US20100234816A1 - Coated wire guide and method of making same - Google Patents
Coated wire guide and method of making same Download PDFInfo
- Publication number
- US20100234816A1 US20100234816A1 US12/723,770 US72377010A US2010234816A1 US 20100234816 A1 US20100234816 A1 US 20100234816A1 US 72377010 A US72377010 A US 72377010A US 2010234816 A1 US2010234816 A1 US 2010234816A1
- Authority
- US
- United States
- Prior art keywords
- coating
- polymer coating
- core wire
- distal section
- distal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000000576 coating method Methods 0.000 claims abstract description 150
- 239000011248 coating agent Substances 0.000 claims abstract description 143
- 229920000642 polymer Polymers 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229920002313 fluoropolymer Polymers 0.000 claims description 82
- 239000004811 fluoropolymer Substances 0.000 claims description 82
- 239000007769 metal material Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- -1 polyethylene Polymers 0.000 claims description 10
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 238000003754 machining Methods 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 5
- 238000003780 insertion Methods 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000004812 Fluorinated ethylene propylene Substances 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 4
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 229920001780 ECTFE Polymers 0.000 claims description 2
- 229920001774 Perfluoroether Polymers 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 229920002614 Polyether block amide Polymers 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 238000000227 grinding Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 210000002767 hepatic artery Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910000380 bismuth sulfate Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
- B05D1/265—Extrusion coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/002—Pretreatement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/02—Methods for coating medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09108—Methods for making a guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09133—Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
Definitions
- the present invention relates to medical devices. More particularly, the invention relates to wire guides and a method for making wire guides.
- wire guides are used to gain access to specific inner areas of the body.
- the wire guide may enter the body through a small opening and travel to parts of the body through body channels.
- wire guides may be passed through the body via peripheral blood vessels, gastrointestinal tract, or the urinary tract.
- Wire guides are commercial available and are currently used in cardiology, gastroenterology, urology, and radiology. Once in place at a desired location in the body, wire guides are commonly used as guides for the introduction of additional medical instruments, e.g., catheters.
- wire guides provide minimal force for being advanced through the vasculature of a patient.
- the wire guide must also provide sufficient tactile feedback in order to allow the interventionalist to feel wire movement.
- Minimizing the force required for advancing the wire guide through the patient's body while retaining sufficient tactile feedback for feeling wire movement are two properties which for the most part are diametrically opposed to one another. That is, minimizing the force required for advancing the wire guide usually involves a decrease in the tactile feedback from moving the wire guide. Accordingly, further improvements and enhancements for wire guides are desirable.
- a method for making a wire guide comprises providing a core wire having a fluoropolymer (FP) coating disposed thereon defining a FP coated core wire.
- a distal section of the FP coated core wire comprises an exposed metal portion.
- a polymer coating is applied to a proximal section of the FP coated core wire such that the polymer coating overlays at least a portion of the FP coating.
- the polymer coating is applied to the distal section of the FP coated core wire such that the polymer coating overlays at least a portion of the exposed metal portion.
- the polymer coating is removed from the proximal section of the FP coated core wire to form the wire guide having a proximal portion with the FP coating and a distal portion with the polymer coating.
- a wire guide comprises a core wire having a proximal section extending to a distal section.
- a fluoropolymer (FP) coating is disposed on the proximal section and a polymer coating is disposed on the distal section.
- the polymer coating has an edge that is adjacent to the FP coating and is defined by the removal of the polymer coating from the proximal section of the core wire.
- a catheter kit comprises the wire guide as described in the foregoing paragraph and a guide catheter for insertion into a patient.
- the wire guide provides the guide catheter a path during insertion into the patient.
- FIG. 1A is a side view of a core wire in accordance with an embodiment of the present invention.
- FIG. 1B is a cross-sectional view of the core wire depicted in FIG. 1A ;
- FIG. 2 is a side view of a core wire being machined in accordance with one embodiment of the present invention
- FIG. 3 is a flow chart for a method of making a wire guide in accordance with one example of the present invention
- FIG. 4A is a sectional side view of core wire being coated in accordance with one embodiment of the present invention.
- FIG. 4B is a cross-sectional view of the coated core wire depicted in FIG. 4A ;
- FIG. 5A is a side view of a wire guide in accordance with an embodiment of the present invention.
- FIG. 5B is a cross-sectional view of the wire guide depicted in FIG. 5A ;
- FIG. 5C is a cross-sectional view of the wire guide depicted in FIG. 5A ;
- FIG. 6A is an exploded view of a catheter kit in accordance with one embodiment of the present invention.
- FIG. 6B is a side view of a catheter kit in accordance with an embodiment of the present invention.
- FIG. 6C is a side view of a needle from a catheter kit in accordance with one embodiment of the present invention.
- FIG. 6D is a side view of a needle and a wire guide of a catheter kit in accordance with an embodiment of the present invention.
- Examples of the present invention seek to overcome some of the concerns associated with providing a wire guide for guiding various medical devices through a body channel or cavity of a patient while reducing force for advancing the wire guide through the channel or cavity with sufficient tactile feedback in order to allow the interventionalist to feel wire movement.
- the wire guide comprises a core wire having at least two distinct coatings disposed thereon. By having the two distinct coatings, the properties of the coatings can be respectively selected to provide corresponding sections of the wire guide with different properties.
- the wire guide has a proximal section coated with fluoropolymer (FP) coating, such as for example, a polytetrafluoroethylene (PTFE) coating.
- FP fluoropolymer
- PTFE polytetrafluoroethylene
- the lubricity of the FP coating is sufficiently tactile to allow the interventionalist to feel wire movement.
- the wire guide has a distal section with a polymer coating covered by a hydrophilic coating.
- the polymer coating provides adhesion for the hydrophilic coating to the distal section (e.g. polymer coating acts as a primer and/or adhesion promoter) and the hydrophilic coating provides relatively high lubricity to minimize the force necessary for advancing the wire guide through the body channel or cavity.
- a FP coated core wire 10 for use in making a wire guide in accordance with at least one embodiment of the present invention is provided.
- the fluoropolymer (FP) coated core wire 10 has a proximal section 16 extending to a distal section 18 and is formed from a core wire 12 that is coated with a FP coating 14 .
- the core wire 12 may be comprised of a material that is relatively stiff and more kink resistant such as stainless steel, or alternatively, a material that is relatively more flexible such as nitinol. Other metallic materials known to those skilled in the art may also be used to make the core wire 12 .
- the core wire 12 may be made by any suitable wire forming process, such as for example, pultrusion or extrusion of a metal alloy through a mold or die that has a substantially circular opening.
- the core wire 10 preferably has an elongated cylindrical form with a corresponding diameter 20 .
- Various diameters 20 for the core wire 12 are within the scope and spirit of the present invention with many medical procedures preferably having wire guides with a core wire diameter 20 not exceeding about 0.020 inches (20 mil).
- the core wire 12 may also have a variable diameter to form a FP coated core wire 10 with a relatively flexible portion and a relatively stiff portion.
- the FP coating 14 may be applied to the core wire 12 by any suitable process, such as for example, spray, extrusion, brush or dip coating.
- a heating process may also be used to facilitate curing and/or cross-linking of the FP coating 14 .
- a coating thickness 22 of the FP 14 is typically on the order of between about 0.2 mil to 1 mil, however, larger or small thicknesses may be used without departing from the scope and spirit of the present invention.
- Material is removed at 100 from the distal section 18 of the FP coated core wire 10 , for example, by machining or grinding with a grinding wheel 24 .
- the FP coating 14 is removed from the distal section 18 by the machining process to expose the underlying metal material 26 of the core wire 12 .
- a portion of the metal core wire 12 is also removed during the grinding process.
- Other suitable methods for stripping the FP coating 14 from the distal section 18 to expose a metal portion of the metal core wire 12 may also be used, such as for example, chemical etching or sand blasting.
- the FP coated core wire 10 may be fabricated such that the FP coating 14 is only applied to the proximal section 16 or along selective areas of the proximal section 16 of the core wire 12 , leaving the metal material 26 exposed in the non-FP coated areas.
- the machining or grinding process is preferably capable of machining away material from the FP coated core wire 10 to produce intricate shapes with varying diameters and geometries.
- the grinding wheel 24 may be accurately controlled for movement over numerous axes. In one example, this is accomplished by using an automated computer numerically controlled (CNC) multi-axis grinding machine.
- CNC computer numerically controlled
- the CNC grinding machine is capable of controlled movement over at least two axes, e.g., the X and Y axis.
- the grinding machine may also interface directly with a CAD/CAM and include a fully integrated multi-axis servo controller. This arrangement may allow for machining of very intricate shapes which have been designed using a CAD based program.
- the grinding machine is capable of machining a shape within the FP coated core wire 10 to within several microns of a targeted dimension.
- the distal section 18 of the FP coated core wire 10 is machined while being rotated along its longitudinal axis 30 to form substantially circular cross sections along the distal section 18 with corresponding diameters 32 (Shown in FIG. 4B ).
- the diameters 32 are configured to vary along the distal section 18 to define the shape of the distal section 18 .
- the variable diameter 32 is configured to taper distally to form a tapered distal tip 34 as shown in FIG. 2 .
- the variable diameter 32 varies substantially linearly along the distal section 18 to form a partial cone shape or frustoconical section.
- the variable diameter 32 may vary in a non-linear fashion along the distal section 18 .
- a polymer coating 36 is applied at 102 , 104 over the machined distal section 18 (e.g. tapered tip 34 ) and the proximal section 16 of the FP coated core wire 10 .
- the polymer coating 36 is applied over the FP coated core wire 10 via an extrusion die arrangement 38 that includes a die 40 .
- the die 40 has an opening 42 that is substantially circular with a larger diameter than the diameter 20 of the FP coated core wire 10 .
- the longitudinal axis 30 of the FP coated core wire 10 is aligned with the opening 42 and the FP coated core wire 10 is advanced through the die 40 and the opening 42 to apply the polymer coating 36 thereon at a predetermined thickness 44 and outer diameter 45 corresponding to the die opening 42 .
- the thickness 44 of the polymer coating 36 is between about 0.5 and 10 mil.
- the machined distal section 18 includes the exposed metal material 26 or portion of the core wire 12 and accordingly, the polymer coating 36 is applied over at least a portion of the exposed metal material 26 .
- the polymer coating 36 is in direct contact with the metal material 26 and is made of a material that adhesively bonds or affixes to the metal 26 .
- the polymer coating 36 may be a thermoplastic polymer or alternatively, a thermoset polymer.
- a thermoplastic polymer coating 36 can be applied to the FP coated core wire 10 at a temperature above its melting point (T m ). The thermoplastic is then cooled below its T m , to form a solid polymer layer bonded to the metal material 26 of the distal section 18 .
- thermosetting polymer coating 36 (e.g. pre-polymer or thermoset precursor) is applied to the FP coated core wire 10 and is heated to a suitable temperature for curing or cross-linking the polymer coating 36 .
- the cured or cross-linked polymer forms a solid layer bonded to the metal material 26 of the distal section 18 .
- Various polymeric materials may be used to form the polymer coating 36 including polyurethanes, polyesters, polyamides, polyethylene, polystyrene, polyether block amides or a mixture thereof.
- the polymer coating 36 may contain a filler material such as radiopacifier, e.g., tungsten, bismuth and/or barium sulfate. Other suitable material know to those in the art may also be used.
- the polymer coating 36 is applied over the proximal section 16 of the FP coated core wire 10 and is in direct contact with the FP coating 14 .
- the polymer coating 36 preferably has little or no adhesion to the FP coating once the polymer coating 26 is cooled and/or cured about the proximal section 16 .
- minimal adhesion between the FP coating 14 and the polymer coating 36 is achieved by using a polymer coating 36 that has at least about 10 dynes/cm greater surface energy that the FP coating 14 . It is believed that the relatively lower surface energy of the FP coating 14 provides sufficiently high surface tension between the FP coating 14 and the polymer coating 36 to reduce adhesion of the polymer coating 36 to the proximal section 16 .
- the polymer coating 36 is removed at 106 from the proximal section 16 of the FP coated core wire 10 to form a wire guide 46 .
- the wire guide 46 has a proximal portion 48 with the FP coating 14 and a distal portion 50 with the polymer coating 36 .
- a stripping device 54 may be used to remove the polymer coat 36 .
- the stripping device 54 may be any suitable device for applying a shear and/or abrasive force to the polymer coating 36 for its removal.
- the polymer coating 36 is stripped only from the proximal section 16 and remains on the distal section 18 , forming an edge 56 that is adjacent to the FP coating 14 .
- the edge 56 may be configured as a slight step (e.g. 0.5 to 5 mil) between the proximal and distal portions 48 and 50 , and forms a transition between the two distinct coatings 14 and 36 disposed on the wire guide 46 .
- the FP coating 14 comprises polytetrafluoroethylene (PTFE) which has provided excellent results in trials for removing the polymer coating 36 from the FP coating 14 .
- PTFE polytetrafluoroethylene
- FP coatings 14 may be used, such as for example, fluorinated ethylene-propylene (FEP), polyethylenetetrafluoroethylene (ETFE), perfluoroalkoxy polymer (PFA), polyvinylfluoride (PVF), polyethylenechlorotrifluoroethylene (ECTFE), and/or polyvinylidene fluoride (PVDF).
- FEP fluorinated ethylene-propylene
- ETFE polyethylenetetrafluoroethylene
- PFA perfluoroalkoxy polymer
- PVF polyvinylfluoride
- ECTFE polyethylenechlorotrifluoroethylene
- PVDF polyvinylidene fluoride
- a hydrophilic coating 52 is applied at 108 over the polymer coating 36 disposed about the distal section 18 .
- the polymer coating 36 preferably acts as a primer or adhesion promoter between the metal material 26 and the hydrophilic coating 52 .
- the hydrophilic coating 52 comprises polyvinylpyrrolidones, polyethylene oxides, polyacrylates or a mixture thereof.
- the hydrophilic coating 52 may be applied to the polymer coating 36 by any suitable process known to those skilled in the art including spray, extrusion, brush or dip coating.
- the hydrophilic coating 52 forms an exterior surface of the distal portion 50 of the wire guide 46 .
- the hydrophilic coating 52 has a lubricity with a coefficient of friction that is relatively lower than the coefficient of friction of the FP coating 36 , thereby providing the wire guide 46 with two distinct exterior coatings 36 and 52 corresponding to the proximal and distal portions 48 and 50 .
- the kit 150 includes a microcatheter 152 preferably made of a soft, flexible material such as silicone or any other suitable material.
- the microcatheter 152 has a proximal end 154 , a distal end 156 , and a plastic adapter or hub 158 to receive a medical device (not shown), e.g., angioplasty balloon, stent, occluding device, etc., to be advanced therethrough.
- a medical device not shown
- the inside diameter of the microcatheter 152 may range between 0.014 and 0.027 inches.
- the kit 150 further includes the wire guide 46 as discussed in the foregoing paragraphs.
- the wire guide 46 provides a guide catheter 162 a path during insertion of the guide catheter 162 within the body channel or cavity.
- the size of the wire guide 46 is based on the inside diameter of the guide catheter 162 .
- a needle 163 may also be provided for percutaneously introducing the wire guide 46 into a patient 165 .
- the guide catheter 162 or sheath is typically made of polytetrafluoroethylene (PTFE) and is for percutaneously introducing the microcatheter 152 into the body of the patient 165 .
- PTFE polytetrafluoroethylene
- the guide catheter 162 may have a size of about 4-French to 8-French and allows the microcatheter 152 to be inserted therethrough to a desired location in the body channel or cavity.
- the guide catheter 162 receives the microcatheter 152 and provides stability of the microcatheter 152 at a desired location within the body.
- the guide catheter 162 may stay stationary within a common visceral artery, e.g., a common hepatic artery, and adds stability to the microcatheter 152 as the microcatheter 152 is advanced through the guide catheter 162 to a desired point in a connecting artery, e.g., the left or right hepatic artery.
- a common visceral artery e.g., a common hepatic artery
- the medical device When the distal end 156 of the microcatheter 152 is at the desired point in the body, the medical device may be loaded at the proximal end 154 of the microcatheter 152 and is advanced through the microcatheter 152 for deployment through the distal end 156 .
- a push wire 164 is used to mechanically advance or push the medical device through the microcatheter 152 .
- catheter kit 150 is merely one example of a kit that may be used with the wire guide 46 .
- other kits, assemblies, and systems may be used with the wire guide 46 without falling beyond the scope or spirit of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Abstract
In at least one embodiment, a method for making a wire guide is provided. The method comprises applying a polymer coating to a proximal section of a FP coated core wire having a FP coating disposed thereon such that the polymer coating overlays at least a portion of the FP coating. The polymer coating is applied to a distal section of the FP coated core wire having an exposed metal portion such that the polymer coating overlays at least a portion of the exposed metal portion. The polymer coating is removed from the proximal portion of the FP coated core wire to form the wire guide having a proximal portion with the FP coating and a distal portion with the polymer coating.
Description
- This application claims priority to and all available benefits of U.S. Provisional Patent Application No. 61/159,916, filed Mar. 13, 2009, and which is hereby incorporated by reference in its entirety.
- 1. Field of the Invention
- The present invention relates to medical devices. More particularly, the invention relates to wire guides and a method for making wire guides.
- 2. Background of the Invention
- Often elongated, flexible wire guides are used to gain access to specific inner areas of the body. The wire guide may enter the body through a small opening and travel to parts of the body through body channels. For example, wire guides may be passed through the body via peripheral blood vessels, gastrointestinal tract, or the urinary tract. Wire guides are commercial available and are currently used in cardiology, gastroenterology, urology, and radiology. Once in place at a desired location in the body, wire guides are commonly used as guides for the introduction of additional medical instruments, e.g., catheters.
- One design challenge for wire guides is that the wire guide provides minimal force for being advanced through the vasculature of a patient. The wire guide must also provide sufficient tactile feedback in order to allow the interventionalist to feel wire movement. Minimizing the force required for advancing the wire guide through the patient's body while retaining sufficient tactile feedback for feeling wire movement, however, are two properties which for the most part are diametrically opposed to one another. That is, minimizing the force required for advancing the wire guide usually involves a decrease in the tactile feedback from moving the wire guide. Accordingly, further improvements and enhancements for wire guides are desirable.
- In at least one embodiment of the present invention, a method for making a wire guide is provided. The method comprises providing a core wire having a fluoropolymer (FP) coating disposed thereon defining a FP coated core wire. A distal section of the FP coated core wire comprises an exposed metal portion. A polymer coating is applied to a proximal section of the FP coated core wire such that the polymer coating overlays at least a portion of the FP coating. The polymer coating is applied to the distal section of the FP coated core wire such that the polymer coating overlays at least a portion of the exposed metal portion. The polymer coating is removed from the proximal section of the FP coated core wire to form the wire guide having a proximal portion with the FP coating and a distal portion with the polymer coating.
- In at least one other embodiment of the present invention, a wire guide is provided. The wire guide comprises a core wire having a proximal section extending to a distal section. A fluoropolymer (FP) coating is disposed on the proximal section and a polymer coating is disposed on the distal section. The polymer coating has an edge that is adjacent to the FP coating and is defined by the removal of the polymer coating from the proximal section of the core wire.
- In another embodiment of the present invention, a catheter kit is provided. The catheter kit comprises the wire guide as described in the foregoing paragraph and a guide catheter for insertion into a patient. The wire guide provides the guide catheter a path during insertion into the patient.
- Further objects, features, and advantageous of the present invention will become apparent from consideration of the following description and appended claims when taken in conjunction with the accompanying drawings.
-
FIG. 1A is a side view of a core wire in accordance with an embodiment of the present invention; -
FIG. 1B is a cross-sectional view of the core wire depicted inFIG. 1A ; -
FIG. 2 is a side view of a core wire being machined in accordance with one embodiment of the present invention; -
FIG. 3 is a flow chart for a method of making a wire guide in accordance with one example of the present invention; -
FIG. 4A is a sectional side view of core wire being coated in accordance with one embodiment of the present invention; -
FIG. 4B is a cross-sectional view of the coated core wire depicted inFIG. 4A ; -
FIG. 5A is a side view of a wire guide in accordance with an embodiment of the present invention; -
FIG. 5B is a cross-sectional view of the wire guide depicted inFIG. 5A ; -
FIG. 5C is a cross-sectional view of the wire guide depicted inFIG. 5A ; -
FIG. 6A is an exploded view of a catheter kit in accordance with one embodiment of the present invention; -
FIG. 6B is a side view of a catheter kit in accordance with an embodiment of the present invention; -
FIG. 6C is a side view of a needle from a catheter kit in accordance with one embodiment of the present invention; and -
FIG. 6D is a side view of a needle and a wire guide of a catheter kit in accordance with an embodiment of the present invention. - Detailed embodiments of the present invention are disclosed herein. It is understood, however, that the disclosed embodiments are merely exemplary of the invention and may be embodied in various and alternative forms. The figures are not necessarily to scale; some figures may be configured to show the details of a particular component. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting but merely as a representative basis for the claims and teaching one skilled in the art to practice the present invention.
- Examples of the present invention seek to overcome some of the concerns associated with providing a wire guide for guiding various medical devices through a body channel or cavity of a patient while reducing force for advancing the wire guide through the channel or cavity with sufficient tactile feedback in order to allow the interventionalist to feel wire movement.
- Employing the principles of the present invention is, for example, a wire guide, a method for making the wire guide and a catheter kit. The wire guide comprises a core wire having at least two distinct coatings disposed thereon. By having the two distinct coatings, the properties of the coatings can be respectively selected to provide corresponding sections of the wire guide with different properties. In one example, the wire guide has a proximal section coated with fluoropolymer (FP) coating, such as for example, a polytetrafluoroethylene (PTFE) coating. The lubricity of the FP coating is sufficiently tactile to allow the interventionalist to feel wire movement. In another example, the wire guide has a distal section with a polymer coating covered by a hydrophilic coating. The polymer coating provides adhesion for the hydrophilic coating to the distal section (e.g. polymer coating acts as a primer and/or adhesion promoter) and the hydrophilic coating provides relatively high lubricity to minimize the force necessary for advancing the wire guide through the body channel or cavity.
- Referring to
FIGS. 1A-1B , a FP coatedcore wire 10 for use in making a wire guide in accordance with at least one embodiment of the present invention is provided. The fluoropolymer (FP)coated core wire 10 has aproximal section 16 extending to adistal section 18 and is formed from acore wire 12 that is coated with aFP coating 14. - The
core wire 12 may be comprised of a material that is relatively stiff and more kink resistant such as stainless steel, or alternatively, a material that is relatively more flexible such as nitinol. Other metallic materials known to those skilled in the art may also be used to make thecore wire 12. - The
core wire 12 may be made by any suitable wire forming process, such as for example, pultrusion or extrusion of a metal alloy through a mold or die that has a substantially circular opening. Thecore wire 10 preferably has an elongated cylindrical form with acorresponding diameter 20.Various diameters 20 for thecore wire 12 are within the scope and spirit of the present invention with many medical procedures preferably having wire guides with acore wire diameter 20 not exceeding about 0.020 inches (20 mil). Thecore wire 12 may also have a variable diameter to form a FP coatedcore wire 10 with a relatively flexible portion and a relatively stiff portion. - The
FP coating 14 may be applied to thecore wire 12 by any suitable process, such as for example, spray, extrusion, brush or dip coating. A heating process may also be used to facilitate curing and/or cross-linking of theFP coating 14. Acoating thickness 22 of theFP 14 is typically on the order of between about 0.2 mil to 1 mil, however, larger or small thicknesses may be used without departing from the scope and spirit of the present invention. - Referring to
FIGS. 2 and 3 , an example of a method for making a wire guide is provided. Material is removed at 100 from thedistal section 18 of the FP coatedcore wire 10, for example, by machining or grinding with agrinding wheel 24. In particular, theFP coating 14 is removed from thedistal section 18 by the machining process to expose theunderlying metal material 26 of thecore wire 12. Preferably, a portion of themetal core wire 12 is also removed during the grinding process. Other suitable methods for stripping theFP coating 14 from thedistal section 18 to expose a metal portion of themetal core wire 12 may also be used, such as for example, chemical etching or sand blasting. Alternatively, the FP coatedcore wire 10 may be fabricated such that theFP coating 14 is only applied to theproximal section 16 or along selective areas of theproximal section 16 of thecore wire 12, leaving themetal material 26 exposed in the non-FP coated areas. - The machining or grinding process is preferably capable of machining away material from the FP coated
core wire 10 to produce intricate shapes with varying diameters and geometries. Accordingly, the grindingwheel 24 may be accurately controlled for movement over numerous axes. In one example, this is accomplished by using an automated computer numerically controlled (CNC) multi-axis grinding machine. Preferably the CNC grinding machine is capable of controlled movement over at least two axes, e.g., the X and Y axis. The grinding machine may also interface directly with a CAD/CAM and include a fully integrated multi-axis servo controller. This arrangement may allow for machining of very intricate shapes which have been designed using a CAD based program. In one example, the grinding machine is capable of machining a shape within the FP coatedcore wire 10 to within several microns of a targeted dimension. - In one embodiment, the
distal section 18 of the FP coatedcore wire 10 is machined while being rotated along itslongitudinal axis 30 to form substantially circular cross sections along thedistal section 18 with corresponding diameters 32 (Shown inFIG. 4B ). Thediameters 32 are configured to vary along thedistal section 18 to define the shape of thedistal section 18. In one embodiment, thevariable diameter 32 is configured to taper distally to form a tapereddistal tip 34 as shown inFIG. 2 . In one example, thevariable diameter 32 varies substantially linearly along thedistal section 18 to form a partial cone shape or frustoconical section. Alternatively, thevariable diameter 32 may vary in a non-linear fashion along thedistal section 18. - Referring to
FIGS. 3-4B , apolymer coating 36 is applied at 102, 104 over the machined distal section 18 (e.g. tapered tip 34) and theproximal section 16 of the FP coatedcore wire 10. As illustrated, thepolymer coating 36 is applied over the FP coatedcore wire 10 via anextrusion die arrangement 38 that includes adie 40. Thedie 40 has anopening 42 that is substantially circular with a larger diameter than thediameter 20 of the FP coatedcore wire 10. Thelongitudinal axis 30 of the FP coatedcore wire 10 is aligned with theopening 42 and the FP coatedcore wire 10 is advanced through thedie 40 and theopening 42 to apply thepolymer coating 36 thereon at apredetermined thickness 44 andouter diameter 45 corresponding to thedie opening 42. In at least one embodiment, thethickness 44 of thepolymer coating 36 is between about 0.5 and 10 mil. - As mentioned in the foregoing paragraphs, the machined
distal section 18 includes the exposedmetal material 26 or portion of thecore wire 12 and accordingly, thepolymer coating 36 is applied over at least a portion of the exposedmetal material 26. In one embodiment, thepolymer coating 36 is in direct contact with themetal material 26 and is made of a material that adhesively bonds or affixes to themetal 26. Thepolymer coating 36 may be a thermoplastic polymer or alternatively, a thermoset polymer. For example, athermoplastic polymer coating 36 can be applied to the FP coatedcore wire 10 at a temperature above its melting point (Tm). The thermoplastic is then cooled below its Tm, to form a solid polymer layer bonded to themetal material 26 of thedistal section 18. In another example, a thermosetting polymer coating 36 (e.g. pre-polymer or thermoset precursor) is applied to the FP coatedcore wire 10 and is heated to a suitable temperature for curing or cross-linking thepolymer coating 36. The cured or cross-linked polymer forms a solid layer bonded to themetal material 26 of thedistal section 18. Various polymeric materials may be used to form thepolymer coating 36 including polyurethanes, polyesters, polyamides, polyethylene, polystyrene, polyether block amides or a mixture thereof. Moreover, thepolymer coating 36 may contain a filler material such as radiopacifier, e.g., tungsten, bismuth and/or barium sulfate. Other suitable material know to those in the art may also be used. - In at least one embodiment, the
polymer coating 36 is applied over theproximal section 16 of the FP coatedcore wire 10 and is in direct contact with theFP coating 14. Thepolymer coating 36 preferably has little or no adhesion to the FP coating once thepolymer coating 26 is cooled and/or cured about theproximal section 16. In one example, minimal adhesion between theFP coating 14 and thepolymer coating 36 is achieved by using apolymer coating 36 that has at least about 10 dynes/cm greater surface energy that theFP coating 14. It is believed that the relatively lower surface energy of theFP coating 14 provides sufficiently high surface tension between theFP coating 14 and thepolymer coating 36 to reduce adhesion of thepolymer coating 36 to theproximal section 16. - Referring to FIGS. 3 and 5A-5C, the
polymer coating 36 is removed at 106 from theproximal section 16 of the FP coatedcore wire 10 to form awire guide 46. Thewire guide 46 has aproximal portion 48 with theFP coating 14 and adistal portion 50 with thepolymer coating 36. - As illustrated, a stripping
device 54 may be used to remove thepolymer coat 36. The strippingdevice 54 may be any suitable device for applying a shear and/or abrasive force to thepolymer coating 36 for its removal. Preferably, thepolymer coating 36 is stripped only from theproximal section 16 and remains on thedistal section 18, forming anedge 56 that is adjacent to theFP coating 14. Theedge 56 may be configured as a slight step (e.g. 0.5 to 5 mil) between the proximal anddistal portions distinct coatings wire guide 46. - Moreover, Applicants have found that by minimizing the adhesion between the FP and
polymer coatings polymer coating 36 from theproximal section 16 is facilitated. It is believed that minimizing the force for removing thepolymer coating 36 reduces the potential for damage to the FP coating, which in one example, forms an exterior surface of theproximal portion 48. In a preferred embodiment, theFP coating 14 comprises polytetrafluoroethylene (PTFE) which has provided excellent results in trials for removing thepolymer coating 36 from theFP coating 14. However, othersuitable FP coatings 14 may be used, such as for example, fluorinated ethylene-propylene (FEP), polyethylenetetrafluoroethylene (ETFE), perfluoroalkoxy polymer (PFA), polyvinylfluoride (PVF), polyethylenechlorotrifluoroethylene (ECTFE), and/or polyvinylidene fluoride (PVDF). - In one embodiment, a
hydrophilic coating 52 is applied at 108 over thepolymer coating 36 disposed about thedistal section 18. Thepolymer coating 36 preferably acts as a primer or adhesion promoter between themetal material 26 and thehydrophilic coating 52. In one example, thehydrophilic coating 52 comprises polyvinylpyrrolidones, polyethylene oxides, polyacrylates or a mixture thereof. Thehydrophilic coating 52 may be applied to thepolymer coating 36 by any suitable process known to those skilled in the art including spray, extrusion, brush or dip coating. In one example, thehydrophilic coating 52 forms an exterior surface of thedistal portion 50 of thewire guide 46. Preferably, thehydrophilic coating 52 has a lubricity with a coefficient of friction that is relatively lower than the coefficient of friction of theFP coating 36, thereby providing thewire guide 46 with two distinctexterior coatings distal portions - Referring to
FIGS. 6A-6D , a catheter kit 150 for accessing a body channel or cavity is provided. As shown, the kit 150 includes amicrocatheter 152 preferably made of a soft, flexible material such as silicone or any other suitable material. Generally, themicrocatheter 152 has aproximal end 154, adistal end 156, and a plastic adapter orhub 158 to receive a medical device (not shown), e.g., angioplasty balloon, stent, occluding device, etc., to be advanced therethrough. In this embodiment, the inside diameter of themicrocatheter 152 may range between 0.014 and 0.027 inches. - The kit 150 further includes the
wire guide 46 as discussed in the foregoing paragraphs. Thewire guide 46 provides a guide catheter 162 a path during insertion of theguide catheter 162 within the body channel or cavity. The size of thewire guide 46 is based on the inside diameter of theguide catheter 162. Aneedle 163 may also be provided for percutaneously introducing thewire guide 46 into apatient 165. - The
guide catheter 162 or sheath is typically made of polytetrafluoroethylene (PTFE) and is for percutaneously introducing themicrocatheter 152 into the body of thepatient 165. Of course, any other suitable material may be used without falling beyond the scope or spirit of the present invention. Theguide catheter 162 may have a size of about 4-French to 8-French and allows themicrocatheter 152 to be inserted therethrough to a desired location in the body channel or cavity. Theguide catheter 162 receives themicrocatheter 152 and provides stability of themicrocatheter 152 at a desired location within the body. For example, theguide catheter 162 may stay stationary within a common visceral artery, e.g., a common hepatic artery, and adds stability to themicrocatheter 152 as themicrocatheter 152 is advanced through theguide catheter 162 to a desired point in a connecting artery, e.g., the left or right hepatic artery. - When the
distal end 156 of themicrocatheter 152 is at the desired point in the body, the medical device may be loaded at theproximal end 154 of themicrocatheter 152 and is advanced through themicrocatheter 152 for deployment through thedistal end 156. In one embodiment, apush wire 164 is used to mechanically advance or push the medical device through themicrocatheter 152. - It is to be understood that the catheter kit 150 described above is merely one example of a kit that may be used with the
wire guide 46. Of course, other kits, assemblies, and systems may be used with thewire guide 46 without falling beyond the scope or spirit of the present invention. - As a person skilled in the art will readily appreciate, the above description is meant as an illustration of the implementation of the principles of this invention. This description is not intended to limit the scope of application of this invention in that the invention is susceptible to modification, variation, and change, without departing from the spirit of this invention, as defined in the following claims.
Claims (20)
1. A method for making a wire guide comprising:
providing a core wire having a fluoropolymer (FP) coating disposed thereon defining a FP coated core wire, wherein a distal section of the FP coated core wire comprises an exposed metal portion;
applying a polymer coating to a proximal section of the FP coated core wire such that the polymer coating overlays at least a portion of the FP coating;
applying the polymer coating to the distal section of the FP coated core wire such that the polymer coating overlays at least a portion of the exposed metal portion; and
removing the polymer coating from the proximal section of the FP coated core wire to form the wire guide having a proximal portion with the FP coating and a distal portion with the polymer coating.
2. The method according to claim 1 wherein the step of applying the polymer coating to the proximal section includes extruding the polymer coating over the FP coating, and the step of applying the polymer coating to the distal section includes extruding the polymer coating over the exposed metal portion.
3. The method according to claim 1 wherein the polymer coating comprises polyurethanes, polyesters, polyamides, polyethylene, polystyrene, polyether block amides or a mixture thereof, and the FP coating comprises polytetrafluoroethylene (PTFE), fluorinated ethylene-propylene (FEP), polyethylenetetrafluoroethylene (ETFE), perfluoroalkoxy polymer (PFA), polyvinylfluoride (PVF), polyethylenechlorotrifluoroethylene (ECTFE), polyvinylidene fluoride (PVDF) or a mixture thereof.
4. The method according to claim 1 wherein the step of removing the polymer coating includes stripping the polymer coating from the proximal section such that the polymer coating remains on the distal section forming an edge adjacent to the FP coating.
5. The method according to claim 1 wherein the FP coated core wire includes metal material covered by the FP coating, and the method further comprises removing material from the distal section of the FP coated core wire including removing the FP coating to provide the exposed metal portion.
6. The method according to claim 5 wherein the step of removing the material includes machining the distal section of the FP coated core wire to form a distally tapered end portion.
7. The method according to claim 5 further comprising applying hydrophilic coating to the distal section over the polymer coating.
8. The method according to claim 7 wherein the FP coating and the hydrophilic coating form respectively a proximal exterior surface and a distal exterior surface of the wire guide, and wherein a coefficient of friction of the distal exterior surface is relatively lower than a coefficient of friction of the proximal exterior surface.
9. The method according to claim 7 wherein the polymer coating is affixed to both the metal material and the hydrophilic coating, providing adhesion of the hydrophilic coating to the distal section of the FP coated core wire.
10. The method according to claim 7 wherein the hydrophilic coating comprises polyvinylpyrrolidones, polyethylene oxides, polyacrylates or a mixture thereof.
11. A wire guide comprising:
a core wire having a proximal section extending to a distal section, the proximal section having a fluoropolymer (FP) coating disposed thereon and the distal section having a polymer coating disposed thereon, the polymer coating having an edge that is adjacent to the FP coating and is defined by removal of the polymer coating from the proximal section of the core wire.
12. The wire guide according to claim 11 wherein the distal section of the core wire has a distally tapered end portion formed of metal material, and the polymer coating covers the distally tapered end portion.
13. The wire guide according to claim 12 wherein the distal section of the core wire has a longitudinal axis, and the polymer coating disposed about the distal section of the core wire has an outer diameter defined by extrusion of a substantially circular cross-section along a length of the longitudinal axis.
14. The wire guide according to claim 12 wherein the distal section of the core wire has a hydrophilic coating disposed thereon covering the polymer coating.
15. The wire guide according to claim 14 wherein the FP coating and the hydrophilic coating form respectively a proximal exterior surface and a distal exterior surface of the wire guide, and wherein a coefficient of friction of the distal exterior surface is relatively lower than a coefficient of friction of the proximal exterior surface.
16. The wire guide according to claim 14 wherein the polymer coating is affixed to both the metal material and the hydrophilic coating, providing adhesion of the hydrophilic coating to the distal section of the core wire.
17. A catheter kit comprising:
a guide catheter for insertion into a patient;
a wire guide for providing the guide catheter a path during insertion into the patient, the wire guide including a core wire having a proximal section extending to a distal section, the proximal section having a fluoropolymer (FP) coating disposed thereon and the distal section having a polymer coating disposed thereon, the polymer coating having an edge that is adjacent to the FP coating and is defined by removal of the polymer coating from the proximal section of the core wire; and
a needle for introducing the wire guide into the patient.
18. The catheter kit according to claim 17 further comprising a microcatheter configured to be positioned through the guide catheter for positioning in the patient.
19. The catheter kit according to claim 17 wherein the distal section of the core wire has a distally tapered end portion formed of metal material, and the polymer coating covers the distally tapered end portion.
20. The catheter kit according to claim 19 wherein the distal section of the core wire has a hydrophilic coating disposed thereon covering the polymer coating, the polymer coating is affixed to both the metal material and the hydrophilic coating to provide adhesion of the hydrophilic coating to the distal section of the core wire, the FP coating and the hydrophilic coating form respectively a proximal exterior surface and a distal exterior surface of the wire guide, and wherein a coefficient of friction of the distal exterior surface is relatively lower than a coefficient of friction of the proximal exterior surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/723,770 US20100234816A1 (en) | 2009-03-13 | 2010-03-15 | Coated wire guide and method of making same |
US14/593,647 US9364589B2 (en) | 2009-03-13 | 2015-01-09 | Method of making a coated wire guide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15991609P | 2009-03-13 | 2009-03-13 | |
US12/723,770 US20100234816A1 (en) | 2009-03-13 | 2010-03-15 | Coated wire guide and method of making same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/593,647 Division US9364589B2 (en) | 2009-03-13 | 2015-01-09 | Method of making a coated wire guide |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100234816A1 true US20100234816A1 (en) | 2010-09-16 |
Family
ID=42731297
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/723,770 Abandoned US20100234816A1 (en) | 2009-03-13 | 2010-03-15 | Coated wire guide and method of making same |
US14/593,647 Active US9364589B2 (en) | 2009-03-13 | 2015-01-09 | Method of making a coated wire guide |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/593,647 Active US9364589B2 (en) | 2009-03-13 | 2015-01-09 | Method of making a coated wire guide |
Country Status (1)
Country | Link |
---|---|
US (2) | US20100234816A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10584301B2 (en) | 2016-10-12 | 2020-03-10 | The Chemours Company Fc, Llc | Low bake temperature fluoropolymer coatings |
CN116608891A (en) * | 2023-07-20 | 2023-08-18 | 山东省科学院激光研究所 | An optical fiber F-P cavity sensor and its manufacturing method |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5751709B2 (en) | 2008-12-08 | 2015-07-22 | サイエンティア バスキュラー エルエルシー | Micro-cutting device for forming cuts in products |
US12220538B2 (en) | 2008-12-08 | 2025-02-11 | Scientia Vascular, Inc. | Micro-fabricated intravascular devices having varying diameters |
US11406791B2 (en) | 2009-04-03 | 2022-08-09 | Scientia Vascular, Inc. | Micro-fabricated guidewire devices having varying diameters |
US10363389B2 (en) | 2009-04-03 | 2019-07-30 | Scientia Vascular, Llc | Micro-fabricated guidewire devices having varying diameters |
US9950137B2 (en) | 2009-04-03 | 2018-04-24 | Scientia Vascular, Llc | Micro-fabricated guidewire devices formed with hybrid materials |
US11207502B2 (en) | 2016-07-18 | 2021-12-28 | Scientia Vascular, Llc | Guidewire devices having shapeable tips and bypass cuts |
US11052228B2 (en) | 2016-07-18 | 2021-07-06 | Scientia Vascular, Llc | Guidewire devices having shapeable tips and bypass cuts |
US10821268B2 (en) | 2016-09-14 | 2020-11-03 | Scientia Vascular, Llc | Integrated coil vascular devices |
US11452541B2 (en) | 2016-12-22 | 2022-09-27 | Scientia Vascular, Inc. | Intravascular device having a selectively deflectable tip |
WO2018218216A1 (en) | 2017-05-26 | 2018-11-29 | Scientia Vascular, Llc | Micro-fabricated medical device having a non-helical cut arrangement |
US11305095B2 (en) | 2018-02-22 | 2022-04-19 | Scientia Vascular, Llc | Microfabricated catheter having an intermediate preferred bending section |
US12011555B2 (en) | 2019-01-15 | 2024-06-18 | Scientia Vascular, Inc. | Guidewire with core centering mechanism |
US12178975B2 (en) | 2020-01-23 | 2024-12-31 | Scientia Vascular, Inc. | Guidewire having enlarged, micro-fabricated distal section |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213111A (en) * | 1991-07-10 | 1993-05-25 | Cook Incorporated | Composite wire guide construction |
US5722424A (en) * | 1995-09-29 | 1998-03-03 | Target Therapeutics, Inc. | Multi-coating stainless steel guidewire |
US5756144A (en) * | 1990-06-15 | 1998-05-26 | Meadox Medicals, Inc. | Medical instrument with a hydrophilic, low-friction coating and method of preparation |
US5772609A (en) * | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5836893A (en) * | 1996-03-08 | 1998-11-17 | Scimed Life Systems, Inc. | Intravascular guidewire |
US6461311B2 (en) * | 1998-03-04 | 2002-10-08 | C.R. Bard, Inc. | Low friction guidewire with off-center core |
US6488637B1 (en) * | 1996-04-30 | 2002-12-03 | Target Therapeutics, Inc. | Composite endovascular guidewire |
US20060047224A1 (en) * | 2004-09-01 | 2006-03-02 | Ryan Grandfield | Polymer coated guide wire |
US7014616B2 (en) * | 1998-12-28 | 2006-03-21 | Micrus Corporation | Composite guidewire |
US7097624B2 (en) * | 2000-10-05 | 2006-08-29 | Scimed Life Systems, Inc. | Multi-layer and multi-section coils for guide wire |
US7115101B2 (en) * | 1997-03-06 | 2006-10-03 | Scimed Life Systems, Inc. | Guide wire with hydrophilically coated tip |
US20070293791A1 (en) * | 2006-06-16 | 2007-12-20 | Jeong Lee | Guidewire With Lubricious Proximal Portion |
US20080146967A1 (en) * | 1997-06-04 | 2008-06-19 | Richardson Mark T | Polymer coated guidewire |
US7455646B2 (en) * | 1997-06-04 | 2008-11-25 | Advanced Cardiovascular Systems, Inc. | Polymer coated guide wire |
US20100268265A1 (en) * | 2007-12-10 | 2010-10-21 | Incept, Llc | Retrieval apparatus and methods for use |
US20110160680A1 (en) * | 2009-12-29 | 2011-06-30 | Cook Incorporated | Wire guide with cannula |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0734889B2 (en) * | 1988-06-10 | 1995-04-19 | 小島プレス工業株式会社 | Coating method of resin molding |
US7001345B2 (en) * | 2002-08-23 | 2006-02-21 | Cook Incorporated | Wire guide |
-
2010
- 2010-03-15 US US12/723,770 patent/US20100234816A1/en not_active Abandoned
-
2015
- 2015-01-09 US US14/593,647 patent/US9364589B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5756144A (en) * | 1990-06-15 | 1998-05-26 | Meadox Medicals, Inc. | Medical instrument with a hydrophilic, low-friction coating and method of preparation |
US5213111A (en) * | 1991-07-10 | 1993-05-25 | Cook Incorporated | Composite wire guide construction |
US5772609A (en) * | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5722424A (en) * | 1995-09-29 | 1998-03-03 | Target Therapeutics, Inc. | Multi-coating stainless steel guidewire |
US5984878A (en) * | 1995-09-29 | 1999-11-16 | Target Therapeutics, Inc. | Multi-coating stainless steel guidewire |
US5836893A (en) * | 1996-03-08 | 1998-11-17 | Scimed Life Systems, Inc. | Intravascular guidewire |
US6488637B1 (en) * | 1996-04-30 | 2002-12-03 | Target Therapeutics, Inc. | Composite endovascular guidewire |
US20060282016A1 (en) * | 1997-03-06 | 2006-12-14 | Scimed Life Systems, Inc. | Guide wire with hydrophilically coated tip |
US7115101B2 (en) * | 1997-03-06 | 2006-10-03 | Scimed Life Systems, Inc. | Guide wire with hydrophilically coated tip |
US20080146967A1 (en) * | 1997-06-04 | 2008-06-19 | Richardson Mark T | Polymer coated guidewire |
US7455646B2 (en) * | 1997-06-04 | 2008-11-25 | Advanced Cardiovascular Systems, Inc. | Polymer coated guide wire |
US6461311B2 (en) * | 1998-03-04 | 2002-10-08 | C.R. Bard, Inc. | Low friction guidewire with off-center core |
US7014616B2 (en) * | 1998-12-28 | 2006-03-21 | Micrus Corporation | Composite guidewire |
US7097624B2 (en) * | 2000-10-05 | 2006-08-29 | Scimed Life Systems, Inc. | Multi-layer and multi-section coils for guide wire |
US20060047224A1 (en) * | 2004-09-01 | 2006-03-02 | Ryan Grandfield | Polymer coated guide wire |
US20070293791A1 (en) * | 2006-06-16 | 2007-12-20 | Jeong Lee | Guidewire With Lubricious Proximal Portion |
US20100268265A1 (en) * | 2007-12-10 | 2010-10-21 | Incept, Llc | Retrieval apparatus and methods for use |
US20110160680A1 (en) * | 2009-12-29 | 2011-06-30 | Cook Incorporated | Wire guide with cannula |
Non-Patent Citations (1)
Title |
---|
Merriam-Webster.com, "Adjacent - Definition and More", downloaded 9 October 2014, Merriam-Webster.com, 3 pages * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10584301B2 (en) | 2016-10-12 | 2020-03-10 | The Chemours Company Fc, Llc | Low bake temperature fluoropolymer coatings |
CN116608891A (en) * | 2023-07-20 | 2023-08-18 | 山东省科学院激光研究所 | An optical fiber F-P cavity sensor and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
US9364589B2 (en) | 2016-06-14 |
US20150132468A1 (en) | 2015-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9364589B2 (en) | Method of making a coated wire guide | |
US20220331552A1 (en) | Multi-layer Catheter Construction | |
EP1955724B1 (en) | Medical catheter | |
EP2068994B1 (en) | Catheter shaft including a metallic tapered region | |
EP1379311B1 (en) | Microcatheter with improved distal tip and transitions | |
US6673025B1 (en) | Polymer coated guidewire | |
US7556710B2 (en) | Catheters with lubricious linings and methods for making and using them | |
EP1797922B1 (en) | Microcatheter with improved distal tip and transitions | |
US7001345B2 (en) | Wire guide | |
EP1894594B1 (en) | Unfused Catheter body feature | |
CA3010700C (en) | Hybrid transseptal dilator and methods of using the same | |
EP2237827B1 (en) | Loop tip wire guide with outer sleeve | |
US20130018318A1 (en) | Introducer sheath with braided filament securement mechanism | |
EP2821093A1 (en) | Method for manufacturing medical device, and medical device | |
WO2001036034A2 (en) | Polymer coated guidewire | |
US20070088296A1 (en) | Catheters with lubricious linings and methods for making and using them | |
EP3116582B1 (en) | Kink-resistant guidewire with improved rigidity | |
JP4854458B2 (en) | Medical multi-lumen tube | |
EP1796775B1 (en) | Polymer coated guide wire | |
US20090275862A1 (en) | Guidewire and method of making same | |
JP5654217B2 (en) | Contrast markers and catheters | |
EP2881137B1 (en) | Medical instrument, and medical-instrument production method | |
US20110276033A1 (en) | Wire guide and method of making same | |
US20180339138A1 (en) | Guidewire | |
JPH11197249A (en) | Method for manufacturing catheter tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COOK INCORPORATED, INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAGE, LOGAN MICHAEL;ELSESSER, JAMES CAMERON;SIGNING DATES FROM 20100318 TO 20100322;REEL/FRAME:024287/0293 |
|
AS | Assignment |
Owner name: COOK INCORPORATED, INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAGE, LOGAM MICHAEL;ELSESSER, JAMES CAMERON;SIGNING DATES FROM 20100318 TO 20100322;REEL/FRAME:034946/0414 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |