. 5 , swivel platform 120 is substantially rectangular in shape, with a width of one inch and a length of 1 ⁇ 2 inch.
- tab member 76 extends upwardly from upper platform 106 .
- Tab 76 includes a backstop 128 as shown.
- Tab 76 in cooperation with upper platform 106 forms a slot 130 for insertion of foot 64 during installation.
- lip member 78 has a lip platform 132 and a bight member 134 .
- Bight member 134 includes uppermost portion 136 which presents a second elevation relative to lip platform 132 , as indicated at reference numeral 138 .
- Lip platform 132 has two detent apertures 140 , 142 and a lip screw hole 144 , formed therein (see FIG. 5 ).
- first elevation 98 of top point 96 of flange 88 is lower than second elevation 138 of uppermost portion 136 of bight member 134 , for reasons to be discussed below.
- screw 80 is threaded and conventional in nature. Swivel screw hole 122 and lip screw hole 144 (see FIG. 5 ) are appropriately threaded for reversible threaded insertion by screw 80 .
- lip member 78 and swivel platform 120 are shown in a skewed configuration as appropriate prior to installation, as will be discussed in more detail below.
- Screw 80 is threaded through swivel screw hole 122 as well as lip screw hole 144 (not shown in FIG. 6 ) but not completely secured, so that swivel platform 120 (and the rest of bracket member 74 , not shown in FIG. 6 ) may swivel back and forth angularly about lip member 78 as indicated at reference numeral 146 .
- wall end 82 a includes flange 88 and an elongated shaft 90 a .
- Flange 88 (exactly as in FIG. 4 ) includes flange hole 94 and top point 96 .
- Top point 96 presents a first elevation relative to shaft 90 a as indicated at reference numeral 98 .
- gutter bracket 56 a is seen in an exploded plan view, i.e. with bracket member 74 a and lip member 78 shown detached.
- Swivel platform 120 is shown with detents 124 and 126 (see also FIG. 7 b for detent 124 in profile). Also shown is threaded swivel screw hole 122 with screw 80 inserted.
- gutter hanger 152 in accordance with the present invention is shown.
- the essential difference between gutter hanger 152 and gutter bracket 56 a is that no tab member 76 is included. That is to say the purpose of gutter hanger 152 is for the repair or strengthening of gutter 24 (not shown in FIG. 9 ). In other words, the gutter hanger 152 does not serve as a site for securing foot 64 of gutter cover 54 (see FIG. 1 ).
- Flange 88 is exactly the same in structure as flange 88 of FIG. 7 b or FIG. 4 .
- flange 88 includes flange hole 94 and top point 96 .
- Top point 96 presents a first elevation with respect to shaft 90 b as indicated by reference numeral 98 .
- Shaft 90 b includes a central upraised ribbed area 100 b extending substantially most of the way along shaft 90 b .
- Shaft 90 b also includes two downwardly extending bevels 110 b and 114 b (bevel 114 b is not shown for ease of illustration but is strictly analogous with bevel 114 a of FIG. 7 c ).
- Ribbed area 100 b and bevels 110 b , 114 b are formed for additional strength for bracket member 74 b , as will be readily appreciated.
- Swivel end 84 b includes swivel platform 120 which is exactly like swivel platform 120 shown in FIG. 7 c and FIG. 5 .
- swivel platform 120 of FIG. 9 includes downwardly extending detents 124 and 126 as well as threaded swivel screw hole 122 (these elements are not shown for ease of illustration).
- Lip member 78 is exactly as shown in FIGS. 7 b and 7 c for gutter bracket 56 a , as well as in FIGS. 4 and 5 for gutter bracket 56 .
- lip platform 132 includes detent apertures 140 and 142 as well as threaded lip screw hole 144 (these elements are not shown for ease of illustration).
- Lip member 78 also includes bight member 134 and uppermost portion 136 .
- Uppermost portion 136 presents a second elevation with respect to lip platform 132 , as indicated at reference numeral 138 .
- first elevation 98 is lower than second elevation 138 .
- Prior art gutter cover system 154 is shown, operatively adapted for use in conjunction with a house 22 or other building, as well as a gutter 24 .
- Prior art system 154 includes a prior art gutter cover 156 and a prior art mounting bracket 158 .
- Prior art gutter cover 156 includes an upper panel 160 , a nose 162 and a lower member 164 .
- Prior art nose 162 is disadvantageously not radially constant, as will be readily appreciated by reference to FIG. 10 .
- nose 162 is not even continuously arcuate.
- prior art nose 162 includes bend points 166 as indicated. Bend points 166 are disadvantageous as will be noted below.
- Loop 168 includes a front portion 174 , and has formed therein a first loop aperture 176 .
- Loop 168 also includes a top portion 178 , and a back portion 180 , with a second loop aperture 182 formed therein.
- First loop aperture 176 and second loop aperture 182 are elevationally aligned for purposes to be discussed below.
- Top portion 178 of loop 168 presents a first elevation with respect to floor 170 as indicated at reference numeral 184 .
- drip edge 72 is mounted on house 22 in exactly the same fashion as indicated in FIG. 1 .
- drip edge 72 has a drain member 190 extending downwardly along fascia 30 .
- a routing element 192 At the bottom of drain member 190 of drip edge 72 is a routing element 192 , the significance of which will be discussed below.
- prior art bracket 158 is affixed to fascia 30 by wall screw or nail 194 , as will be discussed in more detail below.
- gutter bracket 56 presents a total length along axis 86 , i.e. from flange 88 to bight member 136 .
- the position of screw 80 (see FIG. 3 ) along axis 86 determines the swivel action. It will be noted by inspection that the position of screw 80 along axis is at least 80 percent of the total length of bracket 56 (i.e. at least 80 percent of the way toward bight member 134 ). This relative axial position is considered optimum for swiveling as well as screw driver access for tightening screw 80 .
- screw 80 and swivel screw hole 122 and lip screw hole 144 ) is contemplated within the present invention.
- the swivel function could be placed at a minimum of 60 percent of the total axial length toward bight member 134 , or anywhere along the axial region closer than that to bight member 134 .
- gutter brackets 56 of FIG. 1 (or alternatively gutter brackets 56 a of FIG. 7 a ) must be installed.
- the typical ratio of gutter brackets 56 to covers 54 is typically two to one, i.e. two gutter brackets for each cover 54 , although a ratio of three to one or even one to one (or any other ratio) can be used depending on the configuration of covers 54 to brackets 56 .
- Bracket 56 is first put in a bent, swivel orientation as shown in FIG. 6 , in other words, bracket member 74 is rotated slightly to achieve that configuration. Screw 80 is already inserted through swivel screw hole 122 and lip screw hole 144 , but not yet completely tightened to allow such swivel action as indicated at reference numeral 146 of FIG. 6 . In this fashion, mounting bracket 56 has effectively a shortened length and therefore can be easily inserted into gutter 24 .
- uppermost portion 136 of bight 134 of lip member 78 is then fitted into interior 50 of lip 44 of gutter 24 as shown in FIG. 1 , for mating, secure engagement.
- bracket member 74 is elevationally aligned so as to be the proper elevation with respect to back wall 42 of gutter 24 . Then bracket member 74 is swiveled into position so that flange 88 abuts back wall 42 and bracket member 74 and lip member 78 are longitudinally aligned.
- bracket bracket 74 may no longer be swiveled angularly with respect to lip member 78 .
- flange 88 of bracket member 74 abutting back wall 42 of gutter 24 at the appropriate elevation and swivel action prohibited by screw 80
- gutter bracket 56 provides rigid mechanical support of gutter 24 .
- mating engagement of detents 124 , 126 respectively with detent apertures 140 , 142 further prevents swivel action.
- gutter bracket 56 is securely, rigidly mounted within gutter 24 and affixed to house 22 , providing beneficial mechanical support for gutter 24 .
- foot 64 of cover 54 is inserted into slot 130 (see FIG. 4 ) until it is mechanically stopped at backstop 128 of tab 76 .
- foot 64 may also be inserted at this time into slot 130 of another bracket 56 advantageously spaced from the original bracket 56 , as is well known in the art.
- the low profile of the nose 60 allows easier installation under the lowest shingle 36 and prevents the necessity of lowering gutter 24 .
- cover 20 now has structural support and may be fastened to roof deck 26 .
- a bend point 70 may be created in upper panel 58 at any time during the process as deemed necessary to accommodate the slope of roof deck 26 .
- upper edge 68 of upper panel 58 of cover 20 is inserted between the lower most shingle 36 and roof deck 26 .
- Upper panel 58 is then secured to shingle 36 and roof deck 26 by flat-head screw (not shown) or any other fashion well understood in the art.
- brackets 56 may be chosen the appropriate number of brackets 56 to install in gutter 24 along the interior thereof. In other words, a ratio of two to one may be appropriate or, if only one bracket is mounted each five feet and cover 54 has a span of five feet (see reference numeral 66 in FIG. 2 ), then essentially each cover 54 could share a given bracket 56 . Alternatively, additional brackets per cover may be installed for additional bolstering of gutter 24 and security of placement of covers 54 .
- bracket 56 Retrofitting technique using bracket 56 will now be discussed. For various reasons, it may be desirable to install one or more brackets 56 some time after the original installation, i.e. retrofitting. In this instance, the inventive bracket 56 offers additional benefits. After original installation, there is generally no access between back wall 42 and fascia 30 (see FIG. 1 ) due to compression of wall 42 against fascia 30 after insertion of wall screw 194 . Advantageously, bracket 56 requires no such access, since retrofitting is performed in essentially the same procedure as the original bracket installation. In contradistinction, and with reference to FIGS. 10 and 11 , the prior art bracket 158 does require such access for insertion of back portion 180 of loop 168 .
- bracket 158 In the event that bracket 158 is used for retrofitting, the installer must either cut off back portion 180 prior to installation, or alternatively use all of loop 168 on the inside of back wall 42 . In this alternative method, the extra length of back portion 180 may cause mechanical distortions gutter 24 . In particular, lip 44 of gutter 24 may be mechanically deformed by such retrofit installation. In addition, the higher profile of loop 168 may result in undesirable contact with routing element 192 during retrofitting (see FIG. 10 ), while the low profile of flange 88 of bracket 56 of the present invention (see FIG. 1 ), eliminates any such contact with routing element 192 .
- system 20 As shown installed in FIG. 1 will now be described.
- the purpose of system 20 is to segregate debris from rainwater, discarding debris such as leaves, while retaining water and guiding it into gutter trough 46 of gutter 24 .
- rainwater and debris coming off of shingles 34 will be naturally guided onto upper panel 58 of cover 54 by the downward slope of roof deck 26 .
- the gentle sloping of upper panel 58 will continue the downward descent of rainwater on the top surface thereof until nose 60 is reached.
- debris such as leaves and twigs will naturally fall off the edge presented by nose 60 and fall harmlessly to the ground, having missed the interior of gutter 24 (note that nose 60 extends further from house 22 than lip 44 of gutter 24 ).
- cover 54 serves also to promote a smooth flow of water, since water tension will not be disrupted by the inevitable dropping of rainwater through imperforations, as well as the disrupting of the speed and direction of rainwater and disrupting of adhesion of the water generally to cover 54 .
- nose 162 is not smoothly and continuously arcuate but, rather has bend points 166 .
- These bend points interrupt the smooth flow of water and may interfere with the natural surface tension between rainwater and cover 156 . This may lead to a disadvantageous “drip-line” forming along the span of bend point 166 .
- the adhesion of rainwater to cover 156 (and the downward flow thereof) is disrupted and the natural cohesion of water to itself is promoted so that drips and other water flow disruption may occur, slowing down the flow of water and even resulting in dripping of water off the edge of nose 162 , missing gutter 24 altogether and therefore rainwater is deposited on the ground below gutter 24 .
- prior art gutter bracket 158 of prior art system 154 Another problem with prior art gutter bracket 158 of prior art system 154 is the lack of flexibility of positioning for installation. In particular, without a swivel function, prior art bracket 158 is more cumbersome to place properly to span gutter 24 . Because it's effective length may not be changed, in contradistinction to the inventive brackets 56 , 56 a and gutter hanger 152 of FIG. 9 . Therefore a quick and convenient, or even practical installation of prior art bracket 158 may be not possible.
- the lack of a raised elevation for tab member 76 may be result in increased difficulty in insertion of foot 64 into slot 130 .
- the raised elevation of tab member 76 disposed on upper platform 106 , advantageously obviates obstruction of the insertion of foot 64 (not shown in FIG. 8 ) into slot 130 .
- Many gutters have such gutter nails 148 for spanning mechanical reinforcement as indicated.
- the elevation of a series of gutter nails 148 is typically at a height comparable to mounting bracket 56 because both are mounted at the elevation of K-style lip 44 of gutter 24 .
- the raised elevation of tab member 76 due to its position on upper platform 106 gives it a heightened elevation and thus allows foot 64 of cover 54 (not shown) to avoid any undesirable obstruction by a series of gutter nails 148 .
- insertion of wall screw 194 may be more difficult when installing prior art bracket 158 , since it must go through an additional layer of metal.
- loop 168 has both front portion 174 and back portion 180 (see FIG. 11 for more detail) and thus there is more spacing from fascia 30 in the installation.
- back wall 42 must be somewhat spaced from fascia 30 in order to accommodate insertion of back portion 180 of loop 168 .
- insertion of wall screw 194 may result in air gaps between front portion 174 , back wall 42 of gutter 24 and back portion 180 of loop 168 . Such gaps can easily lead to a more cumbersome installation and may even make the mounting of prior art bracket 158 less secure. In addition such gapping may promote alternative water paths or sites for the collection of moisture.
- hanger 152 may be used to retrofit guttering which has been dislodged or deformed by the contraction of ice or other mechanical disruptions, as are well understood in the art. After installation, gutter hanger 152 serves to rigidly and securely bolster gutter 24 so that future deformation or other mechanical damage to gutter 24 is either avoided or postponed.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Awnings And Sunshades (AREA)
Abstract
A gutter cover system including a gutter cover and a bracket member having a shaft with a wall end having a curved member with a raised profile, and a swivel end; a tab member extending upwardly from the raised profile and forming an outwardly directed slot; and a lip member affixed to the swivel end configured to be mating received within the lip of a gutter. The gutter cover including a planar panel for positioning on the roof, an arcuate nose, and a lower member with a foot configured for matingly inwardly insertion into the slot; the raised profile structured to facilitate installation of the bracket member and installation of the gutter cover on the bracket member.
Description
- This application is a Continuation of U.S. patent application Ser. No. 11/445,054 filed Jun. 1, 2006 that which is incorporated by reference herein.
- This invention relates to gutter cover systems. More particularly, the invention relates to a gutter cover system with an improved gutter bracket and cover.
- For centuries, architects and builders have understood the beneficial value of directing rainwater away from structures to prevent damage to exterior walls, windows, doors, foundations, basements, landscaping, and to prevent erosion. The most popular and geographically accepted gutter system is the open channel gutter trough that runs parallel along the roof eaves of a building. Gutter systems are designed to direct rainwater away from buildings; however, if clogged with debris, they will fill up and overflow, and since the gutter is located at the buildings roof edge, overflowing water can now damage the interior, as well as the exterior, of the building. In order to accomplish the intended purposes, the gutter system must function properly, and to do this, the gutter trough must be free of any debris during rainfall. In geographical regions with abundant rainfall and lavish vegetation, a freshly cleaned open channel gutter trough can be full of debris within hours. With strong rain, heavy debris may accumulate simultaneously with large volumes of water; the task of keeping the gutter system clean becomes insurmountable. Therefore, homes in some regions are unable to utilize a gutter system.
- As a result, gutter cover systems which shield gutters from above, have become quite popular. In this fashion, debris does not accumulate in the gutters and additionally squirrels, birds and other wildlife are denied access to the gutter and therefore the unpleasant chore of gutter cleaning is eliminated or at least significantly delayed.
- The gutter cover must appropriately shield the gutter from debris yet avoid creating an undesirable alternative water drainage route from the roof, one which does not terminate in the gutter trough. Such an alternative route could lead to rotten wood along the fascia, etc., or could lead to deposition of water on the ground close to the foundation with the risk of structural damage over time.
- In addition, gutter covers may not only be attached to the roof or fascia or the like, but may be typically affixed to the gutter itself. Many such attempts have included a bracket mounted within the gutter, often spanning the gutter from the lip to the wall side. Installing such a bracket is not a trivial matter. In particular, installing the bracket so as to achieve the appropriate mechanical tension must be done in an extremely small space within the gutter at a roof-level elevation. In addition, there may be objects within the gutter itself, such as gutter-stabilizing bolts or spikes close to the height of the gutter lip, making installation even more difficult.
- Many systems addressing these problems have included a gutter bracket with elaborate structure to provide sufficient support within the gutter for stable and secure mechanical support of the gutter cover. One example is Albracht, U.S. Pat. No. 6,701,674 B1, which provides a large, cumbersome bracket. Mechanical stability is achieved, but the bracket is difficult to install because of its bulk and volume. Also the shape of the bracket requires that the profile shape of the gutter cover be bent and extended in order to conform to the profile of the bracket. This leads to additional labor cost in creating the bends and additional material required for the gutter cover profile to conform.
- A non-system approach of interest is the gutter hanger (note that a gutter hanger is merely for supporting the gutter, but not adapted for mounting a gutter cover thereon) disclosed in Winkel, U.S. Pat. No. 6,854,692 B1, describing a swivel gutter hanger. As noted, Winkel is not intended for supporting a gutter cover and presents certain problems discussed in more detail below, due to the swivel portion being located approximately at the midpoint of the bracket.
- What is needed is a gutter cover system which provides a simple bracket suitable for installation in a small area, yet providing sufficient mechanical tension to support the gutter cover and strengthen the guttering system. Also needed is a gutter cover itself which is minimized in size and with a simple profile for easy installation and optimized water routing. Finally, a gutter hanger for retrofitting damaged gutters is also highly desirable.
- The present invention satisfies the need for a fast, convenient method of installing an improved gutter cover system with effective water routing. The invention provides an improved system which is relatively convenient to install, with an innovative gutter bracket and gutter cover that can be installed more quickly and effectively.
- The present gutter bracket has a bracket member, a tab member and a lip member. The bracket member has a wall end and a swivel end and presents a longitudinal axis aligning the wall end and the swivel end. The wall end has a flange opposite from the swivel end as well as a flat portion along the longitudinal axis. The tab member extends upwardly from the bracket member, to form a slot. The lip member is affixed to the swivel edge, preferably by a screw. The lip member is configured to be matingly received within the lip of the gutter.
- The improved gutter cover includes a planar upper panel for positioning on the roof, an arcuate nose at the lowest portion of the upper panel and disposed close to the gutter lip. The cover includes a planar lower member below the nose and a foot suitable for mating insertion into the slot.
- The system improvements include a modified nose with an arcuate profile, free of sharp or bent edges to avoid diversion of water from the intended drainage route, i.e. terminating in the gutter trough. In particularly preferred embodiments, the bracket member presents a raised elevation for easier installation of the cover.
- In addition, the present invention provides a gutter hanger and a gutter bracket which are both easier to install spanning the gutter from front to back, because of a swivel function preferably disposed relatively close to the front of the gutter, for easier installation, yet providing mechanical support for the gutter when the swivel portion is locked into rigid alignment.
-
FIG. 1 is a side elevational view, partially sectional, illustrating the gutter cover system of the present invention installed on a house and configured with a gutter; -
FIG. 2 is a perspective view of the inventive gutter cover, -
FIG. 3 is a side elevational view of the inventive gutter bracket; -
FIG. 4 is a side elevational view of the bracket ofFIG. 3 , partially exploded; -
FIG. 5 is an exploded plan view of the bracket ofFIG. 3 ; -
FIG. 6 is a partial plan view of the bracket ofFIG. 3 ; -
FIG. 7 a is an alternative gutter bracket according to the invention, shown in a side elevational view; -
FIG. 7 b is a partially exploded side elevational view of the alternative bracket ofFIG. 7 a; -
FIG. 7 c is an exploded plan view of the alternative bracket ofFIG. 7 a; -
FIG. 8 is a perspective view of the inventive gutter bracket ofFIG. 3 shown installed in a gutter, along with a gutter nail and sleeve; -
FIG. 9 is a side elevational view of a gutter hanger in accordance with the present invention; -
FIG. 10 is a side elevational view, partially sectional, illustrating a prior art gutter cover system; and -
FIG. 11 is a side elevational view of the prior art gutter bracket shown inFIG. 10 . - Referring now to the drawings in general and
FIG. 1 in particular, the inventive gutter cover system 20 is shown mounted on ahouse 22 in operative association therewith, as well as agutter 24. House (or other building or residential structure) 22 includes aroof deck 26,outer wall 28,fascia 30,roof edge 32,shingles 34, including a lowermost shingle 36. -
Gutter 24 includes afront wall 38, agutter floor 40,back wall 42, a K-style lip 44 and aninterior gutter trough 46.Lip 44 hasuppermost portions 48 and aninterior portion 50.Backwall 42 ofgutter 24 has anupper edge 52. - Gutter cover system 20 has a
gutter cover 54 and agutter bracket 56 according to the present invention. - Referring to
FIG. 2 , gutter cover 54 is shown in perspective by itself.Gutter cover 54 has a planar,upper panel 58, anarcuate nose 60, alower member 62 and aplanar foot 64.Gutter cover 54 is preferably made of aluminum, or alternatively made of copper or a suitable alloy.Cover 54 is typically manufactured in a five foot section as measured by the span indicated atreference numeral 66.Cover 54 may be chemically treated in order to promote surface tension with rainwater, or to enhance coloring or aesthetic coordination with theshingles 34 orhouse 22, as is well known in the art. -
Upper panel 58 is substantially planar and imperforated, (i.e. no perforations) and includes anupper edge 68. Upon installation,upper panel 58 may include abend point 70 if appropriate to accommodate the pitch of roof deck 26 (seeFIG. 1 ).Upper panel 58 has a downward slope in profile fromupper edge 68 down tonose 60 as will readily be appreciated by reference toFIG. 1 .Upper panel 58 is fixed to lowermost shingle 36 androof deck 26 by a nail (not shown) or other means well known in the art somewhere betweenbend point 70 andupper edge 68. - Referring to
FIG. 1 again,nose 60 is arcuate and preferably smooth in exterior surface. In particularly preferredembodiments nose 60 presents an interior circular radius so thatnose 60 is substantially semi-circular in profile shape, with a substantially constant radius. In preferred embodiments, the constant radius ofnose 60 is between ½ inch and two inches. In particularly preferred embodiments,nose 60 has a radius of about ½ inch, for purposes to be described below. - Still referring to
FIG. 1 ,lower member 62 ofgutter cover 54 is also substantially flat, planar and imperforated in preferred embodiments, with a downward slope of about 40.degree. in particularly preferred embodiments. -
Foot 64 ofcover 54 is shown mounted ingutter bracket 56 as will be described in more detail below.Foot 64 has a length in profile, as shown inFIG. 1 , of about ½ inch. As installed,foot 64 is substantially horizontal. - Referring to
FIG. 3 , apreferred gutter bracket 56 of the present invention is shown in a side elevational view.Gutter bracket 56 has abracket member 74, atab member 76, alip member 78 and ascrew 80. It should be noted thatbracket member 74 andlip member 78 are actually in abutting contact when installed but a slight gap is shown inFIG. 3 for ease of illustration. All elements ofbracket 56 are made of aluminum in the preferred embodiment (with the possible exception of screw 80).Bracket member 74 generally has awall end 82 and aswivel end 84. - Referring to
FIG. 4 ,wall end 82 and swivel end 84 serve cooperatively to define a longitudinal axis as indicated atreference numeral 86.Screw 80 has been omitted inFIG. 4 for ease of illustration.Lip member 78 is shown even further frombracket member 74, again for ease of illustration.Wall end 82 includes an upwardly extendingflange 88, ashaft 90 and acurved member 92. -
Flange 88 includes aflange hole 94 indicated by dotted lines (see alsoFIG. 8 ) and atop point 96.Top point 96 offlange 88 presents a first elevation with respect toshaft 90, as indicated byreference numeral 98.Shaft 90 is substantially flat, but has a centralribbed area 100 for additional strength (see alsoFIG. 5 ). -
Curved member 92 includes atransitional region 102, upwardly extending fromshaft 90.Transition region 102 ofcurved member 92 includes a supplementalribbed area 104 which is integral and continuous withribbed area 100. -
Curved member 92 also includes anupper platform 106 of raised elevation with respect toshaft 90.Platform 106 forms anaperture 108 immediately below tab member 76 (seeFIG. 5 ), having substantially the same dimensions of that oftab 76. The easiest method of manufacture is, in fact to “stamp-out”tab 76 and shape it upwardly, thereby creatingaperture 108, as will readily be appreciated by reference toFIG. 5 .Platform 92 includes threebevels FIG. 5 ).Bevels upper platform 116 for additional mechanical strength. -
Swivel end 84 has aswivel region 116.Swivel region 116 includes aswivel ridge 118 and aswivel platform 120.Swivel platform 120 includes a swivel screw hole 122 (seeFIG. 5 ).Swivel platform 120 also includes twodetents FIG. 4 fordetent 124 in profile). As viewed from above inFIG. 5 ,swivel platform 120 is substantially rectangular in shape, with a width of one inch and a length of ½ inch. - Referring once again to
FIG. 4 ,tab member 76 extends upwardly fromupper platform 106.Tab 76 includes abackstop 128 as shown.Tab 76 in cooperation withupper platform 106 forms aslot 130 for insertion offoot 64 during installation. - Still referring to
FIG. 4 ,lip member 78 has alip platform 132 and abight member 134.Bight member 134 includesuppermost portion 136 which presents a second elevation relative tolip platform 132, as indicated atreference numeral 138.Lip platform 132 has twodetent apertures lip screw hole 144, formed therein (seeFIG. 5 ). In preferred embodiments,first elevation 98 oftop point 96 offlange 88 is lower thansecond elevation 138 ofuppermost portion 136 ofbight member 134, for reasons to be discussed below. - Referring to
FIG. 3 , screw 80 is threaded and conventional in nature.Swivel screw hole 122 and lip screw hole 144 (seeFIG. 5 ) are appropriately threaded for reversible threaded insertion byscrew 80. - Referring to
FIG. 6 ,lip member 78 andswivel platform 120 are shown in a skewed configuration as appropriate prior to installation, as will be discussed in more detail below.Screw 80 is threaded throughswivel screw hole 122 as well as lip screw hole 144 (not shown inFIG. 6 ) but not completely secured, so that swivel platform 120 (and the rest ofbracket member 74, not shown inFIG. 6 ) may swivel back and forth angularly aboutlip member 78 as indicated atreference numeral 146. - Referring now to
FIG. 7 a, analternative gutter bracket 56 a is shown in a side elevational view.Gutter bracket 56 a may be used in the same fashion asgutter bracket 56 ofFIGS. 3 through 5 , but is structurally modified so thatcurved member 92 is omitted.Gutter cover bracket 56 a includes abracket member 74 a,tab 76,lip member 78, and ascrew 80. -
Bracket member 74 a includes awall end 82 a and aswivel 84 a as shown. Wall end 82 a and swivel 84 a define alongitudinal axis 86 in strictly analogous fashion to that as shown inFIG. 4 forbracket member 74. - Referring to
FIG. 7 b, wall end 82 a includesflange 88 and anelongated shaft 90 a. Flange 88 (exactly as inFIG. 4 ) includesflange hole 94 andtop point 96.Top point 96 presents a first elevation relative toshaft 90 a as indicated atreference numeral 98. -
Shaft 90 a is longer than shaft 90 (seeFIG. 4 ), sincebracket member 74 a is essentially flat rather than curved (comparebracket 74 ofFIG. 4 ).Shaft 90 a has downwardly extending bevels on either side, namely 110 a and 114 a (bevel 114 a is not shown inFIG. 7 b but seeFIG. 7 c).Shaft 90 a also includes a centralribbed area 110 a (see alsoFIG. 7 c).Ribbed area 110 a and bevels 110 a, 114 a provide further mechanical strength forbracket member 74 a.Swivel end 84 a ofbracket 74 a includesswivel platform 120 in strictly analogous fashion to that ofswivel platform 120 ofFIG. 4 . - Referring to
FIG. 7 c,gutter bracket 56 a is seen in an exploded plan view, i.e. withbracket member 74 a andlip member 78 shown detached.Swivel platform 120 is shown withdetents 124 and 126 (see alsoFIG. 7 b fordetent 124 in profile). Also shown is threadedswivel screw hole 122 withscrew 80 inserted. - Referring again to
FIG. 7 b,tab member 76 is formed in a strictly analogous fashion withtab member 76 ofFIG. 4 .Tab member 76 likewise includesbackstop 128 at the end ofslot 130. ReferringFIG. 7 c,tab 76 is punched out ofshaft 90 a, thereby creatingcorresponding aperture 108 belowtab member 76. - Referring to
FIG. 7 b,lip member 78 includeslip platform 132,bight member 134 anduppermost portion 136 ofbight member 134.Uppermost portion 136 presents an elevation relative tolip platform 132 as indicated byreference numeral 138. - Referring to
FIG. 7 c,lip member 78 is seen from above.Lip platform 132 is seen to have twodetent apertures lip screw hole 144. - Referring to
FIG. 8 ,gutter bracket 56 is shown in the process of installation. Also shown is gutter nail or bolt 148 (partially shown), as it would be nailed through the exterior of K-style lip 44 ofgutter 24 then spanninggutter 44 and driven throughback wall 42 ofgutter 24 and into fascia 30 (fascia 30 not shown inFIG. 8 ).Gutter nail 148 is received withinnail sleeve 150 and is a common method of reinforcing and further securinggutter 24 tohouse 22. - Referring to
FIG. 9 , agutter hanger 152 in accordance with the present invention is shown. The essential difference betweengutter hanger 152 andgutter bracket 56 a (seeFIG. 7 a) is that notab member 76 is included. That is to say the purpose ofgutter hanger 152 is for the repair or strengthening of gutter 24 (not shown inFIG. 9 ). In other words, thegutter hanger 152 does not serve as a site for securingfoot 64 of gutter cover 54 (seeFIG. 1 ). -
Gutter hanger 152 has abracket member 74 b,lip member 78 and threadedscrew 80.Bracket member 74 b has a wall end 82 b and aswivel end 84 b. Wall end 82 b and swivelend 84 b present a longitudinal axis as indicated atreference numeral 86. Wall end 82 b includes aflange 88 and anelongated shaft 90 b. -
Flange 88 is exactly the same in structure asflange 88 ofFIG. 7 b orFIG. 4 . In particular,flange 88 includesflange hole 94 andtop point 96.Top point 96 presents a first elevation with respect toshaft 90 b as indicated byreference numeral 98. -
Shaft 90 b includes a central upraisedribbed area 100 b extending substantially most of the way alongshaft 90 b.Shaft 90 b also includes two downwardly extendingbevels 110 b and 114 b (bevel 114 b is not shown for ease of illustration but is strictly analogous withbevel 114 a ofFIG. 7 c).Ribbed area 100 b and bevels 110 b, 114 b are formed for additional strength forbracket member 74 b, as will be readily appreciated. -
Swivel end 84 b includesswivel platform 120 which is exactly likeswivel platform 120 shown inFIG. 7 c andFIG. 5 . In other words,swivel platform 120 ofFIG. 9 includes downwardly extendingdetents -
Lip member 78 is exactly as shown inFIGS. 7 b and 7 c forgutter bracket 56 a, as well as inFIGS. 4 and 5 forgutter bracket 56. In other words,lip platform 132 includesdetent apertures Lip member 78 also includesbight member 134 anduppermost portion 136.Uppermost portion 136 presents a second elevation with respect tolip platform 132, as indicated atreference numeral 138. As in previous examples,first elevation 98 is lower thansecond elevation 138. - Referring to
FIG. 10 , a prior artgutter cover system 154 is shown, operatively adapted for use in conjunction with ahouse 22 or other building, as well as agutter 24.Prior art system 154 includes a priorart gutter cover 156 and a priorart mounting bracket 158. - Prior
art gutter cover 156 includes anupper panel 160, anose 162 and alower member 164. -
Prior art nose 162 is disadvantageously not radially constant, as will be readily appreciated by reference toFIG. 10 . In particular, it will be noted thatnose 162 is not even continuously arcuate. In particular,prior art nose 162 includes bend points 166 as indicated. Bend points 166 are disadvantageous as will be noted below. - Furthermore, it will noted that prior art
lower member 164 is not flat and planar in profile, but rather presents a curved profile. - Referring to
FIG. 11 ,prior art bracket 158 will be discussed in more detail.Prior art bracket 158 includes aloop 168, afloor 170, alip element 172 andtab member 76. -
Loop 168 includes afront portion 174, and has formed therein afirst loop aperture 176.Loop 168 also includes atop portion 178, and aback portion 180, with asecond loop aperture 182 formed therein.First loop aperture 176 andsecond loop aperture 182 are elevationally aligned for purposes to be discussed below.Top portion 178 ofloop 168 presents a first elevation with respect tofloor 170 as indicated atreference numeral 184. - It will be noted that
floor 170 extends integrally fromloop 168 tolip element 172. Therefore it will be readily appreciated that there is no structure enabling a swiveling function forprior art bracket 158 in contradistinction to the mountingbrackets gutter hanger 152 previously disclosed in accordance with the present invention. -
Tab member 76 is conventional in nature.Lip element 172 includes abight member 134 as well aslip top 186.Lip top 186 presents a second elevation with respect tofloor 170, as indicated atreference numeral 188. It will be noted thatfirst elevation 184 is higher thansecond elevation 188 which presents a disadvantage to be discussed below. - Referring once again to
FIG. 10 it will be noted thatdrip edge 72 is mounted onhouse 22 in exactly the same fashion as indicated inFIG. 1 . In particular, it will noted thatdrip edge 72 has adrain member 190 extending downwardly alongfascia 30. At the bottom ofdrain member 190 ofdrip edge 72 is arouting element 192, the significance of which will be discussed below. Also note thatprior art bracket 158 is affixed to fascia 30 by wall screw ornail 194, as will be discussed in more detail below. - The positioning of the swivel function will now be discussed. With reference to
FIG. 4 , it will be readily appreciated thatgutter bracket 56 presents a total length alongaxis 86, i.e. fromflange 88 tobight member 136. The position of screw 80 (seeFIG. 3 ) alongaxis 86 determines the swivel action. It will be noted by inspection that the position ofscrew 80 along axis is at least 80 percent of the total length of bracket 56 (i.e. at least 80 percent of the way toward bight member 134). This relative axial position is considered optimum for swiveling as well as screw driver access for tighteningscrew 80. However other positioning of screw 80 (and swivelscrew hole 122 and lip screw hole 144) is contemplated within the present invention. For example, the swivel function could be placed at a minimum of 60 percent of the total axial length towardbight member 134, or anywhere along the axial region closer than that tobight member 134. These comments with regard to placement of the swivel action also pertain tobracket 56 a andhanger 152. - Installation of system 20 of
FIG. 1 will now be discussed. First, a series ofgutter brackets 56 ofFIG. 1 (or alternativelygutter brackets 56 a ofFIG. 7 a) must be installed. The typical ratio ofgutter brackets 56 tocovers 54 is typically two to one, i.e. two gutter brackets for eachcover 54, although a ratio of three to one or even one to one (or any other ratio) can be used depending on the configuration ofcovers 54 tobrackets 56. - The installation of one mounting
bracket 56 will now be discussed.Bracket 56 is first put in a bent, swivel orientation as shown inFIG. 6 , in other words,bracket member 74 is rotated slightly to achieve that configuration.Screw 80 is already inserted throughswivel screw hole 122 andlip screw hole 144, but not yet completely tightened to allow such swivel action as indicated atreference numeral 146 ofFIG. 6 . In this fashion, mountingbracket 56 has effectively a shortened length and therefore can be easily inserted intogutter 24. - Next,
uppermost portion 136 ofbight 134 oflip member 78 is then fitted intointerior 50 oflip 44 ofgutter 24 as shown inFIG. 1 , for mating, secure engagement. - Next,
bracket member 74 is elevationally aligned so as to be the proper elevation with respect to backwall 42 ofgutter 24. Thenbracket member 74 is swiveled into position so thatflange 88 abuts backwall 42 andbracket member 74 andlip member 78 are longitudinally aligned. - Next, screw 80 is tightened so that
bracket member 74 may no longer be swiveled angularly with respect tolip member 78. In this fashion, withflange 88 ofbracket member 74 abuttingback wall 42 ofgutter 24 at the appropriate elevation and swivel action prohibited byscrew 80,gutter bracket 56 provides rigid mechanical support ofgutter 24. Note that mating engagement ofdetents detent apertures - Next,
wall screw 194 is inserted throughflange hole 94, then throughback wall 42 ofgutter 24 and intofascia 30 as indicated inFIG. 1 . Now,gutter bracket 56 is securely, rigidly mounted withingutter 24 and affixed tohouse 22, providing beneficial mechanical support forgutter 24. - Next,
foot 64 ofcover 54 is inserted into slot 130 (seeFIG. 4 ) until it is mechanically stopped atbackstop 128 oftab 76. Depending on the configuration,foot 64 may also be inserted at this time intoslot 130 of anotherbracket 56 advantageously spaced from theoriginal bracket 56, as is well known in the art. The low profile of thenose 60 allows easier installation under thelowest shingle 36 and prevents the necessity of loweringgutter 24. - In this fashion, cover 20 now has structural support and may be fastened to
roof deck 26. Abend point 70 may be created inupper panel 58 at any time during the process as deemed necessary to accommodate the slope ofroof deck 26. Next,upper edge 68 ofupper panel 58 of cover 20 is inserted between the lowermost shingle 36 androof deck 26.Upper panel 58 is then secured toshingle 36 androof deck 26 by flat-head screw (not shown) or any other fashion well understood in the art. - As stated before, the installer may choose the appropriate number of
brackets 56 to install ingutter 24 along the interior thereof. In other words, a ratio of two to one may be appropriate or, if only one bracket is mounted each five feet andcover 54 has a span of five feet (seereference numeral 66 inFIG. 2 ), then essentially eachcover 54 could share a givenbracket 56. Alternatively, additional brackets per cover may be installed for additional bolstering ofgutter 24 and security of placement of covers 54. - Retrofitting
technique using bracket 56 will now be discussed. For various reasons, it may be desirable to install one ormore brackets 56 some time after the original installation, i.e. retrofitting. In this instance, theinventive bracket 56 offers additional benefits. After original installation, there is generally no access betweenback wall 42 and fascia 30 (seeFIG. 1 ) due to compression ofwall 42 againstfascia 30 after insertion ofwall screw 194. Advantageously,bracket 56 requires no such access, since retrofitting is performed in essentially the same procedure as the original bracket installation. In contradistinction, and with reference toFIGS. 10 and 11 , theprior art bracket 158 does require such access for insertion ofback portion 180 ofloop 168. In the event thatbracket 158 is used for retrofitting, the installer must either cut off backportion 180 prior to installation, or alternatively use all ofloop 168 on the inside ofback wall 42. In this alternative method, the extra length ofback portion 180 may causemechanical distortions gutter 24. In particular,lip 44 ofgutter 24 may be mechanically deformed by such retrofit installation. In addition, the higher profile ofloop 168 may result in undesirable contact withrouting element 192 during retrofitting (seeFIG. 10 ), while the low profile offlange 88 ofbracket 56 of the present invention (seeFIG. 1 ), eliminates any such contact withrouting element 192. - Operation of system 20 as shown installed in
FIG. 1 will now be described. The purpose of system 20 is to segregate debris from rainwater, discarding debris such as leaves, while retaining water and guiding it intogutter trough 46 ofgutter 24. As will readily be appreciated, rainwater and debris coming off ofshingles 34 will be naturally guided ontoupper panel 58 ofcover 54 by the downward slope ofroof deck 26. The gentle sloping ofupper panel 58 will continue the downward descent of rainwater on the top surface thereof untilnose 60 is reached. At that point, debris such as leaves and twigs will naturally fall off the edge presented bynose 60 and fall harmlessly to the ground, having missed the interior of gutter 24 (note thatnose 60 extends further fromhouse 22 thanlip 44 of gutter 24). - Rainwater however, due to the gentle sloping of
upper panel 58, will maintain a moderate velocity which will result in rainwater following around the exterior ofnose 60 and following the outside oflower member 62. This is due to the Coanda effect which is well known in the art, along with the surface tension betweencover 54 and the rainwater. In other words, because of the beneficially small and constant radius ofnose 60, surface tension between rainwater andnose 60 will cause the water to adhere to cover 54, traversingnose 60 and continuing to follow along the line oflower member 62. The constant radius ofnose 60 in the preferred embodiment inhibits undesirable angular acceleration which could disrupt the Coanda effect. The imperforated nature ofcover 54 serves also to promote a smooth flow of water, since water tension will not be disrupted by the inevitable dropping of rainwater through imperforations, as well as the disrupting of the speed and direction of rainwater and disrupting of adhesion of the water generally to cover 54. - It will be readily appreciated that the water will continue to descend down along
lower member 62 until it arrives at the bottom surface offoot 64 where it will be gravitationally directed downward intotrough 46 ofgutter 24. Note that the vast majority offoot 64 surface area will not be positioned inslot 130 of a given bracket member 56 (seeFIG. 2 ). In this fashion, rainwater will come off oflowermost shingle 34, traversecover 54 and fall advantageously intotrough 46 ofgutter 24. - With further reference to
prior art system 154 ofFIG. 10 other problems will be noted. In particular,nose 162 is not smoothly and continuously arcuate but, rather has bend points 166. These bend points interrupt the smooth flow of water and may interfere with the natural surface tension between rainwater andcover 156. This may lead to a disadvantageous “drip-line” forming along the span ofbend point 166. In this fashion, the adhesion of rainwater to cover 156 (and the downward flow thereof) is disrupted and the natural cohesion of water to itself is promoted so that drips and other water flow disruption may occur, slowing down the flow of water and even resulting in dripping of water off the edge ofnose 162, missinggutter 24 altogether and therefore rainwater is deposited on the ground belowgutter 24. - Another problem with prior
art gutter bracket 158 ofprior art system 154 is the lack of flexibility of positioning for installation. In particular, without a swivel function,prior art bracket 158 is more cumbersome to place properly to spangutter 24. Because it's effective length may not be changed, in contradistinction to theinventive brackets gutter hanger 152 ofFIG. 9 . Therefore a quick and convenient, or even practical installation ofprior art bracket 158 may be not possible. - Also, in some instances the lack of a raised elevation for
tab member 76 may be result in increased difficulty in insertion offoot 64 intoslot 130. For example, with reference toFIG. 8 , the raised elevation oftab member 76, disposed onupper platform 106, advantageously obviates obstruction of the insertion of foot 64 (not shown inFIG. 8 ) intoslot 130. Many gutters have such gutter nails 148 for spanning mechanical reinforcement as indicated. The elevation of a series of gutter nails 148 is typically at a height comparable to mountingbracket 56 because both are mounted at the elevation of K-style lip 44 ofgutter 24. According to the present invention the raised elevation oftab member 76 due to its position onupper platform 106 gives it a heightened elevation and thus allowsfoot 64 of cover 54 (not shown) to avoid any undesirable obstruction by a series of gutter nails 148. - Also, referencing
FIGS. 10 and 11 , insertion ofwall screw 194 may be more difficult when installingprior art bracket 158, since it must go through an additional layer of metal. In particular,loop 168 has bothfront portion 174 and back portion 180 (seeFIG. 11 for more detail) and thus there is more spacing fromfascia 30 in the installation. In addition,back wall 42 must be somewhat spaced fromfascia 30 in order to accommodate insertion ofback portion 180 ofloop 168. Finally, insertion ofwall screw 194 may result in air gaps betweenfront portion 174,back wall 42 ofgutter 24 andback portion 180 ofloop 168. Such gaps can easily lead to a more cumbersome installation and may even make the mounting ofprior art bracket 158 less secure. In addition such gapping may promote alternative water paths or sites for the collection of moisture. - Installation and operation of
gutter hanger 152 ofFIG. 9 will now be discussed.Gutter hanger 152 is installed in a strictly analogous fashion to that ofgutter 56 ofFIG. 3 orgutter bracket 56 a ofFIG. 7 a. In other words,lip member 78 is positioned ininterior 50 ofgutter lip 44, then flange 88 is swiveled into position againstback wall 42 ofgutter 24. Onceflange 88 is placed in a secure position of abutment againstback wall 42 ofgutter 24,screw 80 is then fully tightened to rigidly alignlip member 78 withbracket member 74 b alonglongitudinal axis 86. Finally,wall screw 194 or the like is then inserted throughflange hole 94,back wall 42 and intofascia 30, in the strictly analogous fashion as shown inFIG. 1 . In this fashion,hanger 152 may be used to retrofit guttering which has been dislodged or deformed by the contraction of ice or other mechanical disruptions, as are well understood in the art. After installation,gutter hanger 152 serves to rigidly and securely bolstergutter 24 so that future deformation or other mechanical damage togutter 24 is either avoided or postponed. - Although the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the relevant art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims.
Claims (15)
1. A gutter cover bracket adapted for use with a building wall, a gutter mounted on the wall and having a lip, and a gutter cover having a flat foot, the bracket comprising:
(a) a bracket member having a shaft including a wall end and a swivel end, the bracket member presenting a longitudinal axis along the wall end and the swivel end, the wall end including an upwardly extending flange distal from the swivel end and further including a swivel edge distal from the wall end, the shaft having an upwardly extending curved member with a raised profile adjacent to the swivel edge;
(b) a tab member extending upwardly from the curved member of the shaft, the tab member and shaft cooperatively forming an outwardly directed planar slot therebetween; and
(c) a lip member affixed to the swivel edge, the lip member adapted to matingly engage the lip of the gutter, such that when the lip member is so engaged with the lip and aligned with the longitudinal axis with the swivel edge and lip member locked into such alignment, and the flange is affixed to the wall, the bracket thereby rigidly spans the gutter from lip to wall and is positioned to supportingly and slidably inwardly matingly receive the flat foot of the gutter cover in the planar slot; and
(d) wherein the raised profile of the curved member is structured to facilitate installation of the gutter cover bracket.
2. The gutter cover bracket of claim 1 wherein uppermost portions of the flange present a first elevation, uppermost portions of the lip member present a second elevation, and the first elevation is lower than the second elevation.
3. The gutter cover bracket of claim 1 , wherein the bracket member is reversibly affixed to the lip member by a screw.
4. The gutter cover bracket of claim 1 , wherein the bracket presents a total bracket length along the longitudinal axis, from the flange to the furthest point from the wall on the lip member, and the furthest point of the swivel end of the hanger member is disposed at a point on the longitudinal axis at least 60 percent of the total hanger length from the flange.
5. A gutter cover suitable for use with a gutter having a lip and a gutter-covering system, including a gutter cover bracket, in conjunction with a roof, having a lower end, the gutter cover bracket including a member forming a slot directed generally outwardly toward the lip of the gutter, the gutter cover comprising:
a substantially planar panel suitable for fixing on the lower end of the roof;
an arcuate, substantially smooth nose disposed at a lowest portion of the panel; and
a substantially planar lower member extending downwardly and generally inwardly from the nose, including a foot disposed at the lowest portion of the lower member, the foot suitable for slidably inwardly mating engagement with the slot.
6. The gutter cover of claim 5 wherein both the planar panel and the lower member are imperforated.
7. The gutter cover of claim 5 wherein the nose is substantially semicircular in profile, presenting a substantially constant associated radius.
8. The gutter cover of claim 7 wherein the constant radius is a predetermined length somewhere between ½ inch and two inches.
9. The gutter cover of claim 7 wherein the constant radius is about ½ inch.
10. A gutter cover system adapted for use with a roof, a building wall and a gutter mounted on the wall, the gutter including a lip, the system comprising:
(a) a bracket including, a bracket member having
(1) a shaft including a wall end and a swivel end, the bracket member presenting a longitudinal axis along the wall end and the swivel end, the wall end including an upwardly extending flange distal from the swivel end, the shaft having an upwardly extending curved member with a raised profile adjacent to a swivel edge of the swivel end distal from the wall end,
(2) a tab member extending upwardly from the curved member of the shaft, the tab member and the shaft cooperatively forming an outwardly directed slot therebetween, and
(3) a lip member affixed to the swivel edge, the lip member adapted to matingly engage the lip of the gutter such that the lip member is so engaged with the lip and aligned with the longitudinal axis, with the swivel edge and lip member locked into such alignment, and the flange is affixed to the wall, the bracket thereby rigidly spans the gutter from lip to wall; and
(b) a gutter cover including, a substantially planar panel having an upper edge and positioned on a lower end of the roof, an arcuate, substantially smooth nose disposed at a lowest portion of the panel and above the gutter, a substantially planar lower member extending downwardly from the nose, including a foot disposed at the lowest portion of the lower member, the foot suitable for slidably inwardly mating engagement with the outwardly directed slot; and
(c) wherein the raised profile of the curved member is structured to facilitate installation of the bracket and to also facilitate insertion of the foot of the gutter cover into the outwardly directed slot.
11. The system of claim 10 wherein the nose is substantially semicircular in profile, presenting a substantially constant associated radius.
12. The system of claim 10 wherein the raised portion proximal to the slot is at an elevation, such that mating engagement of the foot and slot is at an elevation higher than the shaft.
13. A gutter cover bracket adapted for use with a building wall, a gutter mounted on the wall and having a lip, and a gutter cover having a flat edge, the gutter cover bracket comprising:
(a) a bracket member having a wall end and a swivel end, the bracket member presenting a longitudinal axis along the wall end and the swivel end, the wall end including a shaft formed as a flat portion along the longitudinal axis, the wall end further including a flange upwardly extending from the shaft and distal from the swivel end, the shaft having a curved member extending upwardly from the shaft, the curved member presenting a raised profile adjacent to a swivel edge of the swivel end distal from the flange;
(b) a tab member extending upwardly from the raised profile of the curved member, the tab member and the raised profile cooperatively forming an outwardly directed planar slot therebetween, the slot being configured to slidably and inwardly receive a flat edge of a gutter cover therein; and
(c) a lip member affixed to the swivel edge, the lip member adapted to matingly engage the lip of the gutter, such that when the lip member is so engaged with the lip and aligned with the longitudinal axis, with the swivel edge and lip member locked into such alignment, and the flange is affixed to the wall, the bracket thereby rigidly spans the gutter from lip to wall and is positioned to supportingly receive the flat edge of the gutter cover in the planar slot, while mechanically re-inforcing the gutter; and
(d) wherein the raised portion of the curved member is structured to facilitate installation of the gutter cover bracket.
14. The gutter cover bracket of claim 13 , wherein the raised profile portion of the bracket member serves to cooperatively form the planar slot has an elevation about ¾ of an inch higher than the elevation of the shaft of the bracket member.
15. The gutter cover bracket of claim 13 , wherein two reinforcing bevels are formed on the raised profile portion of the bracket member, one disposed on either side of the slot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/802,167 US20100242376A1 (en) | 2006-06-01 | 2010-06-01 | Gutter cover system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/445,054 US7726077B2 (en) | 2006-06-01 | 2006-06-01 | Gutter cover system |
US12/802,167 US20100242376A1 (en) | 2006-06-01 | 2010-06-01 | Gutter cover system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/445,054 Continuation US7726077B2 (en) | 2006-06-01 | 2006-06-01 | Gutter cover system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100242376A1 true US20100242376A1 (en) | 2010-09-30 |
Family
ID=38788502
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/445,054 Active 2028-03-03 US7726077B2 (en) | 2006-06-01 | 2006-06-01 | Gutter cover system |
US12/802,167 Abandoned US20100242376A1 (en) | 2006-06-01 | 2010-06-01 | Gutter cover system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/445,054 Active 2028-03-03 US7726077B2 (en) | 2006-06-01 | 2006-06-01 | Gutter cover system |
Country Status (1)
Country | Link |
---|---|
US (2) | US7726077B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100251626A1 (en) * | 2009-04-03 | 2010-10-07 | Roque Alonso Ramon R | Gutter system and associated methods |
US9404266B2 (en) * | 2014-05-30 | 2016-08-02 | Ozcan Yildiz | Covered gutter system |
US20230323670A1 (en) * | 2020-09-30 | 2023-10-12 | Sekisui House, Ltd. | Eaves gutter |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138696A1 (en) * | 2009-09-30 | 2011-06-16 | Eastside Machine Co., Inc. | Portable apparatus and method for making a gutter cover |
US20110126477A1 (en) * | 2009-11-25 | 2011-06-02 | All Clear Gutters, Llc. | Roof gutter system with removable cover |
US8418410B2 (en) * | 2009-12-16 | 2013-04-16 | Daniel Robert Martin | Rain gutter system |
US9353528B2 (en) | 2009-12-16 | 2016-05-31 | Daniel Robert Martin | Rain gutter system |
US8763310B2 (en) * | 2011-09-12 | 2014-07-01 | Jimmy J. DeHart, SR. | Inside corner gutter piece |
US8683748B2 (en) * | 2010-10-11 | 2014-04-01 | Garth ARCH | Roof parapet system |
US20130305621A1 (en) * | 2012-05-18 | 2013-11-21 | David Szafranski | Gutter Garter |
US10480194B1 (en) * | 2012-05-18 | 2019-11-19 | David A Szafranski | Gutter cover |
US9771720B2 (en) | 2014-08-31 | 2017-09-26 | Daniel Robert Martin | Rain gutter system |
US9163406B1 (en) * | 2014-10-13 | 2015-10-20 | James E. Ealer, Sr. | Gutter cover with front drain trough |
CA2931540C (en) * | 2016-05-27 | 2023-04-04 | Stephane Brochu | Gutter cover, gutter assembly including same, and method for installation thereof |
CA2985004C (en) * | 2016-11-08 | 2020-04-28 | Stephane Brochu | Rain gutter cover and rain gutter including same |
US20180216348A1 (en) * | 2017-01-31 | 2018-08-02 | Products Innovation Group, Inc. | Gutter cover support bracket |
US10648178B2 (en) * | 2017-03-28 | 2020-05-12 | Douglas M. Stacye | Gutter cover and bracket system and method of installation |
US20180283009A1 (en) * | 2017-03-28 | 2018-10-04 | Douglas M. Stacye | Gutter cover and bracket system and method of installation |
US10495290B1 (en) * | 2018-05-29 | 2019-12-03 | Shawn Michael Genenbacher | Roofing edge hanger for decorative lights |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2635841A (en) * | 1950-11-29 | 1953-04-21 | Bauhammer Titus | Gutter hanger |
US4294422A (en) * | 1979-09-24 | 1981-10-13 | Odekirk William H | Gutter hanger |
US4404775A (en) * | 1980-10-20 | 1983-09-20 | Demartini Robert J | Rain gutter devices |
US4435925A (en) * | 1976-03-18 | 1984-03-13 | Jefferys Henry J | Shield for eaves drain gutter |
US5189849A (en) * | 1992-02-10 | 1993-03-02 | Collins James A | Roof rain gutter debris shield/run-off water control |
US5271192A (en) * | 1992-05-06 | 1993-12-21 | Nothum Sr Alfred | Gutter hanger and screen assembly |
US5640809A (en) * | 1995-03-29 | 1997-06-24 | Iannelli; Anthony M. | Rain gutter shield |
US6016631A (en) * | 1997-12-12 | 2000-01-25 | Lowrie, Iii; Edmund G. | Rain gutter devices |
US6073398A (en) * | 1998-07-28 | 2000-06-13 | Williams; Paul A. | Gutter cover |
US6233899B1 (en) * | 1999-05-21 | 2001-05-22 | David N. Nystrom | Apparatus and methods for installing tongue-and-groove materials |
US6453622B1 (en) * | 2001-06-12 | 2002-09-24 | Senox Corporation | Diversion system and method |
US6681527B2 (en) * | 2000-12-11 | 2004-01-27 | Joco Products Llc | Gutter protection system |
US6701674B1 (en) * | 1999-01-27 | 2004-03-09 | Gregory P. Albracht | Snap-on installation gutter protection system, with mounting bracket, and method of use |
US6732477B1 (en) * | 2001-09-24 | 2004-05-11 | Rainware Holdings, Llc | Gutter cap suitable for retrofitting existing gutters |
US6745517B2 (en) * | 2001-08-31 | 2004-06-08 | Wayne Vahldieck | Leaf repellant gutter bracket |
US20050017534A1 (en) * | 2003-07-24 | 2005-01-27 | Driscoll Valerie A. | Method for blocking glare from the sun and apparatus therefor |
US6854692B1 (en) * | 2003-02-13 | 2005-02-15 | Brandon J. Winkel | Swivelling gutter support and installation method |
US6883760B2 (en) * | 2003-06-06 | 2005-04-26 | John W. Seise, Jr. | Rain gutter cover system |
US6904718B2 (en) * | 2003-11-07 | 2005-06-14 | Stephen P. Fox | Leaf guard for gutters |
US6933871B2 (en) * | 2001-09-17 | 2005-08-23 | Cirrus Logic, Inc. | Feedback steering delta-sigma modulators and systems using the same |
US6935074B2 (en) * | 2003-07-21 | 2005-08-30 | Karl Gramling | Gutter retaining system |
US6944992B2 (en) * | 2001-12-14 | 2005-09-20 | Brochu Stephane | Gutter shield |
US6944991B2 (en) * | 2003-12-29 | 2005-09-20 | Kim Hyun T | Rain gutter cover |
US6993870B2 (en) * | 2003-06-10 | 2006-02-07 | Quality Edge, Inc. | Rain gutter guard and method |
US20060201068A1 (en) * | 2005-03-09 | 2006-09-14 | Idadea Industries, Inc. | Gutter cover |
US7117643B2 (en) * | 2003-12-01 | 2006-10-10 | The Guttershutter Manufacturing Company | Covered rain gutter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2838196B1 (en) | 2002-04-05 | 2006-02-03 | Thales Sa | METHOD AND SYSTEM FOR LOCATING A TARGET IN A SYSTEM QUERY ANSWER |
-
2006
- 2006-06-01 US US11/445,054 patent/US7726077B2/en active Active
-
2010
- 2010-06-01 US US12/802,167 patent/US20100242376A1/en not_active Abandoned
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2635841A (en) * | 1950-11-29 | 1953-04-21 | Bauhammer Titus | Gutter hanger |
US4435925A (en) * | 1976-03-18 | 1984-03-13 | Jefferys Henry J | Shield for eaves drain gutter |
US4294422A (en) * | 1979-09-24 | 1981-10-13 | Odekirk William H | Gutter hanger |
US4404775A (en) * | 1980-10-20 | 1983-09-20 | Demartini Robert J | Rain gutter devices |
US5189849A (en) * | 1992-02-10 | 1993-03-02 | Collins James A | Roof rain gutter debris shield/run-off water control |
US5271192A (en) * | 1992-05-06 | 1993-12-21 | Nothum Sr Alfred | Gutter hanger and screen assembly |
US5640809A (en) * | 1995-03-29 | 1997-06-24 | Iannelli; Anthony M. | Rain gutter shield |
US6016631A (en) * | 1997-12-12 | 2000-01-25 | Lowrie, Iii; Edmund G. | Rain gutter devices |
US6073398A (en) * | 1998-07-28 | 2000-06-13 | Williams; Paul A. | Gutter cover |
US6701674B1 (en) * | 1999-01-27 | 2004-03-09 | Gregory P. Albracht | Snap-on installation gutter protection system, with mounting bracket, and method of use |
US6233899B1 (en) * | 1999-05-21 | 2001-05-22 | David N. Nystrom | Apparatus and methods for installing tongue-and-groove materials |
US6681527B2 (en) * | 2000-12-11 | 2004-01-27 | Joco Products Llc | Gutter protection system |
US6453622B1 (en) * | 2001-06-12 | 2002-09-24 | Senox Corporation | Diversion system and method |
US6745517B2 (en) * | 2001-08-31 | 2004-06-08 | Wayne Vahldieck | Leaf repellant gutter bracket |
US6933871B2 (en) * | 2001-09-17 | 2005-08-23 | Cirrus Logic, Inc. | Feedback steering delta-sigma modulators and systems using the same |
US6732477B1 (en) * | 2001-09-24 | 2004-05-11 | Rainware Holdings, Llc | Gutter cap suitable for retrofitting existing gutters |
US6944992B2 (en) * | 2001-12-14 | 2005-09-20 | Brochu Stephane | Gutter shield |
US6854692B1 (en) * | 2003-02-13 | 2005-02-15 | Brandon J. Winkel | Swivelling gutter support and installation method |
US6883760B2 (en) * | 2003-06-06 | 2005-04-26 | John W. Seise, Jr. | Rain gutter cover system |
US6993870B2 (en) * | 2003-06-10 | 2006-02-07 | Quality Edge, Inc. | Rain gutter guard and method |
US6935074B2 (en) * | 2003-07-21 | 2005-08-30 | Karl Gramling | Gutter retaining system |
US20050017534A1 (en) * | 2003-07-24 | 2005-01-27 | Driscoll Valerie A. | Method for blocking glare from the sun and apparatus therefor |
US6904718B2 (en) * | 2003-11-07 | 2005-06-14 | Stephen P. Fox | Leaf guard for gutters |
US7117643B2 (en) * | 2003-12-01 | 2006-10-10 | The Guttershutter Manufacturing Company | Covered rain gutter |
US6944991B2 (en) * | 2003-12-29 | 2005-09-20 | Kim Hyun T | Rain gutter cover |
US20060201068A1 (en) * | 2005-03-09 | 2006-09-14 | Idadea Industries, Inc. | Gutter cover |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100251626A1 (en) * | 2009-04-03 | 2010-10-07 | Roque Alonso Ramon R | Gutter system and associated methods |
US8176687B2 (en) * | 2009-04-03 | 2012-05-15 | Roque Alonso Ramon R | Gutter system and associated methods |
US9404266B2 (en) * | 2014-05-30 | 2016-08-02 | Ozcan Yildiz | Covered gutter system |
US20230323670A1 (en) * | 2020-09-30 | 2023-10-12 | Sekisui House, Ltd. | Eaves gutter |
Also Published As
Publication number | Publication date |
---|---|
US20070277446A1 (en) | 2007-12-06 |
US7726077B2 (en) | 2010-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7726077B2 (en) | Gutter cover system | |
US6412228B1 (en) | Leaf and debris deflecting cover device for a rain gutter | |
US8104230B2 (en) | Gutter retaining system | |
US5016404A (en) | Gutter and bracket assembly | |
US8528262B2 (en) | Gutter-locking gutter protection | |
US7793465B2 (en) | Gutter guard | |
US4455791A (en) | Protective cover for gutters | |
US8967554B2 (en) | Gutter retaining system | |
US12129654B2 (en) | Eavestrough debris guard | |
US20150184392A1 (en) | Covered rain gutter assembly | |
US20140215929A1 (en) | Raised arc rain gutter debris preclusion device | |
US20030009951A1 (en) | Leaf guard for gutters | |
US6826872B2 (en) | Rounded eaves trough with a gutter shield | |
CA2688909A1 (en) | Gutter hanger | |
US6223474B1 (en) | Gutter drainer assembly | |
US7278239B1 (en) | Gutter protector and guttering incorporating same | |
US7958677B2 (en) | Gutter retaining system | |
US20220042315A1 (en) | Eavestrough debris guard | |
US6823630B2 (en) | Eaves trough assembly with stepped down shield | |
US20060021286A1 (en) | Dual flow gutter assembly | |
US20170152661A1 (en) | Corner gutter covers, gutter systems, and related methods | |
EP0886707B1 (en) | A ventilating eaves member | |
US20060150532A1 (en) | Gutter assembly and method for making same | |
US20140069027A1 (en) | Gutter Protection System | |
US12195969B2 (en) | Drip edge with gutter guard support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |