US20100233655A1 - Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes - Google Patents
Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes Download PDFInfo
- Publication number
- US20100233655A1 US20100233655A1 US12/741,385 US74138508A US2010233655A1 US 20100233655 A1 US20100233655 A1 US 20100233655A1 US 74138508 A US74138508 A US 74138508A US 2010233655 A1 US2010233655 A1 US 2010233655A1
- Authority
- US
- United States
- Prior art keywords
- digitally
- dental
- controlled
- dental article
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 230000008569 process Effects 0.000 title claims abstract description 36
- 239000000654 additive Substances 0.000 title claims abstract description 32
- 230000000996 additive effect Effects 0.000 title claims abstract description 31
- 230000002829 reductive effect Effects 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title description 13
- 238000003801 milling Methods 0.000 claims abstract description 58
- 210000004513 dentition Anatomy 0.000 claims abstract description 38
- 230000036346 tooth eruption Effects 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims description 71
- 238000012545 processing Methods 0.000 claims description 13
- 239000007943 implant Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000010146 3D printing Methods 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 3
- 238000010422 painting Methods 0.000 abstract description 24
- 239000003973 paint Substances 0.000 description 63
- 239000010410 layer Substances 0.000 description 23
- 238000005520 cutting process Methods 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 13
- 238000009826 distribution Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 10
- 239000012530 fluid Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 6
- 230000013011 mating Effects 0.000 description 6
- 210000003298 dental enamel Anatomy 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000007591 painting process Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 210000004268 dentin Anatomy 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 210000004872 soft tissue Anatomy 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000010485 coping Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000010399 physical interaction Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 206010041235 Snoring Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000012711 adhesive precursor Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 206010006514 bruxism Diseases 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 239000003479 dental cement Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- -1 glycol ethers Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 210000004283 incisor Anatomy 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000007592 spray painting technique Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0022—Blanks or green, unfinished dental restoration parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0009—Production methods using a copying machine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/001—Electrophoresis coating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0013—Production methods using stereolithographic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0018—Production methods using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0019—Production methods using three dimensional printing
Definitions
- the invention relates to dentistry, and more particularly to fabricating dental articles using a combination of digitally-controlled reductive processes and digitally-controlled additive processes.
- One technique for fabricating crowns and other dental articles employs a computer-controlled milling machine to shape a mill blank into a desired end product.
- Most commercially available mill blanks are made of ceramic or some other material suitably hard for use in a final dental restoration, such as porcelain or micaceous ceramics.
- milled dental articles have generally monolithic visual appearance due to the corresponding, monolithic composition of dental mill blanks It may still require a number of manual finishing steps in order to achieve an appearance consistent with surrounding dentition.
- a suitable replacement dental article By capturing a highly detailed three-dimensional digital model of dentition, a suitable replacement dental article can be fabricated with a combination of digitally-controlled reductive processes such as milling and digitally-controlled additive processes such as digital painting.
- a dental article so-manufactured can provide an aesthetically pleasing, multi-chromatic appearance that closely matches surrounding dentition.
- a method disclosed herein includes receiving a digital model of a dental article, the dental article including a volume having a bonding surface shaped to attach to a site in human dentition and a functional surface shaped to replace a dental structure removed from the site; fabricating an understructure for the dental article with a digitally-controlled reductive process, the understructure including a majority of the volume of the dental article; and adding at least one layer to the understructure using a digitally-controlled additive process, thereby providing the dental article.
- the dental article may be a restoration selected from the group consisting of a crown, a bridge, an inlay, and an onlay.
- the dental article may be a denture or an implant.
- the site may include a prepared surface of a tooth.
- the functional surface may be created from a three-dimensional scan of the tooth before preparation.
- the functional surface may be created from a template.
- the template may be modified using three-dimensional data from dentition surrounding the site.
- the template may be modified using occlusion data from one or more opposing teeth.
- the digitally-controlled reductive process may include a milling process.
- the digitally-controlled additive process may include one or more of stereo-lithography, digital light processing, and three-dimensional printing. Adding at least one layer may include fabricating the at least one layer directly on the understructure.
- the at least one layer may include a plurality of layers selected to achieve a multi-chromatic appearance of natural dentition.
- the method may include affixing the dental article to the site.
- the digital model may include color and opacity information, and adding at least one layer to the understructure may include selecting a material for the at least one layer to correspond to the color and opacity information.
- the method may include applying a plurality of materials to obtain a multi-chromatic dental article.
- a system disclosed herein includes a digitally-controlled milling machine; a digitally-controlled additive device; and a controller coupled to the digitally-controlled milling machine and the digitally-controlled additive device, the controller programmed to receive a digital model of a dental article and to control operation of the digitally-controlled milling machine and the digitally-controlled additive device to fabricate the dental article from a dental mill blank using a combination of additive and reductive processes.
- the dental article may include a volume having a bonding surface shaped to attach to a site in human dentition and a functional surface shaped to replace a dental structure removed from the site.
- the controller may be programmed to fabricate an understructure for the dental article with the digitally-controlled milling machine, the understructure including a majority of the volume of the dental article.
- the controller may be programmed to add at least one layer to the understructure using the digitally-controlled additive device.
- the digitally-controlled additive device may include one or more of a stereo-lithography device, a digital light processing device, and a three-dimensional printing device.
- the dental article may be a restoration selected from the group consisting of a crown, a bridge, an inlay, and an onlay.
- the dental article may be a denture or an implant.
- FIG. 1 shows a three-dimensional scanning system
- FIG. 2 shows a dental mill blank
- FIG. 3 shows a digitally-controlled reductive system.
- FIG. 4 shows a digitally-controlled additive system
- FIG. 5 shows a method for fabricating a dental article.
- Described herein are systems and methods for fabricating a dental article using a combination of computer-controlled milling and digital painting, based upon a model obtained from a three-dimensional scan of patient dentition. While the description emphasizes certain specific steps and certain types of dental articles, it will be understood that additional variations, adaptations, and combinations of the methods and systems below will be apparent to one of ordinary skill in the art. For example there are a number of variants to computer-controlled milling that may be suitably employed as a digitally-controlled reductive system, and there are a number of variants to digital painting that may be suitably employed as a digitally-controlled additive system.
- cured or partially-cured materials may be employed for various fabrication steps, and a number of three-dimensional scanning technologies are available that might be suitably adapted to obtaining three-dimensional scans for the uses described herein.
- a coping or other substructure or interim article of dental manufacture may be fabricated using the techniques described herein. All such variations, adaptations, and combinations are intended to fall within the scope of this disclosure.
- each group is “independently” selected, whether specifically stated or not.
- each M group is independently selected.
- three-dimensional surface representation “digital surface representation”, “three-dimensional surface map”, and the like, as used herein, are intended to refer to any three-dimensional surface map of an object, such as a point cloud of surface data, a set of two-dimensional polygons, or any other data representing all or some of the surface of an object, as might be obtained through the capture and/or processing of three-dimensional scan data, unless a different meaning is explicitly provided or otherwise clear from the context.
- a “three-dimensional representation” may include any of the three-dimensional surface representations described above, as well as volumetric and other representations, unless a different meaning is explicitly provided or otherwise clear from the context.
- room temperature refers to a temperature of 20° C. to 25° C. or 22° C. to 25° C.
- dental object is intended to refer broadly to subject matter specific to dentistry. This may include intraoral structures such as dentition, and more typically human dentition, such as individual teeth, quadrants, full arches, pairs of arches which may be separate or in occlusion of various types, soft tissue, and the like, as well as bones and any other supporting or surrounding structures.
- intraoral structures refers to both natural structures within a mouth as described above and artificial structures such as any of the dental objects described below that might be present in the mouth.
- dental article is intended to refer to a man-made dental object.
- Dental articles may include “restorations”, which may be generally understood to include components that restore the structure or function of existing dentition, such as crowns, bridges, veneers, inlays, onlays, amalgams, composites, and various substructures such as copings and the like, as well as temporary restorations for use while a permanent restoration is being fabricated.
- Dental articles may also include a “prosthesis” that replaces dentition with removable or permanent structures, such as dentures, partial dentures, implants, retained dentures, and the like.
- Dental articles may also include “appliances” used to correct, align, or otherwise temporarily or permanently adjust dentition, such as removable orthodontic appliances, surgical stents, bruxism appliances, snore guards, indirect bracket placement appliances, and the like.
- Dental articles may also include “hardware” affixed to dentition for an extended period, such as implant fixtures, implant abutments, orthodontic brackets, and other orthodontic components.
- Dental articles may also include “interim components” of dental manufacture such as dental models (full or partial), wax-ups, investment molds, and the like, as well as trays, bases, dies, and other components employed in the fabrication of restorations, prostheses, and the like.
- Dental objects may also be categorized as natural dental objects such as the teeth, bone, and other intraoral structures described above or as artificial dental objects (i.e., dental articles) such as the restorations, prostheses, appliances, hardware, and interim components of dental manufacture as described above.
- a dental article may be fabricated intraorally, extraorally, or some combination of these.
- Any other monochromatic or multichromatic print head suitable for distributing fluids to selected locations of a surface may be similarly employed for digitally-controlled painting.
- the digital paint head should be capable of delivering paint within a natural dentition color space, either through selective application of different paints or on-the-fly mixing of dyes and other materials.
- opacity may be usefully controlled through fillers and other materials within a paint binder.
- a “digital wirejet paint head” refers specifically to paint heads of the type used in wirejet printers. More generally, a “digital painting process” may be any of the digital painting techniques described above, or otherwise suitable for use with the systems and methods described herein, including inkjet or laser printing technologies that can be adapted to distribute paints in fluid form. This includes, for example, solid applications, which may be baked to a final coat, or gaseous (e.g., as a gas or as a gaseous suspension) applications such as spray painting. It will be understood that a variety of materials may be applied in fluid form in a digital painting process, including oil-based paints, acrylic paints, urethanes, polyurethanes, enamels, and so forth.
- a paint as used herein may include pigments for color, binders for structure (e.g., acrylics, polyurethanes, polyesters, melamine resins, epoxy, oil), and solvents or the like for adjusting viscosity (e.g., aliphatics, aromatics, alcohols, ketones, petroleum distillates, esters, glycol ethers, low-molecular weight synthetic resins, etc.), as well as other miscellaneous additives to control handling properties or provide improved performance in applied paint (e.g., antifreeze, antibacterials, pigment stability, etc.).
- binders for structure e.g., acrylics, polyurethanes, polyesters, melamine resins, epoxy, oil
- solvents or the like for adjusting viscosity e.g., aliphatics, aromatics, alcohols, ketones, petroleum distillates, esters, glycol ethers, low-molecular weight synthetic resins, etc.
- miscellaneous additives e.g., anti
- Paints may also be categorized according to curing mechanism, which may, for example, include drying by solvent evaporation, oxidative crosslinking, catalyzed polymerization, and coalescence.
- curing mechanism may, for example, include drying by solvent evaporation, oxidative crosslinking, catalyzed polymerization, and coalescence.
- any such material that can be applied in fluid form may be used, provided it can be dried, heated, or otherwise cured into a surface suitable for use in a dental article.
- FIG. 1 shows a three-dimensional scanning system that may be used with the systems and methods described herein.
- the system 100 may include a scanner 102 that captures images from a surface 106 of a subject 104 , such as a dental patient, and forwards the images to a computer 108 , which may include a display 110 and one or more user input devices such as a mouse 112 or a keyboard 114 .
- the scanner 102 may also include an input or output device 116 such as a control input (e.g., button, touchpad, thumbwheel, etc.) or a display (e.g., LCD or LED display) to provide status information.
- a control input e.g., button, touchpad, thumbwheel, etc.
- a display e.g., LCD or LED display
- the scanner 102 may include any camera or camera system suitable for capturing images from which a three-dimensional point cloud may be recovered.
- the scanner 102 may employ a multi-aperture system as disclosed, for example, in U.S. patent application Ser. No. 11/530,420 to Rohaly et al. entitled Three-Channel Camera Systems with Collinear Apertures, filed on Sep. 8, 2006 and published on Aug. 16, 2007 as U.S. Pub. No. 2007/0188769, the entire content of which is incorporated herein by reference. While Rohaly discloses certain multi-aperture systems, it will be appreciated that any multi-aperture system suitable for reconstructing a three-dimensional point cloud from a number of two-dimensional images may similarly be employed.
- the scanner 102 may include a plurality of apertures including a center aperture positioned along a center optical axis of a lens, along with any associated imaging hardware.
- the scanner 102 may also, or instead, include a stereoscopic, triscopic or other multi-camera or other configuration in which a number of cameras or optical paths are maintained in fixed relation to one another to obtain two-dimensional images of an object from a number of slightly different perspectives.
- the scanner 102 may include suitable processing for deriving a three-dimensional point cloud from an image set or a number of image sets, or each two-dimensional image set may be transmitted to an external processor such as contained in the computer 108 described below.
- the scanner 102 may employ structured light, laser scanning, direct ranging, or any other technology suitable for acquiring three-dimensional data, or two-dimensional data that can be resolved into three-dimensional data.
- the scanner 102 is a handheld, freely positionable probe having at least one user input device 116 , such as a button, lever, dial, thumb wheel, switch, or the like, for user control of the image capture system 100 such as starting and stopping scans.
- the scanner 102 may be shaped and sized for dental scanning More particularly, the scanner may be shaped and sized for intraoral scanning and data capture, such as by insertion into a mouth of an imaging subject and passing over an intraoral surface 106 at a suitable distance to acquire surface data from teeth, gums, and so forth.
- the scanner 102 may, through such a continuous acquisition process, capture a point cloud of surface data having sufficient spatial resolution and accuracy to prepare dental objects such as prosthetics, hardware, appliances, and the like therefrom, either directly or through a variety of intermediate processing steps.
- surface data may be acquired from a dental model such as a dental prosthetic, to ensure proper fitting using a previous scan of corresponding dentition, such as a tooth surface prepared for the prosthetic.
- supplemental lighting systems may be usefully employed during image capture.
- environmental illumination may be enhanced with one or more spotlights illuminating the subject 104 to speed image acquisition and improve depth of field (or spatial resolution depth).
- the scanner 102 may also, or instead, include a strobe, flash, or other light source to supplement illumination of the subject 104 during image acquisition.
- the subject 104 may be any object, collection of objects, portion of an object, or other subject matter. More particularly with respect to the dental fabrication techniques discussed herein, the object 104 may include human dentition captured intraorally from a dental patient's mouth.
- a scan may capture a three-dimensional representation of some or all of the dentition according to a particular purpose of the scan. Thus the scan may capture a digital model of a tooth, a quadrant of teeth, or a full collection of teeth including two opposing arches, as well as soft tissue or any other relevant intraoral structures.
- the scan may include a dental prosthesis such as an inlay, a crown, or any other dental prosthesis, dental hardware, dental appliance, or the like.
- the subject 104 may also, or instead, include a dental model, such as a plaster cast, wax-up, impression, or negative impression of a tooth, teeth, soft tissue, or some combination of these.
- the computer 108 may be, for example, a personal computer or other processing device.
- the computer 108 includes a personal computer with a dual 2.8 GHz Opteron central processing unit, 2 gigabytes of random access memory, a TYAN Thunder K8WE motherboard, and a 250 gigabyte, 10,000 rpm hard drive.
- This system may be operated to capture approximately 1,500 points per image set in real time using the techniques described herein, and store an aggregated point cloud of over one million points.
- the term “real time” means generally with no observable latency between processing and display. In a video-based scanning system, real time more specifically refers to processing within the time between frames of video data, which may vary according to specific video technologies between about fifteen frames per second and about thirty frames per second.
- processing capabilities of the computer 108 may vary according to the size of the subject 104 , the speed of image acquisition, and the desired spatial resolution of three-dimensional points.
- the computer 108 may also include peripheral devices such as a keyboard 114 , display 110 , and mouse 112 for user interaction with the camera system 100 .
- the display 110 may be a touch screen display capable of receiving user input through direct, physical interaction with the display 110 .
- Communications between the computer 108 and the scanner 102 may use any suitable communications link including, for example, a wired connection or a wireless connection based upon, for example, IEEE 802.11 (also known as wireless Ethernet), BlueTooth, or any other suitable wireless standard using, e.g., a radio frequency, infrared, or other wireless communication medium.
- IEEE 802.11 also known as wireless Ethernet
- BlueTooth or any other suitable wireless standard using, e.g., a radio frequency, infrared, or other wireless communication medium.
- wireless image transmission from the scanner 102 to the computer 108 may be secured.
- the computer 108 may generate control signals to the scanner 102 which, in addition to image acquisition commands, may include conventional camera controls such as focus or zoom.
- the scanner 102 may acquire two-dimensional image sets at a video rate while the scanner 102 is passed over a surface of the subject.
- the two-dimensional image sets may be forwarded to the computer 108 for derivation of three-dimensional point clouds.
- the three-dimensional data for each newly acquired two-dimensional image set may be derived and fitted or “stitched” to existing three-dimensional data using a number of different techniques.
- Such a system employs camera motion estimation to avoid the need for independent tracking of the position of the scanner 102 .
- One useful example of such a technique is described in commonly-owned U.S.
- the display 110 may include any display suitable for video or other rate rendering at a level of detail corresponding to the acquired data. Suitable displays include cathode ray tube displays, liquid crystal displays, light emitting diode displays and the like. In some embodiments, the display may include a touch screen interface using, for example capacitive, resistive, or surface acoustic wave (also referred to as dispersive signal) touch screen technologies, or any other suitable technology for sensing physical interaction with the display 110 .
- Suitable displays include cathode ray tube displays, liquid crystal displays, light emitting diode displays and the like.
- the display may include a touch screen interface using, for example capacitive, resistive, or surface acoustic wave (also referred to as dispersive signal) touch screen technologies, or any other suitable technology for sensing physical interaction with the display 110 .
- FIG. 2 shows an SMC dental mill blank that may be used with the systems and methods described herein in a side view.
- a dental mill blank 200 includes a stem 202 and a body 204 .
- the dental mill blank 200 may be a compound mill blank that includes a volume encompassing an internal material 206 , an exterior material 208 , and an outer layer 210 .
- the dental mill blank 200 may also optionally include an identifier 212 such as a bar code or Radio-Frequency Identification (RFID) tag.
- RFID Radio-Frequency Identification
- compound SMC mill blanks are described below, and while certain advantages may be realized using compound SMC mill blanks, a mill blank formed from a single SMC material, or an SMC material and some other material, or some other material such as a ceramic may also or instead be suitably employed with the systems and methods described herein.
- the body 204 may have any shape and size suitable for accommodating the internal material 206 and exterior material 208 as described below, and may further include an optional outer layer 210 as described generally below.
- the mill blank may more generally have a body 204 of adequate volume to mill a desired dental article therefrom. It will be understood that the blank 200 may be selected or fabricated to match a predetermined tooth size, as determined for example by direct measurement of a site for which a restoration or the like is to be fabricated.
- the internal material 206 may be any of the SMC materials described above.
- the internal material 206 may be spatially distributed within the dental mill blank in a manner substantially corresponding to a distribution, in a cured and milled dental article fabricated from the blank 200 , of dentin in a natural tooth structure. This distribution may vary according to the size or type of tooth for which a dental article is to be milled. For example, for a restoration the distribution may vary according to whether the restoration is a crown, a bridge, an inlay, an onlay, or a veneer.
- the internal material 206 may be selected to achieve one or more optical properties similar or identical to dentin in a dental article milled from the blank 200 .
- the internal material 206 may be selected to have a translucence, color, or shade similar or identical to that of dentin, or may be selected to provide an appearance in the resulting restoration of the desired optical property or properties.
- the internal material 206 may be selected to achieve on or more mechanical (i.e., structural) properties similar or identical to dentin in a cured dental article milled from the blank 200 .
- the internal material 206 may be selected to support a tooth structure in ordinary use, or more generally to provide a desired degree of resistance to fracture, hardness, pliability or the like to a core region of a restoration. In particular, these characteristics may be selected to match the corresponding mechanical properties of a natural tooth structure in a cured dental article fabricated from the blank 200 .
- the exterior material 208 may be any of the SMC materials described above.
- the exterior material 208 may be spatially distributed within the dental mill blank in a manner substantially corresponding to a distribution, in a cured and milled dental article fabricated from the blank 200 , of enamel in a natural tooth structure. While the interior surface of this material 208 is defined by a mating exterior surface of the internal material 206 , the exterior surface of the exterior material 208 may extend as appropriate to provide a required buffer for milling on all surfaces.
- the exterior material 208 may optionally extend to the extent of the body 204 , thus omitting any separate outer layer 210 from the mill blank.
- the distribution of the exterior material 208 may vary according to the size or type of tooth for which a dental article is to be milled.
- the exterior material 208 may be selected to provide a desired hardness, chip resistance, stain resistance, wear resistance, polish retention, and the like to an external surface of a restoration.
- these characteristics may be selected to match the corresponding mechanical properties of a natural tooth structure in a cured dental article fabricated from the blank 200 .
- the outer layer 210 may optionally be provided to serve any number of auxiliary functions. This may include, for example, shaping the blank 200 for convenient handling, packaging, or shipping, as well as protecting the interior of the blank prior to milling, such as to avoid unwanted deformation during stacking or substantial temperature excursions.
- the outer layer 210 may be millable, or otherwise removable from the blank 200 prior to milling.
- the mill blank 200 may optionally include an identifier 212 .
- the identifier 212 may be a bar code, RFID tag, or other identifier that uniquely identifies the blank 200 or associates the blank 200 with one or more properties.
- the identifier 212 may, for example, be a bar code, serial number, or other human-readable or machine-readable indicia on an exterior surface of the blank 200 .
- the identifier 212 may also be affixed to packaging for the blank 200 .
- the identifier 212 may also, or instead, include an RFID tag or the like physically embedded within the blank 200 .
- the RFID tag may be positioned in a portion of the blank, such as the outer layer 210 , that is intended to be removed by milling, or the RFID tag may be positioned within the internal material 206 so that a restoration or other dental article fabricated from the blank 200 carries the information within the RFID tag.
- the identifier 212 may encode a unique identification number for the blank 200 .
- This number may be used to obtain any information cross-referenced to that unique number, which may include data concerning the spatial distribution of SMC materials, the size, shade, and type of SMC materials or dental articles milled therefrom, and any other data useful to a dentist preparing a dental article from the mill blank 200 , or useful to a machine such as a computer-controlled milling machine that operates on the mill blank 200 .
- the identifier 212 may directly encode data concerning the blank such as a batch number, a shape, a shelf life, and so forth. More generally, any information useful for handling or using the blank 200 may be encoded directly within the identifier 212 , or obtained using a unique identifier encoded within the identifier 212 . It will be appreciated that the identifier 212 may also, or instead, encode non-unique information that is in turn used to obtain relevant data for the blank 200 . All such variations to and combinations of the foregoing are intended to fall within the scope of this disclosure.
- FIG. 3 shows a milling machine that may be used with the systems and methods herein.
- FIG. 3 illustrates a Computerized Numerically Controlled (“CNC”) milling machine 300 including a table 302 , an arm 304 , and a cutting tool 306 that cooperate to mill under computer control within a working envelope 308 .
- CNC Computerized Numerically Controlled
- a workpiece (not shown) may be attached to the table 302 .
- the table 302 may move within a horizontal plane and the arm 304 may move on a vertical axis to collectively provide x-axis, y-axis, and z-axis positioning of the cutting tool 306 relative to a workpiece within the working envelope 308 .
- the cutting tool 306 may thus be maneuvered to cut a computer-specified shape from the workpiece.
- Milling is generally a reductive technology in that material is subtracted from a block rather than added.
- pre-cut workpieces approximating commonly milled shapes may advantageously be employed to reduce the amount of material that must be removed during a milling job, which may reduce material costs and/or save time in a milling process.
- a precut piece such as a generic coping, rather than a square block.
- a number of sizes and shapes (e.g., molar, incisor, etc.) of preformed workpieces may be provided so that an optimal piece may be selected to begin any milling job.
- Various milling systems have different degrees of freedom, referred to as axes. Typically, the more axes available (such as 4-axis milling), the more accurate the resulting parts. High-speed milling systems are commercially available, and can provide high throughputs.
- a milling system may use a variety of cutting tools, and the milling system may include an automated tool changing capability to cut a single part with a variety of cutting tools.
- accuracy may be adjusted for different parts of the model. For example, the tops of teeth, or occlusal surfaces, may be cut more quickly and roughly with a ball mill and the prepared tooth and dental margin may be milled with a tool resulting in greater detail and accuracy.
- the digitally-controlled reductive device may be fast relative to the additive process so that a majority of the volume of an article can be produced quickly using reductive techniques.
- the digitally-controlled reductive device may work on high-strength materials (or materials that are curable to high strength) so that the resulting volume of a final product provides strength suitable for its intended application.
- the digitally-controlled reductive device may provide high spatial resolution to achieve good fit with mating surfaces such as a prepared tooth surface.
- FIG. 4 shows a device 400 for digitally painting a dental article.
- the device 400 includes a digital paint head 402 , a mounting device 404 holding a dental article 406 that has a bonding surface 408 and a functional surface 410 , and a controller 412 .
- the device 400 may also incorporate a milling machine 414 or other cutting tool for reductive processes.
- the digital paint head 402 may be any device coupled to a digital painting system for digitally-controlled distribution of paint in a digitally-controlled additive process.
- the digital painting system may provide for computer control of type of paint, dye mixture, thinning, and so forth, and may also or instead provide computer selection among two or more different paints for application at a particular location.
- the digital paint head 402 may itself have a controllable position so that the head 402 can be steered over a three-dimensional surface to be painted, or the digital paint head 402 may remain fixed while an object is moved (under computer control) beneath it.
- the digital paint head 402 may apply paint as droplets, a gaseous suspension, a fluid stream, or in any other manner suitable for controlling distribution on a target.
- the digital paint head 402 may be a digitally-controlled wirejet paint head based upon painting technology formerly sold under the Wirejet brand by Pixation Corporation. Any other print head suitable for distributing fluids to selected locations of a surface may be similarly employed.
- the digital paint head should be capable of delivering paint within a natural dentition color space, either through selective application of different paints or on-the-fly mixing of dyes and other materials.
- opacity may be usefully controlled through fillers and other materials within a paint binder.
- the mounting device 404 may be any device suitable for retaining the dental article 406 in a desired position. This may include clamps, grips, adhesives, mechanical friction fits (which may be machined into the dental article 406 ), and so forth. In one aspect, the mounting device 404 may retain the dental article 406 in a substantially fixed position. In another aspect, the mounting device 404 may be operable to move the dental article 406 in translation or rotation among any number of axes in order to position a desired point on a surface of the dental article 406 beneath the paint head 402 (or the cutting tool 414 ). Three translational degrees of freedom and two rotational degrees of freedom may be provided with suitable electromechanical components, and may suffice to operate on any surface of the dental article 406 to be coated with a stationary paint head.
- motion control may be distributed across the digital paint head 402 and mounting device 404 .
- the mounting device 404 may impart a controlled rotational orientation to the dental article 412 around a single axis, while the digital paint head 402 can be translated along two axes (e.g., parallel to the rotational axis, and orthogonal to the rotational axis) so that combined motion of the mounting device 404 and digital paint head 402 can position the paint head 402 to apply paint to any surface region of the dental article 406 .
- the dental article 406 which may be any of the dental articles described above, may include a bonding surface 408 and a functional surface 410 .
- the bonding surface 408 may be shaped to fit onto a mating prepared tooth surface in a dental patient's dentition.
- the form of the bonding surface 408 may be determined for example through physical impressioning or scanning of the prepared tooth surface.
- the functional surface 410 may replace a surface of a natural tooth with corresponding structural and aesthetic properties.
- the functional surface 410 may be formed of any substance suitable for, or curable into a form suitable for, intraoral use, and may be constructed using the digital painting techniques described herein.
- the controller 412 may communicated with the digital paint head 402 (or an associated digital painting system) to control distribution of paint to the dental article 406 . This may include selective application of different paints to different locations of the dental article, as well as selective application of different paints to different layers of the functional surface 410 , which may be formed from any number of digitally painted layers.
- the controller 412 may control a position of the digital paint head 402 , or may control a position of the mounting device 404 so that different surfaces of the dental article 406 are exposed to the paint head. In positioning the dental article 406 , the controller 412 may employ a digital, three-dimensional model of the dental article 406 , along with information concerning the color, opacity, texture, and the like of the dental article 406 along the surface thereof.
- the digital paint head 402 is intended for coating the functional surface 410 of the dental article 406
- the paint head may also, or instead, be usefully employed to apply sealants, adhesives, adhesive precursors, or any other useful materials to the bonding surface 408 or the functional surface 410 .
- a cutting tool 414 or other milling or cutting device may be usefully included in the device 400 for digitally-controlled reductive operations.
- the cutting tool 414 may operate under control of the controller to shape one or more surface of the dental article 406 , either by moving the cutting tool 414 or by moving the dental article 406 with a movable mount 404 , or some combination of these. While a single cutting tool 414 is illustrated, it will be appreciated that many computerized milling machines provide a number of cutting tools and/or a cutting tool with interchangeable cutting instruments having different roughness, hardness, and shape.
- the cutting tool 414 may use a three-dimensional model of the dental article to control material removal from surfaces of the dental article 406 .
- the device 400 may be employed to receive a mill blank, shape the mill blank, and finish the shaped article with one or more layers of paint, all under control of the controller 412 .
- FIG. 5 shows a method for fabricating a dental article using digitally-controlled reductive and digitally-controlled additive processes.
- the process 500 may begin by scanning dentition as shown in step 501 .
- This may include an acquisition of a three-dimensional surface representation or other digital model of a patient's dentition using, e.g., the scanning system described above with reference to FIG. 1 .
- step 501 may include a scan before preparation to capture the original, natural shape of the tooth structure being replaced.
- Step 501 may also, or instead, include a scan of the prepared tooth surface, which may be used in subsequent steps to fabricate a mating, bonding surface of a dental article.
- Step 501 may also, or instead, include a scan of surrounding dentition including, for example, an opposing arch, neighboring teeth, soft tissue, and the like, any of which might be usefully employed in computer-assisted design of a dental article for the prepared tooth surface.
- a scan of surrounding dentition including, for example, an opposing arch, neighboring teeth, soft tissue, and the like, any of which might be usefully employed in computer-assisted design of a dental article for the prepared tooth surface.
- the scan results from step 501 may be processed to obtain a digital model for a computer-controlled milling machine.
- a digital model for a computer-controlled milling machine may include a wide array of modeling steps.
- a preliminary or final digital model may be obtained through superposition of pre- and post- preparation scans of a tooth surface, thus permitting the direct fabrication of a replacement article that corresponds physically to the removed structure.
- a number of dental CAD tools also exist that may be used to create models for restorations and the like from preliminary scan-based models, or from generic tooth models and the like in a dental CAD model library or the like. In addition, some combination of these techniques may be employed.
- the model may be adjusted to compensate for shrinkage that occurs during curing of SMC materials.
- SMC materials may shrink in predictable manners during curing. For example, for light-based curing, monolithic shrinkage in the range of 2% (depending, of course, upon the particular materials) might be expected, provided the light fully penetrates an article that is being cured. Under such conditions, the digital model may be linearly expanded in all dimensions, so that a resulting cured article matches, e.g., an actual prepared tooth surface within a dental patient's dentition. More complex shrinkage algorithms may be required where, for example, articles are partially cured (with respect to degree of curing or location of curing) during handling, or where curing is initiated at a surface of an article. Creating and applying suitable algorithms is within the skill of one of ordinary skill in the relevant arts.
- a mill blank may be provided, as shown in step 503 .
- the mill blank may be any of the mill blanks described above including monolithic SMC mill blanks, compound SMC dental mill blanks, other mill blanks incorporating SMC materials, or mill blanks formed from ceramic or similar materials.
- the mill blank may be selected using any of the criteria described above including, for example, the shape of a desired restoration, the size of a tooth being restored, the type of tooth being restored, and optical characteristics such as color, shade, opacity, and so forth. These criteria may be objectively determined using image analysis including computerized review of image/video data to determine optical and aesthetic properties for a dental article.
- Image analysis may also or instead include dimensional analysis of three-dimensional data to determine a size, shape, type, or other physical characteristics of the dental article. These criteria may also, or instead, be subjectively determined by a dental professional such as during a patient visit.
- a suitable mill blank may be selected using a bar code, RFID tag, or other identifier attached to or imprinted on the mill blank.
- the mill blank may optionally be deformed where the mill blank is fashioned from a deformable, curable material such as any of the SMC materials described above.
- This may be, for example, a controlled deformation to adapt the mill blank to a specific tooth structure of a dental patient, such as by adapting the mill blank to a particular tooth shape or size.
- this technique may permit a significant reduction in the types of mill blanks required for a range of restorations and other dental procedures.
- Deformation may be performed, for example, by direct manual deformation of the blank by a dental professional or technician, or using a tool or machine adapted to apply incremental changes along a dimension such as the height or width of the mill blank.
- the blank may optionally be partially cured. This may include, for example, curing to preserve the deformation applied in step 504 during milling, or more generally curing the blank to prepare for milling. This may also include partial spatial curing, such as curing the stem or other support structures for the mill blank. It will be appreciated that such interim curing steps are optional, and will depend on the particular milling procedure and SMC materials being used, as well as the dental article being fabricated.
- the mill blank may then be milled into a dental article using any of the milling techniques described above.
- the milled dental article may be a restoration such as a crown, a bridge, an inlay, an onlay, a veneer, and the like, as well as any other dental article that replaces natural dentition.
- the techniques described herein may be suitably adapted to the manufacture of a prosthesis such as a denture or implant.
- milling is one reductive process that may be usefully employed with the systems and methods described herein, other reductive processes are known, and are intended to fall within the scope of this disclosure.
- the mill blank may be digitally painted using, for example, the digital painting system described above with reference to FIG. 4 . More generally, other additive processes are known, and any such process that can be adapted to use with the systems and methods described herein is intended to fall within the scope of this disclosure.
- Step 509 may include a variety of preparation steps.
- the milled article from step 508 may be dried or cleaned such as to remove milling lubricants or other contaminants.
- the article may trimmed from any supporting structures, and sanded or otherwise smoothed. Where curable materials are employed in the milled article, the article may be partially or fully cured.
- a sealant or primer may be applied to the article prior to the application of aesthetic or functional paint layers.
- a variety of fluids may be usefully employed to digitally paint a dental article.
- This may include porcelain, resins, acrylic polymers, and any other suitable material.
- an outer layer for the understructure may be applied with different colors in different areas.
- multiple layers may be applied with varying colors and opacities to build a surface closely resembling natural dentition.
- visual information concerning color may be captured from a dental patient's natural dentition, and this color information may be applied to create a corresponding surface on the dental article.
- Various dyes may be used to obtain different colors, which dyes may be provided to a digital painter as a number of discrete paint source selections, or may be added as paint is distributed from a paint head to permit computer-controlled color generation. In other embodiments, paints having different discrete colors may be applied by two or more paint heads or print heads concurrently to obtain a mixed color.
- the digital painting system may provide a movable paint head, or the dental article may be secured to a movable mount that provides translation and rotation along a number of axes so that areas on the surface of the dental article can be selectively positioned in front of a fixed paint head, or some combination of these. However controlled, a digital model of the dental article or the milled understructure for the dental article may be employed to control positioning.
- the digital painting system may also, or instead, include position or range detection to help ensure accurate distribution of paint on a target article.
- the paint may be cured, and any additional layers may be added including sealants, adhesives, or additional layers to provide a more natural look or feel to the article. Paints may be cured through evaporation of solvents, thinners and the like, or may require heat, light, pressure, vacuum, electromagnetic waves or the like to initiate or quicken polymerization or other curing processes depending, of course, on the nature of the materials used in the outer layer. Curing may be achieved or accelerated by two or more cycles of curing conditions.
- the process may proceed to step 510 where the milled and painted (or otherwise fabricated through a combination of reductive and additive technologies) dental article may be test fit to a site in a patient's dentition. This may be performed directly on a patient's dentition, or using a dental model, an articulator, or the like. So for example, the dental article may be placed into an articulating model, and manual adjustments may be made to static or dynamic occlusal fit. Any number of test fits may be performed, after which manual adjustments or re-milling may be performed to adjust occlusal fit, proximal contacts, and the like or otherwise reshape the dental article to obtain a desired exterior shape.
- the article may optionally be cured to final hardness where additional curing is required for the milling material or any layers added to the surface thereof. Additional reshaping and fitting may be performed after curing to final hardness.
- the final dental article may be permanently affixed to a target site in a patient's dentition such as by adhering the article using any number of suitable dental adhesives. Additional reshaping and fitting may be performed after affixing to the target site, for example in response to patient observations concerning fit.
- the above process 500 is merely exemplary. Any number of adaptations may be made, and steps may be added or removed from the process 500 as described.
- the entire dental article may be retained in an at least partially uncured state until the article is permanently affixed to a target site. This technique usefully permits a degree of deformation of the dental article to more closely mate with a prepared tooth surface or surrounding dentition.
- the entire article except for the portion mating to a prepared tooth surface may be fully cured, with malleability preserved at the mating surface to achieve a closer final fit. All such variations as would be clear to one of ordinary skill in the art are intended to fall within the scope of this disclosure.
- controller 412 digitally-controlled reductive system 300
- other components may be realized in hardware, software, or any combination of these suitable for the data acquisition and fabrication technologies described herein.
- the realization may also, or instead, include one or more application specific integrated circuits, programmable gate arrays, programmable array logic components, or any other device or devices that may be configured to process electronic signals.
- a realization may include computer executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software.
- processing may be distributed across devices such as the scanning device, milling machine, and so forth in a number of ways or all of the functionality may be integrated into a dedicated, standalone device. All such permutations and combinations are intended to fall within the scope of the present disclosure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Dental Prosthetics (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Patent Application No. 60/990674, filed Nov. 28, 2007.
- 1. Field of the Invention
- The invention relates to dentistry, and more particularly to fabricating dental articles using a combination of digitally-controlled reductive processes and digitally-controlled additive processes.
- 2. Description of the Related Art
- One technique for fabricating crowns and other dental articles employs a computer-controlled milling machine to shape a mill blank into a desired end product. Most commercially available mill blanks are made of ceramic or some other material suitably hard for use in a final dental restoration, such as porcelain or micaceous ceramics. However, milled dental articles have generally monolithic visual appearance due to the corresponding, monolithic composition of dental mill blanks It may still require a number of manual finishing steps in order to achieve an appearance consistent with surrounding dentition.
- There remains a need for improved automation in the fabrication of highly aesthetic, multi-chromatic dental articles from digital, three-dimensional dental data.
- By capturing a highly detailed three-dimensional digital model of dentition, a suitable replacement dental article can be fabricated with a combination of digitally-controlled reductive processes such as milling and digitally-controlled additive processes such as digital painting. A dental article so-manufactured can provide an aesthetically pleasing, multi-chromatic appearance that closely matches surrounding dentition.
- In one aspect, a method disclosed herein includes receiving a digital model of a dental article, the dental article including a volume having a bonding surface shaped to attach to a site in human dentition and a functional surface shaped to replace a dental structure removed from the site; fabricating an understructure for the dental article with a digitally-controlled reductive process, the understructure including a majority of the volume of the dental article; and adding at least one layer to the understructure using a digitally-controlled additive process, thereby providing the dental article.
- The dental article may be a restoration selected from the group consisting of a crown, a bridge, an inlay, and an onlay. The dental article may be a denture or an implant. The site may include a prepared surface of a tooth. The functional surface may be created from a three-dimensional scan of the tooth before preparation. The functional surface may be created from a template. The template may be modified using three-dimensional data from dentition surrounding the site. The template may be modified using occlusion data from one or more opposing teeth. The digitally-controlled reductive process may include a milling process. The digitally-controlled additive process may include one or more of stereo-lithography, digital light processing, and three-dimensional printing. Adding at least one layer may include fabricating the at least one layer directly on the understructure. The at least one layer may include a plurality of layers selected to achieve a multi-chromatic appearance of natural dentition. The method may include affixing the dental article to the site. The digital model may include color and opacity information, and adding at least one layer to the understructure may include selecting a material for the at least one layer to correspond to the color and opacity information. The method may include applying a plurality of materials to obtain a multi-chromatic dental article.
- In another aspect, a system disclosed herein includes a digitally-controlled milling machine; a digitally-controlled additive device; and a controller coupled to the digitally-controlled milling machine and the digitally-controlled additive device, the controller programmed to receive a digital model of a dental article and to control operation of the digitally-controlled milling machine and the digitally-controlled additive device to fabricate the dental article from a dental mill blank using a combination of additive and reductive processes.
- The dental article may include a volume having a bonding surface shaped to attach to a site in human dentition and a functional surface shaped to replace a dental structure removed from the site. The controller may be programmed to fabricate an understructure for the dental article with the digitally-controlled milling machine, the understructure including a majority of the volume of the dental article. The controller may be programmed to add at least one layer to the understructure using the digitally-controlled additive device. The digitally-controlled additive device may include one or more of a stereo-lithography device, a digital light processing device, and a three-dimensional printing device. The dental article may be a restoration selected from the group consisting of a crown, a bridge, an inlay, and an onlay. The dental article may be a denture or an implant.
- The invention and the following detailed description of certain embodiments thereof may be understood by reference to the following figures.
-
FIG. 1 shows a three-dimensional scanning system. -
FIG. 2 shows a dental mill blank. -
FIG. 3 shows a digitally-controlled reductive system. -
FIG. 4 shows a digitally-controlled additive system. -
FIG. 5 shows a method for fabricating a dental article. - Described herein are systems and methods for fabricating a dental article using a combination of computer-controlled milling and digital painting, based upon a model obtained from a three-dimensional scan of patient dentition. While the description emphasizes certain specific steps and certain types of dental articles, it will be understood that additional variations, adaptations, and combinations of the methods and systems below will be apparent to one of ordinary skill in the art. For example there are a number of variants to computer-controlled milling that may be suitably employed as a digitally-controlled reductive system, and there are a number of variants to digital painting that may be suitably employed as a digitally-controlled additive system. Similarly, various types of cured or partially-cured materials may be employed for various fabrication steps, and a number of three-dimensional scanning technologies are available that might be suitably adapted to obtaining three-dimensional scans for the uses described herein. In addition, while not specifically described below, it will be understood that a coping or other substructure or interim article of dental manufacture may be fabricated using the techniques described herein. All such variations, adaptations, and combinations are intended to fall within the scope of this disclosure.
- The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected illustrative embodiments and are not intended to limit the scope of the disclosure. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives.
- Unless explicitly indicated or otherwise clear from the context, the following conventions are employed in the following disclosure, and are intended to describe the full scope of the inventive concepts herein. All numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified by the term “about.” Any numerical parameters set forth in this specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein. The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
- As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. In a list, the term “or” means one or all of the listed elements or a combination of any two or more of the listed elements.
- When a group is present more than once in a formula described herein, each group is “independently” selected, whether specifically stated or not. For example, when more than one M group is present in a formula, each M group is independently selected.
- The terms “three-dimensional surface representation”, “digital surface representation”, “three-dimensional surface map”, and the like, as used herein, are intended to refer to any three-dimensional surface map of an object, such as a point cloud of surface data, a set of two-dimensional polygons, or any other data representing all or some of the surface of an object, as might be obtained through the capture and/or processing of three-dimensional scan data, unless a different meaning is explicitly provided or otherwise clear from the context. A “three-dimensional representation” may include any of the three-dimensional surface representations described above, as well as volumetric and other representations, unless a different meaning is explicitly provided or otherwise clear from the context.
- Terms such as “digital dental model”, “digital dental impression” and the like, are intended to refer to three-dimensional representations of dental objects that may be used in various aspects of acquisition, analysis, prescription, and manufacture, unless a different meaning is otherwise provided or clear from the context. Terms such as “dental model” or “dental impression” are intended to refer to a physical model, such as a cast, printed, or otherwise fabricated physical instance of a dental object. Unless specified, the term “model”, when used alone, may refer to either or both of a physical model and a digital model.
- As used herein, the term “room temperature” refers to a temperature of 20° C. to 25° C. or 22° C. to 25° C.
- The term “comprises” and variations thereof do not have a limiting meaning where these terms appear in the description and claims.
- The words “preferred” and “preferably” refer to embodiments of the invention that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention.
- The term “dental object”, as used herein, is intended to refer broadly to subject matter specific to dentistry. This may include intraoral structures such as dentition, and more typically human dentition, such as individual teeth, quadrants, full arches, pairs of arches which may be separate or in occlusion of various types, soft tissue, and the like, as well as bones and any other supporting or surrounding structures. As used herein, the term “intraoral structures” refers to both natural structures within a mouth as described above and artificial structures such as any of the dental objects described below that might be present in the mouth. As used herein, the term dental article is intended to refer to a man-made dental object. Dental articles may include “restorations”, which may be generally understood to include components that restore the structure or function of existing dentition, such as crowns, bridges, veneers, inlays, onlays, amalgams, composites, and various substructures such as copings and the like, as well as temporary restorations for use while a permanent restoration is being fabricated. Dental articles may also include a “prosthesis” that replaces dentition with removable or permanent structures, such as dentures, partial dentures, implants, retained dentures, and the like. Dental articles may also include “appliances” used to correct, align, or otherwise temporarily or permanently adjust dentition, such as removable orthodontic appliances, surgical stents, bruxism appliances, snore guards, indirect bracket placement appliances, and the like. Dental articles may also include “hardware” affixed to dentition for an extended period, such as implant fixtures, implant abutments, orthodontic brackets, and other orthodontic components. Dental articles may also include “interim components” of dental manufacture such as dental models (full or partial), wax-ups, investment molds, and the like, as well as trays, bases, dies, and other components employed in the fabrication of restorations, prostheses, and the like. Dental objects may also be categorized as natural dental objects such as the teeth, bone, and other intraoral structures described above or as artificial dental objects (i.e., dental articles) such as the restorations, prostheses, appliances, hardware, and interim components of dental manufacture as described above. A dental article may be fabricated intraorally, extraorally, or some combination of these.
- Terms such as “digital painting”, “digital painting process”, “computer-controlled painting”, “digitally-controlled painting” and the like, as well as verb forms such as “digitally painting”, are intended to refer to a computer-controlled painting process, and in particular to such processes that provide for control over a location of paint distribution and a selection among two or more paints for application. A number of technologies may be suitably employed for digital painting provided they can deposit surface layers with sufficient depth, positional accuracy, and material selectively to be usefully employed in coating dental articles. One suitable embodiment may be adapted from Wirejet painting technology formerly available from Pixation Corporation, which applies paint in fluid form. Digitally-controlled wirejet paint heads and systems are described, for example in the following references, each of which is incorporated by reference herein in its entirety: U.S. patent application Ser. No. 08/958,292 to Anderson entitled Metering Device for Paint for Digital Printing filed on Oct. 27, 1997 and issued on Aug. 31, 1999 as U.S. Pat. No. 5,944,893; U.S. patent application Ser. No. 08/878,650 to Anderson entitled Metering Device for Paint for Digital Printing filed on Jun. 19, 1997 and issued on Oct. 26, 1999 as U.S. Pat. No. 5,972,111; U.S. patent application Ser. No. 09/186,220 to Anderson entitled Printer Cartridge filed on Nov. 4, 1998 and issued on Feb. 20, 2001 as U.S. Pat. No. 6,190,454; and U.S. patent application Ser. No. 11/669,387 to Free et al. entitled Printer Having a Print Wire with Alternating Hydrophilic and Hydrophobic Areas to Form Droplets for Printing Inks, filed on Jan. 31, 2007 and published on Aug. 9, 2007 as U.S. Pub. No. 2007/0182797. Any other monochromatic or multichromatic print head suitable for distributing fluids to selected locations of a surface may be similarly employed for digitally-controlled painting. In general, the digital paint head should be capable of delivering paint within a natural dentition color space, either through selective application of different paints or on-the-fly mixing of dyes and other materials. In addition, opacity may be usefully controlled through fillers and other materials within a paint binder.
- A “digital wirejet paint head” refers specifically to paint heads of the type used in wirejet printers. More generally, a “digital painting process” may be any of the digital painting techniques described above, or otherwise suitable for use with the systems and methods described herein, including inkjet or laser printing technologies that can be adapted to distribute paints in fluid form. This includes, for example, solid applications, which may be baked to a final coat, or gaseous (e.g., as a gas or as a gaseous suspension) applications such as spray painting. It will be understood that a variety of materials may be applied in fluid form in a digital painting process, including oil-based paints, acrylic paints, urethanes, polyurethanes, enamels, and so forth. A paint as used herein may include pigments for color, binders for structure (e.g., acrylics, polyurethanes, polyesters, melamine resins, epoxy, oil), and solvents or the like for adjusting viscosity (e.g., aliphatics, aromatics, alcohols, ketones, petroleum distillates, esters, glycol ethers, low-molecular weight synthetic resins, etc.), as well as other miscellaneous additives to control handling properties or provide improved performance in applied paint (e.g., antifreeze, antibacterials, pigment stability, etc.). Paints may also be categorized according to curing mechanism, which may, for example, include drying by solvent evaporation, oxidative crosslinking, catalyzed polymerization, and coalescence. In the typical dental applications described herein, any such material that can be applied in fluid form may be used, provided it can be dried, heated, or otherwise cured into a surface suitable for use in a dental article.
-
FIG. 1 shows a three-dimensional scanning system that may be used with the systems and methods described herein. In general, thesystem 100 may include ascanner 102 that captures images from asurface 106 of a subject 104, such as a dental patient, and forwards the images to acomputer 108, which may include adisplay 110 and one or more user input devices such as amouse 112 or akeyboard 114. Thescanner 102 may also include an input oroutput device 116 such as a control input (e.g., button, touchpad, thumbwheel, etc.) or a display (e.g., LCD or LED display) to provide status information. - The
scanner 102 may include any camera or camera system suitable for capturing images from which a three-dimensional point cloud may be recovered. For example, thescanner 102 may employ a multi-aperture system as disclosed, for example, in U.S. patent application Ser. No. 11/530,420 to Rohaly et al. entitled Three-Channel Camera Systems with Collinear Apertures, filed on Sep. 8, 2006 and published on Aug. 16, 2007 as U.S. Pub. No. 2007/0188769, the entire content of which is incorporated herein by reference. While Rohaly discloses certain multi-aperture systems, it will be appreciated that any multi-aperture system suitable for reconstructing a three-dimensional point cloud from a number of two-dimensional images may similarly be employed. In one multi-aperture embodiment, thescanner 102 may include a plurality of apertures including a center aperture positioned along a center optical axis of a lens, along with any associated imaging hardware. Thescanner 102 may also, or instead, include a stereoscopic, triscopic or other multi-camera or other configuration in which a number of cameras or optical paths are maintained in fixed relation to one another to obtain two-dimensional images of an object from a number of slightly different perspectives. Thescanner 102 may include suitable processing for deriving a three-dimensional point cloud from an image set or a number of image sets, or each two-dimensional image set may be transmitted to an external processor such as contained in thecomputer 108 described below. In other embodiments, thescanner 102 may employ structured light, laser scanning, direct ranging, or any other technology suitable for acquiring three-dimensional data, or two-dimensional data that can be resolved into three-dimensional data. - In one embodiment, the
scanner 102 is a handheld, freely positionable probe having at least oneuser input device 116, such as a button, lever, dial, thumb wheel, switch, or the like, for user control of theimage capture system 100 such as starting and stopping scans. In an embodiment, thescanner 102 may be shaped and sized for dental scanning More particularly, the scanner may be shaped and sized for intraoral scanning and data capture, such as by insertion into a mouth of an imaging subject and passing over anintraoral surface 106 at a suitable distance to acquire surface data from teeth, gums, and so forth. Thescanner 102 may, through such a continuous acquisition process, capture a point cloud of surface data having sufficient spatial resolution and accuracy to prepare dental objects such as prosthetics, hardware, appliances, and the like therefrom, either directly or through a variety of intermediate processing steps. In other embodiments, surface data may be acquired from a dental model such as a dental prosthetic, to ensure proper fitting using a previous scan of corresponding dentition, such as a tooth surface prepared for the prosthetic. - Although not shown in
FIG. 1 , it will be appreciated that a number of supplemental lighting systems may be usefully employed during image capture. For example, environmental illumination may be enhanced with one or more spotlights illuminating the subject 104 to speed image acquisition and improve depth of field (or spatial resolution depth). Thescanner 102 may also, or instead, include a strobe, flash, or other light source to supplement illumination of the subject 104 during image acquisition. - The subject 104 may be any object, collection of objects, portion of an object, or other subject matter. More particularly with respect to the dental fabrication techniques discussed herein, the
object 104 may include human dentition captured intraorally from a dental patient's mouth. A scan may capture a three-dimensional representation of some or all of the dentition according to a particular purpose of the scan. Thus the scan may capture a digital model of a tooth, a quadrant of teeth, or a full collection of teeth including two opposing arches, as well as soft tissue or any other relevant intraoral structures. In other embodiments where, for example, a completed fabrication is being virtually test fit to a surface preparation, the scan may include a dental prosthesis such as an inlay, a crown, or any other dental prosthesis, dental hardware, dental appliance, or the like. The subject 104 may also, or instead, include a dental model, such as a plaster cast, wax-up, impression, or negative impression of a tooth, teeth, soft tissue, or some combination of these. - The
computer 108 may be, for example, a personal computer or other processing device. In one embodiment, thecomputer 108 includes a personal computer with a dual 2.8 GHz Opteron central processing unit, 2 gigabytes of random access memory, a TYAN Thunder K8WE motherboard, and a 250 gigabyte, 10,000 rpm hard drive. This system may be operated to capture approximately 1,500 points per image set in real time using the techniques described herein, and store an aggregated point cloud of over one million points. As used herein, the term “real time” means generally with no observable latency between processing and display. In a video-based scanning system, real time more specifically refers to processing within the time between frames of video data, which may vary according to specific video technologies between about fifteen frames per second and about thirty frames per second. More generally, processing capabilities of thecomputer 108 may vary according to the size of the subject 104, the speed of image acquisition, and the desired spatial resolution of three-dimensional points. Thecomputer 108 may also include peripheral devices such as akeyboard 114,display 110, andmouse 112 for user interaction with thecamera system 100. Thedisplay 110 may be a touch screen display capable of receiving user input through direct, physical interaction with thedisplay 110. - Communications between the
computer 108 and thescanner 102 may use any suitable communications link including, for example, a wired connection or a wireless connection based upon, for example, IEEE 802.11 (also known as wireless Ethernet), BlueTooth, or any other suitable wireless standard using, e.g., a radio frequency, infrared, or other wireless communication medium. In medical imaging or other sensitive applications, wireless image transmission from thescanner 102 to thecomputer 108 may be secured. Thecomputer 108 may generate control signals to thescanner 102 which, in addition to image acquisition commands, may include conventional camera controls such as focus or zoom. - In an example of general operation of a three-dimensional
image capture system 100, thescanner 102 may acquire two-dimensional image sets at a video rate while thescanner 102 is passed over a surface of the subject. The two-dimensional image sets may be forwarded to thecomputer 108 for derivation of three-dimensional point clouds. The three-dimensional data for each newly acquired two-dimensional image set may be derived and fitted or “stitched” to existing three-dimensional data using a number of different techniques. Such a system employs camera motion estimation to avoid the need for independent tracking of the position of thescanner 102. One useful example of such a technique is described in commonly-owned U.S. patent application Ser. No. 11/270,135 to Zhang et al. entitled Determining Camera Motion, filed on Nov. 9, 2005 and published on May 10, 2007 as U.S. Pub. No. 2007/0103460, the entire content of which is incorporated herein by reference. However, it will be appreciated that this example is not limiting, and that the principles described herein may be applied to a wide range of three-dimensional image capture systems. - The
display 110 may include any display suitable for video or other rate rendering at a level of detail corresponding to the acquired data. Suitable displays include cathode ray tube displays, liquid crystal displays, light emitting diode displays and the like. In some embodiments, the display may include a touch screen interface using, for example capacitive, resistive, or surface acoustic wave (also referred to as dispersive signal) touch screen technologies, or any other suitable technology for sensing physical interaction with thedisplay 110. -
FIG. 2 shows an SMC dental mill blank that may be used with the systems and methods described herein in a side view. In general, adental mill blank 200 includes astem 202 and abody 204. Thedental mill blank 200 may be a compound mill blank that includes a volume encompassing aninternal material 206, anexterior material 208, and anouter layer 210. Thedental mill blank 200 may also optionally include anidentifier 212 such as a bar code or Radio-Frequency Identification (RFID) tag. It will be understood that while compound SMC mill blanks are described below, and while certain advantages may be realized using compound SMC mill blanks, a mill blank formed from a single SMC material, or an SMC material and some other material, or some other material such as a ceramic may also or instead be suitably employed with the systems and methods described herein. - The
stem 202 may optionally be provided to support the blank 200 during milling or other handling, and may be shaped to fit into a corresponding chuck or other support of a milling machine or similar hardware for shaping the blank 200 through the selective removal of material therefrom. In some embodiments, thestem 202 may be cured prior to milling for improved mechanical support of the blank 200. - Where the
mill blank 200 is a compound mill blank, thebody 204 may have any shape and size suitable for accommodating theinternal material 206 andexterior material 208 as described below, and may further include an optionalouter layer 210 as described generally below. For amill blank 200 formed from a single material, the mill blank may more generally have abody 204 of adequate volume to mill a desired dental article therefrom. It will be understood that the blank 200 may be selected or fabricated to match a predetermined tooth size, as determined for example by direct measurement of a site for which a restoration or the like is to be fabricated. - For a
compound mill blank 200, theinternal material 206 may be any of the SMC materials described above. Theinternal material 206 may be spatially distributed within the dental mill blank in a manner substantially corresponding to a distribution, in a cured and milled dental article fabricated from the blank 200, of dentin in a natural tooth structure. This distribution may vary according to the size or type of tooth for which a dental article is to be milled. For example, for a restoration the distribution may vary according to whether the restoration is a crown, a bridge, an inlay, an onlay, or a veneer. Theinternal material 206 may be selected to achieve one or more optical properties similar or identical to dentin in a dental article milled from the blank 200. Thus for example theinternal material 206 may be selected to have a translucence, color, or shade similar or identical to that of dentin, or may be selected to provide an appearance in the resulting restoration of the desired optical property or properties. Similarly, theinternal material 206 may be selected to achieve on or more mechanical (i.e., structural) properties similar or identical to dentin in a cured dental article milled from the blank 200. Thus for example theinternal material 206 may be selected to support a tooth structure in ordinary use, or more generally to provide a desired degree of resistance to fracture, hardness, pliability or the like to a core region of a restoration. In particular, these characteristics may be selected to match the corresponding mechanical properties of a natural tooth structure in a cured dental article fabricated from the blank 200. - The
exterior material 208 may be any of the SMC materials described above. Theexterior material 208 may be spatially distributed within the dental mill blank in a manner substantially corresponding to a distribution, in a cured and milled dental article fabricated from the blank 200, of enamel in a natural tooth structure. While the interior surface of thismaterial 208 is defined by a mating exterior surface of theinternal material 206, the exterior surface of theexterior material 208 may extend as appropriate to provide a required buffer for milling on all surfaces. Theexterior material 208 may optionally extend to the extent of thebody 204, thus omitting any separateouter layer 210 from the mill blank. The distribution of theexterior material 208 may vary according to the size or type of tooth for which a dental article is to be milled. For example, for a restoration the distribution may vary according to whether the restoration is a crown, a bridge, an inlay, an onlay, or a veneer. Theexterior material 208 may be selected to achieve one or more optical properties similar or identical to enamel in a dental article milled from the blank 200. Thus for example theexterior material 208 may be selected to have a translucence, color, or shade similar or identical to that of enamel, or may be selected to provide an appearance in the resulting restoration of the desired optical property or properties. Similarly, theexterior material 208 may be selected to achieve one or more mechanical (i.e., structural) properties similar or identical to enamel in a cured dental article milled from the blank 200. Thus for example theexterior material 208 may be selected to provide a desired hardness, chip resistance, stain resistance, wear resistance, polish retention, and the like to an external surface of a restoration. In particular, these characteristics may be selected to match the corresponding mechanical properties of a natural tooth structure in a cured dental article fabricated from the blank 200. - The
outer layer 210 may optionally be provided to serve any number of auxiliary functions. This may include, for example, shaping the blank 200 for convenient handling, packaging, or shipping, as well as protecting the interior of the blank prior to milling, such as to avoid unwanted deformation during stacking or substantial temperature excursions. Theouter layer 210 may be millable, or otherwise removable from the blank 200 prior to milling. - The
mill blank 200 may optionally include anidentifier 212. Theidentifier 212 may be a bar code, RFID tag, or other identifier that uniquely identifies the blank 200 or associates the blank 200 with one or more properties. Theidentifier 212 may, for example, be a bar code, serial number, or other human-readable or machine-readable indicia on an exterior surface of the blank 200. Theidentifier 212 may also be affixed to packaging for the blank 200. Theidentifier 212 may also, or instead, include an RFID tag or the like physically embedded within the blank 200. In these latter embodiments, the RFID tag may be positioned in a portion of the blank, such as theouter layer 210, that is intended to be removed by milling, or the RFID tag may be positioned within theinternal material 206 so that a restoration or other dental article fabricated from the blank 200 carries the information within the RFID tag. In one embodiment, theidentifier 212 may encode a unique identification number for the blank 200. This number may be used to obtain any information cross-referenced to that unique number, which may include data concerning the spatial distribution of SMC materials, the size, shade, and type of SMC materials or dental articles milled therefrom, and any other data useful to a dentist preparing a dental article from themill blank 200, or useful to a machine such as a computer-controlled milling machine that operates on themill blank 200. In another aspect, theidentifier 212 may directly encode data concerning the blank such as a batch number, a shape, a shelf life, and so forth. More generally, any information useful for handling or using the blank 200 may be encoded directly within theidentifier 212, or obtained using a unique identifier encoded within theidentifier 212. It will be appreciated that theidentifier 212 may also, or instead, encode non-unique information that is in turn used to obtain relevant data for the blank 200. All such variations to and combinations of the foregoing are intended to fall within the scope of this disclosure. -
FIG. 3 shows a milling machine that may be used with the systems and methods herein. In particular,FIG. 3 illustrates a Computerized Numerically Controlled (“CNC”) millingmachine 300 including a table 302, anarm 304, and acutting tool 306 that cooperate to mill under computer control within a workingenvelope 308. In operation, a workpiece (not shown) may be attached to the table 302. The table 302 may move within a horizontal plane and thearm 304 may move on a vertical axis to collectively provide x-axis, y-axis, and z-axis positioning of thecutting tool 306 relative to a workpiece within the workingenvelope 308. Thecutting tool 306 may thus be maneuvered to cut a computer-specified shape from the workpiece. - Milling is generally a reductive technology in that material is subtracted from a block rather than added. Thus pre-cut workpieces approximating commonly milled shapes may advantageously be employed to reduce the amount of material that must be removed during a milling job, which may reduce material costs and/or save time in a milling process. More specifically in a dental context, it may be advantageous to begin a milling process with a precut piece, such as a generic coping, rather than a square block. A number of sizes and shapes (e.g., molar, incisor, etc.) of preformed workpieces may be provided so that an optimal piece may be selected to begin any milling job. Various milling systems have different degrees of freedom, referred to as axes. Typically, the more axes available (such as 4-axis milling), the more accurate the resulting parts. High-speed milling systems are commercially available, and can provide high throughputs.
- In addition a milling system may use a variety of cutting tools, and the milling system may include an automated tool changing capability to cut a single part with a variety of cutting tools. In milling a dental model, accuracy may be adjusted for different parts of the model. For example, the tops of teeth, or occlusal surfaces, may be cut more quickly and roughly with a ball mill and the prepared tooth and dental margin may be milled with a tool resulting in greater detail and accuracy.
- All such milling systems as may be adapted for use with the
dental mill blanks 200 described herein are intended to fall within the scope of the term “milling” as used herein, and a milling process may employ any such milling systems. More generally, as used herein “milling” may refer to any reductive process including abrading, polishing, controlled vaporization, electronic discharge milling (EDM), cutting by water jet or laser or any other method of cutting, removing, shaping or carving material, unless a different meaning is explicitly provided or otherwise clear from the context. Inputs to the milling system may be provided from three-dimensional scans of dentition using, e.g., thescanner 102 ofFIG. 1 , three-dimensional scans of working models (which may also be created from a three-dimensional scan), CAD/CAM models (which may also be derived from a three-dimensional scan), or any other suitable source. It should be further understood that, while milling is one example of a digitally-controlled reductive technique, and a computer-controlled milling machine is a readily commercially available digitally-controlled reductive device, that other techniques for removing material under computer control are also known, and may be suitably adapted to use as a digitally-controlled reductive method or system as disclosed herein. This includes, for example, cutting, skiving, sharpening, lathing, abrading, sanding, and the like. Such uses are intended to fall within the scope of this disclosure. - In one aspect, the digitally-controlled reductive device may be fast relative to the additive process so that a majority of the volume of an article can be produced quickly using reductive techniques. In another aspect, the digitally-controlled reductive device may work on high-strength materials (or materials that are curable to high strength) so that the resulting volume of a final product provides strength suitable for its intended application. In another aspect, the digitally-controlled reductive device may provide high spatial resolution to achieve good fit with mating surfaces such as a prepared tooth surface.
-
FIG. 4 shows adevice 400 for digitally painting a dental article. In general, thedevice 400 includes adigital paint head 402, a mountingdevice 404 holding adental article 406 that has abonding surface 408 and afunctional surface 410, and acontroller 412. Thedevice 400 may also incorporate amilling machine 414 or other cutting tool for reductive processes. - The
digital paint head 402 may be any device coupled to a digital painting system for digitally-controlled distribution of paint in a digitally-controlled additive process. The digital painting system may provide for computer control of type of paint, dye mixture, thinning, and so forth, and may also or instead provide computer selection among two or more different paints for application at a particular location. In one aspect, thedigital paint head 402 may itself have a controllable position so that thehead 402 can be steered over a three-dimensional surface to be painted, or thedigital paint head 402 may remain fixed while an object is moved (under computer control) beneath it. Thedigital paint head 402 may apply paint as droplets, a gaseous suspension, a fluid stream, or in any other manner suitable for controlling distribution on a target. Also as noted above, any substance suitable for use as a coating of dental articles and available in a fluid form may be employed with thedigital paint head 402 described herein. In one aspect, the digital paint head may be a digitally-controlled wirejet paint head based upon painting technology formerly sold under the Wirejet brand by Pixation Corporation. Any other print head suitable for distributing fluids to selected locations of a surface may be similarly employed. In general, the digital paint head should be capable of delivering paint within a natural dentition color space, either through selective application of different paints or on-the-fly mixing of dyes and other materials. In addition, opacity may be usefully controlled through fillers and other materials within a paint binder. - It should be understood that, while digital painting is one example of a digitally-controlled additive technique, and a wirejet printer or other digitally-controlled painting system is a digitally-controlled additive device as that term is used herein, that other techniques for adding material under computer control are also known, and may be suitably adapted to use as the digitally-controlled additive methods and systems disclosed herein. This includes, for example, three-dimensional jet printing, stereolithography, digital light processing, and the like. Such uses are intended to fall within the scope of this disclosure. In one aspect, an additive process may provide an aesthetic surface with respect to, e.g., color, opacity, sheen, and the like. In another aspect, the additive process may provide desired surface properties such as texture, polish retention, or wear resistance.
- The mounting
device 404 may be any device suitable for retaining thedental article 406 in a desired position. This may include clamps, grips, adhesives, mechanical friction fits (which may be machined into the dental article 406), and so forth. In one aspect, the mountingdevice 404 may retain thedental article 406 in a substantially fixed position. In another aspect, the mountingdevice 404 may be operable to move thedental article 406 in translation or rotation among any number of axes in order to position a desired point on a surface of thedental article 406 beneath the paint head 402 (or the cutting tool 414). Three translational degrees of freedom and two rotational degrees of freedom may be provided with suitable electromechanical components, and may suffice to operate on any surface of thedental article 406 to be coated with a stationary paint head. In another aspect, motion control may be distributed across thedigital paint head 402 and mountingdevice 404. Thus for example the mountingdevice 404 may impart a controlled rotational orientation to thedental article 412 around a single axis, while thedigital paint head 402 can be translated along two axes (e.g., parallel to the rotational axis, and orthogonal to the rotational axis) so that combined motion of the mountingdevice 404 anddigital paint head 402 can position thepaint head 402 to apply paint to any surface region of thedental article 406. - The
dental article 406, which may be any of the dental articles described above, may include abonding surface 408 and afunctional surface 410. Thebonding surface 408 may be shaped to fit onto a mating prepared tooth surface in a dental patient's dentition. The form of thebonding surface 408 may be determined for example through physical impressioning or scanning of the prepared tooth surface. Thefunctional surface 410 may replace a surface of a natural tooth with corresponding structural and aesthetic properties. Thefunctional surface 410 may be formed of any substance suitable for, or curable into a form suitable for, intraoral use, and may be constructed using the digital painting techniques described herein. - The
controller 412 may communicated with the digital paint head 402 (or an associated digital painting system) to control distribution of paint to thedental article 406. This may include selective application of different paints to different locations of the dental article, as well as selective application of different paints to different layers of thefunctional surface 410, which may be formed from any number of digitally painted layers. Thecontroller 412 may control a position of thedigital paint head 402, or may control a position of the mountingdevice 404 so that different surfaces of thedental article 406 are exposed to the paint head. In positioning thedental article 406, thecontroller 412 may employ a digital, three-dimensional model of thedental article 406, along with information concerning the color, opacity, texture, and the like of thedental article 406 along the surface thereof. It will be understood that while thedigital paint head 402 is intended for coating thefunctional surface 410 of thedental article 406, the paint head may also, or instead, be usefully employed to apply sealants, adhesives, adhesive precursors, or any other useful materials to thebonding surface 408 or thefunctional surface 410. - A
cutting tool 414 or other milling or cutting device may be usefully included in thedevice 400 for digitally-controlled reductive operations. Thecutting tool 414 may operate under control of the controller to shape one or more surface of thedental article 406, either by moving thecutting tool 414 or by moving thedental article 406 with amovable mount 404, or some combination of these. While asingle cutting tool 414 is illustrated, it will be appreciated that many computerized milling machines provide a number of cutting tools and/or a cutting tool with interchangeable cutting instruments having different roughness, hardness, and shape. As with thedigital paint head 402, thecutting tool 414, or an associated milling machine, or thecontroller 412, may use a three-dimensional model of the dental article to control material removal from surfaces of thedental article 406. In an embodiment, thedevice 400 may be employed to receive a mill blank, shape the mill blank, and finish the shaped article with one or more layers of paint, all under control of thecontroller 412. -
FIG. 5 shows a method for fabricating a dental article using digitally-controlled reductive and digitally-controlled additive processes. - The
process 500 may begin by scanning dentition as shown instep 501. This may include an acquisition of a three-dimensional surface representation or other digital model of a patient's dentition using, e.g., the scanning system described above with reference toFIG. 1 . Where a tooth surface is prepared to receive a restoration or the like, step 501 may include a scan before preparation to capture the original, natural shape of the tooth structure being replaced. Step 501 may also, or instead, include a scan of the prepared tooth surface, which may be used in subsequent steps to fabricate a mating, bonding surface of a dental article. Step 501 may also, or instead, include a scan of surrounding dentition including, for example, an opposing arch, neighboring teeth, soft tissue, and the like, any of which might be usefully employed in computer-assisted design of a dental article for the prepared tooth surface. - As shown in
step 502, the scan results fromstep 501 may be processed to obtain a digital model for a computer-controlled milling machine. This may include a wide array of modeling steps. For example, a preliminary or final digital model may be obtained through superposition of pre- and post- preparation scans of a tooth surface, thus permitting the direct fabrication of a replacement article that corresponds physically to the removed structure. A number of dental CAD tools also exist that may be used to create models for restorations and the like from preliminary scan-based models, or from generic tooth models and the like in a dental CAD model library or the like. In addition, some combination of these techniques may be employed. - In one aspect, the model may be adjusted to compensate for shrinkage that occurs during curing of SMC materials. SMC materials may shrink in predictable manners during curing. For example, for light-based curing, monolithic shrinkage in the range of 2% (depending, of course, upon the particular materials) might be expected, provided the light fully penetrates an article that is being cured. Under such conditions, the digital model may be linearly expanded in all dimensions, so that a resulting cured article matches, e.g., an actual prepared tooth surface within a dental patient's dentition. More complex shrinkage algorithms may be required where, for example, articles are partially cured (with respect to degree of curing or location of curing) during handling, or where curing is initiated at a surface of an article. Creating and applying suitable algorithms is within the skill of one of ordinary skill in the relevant arts.
- Once a digital model has been obtained, a mill blank may be provided, as shown in
step 503. The mill blank may be any of the mill blanks described above including monolithic SMC mill blanks, compound SMC dental mill blanks, other mill blanks incorporating SMC materials, or mill blanks formed from ceramic or similar materials. The mill blank may be selected using any of the criteria described above including, for example, the shape of a desired restoration, the size of a tooth being restored, the type of tooth being restored, and optical characteristics such as color, shade, opacity, and so forth. These criteria may be objectively determined using image analysis including computerized review of image/video data to determine optical and aesthetic properties for a dental article. Image analysis may also or instead include dimensional analysis of three-dimensional data to determine a size, shape, type, or other physical characteristics of the dental article. These criteria may also, or instead, be subjectively determined by a dental professional such as during a patient visit. In one aspect, a suitable mill blank may be selected using a bar code, RFID tag, or other identifier attached to or imprinted on the mill blank. - As shown in
step 504, the mill blank may optionally be deformed where the mill blank is fashioned from a deformable, curable material such as any of the SMC materials described above. This may be, for example, a controlled deformation to adapt the mill blank to a specific tooth structure of a dental patient, such as by adapting the mill blank to a particular tooth shape or size. As a significant advantage, this technique may permit a significant reduction in the types of mill blanks required for a range of restorations and other dental procedures. Deformation may be performed, for example, by direct manual deformation of the blank by a dental professional or technician, or using a tool or machine adapted to apply incremental changes along a dimension such as the height or width of the mill blank. - As shown in step 506, the blank may optionally be partially cured. This may include, for example, curing to preserve the deformation applied in
step 504 during milling, or more generally curing the blank to prepare for milling. This may also include partial spatial curing, such as curing the stem or other support structures for the mill blank. It will be appreciated that such interim curing steps are optional, and will depend on the particular milling procedure and SMC materials being used, as well as the dental article being fabricated. - As shown in
step 508, the mill blank may then be milled into a dental article using any of the milling techniques described above. As generally noted above, the milled dental article may be a restoration such as a crown, a bridge, an inlay, an onlay, a veneer, and the like, as well as any other dental article that replaces natural dentition. For example, the techniques described herein may be suitably adapted to the manufacture of a prosthesis such as a denture or implant. As noted above, while milling is one reductive process that may be usefully employed with the systems and methods described herein, other reductive processes are known, and are intended to fall within the scope of this disclosure. - As shown in
step 509, the mill blank may be digitally painted using, for example, the digital painting system described above with reference toFIG. 4 . More generally, other additive processes are known, and any such process that can be adapted to use with the systems and methods described herein is intended to fall within the scope of this disclosure. - Step 509 may include a variety of preparation steps. The milled article from
step 508 may be dried or cleaned such as to remove milling lubricants or other contaminants. The article may trimmed from any supporting structures, and sanded or otherwise smoothed. Where curable materials are employed in the milled article, the article may be partially or fully cured. In addition, a sealant or primer may be applied to the article prior to the application of aesthetic or functional paint layers. - In general, a variety of fluids may be usefully employed to digitally paint a dental article. This may include porcelain, resins, acrylic polymers, and any other suitable material. Using a digitally controlled painting process, an outer layer for the understructure may be applied with different colors in different areas. In addition, multiple layers may be applied with varying colors and opacities to build a surface closely resembling natural dentition. In one aspect, visual information concerning color may be captured from a dental patient's natural dentition, and this color information may be applied to create a corresponding surface on the dental article. Various dyes may be used to obtain different colors, which dyes may be provided to a digital painter as a number of discrete paint source selections, or may be added as paint is distributed from a paint head to permit computer-controlled color generation. In other embodiments, paints having different discrete colors may be applied by two or more paint heads or print heads concurrently to obtain a mixed color. The digital painting system may provide a movable paint head, or the dental article may be secured to a movable mount that provides translation and rotation along a number of axes so that areas on the surface of the dental article can be selectively positioned in front of a fixed paint head, or some combination of these. However controlled, a digital model of the dental article or the milled understructure for the dental article may be employed to control positioning. The digital painting system may also, or instead, include position or range detection to help ensure accurate distribution of paint on a target article.
- After digitally painting the article, the paint may be cured, and any additional layers may be added including sealants, adhesives, or additional layers to provide a more natural look or feel to the article. Paints may be cured through evaporation of solvents, thinners and the like, or may require heat, light, pressure, vacuum, electromagnetic waves or the like to initiate or quicken polymerization or other curing processes depending, of course, on the nature of the materials used in the outer layer. Curing may be achieved or accelerated by two or more cycles of curing conditions.
- After completion of digitally-controlled additive steps as described above, the process may proceed to step 510 where the milled and painted (or otherwise fabricated through a combination of reductive and additive technologies) dental article may be test fit to a site in a patient's dentition. This may be performed directly on a patient's dentition, or using a dental model, an articulator, or the like. So for example, the dental article may be placed into an articulating model, and manual adjustments may be made to static or dynamic occlusal fit. Any number of test fits may be performed, after which manual adjustments or re-milling may be performed to adjust occlusal fit, proximal contacts, and the like or otherwise reshape the dental article to obtain a desired exterior shape.
- As shown in
step 512, once an adequate fit has been achieved the article may optionally be cured to final hardness where additional curing is required for the milling material or any layers added to the surface thereof. Additional reshaping and fitting may be performed after curing to final hardness. - As shown in
step 514, the final dental article may be permanently affixed to a target site in a patient's dentition such as by adhering the article using any number of suitable dental adhesives. Additional reshaping and fitting may be performed after affixing to the target site, for example in response to patient observations concerning fit. - It will be understood that the
above process 500 is merely exemplary. Any number of adaptations may be made, and steps may be added or removed from theprocess 500 as described. For example, where SMC materials are employed, the entire dental article may be retained in an at least partially uncured state until the article is permanently affixed to a target site. This technique usefully permits a degree of deformation of the dental article to more closely mate with a prepared tooth surface or surrounding dentition. In another aspect also suitable for use with SMC materials, the entire article except for the portion mating to a prepared tooth surface may be fully cured, with malleability preserved at the mating surface to achieve a closer final fit. All such variations as would be clear to one of ordinary skill in the art are intended to fall within the scope of this disclosure. - It will be appreciated that various aspects of the methods described above including operation of the
controller 412, digitally-controlledreductive system 300, and other components may be realized in hardware, software, or any combination of these suitable for the data acquisition and fabrication technologies described herein. This includes realization in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable devices, along with internal and/or external memory. The realization may also, or instead, include one or more application specific integrated circuits, programmable gate arrays, programmable array logic components, or any other device or devices that may be configured to process electronic signals. It will further be appreciated that a realization may include computer executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software. At the same time, processing may be distributed across devices such as the scanning device, milling machine, and so forth in a number of ways or all of the functionality may be integrated into a dedicated, standalone device. All such permutations and combinations are intended to fall within the scope of the present disclosure. - While the invention has been disclosed in connection with certain preferred embodiments, other embodiments will be recognized by those of ordinary skill in the art, and all such variations, modifications, and substitutions are intended to fall within the scope of this disclosure. Thus, the invention is to be understood with reference to the following claims, which are to be interpreted in the broadest sense allowable by law.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/741,385 US9060832B2 (en) | 2007-11-28 | 2008-11-18 | Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99067407P | 2007-11-28 | 2007-11-28 | |
US12/741,385 US9060832B2 (en) | 2007-11-28 | 2008-11-18 | Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes |
PCT/US2008/083881 WO2009070469A1 (en) | 2007-11-28 | 2008-11-18 | Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100233655A1 true US20100233655A1 (en) | 2010-09-16 |
US9060832B2 US9060832B2 (en) | 2015-06-23 |
Family
ID=40342988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/741,385 Expired - Fee Related US9060832B2 (en) | 2007-11-28 | 2008-11-18 | Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes |
Country Status (3)
Country | Link |
---|---|
US (1) | US9060832B2 (en) |
EP (1) | EP2227172B1 (en) |
WO (1) | WO2009070469A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110151411A1 (en) * | 2008-10-01 | 2011-06-23 | 3M Innovative Properties Company | Dental appliance, process for producing a dental appliance and use thereof |
US20120329008A1 (en) * | 2011-06-22 | 2012-12-27 | Trident Labs, Inc. d/b/a Trident Dental Laboratories | Process for making a dental restoration model |
US20130081271A1 (en) * | 2011-10-04 | 2013-04-04 | F-Cube, Ltd. | Method of Making Self-Ligating Orthodontic Brackets and Component Parts |
US8721938B2 (en) | 2009-09-30 | 2014-05-13 | 3M Innovative Properties Company | Methods for making layered dental appliances |
US8813364B2 (en) | 2009-12-18 | 2014-08-26 | 3M Innovative Properties Company | Methods for making layered dental appliances |
US8834752B2 (en) | 2009-09-30 | 2014-09-16 | 3M Innovative Properties Company | Systems and methods for making layered dental appliances |
US20140315154A1 (en) * | 2013-03-07 | 2014-10-23 | B&D Dental Corporation | Method for dimensional adjustment for dental scan, digitized model or restoration |
US9039947B2 (en) | 2009-09-30 | 2015-05-26 | 3M Innovative Properties Company | Methods for making layered dental appliances from the outside in |
US9597265B2 (en) | 2012-05-26 | 2017-03-21 | James R. Glidewell Dental Ceramics, Inc. | Method and apparatus for preparing a ceramic dental restoration in one appointment |
US20170281321A1 (en) * | 2013-11-21 | 2017-10-05 | William C. Vuillemot | Apparatus for in situ dental restoration |
WO2018067541A1 (en) * | 2016-10-04 | 2018-04-12 | Implant Direct Sybron International Llc | Dual hued dental implant and method of making same |
US10007987B1 (en) * | 2016-02-04 | 2018-06-26 | Dennis Braunston | Enhanced tooth shade matching system |
WO2018172180A1 (en) * | 2017-03-20 | 2018-09-27 | Straumann Holding Ag | System and method for manufacturing dental workpiece |
US20190328494A1 (en) * | 2016-12-20 | 2019-10-31 | Airnivol S.R.L. | Equipment and process for manufacturing orthodontic and/or prosthetic dental devices |
US10617495B2 (en) * | 2012-02-13 | 2020-04-14 | 3M Innovative Properties Company | Dental milling block containing individualized dental article and process of production |
EP3689608A1 (en) * | 2019-02-04 | 2020-08-05 | Bernard Maneuf | Method for manufacturing a dental element and device for manufacturing a dental element |
CN111843223A (en) * | 2019-04-30 | 2020-10-30 | 财团法人金属工业研究发展中心 | Laser engraving machine |
US20220151748A1 (en) * | 2020-11-17 | 2022-05-19 | James R. Glidewell Dental Ceramics, Inc. | System and Method for Coloring a Dental Prosthesis |
US11534974B2 (en) * | 2017-11-17 | 2022-12-27 | Align Technology, Inc. | Customized fabrication of orthodontic retainers based on patient anatomy |
US11612463B2 (en) | 2013-11-21 | 2023-03-28 | William C. Vuillemot | Apparatus for in situ restoration of unconstrained dental structure |
US20240115360A1 (en) * | 2012-05-03 | 2024-04-11 | 3Shape A/S | Automated production of dental restoration |
EP4389060A3 (en) * | 2018-04-25 | 2024-10-09 | Lightforce Orthodontics, Inc. | Manufacture of patient-specific orthodontic brackets with improved base and retentive features |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1992302A1 (en) | 2007-05-15 | 2008-11-19 | 3M Innovative Properties Company | Method of making a facing for a dental restoration, facing for a dental restoration, and method of making a dental restoration |
GB0822751D0 (en) | 2008-12-15 | 2009-01-21 | 3M Innovative Properties Co | Method of making a dental restoration, and system for design and manufacturing a dental restoration |
US8973269B2 (en) | 2010-06-17 | 2015-03-10 | 3M Innovative Properties Company | Methods of making biomimetic dental appliances |
US8973268B2 (en) | 2010-06-17 | 2015-03-10 | 3M Innovative Properties Company | Methods of making multi-chromatic dental appliances |
US8712733B2 (en) * | 2010-09-17 | 2014-04-29 | Biocad Medical, Inc. | Adjusting dental prostheses based on soft tissue |
WO2012087999A1 (en) | 2010-12-22 | 2012-06-28 | 3M Innovative Properties Company | Methods of making multilayer anatomical all-ceramic dental appliances |
WO2012087997A1 (en) | 2010-12-22 | 2012-06-28 | 3M Innovative Properties Company | Fireable dental blank assembly |
EP3090700A1 (en) * | 2015-05-08 | 2016-11-09 | Vrije Universiteit van Amsterdam | Customized dental implant and associated tooling |
US10284731B2 (en) | 2016-11-29 | 2019-05-07 | Echostar Technologies L.L.C. | Apparatus, systems and methods for generating 3D model data from a media content event |
CN110446609A (en) | 2017-04-21 | 2019-11-12 | 惠普发展公司,有限责任合伙企业 | Compensate the contraction of object in 3D printing |
NL2022738B1 (en) * | 2019-03-14 | 2020-09-18 | Identiq Tandtechniek | Method for providing a natural colour and optical depth to a tooth object |
KR20230005568A (en) * | 2021-07-01 | 2023-01-10 | 비엔엘바이오테크 주식회사 | Tooth model for tooth treatment practice and manufacturing method thereof |
IT202200021720A1 (en) * | 2022-10-21 | 2024-04-21 | Dental Four Srl | APPARATUS AND METHOD FOR MANUFACTURING DENTAL PROSTHESES |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4585417A (en) * | 1979-12-14 | 1986-04-29 | Coors Porcelain Company | Dental appliance and method of manufacture |
US5347454A (en) * | 1990-04-10 | 1994-09-13 | Mushabac David R | Method, system and mold assembly for use in preparing a dental restoration |
US5944893A (en) * | 1997-06-19 | 1999-08-31 | Anderson; Dean Robert Gary | Metering device for paint for digital printing |
US5972111A (en) * | 1997-06-19 | 1999-10-26 | Anderson; Dean Robert Gary | Metering device for paint for digital printing |
US6190454B1 (en) * | 1997-06-19 | 2001-02-20 | Dean Robert Gary Anderson | Printer cartridge |
US20040133293A1 (en) * | 2003-01-06 | 2004-07-08 | Durbin Duane Milford | Method and system for automated mass manufacturing of custom tooth die models for use in the fabrication of dental prosthetics |
US20050070782A1 (en) * | 2003-07-17 | 2005-03-31 | Dmitri Brodkin | Digital technologies for planning and carrying out dental restorative procedures |
US20050147944A1 (en) * | 2003-12-31 | 2005-07-07 | Naimul Karim | Curable dental mill blanks and related methods |
US20060008777A1 (en) * | 2004-07-08 | 2006-01-12 | Peterson David S | System and mehtod for making sequentially layered dental restoration |
US20060240177A1 (en) * | 2005-04-20 | 2006-10-26 | Newkirk James S | Overcoat for dental devices |
US20070103460A1 (en) * | 2005-11-09 | 2007-05-10 | Tong Zhang | Determining camera motion |
US20070182797A1 (en) * | 2006-02-02 | 2007-08-09 | 3M Innovative Properties Company | Printer having a print wire with alternating hydrophilic and hydrophobic areas to form droplets for printing inks |
US20070188769A1 (en) * | 2006-02-13 | 2007-08-16 | Janos Rohaly | Three-channel camera systems with collinear apertures |
US20080015727A1 (en) * | 2006-01-20 | 2008-01-17 | Dunne Patrick C | Local enforcement of accuracy in fabricated models |
US20080153067A1 (en) * | 2005-10-24 | 2008-06-26 | Biomet 3I, Inc. | Methods for placing an implant analog in a physical model of the patient's mouth |
US20090233258A1 (en) * | 2005-11-03 | 2009-09-17 | Ralph Gunnar Luthardt | Method for Producing a Tooth Replacement Having a Multi-Layer Structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1252867B1 (en) * | 2001-04-23 | 2005-07-27 | Cicero Dental Systems B.V. | Method for production of an artificial tooth |
CN1181803C (en) | 2003-02-28 | 2004-12-29 | 华南理工大学 | Induced osteogenesis bioactive artificial tooth root implant material and preparation method thereof |
KR101235320B1 (en) | 2004-09-14 | 2013-02-21 | 오라티오 비.브이. | Method of manufacturing and installing a ceramic dental implant with aesthetic implant abutment |
-
2008
- 2008-11-18 US US12/741,385 patent/US9060832B2/en not_active Expired - Fee Related
- 2008-11-18 EP EP08855459.7A patent/EP2227172B1/en not_active Not-in-force
- 2008-11-18 WO PCT/US2008/083881 patent/WO2009070469A1/en active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4585417A (en) * | 1979-12-14 | 1986-04-29 | Coors Porcelain Company | Dental appliance and method of manufacture |
US5347454A (en) * | 1990-04-10 | 1994-09-13 | Mushabac David R | Method, system and mold assembly for use in preparing a dental restoration |
US5944893A (en) * | 1997-06-19 | 1999-08-31 | Anderson; Dean Robert Gary | Metering device for paint for digital printing |
US5972111A (en) * | 1997-06-19 | 1999-10-26 | Anderson; Dean Robert Gary | Metering device for paint for digital printing |
US6190454B1 (en) * | 1997-06-19 | 2001-02-20 | Dean Robert Gary Anderson | Printer cartridge |
US20040133293A1 (en) * | 2003-01-06 | 2004-07-08 | Durbin Duane Milford | Method and system for automated mass manufacturing of custom tooth die models for use in the fabrication of dental prosthetics |
US20050070782A1 (en) * | 2003-07-17 | 2005-03-31 | Dmitri Brodkin | Digital technologies for planning and carrying out dental restorative procedures |
US20050147944A1 (en) * | 2003-12-31 | 2005-07-07 | Naimul Karim | Curable dental mill blanks and related methods |
US20060008777A1 (en) * | 2004-07-08 | 2006-01-12 | Peterson David S | System and mehtod for making sequentially layered dental restoration |
US20060240177A1 (en) * | 2005-04-20 | 2006-10-26 | Newkirk James S | Overcoat for dental devices |
US20080153067A1 (en) * | 2005-10-24 | 2008-06-26 | Biomet 3I, Inc. | Methods for placing an implant analog in a physical model of the patient's mouth |
US20090233258A1 (en) * | 2005-11-03 | 2009-09-17 | Ralph Gunnar Luthardt | Method for Producing a Tooth Replacement Having a Multi-Layer Structure |
US20070103460A1 (en) * | 2005-11-09 | 2007-05-10 | Tong Zhang | Determining camera motion |
US20080015727A1 (en) * | 2006-01-20 | 2008-01-17 | Dunne Patrick C | Local enforcement of accuracy in fabricated models |
US20070182797A1 (en) * | 2006-02-02 | 2007-08-09 | 3M Innovative Properties Company | Printer having a print wire with alternating hydrophilic and hydrophobic areas to form droplets for printing inks |
US20070188769A1 (en) * | 2006-02-13 | 2007-08-16 | Janos Rohaly | Three-channel camera systems with collinear apertures |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8865033B2 (en) | 2008-10-01 | 2014-10-21 | 3M Innovative Properties Company | Process for producing a dental appliance |
US20110151411A1 (en) * | 2008-10-01 | 2011-06-23 | 3M Innovative Properties Company | Dental appliance, process for producing a dental appliance and use thereof |
US8721938B2 (en) | 2009-09-30 | 2014-05-13 | 3M Innovative Properties Company | Methods for making layered dental appliances |
US8834752B2 (en) | 2009-09-30 | 2014-09-16 | 3M Innovative Properties Company | Systems and methods for making layered dental appliances |
US9039947B2 (en) | 2009-09-30 | 2015-05-26 | 3M Innovative Properties Company | Methods for making layered dental appliances from the outside in |
US8813364B2 (en) | 2009-12-18 | 2014-08-26 | 3M Innovative Properties Company | Methods for making layered dental appliances |
US20120329008A1 (en) * | 2011-06-22 | 2012-12-27 | Trident Labs, Inc. d/b/a Trident Dental Laboratories | Process for making a dental restoration model |
US20130081271A1 (en) * | 2011-10-04 | 2013-04-04 | F-Cube, Ltd. | Method of Making Self-Ligating Orthodontic Brackets and Component Parts |
US10617495B2 (en) * | 2012-02-13 | 2020-04-14 | 3M Innovative Properties Company | Dental milling block containing individualized dental article and process of production |
US12279928B2 (en) * | 2012-05-03 | 2025-04-22 | 3Shape A/S | Automated production of dental restoration |
US20240115360A1 (en) * | 2012-05-03 | 2024-04-11 | 3Shape A/S | Automated production of dental restoration |
US10456223B2 (en) * | 2012-05-26 | 2019-10-29 | James R. Glidewell Dental Ceramics, Inc. | Method and apparatus for preparing a ceramic dental restoration in one appointment |
US9597265B2 (en) | 2012-05-26 | 2017-03-21 | James R. Glidewell Dental Ceramics, Inc. | Method and apparatus for preparing a ceramic dental restoration in one appointment |
US20140315154A1 (en) * | 2013-03-07 | 2014-10-23 | B&D Dental Corporation | Method for dimensional adjustment for dental scan, digitized model or restoration |
US10799325B2 (en) * | 2013-11-21 | 2020-10-13 | William C. Vuillemot | Apparatus for in situ dental restoration |
US20170281321A1 (en) * | 2013-11-21 | 2017-10-05 | William C. Vuillemot | Apparatus for in situ dental restoration |
US11612463B2 (en) | 2013-11-21 | 2023-03-28 | William C. Vuillemot | Apparatus for in situ restoration of unconstrained dental structure |
US10007987B1 (en) * | 2016-02-04 | 2018-06-26 | Dennis Braunston | Enhanced tooth shade matching system |
WO2018067541A1 (en) * | 2016-10-04 | 2018-04-12 | Implant Direct Sybron International Llc | Dual hued dental implant and method of making same |
US20190328494A1 (en) * | 2016-12-20 | 2019-10-31 | Airnivol S.R.L. | Equipment and process for manufacturing orthodontic and/or prosthetic dental devices |
WO2018172180A1 (en) * | 2017-03-20 | 2018-09-27 | Straumann Holding Ag | System and method for manufacturing dental workpiece |
CN110461273A (en) * | 2017-03-20 | 2019-11-15 | 斯特劳曼控股公司 | System and method for manufacturing dental workpieces |
US11534974B2 (en) * | 2017-11-17 | 2022-12-27 | Align Technology, Inc. | Customized fabrication of orthodontic retainers based on patient anatomy |
EP4389060A3 (en) * | 2018-04-25 | 2024-10-09 | Lightforce Orthodontics, Inc. | Manufacture of patient-specific orthodontic brackets with improved base and retentive features |
EP3689608A1 (en) * | 2019-02-04 | 2020-08-05 | Bernard Maneuf | Method for manufacturing a dental element and device for manufacturing a dental element |
FR3092242A1 (en) * | 2019-02-04 | 2020-08-07 | Bernard Maneuf | A method of manufacturing a dental component and a device for manufacturing a dental component |
US11399922B2 (en) * | 2019-02-04 | 2022-08-02 | Bernard Maneuf | Method for fabricating a dental part and device for fabricating a dental part |
CN111843223A (en) * | 2019-04-30 | 2020-10-30 | 财团法人金属工业研究发展中心 | Laser engraving machine |
US20220151748A1 (en) * | 2020-11-17 | 2022-05-19 | James R. Glidewell Dental Ceramics, Inc. | System and Method for Coloring a Dental Prosthesis |
Also Published As
Publication number | Publication date |
---|---|
US9060832B2 (en) | 2015-06-23 |
WO2009070469A1 (en) | 2009-06-04 |
EP2227172A1 (en) | 2010-09-15 |
EP2227172B1 (en) | 2018-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9060832B2 (en) | Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes | |
US9271813B2 (en) | Digitally-painted dental articles | |
US20100268363A1 (en) | Digitally-machined smc dental articles | |
US6190171B1 (en) | Method and apparatus for tooth restoration | |
EP2814420B1 (en) | Process of producing a dental milling block containing individualized dental article | |
EP2582319B1 (en) | Methods of making multi-chromatic dental appliances | |
CN106264762B (en) | Mouth mending material CAD/CAM/SLM-3D prints complex method | |
US9192456B2 (en) | Denture and method and apparatus of making same | |
CA2615461C (en) | Method and device for producing dental prosthetic elements | |
US20140308623A1 (en) | Computer fabrication of dental prosthetics | |
US20150289954A1 (en) | Computer fabrication of dental prosthetics | |
US8973269B2 (en) | Methods of making biomimetic dental appliances | |
US20100244294A1 (en) | Smc crown shells | |
WO2011106472A1 (en) | Dental models using stereolithography | |
AU2014202799B2 (en) | Method for producing a denture | |
CN104116569A (en) | Computer fabrication of dental prosthetic | |
Zarina et al. | Evolution of the Software and Hardware in CAD/CAM Systems used in Dentistry | |
WO2025034683A2 (en) | Protocol for staged milling type computer aided manufacturing of surgical prosthetics | |
Kalra et al. | Chair side cad-cam generated all ceramic restorations-a noval approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KARIM, NAIMUL;MITRA, SUMITA B.;SIGNING DATES FROM 20100420 TO 20100427;REEL/FRAME:024335/0371 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230623 |