US20100105789A1 - Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins - Google Patents
Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins Download PDFInfo
- Publication number
- US20100105789A1 US20100105789A1 US12/532,238 US53223808A US2010105789A1 US 20100105789 A1 US20100105789 A1 US 20100105789A1 US 53223808 A US53223808 A US 53223808A US 2010105789 A1 US2010105789 A1 US 2010105789A1
- Authority
- US
- United States
- Prior art keywords
- blowing agent
- agent composition
- hfc
- mixtures
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/149—Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/16—Unsaturated hydrocarbons
- C08J2203/162—Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/182—Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/20—Ternary blends of expanding agents
- C08J2203/202—Ternary blends of expanding agents of physical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/05—Open cells, i.e. more than 50% of the pores are open
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
Definitions
- the present invention relates to blowing agent compositions comprising (1) at least one hydrofluoroolefin (HFO) and (2) at least one hydrochlorofluoroolefin (HCFO) used in the preparation of foamable thermoplastic compositions.
- HFOs of component (1) include, but are not limited too, 3,3,3-trifluoropropene (HFO-1243zf), 1,2,3,3,3-pentafluoropropene (HFO-1225ye), cis- and/or trans-1,3,3,3-tetrafluoropropene (HFO-1234ze), and 2,3,3,3-tetrafluoropropene (HFO 1234yf), and mixtures thereof.
- the HCFOs of component (2) include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), dichlorofluorinated propenes, and mixtures thereof.
- the blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
- HFC hydrofluorocarbons
- CFCs chlorofluorocarbons
- HCFCs hydrochlorofluorocarbons
- Hydrofloroolefins such as HFO-1243zf, (cis/trans)-HFO-1234ze, HFO-1234yf, and (E/Z)-HFO-1225ye, have been identified as potential low GWP blowing agents for the production of thermoplastic foams, including extruded polystyrene foams for thermal insulation.
- blowing agent compositions comprising at least one hydrofluorolefin with at least one hydrochlorofluoroolefin can permit the production of lower density, closed-cell foam with good k-factor which will be particularly useful for thermal insulating foams.
- This invention may also permit the production of low density, closed-cell foams with enlarged, controlled cell size.
- blowing agents comprising halogenated alkenes of generic formula that would include numerous HFOs and HCFOs, among many other materials including brominated and iodinated compounds.
- the specific combination of HFOs with HCFOs in blowing agent compositions is not disclosed.
- Specific examples are shown for blowing agent compositions for foaming polystyrene comprising HFOs, specifically HFO-1234ze and HFO-1234yf, either alone or in combination with an HFC, and blowing agent compositions for PUR foaming comprising HCFO-1233zd. No examples of blowing agents combinations comprising HFOs and HCFOs are disclosed.
- GB 950,876 discloses a process for the production of polyurethane foams. It discloses that any suitable halogenated saturated or unsaturated hydrocarbon having a boiling point below 150° C., preferably below 50° C., can be used as the blowing agent. Trichlorofluoroethene, chlorotrifluoroethene, and 1,1-dichloro-2,2-difluoroethene are disclosed in a list of suitable blowing agents along with 3,3,3-trifluoropropene. Hydrochlorofluoropropenes are not specifically disclosed nor are longer chain HCFOs nor other HFOs besides 3,3,3-trifluoropropene. There is no disclosure related to blowing agents for thermoplastic foaming, nor are the benefits of HCFOs in thermoplastic foaming mentioned, nor are the benefits of blowing agent combinations comprising HCFOs and HFOs.
- CA 2016328 discloses a process for preparing closed-cell, polyisocyanate foam.
- organic compound blowing agents including halogenated alkanes and alkenes, where the alkene is propylene, and the halogenated hydrocarbons can be chlorofluorocarbons.
- Hydrochlorofluoropropenes are not specifically disclosed nor are longer chain HCFOs.
- blowing agents for thermoplastic foaming nor are the benefits of HCFOs in thermoplastic foaming mentioned, nor are the benefits of blowing agent combinations comprising HCFOs and HFOs.
- the present invention relates to the use of blowing agents with negligible ozone-depletion and low GWP comprising (1) at least one hydrofluoroolefin (HFO) and (2) at least on hydrochlorofluoroolefin (HCFO).
- HFO hydrofluoroolefin
- HCFO hydrochlorofluoroolefin
- the HFO in component (1) is 3,3,3-trifluoropropene (HFO-1243zf); (cis and/or trans)-1,3,3,3-tetrafluoropropene (HFO-1234ze), particularly the trans isomer; 2,3,3,3-tetrafluoropropene (HFO-1234yf); (cis and/or trans)-1,2,3,3,3-pentafluoropropene (HFO-1225ye) and mixtures thereof.
- HFO-1243zf 3,3,3-trifluoropropene
- HFO-1234ze 1,3,3,3-tetrafluoropropene
- HFO-1234yf 2,3,3,3-tetrafluoropropene
- HFO-1225ye 1,2,3,3,3-pentafluoropropene
- the HCFO of component (2) is preferably (cis and/or trans)-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), particularly the trans isomer, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1,1-dicloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoropropene, and mixtures thereof.
- Another embodiment of this invention are foamable resin compositions containing greater than about 1 parts per hundred (pph) and less than about 100 pph of the blowing agent composition with respect to resin, preferably greater than about 2 pph and less than about 40 pph, more preferably greater than about 3 pph and less than about 25 pph, and even more preferably greater than about 4 pph and less than about 15 pph of the blowing agent composition with respect to resin.
- the process for preparing a foamed thermoplastic product is as follows: Prepare a foamable polymer composition by blending together components comprising foamable polymer composition in any order. Typically, prepare a foamable polymer composition by plasticizing a polymer resin and then blending in components of a blowing agent composition at an initial pressure.
- a common process of plasticizing a polymer resin is heat plasticization, which involves heating a polymer resin enough to soften it sufficiently to blend in a blowing agent composition.
- heat plasticization involves heating a thermoplastic polymer resin near or above its glass transition temperature (Tg), or melt temperature (Tm) for crystalline polymers.
- a foamable polymer composition can contain additional additives such as nucleating agents, cell-controlling agents, dyes, pigments, fillers, antioxidants, extrusion aids, stabilizing agents, antistatic agents, fire retardants, IR attenuating agents and thermally insulating additives.
- Nucleating agents include, among others, materials such as talc, calcium carbonate, sodium benzoate, and chemical blowing agents such azodicarbonamide or sodium bicarbonate and citric acid.
- IR attenuating agents and thermally insulating additives can include carbon black, graphite, silicon dioxide, metal flake or powder, among others.
- Flame retardants can include, among others, brominated materials such as hexabromocyclodecane and polybrominated biphenyl ether.
- Foam preparation processes of the present invention include batch, semi-batch, and continuous processes. Batch processes involve preparation of at least one portion of the foamable polymer composition in a storable state and then using that portion of foamable polymer composition at some future point in time to prepare a foam.
- a semi-batch process involves preparing at least a portion of a foamable polymer composition and intermittently expanding that foamable polymer composition into a foam all in a single process.
- U.S. Pat. No. 4,323,528, herein incorporated by reference discloses a process for making polyolefin foams via an accumulating extrusion process.
- the process comprises: 1) mixing a thermoplastic material and a blowing agent composition to form a foamable polymer composition; 2) extruding the foamable polymer composition into a holding zone maintained at a temperature and pressure which does not allow the foamable polymer composition to foam; the holding zone has a die defining an orifice opening into a zone of lower pressure at which the foamable polymer composition foams and an openable gate closing the die orifice; 3) periodically opening the gate while substantially concurrently applying mechanical pressure by means of a movable ram on the foamable polymer composition to eject it from the holding zone through the die orifice into the zone of lower pressure, and 4) allowing the ejected foamable polymer composition to expand to form the foam.
- a continuous process involves forming a foamable polymer composition and then expanding that foamable polymer composition in a non-stop manner.
- prepare a foamable polymer composition in an extruder by heating a polymer resin to form a molten resin, blending into the molten resin a blowing agent composition at an initial pressure to form a foamable polymer composition, and then extruding that foamable polymer composition through a die into a zone at a foaming pressure and allowing the foamable polymer composition to expand into a foam.
- cool the foamable polymer composition after addition of the blowing agent and prior to extruding through the die in order to optimize foam properties. Cool the foamable polymer composition, for example, with heat exchangers.
- Foams of the present invention can be of any form imaginable including sheet, plank, rod, tube, beads, or any combination thereof. Included in the present invention are laminate foams that comprise multiple distinguishable longitudinal foam members that are bound to one another.
- a 15m long, 0.53 mm diameter GC capillary-column was prepared with a 3 micron thick polystyrene internal film coating.
- the column was installed into a Hewlet Packard 5890 Series II Gas Chromatograph with flame ionizer detector. Elution profiles for gases being tested were analyzed according the method outlined in the reference, using methane as the reference gas. The results give the diffusion coefficient of the gas through the polymer, Dp, and the solubility of the gas in the polymer in terms of the partition coefficient, K, which is the ratio of the concentration of the gas in the polymer phase to the concentration in the vapor phase. As such, the greater the value of K for a particular gas in the resin the greater its solubility in that resin.
- Table 1 shows the partition coefficient and diffusivity values for several gases in polystyrene at 140° C. Comparative examples 1 and 2 show the solubility and diffusivity of two well studied blowing agents in polystyrene: HCFC-142b (1-chloro-1,1-difluoroethane) and HFC-134a (1,1,1,2-tetrafluoroethane).
- Examples 3-6 show the solubility and diffusivity of selected HFOs in polystyrene: HFO-1243zf (3,3,3-trifluoropropene), HFO-1234ze (1,3,3,3-tetrafluoropropene), HFO-1234yf (2,3,3,3-tetrafluoropropene), HFO-1225ye (1,2,3,3,3-pentafluoropropene).
- Examples 7 and 8 show the solubility and diffusivity of trans-HCFO-1233zd (1-chloro-3,3,3-trifluoropropene) and HCFO-1233xf (2-chloro-3,3,3-trifluoropropene),
- the good solubility and favorable diffusivity of the HCFOs in polystyrene indicate that they should be effective coblowing agents and/or processing aids for the production of thermoplastic foams using HFO blowing agents.
- the solubility of the HCFOs in polystyrene is sufficient to provide useful plasticization of the thermoplastic resin to assist in foaming.
- HCFO-1233xf has a solubility in polystyrene comparable to that of HCFC-142b.
- Extruded polystyrene foam was produced using a counter-rotating twin screw extruder with internal barrel diameters or 27 mm and a barrel length of 40 diameters.
- the screw design was suitable for foaming applications.
- the pressure in the extruder barrel was controlled with the gear pump and was set high enough such that the blowing agent dissolved in the extruder.
- the extruder die for examples 10-18 was an adjustable-lip slot die with a gap width of 6.35 mm. For example 1, the die was a 2 mm diameter strand die with a 1 mm land length.
- Two grades of general purpose polystyrene were used for the extrusion trials and fed to the extruder at rates of either 2.27 or 4.54 kg/hr (5 or 10 lb/hr).
- Blowing agents were pumped into the polystyrene resin melt at a controlled rate using high pressure delivery pumps.
- the blowing agent is mixed and dissolved in the resin melt to produce an expandable resin composition.
- the expandable resin composition is cooled to an appropriate foaming temperature and then extruded from the die where the drop in pressure initiates foaming.
- Talc was used as a nucleating agent and was pre-blended with polystyrene to make a masterbatch of 50 wt % talc in polystyrene. Beads of this masterbatch were mixed with polystyrene pellets to achieve 0.5 wt % talc in each experiment.
- the density, open cell content, and cell size was measured for foam samples collected during each run. Density was measured according to ASTM D792, open cell content was measured using gas pychnometry according to ASTM D285-C, and cell size was measured by averaging the cell diameters from scanning electron microscope (SEM) micrographs of foam sample fracture surfaces. SEM images are also used to observe the cell structure and qualitatively check for open cell content.
- SEM scanning electron microscope
- Table 2 shows data for examples 9 through 14, including the loading of each blowing agent in the formulation, the resin feed rate, melt flow index of the resin, the expandable resin melt temperature, and the density, cell size, and open cell content of the resulting foamed product.
- Comparative example 9 is typical for polystyrene foaming with HFC-134a, where the poor solubility and difficulties in processing tend to lead to higher density foam with smaller size and more open cells.
- Comparative examples 10 through 12 show results for foaming with 3,3,3-trifluoropene (HFO-1243zf; TFP). At a loading of 8.5 wt % TFP the resulting foam had smaller cell size while comparative density to examples 10 and 11.
- blowing agent compositions of TFP (HFO-1243zf) and HCFO-1233zd permitted production of lower density foam than achievable with TFP alone along with a beneficial enlargement in the cell size, where it was possible to produce closed-cell foam product with cell sizes greater than 0.2 mm at densities less than 53 kg/m 3 . These foams would be useful as thermal insulating foams with improved k-factor.
- the HCFO-1233zd was predominantly the trans-isomer.
- Examples 15 and 16 were produced during using HFO-1234yf (2,3,3,3-tetrafluoroethane) as the only blowing agent.
- HFO-1234yf (2,3,3,3-tetrafluoroethane)
- the foamed product had very small cell size, macrovoids, blowholes, high open cell content, and frequent periods of popping at the die caused by undissolved blowing agent. Increasing the content of 1234yf made these problems worse.
- blowing agent compositions of HFO-1234yf and HCFO-1233zd permitted production of lower density foam than was produced using the HFO-1234yf alone.
- the foamed samples of examples 17 and 18 were of good quality, with few defects and produced without popping at the die.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
The present invention relates to blowing agent compositions comprising (1) at least one hydrofluoroolefin (HFO) and (2) at least one hydrochlorofluoroolefin (HCFO) used in the preparation of foamable thermoplastic compositions. The HFOs of component (1) include, but are not limited too, 3,3,3-trifluoropropene (HFO-1243zf), 1,2,3,3,3-pentafluoropropene (HFO-1225ye), cis- and/or trans-1,3,3,3-tetrafluoropropene (HFO-1234ze), and 2,3,3,3-tetrafluoropropene (HFO 1234yf), and mixtures thereof. The HCFOs of component (2) include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and mixtures thereof. The blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
Description
- The present invention relates to blowing agent compositions comprising (1) at least one hydrofluoroolefin (HFO) and (2) at least one hydrochlorofluoroolefin (HCFO) used in the preparation of foamable thermoplastic compositions. The HFOs of component (1) include, but are not limited too, 3,3,3-trifluoropropene (HFO-1243zf), 1,2,3,3,3-pentafluoropropene (HFO-1225ye), cis- and/or trans-1,3,3,3-tetrafluoropropene (HFO-1234ze), and 2,3,3,3-tetrafluoropropene (HFO 1234yf), and mixtures thereof. The HCFOs of component (2) include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), dichlorofluorinated propenes, and mixtures thereof. The blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
- With the continued concern over global climate change there is an increasing need to develop technologies to replace those with high ozone depletion potential (ODP) and high global warming potential (GWP). Though hydrofluorocarbons (HFC), being non-ozone depleting compounds, have been identified as alternative blowing agents to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) in the production of thermoplastic foams, they still tend to have significant GWP.
- Hydrofloroolefins, such as HFO-1243zf, (cis/trans)-HFO-1234ze, HFO-1234yf, and (E/Z)-HFO-1225ye, have been identified as potential low GWP blowing agents for the production of thermoplastic foams, including extruded polystyrene foams for thermal insulation.
- It was discovered that blowing agent compositions comprising at least one hydrofluorolefin with at least one hydrochlorofluoroolefin can permit the production of lower density, closed-cell foam with good k-factor which will be particularly useful for thermal insulating foams. This invention may also permit the production of low density, closed-cell foams with enlarged, controlled cell size.
- WO 2004/037913, WO 2007/002703, and US Pat. Publication 2004/119047 disclose blowing agents comprising halogenated alkenes of generic formula that would include numerous HFOs and HCFOs, among many other materials including brominated and iodinated compounds. The specific combination of HFOs with HCFOs in blowing agent compositions is not disclosed. Specific examples are shown for blowing agent compositions for foaming polystyrene comprising HFOs, specifically HFO-1234ze and HFO-1234yf, either alone or in combination with an HFC, and blowing agent compositions for PUR foaming comprising HCFO-1233zd. No examples of blowing agents combinations comprising HFOs and HCFOs are disclosed.
- GB 950,876 discloses a process for the production of polyurethane foams. It discloses that any suitable halogenated saturated or unsaturated hydrocarbon having a boiling point below 150° C., preferably below 50° C., can be used as the blowing agent. Trichlorofluoroethene, chlorotrifluoroethene, and 1,1-dichloro-2,2-difluoroethene are disclosed in a list of suitable blowing agents along with 3,3,3-trifluoropropene. Hydrochlorofluoropropenes are not specifically disclosed nor are longer chain HCFOs nor other HFOs besides 3,3,3-trifluoropropene. There is no disclosure related to blowing agents for thermoplastic foaming, nor are the benefits of HCFOs in thermoplastic foaming mentioned, nor are the benefits of blowing agent combinations comprising HCFOs and HFOs.
- CA 2016328 discloses a process for preparing closed-cell, polyisocyanate foam. Disclosed are organic compound blowing agents including halogenated alkanes and alkenes, where the alkene is propylene, and the halogenated hydrocarbons can be chlorofluorocarbons. Among the many exemplary compounds listed are specific chlorofluoroethylenes containing 1 chlorine and from 1 to 3 fluorines along with specific pentafluoropropene, tetrafluoropropene, and difluoropropene. Hydrochlorofluoropropenes are not specifically disclosed nor are longer chain HCFOs. There is no disclosure related to blowing agents for thermoplastic foaming, nor are the benefits of HCFOs in thermoplastic foaming mentioned, nor are the benefits of blowing agent combinations comprising HCFOs and HFOs.
- The present invention relates to the use of blowing agents with negligible ozone-depletion and low GWP comprising (1) at least one hydrofluoroolefin (HFO) and (2) at least on hydrochlorofluoroolefin (HCFO). The present invention discloses blowing agent and foamable resin compositions useful for the production of foams with decreased density and improved k-factor that can be used as insulating foams. In a preferred embodiment of this invention the HFO in component (1) is 3,3,3-trifluoropropene (HFO-1243zf); (cis and/or trans)-1,3,3,3-tetrafluoropropene (HFO-1234ze), particularly the trans isomer; 2,3,3,3-tetrafluoropropene (HFO-1234yf); (cis and/or trans)-1,2,3,3,3-pentafluoropropene (HFO-1225ye) and mixtures thereof. The HCFO of component (2) is preferably (cis and/or trans)-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), particularly the trans isomer, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1,1-dicloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoropropene, and mixtures thereof.
- Another embodiment of this invention are foamable resin compositions containing greater than about 1 parts per hundred (pph) and less than about 100 pph of the blowing agent composition with respect to resin, preferably greater than about 2 pph and less than about 40 pph, more preferably greater than about 3 pph and less than about 25 pph, and even more preferably greater than about 4 pph and less than about 15 pph of the blowing agent composition with respect to resin.
- The process for preparing a foamed thermoplastic product is as follows: Prepare a foamable polymer composition by blending together components comprising foamable polymer composition in any order. Typically, prepare a foamable polymer composition by plasticizing a polymer resin and then blending in components of a blowing agent composition at an initial pressure. A common process of plasticizing a polymer resin is heat plasticization, which involves heating a polymer resin enough to soften it sufficiently to blend in a blowing agent composition. Generally, heat plasticization involves heating a thermoplastic polymer resin near or above its glass transition temperature (Tg), or melt temperature (Tm) for crystalline polymers.
- A foamable polymer composition can contain additional additives such as nucleating agents, cell-controlling agents, dyes, pigments, fillers, antioxidants, extrusion aids, stabilizing agents, antistatic agents, fire retardants, IR attenuating agents and thermally insulating additives. Nucleating agents include, among others, materials such as talc, calcium carbonate, sodium benzoate, and chemical blowing agents such azodicarbonamide or sodium bicarbonate and citric acid. IR attenuating agents and thermally insulating additives can include carbon black, graphite, silicon dioxide, metal flake or powder, among others. Flame retardants can include, among others, brominated materials such as hexabromocyclodecane and polybrominated biphenyl ether.
- Foam preparation processes of the present invention include batch, semi-batch, and continuous processes. Batch processes involve preparation of at least one portion of the foamable polymer composition in a storable state and then using that portion of foamable polymer composition at some future point in time to prepare a foam.
- A semi-batch process involves preparing at least a portion of a foamable polymer composition and intermittently expanding that foamable polymer composition into a foam all in a single process. For example, U.S. Pat. No. 4,323,528, herein incorporated by reference, discloses a process for making polyolefin foams via an accumulating extrusion process. The process comprises: 1) mixing a thermoplastic material and a blowing agent composition to form a foamable polymer composition; 2) extruding the foamable polymer composition into a holding zone maintained at a temperature and pressure which does not allow the foamable polymer composition to foam; the holding zone has a die defining an orifice opening into a zone of lower pressure at which the foamable polymer composition foams and an openable gate closing the die orifice; 3) periodically opening the gate while substantially concurrently applying mechanical pressure by means of a movable ram on the foamable polymer composition to eject it from the holding zone through the die orifice into the zone of lower pressure, and 4) allowing the ejected foamable polymer composition to expand to form the foam.
- A continuous process involves forming a foamable polymer composition and then expanding that foamable polymer composition in a non-stop manner. For example, prepare a foamable polymer composition in an extruder by heating a polymer resin to form a molten resin, blending into the molten resin a blowing agent composition at an initial pressure to form a foamable polymer composition, and then extruding that foamable polymer composition through a die into a zone at a foaming pressure and allowing the foamable polymer composition to expand into a foam. Desirably, cool the foamable polymer composition after addition of the blowing agent and prior to extruding through the die in order to optimize foam properties. Cool the foamable polymer composition, for example, with heat exchangers.
- Foams of the present invention can be of any form imaginable including sheet, plank, rod, tube, beads, or any combination thereof. Included in the present invention are laminate foams that comprise multiple distinguishable longitudinal foam members that are bound to one another.
- The solubility and diffusivity of gases in polystyrene resin was measured using capillary column inverse gas chromatography (cc-IGC) as described in: Hadj Romdhane, Ilyess (1994) “Polymer-Solvent Diffusion and Equilibrium Parameters by Inverse Gas-Liquid Chromatography” PhD Dissertation, Dept. of Chem. Eng., Penn State University. and Hong S U, Albouy A, Duda J L (1999) “Measurement and Prediction of Blowing Agent Solubility in Polystyrene at Supercritical Conditions” Cell Polym 18(5):301-313.
- A 15m long, 0.53 mm diameter GC capillary-column was prepared with a 3 micron thick polystyrene internal film coating. The column was installed into a Hewlet Packard 5890 Series II Gas Chromatograph with flame ionizer detector. Elution profiles for gases being tested were analyzed according the method outlined in the reference, using methane as the reference gas. The results give the diffusion coefficient of the gas through the polymer, Dp, and the solubility of the gas in the polymer in terms of the partition coefficient, K, which is the ratio of the concentration of the gas in the polymer phase to the concentration in the vapor phase. As such, the greater the value of K for a particular gas in the resin the greater its solubility in that resin.
- Table 1 shows the partition coefficient and diffusivity values for several gases in polystyrene at 140° C. Comparative examples 1 and 2 show the solubility and diffusivity of two well studied blowing agents in polystyrene: HCFC-142b (1-chloro-1,1-difluoroethane) and HFC-134a (1,1,1,2-tetrafluoroethane). Examples 3-6 show the solubility and diffusivity of selected HFOs in polystyrene: HFO-1243zf (3,3,3-trifluoropropene), HFO-1234ze (1,3,3,3-tetrafluoropropene), HFO-1234yf (2,3,3,3-tetrafluoropropene), HFO-1225ye (1,2,3,3,3-pentafluoropropene). Examples 7 and 8 show the solubility and diffusivity of trans-HCFO-1233zd (1-chloro-3,3,3-trifluoropropene) and HCFO-1233xf (2-chloro-3,3,3-trifluoropropene),
- The good solubility and favorable diffusivity of the HCFOs in polystyrene indicate that they should be effective coblowing agents and/or processing aids for the production of thermoplastic foams using HFO blowing agents. The solubility of the HCFOs in polystyrene is sufficient to provide useful plasticization of the thermoplastic resin to assist in foaming. As can be seen, HCFO-1233xf has a solubility in polystyrene comparable to that of HCFC-142b.
-
TABLE 1 Partition Coefficient and Diffusivity of Gases in Polystyrene at 140° C. by Inverse Gas Chromatography Bp Mw Dp Example Gas (° C.) (g/mol) K (cm2/s) 1 HCFC-142b −9.8 100.49 1.249 2.61E−08 2 HFC-134a −26.1 102.02 0.397 3.40E−08 3 HFO-1243zf −22 96.05 0.544 2.95E−08 4 HFO-1234ze −16 114.04 0.423 3.09E−08 5 HFO-1225ye −18 132.03 0.312 2.44E−08 6 HFO-1234yf −28.5 114.04 0.275 >2E−08 7 HCFO-1233zd 20.5 130.5 2.326 1.72E−08 8 HCFO-1233xf 15 130.5 1.475 1.67E−08 - Extruded polystyrene foam was produced using a counter-rotating twin screw extruder with internal barrel diameters or 27 mm and a barrel length of 40 diameters. The screw design was suitable for foaming applications. The pressure in the extruder barrel was controlled with the gear pump and was set high enough such that the blowing agent dissolved in the extruder. The extruder die for examples 10-18 was an adjustable-lip slot die with a gap width of 6.35 mm. For example 1, the die was a 2 mm diameter strand die with a 1 mm land length. Two grades of general purpose polystyrene were used for the extrusion trials and fed to the extruder at rates of either 2.27 or 4.54 kg/hr (5 or 10 lb/hr). Blowing agents were pumped into the polystyrene resin melt at a controlled rate using high pressure delivery pumps. In the extruder, the blowing agent is mixed and dissolved in the resin melt to produce an expandable resin composition. The expandable resin composition is cooled to an appropriate foaming temperature and then extruded from the die where the drop in pressure initiates foaming. Talc was used as a nucleating agent and was pre-blended with polystyrene to make a masterbatch of 50 wt % talc in polystyrene. Beads of this masterbatch were mixed with polystyrene pellets to achieve 0.5 wt % talc in each experiment.
- The density, open cell content, and cell size was measured for foam samples collected during each run. Density was measured according to ASTM D792, open cell content was measured using gas pychnometry according to ASTM D285-C, and cell size was measured by averaging the cell diameters from scanning electron microscope (SEM) micrographs of foam sample fracture surfaces. SEM images are also used to observe the cell structure and qualitatively check for open cell content.
- Table 2 shows data for examples 9 through 14, including the loading of each blowing agent in the formulation, the resin feed rate, melt flow index of the resin, the expandable resin melt temperature, and the density, cell size, and open cell content of the resulting foamed product.
- Comparative example 9 is typical for polystyrene foaming with HFC-134a, where the poor solubility and difficulties in processing tend to lead to higher density foam with smaller size and more open cells.
- Comparative examples 10 through 12 show results for foaming with 3,3,3-trifluoropene (HFO-1243zf; TFP). At a loading of 8.5 wt % TFP the resulting foam had smaller cell size while comparative density to examples 10 and 11.
- In examples 13 and 14, blowing agent compositions of TFP (HFO-1243zf) and HCFO-1233zd permitted production of lower density foam than achievable with TFP alone along with a beneficial enlargement in the cell size, where it was possible to produce closed-cell foam product with cell sizes greater than 0.2 mm at densities less than 53 kg/m3. These foams would be useful as thermal insulating foams with improved k-factor. The HCFO-1233zd was predominantly the trans-isomer.
- Examples 15 and 16 were produced during using HFO-1234yf (2,3,3,3-tetrafluoroethane) as the only blowing agent. At a loading of 5.7 wt % 1234yf, as shown in example 16, the foamed product had very small cell size, macrovoids, blowholes, high open cell content, and frequent periods of popping at the die caused by undissolved blowing agent. Increasing the content of 1234yf made these problems worse. For examples 17 and 18, blowing agent compositions of HFO-1234yf and HCFO-1233zd permitted production of lower density foam than was produced using the HFO-1234yf alone. The foamed samples of examples 17 and 18 were of good quality, with few defects and produced without popping at the die.
-
TABLE 2 Blowing Agent Loading Polystyrene Resin Foam Properties 134a TFP 1234yf 1233zd Feed MFI Tmelt Density Cell Size OCC Example (wt %) (wt %) (wt %) (wt %) (kg/hr) (g/10 min) (° C.) (kg/m3) (mm) (%) 9 6.4 — — — 2.27 4.0 111 60.9 0.06 23 10 — 6.6 — — 2.27 11.0 114 57.6 0.11 <5 11 — 7.2 — — 2.27 11.0 115 56.5 0.11 <5 12 — 8.5 — — 4.54 4.0 117 58.0 0.05 <5 13 — 4.1 — 6.6 4.54 11.0 113 44.3 0.29 <5 14 — 6.5 — 3.4 4.54 11.0 113 52.5 0.35 <5 15 — — 4.4 — 4.54 11.0 117 90.9 0.15 5 16 — — 5.7 — 4.54 11.0 115 71.6 0.06 31.4 17 — — 4.2 4.3 4.54 11.0 114 55.2 0.12 <5 18 — — 4.8 5.0 4.54 11.0 113 53.5 0.08 <5 - Although the invention is illustrated and described herein with reference to specific embodiments, it is not intended that the appended claims be limited to the details shown. Rather, it is expected that various modifications may be made in these details by those skilled in the art, which modifications may still be within the spirit and scope of the claimed subject matter and it is intended that these claims be construed accordingly.
Claims (33)
1. A blowing agent composition for thermoplastic foaming comprising (1) at least one hydrofluoroolefin and (2) at least one hydrochlorofluoroolefin.
2. The blowing agent composition of claim 1 comprising about 2 wt % to about 90 wt % of said (2) at least one hydrochlorofluoroolefin.
3. The blowing agent composition of claim 1 comprising about 5 wt % to about 80 wt % of said (2) at least one hydrochlorofluoroolefin.
4. The blowing agent composition of claim 1 comprising about 10 wt % to about 70 wt % of said (2) at least one hydrochlorofluoroolefin.
5. The blowing agent composition of claim 1 comprising about 20 wt % to about 65 wt % of said (2) at least one hydrochlorofluoroolefin.
6. The blowing agent composition of claim 1 comprising about 30 wt % to about 60 wt % of said (2) at least one hydrochlorofluoroolefin.
7. The blowing agent composition of claim 1 further comprising a hydrofluorocarbon, alkane, carbon dioxide, methyl formate, inert gas, atmospheric gas, alcohol, ether, fluorinated ether, unsaturated fluorinated ether, ketone, fluoroketone, water, and mixtures thereof
8. The blowing agent composition of claim 1 wherein said hydrofluoroolefin is selected from C3 through C5 fluorinated alkene or mixtures thereof.
9. The blowing agent composition of claim 8 wherein said C3 through C5 fluorinated alkene is selected from trifluoropropene, tetrafluoropropene, pentafluoropropene, or mixtures thereof.
10. The bowing agent composition of claim 9 wherein said trifluoropropene is 3,3,3-trifluoropropene.
11. The blowing agent composition of claim 9 wherein said tetrafluoropropene is selected from cis-1,3,3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene, or mixtures thereof.
12. The blowing agent composition of claim 9 where the pentafluoropropene is E-1,2,3,3,3-pentafluoropropene, Z-1,2,3,3,3-pentafluoropropene, and mixtures thereof.
13. The blowing agent composition of claim 1 wherein said hydrochlorofluoroolefin contains three or more carbons atoms.
14. The blowing agent composition of claim 1 wherein said hydrochlorofluoroolefin is selected from 1-chloro-3,3,3-trifluoropropene, 2-chloro-3,3,3-trifluoropropene, 1,1-dichloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoropropene, or mixtures thereof.
15. The blowing agent composition of claim 14 where said 1-chloro-3,3,3-trifluoropropene comprises greater than 75% of the trans-isomer.
16. The blowing agent composition of claim 7 wherein said hydrofluorocarbon is selected from HFC-32, HFC-161, HFC-152, HFC-152a, HFC-143, HFC-143a, HFC-134, HFC-134a, HFC-125, HFC-245fa, HFC-365mfc, HFC-227ea, or mixtures thereof.
17. The blowing agent composition of claim 16 wherein said hydrofluorocarbon is selected from HFC-134a, HFC-152a, HFC-32, HFC-143a, HFC-245fa, or mixtures thereof.
18. The blowing agent composition of claim 7 wherein said alkane is selected from propane, butane, pentane, or hexane.
19. The blowing agent composition of claim 18 wherein said pentane is selected from n-pentane, cyclopentane, iso-pentane or mixtures thereof.
20. The blowing agent composition of claim 7 wherein said alcohol is selected from ethanol, iso-propanol, butanol, ethyl hexanol, methanol, or mixtures thereof.
21. The blowing agent composition of claim 7 wherein said ether is selected from dimethyl ether, diethyl ether, methylethyl ether, or mixtures thereof.
22. The blowing agent composition of claim 7 wherein said ketone is selected from acetone, methyl ethyl ketone, or mixtures thereof.
23. The blowing agent composition for thermoplastic foam of claim 1 wherein said thermoplastic is selected from polystyrene, polyethylene, polypropylene, or mixtures thereof.
24. A foamable resin composition comprising a thermoplastic resin and a blowing agent comprising (1) at least one hydrofluoroolefin and (2) at least one hydrochlorofiuoroolefin.
25. The foamable resin composition of claim 24 wherein said thermoplastic resin is selected from polystyrene, polyethylene, polypropylene, or mixtures thereof.
26. The foamable resin composition of claim 24 comprising less than about 100 pph of said blowing agent with respect to said thermoplastic resin.
27. The foamable resin composition of claim 24 comprising from about 1 pph to about 100 pph of said blowing agent with respect to said thermoplastic resin.
28. The foamable resin composition of claim 24 comprising from about 2 pph to about 40 pph of said blowing agent with respect to said thermoplastic resin.
29. The foamable resin composition of claim 24 comprising from about 3 pph to about 25 pph of said blowing agent with respect to said thermoplastic resin.
30. The foamable resin composition of claim 24 comprising from about 4 pph to about 15 pph of said blowing agent with respect to said thermoplastic resin.
31. The blowing agent composition of claim 1 further comprising dyes, pigments, cell-controlling agents, fillers, antioxidants, extrusion aids, stabilizing agents, antistatic agents, fire retardants, IR attenuating agents, thermally insulating additives, plasticizers, viscosity modifiers, impact modifiers, gas barrier resins, carbon black, surfactants, and mixtures thereof.
32. A foamed product produced using the blowing agent composition of claim 1
33. A process for producing the foamed product of claim 32 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/532,238 US20100105789A1 (en) | 2007-03-29 | 2008-03-28 | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90876207P | 2007-03-29 | 2007-03-29 | |
US12/532,238 US20100105789A1 (en) | 2007-03-29 | 2008-03-28 | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
PCT/US2008/058594 WO2008121778A1 (en) | 2007-03-29 | 2008-03-28 | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/058594 A-371-Of-International WO2008121778A1 (en) | 2007-03-29 | 2008-03-28 | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/914,711 Continuation-In-Part US8772364B2 (en) | 2007-03-29 | 2013-06-11 | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100105789A1 true US20100105789A1 (en) | 2010-04-29 |
Family
ID=39808675
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/532,238 Abandoned US20100105789A1 (en) | 2007-03-29 | 2008-03-28 | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
US12/532,207 Abandoned US20100112328A1 (en) | 2007-03-29 | 2008-03-28 | Hydrofluoropropene blowing agents for thermoplastics |
US12/532,253 Abandoned US20100113629A1 (en) | 2007-03-29 | 2008-03-28 | hydrofluoropropene blowing agents for thermoplastics |
US13/342,247 Active US8648123B2 (en) | 2007-03-29 | 2012-01-03 | Hydrofluoropropene blowing agents for thermoplastics |
US13/342,307 Abandoned US20120101177A1 (en) | 2007-03-29 | 2012-01-03 | Blowing agent compositions of hydrochlorofluoroolefins |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/532,207 Abandoned US20100112328A1 (en) | 2007-03-29 | 2008-03-28 | Hydrofluoropropene blowing agents for thermoplastics |
US12/532,253 Abandoned US20100113629A1 (en) | 2007-03-29 | 2008-03-28 | hydrofluoropropene blowing agents for thermoplastics |
US13/342,247 Active US8648123B2 (en) | 2007-03-29 | 2012-01-03 | Hydrofluoropropene blowing agents for thermoplastics |
US13/342,307 Abandoned US20120101177A1 (en) | 2007-03-29 | 2012-01-03 | Blowing agent compositions of hydrochlorofluoroolefins |
Country Status (9)
Country | Link |
---|---|
US (5) | US20100105789A1 (en) |
EP (3) | EP2129712B1 (en) |
JP (6) | JP5584114B2 (en) |
CN (4) | CN101652411B (en) |
AT (2) | ATE537209T1 (en) |
CA (3) | CA2681605A1 (en) |
ES (3) | ES2376290T5 (en) |
PL (3) | PL2129710T3 (en) |
WO (3) | WO2008121778A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100216904A1 (en) * | 2009-02-24 | 2010-08-26 | E. I. Du Pont De Nemours And Company | Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and at least one hydrofluoroolefin and their uses in the preparation of polyisocyanate-based foams |
US20110124758A1 (en) * | 2008-08-13 | 2011-05-26 | E.I. Du Pont De Nemours And Company | Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and hydrocarbon and their uses in the preparation of polyisocyanate-based foams |
US20110175015A1 (en) * | 2008-10-28 | 2011-07-21 | Honeywell International Inc. | Azeotrope-Like Compositions Comprising Trans-1-Chloro-3,3,3-Trifluoropropene |
US20120101177A1 (en) * | 2007-03-29 | 2012-04-26 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US20120128964A1 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US20120161063A1 (en) * | 2003-10-27 | 2012-06-28 | Honeywell International Inc. | Monochlorotrifluoropropene compounds and compositions and mehtods using same |
WO2014015315A1 (en) * | 2012-07-19 | 2014-01-23 | Honeywell International Inc. | Blowing agents for extruded polystyrene foam and extruded polystyrene foam and methods of foaming |
US8895635B2 (en) | 2007-03-29 | 2014-11-25 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US9206297B2 (en) | 2007-03-29 | 2015-12-08 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US9254468B2 (en) | 2008-03-07 | 2016-02-09 | Arkema Inc. | Stable formulated systems with chloro-3,3,3-trifluoropropene |
US20160347922A1 (en) * | 2015-05-29 | 2016-12-01 | Owens Corning Intellectual Capital, Llc | Extruded polystyrene foam |
US10053549B2 (en) | 2011-06-27 | 2018-08-21 | Owens Corning Intellectual Capital, Llc | Organic infrared attenuation agents |
US10301236B2 (en) | 2015-05-21 | 2019-05-28 | The Chemours Company Fc, Llc | Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase |
US10308778B2 (en) * | 2014-11-25 | 2019-06-04 | Crecimento Industrial Co., Ltd. | Preparation and application of dynamic non-wicking PU foam |
US10676581B2 (en) | 2013-03-15 | 2020-06-09 | Owens Corning Intellectual Capital, Llc | Processing aids for use in manufacture extruded polystyrene foams using low global warming potential blowing agents |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090253820A1 (en) * | 2006-03-21 | 2009-10-08 | Honeywell International Inc. | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
US9181410B2 (en) * | 2002-10-25 | 2015-11-10 | Honeywell International Inc. | Systems for efficient heating and/or cooling and having low climate change impact |
US9499729B2 (en) * | 2006-06-26 | 2016-11-22 | Honeywell International Inc. | Compositions and methods containing fluorine substituted olefins |
US20110037016A1 (en) * | 2003-10-27 | 2011-02-17 | Honeywell International Inc. | Fluoropropene compounds and compositions and methods using same |
US20110152392A1 (en) * | 2009-12-17 | 2011-06-23 | Honeywell International Inc. | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
TW201336906A (en) † | 2005-06-24 | 2013-09-16 | Honeywell Int Inc | Foaming agent and composition containing fluorine-substituted olefin, and foaming method |
US8333901B2 (en) | 2007-10-12 | 2012-12-18 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2009047542A1 (en) * | 2007-10-12 | 2009-04-16 | Ineos Fluor Holdings Limited | Heat transfer compositions |
US8512591B2 (en) | 2007-10-12 | 2013-08-20 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
GB201002625D0 (en) | 2010-02-16 | 2010-03-31 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
US8628681B2 (en) | 2007-10-12 | 2014-01-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
KR101656109B1 (en) | 2008-05-07 | 2016-09-08 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene |
US9340758B2 (en) * | 2008-05-12 | 2016-05-17 | Arkema Inc. | Compositions of hydrochlorofluoroolefins |
FR2937328B1 (en) | 2008-10-16 | 2010-11-12 | Arkema France | HEAT TRANSFER METHOD |
US9926244B2 (en) | 2008-10-28 | 2018-03-27 | Honeywell International Inc. | Process for drying HCFO-1233zd |
US9150768B2 (en) * | 2008-10-28 | 2015-10-06 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8163196B2 (en) * | 2008-10-28 | 2012-04-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8703006B2 (en) | 2008-10-28 | 2014-04-22 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
KR20110099702A (en) * | 2008-12-02 | 2011-09-08 | 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. | Heat transfer compositions |
CN102292408A (en) * | 2009-01-22 | 2011-12-21 | 阿科玛股份有限公司 | Azeotrope and azeotrope-like compositions of e-1-chloro-3,3,3-trifluoropropene and isopropanol |
EP2391691A4 (en) * | 2009-01-29 | 2013-09-18 | Arkema Inc | Tetrafluoropropene based blowing agent compositions |
DE102009028061A1 (en) | 2009-07-29 | 2011-02-10 | Evonik Goldschmidt Gmbh | Process for the production of polyurethane foam |
US9217100B2 (en) | 2009-09-16 | 2015-12-22 | The Chemours Company Fc, Llc | Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein |
WO2011038081A1 (en) * | 2009-09-25 | 2011-03-31 | Arkema Inc. | Biodegradable foams with improved dimensional stability |
US8846754B2 (en) * | 2009-12-16 | 2014-09-30 | Honeywell International Inc. | Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene |
US20110144216A1 (en) * | 2009-12-16 | 2011-06-16 | Honeywell International Inc. | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
CN105062427A (en) | 2009-12-22 | 2015-11-18 | 纳幕尔杜邦公司 | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrachloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
AU2015201437B2 (en) * | 2009-12-22 | 2016-09-08 | The Chemours Company Fc, Llc. | Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrachloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane |
GB201002622D0 (en) | 2010-02-16 | 2010-03-31 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
US9045386B2 (en) * | 2010-02-18 | 2015-06-02 | Honeywell International Inc. | Integrated process and methods of producing (E)-1-chloro-3,3,3-trifluoropropene |
FR2957350B1 (en) * | 2010-03-09 | 2013-06-14 | Arkema France | EXPANSION AGENT COMPOSITIONS BASED ON HYDROCHLOROFLUOROOLEFIN |
DE102010011966A1 (en) | 2010-03-18 | 2011-09-22 | Jacken Insulation Gmbh | Extrusion of foamed plates made of polystyrene, comprises mixing the molten polystyrene in an extruder, so that the molten polystyrene causes a foaming of the melt after discharging the melt from the extruder |
US8821749B2 (en) * | 2010-04-26 | 2014-09-02 | E I Du Pont De Nemours And Company | Azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene |
US8808570B2 (en) | 2010-05-20 | 2014-08-19 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
CA2799836C (en) | 2010-05-20 | 2015-11-24 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
GB2481443B (en) | 2010-06-25 | 2012-10-17 | Mexichem Amanco Holding Sa | Heat transfer compositions |
US20120043492A1 (en) * | 2010-08-17 | 2012-02-23 | Honeywell International Inc. | Compositions Containing 1-Chloro-3,3,3 Trifluoropropene And 1-Fluoro-1,1 Dichloroethane |
US9145480B2 (en) * | 2010-10-28 | 2015-09-29 | Honeywell International Inc. | Mixtures containing 1,1,1,3,3,3-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene |
US8680168B2 (en) | 2010-11-17 | 2014-03-25 | Fomo Products, Inc. | Method for filling wall cavities with expanding foam insulation |
FR2968009B1 (en) | 2010-11-25 | 2012-11-16 | Arkema France | REFRIGERANT FLUIDS CONTAINING (E) -1,1,1,4,4,4-HEXAFLUOROBUT-2-ENE |
WO2012069867A1 (en) | 2010-11-25 | 2012-05-31 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
FR2968310B1 (en) * | 2010-12-03 | 2012-12-07 | Arkema France | COMPOSITIONS BASED ON 1,1,1,4,4,4-HEXAFLUOROBUT-2-ENE AND 3,3,4,4,4-PENTAFLUOROBUT-1-ENE |
FR2977256B1 (en) | 2011-07-01 | 2013-06-21 | Arkema France | COMPOSITIONS OF 2,4,4,4-TETRAFLUOROBUT-1-ENE AND CIS-1,1,1,4,4,4-HEXAFLUOROBUT-2-ENE |
US9896558B2 (en) | 2011-08-01 | 2018-02-20 | Basf Se | HFO/water-blown rigid foam systems |
JP6085299B2 (en) | 2011-08-01 | 2017-02-22 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Rigid foam system foamed with HFO / water |
US9485986B2 (en) * | 2011-08-24 | 2016-11-08 | Honeywell International Inc. | Evaporation operative materials having low environmental impact |
CN102504324B (en) * | 2011-10-13 | 2013-10-30 | 南京红宝丽股份有限公司 | Physical foaming agent and rigid polyurethane foam plastic prepared by same |
EP2794806A4 (en) * | 2011-12-22 | 2015-10-14 | Honeywell Int Inc | Azeotrope-like compositions including cis-1-chloro-3,3,3-trifluoropropene |
US8772213B2 (en) * | 2011-12-22 | 2014-07-08 | Honeywell International Inc. | Solvent compositions including trans-1-chloro-3,3,3-trifluoropropene and uses thereof |
FR2989084B1 (en) | 2012-04-04 | 2015-04-10 | Arkema France | COMPOSITIONS BASED ON 2,3,3,4,4,4-HEXAFLUOROBUT-1-ENE |
MX2014015184A (en) * | 2012-06-19 | 2015-02-17 | Du Pont | Refrigerant mixtures comprising tetrafluoropropenes and tetrafluoroethane and uses thereof. |
EP2706086A1 (en) | 2012-09-05 | 2014-03-12 | Basf Se | Method for manufacturing low density foam panels through the extrusion of styrol polymers using hydrofluoro-olefins as propellant |
FR3003566B1 (en) | 2013-03-20 | 2018-07-06 | Arkema France | COMPOSITION COMPRISING HF AND E-3,3,3-TRIFLUORO-1-CHLOROPROPENE |
US9234123B2 (en) * | 2013-03-21 | 2016-01-12 | Hsi Fire & Safety Group, Llc | Compositions for totally non-flammable aerosol dusters |
EP3046958A1 (en) | 2013-09-19 | 2016-07-27 | Dow Global Technologies LLC | Vacuum assisted process to make closed cell rigid polyurethane foams using mixed blowing agents |
CN106414573B (en) * | 2014-01-24 | 2020-03-17 | 旭化成建材株式会社 | Phenolic resin foam and method for producing same |
US10330364B2 (en) | 2014-06-26 | 2019-06-25 | Hudson Technologies, Inc. | System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant |
ES2974804T3 (en) * | 2014-07-16 | 2024-07-01 | Owens Corning Intellectual Capital Llc | Non-VOC processing aids for use in foam manufacturing using low global warming potential foaming agents |
CN104262670A (en) * | 2014-09-17 | 2015-01-07 | 合肥华凌股份有限公司 | Foaming agent composition, polyurethane foam and manufacturing method thereof |
CN105647040A (en) * | 2014-11-10 | 2016-06-08 | 天津麦索节能科技有限公司 | Formula for XPS plate with foam pore structure and preparation process thereof |
EP3253844B1 (en) | 2015-02-06 | 2022-06-22 | The Chemours Company FC, LLC | Compositions comprising z-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof |
CN106188615A (en) * | 2015-05-04 | 2016-12-07 | 青岛海尔特种电冰柜有限公司 | Triple combination foaming agent, hard polyurethane foam and manufacture method thereof |
CN105017553A (en) * | 2015-07-14 | 2015-11-04 | 关志强 | Foaming agent for thermal insulation polyurethane plastic |
JP6599749B2 (en) * | 2015-12-14 | 2019-10-30 | 三井・ケマーズ フロロプロダクツ株式会社 | Azeotrope-like composition |
JP6722753B2 (en) * | 2016-02-16 | 2020-07-15 | 株式会社カネカ | Styrenic resin extruded foam and method for producing the same |
JP6923546B2 (en) * | 2016-02-29 | 2021-08-18 | ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー | Refrigerant mixtures containing difluoromethane, pentafluoroethane, tetrafluoroethane, tetrafluoropropene, and carbon dioxide, and their use |
DE102016004168A1 (en) | 2016-04-11 | 2017-10-12 | Jackson lnsulation GmbH | Sheets of plastic foam with foil coating |
ES3004011T3 (en) * | 2016-05-06 | 2025-03-11 | Chemours Co Fc Llc | Z-hfo-1336mzz blowing agent for foaming thermoplastic polymer comprising polystyrene |
CA3021727C (en) * | 2016-05-06 | 2023-03-28 | The Chemours Company Fc, Llc | Blowing agents for foaming thermoplastic polymer comprising polystyrene |
FR3056222B1 (en) | 2016-09-19 | 2020-01-10 | Arkema France | COMPOSITION BASED ON 1-CHLORO-3,3,3-TRIFLUOROPROPENE |
JP6908699B2 (en) * | 2016-10-21 | 2021-07-28 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Concentrated shampoo containing hydrofluoroolefin or hydrochlorofluoroolefin to deliver the characteristic advantages of composition and foam dose |
JP2018100352A (en) * | 2016-12-21 | 2018-06-28 | 株式会社カネカ | Styrenic resin extrusion foam and method for producing the same |
EP3601394A1 (en) | 2017-03-24 | 2020-02-05 | INVISTA Textiles (U.K.) Limited | Polyol compositions for foam insulation |
WO2018236477A2 (en) * | 2017-05-08 | 2018-12-27 | Honeywell International Inc. | Fire extinguishing compositions, systems and methods |
ES2913453T3 (en) * | 2017-05-10 | 2022-06-02 | Chemours Co Fc Llc | Mixtures of blowing agents Z-HFO-1336mzz for the expansion of thermoplastic polymers comprising polystyrene |
EP3409438B1 (en) | 2017-06-01 | 2020-04-01 | Jackon Insulation GmbH | Plates made of foamed plastic material with film coating |
ES2945641T3 (en) * | 2017-08-18 | 2023-07-05 | Chemours Co Fc Llc | Compositions and uses of Z-1-chloro-2,3,3,3-tetrafluoroprop-1-ene |
WO2019088035A1 (en) * | 2017-11-01 | 2019-05-09 | Agc株式会社 | Method for producing hard synthetic resin foam |
SG11202004304RA (en) * | 2017-11-27 | 2020-06-29 | Rpl Holdings Ltd | Low gwp refrigerant blends |
JP7211702B2 (en) * | 2017-12-15 | 2023-01-24 | ダウ グローバル テクノロジーズ エルエルシー | Extruded styrenic resin foam and method for producing same |
JP7020979B2 (en) * | 2018-03-29 | 2022-02-16 | 株式会社ジェイエスピー | Manufacturing method of polyethylene resin foam sheet and polyethylene resin foam sheet and its roll |
AU2019279857B2 (en) * | 2018-05-29 | 2024-07-25 | Owens Corning Intellectual Capital, Llc | Blowing agent compositions for insulating foams |
US11414529B2 (en) * | 2018-06-21 | 2022-08-16 | Fina Technology, Inc. | Polystyrene compositions for foam extrusion |
WO2020099992A1 (en) | 2018-11-13 | 2020-05-22 | Invista North America S.A R.L. | Azeotropically-modified blowing agents for forming foams |
CN113272413A (en) * | 2018-12-21 | 2021-08-17 | 霍尼韦尔国际公司 | Solvent composition containing 1,2, 2-trifluoro-1-Trifluoromethylcyclobutane (TFMCB) |
WO2020243384A1 (en) * | 2019-05-29 | 2020-12-03 | The Chemours Company Fc, Llc | Blowing agent blends for thermoplastic polymers |
KR102075164B1 (en) | 2019-08-29 | 2020-02-07 | 강대화 | Composition for preparing polyurethane foam and preparation method of polyurethane foam using the same |
US20220396537A1 (en) * | 2019-11-06 | 2022-12-15 | Honeywell International Inc. | Azeotrope or azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene (hcfo-1233xf) and water |
CN114846129B (en) * | 2019-12-24 | 2024-04-09 | Agc株式会社 | Solvent composition and use thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4085073A (en) * | 1975-11-04 | 1978-04-18 | The Dow Chemical Company | Styrene polymer foam and the preparation thereof |
US4323528A (en) * | 1980-08-07 | 1982-04-06 | Valcour Imprinted Papers, Inc. | Method and apparatus for making large size, low density, elongated thermoplastic cellular bodies |
US6300378B1 (en) * | 1996-09-27 | 2001-10-09 | University Of New Mexico | Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants foam blowing agents solvents aerosol propellants and sterilants |
US20040119047A1 (en) * | 2002-10-25 | 2004-06-24 | Honeywell International, Inc. | Compositions containing fluorine substituted olefins |
US20060142173A1 (en) * | 2003-11-04 | 2006-06-29 | Honeywell International Inc. | Solvent compositions containing chlorofluoroolefins or fluoroolefins |
US20060243945A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US20070010592A1 (en) * | 2002-10-25 | 2007-01-11 | Honeywell International Inc. | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1122697B (en) | 1960-05-06 | 1962-01-25 | Bayer Ag | Process for the production of foams based on isocyanate |
US4101467A (en) * | 1976-02-27 | 1978-07-18 | The Dow Chemical Company | Soft ethylenic polymer foams |
DE4121161A1 (en) | 1991-06-27 | 1993-01-07 | Basf Ag | METHOD FOR PRODUCING HARD FOAM MATERIALS CONTAINING URETHANE OR URETHANE AND ISOCYANURATE GROUPS, AND EMULSIONS CONTAINING BLOWERS THEREOF |
US5710186A (en) * | 1996-05-31 | 1998-01-20 | The Dow Chemical Company | Foams containing treated titanium dioxide and processes for making |
US6174471B1 (en) * | 1999-03-15 | 2001-01-16 | The Dow Chemical Company | Open-cell foam and method of making |
WO2002022723A1 (en) * | 2000-09-14 | 2002-03-21 | Jsp Corporation | Core material for vacuum heat insulation material and vacuum heat insulation material |
US20040089839A1 (en) * | 2002-10-25 | 2004-05-13 | Honeywell International, Inc. | Fluorinated alkene refrigerant compositions |
US7279451B2 (en) * | 2002-10-25 | 2007-10-09 | Honeywell International Inc. | Compositions containing fluorine substituted olefins |
US7592494B2 (en) * | 2003-07-25 | 2009-09-22 | Honeywell International Inc. | Process for the manufacture of 1,3,3,3-tetrafluoropropene |
US20060052466A1 (en) * | 2004-09-03 | 2006-03-09 | Handa Yash P | Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents |
BRPI0519102A2 (en) | 2004-12-21 | 2008-12-23 | Honeywell Int Inc | thermal transfer composition, iodocarbon-containing composition stabilized against decomposition of carbon-iodine bonds, heat transfer method to or from a fluid or body, closed cell foam, foam premix composition, and method of stabilizing a composition |
US20060243944A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
TW201336906A (en) * | 2005-06-24 | 2013-09-16 | Honeywell Int Inc | Foaming agent and composition containing fluorine-substituted olefin, and foaming method |
TWI657070B (en) * | 2005-06-24 | 2019-04-21 | 美商哈尼威爾國際公司 | Compositions containing fluorine substituted olefins and uses thereof |
US20070100010A1 (en) | 2005-11-01 | 2007-05-03 | Creazzo Joseph A | Blowing agents for forming foam comprising unsaturated fluorocarbons |
US7272207B1 (en) * | 2006-03-24 | 2007-09-18 | Richard Aufrichtig | Processes and apparatus for variable binning of data in non-destructive imaging |
JP5109556B2 (en) * | 2006-11-01 | 2012-12-26 | セントラル硝子株式会社 | Azeotropic and azeotrope-like compositions comprising 1,1,2,2-tetrafluoro-1-methoxyethane |
ES2955550T3 (en) * | 2007-03-27 | 2023-12-04 | Dow Global Technologies Llc | Alkenyl aromatic polymeric foam comprising fluorinated alkene blowing agents |
WO2008121778A1 (en) * | 2007-03-29 | 2008-10-09 | Arkema Inc. | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins |
US8314159B2 (en) * | 2007-03-29 | 2012-11-20 | Arkema Inc. | Blowing agent composition of hydrochlorofluoroolefin |
JP5416087B2 (en) * | 2007-03-29 | 2014-02-12 | アーケマ・インコーポレイテッド | Hydrofluoropropene and hydrochlorofluoroolefin blowing agent composition |
CN100488925C (en) † | 2007-04-11 | 2009-05-20 | 西安近代化学研究所 | Method for producing 1,1,1,3-tetrafluoroethylene |
-
2008
- 2008-03-28 WO PCT/US2008/058594 patent/WO2008121778A1/en active Application Filing
- 2008-03-28 CA CA 2681605 patent/CA2681605A1/en not_active Abandoned
- 2008-03-28 CN CN2008800100587A patent/CN101652411B/en active Active
- 2008-03-28 WO PCT/US2008/058596 patent/WO2008121779A1/en active Application Filing
- 2008-03-28 PL PL08744551T patent/PL2129710T3/en unknown
- 2008-03-28 PL PL08744554T patent/PL2129712T3/en unknown
- 2008-03-28 CA CA2681825A patent/CA2681825C/en active Active
- 2008-03-28 WO PCT/US2008/058592 patent/WO2008121776A1/en active Application Filing
- 2008-03-28 PL PL08744553T patent/PL2129711T5/en unknown
- 2008-03-28 AT AT08744553T patent/ATE537209T1/en active
- 2008-03-28 AT AT08744551T patent/ATE532818T1/en active
- 2008-03-28 CN CN200880010278XA patent/CN101652414B/en active Active
- 2008-03-28 ES ES08744553T patent/ES2376290T5/en active Active
- 2008-03-28 ES ES08744551T patent/ES2377420T3/en active Active
- 2008-03-28 EP EP20080744554 patent/EP2129712B1/en active Active
- 2008-03-28 CA CA 2681602 patent/CA2681602C/en active Active
- 2008-03-28 US US12/532,238 patent/US20100105789A1/en not_active Abandoned
- 2008-03-28 JP JP2010501242A patent/JP5584114B2/en active Active
- 2008-03-28 US US12/532,207 patent/US20100112328A1/en not_active Abandoned
- 2008-03-28 CN CN201510474270.0A patent/CN105001440A/en active Pending
- 2008-03-28 CN CN200880010057A patent/CN101715468A/en active Pending
- 2008-03-28 JP JP2010501240A patent/JP5762737B2/en active Active
- 2008-03-28 JP JP2010501241A patent/JP5763338B2/en active Active
- 2008-03-28 EP EP20080744551 patent/EP2129710B1/en active Active
- 2008-03-28 US US12/532,253 patent/US20100113629A1/en not_active Abandoned
- 2008-03-28 EP EP08744553.2A patent/EP2129711B2/en active Active
- 2008-03-28 ES ES08744554T patent/ES2388457T3/en active Active
-
2012
- 2012-01-03 US US13/342,247 patent/US8648123B2/en active Active
- 2012-01-03 US US13/342,307 patent/US20120101177A1/en not_active Abandoned
-
2014
- 2014-07-17 JP JP2014146860A patent/JP6034335B2/en active Active
-
2015
- 2015-06-09 JP JP2015116730A patent/JP6030710B2/en active Active
-
2016
- 2016-10-24 JP JP2016208050A patent/JP6692734B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4085073A (en) * | 1975-11-04 | 1978-04-18 | The Dow Chemical Company | Styrene polymer foam and the preparation thereof |
US4323528A (en) * | 1980-08-07 | 1982-04-06 | Valcour Imprinted Papers, Inc. | Method and apparatus for making large size, low density, elongated thermoplastic cellular bodies |
US6300378B1 (en) * | 1996-09-27 | 2001-10-09 | University Of New Mexico | Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants foam blowing agents solvents aerosol propellants and sterilants |
US20040119047A1 (en) * | 2002-10-25 | 2004-06-24 | Honeywell International, Inc. | Compositions containing fluorine substituted olefins |
US20070010592A1 (en) * | 2002-10-25 | 2007-01-11 | Honeywell International Inc. | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
US20060142173A1 (en) * | 2003-11-04 | 2006-06-29 | Honeywell International Inc. | Solvent compositions containing chlorofluoroolefins or fluoroolefins |
US20060243945A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120161063A1 (en) * | 2003-10-27 | 2012-06-28 | Honeywell International Inc. | Monochlorotrifluoropropene compounds and compositions and mehtods using same |
US8962707B2 (en) * | 2003-10-27 | 2015-02-24 | Honeywell International Inc. | Monochlorotrifluoropropene compounds and compositions and methods using same |
US20120101177A1 (en) * | 2007-03-29 | 2012-04-26 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US9206297B2 (en) | 2007-03-29 | 2015-12-08 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US8895635B2 (en) | 2007-03-29 | 2014-11-25 | Arkema Inc. | Blowing agent compositions of hydrochlorofluoroolefins |
US9254468B2 (en) | 2008-03-07 | 2016-02-09 | Arkema Inc. | Stable formulated systems with chloro-3,3,3-trifluoropropene |
US10072192B2 (en) | 2008-03-07 | 2018-09-11 | Arkema Inc. | Stable formulated systems with chloro-3,3,3-trifluoropropene |
US20110124758A1 (en) * | 2008-08-13 | 2011-05-26 | E.I. Du Pont De Nemours And Company | Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and hydrocarbon and their uses in the preparation of polyisocyanate-based foams |
US8802743B2 (en) * | 2008-10-28 | 2014-08-12 | Honeywell International Inc. | Azeotrope-like compositions comprising trans-1-chloro-3,3,3-trifluoropropene |
US20110175015A1 (en) * | 2008-10-28 | 2011-07-21 | Honeywell International Inc. | Azeotrope-Like Compositions Comprising Trans-1-Chloro-3,3,3-Trifluoropropene |
US20100216904A1 (en) * | 2009-02-24 | 2010-08-26 | E. I. Du Pont De Nemours And Company | Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and at least one hydrofluoroolefin and their uses in the preparation of polyisocyanate-based foams |
US20120128964A1 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8734671B2 (en) * | 2010-11-19 | 2014-05-27 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
JP2013543050A (en) * | 2010-11-19 | 2013-11-28 | ハネウェル・インターナショナル・インコーポレーテッド | Azeotrope-like composition comprising 1-chloro-3,3,3-trifluoropropene |
KR20130116293A (en) * | 2010-11-19 | 2013-10-23 | 허니웰 인터내셔널 인코포레이티드 | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
WO2012068572A3 (en) * | 2010-11-19 | 2012-08-16 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
WO2012068572A2 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US10519290B2 (en) | 2011-06-27 | 2019-12-31 | Owens Corning Intellectual Capital, Llc | Organic infrared attenuation agents |
US10053549B2 (en) | 2011-06-27 | 2018-08-21 | Owens Corning Intellectual Capital, Llc | Organic infrared attenuation agents |
US20150165658A1 (en) * | 2012-07-19 | 2015-06-18 | Honeywell International Inc | Blowing agents for extruded polystyrene foam and extruded polystyrene foam and methods of foaming |
EP3312222A1 (en) | 2012-07-19 | 2018-04-25 | Honeywell International Inc. | Blowing agents for extruded polystyrene foam and extruded polystyrene foam |
EP2875068A4 (en) * | 2012-07-19 | 2015-12-02 | Honeywell Int Inc | Blowing agents for extruded polystyrene foam and extruded polystyrene foam and methods of foaming |
EP2875068A1 (en) * | 2012-07-19 | 2015-05-27 | Honeywell International Inc. | Blowing agents for extruded polystyrene foam and extruded polystyrene foam and methods of foaming |
WO2014015315A1 (en) * | 2012-07-19 | 2014-01-23 | Honeywell International Inc. | Blowing agents for extruded polystyrene foam and extruded polystyrene foam and methods of foaming |
US10676581B2 (en) | 2013-03-15 | 2020-06-09 | Owens Corning Intellectual Capital, Llc | Processing aids for use in manufacture extruded polystyrene foams using low global warming potential blowing agents |
US10308778B2 (en) * | 2014-11-25 | 2019-06-04 | Crecimento Industrial Co., Ltd. | Preparation and application of dynamic non-wicking PU foam |
US10301236B2 (en) | 2015-05-21 | 2019-05-28 | The Chemours Company Fc, Llc | Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase |
US10988422B2 (en) | 2015-05-21 | 2021-04-27 | The Chemours Company Fc, Llc | Hydrofluoroalkane composition |
US11008267B2 (en) | 2015-05-21 | 2021-05-18 | The Chemours Company Fc, Llc | Hydrofluoroalkane composition |
US11572326B2 (en) | 2015-05-21 | 2023-02-07 | The Chemours Company Fc, Llc | Method for preparing 1,1,1,2,2-pentafluoropropane |
US12006274B2 (en) | 2015-05-21 | 2024-06-11 | The Chemours Company Fc, Llc | Compositions including olefin and hydrofluoroalkane |
US20160347922A1 (en) * | 2015-05-29 | 2016-12-01 | Owens Corning Intellectual Capital, Llc | Extruded polystyrene foam |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2129711B1 (en) | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins | |
US8772364B2 (en) | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins | |
US9815955B2 (en) | Tetrafluoropropene based blowing agent compositions | |
US11208536B2 (en) | Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins | |
US8895635B2 (en) | Blowing agent compositions of hydrochlorofluoroolefins | |
US11091602B2 (en) | Blowing agent compositions of carbon dioxide and hydrochlorofluoroolefins | |
US9206297B2 (en) | Blowing agent compositions of hydrochlorofluoroolefins | |
US20190144629A1 (en) | Blowing agent compositions of hydrofluoroolefins and hydrochlororfluoroolefins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARKEMA INC.,PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN HORN, BRETT L.;ELSHEIKH, MAHER Y.;CHEN, BENJAMIN BIN;AND OTHERS;SIGNING DATES FROM 20090904 TO 20090914;REEL/FRAME:023284/0054 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |