US20100193085A1 - Seamless steel pipe for use as vertical work-over sections - Google Patents
Seamless steel pipe for use as vertical work-over sections Download PDFInfo
- Publication number
- US20100193085A1 US20100193085A1 US12/595,167 US59516708A US2010193085A1 US 20100193085 A1 US20100193085 A1 US 20100193085A1 US 59516708 A US59516708 A US 59516708A US 2010193085 A1 US2010193085 A1 US 2010193085A1
- Authority
- US
- United States
- Prior art keywords
- max
- tube
- seamless steel
- steel tube
- work
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 47
- 239000010959 steel Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 claims abstract description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 239000011651 chromium Substances 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 239000011572 manganese Substances 0.000 claims abstract description 10
- 239000010955 niobium Substances 0.000 claims abstract description 10
- 239000010936 titanium Substances 0.000 claims abstract description 10
- 239000011575 calcium Substances 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 8
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 239000011733 molybdenum Substances 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 239000011574 phosphorus Substances 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 239000011593 sulfur Substances 0.000 claims abstract description 8
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 4
- 238000012360 testing method Methods 0.000 claims description 36
- 229910000734 martensite Inorganic materials 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 26
- 238000010791 quenching Methods 0.000 claims description 22
- 230000009466 transformation Effects 0.000 claims description 19
- 238000007689 inspection Methods 0.000 claims description 15
- 238000003754 machining Methods 0.000 claims description 11
- 238000009659 non-destructive testing Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 8
- 238000009658 destructive testing Methods 0.000 claims description 6
- 238000009864 tensile test Methods 0.000 claims description 6
- 238000011179 visual inspection Methods 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 6
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 5
- 238000005496 tempering Methods 0.000 claims description 5
- 239000012085 test solution Substances 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 2
- 238000005336 cracking Methods 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- 238000012512 characterization method Methods 0.000 description 5
- 238000005553 drilling Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000001066 destructive effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
Definitions
- This invention relates to a seamless steel tube for risers used in work-over operations.
- the requirements for operating a well in the seabed involve a plurality or systems and equipment including drilling, production and work-over risers.
- a drilling riser is a pipe between a seabed blow-out preventer (BOP) and a floating drilling rig which is a drilling unit not permanently fixed to the seabed such as a drillship, a semi-submersible or jack-up unit.
- BOP seabed blow-out preventer
- a drilling rig is meant to be the derrick and its associated machinery.
- a production riser is a pipeline carrying oil or gas that joins a seabed wellhead to a deck of a production platform or a tanker loading platform.
- a work-over riser is a flowline which is used to carry on a well work-over, which is performed on an existing well and may involve re-evaluating the production formation, clearing sand from producing zones, jet lifting, replacing downhole equipment, deepening the well, acidizing or fracturing or improving the drive mechanism.
- these pipes need to have a good welding performance just to be welded to weld-on-connectors to build the string.
- a first object of the invention is to provide a seamless steel tube to be used as a riser in work-over operations with a specific chemistry design and microstructure consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter to reduce the weight of the riser string.
- a second object is to provide a seamless steel tube for the application as a work-over riser with a specific chemistry design and microstructure consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter to reduce the bending loads in the wellhead and the platform interface.
- a third object of the invention is to provide a method of manufacturing of a seamless steel tube for the application as a work-over riser with a specific chemistry design and microstructure consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter using upsetting techniques.
- a fourth object of the invention is to provide a method of manufacturing of a seamless steel tube for the application as a work-over riser with a specific chemistry design and microstructure consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter using machining techniques.
- a fifth object of the invention is to provide a method of manufacturing of a seamless steel tube for the application as a work-over riser with a specific chemistry design and microstructure consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter able to guarantee the mechanical characteristics to have high fatigue and corrosion resistance and a good welding performance.
- the tubes used as work-over risers may be reused meaning an economical saving.
- FIG. 1 illustrates a preferred embodiment of the work over riser of the present invention with upset ends.
- FIG. 2 shows a graphical representation of the Tensile test results (YS and UTS) from upset and pipe body sections from material in the as-quenched and tempered condition of the different industrial trials.
- FIG. 3 shows a graphical representation of the HRC hardness values from upset and pipe body sections showing the achievement of the minimum % of martensitic transformation from material in the as-quenched condition of the production of both dimensions.
- FIGS. 4 and 5 show a graphical representation of the HRC hardness values from upset and pipe body sections showing the individual hardness readings dispersion as a function of the location through the thickness (OD, MW & ID) from material in the as-tempered condition of the production of 7′′OD ⁇ 17.5 mm WT dimension and 85 ⁇ 8′′ OD ⁇ 15.9 mm WT dimension, respectively.
- FIG. 6 shows a graphical representation of the transverse CVN impact testing results at ⁇ 20° C. from upset and pipe body sections of the production of both dimensions showing the individual toughness values dispersion as per specification from material in the as-tempered condition.
- FIG. 7 shows the austenitic grain size reported in 9/10 ASTM in the pipe body and 8/9 ASTM in the upset end.
- FIG. 8 shows transverse section photomicrographs showing a microstructure constituted by martensite through the wall thickness of the pipe body section of quenched material for Nital 2% in 300 ⁇ magnification.
- FIG. 9 shows transverse section photomicrographs showing a microstructure constituted by martensite in the upset end of as-quenched material for Nital 2% in 300 ⁇ magnification.
- FIG. 10 shows transverse section photomicrographs, showing a microstructure constituted by tempered martensite in the pipe body of quenched & tempered material for Nital 2% in 300 ⁇ magnification.
- FIG. 11 shows transverse section photomicrographs, showing a microstructure constituted by tempered martensite in the upset end of quenched & tempered material for Nital 2% in 300 ⁇ magnification.
- FIG. 12 shows microstructural observations of as quenched material at the pipe machined body and the end zones revealing a prior austenitic grain size of 8/9 in both zones measured by the saturation method as per ASTM E-112.
- FIG. 13 shows transverse section photomicrographs showing a microstructure constituted by martensite through the wall thickness of the machined pipe body section of quenched material for Nital 2% in 300 ⁇ magnification.
- FIG. 14 shows transverse section photomicrographs showing a microstructure constituted by martensite through the wall thickness of the pipe end section of quenched material for Nital 2% in 300 ⁇ magnification.
- FIG. 15 shows transverse section photomicrographs showing a microstructure constituted by tempered martensite through the thickness of the pipe body section of quenched and tempered material. for Nital 2% in 300 ⁇ magnification.
- FIG. 16 shows transverse section photomicrographs showing a microstructure constituted by tempered martensite through the thickness of the pipe end section of quenched and tempered material for Nital 2% in 300 ⁇ magnification.
- the present invention describes a seamless steel tube to be used as a riser in work-over operations with a specific chemistry design and microstructure consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter.
- the alloy design is based on high strength requirements.
- the main features of the chemical composition of the tube include 0.23-0.28 wt % C, 0.45-0.65 wt % Mn, and other alloying elements such as Mo, and Cr to achieve the required percentage of martensitic transformation.
- microalloying elements such as Ti and Nb are used as grain refiners.
- the production route for manufacturing the upset seamless pipe for the application of as Work Over Riser includes the following steps: steel casting (Continuous Cast Bar), seamless pipe rolling (MPM process), pipe ends upsetting, heat treatment, destructive testing (including microcleanliness, austenitic grain size, calculate % of martensitic transformation, tensile, hardness, toughness, SSC testing), dimensional control of pipe body and upset ends (outside diameter, out of roundness, excentricity, straightness, internal diameter, length), machining of external and internal upset end, dimensional control (internal diameter, outside diameter and machined length), drift testing at the upset ends, non-destructive testing (NDT) of upset ends, weighing, measuring and marking, external surface visual inspection, UT inspection of pipe body and UT inspection of upset ends (cylindrical section only).
- the production route for manufacturing the machining seamless pipe for the application of as Work Over Riser includes the following steps: steel casting (Continuous Cast Bar), seamless pipe rolling (MPM process), heat treatment, destructive testing (including microcleanliness, austenitic grain size, calculate % of martensitic transformation, tensile, hardness, toughness, SSC testing), dimensional control of pipe body (outside diameter, out of roundness, straightness, internal diameter, length), machining from external surface the complete length of the pipe by programming CNC lath machine in order to achieve final dimensions at the ends, dimensional control (internal diameter, outside diameter, out of roundness, straightness, and length) of pipe body and machined ends, drift testing at the ends, non-destructive testing (NDT) of ends, weighing, measuring and marking, external surface visual inspection, UT inspection of machined pipe body and UT inspection of ends (cylindrical section only).
- the chemical composition of the seamless steel tube of the present invention comprises in weight percent: carbon 0.23-0.29, manganese 0.45-0.65, silicon 0.15-0.35, chromium 0.90-1.20, molybdenum 0.70-0.90, nickel 0.20 max, nitrogen 0.010 max, boron 0.0010-0.0030, aluminum 0.010-0.045, sulfur 0.005 max, phosphorus 0.015 max, titanium 0.005-0.030, niobium 0.020-0.035, copper 0.15 max, arsenic 0.020 max, calcium 0.0040 max, tin 0.020 max, hydrogen 2.4 ppm max, the rest are iron and inevitable impurities.
- a more preferred composition comprises: carbon 0.25-0.28, manganese 0.48-0.58, silicon 0.20-0.30, chromium 1.05-1.15, molybdenum 0.80-0.83, nickel 0.10 max, nitrogen 0.008 max, boron 0.0016-0.0026, aluminum 0.015-0.045, sulfur 0.0030 max, phosphorus 0.010 max, titanium 0.016-0.026, niobium 0.025-0.030, copper 0.10 max, arsenic 0.020 max, calcium 0.0040 max, tin 0.015 max, hydrogen 2.0 ppm max, the rest are iron and inevitable impurities.
- the seamless steel tubes have a geometry, in which ends of tubes have an increased wall thickness and outer diameter, and following mechanical properties:
- the geometry of seamless steel tube of the present invention and the mechanical characteristics are obtained by two methods of manufacturing: upsetting and machining.
- the upsetting manufacturing method comprises the following steps:
- the machining manufacturing method comprises the following steps:
- Both methods are also performed providing a seamless steel pipe with the preferred composition, as disclosed above.
- the seamless steel tube of the present invention may be divided into two zones. As shown in FIG. 1 , there is an increased wall thickness and diameter end with internal and external length (upsetting or machined zone) and the tube body. Due to a combination of the manufacturing methods and the chemistry design, both the whole tube body and the ends have the same yield strength of at least 620 MPa (90 ksi) (YS) and at most 724 MPa (105 ksi), a Yield to Tensile Ratio not greater than 0.92, also, the same ultimate tensile strength (UTS) of at least 690 MPa (100 ksi), elongation of at least 18%, hardness Rockwell of at most 25.4 HRC (value as per API 5CT means average per row) and corrosion resistance (Compliance with NACE, acceptance criteria: Passing SSC Method A test as per NACE TM0177-2005, using test solution (a), testing at 85% SMYS, test period 720 hours). Prior Austenitic Grain Size is 5 or less.
- the tubes may be utilized in sour and non-sour service.
- the tubes' nominal diameter to be upsetted ends may be from 41 ⁇ 2′′ to 103 ⁇ 4′′.
- the tubes' nominal diameter which ends will to be machined may be from 41 ⁇ 2′′ to 18′′ due to the manufacturing facilities.
- the tubes' thickness ranges from 10 mm to 50 mm.
- the upsetting manufacturing operation was performed following the steps of:
- FIGS. 2 through 5 illustrate several graphical representations of the mechanical properties including hardness.
- the austenitic grain size was measured on as-quenched material by the saturation method as per ASTM E-112. As shown in FIG. 6 , the grain size reported on the samples were 9/10 in the pipe body which was above the required size since the minimum required was 5. The upset samples showed a grain size of 8/9 and 9/10 complying with the specifications as illustrated in FIG. 6 .
- the transversal face to the rolling axis was metallographically prepared and etched with Nital 2% to perform microstructural observations with an optical microscope.
- Nital Solution of 2% of Nitric acid in Ethyl Alcohol.
- microstructures observed in as-quenched material were mainly martensitic with over 95% of martensitic transformation through the entire thickness of the pipe on both pipe body and upset which indicates that the temperature at which the pipe entered the quenching stage and the quenching itself were homogeneous.
- the microstructures observed in tempered material, tempered martensite was present through the thickness.
- the material passed the SSC Method A test at 85% SMYS as per NACE TM0177-96 accomplishing the 720 hours.
- the pipe was rolled in a heavy wall condition.
- the wall thickness was about 44 mm.
- Example 2 As in Example 1, a mechanical characterization was performed, calculating the % of martensitic transformation from the as-quenched material. On the quenched and tempered material, tensile, hardness, and toughness tests were performed on both machined ends and pipe body sections. Specifications were met; good hardenability, yield strength values of over 94 ksi as-tempered HRC values below the maximum allowed (25.4 HRC) and absorbed energy higher than 100 Joules at the specified temperature of ⁇ 20° C.
- Homogeneity in tensile properties, hardness and toughness test results are a consequence of a very homogenous microstructure through the wall on both machined ends and pipe body in the as quenched and tempered condition.
- Microstructural observations of as-quenched material at the pipe machined body and the ends zones reveal a prior austenitic grain size of 8/9 in both zones measured by the saturation method as per ASTM E-112.
- the modified end on the analyzed sample showed a grain size of 8/9 complying with the specifications as shown in FIG. 12 .
- the transversal face to the rolling axis was metallographically prepared and etched with Nital 2% to perform microstructural observations with an optical microscope.
- Nital Solution of 2% of Nitric acid in Ethyl Alcohol.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Heat Treatment Of Articles (AREA)
- Metal Extraction Processes (AREA)
- Rod-Shaped Construction Members (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2007004600A MX2007004600A (es) | 2007-04-17 | 2007-04-17 | Un tubo sin costura para la aplicación como secciones verticales de work-over. |
MXMX/A/2007/004600 | 2007-04-17 | ||
PCT/MX2008/000054 WO2008127084A2 (es) | 2007-04-17 | 2008-04-17 | Un tubo de acero sin costura para la aplicación como columnas ascendientes de work-over y método para fabricar el mismo |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100193085A1 true US20100193085A1 (en) | 2010-08-05 |
Family
ID=39673395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/595,167 Abandoned US20100193085A1 (en) | 2007-04-17 | 2008-04-17 | Seamless steel pipe for use as vertical work-over sections |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100193085A1 (es) |
EP (1) | EP2143817A2 (es) |
AR (1) | AR066080A1 (es) |
BR (1) | BRPI0810005A2 (es) |
CA (1) | CA2682959A1 (es) |
MX (1) | MX2007004600A (es) |
NO (1) | NO20093069L (es) |
WO (1) | WO2008127084A2 (es) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080314481A1 (en) * | 2005-08-04 | 2008-12-25 | Alfonso Izquierdo Garcia | High-Strength Steel for Seamless, Weldable Steel Pipes |
US20100136363A1 (en) * | 2008-11-25 | 2010-06-03 | Maverick Tube, Llc | Compact strip or thin slab processing of boron/titanium steels |
US20100294401A1 (en) * | 2007-11-19 | 2010-11-25 | Tenaris Connections Limited | High strength bainitic steel for octg applications |
US20100319814A1 (en) * | 2009-06-17 | 2010-12-23 | Teresa Estela Perez | Bainitic steels with boron |
US8002910B2 (en) | 2003-04-25 | 2011-08-23 | Tubos De Acero De Mexico S.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
RU2464327C1 (ru) * | 2011-07-27 | 2012-10-20 | ООО "Компания ИжТехМаш" | Способ изготовления трубы для технологических нужд нефтяных скважин |
US8328958B2 (en) | 2007-07-06 | 2012-12-11 | Tenaris Connections Limited | Steels for sour service environments |
US8414715B2 (en) | 2011-02-18 | 2013-04-09 | Siderca S.A.I.C. | Method of making ultra high strength steel having good toughness |
WO2013161567A1 (ja) * | 2012-04-27 | 2013-10-31 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
RU2500821C1 (ru) * | 2012-08-20 | 2013-12-10 | Кирилл Алексеевич Иванов | Способ термомеханической обработки трубы |
US8636856B2 (en) | 2011-02-18 | 2014-01-28 | Siderca S.A.I.C. | High strength steel having good toughness |
US8821653B2 (en) | 2011-02-07 | 2014-09-02 | Dalmine S.P.A. | Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance |
US9187811B2 (en) | 2013-03-11 | 2015-11-17 | Tenaris Connections Limited | Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing |
US9340847B2 (en) | 2012-04-10 | 2016-05-17 | Tenaris Connections Limited | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same |
US9598746B2 (en) | 2011-02-07 | 2017-03-21 | Dalmine S.P.A. | High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance |
US20170101693A1 (en) * | 2015-10-07 | 2017-04-13 | Benteler Steel/Tube Gmbh | Seamless steel pipe, method of producing a high strength seamless steel pipe, usage of a seamless steel pipe and perforation gun |
US9644248B2 (en) | 2013-04-08 | 2017-05-09 | Dalmine S.P.A. | Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
US9657365B2 (en) | 2013-04-08 | 2017-05-23 | Dalmine S.P.A. | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
JP6152928B1 (ja) * | 2016-02-29 | 2017-06-28 | Jfeスチール株式会社 | 油井用低合金高強度継目無鋼管 |
WO2017149570A1 (ja) * | 2016-02-29 | 2017-09-08 | Jfeスチール株式会社 | 油井用低合金高強度継目無鋼管 |
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US9970242B2 (en) | 2013-01-11 | 2018-05-15 | Tenaris Connections B.V. | Galling resistant drill pipe tool joint and corresponding drill pipe |
WO2019023536A1 (en) * | 2017-07-27 | 2019-01-31 | Enventure Global Technology, Inc. | DILATABLE CONNECTION BY DISCHARGE |
US10844669B2 (en) | 2009-11-24 | 2020-11-24 | Tenaris Connections B.V. | Threaded joint sealed to internal and external pressures |
US11105501B2 (en) | 2013-06-25 | 2021-08-31 | Tenaris Connections B.V. | High-chromium heat-resistant steel |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
US11833561B2 (en) | 2017-01-17 | 2023-12-05 | Forum Us, Inc. | Method of manufacturing a coiled tubing string |
US11952648B2 (en) | 2011-01-25 | 2024-04-09 | Tenaris Coiled Tubes, Llc | Method of forming and heat treating coiled tubing |
US12129533B2 (en) | 2015-04-14 | 2024-10-29 | Tenaris Connections B.V. | Ultra-fine grained steels having corrosion- fatigue resistance |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101340165B1 (ko) | 2006-06-29 | 2013-12-10 | 테나리스 커넥션즈 아.게. | 저온에서 개선된 등방성 인성을 갖는 유압 실린더용 무계목정밀 강철 튜브 및 그것의 제조방법 |
WO2009006528A1 (en) * | 2007-07-02 | 2009-01-08 | Davis-Lynch, Inc. | Centering structure for tubular member and method of making same |
CN109161650B (zh) * | 2018-10-30 | 2020-07-28 | 中车戚墅堰机车车辆工艺研究所有限公司 | 一种低合金铸钢、制造方法及其应用 |
Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413166A (en) * | 1965-10-15 | 1968-11-26 | Atomic Energy Commission Usa | Fine grained steel and process for preparation thereof |
US3655465A (en) * | 1969-03-10 | 1972-04-11 | Int Nickel Co | Heat treatment for alloys particularly steels to be used in sour well service |
US3810793A (en) * | 1971-06-24 | 1974-05-14 | Krupp Ag Huettenwerke | Process of manufacturing a reinforcing bar steel for prestressed concrete |
US3915697A (en) * | 1975-01-31 | 1975-10-28 | Centro Speriment Metallurg | Bainitic steel resistant to hydrogen embrittlement |
US4231555A (en) * | 1978-06-12 | 1980-11-04 | Horikiri Spring Manufacturing Co., Ltd. | Bar-shaped torsion spring |
US4336081A (en) * | 1978-04-28 | 1982-06-22 | Neturen Company, Ltd. | Process of preparing steel coil spring |
US4376528A (en) * | 1980-11-14 | 1983-03-15 | Kawasaki Steel Corporation | Steel pipe hardening apparatus |
US4379482A (en) * | 1979-12-06 | 1983-04-12 | Nippon Steel Corporation | Prevention of cracking of continuously cast steel slabs containing boron |
US4407681A (en) * | 1979-06-29 | 1983-10-04 | Nippon Steel Corporation | High tensile steel and process for producing the same |
US4526628A (en) * | 1982-04-28 | 1985-07-02 | Nhk Spring Co., Ltd. | Method of manufacturing a car stabilizer |
US4721536A (en) * | 1985-06-10 | 1988-01-26 | Hoesch Aktiengesellschaft | Method for making steel tubes or pipes of increased acidic gas resistance |
US4812182A (en) * | 1987-07-31 | 1989-03-14 | Hongsheng Fang | Air-cooling low-carbon bainitic steel |
US4814141A (en) * | 1984-11-28 | 1989-03-21 | Japan As Represented By Director General, Technical Research And Development Institute, Japan Defense Agency | High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2 |
US5352406A (en) * | 1992-10-27 | 1994-10-04 | Centro Sviluppo Materiali S.P.A. | Highly mechanical and corrosion resistant stainless steel and relevant treatment process |
US5454883A (en) * | 1993-02-02 | 1995-10-03 | Nippon Steel Corporation | High toughness low yield ratio, high fatigue strength steel plate and process of producing same |
US5538566A (en) * | 1990-10-24 | 1996-07-23 | Consolidated Metal Products, Inc. | Warm forming high strength steel parts |
US5592988A (en) * | 1994-05-30 | 1997-01-14 | Danieli & C. Officine Meccaniche Spa | Method for the continuous casting of peritectic steels |
US5598735A (en) * | 1994-03-29 | 1997-02-04 | Horikiri Spring Manufacturing Co., Ltd. | Hollow stabilizer manufacturing method |
US5879474A (en) * | 1995-01-20 | 1999-03-09 | British Steel Plc | Relating to carbide-free bainitic steels and method of producing such steels |
US5944921A (en) * | 1995-05-31 | 1999-08-31 | Dalmine S.P.A. | Martensitic stainless steel having high mechanical strength and corrosion resistance and relative manufactured articles |
US5993570A (en) * | 1997-06-20 | 1999-11-30 | American Cast Iron Pipe Company | Linepipe and structural steel produced by high speed continuous casting |
US6030470A (en) * | 1997-06-16 | 2000-02-29 | Sms Schloemann-Siemag Aktiengesellschaft | Method and plant for rolling hot-rolled wide strip in a CSP plant |
US6188037B1 (en) * | 1997-03-26 | 2001-02-13 | Sumitomo Metal Industries, Ltd. | Welded high-strength steel structures and method of manufacturing the same |
US6196530B1 (en) * | 1997-05-12 | 2001-03-06 | Muhr Und Bender | Method of manufacturing stabilizer for motor vehicles |
US6217676B1 (en) * | 1997-09-29 | 2001-04-17 | Sumitomo Metal Industries, Ltd. | Steel for oil well pipe with high corrosion resistance to wet carbon dioxide and seawater, and a seamless oil well pipe |
US6267828B1 (en) * | 1998-09-12 | 2001-07-31 | Sumitomo Metal Ind | Low alloy steel for oil country tubular goods and method of making |
US20020011284A1 (en) * | 1997-01-15 | 2002-01-31 | Von Hagen Ingo | Method for making seamless tubing with a stable elastic limit at high application temperatures |
US6384388B1 (en) * | 2000-11-17 | 2002-05-07 | Meritor Suspension Systems Company | Method of enhancing the bending process of a stabilizer bar |
US20030116238A1 (en) * | 2000-02-28 | 2003-06-26 | Nobuhiro Fujita | Steel pipe excellent in formability and method for producing thereof |
US20030155052A1 (en) * | 2001-03-29 | 2003-08-21 | Kunio Kondo | High strength steel pipe for an air bag and a process for its manufacture |
US6648991B2 (en) * | 2001-03-13 | 2003-11-18 | Siderca S.A.I.C. | Low-alloy carbon steel for the manufacture of pipes for exploration and the production of oil and/or gas having an improved corrosion resistance, a process for the manufacture of seamless pipes, and the seamless pipes obtained therefrom |
US6669789B1 (en) * | 2001-08-31 | 2003-12-30 | Nucor Corporation | Method for producing titanium-bearing microalloyed high-strength low-alloy steel |
US6669285B1 (en) * | 2002-07-02 | 2003-12-30 | Eric Park | Headrest mounted video display |
US6682610B1 (en) * | 1999-02-15 | 2004-01-27 | Nhk Spring Co., Ltd. | Manufacturing method for hollow stabilizer |
US20040118490A1 (en) * | 2002-12-18 | 2004-06-24 | Klueh Ronald L. | Cr-W-V bainitic / ferritic steel compositions |
US20040131876A1 (en) * | 2001-03-07 | 2004-07-08 | Masahiro Ohgami | Electric welded steel tube for hollow stabilizer |
US20040139780A1 (en) * | 2003-01-17 | 2004-07-22 | Visteon Global Technologies, Inc. | Suspension component having localized material strengthening |
US6767417B2 (en) * | 2001-02-07 | 2004-07-27 | Nkk Corporation | Steel sheet and method for manufacturing the same |
US20050076875A1 (en) * | 2001-12-12 | 2005-04-14 | Paval Hora | Multi-piece valve for internal combustion piston engines |
US20050087269A1 (en) * | 2003-10-22 | 2005-04-28 | Merwin Matthew J. | Method for producing line pipe |
US6958099B2 (en) * | 2001-08-02 | 2005-10-25 | Sumitomo Metal Industries, Ltd. | High toughness steel material and method of producing steel pipes using same |
US20060124211A1 (en) * | 2004-10-29 | 2006-06-15 | Takashi Takano | Steel pipe for an airbag inflator and a process for its manufacture |
US7074283B2 (en) * | 2002-03-29 | 2006-07-11 | Sumitomo Metal Industries, Ltd. | Low alloy steel |
US7083686B2 (en) * | 2004-07-26 | 2006-08-01 | Sumitomo Metal Industries, Ltd. | Steel product for oil country tubular good |
US20060169368A1 (en) * | 2004-10-05 | 2006-08-03 | Tenaris Conncections A.G. (A Liechtenstein Corporation) | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
US20060243355A1 (en) * | 2005-04-29 | 2006-11-02 | Meritor Suspension System Company, U.S. | Stabilizer bar |
US20070089813A1 (en) * | 2003-04-25 | 2007-04-26 | Tubos De Acero Mexico S.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
US20070137736A1 (en) * | 2004-06-14 | 2007-06-21 | Sumitomo Metal Industries, Ltd. | Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance |
US7264684B2 (en) * | 2004-07-20 | 2007-09-04 | Sumitomo Metal Industries, Ltd. | Steel for steel pipes |
US20070216126A1 (en) * | 2006-03-14 | 2007-09-20 | Lopez Edgardo O | Methods of producing high-strength metal tubular bars possessing improved cold formability |
US20080047635A1 (en) * | 2005-03-29 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Heavy wall seamless steel pipe for line pipe and a manufacturing method thereof |
US20080129044A1 (en) * | 2006-12-01 | 2008-06-05 | Gabriel Eduardo Carcagno | Nanocomposite coatings for threaded connections |
US20080219878A1 (en) * | 2005-08-22 | 2008-09-11 | Kunio Kondo | Seamless steel pipe for line pipe and a process for its manufacture |
US20080226396A1 (en) * | 2007-03-15 | 2008-09-18 | Tubos De Acero De Mexico S.A. | Seamless steel tube for use as a steel catenary riser in the touch down zone |
US20080314481A1 (en) * | 2005-08-04 | 2008-12-25 | Alfonso Izquierdo Garcia | High-Strength Steel for Seamless, Weldable Steel Pipes |
US7635406B2 (en) * | 2004-03-24 | 2009-12-22 | Sumitomo Metal Industries, Ltd. | Method for manufacturing a low alloy steel excellent in corrosion resistance |
US20100068549A1 (en) * | 2006-06-29 | 2010-03-18 | Tenaris Connections Ag | Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same |
US20100136363A1 (en) * | 2008-11-25 | 2010-06-03 | Maverick Tube, Llc | Compact strip or thin slab processing of boron/titanium steels |
US20100294401A1 (en) * | 2007-11-19 | 2010-11-25 | Tenaris Connections Limited | High strength bainitic steel for octg applications |
US20100319814A1 (en) * | 2009-06-17 | 2010-12-23 | Teresa Estela Perez | Bainitic steels with boron |
US7862667B2 (en) * | 2007-07-06 | 2011-01-04 | Tenaris Connections Limited | Steels for sour service environments |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4281716A (en) | 1979-08-13 | 1981-08-04 | Standard Oil Company (Indiana) | Flexible workover riser system |
JP3755163B2 (ja) * | 1995-05-15 | 2006-03-15 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた高強度継目無鋼管の製造方法 |
GB9621195D0 (en) | 1996-10-11 | 1996-11-27 | Kvaerner Eng | Off-shore oil or gas production unit |
NO315284B1 (no) * | 2001-10-19 | 2003-08-11 | Inocean As | Stigerör for forbindelse mellom et fartöy og et punkt på havbunnen |
-
2007
- 2007-04-17 MX MX2007004600A patent/MX2007004600A/es active IP Right Grant
-
2008
- 2008-04-16 AR ARP080101566A patent/AR066080A1/es unknown
- 2008-04-17 WO PCT/MX2008/000054 patent/WO2008127084A2/es active Application Filing
- 2008-04-17 US US12/595,167 patent/US20100193085A1/en not_active Abandoned
- 2008-04-17 CA CA002682959A patent/CA2682959A1/en not_active Abandoned
- 2008-04-17 EP EP08753716A patent/EP2143817A2/en not_active Withdrawn
- 2008-04-17 BR BRPI0810005A patent/BRPI0810005A2/pt not_active IP Right Cessation
-
2009
- 2009-09-28 NO NO20093069A patent/NO20093069L/no not_active Application Discontinuation
Patent Citations (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413166A (en) * | 1965-10-15 | 1968-11-26 | Atomic Energy Commission Usa | Fine grained steel and process for preparation thereof |
US3655465A (en) * | 1969-03-10 | 1972-04-11 | Int Nickel Co | Heat treatment for alloys particularly steels to be used in sour well service |
US3810793A (en) * | 1971-06-24 | 1974-05-14 | Krupp Ag Huettenwerke | Process of manufacturing a reinforcing bar steel for prestressed concrete |
US3915697A (en) * | 1975-01-31 | 1975-10-28 | Centro Speriment Metallurg | Bainitic steel resistant to hydrogen embrittlement |
US4336081A (en) * | 1978-04-28 | 1982-06-22 | Neturen Company, Ltd. | Process of preparing steel coil spring |
US4231555A (en) * | 1978-06-12 | 1980-11-04 | Horikiri Spring Manufacturing Co., Ltd. | Bar-shaped torsion spring |
US4407681A (en) * | 1979-06-29 | 1983-10-04 | Nippon Steel Corporation | High tensile steel and process for producing the same |
US4379482A (en) * | 1979-12-06 | 1983-04-12 | Nippon Steel Corporation | Prevention of cracking of continuously cast steel slabs containing boron |
US4376528A (en) * | 1980-11-14 | 1983-03-15 | Kawasaki Steel Corporation | Steel pipe hardening apparatus |
US4526628A (en) * | 1982-04-28 | 1985-07-02 | Nhk Spring Co., Ltd. | Method of manufacturing a car stabilizer |
US4814141A (en) * | 1984-11-28 | 1989-03-21 | Japan As Represented By Director General, Technical Research And Development Institute, Japan Defense Agency | High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2 |
US4721536A (en) * | 1985-06-10 | 1988-01-26 | Hoesch Aktiengesellschaft | Method for making steel tubes or pipes of increased acidic gas resistance |
US4812182A (en) * | 1987-07-31 | 1989-03-14 | Hongsheng Fang | Air-cooling low-carbon bainitic steel |
US5538566A (en) * | 1990-10-24 | 1996-07-23 | Consolidated Metal Products, Inc. | Warm forming high strength steel parts |
US5352406A (en) * | 1992-10-27 | 1994-10-04 | Centro Sviluppo Materiali S.P.A. | Highly mechanical and corrosion resistant stainless steel and relevant treatment process |
US5454883A (en) * | 1993-02-02 | 1995-10-03 | Nippon Steel Corporation | High toughness low yield ratio, high fatigue strength steel plate and process of producing same |
US5598735A (en) * | 1994-03-29 | 1997-02-04 | Horikiri Spring Manufacturing Co., Ltd. | Hollow stabilizer manufacturing method |
US5592988A (en) * | 1994-05-30 | 1997-01-14 | Danieli & C. Officine Meccaniche Spa | Method for the continuous casting of peritectic steels |
US5879474A (en) * | 1995-01-20 | 1999-03-09 | British Steel Plc | Relating to carbide-free bainitic steels and method of producing such steels |
US5944921A (en) * | 1995-05-31 | 1999-08-31 | Dalmine S.P.A. | Martensitic stainless steel having high mechanical strength and corrosion resistance and relative manufactured articles |
US20020011284A1 (en) * | 1997-01-15 | 2002-01-31 | Von Hagen Ingo | Method for making seamless tubing with a stable elastic limit at high application temperatures |
US6188037B1 (en) * | 1997-03-26 | 2001-02-13 | Sumitomo Metal Industries, Ltd. | Welded high-strength steel structures and method of manufacturing the same |
US6196530B1 (en) * | 1997-05-12 | 2001-03-06 | Muhr Und Bender | Method of manufacturing stabilizer for motor vehicles |
US6311965B1 (en) * | 1997-05-12 | 2001-11-06 | Muhr Und Bender | Stabilizer for motor vehicle |
US6030470A (en) * | 1997-06-16 | 2000-02-29 | Sms Schloemann-Siemag Aktiengesellschaft | Method and plant for rolling hot-rolled wide strip in a CSP plant |
US5993570A (en) * | 1997-06-20 | 1999-11-30 | American Cast Iron Pipe Company | Linepipe and structural steel produced by high speed continuous casting |
US6217676B1 (en) * | 1997-09-29 | 2001-04-17 | Sumitomo Metal Industries, Ltd. | Steel for oil well pipe with high corrosion resistance to wet carbon dioxide and seawater, and a seamless oil well pipe |
US6267828B1 (en) * | 1998-09-12 | 2001-07-31 | Sumitomo Metal Ind | Low alloy steel for oil country tubular goods and method of making |
US6682610B1 (en) * | 1999-02-15 | 2004-01-27 | Nhk Spring Co., Ltd. | Manufacturing method for hollow stabilizer |
US20030116238A1 (en) * | 2000-02-28 | 2003-06-26 | Nobuhiro Fujita | Steel pipe excellent in formability and method for producing thereof |
US6384388B1 (en) * | 2000-11-17 | 2002-05-07 | Meritor Suspension Systems Company | Method of enhancing the bending process of a stabilizer bar |
US6767417B2 (en) * | 2001-02-07 | 2004-07-27 | Nkk Corporation | Steel sheet and method for manufacturing the same |
US20040131876A1 (en) * | 2001-03-07 | 2004-07-08 | Masahiro Ohgami | Electric welded steel tube for hollow stabilizer |
US6648991B2 (en) * | 2001-03-13 | 2003-11-18 | Siderca S.A.I.C. | Low-alloy carbon steel for the manufacture of pipes for exploration and the production of oil and/or gas having an improved corrosion resistance, a process for the manufacture of seamless pipes, and the seamless pipes obtained therefrom |
US20030155052A1 (en) * | 2001-03-29 | 2003-08-21 | Kunio Kondo | High strength steel pipe for an air bag and a process for its manufacture |
US6958099B2 (en) * | 2001-08-02 | 2005-10-25 | Sumitomo Metal Industries, Ltd. | High toughness steel material and method of producing steel pipes using same |
US6669789B1 (en) * | 2001-08-31 | 2003-12-30 | Nucor Corporation | Method for producing titanium-bearing microalloyed high-strength low-alloy steel |
US20050076875A1 (en) * | 2001-12-12 | 2005-04-14 | Paval Hora | Multi-piece valve for internal combustion piston engines |
US7074283B2 (en) * | 2002-03-29 | 2006-07-11 | Sumitomo Metal Industries, Ltd. | Low alloy steel |
US6669285B1 (en) * | 2002-07-02 | 2003-12-30 | Eric Park | Headrest mounted video display |
US20040118490A1 (en) * | 2002-12-18 | 2004-06-24 | Klueh Ronald L. | Cr-W-V bainitic / ferritic steel compositions |
US20040139780A1 (en) * | 2003-01-17 | 2004-07-22 | Visteon Global Technologies, Inc. | Suspension component having localized material strengthening |
US20070089813A1 (en) * | 2003-04-25 | 2007-04-26 | Tubos De Acero Mexico S.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
US8002910B2 (en) * | 2003-04-25 | 2011-08-23 | Tubos De Acero De Mexico S.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
US20050087269A1 (en) * | 2003-10-22 | 2005-04-28 | Merwin Matthew J. | Method for producing line pipe |
US7635406B2 (en) * | 2004-03-24 | 2009-12-22 | Sumitomo Metal Industries, Ltd. | Method for manufacturing a low alloy steel excellent in corrosion resistance |
US20070137736A1 (en) * | 2004-06-14 | 2007-06-21 | Sumitomo Metal Industries, Ltd. | Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance |
US7264684B2 (en) * | 2004-07-20 | 2007-09-04 | Sumitomo Metal Industries, Ltd. | Steel for steel pipes |
US7083686B2 (en) * | 2004-07-26 | 2006-08-01 | Sumitomo Metal Industries, Ltd. | Steel product for oil country tubular good |
US20060169368A1 (en) * | 2004-10-05 | 2006-08-03 | Tenaris Conncections A.G. (A Liechtenstein Corporation) | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
US20090101242A1 (en) * | 2004-10-05 | 2009-04-23 | Tenaris Connections A.G. | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
US20060124211A1 (en) * | 2004-10-29 | 2006-06-15 | Takashi Takano | Steel pipe for an airbag inflator and a process for its manufacture |
US20080047635A1 (en) * | 2005-03-29 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Heavy wall seamless steel pipe for line pipe and a manufacturing method thereof |
US20060243355A1 (en) * | 2005-04-29 | 2006-11-02 | Meritor Suspension System Company, U.S. | Stabilizer bar |
US20080314481A1 (en) * | 2005-08-04 | 2008-12-25 | Alfonso Izquierdo Garcia | High-Strength Steel for Seamless, Weldable Steel Pipes |
US8007603B2 (en) * | 2005-08-04 | 2011-08-30 | Tenaris Connections Limited | High-strength steel for seamless, weldable steel pipes |
US20080219878A1 (en) * | 2005-08-22 | 2008-09-11 | Kunio Kondo | Seamless steel pipe for line pipe and a process for its manufacture |
US20100327550A1 (en) * | 2006-03-14 | 2010-12-30 | Tenaris Connections Limited | Methods of producing high-strength metal tubular bars possessing improved cold formability |
US8007601B2 (en) * | 2006-03-14 | 2011-08-30 | Tenaris Connections Limited | Methods of producing high-strength metal tubular bars possessing improved cold formability |
US7744708B2 (en) * | 2006-03-14 | 2010-06-29 | Tenaris Connections Limited | Methods of producing high-strength metal tubular bars possessing improved cold formability |
US20070216126A1 (en) * | 2006-03-14 | 2007-09-20 | Lopez Edgardo O | Methods of producing high-strength metal tubular bars possessing improved cold formability |
US20100068549A1 (en) * | 2006-06-29 | 2010-03-18 | Tenaris Connections Ag | Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same |
US20080129044A1 (en) * | 2006-12-01 | 2008-06-05 | Gabriel Eduardo Carcagno | Nanocomposite coatings for threaded connections |
US20080226396A1 (en) * | 2007-03-15 | 2008-09-18 | Tubos De Acero De Mexico S.A. | Seamless steel tube for use as a steel catenary riser in the touch down zone |
US7862667B2 (en) * | 2007-07-06 | 2011-01-04 | Tenaris Connections Limited | Steels for sour service environments |
US20110097235A1 (en) * | 2007-07-06 | 2011-04-28 | Gustavo Lopez Turconi | Steels for sour service environments |
US20100294401A1 (en) * | 2007-11-19 | 2010-11-25 | Tenaris Connections Limited | High strength bainitic steel for octg applications |
US20100136363A1 (en) * | 2008-11-25 | 2010-06-03 | Maverick Tube, Llc | Compact strip or thin slab processing of boron/titanium steels |
US20100319814A1 (en) * | 2009-06-17 | 2010-12-23 | Teresa Estela Perez | Bainitic steels with boron |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8002910B2 (en) | 2003-04-25 | 2011-08-23 | Tubos De Acero De Mexico S.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
US20080314481A1 (en) * | 2005-08-04 | 2008-12-25 | Alfonso Izquierdo Garcia | High-Strength Steel for Seamless, Weldable Steel Pipes |
US8007603B2 (en) | 2005-08-04 | 2011-08-30 | Tenaris Connections Limited | High-strength steel for seamless, weldable steel pipes |
US8328958B2 (en) | 2007-07-06 | 2012-12-11 | Tenaris Connections Limited | Steels for sour service environments |
US20100294401A1 (en) * | 2007-11-19 | 2010-11-25 | Tenaris Connections Limited | High strength bainitic steel for octg applications |
US8328960B2 (en) | 2007-11-19 | 2012-12-11 | Tenaris Connections Limited | High strength bainitic steel for OCTG applications |
US8221562B2 (en) | 2008-11-25 | 2012-07-17 | Maverick Tube, Llc | Compact strip or thin slab processing of boron/titanium steels |
US20100136363A1 (en) * | 2008-11-25 | 2010-06-03 | Maverick Tube, Llc | Compact strip or thin slab processing of boron/titanium steels |
US20100319814A1 (en) * | 2009-06-17 | 2010-12-23 | Teresa Estela Perez | Bainitic steels with boron |
US10844669B2 (en) | 2009-11-24 | 2020-11-24 | Tenaris Connections B.V. | Threaded joint sealed to internal and external pressures |
US11952648B2 (en) | 2011-01-25 | 2024-04-09 | Tenaris Coiled Tubes, Llc | Method of forming and heat treating coiled tubing |
US9598746B2 (en) | 2011-02-07 | 2017-03-21 | Dalmine S.P.A. | High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance |
US8821653B2 (en) | 2011-02-07 | 2014-09-02 | Dalmine S.P.A. | Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance |
US8636856B2 (en) | 2011-02-18 | 2014-01-28 | Siderca S.A.I.C. | High strength steel having good toughness |
US8414715B2 (en) | 2011-02-18 | 2013-04-09 | Siderca S.A.I.C. | Method of making ultra high strength steel having good toughness |
US9188252B2 (en) | 2011-02-18 | 2015-11-17 | Siderca S.A.I.C. | Ultra high strength steel having good toughness |
US9222156B2 (en) | 2011-02-18 | 2015-12-29 | Siderca S.A.I.C. | High strength steel having good toughness |
RU2464327C1 (ru) * | 2011-07-27 | 2012-10-20 | ООО "Компания ИжТехМаш" | Способ изготовления трубы для технологических нужд нефтяных скважин |
US9340847B2 (en) | 2012-04-10 | 2016-05-17 | Tenaris Connections Limited | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same |
WO2013161567A1 (ja) * | 2012-04-27 | 2013-10-31 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
RU2500821C1 (ru) * | 2012-08-20 | 2013-12-10 | Кирилл Алексеевич Иванов | Способ термомеханической обработки трубы |
US9970242B2 (en) | 2013-01-11 | 2018-05-15 | Tenaris Connections B.V. | Galling resistant drill pipe tool joint and corresponding drill pipe |
US9187811B2 (en) | 2013-03-11 | 2015-11-17 | Tenaris Connections Limited | Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing |
US10378074B2 (en) | 2013-03-14 | 2019-08-13 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US11377704B2 (en) | 2013-03-14 | 2022-07-05 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US10378075B2 (en) | 2013-03-14 | 2019-08-13 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US9657365B2 (en) | 2013-04-08 | 2017-05-23 | Dalmine S.P.A. | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
US9644248B2 (en) | 2013-04-08 | 2017-05-09 | Dalmine S.P.A. | Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
US11105501B2 (en) | 2013-06-25 | 2021-08-31 | Tenaris Connections B.V. | High-chromium heat-resistant steel |
US12129533B2 (en) | 2015-04-14 | 2024-10-29 | Tenaris Connections B.V. | Ultra-fine grained steels having corrosion- fatigue resistance |
US20170101693A1 (en) * | 2015-10-07 | 2017-04-13 | Benteler Steel/Tube Gmbh | Seamless steel pipe, method of producing a high strength seamless steel pipe, usage of a seamless steel pipe and perforation gun |
US11085277B2 (en) * | 2015-10-07 | 2021-08-10 | Benteler Steel/Tube Gmbh | Seamless steel pipe, method of producing a high strength seamless steel pipe, usage of a seamless steel pipe and perforation gun |
WO2017149570A1 (ja) * | 2016-02-29 | 2017-09-08 | Jfeスチール株式会社 | 油井用低合金高強度継目無鋼管 |
US11111566B2 (en) | 2016-02-29 | 2021-09-07 | Jfe Steel Corporation | Low alloy high strength seamless steel pipe for oil country tubular goods |
JP6152928B1 (ja) * | 2016-02-29 | 2017-06-28 | Jfeスチール株式会社 | 油井用低合金高強度継目無鋼管 |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
US11833561B2 (en) | 2017-01-17 | 2023-12-05 | Forum Us, Inc. | Method of manufacturing a coiled tubing string |
WO2019023536A1 (en) * | 2017-07-27 | 2019-01-31 | Enventure Global Technology, Inc. | DILATABLE CONNECTION BY DISCHARGE |
Also Published As
Publication number | Publication date |
---|---|
AR066080A1 (es) | 2009-07-22 |
NO20093069L (no) | 2009-12-30 |
CA2682959A1 (en) | 2008-10-23 |
MX2007004600A (es) | 2008-12-01 |
BRPI0810005A2 (pt) | 2015-10-27 |
EP2143817A2 (en) | 2010-01-13 |
WO2008127084A4 (es) | 2009-03-19 |
WO2008127084A2 (es) | 2008-10-23 |
WO2008127084A3 (es) | 2008-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100193085A1 (en) | Seamless steel pipe for use as vertical work-over sections | |
JP4502011B2 (ja) | ラインパイプ用継目無鋼管とその製造方法 | |
US9340847B2 (en) | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same | |
US10240221B2 (en) | Stainless steel seamless pipe for oil well use and method for manufacturing the same | |
AU2012200698B2 (en) | Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance | |
JP6112267B1 (ja) | 継目無鋼管及びその製造方法 | |
EP2789701A1 (en) | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes | |
EP2479294A1 (en) | Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment | |
RU2533573C2 (ru) | Профилированная стальная проволока с высокими механическими характеристиками, стойкая к водородному охрупчиванию | |
US20160362759A1 (en) | Method for producing hot-rolled seamless pipes from transformable steel, in particular for pipelines for deep-water applications, and corresponding pipes | |
US20200032367A1 (en) | Cold Rolled Steel Wire, Method and Reinforcement of Flexible Conduits | |
US8168008B2 (en) | Martensitic stainless steel pipe | |
EP3330398B1 (en) | Steel pipe for line pipe and method for manufacturing same | |
JP6642715B2 (ja) | 高強度継目無鋼管及びライザー | |
CN107723598A (zh) | 一种改善疲劳性能的耐硫化氢腐蚀油管及其生产方法 | |
US20130202908A1 (en) | Equipment for use in corrosive environments and methods for forming thereof | |
Sutter et al. | Development of drill pipes for sour service |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TUBOS DE ACERO DE MEXICO, S.A., MEXICO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IZQUIERDO GARCIA, ALFONZO;QUINTANILLA CARMONA, HECTOR MANUEL;REEL/FRAME:024182/0882 Effective date: 20100325 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |