US20100081650A1 - Antimicrobial Compounds - Google Patents
Antimicrobial Compounds Download PDFInfo
- Publication number
- US20100081650A1 US20100081650A1 US12/620,129 US62012909A US2010081650A1 US 20100081650 A1 US20100081650 A1 US 20100081650A1 US 62012909 A US62012909 A US 62012909A US 2010081650 A1 US2010081650 A1 US 2010081650A1
- Authority
- US
- United States
- Prior art keywords
- hydroxy
- amino
- dihydro
- oxo
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims description 214
- 230000000845 anti-microbial effect Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 201
- 241000124008 Mammalia Species 0.000 claims abstract description 10
- -1 amino, piperidyl Chemical group 0.000 claims description 340
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 81
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 73
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 69
- 150000001408 amides Chemical class 0.000 claims description 51
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 44
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 44
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 44
- 125000005090 alkenylcarbonyl group Chemical group 0.000 claims description 40
- 229910052739 hydrogen Inorganic materials 0.000 claims description 39
- 239000001257 hydrogen Substances 0.000 claims description 39
- 125000003277 amino group Chemical group 0.000 claims description 38
- 125000005092 alkenyloxycarbonyl group Chemical group 0.000 claims description 36
- 125000003118 aryl group Chemical group 0.000 claims description 36
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 claims description 33
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 33
- 125000004916 (C1-C6) alkylcarbonyl group Chemical group 0.000 claims description 32
- 229910052736 halogen Inorganic materials 0.000 claims description 32
- 150000003839 salts Chemical class 0.000 claims description 30
- 125000005843 halogen group Chemical group 0.000 claims description 29
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 claims description 28
- 150000002367 halogens Chemical class 0.000 claims description 28
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 28
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 25
- 125000000623 heterocyclic group Chemical group 0.000 claims description 24
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 23
- 125000004414 alkyl thio group Chemical group 0.000 claims description 19
- 125000004429 atom Chemical group 0.000 claims description 19
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 18
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 125000001424 substituent group Chemical group 0.000 claims description 17
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 229910052717 sulfur Inorganic materials 0.000 claims description 14
- 125000002252 acyl group Chemical group 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 11
- 125000001153 fluoro group Chemical group F* 0.000 claims description 9
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 9
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- QURAWDWTNZXEDT-UHFFFAOYSA-N 2-methoxyquinolin-8-amine Chemical compound C1=CC=C(N)C2=NC(OC)=CC=C21 QURAWDWTNZXEDT-UHFFFAOYSA-N 0.000 claims description 7
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 7
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 7
- 125000004423 acyloxy group Chemical group 0.000 claims description 6
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 claims description 6
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 125000001414 1,2,4-triazol-5-yl group Chemical group [H]N1N=C([H])N=C1[*] 0.000 claims description 5
- JHIAOWGCGNMQKA-UHFFFAOYSA-N 2-methyl-8-quinolinamine Chemical compound C1=CC=C(N)C2=NC(C)=CC=C21 JHIAOWGCGNMQKA-UHFFFAOYSA-N 0.000 claims description 5
- 125000005647 linker group Chemical group 0.000 claims description 5
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- DMBFCTCQROWGDZ-UHFFFAOYSA-N 8-aminoquinoline-2-carbonitrile Chemical compound C1=C(C#N)N=C2C(N)=CC=CC2=C1 DMBFCTCQROWGDZ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001204 N-oxides Chemical class 0.000 claims description 4
- 125000005035 acylthio group Chemical group 0.000 claims description 4
- PWHNTUSIPQQBCT-XFQXTVEOSA-N (1r,3r,4r)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide Chemical compound C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@H]([C@@H](CC3)NCC=3N=C4NC(=O)CSC4=CC=3)O)=CC=CC2=C1 PWHNTUSIPQQBCT-XFQXTVEOSA-N 0.000 claims description 3
- MOPYRFYABZQIGN-ZTNFWEORSA-N (1r,3s,4r)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]oxazin-6-yl)methylamino]cyclohexane-1-carboxamide Chemical compound C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@@H]([C@@H](CC3)NCC=3N=C4NC(=O)COC4=CC=3)O)=CC=CC2=C1 MOPYRFYABZQIGN-ZTNFWEORSA-N 0.000 claims description 3
- 241000588724 Escherichia coli Species 0.000 claims description 3
- 241000606768 Haemophilus influenzae Species 0.000 claims description 3
- 241000588655 Moraxella catarrhalis Species 0.000 claims description 3
- ZRMYPAWMDOWZBB-WKILWMFISA-N S1CC(=O)NC2=NC(CN[C@H]3CC[C@@H](CC3)C(NC=3C4=CC=CC=C4N=CC=3)=O)=CC=C21 Chemical compound S1CC(=O)NC2=NC(CN[C@H]3CC[C@@H](CC3)C(NC=3C4=CC=CC=C4N=CC=3)=O)=CC=C21 ZRMYPAWMDOWZBB-WKILWMFISA-N 0.000 claims description 3
- 241000191963 Staphylococcus epidermidis Species 0.000 claims description 3
- 241000193996 Streptococcus pyogenes Species 0.000 claims description 3
- 125000002527 bicyclic carbocyclic group Chemical group 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 125000004553 quinoxalin-5-yl group Chemical group N1=CC=NC2=C(C=CC=C12)* 0.000 claims description 3
- UCFDBXANQMBHNW-SZVBFZGTSA-N (1r,3r,4r)-3-hydroxy-n-(2-methoxyquinolin-8-yl)-4-[(3-oxo-4h-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide Chemical compound S1CC(=O)NC2=NC(CN[C@@H]3CC[C@H](C[C@H]3O)C(=O)NC3=CC=CC4=CC=C(N=C43)OC)=CC=C21 UCFDBXANQMBHNW-SZVBFZGTSA-N 0.000 claims description 2
- FMURFKSAHPJGHG-VNHYZAJKSA-N (1r,3s,4r)-3-fluoro-4-[(7-fluoro-3-oxo-4h-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]-n-(6-methoxy-1,5-naphthyridin-4-yl)cyclohexane-1-carboxamide Chemical compound N1C(=O)CSC(C=C2F)=C1N=C2CN[C@@H]([C@@H](F)C1)CC[C@H]1C(=O)NC1=CC=NC2=CC=C(OC)N=C21 FMURFKSAHPJGHG-VNHYZAJKSA-N 0.000 claims description 2
- PWHNTUSIPQQBCT-ZTNFWEORSA-N (1r,3s,4r)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide Chemical compound C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@@H]([C@@H](CC3)NCC=3N=C4NC(=O)CSC4=CC=3)O)=CC=CC2=C1 PWHNTUSIPQQBCT-ZTNFWEORSA-N 0.000 claims description 2
- MOPYRFYABZQIGN-ZAAXVRCTSA-N (1s,3r,4s)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]oxazin-6-yl)methylamino]cyclohexane-1-carboxamide Chemical compound C1=C(C#N)N=C2C(NC(=O)[C@@H]3C[C@H]([C@H](CC3)NCC=3N=C4NC(=O)COC4=CC=3)O)=CC=CC2=C1 MOPYRFYABZQIGN-ZAAXVRCTSA-N 0.000 claims description 2
- PWHNTUSIPQQBCT-ZAAXVRCTSA-N (1s,3r,4s)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide Chemical compound C1=C(C#N)N=C2C(NC(=O)[C@@H]3C[C@H]([C@H](CC3)NCC=3N=C4NC(=O)CSC4=CC=3)O)=CC=CC2=C1 PWHNTUSIPQQBCT-ZAAXVRCTSA-N 0.000 claims description 2
- XQOHGKZCTXPHMB-UHFFFAOYSA-N 1,6-naphthyridin-4-amine Chemical compound C1=NC=C2C(N)=CC=NC2=C1 XQOHGKZCTXPHMB-UHFFFAOYSA-N 0.000 claims description 2
- RRWFGHIMZGJJKU-UHFFFAOYSA-N 1-methoxyisoquinolin-8-amine Chemical compound C1=CC(N)=C2C(OC)=NC=CC2=C1 RRWFGHIMZGJJKU-UHFFFAOYSA-N 0.000 claims description 2
- CJIIYERJYXPGHA-UHFFFAOYSA-N 2-methylquinoxalin-5-amine Chemical compound NC1=CC=CC2=NC(C)=CN=C21 CJIIYERJYXPGHA-UHFFFAOYSA-N 0.000 claims description 2
- RPBQBSWZBRIJSO-UHFFFAOYSA-N 3-methoxyquinoxalin-5-amine Chemical compound C1=CC=C(N)C2=NC(OC)=CN=C21 RPBQBSWZBRIJSO-UHFFFAOYSA-N 0.000 claims description 2
- TXZGIJQANGIGSE-UHFFFAOYSA-N 3-methylquinoxalin-5-amine Chemical compound C1=CC=C(N)C2=NC(C)=CN=C21 TXZGIJQANGIGSE-UHFFFAOYSA-N 0.000 claims description 2
- MCGWKWVAMHWHEZ-UHFFFAOYSA-N 4-(3,4-dihydro-2h-pyrido[3,2-b][1,4]thiazin-6-ylmethylamino)-1-hydroxy-n-(2-methoxyquinolin-8-yl)cyclohexane-1-carboxamide Chemical compound S1CCNC2=NC(CNC3CCC(CC3)(O)C(=O)NC3=CC=CC4=CC=C(N=C43)OC)=CC=C21 MCGWKWVAMHWHEZ-UHFFFAOYSA-N 0.000 claims description 2
- ANDGDEKVTJNURV-UHFFFAOYSA-N 4-aminoquinoline-6-carbonitrile Chemical compound C1=C(C#N)C=C2C(N)=CC=NC2=C1 ANDGDEKVTJNURV-UHFFFAOYSA-N 0.000 claims description 2
- PJDFSPWLDZBWIX-UHFFFAOYSA-N 5-methoxyquinolin-4-amine Chemical compound C1=CC(N)=C2C(OC)=CC=CC2=N1 PJDFSPWLDZBWIX-UHFFFAOYSA-N 0.000 claims description 2
- RDZNOWLQQWAKKF-UHFFFAOYSA-N 6-[[[4-hydroxy-4-[2-(2-methoxyquinolin-8-yl)ethyl]cyclohexyl]amino]methyl]-4h-pyrido[3,2-b][1,4]oxazin-3-one Chemical compound O1CC(=O)NC2=NC(CNC3CCC(CC3)(O)CCC3=CC=CC4=CC=C(N=C43)OC)=CC=C21 RDZNOWLQQWAKKF-UHFFFAOYSA-N 0.000 claims description 2
- RQMFEAXTUTVMBD-UHFFFAOYSA-N 6-[[[4-hydroxy-4-[2-(2-methoxyquinolin-8-yl)ethyl]cyclohexyl]amino]methyl]-4h-pyrido[3,2-b][1,4]thiazin-3-one Chemical compound S1CC(=O)NC2=NC(CNC3CCC(CC3)(O)CCC3=CC=CC4=CC=C(N=C43)OC)=CC=C21 RQMFEAXTUTVMBD-UHFFFAOYSA-N 0.000 claims description 2
- COVSCYFWBCZFRC-UHFFFAOYSA-N 8-amino-2-methylisoquinolin-1-one Chemical compound C1=CC(N)=C2C(=O)N(C)C=CC2=C1 COVSCYFWBCZFRC-UHFFFAOYSA-N 0.000 claims description 2
- DNOMRFCPHXQUGT-UAPYVXQJSA-N S1CC(=O)NC2=CC(CN[C@H]3CC[C@@H](CC3)C(NC=3C4=CC=NC=C4C=CC=3)=O)=CC=C21 Chemical compound S1CC(=O)NC2=CC(CN[C@H]3CC[C@@H](CC3)C(NC=3C4=CC=NC=C4C=CC=3)=O)=CC=C21 DNOMRFCPHXQUGT-UAPYVXQJSA-N 0.000 claims description 2
- 125000005278 alkyl sulfonyloxy group Chemical group 0.000 claims description 2
- 125000005530 alkylenedioxy group Chemical group 0.000 claims description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 claims description 2
- 125000005110 aryl thio group Chemical group 0.000 claims description 2
- 125000004104 aryloxy group Chemical group 0.000 claims description 2
- 150000003950 cyclic amides Chemical class 0.000 claims description 2
- 125000005844 heterocyclyloxy group Chemical group 0.000 claims description 2
- 125000004468 heterocyclylthio group Chemical group 0.000 claims description 2
- 125000004546 quinazolin-4-yl group Chemical group N1=CN=C(C2=CC=CC=C12)* 0.000 claims description 2
- 125000004549 quinolin-4-yl group Chemical group N1=CC=C(C2=CC=CC=C12)* 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 3
- 241000194032 Enterococcus faecalis Species 0.000 claims 2
- 206010041925 Staphylococcal infections Diseases 0.000 claims 2
- 241000193998 Streptococcus pneumoniae Species 0.000 claims 2
- 229940032049 enterococcus faecalis Drugs 0.000 claims 2
- 229940047650 haemophilus influenzae Drugs 0.000 claims 2
- 229940031000 streptococcus pneumoniae Drugs 0.000 claims 2
- JTNBYFVUXPHZIJ-UHFFFAOYSA-N 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-amine Chemical compound O1CCOC2=C1N=CC=C2N JTNBYFVUXPHZIJ-UHFFFAOYSA-N 0.000 claims 1
- AFCUWHBCKMZWOR-UHFFFAOYSA-N 3-methyl-1,2,3,4-tetrahydroquinoxalin-5-amine Chemical compound C1=CC(N)=C2NC(C)CNC2=C1 AFCUWHBCKMZWOR-UHFFFAOYSA-N 0.000 claims 1
- VUHCPMIDSUGHNO-UHFFFAOYSA-N 6-methoxy-1,5-naphthyridin-4-amine Chemical compound N1=CC=C(N)C2=NC(OC)=CC=C21 VUHCPMIDSUGHNO-UHFFFAOYSA-N 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- CWXZEXZFHGYYCD-UHFFFAOYSA-N thieno[3,2-b]pyridin-7-amine Chemical compound NC1=CC=NC2=C1SC=C2 CWXZEXZFHGYYCD-UHFFFAOYSA-N 0.000 claims 1
- 208000035143 Bacterial infection Diseases 0.000 abstract description 5
- 208000022362 bacterial infectious disease Diseases 0.000 abstract description 5
- 125000000596 cyclohexenyl group Chemical class C1(=CCCCC1)* 0.000 abstract description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 204
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 187
- 239000007787 solid Substances 0.000 description 186
- 239000000243 solution Substances 0.000 description 134
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 125
- 150000002500 ions Chemical class 0.000 description 124
- 239000000203 mixture Substances 0.000 description 115
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 105
- 238000006243 chemical reaction Methods 0.000 description 87
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 77
- 150000001412 amines Chemical class 0.000 description 77
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 75
- 150000001299 aldehydes Chemical class 0.000 description 74
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 68
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 61
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 56
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 56
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 55
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 54
- 235000019439 ethyl acetate Nutrition 0.000 description 49
- 238000005160 1H NMR spectroscopy Methods 0.000 description 48
- 238000004587 chromatography analysis Methods 0.000 description 48
- 230000008569 process Effects 0.000 description 43
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 41
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 38
- 239000012458 free base Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 38
- 235000019441 ethanol Nutrition 0.000 description 37
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 30
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 30
- 239000002253 acid Substances 0.000 description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 26
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 26
- 239000000284 extract Substances 0.000 description 26
- 239000003921 oil Substances 0.000 description 26
- 235000019198 oils Nutrition 0.000 description 26
- 239000000377 silicon dioxide Substances 0.000 description 26
- 238000010626 work up procedure Methods 0.000 description 25
- 239000000047 product Substances 0.000 description 23
- 238000005932 reductive alkylation reaction Methods 0.000 description 22
- HZBLDIRKPKMXLK-IWSPIJDZSA-N tert-butyl n-[(1r,2r,4r)-4-carbamoyl-2-hydroxycyclohexyl]carbamate Chemical compound CC(C)(C)OC(=O)N[C@@H]1CC[C@@H](C(N)=O)C[C@H]1O HZBLDIRKPKMXLK-IWSPIJDZSA-N 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 150000002148 esters Chemical class 0.000 description 21
- 125000000217 alkyl group Chemical group 0.000 description 20
- VEPGNAIYGRUSIA-UHFFFAOYSA-N 3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carbaldehyde Chemical compound S1CC(=O)NC2=NC(C=O)=CC=C21 VEPGNAIYGRUSIA-UHFFFAOYSA-N 0.000 description 19
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 19
- 238000001914 filtration Methods 0.000 description 18
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 18
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 17
- 239000002585 base Substances 0.000 description 17
- 229920006395 saturated elastomer Polymers 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 16
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- 230000009467 reduction Effects 0.000 description 16
- 238000006722 reduction reaction Methods 0.000 description 16
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- 239000011541 reaction mixture Substances 0.000 description 15
- 239000000741 silica gel Substances 0.000 description 15
- 229910002027 silica gel Inorganic materials 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 14
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 14
- 239000000543 intermediate Substances 0.000 description 14
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 14
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 14
- 238000010992 reflux Methods 0.000 description 14
- 235000017557 sodium bicarbonate Nutrition 0.000 description 14
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 13
- 229910052786 argon Inorganic materials 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 12
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 11
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 11
- 230000007062 hydrolysis Effects 0.000 description 11
- 238000006460 hydrolysis reaction Methods 0.000 description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 11
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 10
- VYIHVJSFIQWODB-RWOHWRPJSA-N acetic acid (1R,3R,4R)-4-amino-3-hydroxycyclohexane-1-carboxamide Chemical compound CC(O)=O.N[C@@H]1CC[C@H](C[C@H]1O)C(N)=O VYIHVJSFIQWODB-RWOHWRPJSA-N 0.000 description 10
- 239000012267 brine Substances 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- 239000012279 sodium borohydride Substances 0.000 description 10
- 229910000033 sodium borohydride Inorganic materials 0.000 description 10
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 9
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- JJAMXRHJFZQZLV-YUELXQCFSA-N [(1s,2r,5r)-5-carbamoyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]cyclohexyl] 4-nitrobenzoate Chemical compound CC(C)(C)OC(=O)N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1OC(=O)C1=CC=C([N+]([O-])=O)C=C1 JJAMXRHJFZQZLV-YUELXQCFSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 9
- HLTDBMHJSBSAOM-UHFFFAOYSA-N 2-nitropyridine Chemical compound [O-][N+](=O)C1=CC=CC=N1 HLTDBMHJSBSAOM-UHFFFAOYSA-N 0.000 description 8
- 0 CCC1(C)CCC(C)CC1C.[3*]C Chemical compound CCC1(C)CCC(C)CC1C.[3*]C 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 238000005984 hydrogenation reaction Methods 0.000 description 8
- 239000012280 lithium aluminium hydride Substances 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 8
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 7
- OHMRDYFPZGKACM-UHFFFAOYSA-N 4-(hydroxymethyl)-4h-oxazin-3-one Chemical compound OCC1C=CONC1=O OHMRDYFPZGKACM-UHFFFAOYSA-N 0.000 description 7
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 7
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 7
- 239000008346 aqueous phase Substances 0.000 description 7
- SJSWRKNSCWKNIR-UHFFFAOYSA-N azane;dihydrochloride Chemical compound N.Cl.Cl SJSWRKNSCWKNIR-UHFFFAOYSA-N 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 238000003818 flash chromatography Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 7
- GXHFUVWIGNLZSC-UHFFFAOYSA-N meldrum's acid Chemical compound CC1(C)OC(=O)CC(=O)O1 GXHFUVWIGNLZSC-UHFFFAOYSA-N 0.000 description 7
- 125000006574 non-aromatic ring group Chemical group 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 125000004043 oxo group Chemical group O=* 0.000 description 7
- PMZDQRJGMBOQBF-UHFFFAOYSA-N quinolin-4-ol Chemical compound C1=CC=C2C(O)=CC=NC2=C1 PMZDQRJGMBOQBF-UHFFFAOYSA-N 0.000 description 7
- 229910000104 sodium hydride Inorganic materials 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- 239000007832 Na2SO4 Substances 0.000 description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 150000001540 azides Chemical class 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- PSVJDFLPZZXFDU-UHFFFAOYSA-N cyclohexen-1-amine Chemical compound NC1=CCCCC1 PSVJDFLPZZXFDU-UHFFFAOYSA-N 0.000 description 6
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 6
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 6
- 150000002924 oxiranes Chemical class 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- LEHBURLTIWGHEM-UHFFFAOYSA-N pyridinium chlorochromate Chemical compound [O-][Cr](Cl)(=O)=O.C1=CC=[NH+]C=C1 LEHBURLTIWGHEM-UHFFFAOYSA-N 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 6
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 5
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 5
- VSTAWNNZRAUUGT-UHFFFAOYSA-N 2-methylquinolin-8-amine dihydrochloride Chemical compound Cl.Cl.C1=CC=C(N)C2=NC(C)=CC=C21 VSTAWNNZRAUUGT-UHFFFAOYSA-N 0.000 description 5
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 238000005903 acid hydrolysis reaction Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 238000005804 alkylation reaction Methods 0.000 description 5
- WGQKYBSKWIADBV-UHFFFAOYSA-N aminomethyl benzene Natural products NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 5
- 239000001099 ammonium carbonate Substances 0.000 description 5
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- 239000006071 cream Substances 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 150000002513 isocyanates Chemical class 0.000 description 5
- 150000002596 lactones Chemical class 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- ONDSBJMLAHVLMI-UHFFFAOYSA-N trimethylsilyldiazomethane Chemical compound C[Si](C)(C)[CH-][N+]#N ONDSBJMLAHVLMI-UHFFFAOYSA-N 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- MHCVCKDNQYMGEX-UHFFFAOYSA-N 1,1'-biphenyl;phenoxybenzene Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OC1=CC=CC=C1 MHCVCKDNQYMGEX-UHFFFAOYSA-N 0.000 description 4
- DIOHEXPTUTVCNX-UHFFFAOYSA-N 1,1,1-trifluoro-n-phenyl-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)N(S(=O)(=O)C(F)(F)F)C1=CC=CC=C1 DIOHEXPTUTVCNX-UHFFFAOYSA-N 0.000 description 4
- RQEUFEKYXDPUSK-UHFFFAOYSA-N 1-phenylethylamine Chemical compound CC(N)C1=CC=CC=C1 RQEUFEKYXDPUSK-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 238000006969 Curtius rearrangement reaction Methods 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 4
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 4
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 4
- 230000029936 alkylation Effects 0.000 description 4
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 4
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- VUSWCWPCANWBFG-UHFFFAOYSA-N cyclohex-3-ene-1-carboxylic acid Chemical compound OC(=O)C1CCC=CC1 VUSWCWPCANWBFG-UHFFFAOYSA-N 0.000 description 4
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000006735 epoxidation reaction Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 4
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 4
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- ALFQGUKJVMQAQW-UHFFFAOYSA-N quinolin-4-yl trifluoromethanesulfonate Chemical class C1=CC=C2C(OS(=O)(=O)C(F)(F)F)=CC=NC2=C1 ALFQGUKJVMQAQW-UHFFFAOYSA-N 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 4
- LFKDJXLFVYVEFG-UHFFFAOYSA-N tert-butyl carbamate Chemical compound CC(C)(C)OC(N)=O LFKDJXLFVYVEFG-UHFFFAOYSA-N 0.000 description 4
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 4
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 4
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 3
- OZKZKOKBZVHPKY-NGJCXOISSA-N (1r,3r,4s)-4-bromo-3-hydroxycyclohexane-1-carboxamide Chemical compound NC(=O)[C@@H]1CC[C@H](Br)[C@H](O)C1 OZKZKOKBZVHPKY-NGJCXOISSA-N 0.000 description 3
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 3
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 3
- YEKWJUFYQXDKHL-UHFFFAOYSA-N 2-methoxyquinolin-8-amine dihydrochloride Chemical compound Cl.Cl.C1=CC=C(N)C2=NC(OC)=CC=C21 YEKWJUFYQXDKHL-UHFFFAOYSA-N 0.000 description 3
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 3
- SUXIPCHEUMEUSV-UHFFFAOYSA-N 4-bromoquinoline Chemical class C1=CC=C2C(Br)=CC=NC2=C1 SUXIPCHEUMEUSV-UHFFFAOYSA-N 0.000 description 3
- HQQTZCPKNZVLFF-UHFFFAOYSA-N 4h-1,2-benzoxazin-3-one Chemical class C1=CC=C2ONC(=O)CC2=C1 HQQTZCPKNZVLFF-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241000400611 Eucalyptus deanei Species 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 150000001350 alkyl halides Chemical class 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000012223 aqueous fraction Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical group C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 3
- 244000309464 bull Species 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012230 colorless oil Substances 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000007429 general method Methods 0.000 description 3
- 238000011905 homologation Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- OQUCMNQHZFOMPC-UHFFFAOYSA-N methyl 6-amino-5-bromopyridine-2-carboxylate Chemical compound COC(=O)C1=CC=C(Br)C(N)=N1 OQUCMNQHZFOMPC-UHFFFAOYSA-N 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 150000007530 organic bases Chemical class 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000005897 peptide coupling reaction Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- ILVXOBCQQYKLDS-UHFFFAOYSA-N pyridine N-oxide Chemical compound [O-][N+]1=CC=CC=C1 ILVXOBCQQYKLDS-UHFFFAOYSA-N 0.000 description 3
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 3
- 239000012363 selectfluor Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229940124530 sulfonamide Drugs 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- CXNIUSPIQKWYAI-UHFFFAOYSA-N xantphos Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 CXNIUSPIQKWYAI-UHFFFAOYSA-N 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- SLUAOZTXXFFUCD-PXYWIMLNSA-N (1R,3R,4R)-N-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4H-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@H]([C@@H](CC3)NCC=3N=C4NC(=O)CSC4=CC=3)O)=CC=CC2=C1 SLUAOZTXXFFUCD-PXYWIMLNSA-N 0.000 description 2
- SCYNLSVBPMUQTJ-HSUXUTPPSA-N (1r,3r,4r)-4-azido-3-hydroxycyclohexane-1-carboxamide Chemical compound NC(=O)[C@@H]1CC[C@@H](N=[N+]=[N-])[C@H](O)C1 SCYNLSVBPMUQTJ-HSUXUTPPSA-N 0.000 description 2
- HIEDNXSBEYNHJB-NGJCXOISSA-N (1r,4s,5r)-4-bromo-6-oxabicyclo[3.2.1]octan-7-one Chemical compound C1[C@@]2([H])CC[C@H](Br)[C@]1([H])OC2=O HIEDNXSBEYNHJB-NGJCXOISSA-N 0.000 description 2
- YWXFACIBXRJBEN-UHFFFAOYSA-N (2-methoxyquinolin-8-yl) trifluoromethanesulfonate Chemical compound C1=CC=C(OS(=O)(=O)C(F)(F)F)C2=NC(OC)=CC=C21 YWXFACIBXRJBEN-UHFFFAOYSA-N 0.000 description 2
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 2
- LQQKDSXCDXHLLF-UHFFFAOYSA-N 1,3-dibromopropan-2-one Chemical class BrCC(=O)CBr LQQKDSXCDXHLLF-UHFFFAOYSA-N 0.000 description 2
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical group O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 2
- 150000005055 1,5-naphthyridines Chemical class 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- QMNUDYFKZYBWQX-UHFFFAOYSA-N 1H-quinazolin-4-one Chemical compound C1=CC=C2C(=O)N=CNC2=C1 QMNUDYFKZYBWQX-UHFFFAOYSA-N 0.000 description 2
- NSPLFNGUPLZYHV-UHFFFAOYSA-N 1h-1,5-naphthyridin-4-one Chemical class C1=CN=C2C(O)=CC=NC2=C1 NSPLFNGUPLZYHV-UHFFFAOYSA-N 0.000 description 2
- WFLDCLHOLPDVCP-UHFFFAOYSA-N 1h-1,6-naphthyridin-4-one Chemical compound C1=NC=C2C(O)=CC=NC2=C1 WFLDCLHOLPDVCP-UHFFFAOYSA-N 0.000 description 2
- QWQZJEXJTYAPGE-UHFFFAOYSA-N 2,3-dihydro-[1,4]dioxino[2,3-b]pyridine Chemical compound C1=CC=C2OCCOC2=N1 QWQZJEXJTYAPGE-UHFFFAOYSA-N 0.000 description 2
- OMWBUWDHEZIMGQ-UHFFFAOYSA-N 2,3-dihydro-[1,4]dioxino[2,3-c]pyridine-7-carbaldehyde Chemical compound O1CCOC2=C1C=C(C=O)N=C2 OMWBUWDHEZIMGQ-UHFFFAOYSA-N 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 2
- 125000004174 2-benzimidazolyl group Chemical group [H]N1C(*)=NC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- ASSKVPFEZFQQNQ-UHFFFAOYSA-N 2-benzoxazolinone Chemical class C1=CC=C2OC(O)=NC2=C1 ASSKVPFEZFQQNQ-UHFFFAOYSA-N 0.000 description 2
- ZSEKOQOZBSHNTG-UHFFFAOYSA-N 2-methoxy-8-phenylmethoxyquinoline Chemical compound C12=NC(OC)=CC=C2C=CC=C1OCC1=CC=CC=C1 ZSEKOQOZBSHNTG-UHFFFAOYSA-N 0.000 description 2
- ISMGVCMJDUISJW-UHFFFAOYSA-N 2-methylquinoxalin-5-ol Chemical compound OC1=CC=CC2=NC(C)=CN=C21 ISMGVCMJDUISJW-UHFFFAOYSA-N 0.000 description 2
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 2
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- HRHFUHGNTSSIFS-UHFFFAOYSA-N 2h-thiazine 1-oxide Chemical group O=S1NC=CC=C1 HRHFUHGNTSSIFS-UHFFFAOYSA-N 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- LDSVLEWRZRFOJA-UHFFFAOYSA-N 3-methoxyquinoxalin-5-amine hydrochloride Chemical compound Cl.C1=CC=C(N)C2=NC(OC)=CN=C21 LDSVLEWRZRFOJA-UHFFFAOYSA-N 0.000 description 2
- RERQSNVRWGQJNP-UHFFFAOYSA-N 3-methylquinoxalin-5-ol Chemical compound C1=CC=C(O)C2=NC(C)=CN=C21 RERQSNVRWGQJNP-UHFFFAOYSA-N 0.000 description 2
- FQYRLEXKXQRZDH-UHFFFAOYSA-N 4-aminoquinoline Chemical compound C1=CC=C2C(N)=CC=NC2=C1 FQYRLEXKXQRZDH-UHFFFAOYSA-N 0.000 description 2
- KNDOFJFSHZCKGT-UHFFFAOYSA-N 4-chloroquinoline Chemical compound C1=CC=C2C(Cl)=CC=NC2=C1 KNDOFJFSHZCKGT-UHFFFAOYSA-N 0.000 description 2
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- UUVDJIWRSIJEBS-UHFFFAOYSA-N 6-methoxypyridin-3-amine Chemical compound COC1=CC=C(N)C=N1 UUVDJIWRSIJEBS-UHFFFAOYSA-N 0.000 description 2
- DHLUJPLHLZJUBW-UHFFFAOYSA-N 6-methylpyridin-3-ol Chemical compound CC1=CC=C(O)C=N1 DHLUJPLHLZJUBW-UHFFFAOYSA-N 0.000 description 2
- WDYVUKGVKRZQNM-UHFFFAOYSA-N 6-phosphonohexylphosphonic acid Chemical compound OP(O)(=O)CCCCCCP(O)(O)=O WDYVUKGVKRZQNM-UHFFFAOYSA-N 0.000 description 2
- PVFOHMXILQEIHX-UHFFFAOYSA-N 8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9-[2-(2-bromophenyl)ethyl]purin-6-amine Chemical compound C=1C=2OCOC=2C=C(Br)C=1SC1=NC=2C(N)=NC=NC=2N1CCC1=CC=CC=C1Br PVFOHMXILQEIHX-UHFFFAOYSA-N 0.000 description 2
- RYFIADVLGWBMNU-UHFFFAOYSA-N 8-aminoquinoline-2-carbonitrile hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(N)=CC=CC2=C1 RYFIADVLGWBMNU-UHFFFAOYSA-N 0.000 description 2
- PSDXUQNRTQWSLD-UHFFFAOYSA-N 8-bromo-1-methoxyisoquinoline Chemical compound C1=CC(Br)=C2C(OC)=NC=CC2=C1 PSDXUQNRTQWSLD-UHFFFAOYSA-N 0.000 description 2
- NDFMRXCNPWFPDB-UHFFFAOYSA-N 8-bromo-2-methylisoquinolin-1-one Chemical compound C1=CC(Br)=C2C(=O)N(C)C=CC2=C1 NDFMRXCNPWFPDB-UHFFFAOYSA-N 0.000 description 2
- GKHHEHRICGMJJN-UHFFFAOYSA-N 8-bromo-2-oxidoisoquinolin-2-ium Chemical compound C1=CC=C(Br)C2=C[N+]([O-])=CC=C21 GKHHEHRICGMJJN-UHFFFAOYSA-N 0.000 description 2
- NQMZAFRCYDJSEU-UHFFFAOYSA-N 8-bromo-2h-isoquinolin-1-one Chemical compound C1=CNC(=O)C2=C1C=CC=C2Br NQMZAFRCYDJSEU-UHFFFAOYSA-N 0.000 description 2
- DPRIHFQFWWCIGY-UHFFFAOYSA-N 8-bromoisoquinoline Chemical compound C1=NC=C2C(Br)=CC=CC2=C1 DPRIHFQFWWCIGY-UHFFFAOYSA-N 0.000 description 2
- DNMMIDJMOWVQHR-UHFFFAOYSA-N 8-phenylmethoxy-1h-quinolin-2-one Chemical compound C=12NC(=O)C=CC2=CC=CC=1OCC1=CC=CC=C1 DNMMIDJMOWVQHR-UHFFFAOYSA-N 0.000 description 2
- ITLGQQXJCJLDLU-UHFFFAOYSA-N 8-tri(propan-2-yl)silyloxy-1h-quinoxalin-2-one Chemical compound N1=CC(=O)NC2=C1C=CC=C2O[Si](C(C)C)(C(C)C)C(C)C ITLGQQXJCJLDLU-UHFFFAOYSA-N 0.000 description 2
- FEJUGLKDZJDVFY-UHFFFAOYSA-N 9-borabicyclo(3.3.1)nonane Chemical compound C1CCC2CCCC1B2 FEJUGLKDZJDVFY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- LLJUFFHMWHWQJA-WGSAOQKQSA-N CC1=NC2=C(NC(=O)[C@H]3CC[C@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2C=C1 Chemical compound CC1=NC2=C(NC(=O)[C@H]3CC[C@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2C=C1 LLJUFFHMWHWQJA-WGSAOQKQSA-N 0.000 description 2
- SNBAARTUGRSOAH-CKQQTVSASA-N CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2C=C1 Chemical compound CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2C=C1 SNBAARTUGRSOAH-CKQQTVSASA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N CCC(C)C Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910004373 HOAc Inorganic materials 0.000 description 2
- 238000007341 Heck reaction Methods 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- 238000007239 Wittig reaction Methods 0.000 description 2
- NMQQBXHZBNUXGJ-SNAWJCMRSA-N [(1e)-buta-1,3-dienyl] acetate Chemical compound CC(=O)O\C=C\C=C NMQQBXHZBNUXGJ-SNAWJCMRSA-N 0.000 description 2
- HLZZEDGSLDMSLW-UHFFFAOYSA-N [5-(2-methoxy-2-oxoethoxy)-4-nitropyridin-2-yl]methyl 2,2,2-trifluoroacetate Chemical compound COC(=O)COC1=CN=C(COC(=O)C(F)(F)F)C=C1[N+]([O-])=O HLZZEDGSLDMSLW-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000006242 amine protecting group Chemical group 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 125000004540 benzothiazol-5-yl group Chemical group S1C=NC2=C1C=CC(=C2)* 0.000 description 2
- 150000003939 benzylamines Chemical class 0.000 description 2
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- RUEKPBLTWGFBOD-UHFFFAOYSA-N bromoethyne Chemical class BrC#C RUEKPBLTWGFBOD-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- KQIADDMXRMTWHZ-UHFFFAOYSA-N chloro-tri(propan-2-yl)silane Chemical compound CC(C)[Si](Cl)(C(C)C)C(C)C KQIADDMXRMTWHZ-UHFFFAOYSA-N 0.000 description 2
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 2
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical compound CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-N dichloropalladium;triphenylphosphanium Chemical compound Cl[Pd]Cl.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-N 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- ZXYAWONOWHSQRU-UHFFFAOYSA-N ethyl 4-oxocyclohexanecarboxylate Chemical compound CCOC(=O)C1CCC(=O)CC1 ZXYAWONOWHSQRU-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 238000006197 hydroboration reaction Methods 0.000 description 2
- RCBVKBFIWMOMHF-UHFFFAOYSA-L hydroxy-(hydroxy(dioxo)chromio)oxy-dioxochromium;pyridine Chemical compound C1=CC=NC=C1.C1=CC=NC=C1.O[Cr](=O)(=O)O[Cr](O)(=O)=O RCBVKBFIWMOMHF-UHFFFAOYSA-L 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229960004592 isopropanol Drugs 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- WZHGFLLEWTVYGT-UHFFFAOYSA-N isoquinolin-5-yl trifluoromethanesulfonate Chemical compound N1=CC=C2C(OS(=O)(=O)C(F)(F)F)=CC=CC2=C1 WZHGFLLEWTVYGT-UHFFFAOYSA-N 0.000 description 2
- BEJNERDRQOWKJM-UHFFFAOYSA-N kojic acid Chemical compound OCC1=CC(=O)C(O)=CO1 BEJNERDRQOWKJM-UHFFFAOYSA-N 0.000 description 2
- 229960004705 kojic acid Drugs 0.000 description 2
- WZNJWVWKTVETCG-UHFFFAOYSA-N kojic acid Natural products OC(=O)C(N)CN1C=CC(=O)C(O)=C1 WZNJWVWKTVETCG-UHFFFAOYSA-N 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- OZOAXHQNOFIFGD-UHFFFAOYSA-N manganese(2+) oxygen(2-) Chemical compound [O-2].[O-2].[Mn+2].[Mn+2] OZOAXHQNOFIFGD-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- UIAHQILQYROVCF-UHFFFAOYSA-N methyl 3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carboxylate Chemical compound S1CC(=O)NC2=NC(C(=O)OC)=CC=C21 UIAHQILQYROVCF-UHFFFAOYSA-N 0.000 description 2
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007248 oxidative elimination reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 150000003246 quinazolines Chemical class 0.000 description 2
- ZXZKYYHTWHJHFT-UHFFFAOYSA-N quinoline-2,8-diol Chemical compound C1=CC(=O)NC2=C1C=CC=C2O ZXZKYYHTWHJHFT-UHFFFAOYSA-N 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000006798 ring closing metathesis reaction Methods 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- ODZPKZBBUMBTMG-UHFFFAOYSA-N sodium amide Chemical compound [NH2-].[Na+] ODZPKZBBUMBTMG-UHFFFAOYSA-N 0.000 description 2
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical class OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- QGYXQBORNGRQOL-UHFFFAOYSA-N tert-butyl n-(4-carbamoyl-4-hydroxycyclohexyl)carbamate Chemical compound CC(C)(C)OC(=O)NC1CCC(O)(C(N)=O)CC1 QGYXQBORNGRQOL-UHFFFAOYSA-N 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- DUYAAUVXQSMXQP-UHFFFAOYSA-M thioacetate Chemical compound CC([S-])=O DUYAAUVXQSMXQP-UHFFFAOYSA-M 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 2
- UCPYLLCMEDAXFR-UHFFFAOYSA-N triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- RQEUFEKYXDPUSK-SSDOTTSWSA-N (1R)-1-phenylethanamine Chemical compound C[C@@H](N)C1=CC=CC=C1 RQEUFEKYXDPUSK-SSDOTTSWSA-N 0.000 description 1
- PURDIWZGVNFEAQ-JCCKDYPQSA-N (1R,3R,4R)-3-hydroxy-N-(2-methoxyquinolin-8-yl)-4-[(3-oxo-4H-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide dihydrochloride Chemical compound Cl.Cl.S1CC(=O)NC2=NC(CN[C@@H]3CC[C@H](C[C@H]3O)C(=O)NC3=CC=CC4=CC=C(N=C43)OC)=CC=C21 PURDIWZGVNFEAQ-JCCKDYPQSA-N 0.000 description 1
- UOWPTPDPHMAWQJ-FHXZZQJVSA-N (1R,3R,4R)-4-(2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethylamino)-3-methoxy-N-(2-methylquinolin-8-yl)cyclohexane-1-carboxamide dihydrochloride Chemical compound Cl.Cl.C1=C(C)N=C2C(NC(=O)[C@H]3C[C@H]([C@@H](CC3)NCC=3N=CC=4OCCOC=4C=3)OC)=CC=CC2=C1 UOWPTPDPHMAWQJ-FHXZZQJVSA-N 0.000 description 1
- QEKXSSQLPBEMSN-HNNHSSPDSA-N (1R,3S,4R)-3-fluoro-4-[(7-fluoro-3-oxo-4H-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]-N-(6-methoxy-1,5-naphthyridin-4-yl)cyclohexane-1-carboxamide dihydrochloride Chemical compound Cl.Cl.N1C(=O)CSC(C=C2F)=C1N=C2CN[C@@H]([C@@H](F)C1)CC[C@H]1C(=O)NC1=CC=NC2=CC=C(OC)N=C21 QEKXSSQLPBEMSN-HNNHSSPDSA-N 0.000 description 1
- SLUAOZTXXFFUCD-FOSCJKOFSA-N (1R,3S,4R)-N-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4H-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@@H]([C@@H](CC3)NCC=3N=C4NC(=O)CSC4=CC=3)O)=CC=CC2=C1 SLUAOZTXXFFUCD-FOSCJKOFSA-N 0.000 description 1
- VUSWCWPCANWBFG-LURJTMIESA-N (1r)-cyclohex-3-ene-1-carboxylic acid Chemical compound OC(=O)[C@@H]1CCC=CC1 VUSWCWPCANWBFG-LURJTMIESA-N 0.000 description 1
- LXVAOPZGBUUQRN-OPRDCNLKSA-N (1r,3r,4r)-3-methoxy-4-[(2-methylpropan-2-yl)oxycarbonylamino]cyclohexane-1-carboxylic acid Chemical compound CO[C@@H]1C[C@H](C(O)=O)CC[C@H]1NC(=O)OC(C)(C)C LXVAOPZGBUUQRN-OPRDCNLKSA-N 0.000 description 1
- BFYLHJBQELJERY-YRGRVCCFSA-N (1r,3r,4r)-4-amino-3-hydroxy-n-(2-methoxyquinolin-8-yl)cyclohexane-1-carboxamide Chemical compound C12=NC(OC)=CC=C2C=CC=C1NC(=O)[C@@H]1CC[C@@H](N)[C@H](O)C1 BFYLHJBQELJERY-YRGRVCCFSA-N 0.000 description 1
- UDUYQUOXAJUQRS-IIAWOOMASA-N (1r,3r,4r)-4-amino-3-methoxy-n-(2-methylquinolin-8-yl)cyclohexane-1-carboxamide Chemical compound C1C[C@@H](N)[C@H](OC)C[C@@H]1C(=O)NC1=CC=CC2=CC=C(C)N=C12 UDUYQUOXAJUQRS-IIAWOOMASA-N 0.000 description 1
- VCEBQXIJTUURIU-RUZUBIRVSA-N (1r,3s,4r)-3-fluoro-4-[[(1r)-1-phenylethyl]amino]cyclohexane-1-carboxamide Chemical compound N([C@H](C)C=1C=CC=CC=1)[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1F VCEBQXIJTUURIU-RUZUBIRVSA-N 0.000 description 1
- BMPYVQMSLYPACQ-OUAUKWLOSA-N (1r,3s,4r)-4-amino-3-fluoro-n-(6-methoxy-1,5-naphthyridin-4-yl)cyclohexane-1-carboxamide Chemical compound C12=NC(OC)=CC=C2N=CC=C1NC(=O)[C@@H]1CC[C@@H](N)[C@@H](F)C1 BMPYVQMSLYPACQ-OUAUKWLOSA-N 0.000 description 1
- PJGHLDIPRQYAIH-NGJCXOISSA-N (1r,3s,4r)-4-amino-3-fluorocyclohexane-1-carboxamide Chemical compound N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1F PJGHLDIPRQYAIH-NGJCXOISSA-N 0.000 description 1
- YSMWOYHRRDXMHI-KYOSRNDESA-N (1r,3s,4r)-4-amino-n-(2-cyanoquinolin-8-yl)-3-hydroxycyclohexane-1-carboxamide Chemical compound C1[C@H](O)[C@H](N)CC[C@H]1C(=O)NC1=CC=CC2=CC=C(C#N)N=C12 YSMWOYHRRDXMHI-KYOSRNDESA-N 0.000 description 1
- TWCUDQJQHQPHCP-FOSCJKOFSA-N (1r,3s,4r)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]oxazin-6-yl)methylamino]cyclohexane-1-carboxamide;hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@@H]([C@@H](CC3)NCC=3N=C4NC(=O)COC4=CC=3)O)=CC=CC2=C1 TWCUDQJQHQPHCP-FOSCJKOFSA-N 0.000 description 1
- JQOYNLFHBUSJOJ-FVAWRWOFSA-N (1r,3s,4r)-n-(2-cyanoquinolin-8-yl)-4-(2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethylamino)-3-hydroxycyclohexane-1-carboxamide;hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(NC(=O)[C@H]3C[C@@H]([C@@H](CC3)NCC=3N=CC=4OCCOC=4C=3)O)=CC=CC2=C1 JQOYNLFHBUSJOJ-FVAWRWOFSA-N 0.000 description 1
- VUSWCWPCANWBFG-ZCFIWIBFSA-N (1s)-cyclohex-3-ene-1-carboxylic acid Chemical compound OC(=O)[C@H]1CCC=CC1 VUSWCWPCANWBFG-ZCFIWIBFSA-N 0.000 description 1
- TWCUDQJQHQPHCP-KMBTUZTLSA-N (1s,3r,4s)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]oxazin-6-yl)methylamino]cyclohexane-1-carboxamide;hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(NC(=O)[C@@H]3C[C@H]([C@H](CC3)NCC=3N=C4NC(=O)COC4=CC=3)O)=CC=CC2=C1 TWCUDQJQHQPHCP-KMBTUZTLSA-N 0.000 description 1
- SLUAOZTXXFFUCD-KMBTUZTLSA-N (1s,3r,4s)-n-(2-cyanoquinolin-8-yl)-3-hydroxy-4-[(3-oxo-4h-pyrido[3,2-b][1,4]thiazin-6-yl)methylamino]cyclohexane-1-carboxamide;hydrochloride Chemical compound Cl.C1=C(C#N)N=C2C(NC(=O)[C@@H]3C[C@H]([C@H](CC3)NCC=3N=C4NC(=O)CSC4=CC=3)O)=CC=CC2=C1 SLUAOZTXXFFUCD-KMBTUZTLSA-N 0.000 description 1
- GGKJSDIZPPMNGO-UHFFFAOYSA-N (2-cyanoquinolin-8-yl) trifluoromethanesulfonate Chemical compound C1=C(C#N)N=C2C(OS(=O)(=O)C(F)(F)F)=CC=CC2=C1 GGKJSDIZPPMNGO-UHFFFAOYSA-N 0.000 description 1
- QQNOCRHKEMVIOL-UHFFFAOYSA-N (2-methylquinolin-8-yl) trifluoromethanesulfonate Chemical compound C1=CC=C(OS(=O)(=O)C(F)(F)F)C2=NC(C)=CC=C21 QQNOCRHKEMVIOL-UHFFFAOYSA-N 0.000 description 1
- HSSXBTKIXMMTQM-UHFFFAOYSA-N (2-methylquinoxalin-5-yl) trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC1=CC=CC2=NC(C)=CN=C21 HSSXBTKIXMMTQM-UHFFFAOYSA-N 0.000 description 1
- PWKYDNPNDOQIBY-UHFFFAOYSA-N (2-oxo-1h-pyrido[3,4-b][1,4]oxazin-7-yl)methyl acetate Chemical compound N1C(=O)COC2=C1C=C(COC(=O)C)N=C2 PWKYDNPNDOQIBY-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- SHOTUBZKFVJHOH-UHFFFAOYSA-N (3-methoxyquinoxalin-5-yl) trifluoromethanesulfonate Chemical compound C1=CC=C(OS(=O)(=O)C(F)(F)F)C2=NC(OC)=CN=C21 SHOTUBZKFVJHOH-UHFFFAOYSA-N 0.000 description 1
- VRWCCZHIYAZMHW-UHFFFAOYSA-N (3-methoxyquinoxalin-5-yl)oxy-tri(propan-2-yl)silane Chemical compound C1=CC=C(O[Si](C(C)C)(C(C)C)C(C)C)C2=NC(OC)=CN=C21 VRWCCZHIYAZMHW-UHFFFAOYSA-N 0.000 description 1
- YSDBXIDSIDDHIR-UHFFFAOYSA-N (3-methylquinoxalin-5-yl) trifluoromethanesulfonate Chemical compound C1=CC=C(OS(=O)(=O)C(F)(F)F)C2=NC(C)=CN=C21 YSDBXIDSIDDHIR-UHFFFAOYSA-N 0.000 description 1
- PPZNNZQHBXZAPS-UHFFFAOYSA-N (6-methoxy-1,5-naphthyridin-4-yl) trifluoromethanesulfonate Chemical compound N1=CC=C(OS(=O)(=O)C(F)(F)F)C2=NC(OC)=CC=C21 PPZNNZQHBXZAPS-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- 125000002030 1,2-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([*:2])C([H])=C1[H] 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- KFAJXZVDBVRZRC-UHFFFAOYSA-N 1,5-naphthyridin-4-amine Chemical compound C1=CN=C2C(N)=CC=NC2=C1 KFAJXZVDBVRZRC-UHFFFAOYSA-N 0.000 description 1
- ZWEHEHWBDZJTMU-UHFFFAOYSA-N 1,6-naphthyridin-4-amine 2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.C1=NC=C2C(N)=CC=NC2=C1 ZWEHEHWBDZJTMU-UHFFFAOYSA-N 0.000 description 1
- ZQGDSZPGKPJABN-UHFFFAOYSA-N 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane Chemical compound C1C[N+]2(CCl)CC[N+]1(F)CC2 ZQGDSZPGKPJABN-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- VEWRQVFSSBWVQM-UHFFFAOYSA-N 1-[2-(2-butoxyethenoxy)ethenoxy]butane Chemical class CCCCOC=COC=COCCCC VEWRQVFSSBWVQM-UHFFFAOYSA-N 0.000 description 1
- XLKNONXRVMGUBV-UHFFFAOYSA-N 1-methoxyisoquinolin-8-amine hydrochloride Chemical compound Cl.C1=CC(N)=C2C(OC)=NC=CC2=C1 XLKNONXRVMGUBV-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- ZFRUGZMCGCYBRC-UHFFFAOYSA-N 1h-1,8-naphthyridin-2-one Chemical compound C1=CC=NC2=NC(O)=CC=C21 ZFRUGZMCGCYBRC-UHFFFAOYSA-N 0.000 description 1
- UFMBERDMCRCVSM-UHFFFAOYSA-N 1h-cinnolin-4-one Chemical compound C1=CC=C2C(O)=CN=NC2=C1 UFMBERDMCRCVSM-UHFFFAOYSA-N 0.000 description 1
- AAILEWXSEQLMNI-UHFFFAOYSA-N 1h-pyridazin-6-one Chemical compound OC1=CC=CN=N1 AAILEWXSEQLMNI-UHFFFAOYSA-N 0.000 description 1
- AVRPFRMDMNDIDH-UHFFFAOYSA-N 1h-quinazolin-2-one Chemical compound C1=CC=CC2=NC(O)=NC=C21 AVRPFRMDMNDIDH-UHFFFAOYSA-N 0.000 description 1
- IFYTUUDFOJDWBQ-UHFFFAOYSA-N 2,2-diethoxyacetaldehyde Chemical compound CCOC(C=O)OCC IFYTUUDFOJDWBQ-UHFFFAOYSA-N 0.000 description 1
- AGLOTESXAWEWRC-UHFFFAOYSA-N 2,2-dimethyl-5-[(pyridin-4-ylamino)methylidene]-1,3-dioxane-4,6-dione Chemical compound O=C1OC(C)(C)OC(=O)C1=CNC1=CC=NC=C1 AGLOTESXAWEWRC-UHFFFAOYSA-N 0.000 description 1
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- GGUAZTMIVMFYRD-UHFFFAOYSA-N 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-amine dihydrochloride Chemical compound Cl.Cl.O1CCOC2=C1N=CC=C2N GGUAZTMIVMFYRD-UHFFFAOYSA-N 0.000 description 1
- MTZSLQPBGNIKBC-UHFFFAOYSA-N 2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethanol Chemical compound O1CCOC2=C1C=C(CO)N=C2 MTZSLQPBGNIKBC-UHFFFAOYSA-N 0.000 description 1
- GEJNFGKCZUPQIR-UHFFFAOYSA-N 2-(6-methyl-4-nitro-1-oxidopyridin-1-ium-3-yl)oxyacetic acid Chemical compound CC1=CC([N+]([O-])=O)=C(OCC(O)=O)C=[N+]1[O-] GEJNFGKCZUPQIR-UHFFFAOYSA-N 0.000 description 1
- ZGEXYNBHYVEWKT-UHFFFAOYSA-N 2-(hydroxymethyl)-5-phenylmethoxypyran-4-one Chemical compound O1C(CO)=CC(=O)C(OCC=2C=CC=CC=2)=C1 ZGEXYNBHYVEWKT-UHFFFAOYSA-N 0.000 description 1
- NBYLBWHHTUWMER-UHFFFAOYSA-N 2-Methylquinolin-8-ol Chemical compound C1=CC=C(O)C2=NC(C)=CC=C21 NBYLBWHHTUWMER-UHFFFAOYSA-N 0.000 description 1
- HEQOJEGTZCTHCF-UHFFFAOYSA-N 2-amino-1-phenylethanone Chemical compound NCC(=O)C1=CC=CC=C1 HEQOJEGTZCTHCF-UHFFFAOYSA-N 0.000 description 1
- KUCWUAFNGCMZDB-UHFFFAOYSA-N 2-amino-3-nitrophenol Chemical compound NC1=C(O)C=CC=C1[N+]([O-])=O KUCWUAFNGCMZDB-UHFFFAOYSA-N 0.000 description 1
- PRQDMSJEMCRFMI-UHFFFAOYSA-N 2-bromo-5-methoxyaniline Chemical compound COC1=CC=C(Br)C(N)=C1 PRQDMSJEMCRFMI-UHFFFAOYSA-N 0.000 description 1
- LSTRKXWIZZZYAS-UHFFFAOYSA-N 2-bromoacetyl bromide Chemical compound BrCC(Br)=O LSTRKXWIZZZYAS-UHFFFAOYSA-N 0.000 description 1
- IMRWILPUOVGIMU-UHFFFAOYSA-N 2-bromopyridine Chemical compound BrC1=CC=CC=N1 IMRWILPUOVGIMU-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical group FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- MTAODLNXWYIKSO-UHFFFAOYSA-N 2-fluoropyridine Chemical compound FC1=CC=CC=N1 MTAODLNXWYIKSO-UHFFFAOYSA-N 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- XYBYNVQWRLVUCY-UHFFFAOYSA-N 2-methoxy-1,5-naphthyridine Chemical class N1=CC=CC2=NC(OC)=CC=C21 XYBYNVQWRLVUCY-UHFFFAOYSA-N 0.000 description 1
- LYPPJFJJGKHTBY-UHFFFAOYSA-N 2-methylquinoxalin-5-amine dihydrochloride Chemical compound Cl.Cl.NC1=CC=CC2=NC(C)=CN=C21 LYPPJFJJGKHTBY-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- SGYPGBHZDCRYMW-UHFFFAOYSA-N 2-nitro-6-tri(propan-2-yl)silyloxyaniline Chemical compound CC(C)[Si](C(C)C)(C(C)C)OC1=CC=CC([N+]([O-])=O)=C1N SGYPGBHZDCRYMW-UHFFFAOYSA-N 0.000 description 1
- HHELSHHRDCODME-UHFFFAOYSA-N 2-o-benzyl 4-o-butyl 3-oxa-2-azabicyclo[2.2.2]oct-5-ene-2,4-dicarboxylate Chemical compound C1=CC(C(=O)OCCCC)(O2)CCC1N2C(=O)OCC1=CC=CC=C1 HHELSHHRDCODME-UHFFFAOYSA-N 0.000 description 1
- WNMJMALKSRJXGO-UHFFFAOYSA-N 2-oxo-1h-pyrido[2,3-b][1,4]thiazine-7-carbaldehyde Chemical compound S1CC(=O)NC2=CC(C=O)=CN=C21 WNMJMALKSRJXGO-UHFFFAOYSA-N 0.000 description 1
- DIAWKFCBVNKMDH-UHFFFAOYSA-N 2-oxo-1h-pyrido[2,3-b][1,4]thiazine-7-carboxylic acid Chemical compound S1CC(=O)NC2=CC(C(=O)O)=CN=C21 DIAWKFCBVNKMDH-UHFFFAOYSA-N 0.000 description 1
- NLXZSCLYIUHXMF-UHFFFAOYSA-N 2-oxo-1h-pyrido[3,4-b][1,4]oxazine-7-carbaldehyde Chemical compound N1C(=O)COC2=C1C=C(C=O)N=C2 NLXZSCLYIUHXMF-UHFFFAOYSA-N 0.000 description 1
- OYERWNJQHGYSPX-UHFFFAOYSA-N 2-oxo-1h-pyrido[3,4-b][1,4]thiazine-7-carbaldehyde Chemical compound N1C(=O)CSC2=C1C=C(C=O)N=C2 OYERWNJQHGYSPX-UHFFFAOYSA-N 0.000 description 1
- TYEYBOSBBBHJIV-UHFFFAOYSA-M 2-oxobutanoate Chemical compound CCC(=O)C([O-])=O TYEYBOSBBBHJIV-UHFFFAOYSA-M 0.000 description 1
- VSEMIHGYAJPPRV-UHFFFAOYSA-N 2-phenylmethoxycarbonyl-3-oxa-2-azabicyclo[2.2.2]oct-5-ene-4-carboxylic acid Chemical compound C1=CC(C(=O)O)(O2)CCC1N2C(=O)OCC1=CC=CC=C1 VSEMIHGYAJPPRV-UHFFFAOYSA-N 0.000 description 1
- ZNGINKJHQQQORD-UHFFFAOYSA-N 2-trimethylsilylethanol Chemical compound C[Si](C)(C)CCO ZNGINKJHQQQORD-UHFFFAOYSA-N 0.000 description 1
- ZPSJGADGUYYRKE-UHFFFAOYSA-N 2H-pyran-2-one Chemical compound O=C1C=CC=CO1 ZPSJGADGUYYRKE-UHFFFAOYSA-N 0.000 description 1
- MJNPHLBKHKJDEF-UHFFFAOYSA-N 2h-1$l^{4},2-benzothiazine 1-oxide Chemical class C1=CC=C2S(=O)NC=CC2=C1 MJNPHLBKHKJDEF-UHFFFAOYSA-N 0.000 description 1
- PCJFEVUKVKQSSL-UHFFFAOYSA-N 2h-1,2,4-oxadiazol-5-one Chemical class O=C1N=CNO1 PCJFEVUKVKQSSL-UHFFFAOYSA-N 0.000 description 1
- KZAUYOARHFOTAP-UHFFFAOYSA-N 3,4-dihydro-2h-pyrido[3,2-b][1,4]thiazin-6-ylmethanol Chemical compound S1CCNC2=NC(CO)=CC=C21 KZAUYOARHFOTAP-UHFFFAOYSA-N 0.000 description 1
- JCSVFXICFTVFIK-UHFFFAOYSA-N 3,4-dihydro-2h-pyrido[3,2-b][1,4]thiazine-6-carbaldehyde Chemical compound S1CCNC2=NC(C=O)=CC=C21 JCSVFXICFTVFIK-UHFFFAOYSA-N 0.000 description 1
- 125000004211 3,5-difluorophenyl group Chemical group [H]C1=C(F)C([H])=C(*)C([H])=C1F 0.000 description 1
- 150000003929 3-aminopyridines Chemical class 0.000 description 1
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 description 1
- QBPDSKPWYWIHGA-UHFFFAOYSA-N 3-hydroxy-2-nitropyridine Chemical compound OC1=CC=CN=C1[N+]([O-])=O QBPDSKPWYWIHGA-UHFFFAOYSA-N 0.000 description 1
- LYPGPVFFVUJFEV-UHFFFAOYSA-N 3-methoxyquinoxalin-5-ol Chemical compound C1=CC=C(O)C2=NC(OC)=CN=C21 LYPGPVFFVUJFEV-UHFFFAOYSA-N 0.000 description 1
- QZROVRBUQMOGJB-UHFFFAOYSA-N 3-methyl-1,2,3,4-tetrahydroquinoxalin-5-amine dihydrochloride Chemical compound Cl.Cl.C1=CC(N)=C2NC(C)CNC2=C1 QZROVRBUQMOGJB-UHFFFAOYSA-N 0.000 description 1
- GFOKXPFGXPYDMI-UHFFFAOYSA-N 3-methylquinoxalin-5-amine dihydrochloride Chemical compound Cl.Cl.C1=CC=C(N)C2=NC(C)=CN=C21 GFOKXPFGXPYDMI-UHFFFAOYSA-N 0.000 description 1
- GBOGHJYGGDERQX-UHFFFAOYSA-N 3-oxo-4h-1,4-benzothiazine-6-carbaldehyde Chemical compound S1CC(=O)NC2=CC(C=O)=CC=C21 GBOGHJYGGDERQX-UHFFFAOYSA-N 0.000 description 1
- NBIVLYUEDPRLGI-UHFFFAOYSA-N 3-oxo-4h-1,4-benzothiazine-6-carboxylic acid Chemical compound S1CC(=O)NC2=CC(C(=O)O)=CC=C21 NBIVLYUEDPRLGI-UHFFFAOYSA-N 0.000 description 1
- XOXXGNIBXYQQNS-UHFFFAOYSA-N 3-oxo-4h-pyrido[3,2-b][1,4]oxazine-6-carbaldehyde Chemical compound O1CC(=O)NC2=NC(C=O)=CC=C21 XOXXGNIBXYQQNS-UHFFFAOYSA-N 0.000 description 1
- SZHYPQDQYNLZJP-UHFFFAOYSA-N 3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carboxylic acid Chemical compound S1CC(=O)NC2=NC(C(=O)O)=CC=C21 SZHYPQDQYNLZJP-UHFFFAOYSA-N 0.000 description 1
- AMVLEBHYELFWJT-UHFFFAOYSA-N 3-propan-2-yloxy-4-tributylstannylcyclobut-3-ene-1,2-dione Chemical compound CCCC[Sn](CCCC)(CCCC)C1=C(OC(C)C)C(=O)C1=O AMVLEBHYELFWJT-UHFFFAOYSA-N 0.000 description 1
- LYTHCJIKESWMNL-UHFFFAOYSA-N 3-tri(propan-2-yl)silyloxybenzene-1,2-diamine Chemical compound CC(C)[Si](C(C)C)(C(C)C)OC1=CC=CC(N)=C1N LYTHCJIKESWMNL-UHFFFAOYSA-N 0.000 description 1
- LTZACGNRKOUJKO-UHFFFAOYSA-N 4-[(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino]benzonitrile Chemical compound O=C1OC(C)(C)OC(=O)C1=CNC1=CC=C(C#N)C=C1 LTZACGNRKOUJKO-UHFFFAOYSA-N 0.000 description 1
- KXMRDHPZQHAXML-UHFFFAOYSA-N 4-[(2-methylpropan-2-yl)oxycarbonylamino]cyclohexane-1-carboxylic acid Chemical compound CC(C)(C)OC(=O)NC1CCC(C(O)=O)CC1 KXMRDHPZQHAXML-UHFFFAOYSA-N 0.000 description 1
- GSSPMEVUYWMSAM-UHFFFAOYSA-N 4-amino-1-hydroxy-n-thieno[3,2-b]pyridin-7-ylcyclohexane-1-carboxamide Chemical compound C1CC(N)CCC1(O)C(=O)NC1=CC=NC2=C1SC=C2 GSSPMEVUYWMSAM-UHFFFAOYSA-N 0.000 description 1
- HEBWILXFWXHVGQ-UHFFFAOYSA-N 4-amino-n-(2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl)-1-hydroxycyclohexane-1-carboxamide Chemical compound C1CC(N)CCC1(O)C(=O)NC1=CC=NC2=C1OCCO2 HEBWILXFWXHVGQ-UHFFFAOYSA-N 0.000 description 1
- IHBJNWAMGUSAKC-UHFFFAOYSA-N 4-amino-n-(2-methylquinolin-8-yl)cyclohexane-1-carboxamide Chemical compound C12=NC(C)=CC=C2C=CC=C1NC(=O)C1CCC(N)CC1 IHBJNWAMGUSAKC-UHFFFAOYSA-N 0.000 description 1
- YBAZINRZQSAIAY-UHFFFAOYSA-N 4-aminobenzonitrile Chemical compound NC1=CC=C(C#N)C=C1 YBAZINRZQSAIAY-UHFFFAOYSA-N 0.000 description 1
- NUKYPUAOHBNCPY-UHFFFAOYSA-N 4-aminopyridine Chemical compound NC1=CC=NC=C1 NUKYPUAOHBNCPY-UHFFFAOYSA-N 0.000 description 1
- KDMQKHGRRGZUJW-UHFFFAOYSA-N 4-aminoquinoline-6-carbonitrile dihydrochloride Chemical compound Cl.Cl.C1=C(C#N)C=C2C(N)=CC=NC2=C1 KDMQKHGRRGZUJW-UHFFFAOYSA-N 0.000 description 1
- IQPRTBZXSSEENH-UHFFFAOYSA-N 4-bromo-1,6-naphthyridine Chemical compound C1=NC=C2C(Br)=CC=NC2=C1 IQPRTBZXSSEENH-UHFFFAOYSA-N 0.000 description 1
- YVSWTMODPAGYGD-UHFFFAOYSA-N 4-bromo-5-methoxyquinoline Chemical compound C1=CC(Br)=C2C(OC)=CC=CC2=N1 YVSWTMODPAGYGD-UHFFFAOYSA-N 0.000 description 1
- GFHZKMVPIQRHHT-UHFFFAOYSA-N 4-bromoquinoline-6-carbonitrile Chemical compound C1=C(C#N)C=C2C(Br)=CC=NC2=C1 GFHZKMVPIQRHHT-UHFFFAOYSA-N 0.000 description 1
- GVRRXASZZAKBMN-UHFFFAOYSA-N 4-chloroquinazoline Chemical compound C1=CC=C2C(Cl)=NC=NC2=C1 GVRRXASZZAKBMN-UHFFFAOYSA-N 0.000 description 1
- MBVFRSJFKMJRHA-UHFFFAOYSA-N 4-fluoro-1-benzofuran-7-carbaldehyde Chemical compound FC1=CC=C(C=O)C2=C1C=CO2 MBVFRSJFKMJRHA-UHFFFAOYSA-N 0.000 description 1
- DBJMEBUKQVZWMD-UHFFFAOYSA-N 4-methyl-1,4-benzoxazin-3-one Chemical compound C1=CC=C2N(C)C(=O)COC2=C1 DBJMEBUKQVZWMD-UHFFFAOYSA-N 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- LODIKMSUDZMCFF-UHFFFAOYSA-N 4-oxo-1h-1,5-naphthyridine-3-carboxylic acid Chemical compound C1=CN=C2C(=O)C(C(=O)O)=CNC2=C1 LODIKMSUDZMCFF-UHFFFAOYSA-N 0.000 description 1
- ZRQABNJYWSVSCU-UHFFFAOYSA-N 4-oxo-1h-quinoline-6-carbonitrile Chemical compound C1=C(C#N)C=C2C(O)=CC=NC2=C1 ZRQABNJYWSVSCU-UHFFFAOYSA-N 0.000 description 1
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 1
- FBXGQDUVJBKEAJ-UHFFFAOYSA-N 4h-oxazin-3-one Chemical compound O=C1CC=CON1 FBXGQDUVJBKEAJ-UHFFFAOYSA-N 0.000 description 1
- FHZIDNIJVVSXDL-UHFFFAOYSA-N 4h-pyrido[2,3-e]oxazin-3-one Chemical compound C1=CC=C2ONC(=O)CC2=N1 FHZIDNIJVVSXDL-UHFFFAOYSA-N 0.000 description 1
- YUVDZHWQKUGEJK-UHFFFAOYSA-N 4h-pyrido[2,3-e]thiazin-3-one Chemical compound C1=CC=C2SNC(=O)CC2=N1 YUVDZHWQKUGEJK-UHFFFAOYSA-N 0.000 description 1
- GTAWFIKDUIDKEP-UHFFFAOYSA-N 5-(anilinomethylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione Chemical class O=C1OC(C)(C)OC(=O)C1=CNC1=CC=CC=C1 GTAWFIKDUIDKEP-UHFFFAOYSA-N 0.000 description 1
- IWJLZADTSIIYBX-UHFFFAOYSA-N 5-(benzyloxy)-2-(hydroxymethyl)-1,4-dihydropyridin-4-one Chemical compound N1C(CO)=CC(=O)C(OCC=2C=CC=CC=2)=C1 IWJLZADTSIIYBX-UHFFFAOYSA-N 0.000 description 1
- DZTVOPXRDVPIGO-UHFFFAOYSA-N 5-[(2-bromo-5-methoxyanilino)methylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione Chemical compound COC1=CC=C(Br)C(NC=C2C(OC(C)(C)OC2=O)=O)=C1 DZTVOPXRDVPIGO-UHFFFAOYSA-N 0.000 description 1
- LXAHHHIGZXPRKQ-UHFFFAOYSA-N 5-fluoro-2-methylpyridine Chemical compound CC1=CC=C(F)C=N1 LXAHHHIGZXPRKQ-UHFFFAOYSA-N 0.000 description 1
- ZXGXDLPJGJQNFV-UHFFFAOYSA-N 5-methoxy-1h-quinolin-4-one Chemical compound N1C=CC(=O)C2=C1C=CC=C2OC ZXGXDLPJGJQNFV-UHFFFAOYSA-N 0.000 description 1
- QLUOSDWOSFEAIY-UHFFFAOYSA-N 5-methoxyquinolin-4-amine dihydrochloride Chemical compound Cl.Cl.C1=CC(N)=C2C(OC)=CC=CC2=N1 QLUOSDWOSFEAIY-UHFFFAOYSA-N 0.000 description 1
- YPXQSGWOGQPLQO-UHFFFAOYSA-N 5-nitro-1,3-dihydrobenzimidazole-2-thione Chemical compound [O-][N+](=O)C1=CC=C2N=C(S)NC2=C1 YPXQSGWOGQPLQO-UHFFFAOYSA-N 0.000 description 1
- FKPCCGJHCGMKGX-UHFFFAOYSA-N 5-tri(propan-2-yl)silyloxy-1h-quinoxalin-2-one Chemical compound N1C(=O)C=NC2=C1C=CC=C2O[Si](C(C)C)(C(C)C)C(C)C FKPCCGJHCGMKGX-UHFFFAOYSA-N 0.000 description 1
- FDHINJNZZCOWOA-UHFFFAOYSA-N 6-(hydroxymethyl)-4h-1,4-benzothiazin-3-one Chemical compound S1CC(=O)NC2=CC(CO)=CC=C21 FDHINJNZZCOWOA-UHFFFAOYSA-N 0.000 description 1
- QKCZJBYIJRYYFB-UHFFFAOYSA-N 6-(hydroxymethyl)-4h-pyrido[3,2-b][1,4]thiazin-3-one Chemical compound S1CC(=O)NC2=NC(CO)=CC=C21 QKCZJBYIJRYYFB-UHFFFAOYSA-N 0.000 description 1
- VPOGMOJKALOBMB-VOTSOKGWSA-N 6-[(e)-2-phenylethenyl]-4h-pyrido[3,2-b][1,4]oxazin-3-one Chemical compound N1=C2NC(=O)COC2=CC=C1\C=C\C1=CC=CC=C1 VPOGMOJKALOBMB-VOTSOKGWSA-N 0.000 description 1
- GSGNTVQLHGOEMB-UHFFFAOYSA-N 6-bromo-2-nitropyridin-3-ol Chemical compound OC1=CC=C(Br)N=C1[N+]([O-])=O GSGNTVQLHGOEMB-UHFFFAOYSA-N 0.000 description 1
- GDVHYNCHZKTTSQ-UHFFFAOYSA-N 6-bromo-4h-pyrido[3,2-b][1,4]oxazin-3-one Chemical compound O1CC(=O)NC2=NC(Br)=CC=C21 GDVHYNCHZKTTSQ-UHFFFAOYSA-N 0.000 description 1
- GDPLHNSXAWWKIF-UHFFFAOYSA-N 6-methoxy-1,5-naphthyridin-4-amine dihydrochloride Chemical compound Cl.Cl.N1=CC=C(N)C2=NC(OC)=CC=C21 GDPLHNSXAWWKIF-UHFFFAOYSA-N 0.000 description 1
- SSMACLPPRSQXHH-UHFFFAOYSA-N 6-methoxy-1h-1,5-naphthyridin-4-one Chemical compound N1C=CC(=O)C2=NC(OC)=CC=C21 SSMACLPPRSQXHH-UHFFFAOYSA-N 0.000 description 1
- RFESWJXQFMZDBQ-UHFFFAOYSA-N 6-methyl-1-oxidopyridin-1-ium-3-ol Chemical compound CC1=CC=C(O)C=[N+]1[O-] RFESWJXQFMZDBQ-UHFFFAOYSA-N 0.000 description 1
- 125000004939 6-pyridyl group Chemical group N1=CC=CC=C1* 0.000 description 1
- KKJXODIZHYFSRW-UHFFFAOYSA-N 7-(hydroxymethyl)-1h-pyrido[2,3-b][1,4]thiazin-2-one Chemical compound S1CC(=O)NC2=CC(CO)=CN=C21 KKJXODIZHYFSRW-UHFFFAOYSA-N 0.000 description 1
- CUKARVCBQGGDEI-UHFFFAOYSA-N 7-(hydroxymethyl)-1h-pyrido[3,4-b][1,4]oxazin-2-one Chemical compound N1C(=O)COC2=C1C=C(CO)N=C2 CUKARVCBQGGDEI-UHFFFAOYSA-N 0.000 description 1
- NLHODWKWTMTFEN-UHFFFAOYSA-N 7-bromothieno[3,2-b]pyridine Chemical compound BrC1=CC=NC2=C1SC=C2 NLHODWKWTMTFEN-UHFFFAOYSA-N 0.000 description 1
- CVXBIMCUQCZOKY-UHFFFAOYSA-N 7-chloro-3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carbaldehyde Chemical compound S1CC(=O)NC2=C1C=C(Cl)C(C=O)=N2 CVXBIMCUQCZOKY-UHFFFAOYSA-N 0.000 description 1
- AJXKJDTWXSWNQS-UHFFFAOYSA-N 7-chloro-3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carboxylic acid Chemical compound N1C(=O)CSC2=C1N=C(C(=O)O)C(Cl)=C2 AJXKJDTWXSWNQS-UHFFFAOYSA-N 0.000 description 1
- KNXYSRQZSMAUAC-UHFFFAOYSA-N 7-chloro-6-(hydroxymethyl)-4h-pyrido[3,2-b][1,4]thiazin-3-one Chemical compound N1C(=O)CSC2=C1N=C(CO)C(Cl)=C2 KNXYSRQZSMAUAC-UHFFFAOYSA-N 0.000 description 1
- FGIWHZJIOCBOTN-UHFFFAOYSA-N 7-fluoro-3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carbaldehyde Chemical compound S1CC(=O)NC2=C1C=C(F)C(C=O)=N2 FGIWHZJIOCBOTN-UHFFFAOYSA-N 0.000 description 1
- FMCLVJZLPOXRFY-UHFFFAOYSA-N 7-fluoro-3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carboxylic acid Chemical compound N1C(=O)CSC2=C1N=C(C(=O)O)C(F)=C2 FMCLVJZLPOXRFY-UHFFFAOYSA-N 0.000 description 1
- BYYZHGSYZQKRSB-UHFFFAOYSA-N 7-fluoro-6-(hydroxymethyl)-4h-pyrido[3,2-b][1,4]thiazin-3-one Chemical compound N1C(=O)CSC2=C1N=C(CO)C(F)=C2 BYYZHGSYZQKRSB-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- ULYRDGBNSLXTQX-UHFFFAOYSA-N 8-amino-2-methylisoquinolin-1-one hydrochloride Chemical compound Cl.C1=CC(N)=C2C(=O)N(C)C=CC2=C1 ULYRDGBNSLXTQX-UHFFFAOYSA-N 0.000 description 1
- PQOFEKZJAVOYID-UHFFFAOYSA-N 8-aminoquinoline-2-carbonitrile dihydrochloride Chemical compound Cl.Cl.C1=C(C#N)N=C2C(N)=CC=CC2=C1 PQOFEKZJAVOYID-UHFFFAOYSA-N 0.000 description 1
- NGHQXFDMTGXJAQ-UHFFFAOYSA-N 8-bromo-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine Chemical compound O1CCOC2=C1N=CC=C2Br NGHQXFDMTGXJAQ-UHFFFAOYSA-N 0.000 description 1
- AJYLXPGUZHOYLF-UHFFFAOYSA-N 8-bromo-5-methoxy-1h-quinolin-4-one Chemical compound N1C=CC(=O)C2=C1C(Br)=CC=C2OC AJYLXPGUZHOYLF-UHFFFAOYSA-N 0.000 description 1
- KUQKKIBQVSFDHX-UHFFFAOYSA-N 8-hydroxyquinoline-2-carbonitrile Chemical compound C1=C(C#N)N=C2C(O)=CC=CC2=C1 KUQKKIBQVSFDHX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-M Aminoacetate Chemical compound NCC([O-])=O DHMQDGOQFOQNFH-UHFFFAOYSA-M 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N Azide Chemical compound [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 238000006150 Bucherer-Bergs reaction Methods 0.000 description 1
- RHEBRLYIUMHWOZ-WFYGBVLNSA-M C.C=C/C=C/OC(C)=O.C=CC(=O)OCCCC.CC(C)(C)OC(=O)N[C@H]1CC[C@](O)(C(N)=O)CC1.CC(C)(C)OC(=O)OC(=O)OC(C)(C)C.CCCCOC(=O)C12C=CC(CC1)N(C(=O)OCC1=CC=CC=C1)O2.CCCCOC(=O)C1=CC=CCC1.CCCCOC(=O)C1CCC=CC1OC(C)=O.NC(=O)C12C=CC(CC1)N(C(=O)OCC1=CC=CC=C1)O2.O=C(OCC1=CC=CC=C1)N1OC2(C(=O)O)C=CC1CC2.O[Na] Chemical compound C.C=C/C=C/OC(C)=O.C=CC(=O)OCCCC.CC(C)(C)OC(=O)N[C@H]1CC[C@](O)(C(N)=O)CC1.CC(C)(C)OC(=O)OC(=O)OC(C)(C)C.CCCCOC(=O)C12C=CC(CC1)N(C(=O)OCC1=CC=CC=C1)O2.CCCCOC(=O)C1=CC=CCC1.CCCCOC(=O)C1CCC=CC1OC(C)=O.NC(=O)C12C=CC(CC1)N(C(=O)OCC1=CC=CC=C1)O2.O=C(OCC1=CC=CC=C1)N1OC2(C(=O)O)C=CC1CC2.O[Na] RHEBRLYIUMHWOZ-WFYGBVLNSA-M 0.000 description 1
- LZFXPTXNXSAEBA-HIOYLLSHSA-N C.C=C/C=C/OC(C)=O.C=CC(N)=O.CC(=O)OC1C=CCCC1C(N)=O.CC(C)(C)OC(=O)N[C@H]1CC[C@](O)(C(N)=O)CC1.CC(C)(C)OC(=O)OC(=O)OC(C)(C)C.NC(=O)C12C=CC(CC1)N(C(=O)OCC1=CC=CC=C1)O2.NC(=O)C1=CC=CCC1 Chemical compound C.C=C/C=C/OC(C)=O.C=CC(N)=O.CC(=O)OC1C=CCCC1C(N)=O.CC(C)(C)OC(=O)N[C@H]1CC[C@](O)(C(N)=O)CC1.CC(C)(C)OC(=O)OC(=O)OC(C)(C)C.NC(=O)C12C=CC(CC1)N(C(=O)OCC1=CC=CC=C1)O2.NC(=O)C1=CC=CCC1 LZFXPTXNXSAEBA-HIOYLLSHSA-N 0.000 description 1
- BHFZGRFIBXUSME-ASCWXXCKSA-M C.CB(O)N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1F.CBOOCB=O.CCOC(=O)C1CCC(=O)CC1.CCOC(=O)[C@@H]1CCC(=O)[C@@H](F)C1.CCOC(=O)[C@@H]1CC[C@@H](N[C@H](C)C2=CC=CC=C2)[C@@H](F)C1.CCOC(=O)[C@H]1CC=C(O[Si](C)(C)C)CC1.CN1CCCN(C)C1=O.C[C@@H](N[C@@H]1CC[C@@H](C(=O)O)C[C@@H]1F)C1=CC=CC=C1.C[C@@H](N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1F)C1=CC=CC=C1.NC(=O)[C@@H]1CC[C@@H](N)[C@@H](F)C1.[Li]O Chemical compound C.CB(O)N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1F.CBOOCB=O.CCOC(=O)C1CCC(=O)CC1.CCOC(=O)[C@@H]1CCC(=O)[C@@H](F)C1.CCOC(=O)[C@@H]1CC[C@@H](N[C@H](C)C2=CC=CC=C2)[C@@H](F)C1.CCOC(=O)[C@H]1CC=C(O[Si](C)(C)C)CC1.CN1CCCN(C)C1=O.C[C@@H](N[C@@H]1CC[C@@H](C(=O)O)C[C@@H]1F)C1=CC=CC=C1.C[C@@H](N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1F)C1=CC=CC=C1.NC(=O)[C@@H]1CC[C@@H](N)[C@@H](F)C1.[Li]O BHFZGRFIBXUSME-ASCWXXCKSA-M 0.000 description 1
- UMNQGAUYBFVLSK-UWAULANISA-N C1CCOC1.CC(C)(C)OC(=O)N[C@@H]1CC[C@@H](C(N)=O)C[C@H]1O.N.NC(=O)[C@@H]1CC[C@H](Br)[C@H](O)C1.O=C(O)C1CC=CCC1.O=C1O[C@@H]2C[C@H]1CC[C@@H]2Br.[N-]=[N+]=N[C@@H]1CC[C@@H](C(N)=O)C[C@H]1O.[N-]=[N+]=N[Na] Chemical compound C1CCOC1.CC(C)(C)OC(=O)N[C@@H]1CC[C@@H](C(N)=O)C[C@H]1O.N.NC(=O)[C@@H]1CC[C@H](Br)[C@H](O)C1.O=C(O)C1CC=CCC1.O=C1O[C@@H]2C[C@H]1CC[C@@H]2Br.[N-]=[N+]=N[C@@H]1CC[C@@H](C(N)=O)C[C@H]1O.[N-]=[N+]=N[Na] UMNQGAUYBFVLSK-UWAULANISA-N 0.000 description 1
- QTRHBYLGQZLWAF-HAQNSBGRSA-N C1C[C@@H](N)CC[C@@H]1C(=O)NC1=CC=NC2=CC=CC=C12 Chemical compound C1C[C@@H](N)CC[C@@H]1C(=O)NC1=CC=NC2=CC=CC=C12 QTRHBYLGQZLWAF-HAQNSBGRSA-N 0.000 description 1
- RYQNNYQPUOGRFO-SHTZXODSSA-N CC(C)(C)OC(=O)N[C@H]1CC[C@@H](CC1)C(=O)Nc1ccnc2ccccc12 Chemical compound CC(C)(C)OC(=O)N[C@H]1CC[C@@H](CC1)C(=O)Nc1ccnc2ccccc12 RYQNNYQPUOGRFO-SHTZXODSSA-N 0.000 description 1
- RHYKRLMXJWIJNY-UHFFFAOYSA-N CC(C)=C(C)C(C)[Rh].CC([RaH])OC=O.CC([RaH])OCOC1=CC=CC=C1.CCC(=O)CC.CCN(C)[Re].CCO[Rf].[RbH] Chemical compound CC(C)=C(C)C(C)[Rh].CC([RaH])OC=O.CC([RaH])OCOC1=CC=CC=C1.CCC(=O)CC.CCN(C)[Re].CCO[Rf].[RbH] RHYKRLMXJWIJNY-UHFFFAOYSA-N 0.000 description 1
- QYIOFABFKUOIBV-UHFFFAOYSA-N CC1=C(C)OC(=O)O1 Chemical compound CC1=C(C)OC(=O)O1 QYIOFABFKUOIBV-UHFFFAOYSA-N 0.000 description 1
- ATBQCXOGOSZDPL-FVAWRWOFSA-N CC1=CC=C(C=CC=C2N)C2=N1.N#CC1=CC=C(C=CC=C2NC([C@H](CC[C@H]3NCC(N=C4)=CC5=C4OCCO5)C[C@@H]3O)=O)C2=N1 Chemical compound CC1=CC=C(C=CC=C2N)C2=N1.N#CC1=CC=C(C=CC=C2NC([C@H](CC[C@H]3NCC(N=C4)=CC5=C4OCCO5)C[C@@H]3O)=O)C2=N1 ATBQCXOGOSZDPL-FVAWRWOFSA-N 0.000 description 1
- GRALZRKDLRAHHL-UHFFFAOYSA-N CC1=CC=NC2=CC=CC=C12.O=C1C=CNC2=CC=CC=C12 Chemical compound CC1=CC=NC2=CC=CC=C12.O=C1C=CNC2=CC=CC=C12 GRALZRKDLRAHHL-UHFFFAOYSA-N 0.000 description 1
- QUNQOHIIRYOZRL-CKQQTVSASA-N CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)CC3)C=CC=C2C=C1 Chemical compound CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)CC3)C=CC=C2C=C1 QUNQOHIIRYOZRL-CKQQTVSASA-N 0.000 description 1
- LZLYVCNHNICAMX-RWXRFDSASA-N CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2N=C1 Chemical compound CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2N=C1 LZLYVCNHNICAMX-RWXRFDSASA-N 0.000 description 1
- JMVPJUYYBSGONA-CKQQTVSASA-N CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCC(=O)NC5=C4)CC3)C=CC=C2C=C1 Chemical compound CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCC(=O)NC5=C4)CC3)C=CC=C2C=C1 JMVPJUYYBSGONA-CKQQTVSASA-N 0.000 description 1
- PGOCOUCDFIYOBE-HMRCJKRNSA-N CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2C=C1 Chemical compound CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2C=C1 PGOCOUCDFIYOBE-HMRCJKRNSA-N 0.000 description 1
- YSDYCFQXUAGHPJ-ONEIWYMKSA-N CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2N=C1 Chemical compound CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2N=C1 YSDYCFQXUAGHPJ-ONEIWYMKSA-N 0.000 description 1
- KHVONNZSSLUIIN-RWXRFDSASA-N CC1=NC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)=C2N=C1 Chemical compound CC1=NC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)=C2N=C1 KHVONNZSSLUIIN-RWXRFDSASA-N 0.000 description 1
- DCWOSFPBQFVIAN-WAOZNNHRSA-N CC1CNC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)CC3)=C2N1 Chemical compound CC1CNC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)CC3)=C2N1 DCWOSFPBQFVIAN-WAOZNNHRSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N CCCC(C)C Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- OYTQTKZVZMWZJN-NDQYQSCMSA-N CN1C=CC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)=C2C1=O Chemical compound CN1C=CC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)=C2C1=O OYTQTKZVZMWZJN-NDQYQSCMSA-N 0.000 description 1
- ONYPDZMHNCFKOW-AHPHSXTOSA-N COC1=C2C(=CC=C1)N=CC=C2NC(=O)[C@]1(O)CC[C@@H](NCC2=CC=C3SCC(=O)NC3=N2)CC1 Chemical compound COC1=C2C(=CC=C1)N=CC=C2NC(=O)[C@]1(O)CC[C@@H](NCC2=CC=C3SCC(=O)NC3=N2)CC1 ONYPDZMHNCFKOW-AHPHSXTOSA-N 0.000 description 1
- LFNBWTDYPQFCIG-ZVWHWTBFSA-N COC1=CC=C2C=CC=C(CC[C@]3(O)CC[C@@H](NCC4=C[SH]=C5SCC(=O)NC5=C4)CC3)C2=N1 Chemical compound COC1=CC=C2C=CC=C(CC[C@]3(O)CC[C@@H](NCC4=C[SH]=C5SCC(=O)NC5=C4)CC3)C2=N1 LFNBWTDYPQFCIG-ZVWHWTBFSA-N 0.000 description 1
- RDZNOWLQQWAKKF-VLZXCDOPSA-N COC1=CC=C2C=CC=C(CC[C@]3(O)CC[C@@H](NCC4=NC5=C(C=C4)OCC(=O)N5)CC3)C2=N1 Chemical compound COC1=CC=C2C=CC=C(CC[C@]3(O)CC[C@@H](NCC4=NC5=C(C=C4)OCC(=O)N5)CC3)C2=N1 RDZNOWLQQWAKKF-VLZXCDOPSA-N 0.000 description 1
- RQMFEAXTUTVMBD-VLZXCDOPSA-N COC1=CC=C2C=CC=C(CC[C@]3(O)CC[C@@H](NCC4=NC5=C(C=C4)SCC(=O)N5)CC3)C2=N1 Chemical compound COC1=CC=C2C=CC=C(CC[C@]3(O)CC[C@@H](NCC4=NC5=C(C=C4)SCC(=O)N5)CC3)C2=N1 RQMFEAXTUTVMBD-VLZXCDOPSA-N 0.000 description 1
- FTJBNQPWCODAJN-AHPHSXTOSA-N COC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=C(Cl)C=C5SCC(=O)NC5=N4)CC3)C2=N1 Chemical compound COC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=C(Cl)C=C5SCC(=O)NC5=N4)CC3)C2=N1 FTJBNQPWCODAJN-AHPHSXTOSA-N 0.000 description 1
- GZMYQONOQCZUCJ-AHPHSXTOSA-N COC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=C(F)C=C5SCC(=O)NC5=N4)CC3)C2=N1 Chemical compound COC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=C(F)C=C5SCC(=O)NC5=N4)CC3)C2=N1 GZMYQONOQCZUCJ-AHPHSXTOSA-N 0.000 description 1
- XEEHQKQGAJENMH-VNQPRFMTSA-N COC1=CC=C2N=CC=C(NC(=O)[C@@H]3CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)[C@@H](F)C3)C2=N1 Chemical compound COC1=CC=C2N=CC=C(NC(=O)[C@@H]3CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)[C@@H](F)C3)C2=N1 XEEHQKQGAJENMH-VNQPRFMTSA-N 0.000 description 1
- YMWZZJBCBFHEOY-NDQYQSCMSA-N COC1=NC2=C(C=CC=C2NC(=O)[C@]2(O)CC[C@@H](NCC3=CC=C4OCC(=O)NC4=N3)CC2)C=C1 Chemical compound COC1=NC2=C(C=CC=C2NC(=O)[C@]2(O)CC[C@@H](NCC3=CC=C4OCC(=O)NC4=N3)CC2)C=C1 YMWZZJBCBFHEOY-NDQYQSCMSA-N 0.000 description 1
- LWYLFRPGSJZKJC-NDQYQSCMSA-N COC1=NC2=C(C=CC=C2NC(=O)[C@]2(O)CC[C@@H](NCC3=CC=C4SCC(=O)NC4=N3)CC2)C=C1 Chemical compound COC1=NC2=C(C=CC=C2NC(=O)[C@]2(O)CC[C@@H](NCC3=CC=C4SCC(=O)NC4=N3)CC2)C=C1 LWYLFRPGSJZKJC-NDQYQSCMSA-N 0.000 description 1
- MCGWKWVAMHWHEZ-CKQQTVSASA-N COC1=NC2=C(C=CC=C2NC(=O)[C@]2(O)CC[C@@H](NCC3=CC=C4SCCNC4=N3)CC2)C=C1 Chemical compound COC1=NC2=C(C=CC=C2NC(=O)[C@]2(O)CC[C@@H](NCC3=CC=C4SCCNC4=N3)CC2)C=C1 MCGWKWVAMHWHEZ-CKQQTVSASA-N 0.000 description 1
- AVSYPOXRWZTUDM-XCNUYCIISA-N COC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2N=C1 Chemical compound COC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2N=C1 AVSYPOXRWZTUDM-XCNUYCIISA-N 0.000 description 1
- FQZWWLGRHGNWBG-RWXRFDSASA-N COC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2N=C1 Chemical compound COC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C=CC=C2N=C1 FQZWWLGRHGNWBG-RWXRFDSASA-N 0.000 description 1
- PRTASUDUWLQASR-NDQYQSCMSA-N COC1=NC=CC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)=C21 Chemical compound COC1=NC=CC2=CC=CC(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)=C21 PRTASUDUWLQASR-NDQYQSCMSA-N 0.000 description 1
- SODCMJHMATZOMX-SYYKKAFVSA-N CO[C@@H]1C[C@H](C(=O)NC2=C3N=C(C)C=CC3=CC=C2)CC[C@H]1NCC1=NC=C2OCCOC2=C1 Chemical compound CO[C@@H]1C[C@H](C(=O)NC2=C3N=C(C)C=CC3=CC=C2)CC[C@H]1NCC1=NC=C2OCCOC2=C1 SODCMJHMATZOMX-SYYKKAFVSA-N 0.000 description 1
- PQBANGYLXGRQLC-GHMZBOCLSA-N C[C@H](CC1(CC1)CC1)[C@@H]1NC(OC(C)(C)C)=O Chemical compound C[C@H](CC1(CC1)CC1)[C@@H]1NC(OC(C)(C)C)=O PQBANGYLXGRQLC-GHMZBOCLSA-N 0.000 description 1
- MLRSBOXAULGMEF-QYNIQEEDSA-N C[C@H](C[C@@H](CC1)C(O)=O)[C@H]1Br Chemical compound C[C@H](C[C@@H](CC1)C(O)=O)[C@H]1Br MLRSBOXAULGMEF-QYNIQEEDSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 description 1
- AHFWWOMELFCDEN-HLDGVKIBSA-N Cl.Cl.S1CC(=O)NC2=NC(CN[C@H]3CC[C@@H](CC3)C(NC=3C4=CC=CC=C4N=CC=3)=O)=CC=C21 Chemical compound Cl.Cl.S1CC(=O)NC2=NC(CN[C@H]3CC[C@@H](CC3)C(NC=3C4=CC=CC=C4N=CC=3)=O)=CC=C21 AHFWWOMELFCDEN-HLDGVKIBSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 241000495778 Escherichia faecalis Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 102000020897 Formins Human genes 0.000 description 1
- 108091022623 Formins Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 229940123930 Lactamase inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- 238000006751 Mitsunobu reaction Methods 0.000 description 1
- MOPYRFYABZQIGN-XFQXTVEOSA-N N#CC1=CC=C2C=CC=C(NC(=O)[C@@H]3CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)[C@H](O)C3)C2=N1 Chemical compound N#CC1=CC=C2C=CC=C(NC(=O)[C@@H]3CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)[C@H](O)C3)C2=N1 MOPYRFYABZQIGN-XFQXTVEOSA-N 0.000 description 1
- KZZVXFSBZCRNEP-BSIFCXSSSA-N N#CC1=CC=C2C=CC=C(NC(=O)[C@@H]3CC[C@@H](NCC4=NC=C5OCCOC5=C4)[C@@H](O)C3)C2=N1 Chemical compound N#CC1=CC=C2C=CC=C(NC(=O)[C@@H]3CC[C@@H](NCC4=NC=C5OCCOC5=C4)[C@@H](O)C3)C2=N1 KZZVXFSBZCRNEP-BSIFCXSSSA-N 0.000 description 1
- AANHPTUVTCXZAZ-NDQYQSCMSA-N N#CC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)CC3)C2=N1 Chemical compound N#CC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5OCC(=O)NC5=N4)CC3)C2=N1 AANHPTUVTCXZAZ-NDQYQSCMSA-N 0.000 description 1
- SFYITKLJCBXUEI-CKQQTVSASA-N N#CC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C2=N1 Chemical compound N#CC1=CC=C2C=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=NC=C5OCCOC5=C4)CC3)C2=N1 SFYITKLJCBXUEI-CKQQTVSASA-N 0.000 description 1
- RLHKMLMBUQQWPL-NDQYQSCMSA-N N#CC1=CC=C2N=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C2=C1 Chemical compound N#CC1=CC=C2N=CC=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C2=C1 RLHKMLMBUQQWPL-NDQYQSCMSA-N 0.000 description 1
- WVPXDONLVBCBKS-NDQYQSCMSA-N N#CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2C=C1 Chemical compound N#CC1=NC2=C(NC(=O)[C@]3(O)CC[C@@H](NCC4=CC=C5SCC(=O)NC5=N4)CC3)C=CC=C2C=C1 WVPXDONLVBCBKS-NDQYQSCMSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000007930 O-acyl isoureas Chemical class 0.000 description 1
- JSJAAJHXRYKWKX-UHFFFAOYSA-N O=C1C=CNC2=CC=CC=C12.[H]C1=CC=CC=C1N([H])C=C1C(=O)OC(C)(C)OC1=O.[H]C1=CC=CC=C1N([H])[H] Chemical compound O=C1C=CNC2=CC=CC=C12.[H]C1=CC=CC=C1N([H])C=C1C(=O)OC(C)(C)OC1=O.[H]C1=CC=CC=C1N([H])[H] JSJAAJHXRYKWKX-UHFFFAOYSA-N 0.000 description 1
- ZFQISHPYIAWSLZ-GPCKLQJOSA-N O=C1COC2=CC=C(CN[C@H]3CC[C@](O)(C(=O)NC4=CC=NC5=CC=NC=C54)CC3)N=C2N1 Chemical compound O=C1COC2=CC=C(CN[C@H]3CC[C@](O)(C(=O)NC4=CC=NC5=CC=NC=C54)CC3)N=C2N1 ZFQISHPYIAWSLZ-GPCKLQJOSA-N 0.000 description 1
- DNOMRFCPHXQUGT-UHFFFAOYSA-N O=C1CSC2=CC=C(CNC3CCC(C(=O)NC4=CC=CC5=CN=CC=C54)CC3)C=C2N1 Chemical compound O=C1CSC2=CC=C(CNC3CCC(C(=O)NC4=CC=CC5=CN=CC=C54)CC3)C=C2N1 DNOMRFCPHXQUGT-UHFFFAOYSA-N 0.000 description 1
- DFRVXTBSPXQGHA-NHPVSCMHSA-N O=C1CSC2=CC=C(CN[C@H]3CC[C@](O)(C(=O)NC4=CC=NC5=C4OCCO5)CC3)N=C2N1 Chemical compound O=C1CSC2=CC=C(CN[C@H]3CC[C@](O)(C(=O)NC4=CC=NC5=C4OCCO5)CC3)N=C2N1 DFRVXTBSPXQGHA-NHPVSCMHSA-N 0.000 description 1
- CBTSVFYGRKJEQE-NHPVSCMHSA-N O=C1CSC2=CC=C(CN[C@H]3CC[C@](O)(C(=O)NC4=CC=NC5=C4SC=C5)CC3)N=C2N1 Chemical compound O=C1CSC2=CC=C(CN[C@H]3CC[C@](O)(C(=O)NC4=CC=NC5=C4SC=C5)CC3)N=C2N1 CBTSVFYGRKJEQE-NHPVSCMHSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 238000006680 Reformatsky reaction Methods 0.000 description 1
- 229910006024 SO2Cl2 Inorganic materials 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 238000003477 Sonogashira cross-coupling reaction Methods 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- VKIJXFIYBAYHOE-VOTSOKGWSA-N [(e)-2-phenylethenyl]boronic acid Chemical compound OB(O)\C=C\C1=CC=CC=C1 VKIJXFIYBAYHOE-VOTSOKGWSA-N 0.000 description 1
- QWRYXSDXSBMOOL-UHFFFAOYSA-N [1,4]dioxino[2,3-b]pyridine Chemical group C1=CC=C2OC=COC2=N1 QWRYXSDXSBMOOL-UHFFFAOYSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- ZKJOXOJMGXFSPF-QYZPTAICSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate;hydrate Chemical compound O.NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 ZKJOXOJMGXFSPF-QYZPTAICSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- HXZMLYBQKFYVNJ-UCJNAMPQSA-N acetic acid;(1r,3s,4r)-3-fluoro-4-[[(1r)-1-phenylethyl]amino]cyclohexane-1-carboxylic acid Chemical compound CC(O)=O.N([C@H](C)C=1C=CC=CC=1)[C@@H]1CC[C@@H](C(O)=O)C[C@@H]1F HXZMLYBQKFYVNJ-UCJNAMPQSA-N 0.000 description 1
- QQTTWSPCIIBGMK-RYLOHDEPSA-N acetic acid;methyl (1r,3r,4r)-4-amino-3-hydroxycyclohexane-1-carboxylate Chemical compound CC(O)=O.COC(=O)[C@@H]1CC[C@@H](N)[C@H](O)C1 QQTTWSPCIIBGMK-RYLOHDEPSA-N 0.000 description 1
- QQTVULAMCGLGLN-UHFFFAOYSA-N acetonitrile;tetrachloromethane;hydrate Chemical compound O.CC#N.ClC(Cl)(Cl)Cl QQTVULAMCGLGLN-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 238000007098 aminolysis reaction Methods 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000004190 benzothiazol-2-yl group Chemical group [H]C1=C([H])C([H])=C2N=C(*)SC2=C1[H] 0.000 description 1
- OKQSIIZUIIHAAJ-UHFFFAOYSA-N benzyl 4-carbamoyl-3-oxa-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylate Chemical compound C1=CC(C(=O)N)(O2)CCC1N2C(=O)OCC1=CC=CC=C1 OKQSIIZUIIHAAJ-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- PQBSPTAPCMSZAA-UHFFFAOYSA-N benzyl n-hydroxycarbamate Chemical compound ONC(=O)OCC1=CC=CC=C1 PQBSPTAPCMSZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- NMQQBXHZBNUXGJ-UHFFFAOYSA-N buta-1,3-dienyl acetate Chemical compound CC(=O)OC=CC=C NMQQBXHZBNUXGJ-UHFFFAOYSA-N 0.000 description 1
- HGXJOXHYPGNVNK-UHFFFAOYSA-N butane;ethenoxyethane;tin Chemical compound CCCC[Sn](CCCC)(CCCC)C(=C)OCC HGXJOXHYPGNVNK-UHFFFAOYSA-N 0.000 description 1
- NWCPGWHEGZTLNQ-UHFFFAOYSA-N butyl 2-acetyloxycyclohex-3-ene-1-carboxylate Chemical compound CCCCOC(=O)C1CCC=CC1OC(C)=O NWCPGWHEGZTLNQ-UHFFFAOYSA-N 0.000 description 1
- MPOUJKQFBFWRKD-UHFFFAOYSA-N butyl cyclohexa-1,3-diene-1-carboxylate Chemical compound CCCCOC(=O)C1=CC=CCC1 MPOUJKQFBFWRKD-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- PSEHHVRCDVOTID-UHFFFAOYSA-N chloro-bis(4,6,6-trimethyl-3-bicyclo[3.1.1]heptanyl)borane Chemical compound CC1C(C2(C)C)CC2CC1B(Cl)C(C1C)CC2C(C)(C)C1C2 PSEHHVRCDVOTID-UHFFFAOYSA-N 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- VTHIKKVKIVQWHV-UHFFFAOYSA-N chromium(6+) oxygen(2-) pyridine Chemical compound [O-2].[O-2].[O-2].[Cr+6].C1=CC=NC=C1 VTHIKKVKIVQWHV-UHFFFAOYSA-N 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- 125000004242 cinnolin-3-yl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)N=NC2=C1[H] 0.000 description 1
- DODZTSARNRLOKY-UHFFFAOYSA-N cinnolin-4-amine Chemical class C1=CC=C2C(N)=CN=NC2=C1 DODZTSARNRLOKY-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 238000007883 cyanide addition reaction Methods 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- TZHJGWPQVUHMOX-UHFFFAOYSA-N cyclohexanecarboxylic acid;oxirane Chemical compound C1CO1.OC(=O)C1CCCCC1 TZHJGWPQVUHMOX-UHFFFAOYSA-N 0.000 description 1
- KLTWJZTUJHGCSJ-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1.OC1CCCCC1 KLTWJZTUJHGCSJ-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000007269 dehydrobromination reaction Methods 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- XXTZHYXQVWRADW-UHFFFAOYSA-N diazomethanone Chemical class [N]N=C=O XXTZHYXQVWRADW-UHFFFAOYSA-N 0.000 description 1
- KVBKAPANDHPRDG-UHFFFAOYSA-N dibromotetrafluoroethane Chemical compound FC(F)(Br)C(F)(F)Br KVBKAPANDHPRDG-UHFFFAOYSA-N 0.000 description 1
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 1
- GRTGGSXWHGKRSB-UHFFFAOYSA-N dichloromethyl methyl ether Chemical compound COC(Cl)Cl GRTGGSXWHGKRSB-UHFFFAOYSA-N 0.000 description 1
- GDTRAYDPXKZJGD-UHFFFAOYSA-N dichlorophosphoryl hypochlorite Chemical compound ClOP(Cl)(Cl)=O GDTRAYDPXKZJGD-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- LTMHNWPUDSTBKD-UHFFFAOYSA-N diethyl 2-(ethoxymethylidene)propanedioate Chemical compound CCOC=C(C(=O)OCC)C(=O)OCC LTMHNWPUDSTBKD-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- 125000006264 diethylaminomethyl group Chemical group [H]C([H])([H])C([H])([H])N(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 125000004310 dioxan-2-yl group Chemical group [H]C1([H])OC([H])([H])C([H])(*)OC1([H])[H] 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- ODCCJTMPMUFERV-UHFFFAOYSA-N ditert-butyl carbonate Chemical compound CC(C)(C)OC(=O)OC(C)(C)C ODCCJTMPMUFERV-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- ZRSDQBKGDNPFLT-UHFFFAOYSA-N ethanol;oxolane Chemical compound CCO.C1CCOC1 ZRSDQBKGDNPFLT-UHFFFAOYSA-N 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- YTLZLRXTTPBZRD-JTQLQIEISA-N ethyl (1r)-4-trimethylsilyloxycyclohex-3-ene-1-carboxylate Chemical compound CCOC(=O)[C@@H]1CCC(O[Si](C)(C)C)=CC1 YTLZLRXTTPBZRD-JTQLQIEISA-N 0.000 description 1
- UNBKJAYBXIHEBK-RQJHMYQMSA-N ethyl (1r,3s)-3-fluoro-4-oxocyclohexane-1-carboxylate Chemical compound CCOC(=O)[C@@H]1CCC(=O)[C@@H](F)C1 UNBKJAYBXIHEBK-RQJHMYQMSA-N 0.000 description 1
- QBXCKBMORPBKMK-DMRZNYOFSA-N ethyl (1r,3s,4r)-3-fluoro-4-[[(1r)-1-phenylethyl]amino]cyclohexane-1-carboxylate Chemical compound F[C@H]1C[C@H](C(=O)OCC)CC[C@H]1N[C@H](C)C1=CC=CC=C1 QBXCKBMORPBKMK-DMRZNYOFSA-N 0.000 description 1
- HZONUGDFRUXYSA-UHFFFAOYSA-N ethyl 2-(6-bromo-2-nitropyridin-3-yl)oxyacetate Chemical compound CCOC(=O)COC1=CC=C(Br)N=C1[N+]([O-])=O HZONUGDFRUXYSA-UHFFFAOYSA-N 0.000 description 1
- ANQVKHGDALCPFZ-UHFFFAOYSA-N ethyl 2-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]acetate Chemical compound C1=C2NC(CC(=O)OCC)=NC2=CC=C1N1CCN(C)CC1 ANQVKHGDALCPFZ-UHFFFAOYSA-N 0.000 description 1
- PVBRSNZAOAJRKO-UHFFFAOYSA-N ethyl 2-sulfanylacetate Chemical compound CCOC(=O)CS PVBRSNZAOAJRKO-UHFFFAOYSA-N 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- UAYKGOMDUQLCJS-UHFFFAOYSA-N ethylsulfanyl acetate Chemical compound CCSOC(C)=O UAYKGOMDUQLCJS-UHFFFAOYSA-N 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 229960004979 fampridine Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002332 glycine derivatives Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 238000006077 hetero Diels-Alder cycloaddition reaction Methods 0.000 description 1
- 125000005223 heteroarylcarbonyl group Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- XPXMKIXDFWLRAA-UHFFFAOYSA-N hydrazinide Chemical compound [NH-]N XPXMKIXDFWLRAA-UHFFFAOYSA-N 0.000 description 1
- JUINSXZKUKVTMD-UHFFFAOYSA-N hydrogen azide Chemical compound N=[N+]=[N-] JUINSXZKUKVTMD-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- AQYSYJUIMQTRMV-UHFFFAOYSA-N hypofluorous acid Chemical group FO AQYSYJUIMQTRMV-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000004130 indan-2-yl group Chemical group [H]C1=C([H])C([H])=C2C(=C1[H])C([H])([H])C([H])(*)C2([H])[H] 0.000 description 1
- 125000002249 indol-2-yl group Chemical group [H]C1=C([H])C([H])=C2N([H])C([*])=C([H])C2=C1[H] 0.000 description 1
- 125000004531 indol-5-yl group Chemical group [H]N1C([H])=C([H])C2=C([H])C(*)=C([H])C([H])=C12 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004551 isoquinolin-3-yl group Chemical group C1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 125000000686 lactone group Chemical group 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical compound O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 description 1
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- MAEFSJWFUPHVPY-ZCFIWIBFSA-N methyl (1r)-3-oxocyclohexane-1-carboxylate Chemical compound COC(=O)[C@@H]1CCCC(=O)C1 MAEFSJWFUPHVPY-ZCFIWIBFSA-N 0.000 description 1
- ZBGXFBJLVXHMME-OPRDCNLKSA-N methyl (1r,3r,4r)-3-hydroxy-4-[(2-methylpropan-2-yl)oxycarbonylamino]cyclohexane-1-carboxylate Chemical compound COC(=O)[C@@H]1CC[C@@H](NC(=O)OC(C)(C)C)[C@H](O)C1 ZBGXFBJLVXHMME-OPRDCNLKSA-N 0.000 description 1
- DRUBPBRYAMGIPU-GMTAPVOTSA-N methyl (1r,3r,4r)-3-methoxy-4-[(2-methylpropan-2-yl)oxycarbonylamino]cyclohexane-1-carboxylate Chemical compound CO[C@@H]1C[C@H](C(=O)OC)CC[C@H]1NC(=O)OC(C)(C)C DRUBPBRYAMGIPU-GMTAPVOTSA-N 0.000 description 1
- SQOUCOUCDZRJKH-DSYKOEDSSA-N methyl (1r,3r,4s)-4-bromo-3-hydroxycyclohexane-1-carboxylate Chemical compound COC(=O)[C@@H]1CC[C@H](Br)[C@H](O)C1 SQOUCOUCDZRJKH-DSYKOEDSSA-N 0.000 description 1
- PSPQCFAEVXPHEL-UHFFFAOYSA-N methyl 2-(6-methyl-1-oxidopyridin-1-ium-3-yl)oxyacetate Chemical compound COC(=O)COC1=CC=C(C)[N+]([O-])=C1 PSPQCFAEVXPHEL-UHFFFAOYSA-N 0.000 description 1
- CUQOYSKLQMNETO-UHFFFAOYSA-N methyl 2-(6-methyl-4-nitro-1-oxidopyridin-1-ium-3-yl)oxyacetate Chemical compound COC(=O)COC1=C[N+]([O-])=C(C)C=C1[N+]([O-])=O CUQOYSKLQMNETO-UHFFFAOYSA-N 0.000 description 1
- QKSZKYBGCIPICZ-UHFFFAOYSA-N methyl 2-[6-(hydroxymethyl)-4-nitropyridin-3-yl]oxyacetate Chemical compound COC(=O)COC1=CN=C(CO)C=C1[N+]([O-])=O QKSZKYBGCIPICZ-UHFFFAOYSA-N 0.000 description 1
- YDCHPLOFQATIDS-UHFFFAOYSA-N methyl 2-bromoacetate Chemical compound COC(=O)CBr YDCHPLOFQATIDS-UHFFFAOYSA-N 0.000 description 1
- HVFSNKWAUPKWPC-UHFFFAOYSA-N methyl 2-oxo-1h-pyrido[2,3-b][1,4]thiazine-7-carboxylate Chemical compound S1CC(=O)NC2=CC(C(=O)OC)=CN=C21 HVFSNKWAUPKWPC-UHFFFAOYSA-N 0.000 description 1
- MKIJJIMOAABWGF-UHFFFAOYSA-N methyl 2-sulfanylacetate Chemical compound COC(=O)CS MKIJJIMOAABWGF-UHFFFAOYSA-N 0.000 description 1
- UFSVRHNRNVVBJR-UHFFFAOYSA-N methyl 3-oxo-4h-1,4-benzothiazine-6-carboxylate Chemical compound S1CC(=O)NC2=CC(C(=O)OC)=CC=C21 UFSVRHNRNVVBJR-UHFFFAOYSA-N 0.000 description 1
- TUYDCNSJEARJEP-UHFFFAOYSA-N methyl 6-(2-methoxy-2-oxoethyl)sulfanyl-5-nitropyridine-3-carboxylate Chemical compound COC(=O)CSC1=NC=C(C(=O)OC)C=C1[N+]([O-])=O TUYDCNSJEARJEP-UHFFFAOYSA-N 0.000 description 1
- APXDMMMTTGDTKC-UHFFFAOYSA-N methyl 6-amino-5-(2-ethoxy-2-oxoethyl)sulfanyl-3-fluoropyridine-2-carboxylate Chemical compound CCOC(=O)CSC1=CC(F)=C(C(=O)OC)N=C1N APXDMMMTTGDTKC-UHFFFAOYSA-N 0.000 description 1
- WRVXVTUGOFOAIW-UHFFFAOYSA-N methyl 6-amino-5-bromo-3-chloropyridine-2-carboxylate Chemical compound COC(=O)C1=NC(N)=C(Br)C=C1Cl WRVXVTUGOFOAIW-UHFFFAOYSA-N 0.000 description 1
- MWDGAYWJPDATHJ-UHFFFAOYSA-N methyl 6-amino-5-bromo-3-fluoropyridine-2-carboxylate Chemical compound COC(=O)C1=NC(N)=C(Br)C=C1F MWDGAYWJPDATHJ-UHFFFAOYSA-N 0.000 description 1
- BRPREIDVQXJOJH-UHFFFAOYSA-N methyl 6-chloro-5-nitropyridine-3-carboxylate Chemical compound COC(=O)C1=CN=C(Cl)C([N+]([O-])=O)=C1 BRPREIDVQXJOJH-UHFFFAOYSA-N 0.000 description 1
- AFIHSFFRLJYZAX-UHFFFAOYSA-N methyl 7-chloro-3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carboxylate Chemical compound N1C(=O)CSC2=C1N=C(C(=O)OC)C(Cl)=C2 AFIHSFFRLJYZAX-UHFFFAOYSA-N 0.000 description 1
- FYOMIGVKQMBFKL-UHFFFAOYSA-N methyl 7-fluoro-3-oxo-4h-pyrido[3,2-b][1,4]thiazine-6-carboxylate Chemical compound N1C(=O)CSC2=C1N=C(C(=O)OC)C(F)=C2 FYOMIGVKQMBFKL-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- IMAKHNTVDGLIRY-UHFFFAOYSA-N methyl prop-2-ynoate Chemical compound COC(=O)C#C IMAKHNTVDGLIRY-UHFFFAOYSA-N 0.000 description 1
- 239000012022 methylating agents Substances 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KGPQKNJSZNXOPV-UHFFFAOYSA-N moniliformin Chemical group OC1=CC(=O)C1=O KGPQKNJSZNXOPV-UHFFFAOYSA-N 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- VGGNVBNNVSIGKG-UHFFFAOYSA-N n,n,2-trimethylaziridine-1-carboxamide Chemical compound CC1CN1C(=O)N(C)C VGGNVBNNVSIGKG-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000005054 naphthyridines Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 150000004893 oxazines Chemical class 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- NXJCBFBQEVOTOW-UHFFFAOYSA-L palladium(2+);dihydroxide Chemical compound O[Pd]O NXJCBFBQEVOTOW-UHFFFAOYSA-L 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000003182 parenteral nutrition solution Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- UXCDUFKZSUBXGM-UHFFFAOYSA-N phosphoric tribromide Chemical compound BrP(Br)(Br)=O UXCDUFKZSUBXGM-UHFFFAOYSA-N 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 125000005633 phthalidyl group Chemical group 0.000 description 1
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- FYRHIOVKTDQVFC-UHFFFAOYSA-M potassium phthalimide Chemical compound [K+].C1=CC=C2C(=O)[N-]C(=O)C2=C1 FYRHIOVKTDQVFC-UHFFFAOYSA-M 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 150000003858 primary carboxamides Chemical class 0.000 description 1
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- PYNUOAIJIQGACY-UHFFFAOYSA-N propylazanium;chloride Chemical compound Cl.CCCN PYNUOAIJIQGACY-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- KOUKXHPPRFNWPP-UHFFFAOYSA-N pyrazine-2,5-dicarboxylic acid;hydrate Chemical compound O.OC(=O)C1=CN=C(C(O)=O)C=N1 KOUKXHPPRFNWPP-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000004526 pyridazin-2-yl group Chemical group N1N(C=CC=C1)* 0.000 description 1
- 150000004892 pyridazines Chemical class 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- 125000004528 pyrimidin-5-yl group Chemical group N1=CN=CC(=C1)* 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 125000004260 quinazolin-2-yl group Chemical group [H]C1=NC(*)=NC2=C1C([H])=C([H])C([H])=C2[H] 0.000 description 1
- 125000004159 quinolin-2-yl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C([H])C(*)=NC2=C1[H] 0.000 description 1
- 125000004548 quinolin-3-yl group Chemical group N1=CC(=CC2=CC=CC=C12)* 0.000 description 1
- GPPZVGNHXBJPRM-UHFFFAOYSA-N quinolin-4-one Chemical compound C1=CC=C2C(=O)C=C=NC2=C1 GPPZVGNHXBJPRM-UHFFFAOYSA-N 0.000 description 1
- 229930185107 quinolinone Natural products 0.000 description 1
- 125000004262 quinoxalin-2-yl group Chemical group [H]C1=NC2=C([H])C([H])=C([H])C([H])=C2N=C1* 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VFWRGKJLLYDFBY-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag].[Ag] VFWRGKJLLYDFBY-UHFFFAOYSA-N 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910000080 stannane Inorganic materials 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000002278 tabletting lubricant Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- HILAGAFOXBPCFN-UHFFFAOYSA-N tert-butyl n-(4-carbamoylcyclohexyl)carbamate Chemical compound CC(C)(C)OC(=O)NC1CCC(C(N)=O)CC1 HILAGAFOXBPCFN-UHFFFAOYSA-N 0.000 description 1
- WYVFPGFWUKBXPZ-UHFFFAOYSA-N tert-butyl n-(4-oxocyclohexyl)carbamate Chemical compound CC(C)(C)OC(=O)NC1CCC(=O)CC1 WYVFPGFWUKBXPZ-UHFFFAOYSA-N 0.000 description 1
- OARJYZRMYADOJA-BFYDXBDKSA-N tert-butyl n-[(1r,2r,4r)-2-hydroxy-4-[(2-methoxyquinolin-8-yl)carbamoyl]cyclohexyl]carbamate Chemical compound C12=NC(OC)=CC=C2C=CC=C1NC(=O)[C@@H]1CC[C@@H](NC(=O)OC(C)(C)C)[C@H](O)C1 OARJYZRMYADOJA-BFYDXBDKSA-N 0.000 description 1
- AVGWNDZLRBYTIL-ZHALLVOQSA-N tert-butyl n-[(1r,2r,4r)-2-methoxy-4-[(2-methylquinolin-8-yl)carbamoyl]cyclohexyl]carbamate Chemical compound C1C[C@@H](NC(=O)OC(C)(C)C)[C@H](OC)C[C@@H]1C(=O)NC1=CC=CC2=CC=C(C)N=C12 AVGWNDZLRBYTIL-ZHALLVOQSA-N 0.000 description 1
- UMAOMPRMBAMQQK-QGPMSJSTSA-N tert-butyl n-[(1r,2r,4r)-4-[(2-cyanoquinolin-8-yl)carbamoyl]-2-hydroxycyclohexyl]carbamate Chemical compound C1[C@@H](O)[C@H](NC(=O)OC(C)(C)C)CC[C@H]1C(=O)NC1=CC=CC2=CC=C(C#N)N=C12 UMAOMPRMBAMQQK-QGPMSJSTSA-N 0.000 description 1
- QXUUHRMNFHIQME-HZSPNIEDSA-N tert-butyl n-[(1r,2s,4r)-2-fluoro-4-[(6-methoxy-1,5-naphthyridin-4-yl)carbamoyl]cyclohexyl]carbamate Chemical compound C12=NC(OC)=CC=C2N=CC=C1NC(=O)[C@@H]1CC[C@@H](NC(=O)OC(C)(C)C)[C@@H](F)C1 QXUUHRMNFHIQME-HZSPNIEDSA-N 0.000 description 1
- UMAOMPRMBAMQQK-KYJSFNMBSA-N tert-butyl n-[(1r,2s,4r)-4-[(2-cyanoquinolin-8-yl)carbamoyl]-2-hydroxycyclohexyl]carbamate Chemical compound C1[C@H](O)[C@H](NC(=O)OC(C)(C)C)CC[C@H]1C(=O)NC1=CC=CC2=CC=C(C#N)N=C12 UMAOMPRMBAMQQK-KYJSFNMBSA-N 0.000 description 1
- HZBLDIRKPKMXLK-HLTSFMKQSA-N tert-butyl n-[(1r,2s,4r)-4-carbamoyl-2-hydroxycyclohexyl]carbamate Chemical compound CC(C)(C)OC(=O)N[C@@H]1CC[C@@H](C(N)=O)C[C@@H]1O HZBLDIRKPKMXLK-HLTSFMKQSA-N 0.000 description 1
- ZALHYHVHRWOTHM-UHFFFAOYSA-N tert-butyl n-[4-(2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-ylcarbamoyl)-4-hydroxycyclohexyl]carbamate Chemical compound C1CC(NC(=O)OC(C)(C)C)CCC1(O)C(=O)NC1=CC=NC2=C1OCCO2 ZALHYHVHRWOTHM-UHFFFAOYSA-N 0.000 description 1
- TWNYZLGTYFNUSF-UHFFFAOYSA-N tert-butyl n-[4-[(2-methylquinolin-8-yl)carbamoyl]cyclohexyl]carbamate Chemical compound C12=NC(C)=CC=C2C=CC=C1NC(=O)C1CCC(NC(=O)OC(C)(C)C)CC1 TWNYZLGTYFNUSF-UHFFFAOYSA-N 0.000 description 1
- BGXWSWZIROSSAD-UHFFFAOYSA-N tert-butyl n-[4-hydroxy-4-(thieno[3,2-b]pyridin-7-ylcarbamoyl)cyclohexyl]carbamate Chemical compound C1CC(NC(=O)OC(C)(C)C)CCC1(O)C(=O)NC1=CC=NC2=C1SC=C2 BGXWSWZIROSSAD-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- XJPANWOKBWZVHC-UHFFFAOYSA-N tetrazol-2-amine Chemical compound NN1N=CN=N1 XJPANWOKBWZVHC-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 150000004897 thiazines Chemical class 0.000 description 1
- 125000000437 thiazol-2-yl group Chemical group [H]C1=C([H])N=C(*)S1 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- MOSHKSKNWJKRQA-UHFFFAOYSA-N thieno[3,2-b]pyridin-7-amine dihydrochloride Chemical compound Cl.Cl.NC1=CC=NC2=C1SC=C2 MOSHKSKNWJKRQA-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical class OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N trifluoromethane acid Natural products FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- AHZJKOKFZJYCLG-UHFFFAOYSA-K trifluoromethanesulfonate;ytterbium(3+) Chemical compound [Yb+3].[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F AHZJKOKFZJYCLG-UHFFFAOYSA-K 0.000 description 1
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 description 1
- PGAJYUDRKAPMPA-UHFFFAOYSA-N trimethylsilyl n-ethylcarbamate Chemical compound CCNC(=O)O[Si](C)(C)C PGAJYUDRKAPMPA-UHFFFAOYSA-N 0.000 description 1
- VFJYIHQDILEQNR-UHFFFAOYSA-M trimethylsulfanium;iodide Chemical compound [I-].C[S+](C)C VFJYIHQDILEQNR-UHFFFAOYSA-M 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/04—Ortho-condensed systems
Definitions
- This invention relates to novel compounds, compositions containing them and their use as antibacterials.
- WO099/37635 discloses quinoline and naphthyridine derivatives having antibacterial activity.
- This invention provides a compound of formula (I) or a pharmaceutically acceptable derivative thereof:
- R v and R w are hydrogen or R v and R w together are a bond;
- R A is an optionally substituted bicyclic carbocyclic or heterocyclic ring system of structure:
- one of Z 4 and Z 5 is C or N and the other is C;
- Z 3 is N, NR 13 , O, S(O) x , CO, CR 1 or CR 1 R 1a ;
- Z 1 and Z 2 are independently a 2 or 3 atom linker group each atom of which is independently selected from N, NR 13 , O, S(O) x , CO, CR 1 and CR 1 R 1a ; such that each ring is independently substituted with 0-3 groups R 1 and/or R 1a ;
- R 1 and R 1a are independently selected from hydrogen; hydroxy; (C 1-6 ) alkoxy optionally substituted by (C 1-6 )alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C 1-6 )alkyl, acyl or (C 1-6 )alkylsulphonyl groups, CONH2, hydroxy, (C 1-6 )alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C 1-6 )alkylsulphonyloxy; (C 1-6 )alkoxy-substituted (C 1-6 )alkyl; hydroxy (C 1-6 )alkyl; halogen; (C 1-6 )alkyl; (C 1-6 )alkylthio; trifluoromethyl; trifluoromethoxy; cyano; carboxy;
- R 3 is halogen
- R A when R A is optionally substituted quinazolin-4-yl, cinnolin-4-yl, 1,5-naphthyridin-4-yl, 1,7-naphthyridin-4-yl or 1,8-naphthyridin-4-yl:
- R 3 is halogen
- R 2 is hydrogen, or (C 1-4 )alkyl or (C 2-4 )alkenyl optionally substituted with 1 to 3 groups selected from: amino optionally substituted by one or two (C 1-4 )alkyl groups; carboxy; (C 1-4 )alkoxycarbonyl; (C 1-4 )alkylcarbonyl; (C 2-4 )alkenyloxycarbonyl; (C 2-4 )alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C 1-4 )alkyl, hydroxy(C 1-4 )alkyl, aminocarbonyl(C 1-4 )alkyl, (C 2-4 )alkenyl, (C 1-4 )alkylsulphonyl, trifluoromethylsulphonyl, (C 2-4 )alkenylsulphonyl, (C 1-4 )alkoxycarbonyl, (C 1-4 )alkylcarbonyl, (C 2-4
- (C 4-8 )alkyl hydroxy(C 4-8 )alkyl; (C 1-4 )alkoxy(C 4-8 )alkyl; (C 1-4 )alkanoyloxy(C 4-8 )alkyl; (C 3-8 )cycloalkyl(C 4-8 )alkyl; hydroxy-, (C 1-6 )alkoxy- or (C 1-6 )alkanoyloxy-(C 3-8 )cycloalkyl(C 4-8 )alkyl; cyano(C 4-8 )alkyl; (C 4-8 )alkenyl; (C 4-8 )alkynyl; tetrahydrofuryl; mono- or di-(C 1-6 )alkylamino(C 4-8 )alkyl; acylamino(C 4-8 )alkyl; (C 1-6 )alkyl- or acyl-aminocarbonyl(C 4-8 )alkyl; mono- or di-
- R 4 is a group —U—R 5 2 where R 5 2 is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):
- X 1 is C or N when part of an aromatic ring or CR 14 when part of a non aromatic ring;
- X 2 is N, NR 13 , O, S(O) x , CO or CR 14 when part of an aromatic or non-aromatic ring or may in addition be CR 14 R 15 when part of a non aromatic ring;
- X 3 and X 5 are independently N or C;
- Y 1 is a 0 to 4 atom linker group each atom of which is independently selected from N, NR 13 , O, S(O) x , CO and CR 14 when part of an aromatic or non-aromatic ring or may additionally be CR 14 R 15 when part of a non aromatic ring,
- Y 2 is a 2 to 6 atom linker group, each atom of Y 2 being independently selected from N, NR 13 , O, S(O) x , CO and CR 14 when part of an aromatic or non-aromatic ring or may additionally be CR 14 R 15 when part of a non aromatic ring;
- each of R 14 and R 15 is independently selected from: H; (C 1-4 )alkylthio; halo; carboxy(C 1-4 )alkyl; halo(C 1-4 )alkoxy; halo(C 1-4 )alkyl; (C 1-4 )alkyl; (C 2-4 )alkenyl; (C 1-4 )alkoxycarbonyl; formyl; (C 1-4 )alkylcarbonyl; (C 2-4 )alkenyloxycarbonyl; (C 2-4 )alkenylcarbonyl; (C 1-4 )alkylcarbonyloxy; (C 1-4 )alkoxycarbonyl(C 1-4 )alkyl; hydroxy; hydroxy(C 1-4 )alkyl; mercapto(C 1-4 )alkyl; (C 1-4 )alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R 3
- each R 13 is independently H; trifluoromethyl; (C 1-4 )alkyl optionally substituted by hydroxy, carboxy, (C 1-6 )alkoxycarbonyl, (C 1-6 )alkoxy, (C 1-6 )alkylthio, halo or trifluoromethyl; (C 2-4 )alkenyl; aryl; aryl (C 1-4 )alkyl; arylcarbonyl; heteroarylcarbonyl; (C 1-4 )alkoxycarbonyl; (C 1-4 )alkylcarbonyl; formyl; (C 1-6 )alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C 1-4 )alkoxycarbonyl, (C 1-4 )alkylcarbonyl, (C 2-4 )alkenyloxycarbonyl, (C 2-4 )alkenylcarbonyl, (C 1-4 )alkyl or (C 2-4 )alken
- each x is independently 0, 1 or 2;
- U is CO, SO 2 or CH 2 ;
- R 4 is a group -X 1a -X 2a -X 3a -X 4a in which:
- X 1a is CH 2 , CO or SO 2 ;
- X 2a is CR 14a R 15a ;
- X 3a is NR 13a , O, S, SO 2 or CR 14a R 15a ; wherein:
- each of R 14a and R 15a is independently selected from the groups listed above for R 14 and R 15 , provided that R 14a and R 15a on the same carbon atom are not both selected from optionally substituted hydroxy and optionally substituted amino; or
- R 14a and R 15a together represent oxo
- R 13a is hydrogen; trifluoromethyl; (C 1-6 )alkyl; (C 2-6 )alkenyl; (C 1-6 )alkoxycarbonyl; (C 1-6 )alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C 1-6 )alkoxycarbonyl, (C 1-6 )alkylcarbonyl, (C 2-6 )alkenyloxycarbonyl, (C 2-6 )alkenylcarbonyl, (C 1-6 )alkyl or (C 2-6 )alkenyl and optionally further substituted by (C 1-6 )alkyl or (C 2-6 )alkenyl; or
- R 14a groups or an R 13a and an R 14a group on adjacent atoms together represent a bond and the remaining R 13a , R 14a and R 15a groups are as above defined; or
- X 4a is phenyl or C or N linked monocyclic aromatic 5- or 6-membered heterocycle containing up to four heteroatoms selected from O, S and N and: optionally C-substituted by up to three groups selected from (C 1-4 )alkylthio; halo; carboxy(C 1-4 )alkyl; halo(C 1-4 )alkoxy; halo(C 1-4 )alkyl; (C 1-4 )alkyl; (C 2-4 )alkenyl; (C 1-4 )alkoxycarbonyl; formyl; (C 1-4 )alkylcarbonyl; (C 2-4 )alkenyloxycarbonyl; (C 2-4 )alkenylcarbonyl; (C 1-4 )alkylcarbonyloxy; (C 1-4 )alkoxycarbonyl(C 1-4 )alkyl; hydroxy; hydroxy(C 1-4 )alkyl; mercapto(C 1-4 )
- (C 1-4 )alkyl optionally substituted by hydroxy, (C 1-6 )alkoxy, (C 1-6 )alkylthio, halo or trifluoromethyl; (C 2-4 )alkenyl; aryl; aryl(C 1-4 )alkyl; (C 1-4 )alkoxycarbonyl; (C 1-4 )alkylcarbonyl; formyl; (C 1-6 )alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C 1-4 )alkoxycarbonyl, (C 1-4 )alkylcarbonyl, (C 2-4 )alkenyloxycarbonyl, (C 2-4 )alkenylcarbonyl, (C 1-4 )alkyl or (C 2-4 )alkenyl and optionally further substituted by (C 1-4 )alkyl or (C 2-4 )alkenyl; n
- the invention also provides the use of a compound of formula (I) or a pharmaceutically acceptable derivative thereof in the manufacture of a medicament for use in the treatment of bacterial infections in mammals.
- the invention also provides a pharmaceutical composition, in particular for use in the treatment of bacterial infections in mammals, comprising a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.
- the invention further provides a method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment of an effective amount of a a compound of formula (I), or a pharmaceutically acceptable derivative thereof.
- Z 2 is three atoms long.
- Z 4 and Z 5 are both carbon.
- Z 1 is three atoms long with carbon joined to Z 3 and with R 1 on the carbon atom joined to Z 3 .
- R A is aromatic and ring (y) is fused benzene.
- (x) is 6-membered containing one or two nitrogen atoms, the remainder being carbon.
- Z 3 is nitrogen and the remainder are carbon or Z 1 is ⁇ CH—CH ⁇ N— (N attached to Z 5 ).
- ring (y) is fused pyridin-4-yl (Z 2 is three atoms long, the atom attached to Z 5 in Z 2 is nitrogen and the remainder and Z 4 and Z 5 are carbon), Z 1 is two or three atoms long and Z 3 is a heteroatom such as O or S.
- rings R A include optionally substituted isoquinolin-5-yl, quinolin-8-yl, thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinoxalin-5-yl, isoquinolin-8-yl, [1,6]-naphthyridin-4-yl, 1,2,3,4-tetrahydroquinoxalin-5-yl and 1,2-dihydroisoquinoline-8-yl. Most preferably R A is optionally 2-substituted-quinolin-8-yl or optionally 3-substituted-quinoxalin-5-yl.
- R 13 in rings (x) and (y) is preferably H or (C 1-6 )alkyl.
- R 1 or R 1a is substituted alkoxy it is preferably (C 2-6 )alkoxy substituted by optionally N-substituted amino, or (C 1-6 )alkoxy substituted by piperidyl.
- Suitable examples of R 1 alkoxy include methoxy, trifluoromethoxy, n-propyloxy, i-butyloxy, aminoethyloxy, aminopropyloxy, aminobutyloxy, aminopentyloxy, guanidinopropyloxy, piperidin-4-ylmethyloxy or 2-aminocarbonylprop-2-oxy.
- R 1 and R 1a are independently hydrogen, (C 1-4 )alkoxy, (C 1-4 )alkylthio, (C 1-4 )alkyl, amino(C 3-5 )alkyloxy, nitro, cyano, carboxy, hydroxymethyl or halogen; more preferably hydrogen, methoxy, methyl, cyano, halogen or amino(C 3-5 )alkyloxy.
- Ring R A is preferably substituted by one group R 1 .
- R 1 is H, methoxy, methyl, cyano or halogen and R 1a is H.
- Halogen is preferably chloro or fluoro.
- R 2 is preferably hydrogen; (C 1-4 )alkyl substituted with carboxy, optionally substituted hydroxy, optionally substituted aminocarbonyl, optionally substituted amino or (C 1-4 )alkoxycarbonyl; or (C 2-4 )alkenyl substituted with (C 1-4 )alkoxycarbonyl or carboxy. More preferred groups for R 2 are hydrogen, carboxymethyl, hydroxyethyl, aminocarbonylmethyl, ethoxycarbonylmethyl, ethoxycarbonylallyl and carboxyallyl, most preferably hydrogen.
- R 3 include hydrogen; optionally substituted hydroxy; optionally substituted amino; halogen; (C 1-4 ) alkyl; ethenyl; optionally substituted 1-hydroxy-(C 1-4 ) alkyl; optionally substituted aminocarbonyl; carboxy(C 1-4 )alkyl; optionally substituted aminocarbonyl(C 1-4 )alkyl; cyano(C 1-4 )alkyl; optionally substituted 2-oxo-oxazolidinyl and optionally substituted 2-oxo-oxazolidinyl(C 1-4 alkyl). More preferred R 3 groups are hydrogen; CONH 2 ; 1-hydroxyalkyl e.g.
- R 3 is hydrogen, fluoro or hydroxy, and if fluoro or hydroxy, most preferably substituted in the 1- or 3-position.
- R 3 hydroxy in the 3-position preferably is trans to NR 2 R 4 and has R stereochemistry or is cis to NR 2 R 4 and has S stereochemistry.
- R 3 and R 6 , R 7 , R 8 or R 9 together form a cyclic ester or amide linkage, it is preferred that the resulting ring is 5-7 membered. It is further preferred that the group A or B which does not form the ester or amide linkage is CH 2 .
- A is NH, NCH 3 , CH 2 , CHOH, CH(NH 2 ), C(Me)(OH) or CH(Me).
- B is CH 2 or CO.
- n 0.
- n 0 and either A and B are both CH 2 , A is CHOH, CH 2 and B is CH 2 or A is NH and B is CO.
- AB is NHCO.
- R 11 is hydrogen or (C 1-4 )alkyl e.g. methyl, more preferably hydrogen.
- R 4 is CH 2 R 5 1 , preferably R 5 1 is (C 6-8 )alkyl.
- R 4 is a group -X 1a -X 2a -X 3a -X 4a :
- X 1a is preferably CH 2 .
- X 2a is preferably CH 2 or together with X 3a forms a CH ⁇ CH or C ⁇ C group.
- X 3a is preferably CH 2 , O, S or NH, or together with X 2a forms a CH ⁇ CH or C ⁇ C group.
- Preferred linker groups -X 1a -X 2a -X 3a - include —(CH 2 ) 2 —O—, —(CH 2 ) 2 —S—, —CH 2 —CH ⁇ CH—, —(CH 2 ) 3 —, —(CH 2 ) 2 —NH— or —CH 2 CONH—.
- Monocyclic aromatic heterocyclic groups for X 4a include pyridyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, thienyl, isoimidazolyl, thiazolyl, furanyl and imidazolyl, 2H-pyridazone, 1H-pyrid-2-one.
- Preferred aromatic heterocyclic groups include pyrid-2-yl, pyrid-3-yl, thiazole-2-yl, pyrimidin-2-yl, pyrimidin-5-yl and fur-2-yl.
- Preferred substituents on heterocyclic X 4a include halo especially fluoro, trifluoromethyl and nitro.
- Preferred substituents on phenyl X 4a include halo, especially fluoro, nitro, cyano, trifluoromethyl, methyl, methoxycarbonyl and methylcarbonylamino.
- X 4a is 2-pyridyl, 3-fluorophenyl, 3,5-difluorophenyl or thiazol-2-yl.
- R 4 is —U—R 5 2 .
- the group —U— is preferably —CH 2 —.
- R 5 2 is an aromatic heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR 13 in which preferably Y 2 contains 2-3 heteroatoms, one of which is S and 1-2 are N, with one N bonded to X 3 .
- the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non-aromatic and Y 2 has 3-5 atoms, more preferably 4 atoms, including a heteroatom bonded to X 5 selected from O, S or NR 13 , where R 13 is other than hydrogen, and NHCO bonded via N to X 3 , or O bonded to X 3 .
- the ring (a) preferably contains aromatic nitrogen, and more preferably ring (a) is pyridine. Examples of rings (A) include optionally substituted:
- 1,1,3-trioxo-1,2,3,4-tetrahydro-1l 6 -benzo[1,4]thiazin-6-yl benzo[1,3]dioxol-5-yl, 4H-benzo[1,4]oxazin-3-one-6-yl, 2,3-dihydro-benzo[1,4]dioxin-6-yl, 2-oxo-2,3-dihydro-benzooxazol-6-yl, 4H-benzo[1,4]oxazin-3-one-6-yl (3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl), 4H-benzo[1,4]thiazin-3-one-6-yl (3-oxo-3,4-dihydro-2H-benzo[1,4]thiazin-6-yl), 4H-benzo[1,4]oxazin-3-one-7-yl, 4-oxo-2,3,4,5-te
- R 13 is preferably H if in ring (a) or in addition (C 1-4 )alkyl such as methyl or isopropyl when in ring (b). More preferably, in ring (b) R 13 is H when NR 13 is bonded to X 3 and (C 1-4 )alkyl when NR 13 is bonded to X 5 .
- R 14 and R 15 are preferably independently selected from hydrogen, halo, hydroxy, (C 1-4 ) alkyl, (C 1-4 )alkoxy, trifluoromethoxy, nitro, cyano, aryl(C 1-4 )alkoxy and (C 1-4 )alkylsulphonyl.
- R 15 is hydrogen.
- each R 14 is selected from hydrogen, chloro, fluoro, hydroxy, methyl, methoxy, trifluoromethoxy, benzyloxy, nitro, cyano and methylsulphonyl. Most preferably R 14 is selected from hydrogen, hydroxy, fluorine or nitro. Preferably 0-3 groups R 14 are substituents other than hydrogen.
- R 14 and R 15 are each H.
- R 5 2 include:
- alkyl includes groups having straight and branched chains, for instance, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, t-butyl, pentyl and hexyl.
- alkenyl should be interpreted accordingly.
- Halo or halogen includes fluoro, chloro, bromo and iodo.
- Haloalkyl moieties include 1-3 halogen atoms.
- heterocyclic as used herein includes aromatic and non-aromatic, single and fused, rings suitably containing up to four hetero-atoms in each ring selected from oxygen, nitrogen and sulphur, which rings may be unsubstituted or C-substituted by, for example, up to three groups selected from (C 1-4 )alkylthio; halo; carboxy(C 1-4 )alkyl; halo(C 1-4 )alkoxy; halo(C 1-4 )alkyl; (C 1-4 )alkyl; (C 2-4 )alkenyl; (C 1-4 )alkoxycarbonyl; formyl; (C 1-4 )alkylcarbonyl; (C 2-4 )alkenyloxycarbonyl; (C 2-4 )alkenylcarbonyl; (C 1-4 )alkylcarbonyloxy; (C 1-4 )alkoxycarbonyl(C 1-4 )al
- Each heterocyclic ring suitably has from 4 to 7, preferably 5 or 6, ring atoms.
- a fused heterocyclic ring system may include carbocyclic rings and need include only one heterocyclic ring.
- Compounds within the invention containing a heterocyclyl group may occur in two or more tautometric forms depending on the nature of the heterocyclyl group; all such tautomeric forms are included within the scope of the invention.
- suitable optional substituents in such substituted amino groups include H; trifluoromethyl; (C 1-4 )alkyl optionally substituted by hydroxy, (C 1-6 )alkoxy, (C 1-6 )alkylthio, halo or trifluoromethyl; (C 2-4 )alkenyl; aryl; aryl (C 1-4 )alkyl; (C 1-4 )alkoxycarbonyl; (C 1-4 )alkylcarbonyl; formyl; (C 1-6 )alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C 1-4 )alkoxycarbonyl, (C 1-4 )alkylcarbonyl, (C 2-4 )alkenyloxycarbonyl, (C 2-4 )alkenylcarbonyl, (C 1-4 )alkyl or (C 2-4 )
- aryl includes phenyl and naphthyl, each optionally substituted with up to five, preferably up to three, groups selected from (C 1-4 )alkylthio; halo; carboxy(C 1-4 )alkyl; halo(C 1-4 )alkoxy; halo(C 1-4 )alkyl; (C 1-4 )alkyl; (C 2-4 )alkenyl; (C 1-4 )alkoxycarbonyl; formyl; (C 1-4 )alkylcarbonyl; (C 2-4 )alkenyloxycarbonyl; (C 2-4 )alkenylcarbonyl; (C 1-4 )alkylcarbonyloxy; (C 1-4 )alkoxycarbonyl(C 1-4 )alkyl; hydroxy; hydroxy(C 1-4 )alkyl; mercapto(C 1-4 )alkyl; (C 1-4 )alkoxy; nitro;
- acyl includes (C 1-6 )alkoxycarbonyl, formyl or (C 1-6 ) alkylcarbonyl groups.
- Some of the compounds of this invention may be crystallised or recrystallised from solvents such as aqueous and organic solvents. In such cases solvates may be formed.
- This invention includes within its scope stoichiometric solvates including hydrates as well as compounds containing variable amounts of water that may be produced by processes such as lyophilisation.
- the compounds of formula (I) are intended for use in pharmaceutical compositions it will readily be understood that they are each provided in substantially pure form, for example at least 60% pure, more suitably at least 75% pure and preferably at least 85%, especially at least 98% pure (% are on a weight for weight basis). Impure preparations of the compounds may be used for preparing the more pure forms used in the pharmaceutical compositions; these less pure preparations of the compounds should contain at least 1%, more suitably at least 5% and preferably from 10 to 59% of a compound of the formula (I) or pharmaceutically acceptable derivative thereof.
- compositions of the above-mentioned compounds of formula (I) include the free base form or their acid addition or quaternary ammonium salts, for example their salts with mineral acids e.g. hydrochloric, hydrobromic, sulphuric nitric or phosphoric acids, or organic acids, e.g. acetic, fumaric, succinic, maleic, citric, benzoic, p-toluenesulphonic, methanesulphonic, naphthalenesulphonic acid or tartaric acids.
- Compounds of formula (I) may also be prepared as the N-oxide.
- Compounds of formula (I) having a free carboxy group may also be prepared as an in vivo hydrolysable ester. The invention extends to all such derivatives.
- Suitable pharmaceutically acceptable in vivo hydrolysable ester-forming groups include those forming esters which break down readily in the human body to leave the parent acid or its salt. Suitable groups of this type include those of part formulae (i), (ii), (iii), (iv) and (v):
- R a is hydrogen, (C 1-6 ) alkyl, (C 3-7 ) cycloalkyl, methyl, or phenyl
- R b is (C 1-6 ) alkyl, (C 1-6 ) alkoxy, phenyl, benzyl, (C 3-7 ) cycloalkyl, (C 3-7 ) cycloalkyloxy, (C 1-6 ) alkyl (C 3-7 ) cycloalkyl, 1-amino (C 1-6 ) alkyl, or 1-(C 1-6 alkyl)amino (C 1-6 ) alkyl; or R a and R b together form a 1,2-phenylene group optionally substituted by one or two methoxy groups; R c represents (C 1-6 ) alkylene optionally substituted with a methyl or ethyl group and R d and R e independently represent (C 1-6 ) alkyl; R f represents (C 1-6 ) alkyl; R
- Suitable in vivo hydrolysable ester groups include, for example, acyloxy(C 1-6 )alkyl groups such as acetoxymethyl, pivaloyloxymethyl, -acetoxyethyl, -pivaloyloxyethyl, 1-(cyclohexylcarbonyloxy)prop-1-yl, and (1-aminoethyl)carbonyloxymethyl; (C 1-6 )alkoxycarbonyloxy(C 1-6 )alkyl groups, such as ethoxycarbonyloxymethyl, -ethoxycarbonyloxyethyl and propoxycarbonyloxyethyl; di(C 1-6 )alkylamino(C 1-6 )alkyl especially di(C 1-4 )alkylamino(C 1-4 )alkyl groups such as dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl or diethylaminoethyl; 2-((
- a further suitable pharmaceutically acceptable in vivo hydrolysable ester-forming group is that of the formula:
- R k is hydrogen, C 1-6 alkyl or phenyl.
- R is preferably hydrogen.
- Certain of the above-mentioned compounds of formula (I) may exist in the form of optical isomers, e.g. diastereoisomers and mixtures of isomers in all ratios, e.g. racemic mixtures.
- the invention includes all such forms, in particular the pure isomeric forms.
- the invention includes compound in which an A-B group CH(OH)—CH 2 is in either isomeric configuration the R-isomer is preferred.
- the different isomeric forms may be separated or resolved one from the other by conventional methods, or any given isomer may be obtained by conventional synthetic methods or by stereospecific or asymmetric syntheses.
- n is as defined in formula (I);
- Z 1′ , Z 2′ , Z 3′ R 1′ and R 3′ are Z 1 , Z 2 , Z 3 , R 1 and R 3 as defined in formula (I) or groups convertible thereto;
- Z 4 , Z 5 , R v and R w are as defined in formula (I);
- Q 1 is NR 2′ R 4′ or a group convertible thereto wherein R 2′ and R 4′ are R 2 and R 4 as defined in formula (I) or groups convertible thereto and Q 2 is H or R 3′ or Q 1 and Q 2 together form an optionally protected oxo group;
- X and Y may be the following combinations: (i) one of X and Y is CO 2 R y and the other is CH 2 CO 2 R x ;
- X is C( ⁇ O)R 7 and Y is CR 9 ⁇ PR z 3 ;
- one of Y and X is COW and the other is NHR 11′ , NCO or NR11′COW;
- X is NHR 11′ and Y is C( ⁇ O)R 8 or X is C( ⁇ O)R 6 and Y is NHR 11′ ;
- X is NHR 11′ and Y is CR 8 R 9 W;
- X is W or OH and Y is CH 2 OH;
- (xi) one of X and Y is OH and the other is —CH ⁇ N 2 ;
- Xii) is NCO and Y is OH or NH 2 ;
- (xiii) X is CR 6 R 7 SO 2 W, A′COW, CR 6 ⁇ CH 2 or oxirane and Y is NHR 2′ ;
- (xiv) X is W and Y is CONHR 11 or OCONH 2
- X is W and Y is —C ⁇ CH followed by hydrogenation of the intermediate —C ⁇ C— group; in which W is a leaving group, e.g.
- R x and R y are (C 1-6 )alkyl;
- R z is aryl or (C 1-6 )alkyl;
- A′ and NR 11′ are A and NR 11 as defined in formula (I), or groups convertible thereto; and
- oxirane is:
- R 6 , R 8 and R 9 are as defined in formula (I); and thereafter optionally or as necessary converting Q 1 and Q 2 to NR 2′ R 4′ ; converting A′, Z 1′ , Z 2′ , Z 3′ , R 1′ , R 2′ , R 3′ , R 4′ and NR 11′ to A, Z 1 , Z 2 , Z 3 , R 1 , R 2 , R 3 , R 4 and NR 11′ ; converting A-B to other A-B, interconverting R v , R w , R 1 , R 2 , R 3 and/or R 4 , and/or forming a pharmaceutically acceptable derivative thereof.
- Process variant (i) initially produces compounds of formula (I) wherein A-B is CO—CH 2 or CH 2 —CO.
- Process variant (ii) initially produces compounds of formula (I) wherein A-B is CR 6 R 7 —CR 9 OH.
- Process variant (v) initially produces compounds of formula (I) where A-B is CO—NR 11 or NR 11 —CO.
- Process variant (vi) initially produces compounds of formula (I) wherein A-B is NR 11 —CHR 8 . or CHR 6 —NHR 11 .
- Process variant (vii) initially produces compounds of formula (I) wherein A-B is NR 11′ —CR 8 R 9 .
- Process variant (viii) initially produces compounds of formula (I) wherein A-B is O—CH 2 .
- Process variant (ix) initially produces compounds where AB is NR 11 SO 2 .
- Process variant (x) initially produces compounds of formula (I) wherein one of A and B is CH 2 and the other is NHR 11 , O or S.
- Process variant (xi) initially produces compounds of formula (I) wherein A-B is OCH 2 or CH 2 O.
- Process variant (xii) initially produces compounds where AB is NH—CO—NH or NH—CO—O.
- Process variant (xiii) initially produces compounds where n is 0 and AB is CR 6 R 7 SO 2 NR 2 , A′-CONR 2 or CR 6 R 7 CH 2 NR 2 .
- Process variant (xiv) produces compounds where AB is NR 11 CO or NH—CO—O.
- Process variant (xv) produces compounds where AB is —CH 2 CH 2 — or —CH ⁇ CH—.
- reaction is a standard amide or urea formation reaction involving e.g.:
- the acid and amine are preferably reacted in the presence of an activating agent such as 1-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) or 1-hydroxybenzotriazole (HOBT) or O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU); or 2.
- EDC 1-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
- HOBT 1-hydroxybenzotriazole
- HATU O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate
- A′ may be, for example. protected hydroxymethylene.
- the process variant (xiii) (third variant) is a standard addition reaction using methods well known to those skilled in the art.
- the process is preferably carried out in a polar organic solvent e.g. acetonitrile in the presence of an organic base e.g. triethylamine.
- the coupling may be effected in acetonitrile at room temperature in the presence of one equivalent of lithium perchlorate as catalyst (general method of J. E. Chateauneuf et al, J. Org. Chem., 56, 5939-5942, 1991) or more preferably with ytterbium triflate in dichloromethane. In some cases an elevated temperature such as 40-70° C. may be beneficial.
- the compound of formula (V) may be treated with a base, such as one equivalent of butyl lithium, and the resulting salt reacted with the oxirane in an inert solvent such as tetrahydrofuran, preferably at an elevated temperature such as 80° C.
- a base such as one equivalent of butyl lithium
- an inert solvent such as tetrahydrofuran
- 80° C an elevated temperature
- Use of a chiral epoxide will afford single diastereomers.
- mixtures of diastereomers may be separated by preparative HPLC or by conventional resolution through crystallisation of salts formed from chiral acids.
- the process variant (xii) is a standard urea or carbamate formation reaction from the reaction of an isocyanate with an amine or alcohol and is conducted by methods well known to those skilled in the art (for example see March, J; Advanced Organic Chemistry, Edition 3 (John Wiley and Sons, 1985), p 802-3).
- the process is preferably carried out in a polar solvent such as N,N-dimethylformamide.
- the process is two step: firstly a condensation using a base, preferably sodium hydride or alkoxide, sodamide, alkyl lithium or lithium dialkylamide, preferably in an aprotic solvent e.g. ether, THF or benzene; secondly, hydrolysis using an inorganic acid, preferably HCl in aqueous organic solvent at 0-100° C.
- a base preferably sodium hydride or alkoxide, sodamide, alkyl lithium or lithium dialkylamide, preferably in an aprotic solvent e.g. ether, THF or benzene
- hydrolysis using an inorganic acid preferably HCl in aqueous organic solvent at 0-100° C.
- the reaction is carried out in the presence of a base, preferably organometallic or metal hydride e.g. NaH, lithium diisopropylamide or NaOEt, preferably in an aprotic solvent, preferably THF, ether or benzene at ⁇ 78 to 25° C. (analogous process in Gutswiller et al. (1978) J. Am. Chem. Soc. 100, 576).
- a base preferably organometallic or metal hydride e.g. NaH, lithium diisopropylamide or NaOEt
- an aprotic solvent preferably THF, ether or benzene
- a base is preferably NaH, KH, an alkyl lithium e.g. BuLi, a metal alkoxide e.g. NaOEt, sodamide or lithium dialkylamide e.g. di-isopropylamide.
- an analogous method is described in U.S. Pat. No. 3,989,691 and M. Gates et. al. (1970) J. Amer. Chem. Soc., 92, 205, as well as Taylor et al. (1972) JACS 94, 6218.
- reaction is a standard reductive alkylation using, e.g., sodium borohydride or sodium triacetoxyborohydride (Gribble, G. W. in Encyclopedia of Reagents for Organic Synthesis (Ed. Paquette, L. A.) (John Wiley and Sons, 1995), p 4649).
- sodium borohydride or sodium triacetoxyborohydride Gribble, G. W. in Encyclopedia of Reagents for Organic Synthesis (Ed. Paquette, L. A.) (John Wiley and Sons, 1995), p 4649.
- the process variant (vii) is a standard alkylation reaction well known to those skilled in the art, for example where an alcohol or amine is treated with an alkyl halide in the presence of a base (for example see March, J; Advanced Organic Chemistry, Edition 3 (John Wiley and Sons, 1985), p 364-366 and p 342-343).
- the process is preferably carried out in a polar solvent such as N,N-dimethylformamide
- reaction is a standard sulphonamide formation reaction well known to those skilled in the art. This may be e.g. the reaction of a sulphonyl halide with an amine.
- the hydroxy group in Y is preferably converted to an OM group where M is an alkali metal by treatment of an alcohol with a base.
- the base is preferably inorganic such as NaH, lithium diisopropylamide or sodium.
- X is OH
- the hydroxy group in Y is activated under Mitsunobu conditions (Fletcher et. al. J Chem. Soc. (1995), 623).
- X ⁇ O and Y ⁇ CH 2 OH groups can be reacted directly by activation with 1,3-dicyclohexylcarbodiimide (DCC) (Chem. Berichte 1962, 95, 2997 or Angewante Chemie 1963 75, 377).
- DCC 1,3-dicyclohexylcarbodiimide
- reaction is conducted in the presence of an organic base such as triethylamine or pyridine such as described by Fuhrman et. al., J. Amer. Chem. Soc.; 67, 1245, 1945.
- organic base such as triethylamine or pyridine
- the X ⁇ NR 11 ′SO 2 W or Y ⁇ SO 2 W intermediates can be formed from the requisite amine e.g. by reaction with SO 2 Cl 2 analogously to the procedure described by the same authors Fuhrman et. al., J. Amer. Chem. Soc.; 67, 1245, 1945.
- the leaving group W is halogen and the reaction is a standard amine formation reaction such as direct alkylation described in (Malpass, J. R., in Comprehensive Organic Chemistry , Vol. 2 (Ed. Sutherland, I. O.), p 4 ff.) or aromatic nucleophilic displacement reactions (see references cited in Comprehensive Organic Chemistry , Vol. 6, p 946-947 (reaction index); Smith, D. M. in Comprehensive Organic Chemistry , Vol. 4 (Ed. Sammes, P. G.) p 20 ff.). This is analogous to the methods described in GB 1177849.
- X and Y contains OH or SH
- this is preferably converted to an OM or SM group where M is an alkali metal by treatment of an alcohol, thiol or thioacetate with a base.
- the base is preferably inorganic such as NaH, lithium diisopropylamide or sodium, or, for SH, metal alkoxide such as sodium methoxide.
- the X/Y group containing the thioacetate SCOR x is prepared by treatment of an alcohol or alkyl halide with thioacetic acid or a salt thereof under Mitsunobu conditions.
- the leaving group V is a halogen.
- the reaction may be carried out as described in Chapman et. al., J. Chem.
- the leaving group W is preferably chloro, bromo or trifluoromethylsulphonyl and the reaction is the palladium catalysed process known as the “Buchwald” reaction (J. Yin and S. L. Buchwald, Org. Lett., 2000, 2, 1101).
- coupling of the acetylene compound (V) with the compound (IV) is accomplished using standard Pd-mediated chemistry, for example using Pd(Ph 3 P) 2 Cl 2 as the catalyst along with the addition of CuI in a mixture of triethylamine and dimethylformamide.
- Hydrogenation of the intermediate —C ⁇ C— group is carried out conventionally over a suitable catalyst eg Pd/C, either partially to —CH ⁇ CH— or fully to —CH 2 —CH 2 —.
- Reduction of a carbonyl group A or B to CHOH can be readily accomplished using reducing agents well known to those skilled in the art, e.g. sodium borohydride in aqueous ethanol or lithium aluminium hydride in ethereal solution. This is analogous to methods described in EP53964, U.S. Pat. No. 384,556 and J. Gutzwiller et al, J. Amer. Chem. Soc., 1978, 100, 576.
- the carbonyl group A or B may be reduced to CH 2 by treatment with a reducing agent such as hydrazine in ethylene glycol, at e.g. 130-160° C., in the presence of potassium hydroxide.
- a reducing agent such as hydrazine in ethylene glycol, at e.g. 130-160° C., in the presence of potassium hydroxide.
- Reaction of a carbonyl group A or B with an organometallic reagent yields a group where R 6 or R 8 is OH and R 7 or R 9 is alkyl.
- a hydroxy group on A or B may be oxidised to a carbonyl group by oxidants well known to those skilled in the art, for example, manganese dioxide, pyridinium chlorochromate or pyridinium dichromate.
- a hydroxyalkyl A-B group CHR 7 CR 9 OH or CR 7 (OH)CHR 9 may be dehydrated to give the group CR 7 ⁇ CR 9 by treatment with an acid anhydride such as acetic anhydride.
- Methods for conversion of CR 7 ⁇ CR 9 by reduction to CHR 7 CHR 9 are well known to those skilled in the art, for example using hydrogenation over palladium on carbon as catalyst.
- Methods for conversion of CR 7 ⁇ CR 9 to give the A-B group CR 7 (OH)CHR 9 or CHR 7 CR 9 OH are well known to those skilled in the art for example by epoxidation and subsequent reduction by metal hydrides, hydration, hydroboration or oxymercuration. Where R v and R w together represent a bond it will be appreciated that such conversions may be inappropriate.
- An amide carbonyl group may be reduced to the corresponding amine using a reducing agent such as lithium aluminium hydride.
- a hydroxy group in A or B may be converted to azido by activation and displacement e.g. under Mitsunobu conditions using hydrazoic acid or by treatment with diphenylphosphorylazide and base, and the azido group in turn may be reduced to amino by hydrogenation.
- An example of a group Q 1 convertible to NR 2 R 4 is NR 2′ R 4′ or halogen.
- Halogen may be displaced by an amine HNR 2′ R 4′ by a conventional alkylation.
- the ketone of formula (VI) is reacted with an amine HNR 2′ R 4′ by conventional reductive alkylation as described above for process variant (x).
- Z 1′ , Z 2′ and Z 3′ are CR 1′ or CR 1′ R 1a′ where R 1′ and R 1a′ are groups convertible to R 1 and R 1a .
- Z 1′ , Z 2′ and Z 3′ are preferably Z 1 , Z 2 and Z 3 .
- R 1a′ , R 1′ and R 2′ are preferably R 1a , R 1 and R 2 .
- R 2′ is preferably hydrogen.
- R 3′ is R 3 or more preferably hydrogen, vinyl, alkoxycarbonyl or carboxy.
- R 4′ is R 4 or more preferably H or an N-protecting group such as t-butoxycarbonyl, benzyloxycarbonyl or 9-fluorenylmethyloxycarbonyl.
- R 1a′ , R 1′ , R 2′ , R 3′ and R 4′ and interconversions of R 1a , R 1 , R 2 , R 3 and R 4 are conventional.
- suitable conventional hydroxy protecting groups which may be removed without disrupting the remainder of the molecule include acyl and alkylsilyl groups. N protecting groups are removed by conventional methods.
- R 1′ methoxy is convertible to R 1′ hydroxy by treatment with lithium and diphenylphosphine (general method described in Ireland et. al. (1973) J. Amer. Chem. Soc., 7829) or HBr.
- Alkylation of the hydroxy group with a suitable alkyl derivative bearing a leaving group such as halide and a protected amino, piperidyl, amidino or guanidino group or group convertible thereto yields, after conversion/deprotection, R 1 alkoxy substituted by optionally N-substituted amino, piperidyl, guanidino or amidino.
- R 3 alkenyl is convertible to hydroxyalkyl by hydroboration using a suitable reagent such as 9-borabicyclo[3.3.1]nonane, epoxidation and reduction or oxymercuration.
- R 3 1,2-dihydroxy can be prepared from R 3′ alkenyl using osmium tetroxide or other reagents well known to those skilled in the art (see Advanced Organic Chemistry (Ed. March, J.) (John Wiley and Sons, 1985), p 732-737 and refs. cited therein) or epoxidation followed by hydrolysis (see Advanced Organic Chemistry (Ed. March, J.) (John Wiley and Sons, 1985), p 332, 333 and refs. cited therein).
- R 3 vinyl can be chain extended by standard homologation e.g by conversion to hydroxyethyl followed by oxidation to the aldehyde which is then subjected to a Wittig reaction.
- Opening an epoxide-containing R 3′ group with azide anion yields an azide derivative which can be reduced to the amine. Conversion of the amine to a carbamate is followed by ring closure with base to give the 2-oxo-oxazolidinyl containing R 3 group.
- Substituents on R 3 alkyl or alkenyl may be interconverted by conventional methods, for example hydroxy may be derivatised by esterification, acylation or etherification. Hydroxy groups may be converted to halogen, thiol, alkylthio, azido, alkylcarbonyl, amino, aminocarbonyl, oxo, alkylsulphonyl, alkenylsulphonyl or aminosulphonyl by conversion to a leaving group and substitution by the required group, hydrolysis or oxidation as appropriate or reaction with an activated acid, isocyanate or alkoxyisocyanate.
- Primary and secondary hydroxy groups can be oxidised to an aldehyde or ketone respectively and alkyated with a suitable agent such as an organometallic reagent to give a secondary or tertiary alcohol as appropriate.
- a carboxylate group may be converted to an hydroxymethyl group by reduction of an ester of this acid with a suitable reducing agent such as lithium aluminium hydride.
- Substituted 2-oxo-oxazolidinyl containing R 3 groups may be prepared from the corresponding aldehyde by conventional reaction with a glycine anion equivalent, followed by cyclisation of the resulting amino alcohol (M Grauert et al, Ann Chem (1985) 1817, Rozenberg et al, Angew Chem Int Ed Engl (1994) 33(1) 91).
- the resulting 2-oxo-oxazolidinyl group contains a carboxy group which can be converted to other R 10 groups by standard procedures.
- Carboxy groups within R 3 may be prepared by Jones' oxidation of the corresponding alcohols CH 2 OH using chromic acid and sulphuric acid in water/methanol (E. R. H. Jones et al, J. C. S. 1946, 39).
- Other oxidising agents may be used for this transformation such as sodium periodate catalysed by ruthenium trichloride (G. F. Tutwiler et al, J. Med. Chem., 1987, 30(6), 1094), chromium trioxide-pyridine (G. Just et al, Synth. Commun. 1979, 9(7), 613), potassium permanganate (D. E. Reedich et al, J. Org. Chem., 1985, 50(19), 3535, and pyridinium chlorochromate (D. Askin et al, Tetrahedron Letters, 1988, 29(3), 277.
- the carboxy group may alternatively be formed in a two stage process, with an initial oxidation of the alcohol to the corresponding aldehyde using for instance dimethyl sulphoxide activated with oxalyl chloride (N. Cohen et al, J. Am. Chem. Soc., 1983, 105, 3661) or dicyclohexylcarbodiimide (R. M. Wengler, Angew. Chim. Int. Ed. Eng., 1985, 24(2), 77), or oxidation with tetrapropylammonium perruthenate (Ley et al, J. Chem. Soc. Chem. Commun., 1987, 1625).
- dimethyl sulphoxide activated with oxalyl chloride N. Cohen et al, J. Am. Chem. Soc., 1983, 105, 3661
- dicyclohexylcarbodiimide R. M. Wengler, Angew. Chim. Int.
- the aldehyde may then be separately oxidised to the corresponding acid using oxidising agents such as silver (II) oxide (R. Grigg et al, J. Chem. Soc. Perkin 1, 1983, 1929), potassium permanganate (A. Zurcher, Helv. Chim. Acta., 1987, 70 (7), 1937), sodium periodate catalysed by ruthenium trichloride (T. Sakata et al, Bull. Chem. Soc. Jpn., 1988, 61(6), 2025), pyridinium chlorochromate (R. S. Reddy et al, Synth. Commun., 1988, 18(51), 545) or chromium trioxide (R. M. Coates et al, J. Am. Chem. Soc., 1982, 104, 2198).
- silver (II) oxide R. Grigg et al, J. Chem. Soc. Perkin 1, 1983, 1929
- potassium permanganate A. Zurcher
- R 3 CO 2 H group may also be prepared from oxidative cleavage of the corresponding diol, CH(OH)CH 2 OH, using sodium periodate catalysed by ruthenium trichloride with an acetonitrile-carbontetrachloride-water solvent system (V. S. Martin et al, Tetrahedron Letters, 1988, 29(22), 2701).
- R 3 groups containing a cyano or carboxy group may also be prepared by conversion of an alcohol to a suitable leaving group such as the corresponding tosylate by reaction with para-toluenesulphonyl chloride (M. R. Bell, J. Med. Chem., 1970, 13, 389), or the iodide using triphenylphosphine, iodine, and imidazole (G. Lange, Synth. Commun., 1990, 20, 1473).
- the second stage is the displacement of the leaving group with cyanide anion (LA. Paquette et al, J. Org. Chem., 1979, 44 (25), 4603; P.A. Grieco et al, J. Org.
- R 3 Other functional groups in R 3 may be obtained by conventional conversions of carboxy or cyano groups.
- Tetrazoles are conveniently prepared by reaction of sodium azide with the cyano group (e.g. F. Thomas et al, Bioorg. Med. Chem. Lett., 1996, 6 (6), 631; K. Kubo et al, J. Med. Chem., 1993, 36, 2182) or by reaction of azidotri-n-butyl stannane with the cyano group followed by acidic hydrolysis (P. L. Ornstein, J. Org. Chem., 1994, 59, 7682 and J. Med. Chem, 1996, 39 (11), 2219).
- the tetrazol-5-ylaminocarbonyl group may be prepared from the corresponding carboxylic acid and 2-aminotetrazole by dehydration with standard peptide coupling agents such as 1,1′-carbonyldiimidazole (P. L. Ornstein et al, J. Med Chem, 1996, 39 (11), 2232).
- alkyl- and alkenyl-sulphonylcarboxamides are similarly prepared from the corresponding carboxylic acid and the alkyl- or alkenyl-sulphonamide by dehydration with standard peptide coupling agents such as 1,1′-carbonyldiimidazole (P. L. Ornstein et al, J. Med. Chem., 1996, 39 (11), 2232).
- hydroxamic acid groups are prepared from the corresponding acids by standard amide coupling reactions eg N. R. Patel et al, Tetrahedron, 1987, 43 (22), 5375
- 2,4-thiazolidinedione groups may prepared from the aldehydes by condensation with 2,4-thiazolidinedione and subsequent removal of the olefinic double bond by hydrogenation.
- 1,2,4-triazol-5-yl groups may be prepared from the corresponding nitrile by reaction with an alcohol under acid conditions followed by reaction with hydrazine and then an R 10 -substituted activated carboxylic acid (see J B Polya in ‘Comprehensive Heterocyclic Chemistry’ Edition 1 p 762, Ed A R Katritzky and C W Rees, Pergamon Press, Oxford 1984 and J. J. Ares et al, J. Heterocyclic Chem., 1991, 28(5), 1197).
- the cyclohexylamine or cyclohexenylamine NH 2 is converted to NR 2 R 4 by conventional means such as amide or sulphonamide formation with an acyl derivative for compounds where U or X 1a is CO or SO 2 or, where R 4 is —CH 2 R 5 1 or U or X 1a is CH 2 , by alkylation with an alkyl halide or other alkyl derivative R 4 —W in the presence of base, acylation/reduction or reductive alkylation with an aldehyde.
- R 3 and R 6 , R 7 , R 8 or R 9 contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage. This linkage may form spontaneously during coupling of the compounds of formulae (IV) and (V) or in the presence of standard peptide coupling agents.
- the isocyanate of formula (IV) may be prepared conventionally from a 4-amino derivative such as 4-amino-quinoline, and phosgene, or phosgene equivalent (eg triphosgene) or it may be prepared more conveniently from a 4-carboxylic acid by a “one-pot” Curtius Reaction with diphenyl phosphoryl azide (DPPA) [see T. Shiori et al. Chem. Pharm. Bull. 35, 2698-2704 (1987)].
- DPPA diphenyl phosphoryl azide
- the 4-amino derivatives are commercially available or may be prepared by conventional procedures from a corresponding 4-chloro derivative by treatment with ammonia (O. G. Backeberg et. al., J. Chem. Soc., 381, 1942) or propylamine hydrochloride (R. Radinov et. al., Synthesis, 886, 1986).
- 4-Alkenyl compounds of formula (IV) may be prepared by conventional procedures from a corresponding 4-halogeno-derivative by e.g. a Heck synthesis as described in e.g. Organic Reactions, 1982, 27, 345.
- 4-Halogeno derivatives of compounds of formula (IV) are commercially available, or may be prepared by methods known to those skilled in the art.
- a 4-chloroquinoline is prepared from the corresponding quinolin-4-one by reaction with phosphorus oxychloride (POCl 3 ) or phosphorus pentachloride, PCl 5 .
- A-4-bromo-substituent may be prepared from the quinolin- or naphthyridin-4-one by reaction with phosphorus tribromide (PBr3) in DMF.
- a 4-chloroquinazoline is prepared from the corresponding quinazolin-4-one by reaction with phosphorus oxychloride (POCl 3 ) or phosphorus pentachloride, PCl 5 .
- a quinazolinone and quinazolines may be prepared by standard routes as described by T. A. Williamson in Heterocyclic Compounds, 6, 324 (1957) Ed. R. C. Elderfield.
- 4-Carboxy derivatives of compounds of formula (IV) are commercially available or may be prepared by conventional procedures for preparation of carboxy heteroaromatics well known to those skilled in the art.
- quinazolines may be prepared by standard routes as described by T. A. Williamson in Heterocyclic Compounds, 6, 324 (1957) Ed. R. C. Elderfield.
- These 4-carboxy derivatives may be activated by conventional means, e.g. by conversion to an acyl halide or anhydride.
- 4-Carboxy derivatives such as esters may be reduced to hydroxymethyl derivatives with for example lithium aluminium hydride. Reaction with mesyl chloride and triethylamine would give the mesylate derivative.
- a diazo compound (X is —CH ⁇ N 2 ) may be prepared from the 4-carboxaldehyde via the tosyl hydrazone. The 4-carboxaldehyde may be obtained from from the acid by standard procedures well known to those skilled in the art.
- a 4-oxirane derivative of compounds of formula (IV) is conveniently prepared from the 4-carboxylic acid by first conversion to the acid chloride with oxalyl chloride and then reaction with trimethylsilyldiazomethane to give the diazoketone derivative. Subsequent reaction with 5M hydrochloric acid gives the chloromethylketone. Reduction with sodium borohydride in aqueous methanol gives the chlorohydrin which undergoes ring closure to afford the epoxide on treatment with base, e.g. potassium hydroxide in ethanol-tetrahydrofuran.
- 4-oxirane derivatives can be prepared from bromomethyl ketones which can be obtained from 4-hydroxy compounds by other routes well known to those skilled in the art.
- hydroxy compounds can be converted to the corresponding 4-trifluoromethanesulphonates by reaction with trifluoromethanesulphonic anhydride under standard conditions (see K. Ritter, Synthesis, 1993, 735).
- Conversion into the corresponding butyloxyvinyl ethers can be achieved by a Heck reaction with butyl vinyl ether under palladium catalysis according to the procedure of W. Cabri et al, J. Org. Chem, 1992, 57 (5), 1481.
- the equivalent intermediates can be attained by Stille coupling of the trifluoromethanesulphonates or the analaogous chloro derivatives with (1-ethoxyvinyl)tributyl tin, (T. R. Kelly, J. Org. Chem., 1996, 61, 4623).)
- the alkyloxyvinyl ethers are then converted into the corresponding bromomethylketones by treatment with N-bromosuccinimide in aqueous tetrahydrofuran in a similar manner to the procedures of J. F. W. Keana, J. Org. Chem., 1983, 48, 3621 and T. R. Kelly, J. Org. Chem., 1996, 61, 4623.
- the 4-hydroxyderivatives can be prepared from an aminoaromatic by reaction with methylpropiolate and subsequent cyclisation, analogous to the method described in N. E. Heindel et al, J. Het. Chem., 1969, 6, 77.
- 5-amino-2-methoxy pyridine can be converted to 4-hydroxy-6-methoxy-[1,5]naphthyridine using this method.
- the epoxide may be prepared from the 4-carboxaldehyde by a Wittig approach using trimethylsulfonium iodide [see G. A. Epling and K-Y Lin, J. Het. Chem., 1987, 24, 853-857], or by epoxidation of a 4-vinyl derivative.
- Pyridazines may be prepared by routes analogous to those described in Comprehensive Heterocyclic Chemistry, Volume 3, Ed A. J. Boulton and A. McKillop and napthyridines may be prepared by routes analogous to those described in Comprehensive Heterocyclic Chemistry, Volume 2, Ed A. J. Boulton and A. McKillop.
- 4-Hydroxy-1,5-naphthyridines can be prepared from 3-aminopyridine derivatives by reaction with diethyl ethoxymethylene malonate to produce the 4-hydroxy-3-carboxylic acid ester derivative with subsequent hydrolysis to the acid, followed by thermal decarboxylation in quinoline (as for example described for 4-Hydroxy-[1,5]naphthyridine-3-carboxylic acid, J. T. Adams et al., J. Amer. Chem. Soc., 1946, 68, 1317).
- a 4-hydroxy-[1,5]naphthyridine can be converted to the 4-chloro derivative by heating in phosphorus oxychloride, or to the 4-methanesulphonyloxy or 4-trifluoromethanesulphonyloxy derivative by reaction with methanesulphonyl chloride or trifluoromethanesulphonic anhydride, respectively, in the presence of an organic base.
- a 4-amino 1,5-naphthyridine can be obtained from the 4-chloro, 4-methanesulphonyloxy or 4-trifluoromethanesulphonyloxy derivative by reaction with n-propylamine in pyridine.
- 6-methoxy-1,5-naphthyridine derivatives can be prepared from 3-amino-6-methoxypyridine.
- 1,5-Naphthyridines may be prepared by other methods well known to those skilled in the art (for examples see P.A. Lowe in “Comprehensive Heterocyclic Chemistry” Volume 2, p 581-627, Ed A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984).
- the 4-hydroxy and 4-amino-cinnolines may be prepared following methods well known to those skilled in the art [see A. R. Osborn and K. Schofield, J. Chem. Soc. 2100 (1955)].
- a 2-aminoacetophenone is diazotised with sodium nitrite and acid to produce the 4-hydroxycinnoline with conversion to chloro and amino derivatives as described for 1,5-naphthyridines.
- R A groups where the ring (y) is 4-pyridyl are available by the sequence described below, starting from an aromatic or heterocyclic amine (1), with at least one free CH position adjacent to the amine. Reaction with Meldrum's acid and trimethyl orthformate in ethanol at reflux affords the corresponding 2,2-dimethyl-5-phenylaminomethylene-[1,3]dioxane-4,6-dione derivatives (2). These can be cyclised at elevated temperatures (180-220° C.) in inert solvents such as Dowtherm to give the corresponding 1H-quinolin-4-one (3) or heterocyclic analogues eg 1H-[1,6]naphthyridin-4-one. These processes are well-established and are described by Walz and Sundberg (J. Org. Chem., 2000, 65 (23), 8001) and by Todter and Lackner (Synthesis, 1997 (5) 576).
- Activation of the quinolone species related to (3) into the corresponding 4-quinolyl bromides (4) can be accomplished with phosphorous oxybromide or more preferably phosphorous tribromide in N,N-dimethylformamide (see M. Schstoff et al, Synlett, 1997, (9), 1096 and K. Gould et al, J. Med., Chem., 1988, 31 (7), 1445).
- the corresponding chlorides (5) are available by using phosphoryl oxychloride (for instance C. W. Wright et al, J. Med., Chem., 2001, 44 (19), 3187).
- the quinolone species may be activated to the corresponding 1,1,1-trifluoro-methanesulfonic acid quinolin-4-yl esters (6) by the action of agents such as triflic anhydride or more preferably N-trifluoromethanesulphonimide (see for example M. Alvarez et al, Tet 2000, 56 (23) 3703; M. Alvarez et al, Eur. J. Org., Chem., 2000, (5), 849; J. Joule et al, Tet, 1998, 54 (17), 4405; J. K. Stille et al, J.A.C.S., 1988, 110 (12), 4051).
- agents such as triflic anhydride or more preferably N-trifluoromethanesulphonimide
- Activated species such as (4), (5), and (6) can then be subjected to a variety of metal-catalysed coupling reactions, such as amidation with primary carboxamides to give compounds such as (7) following the procedures of S. L. Buchwald et al (J.A.C.S., 2001, 123, 4051 and 7727; Org. Lett., 1999, 1, 35) or Sonogashira coupling with acetylenes to give compounds such as (8) (see A. Droz et al, Helv. Chim. Acta., 2001, 84 (8), 2243; M. Belly et al, Synlett, 2001 (2), 222; M. Pirrung et al, J.A.C.S., 2001, 123 (16), 3638).
- R A thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinolin-8-yl and isoquinolin-5-yl derivatives are commercially available or prepared by conventional methods from commercially available or literature derivatives, for example 4H-thieno[3,2-b]pyridin-4-one, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridine (prepared by the method of H. Neunhoffer et al, Chem., Ber., 1990, 123), 2-methoxy-quinolin-8-ylamine (prepared by the method of K.
- R A quinoxalin-5-yl derivatives may be obtained from 2- or 3-methylquinoxalin-5-ol prepared as described by Y. Abe et al, J. Med. Chem., 1998, 41 (21), 4062 or from suitable substituted derivatives prepared by analogous methods.
- R A 3-methoxyquinoxaline-5-yl derivatives may be obtained from 3-oxoquinoxalin-5-yl prepared by the general methods of F. J. Wolf et al., J.A.C.S. 1949, 71, 6, using a suitable methylating agent such as trimethylsilyl(diazomethane).
- the corresponding 1,2,3,4-tetrahydro-quinoxalin-5-yl may be prepared by reduction with a suitable reducing agent such as sodium cyanoborohydride in the presence of an acid such as acetic acid.
- the isoquinolin-8-yl system can be prepared from the appropriately substituted benzylamine by cyclocondensation with diethoxy-acetaldehyde (see, for example, K. Kido and Y. Watanabe, Chemical & Pharmaceutical Bulletin, 35(12), 4964-6; 1987).
- 8-bromo-isoquinoline prepared by the method of F. T. Tyson, J.A.C.S., 1939, 61, N. Briet et al., Tetrahedron (2002), 58(29), 5761-5766 or W. D. Brown, et al., Synthesis (2002), (1), 83-86.
- 183 can be subjected to N-oxidation and rearrangement to give 8-bromo-2H-isoquinolin-1-one. This can be N-methylated to give 8-bromo-2-methyl-2H-isoquinolin-1-one, an appropriate intermediate for the 2-methyl-1-oxo-1,2-dihydroisoquinolin-8-yl system.
- the 1-methoxy-isoquinolin-8-yl system can also be obtained from the 8-bromoisoquinoline-N-oxide above by rearrangement with methyl chloroformate to give 8-bromo-1-methoxy-isoquinoline, an appropriate intermediate for the 1-methoxy-isoquinolin-8-yl system
- the compounds of formula (V) are either commercially available or may be prepared by conventional methods.
- suitable amines may be prepared from the corresponding 4-substituted cyclohexyl- or cyclohexenyl acid or alcohol.
- an N-protected cyclohexyl- or cyclohexenyl amine containing an acid bearing substituent can undergo a Curtius rearrangement and the intermediate isocyanate can be converted to a carbamate by reaction with an alcohol. Conversion to the amine may be achieved by standard methods well known to those skilled in the art used for amine protecting group removal.
- an acid substituted N-protected cyclohexyl- or cyclohexenyl amine can undergo a Curtius rearrangement e.g. on treatment with diphenylphosphoryl azide and heating, and the intermediate isocyanate reacts in the presence of 2-trimethylsilylethanol to give the trimethylsilylethylcarbamate (T. L. Capson & C. D. Poulter, Tetrahedron Lett., 1984, 25, 3515). This undergoes cleavage on treatment with tetrabutylammonium fluoride to give the 4-amine substituted N-protected compound of formula (V).
- an acid group (CH 2 ) n-1 CO 2 H may be converted to (CH 2 ) n NHR 11 by reaction with an activating agent such as isobutyl chloroformate followed by an amine R 11′ NH 2 and the resulting amide reduced with a reducing agent such as LiAlH 4 .
- an activating agent such as isobutyl chloroformate followed by an amine R 11′ NH 2
- a reducing agent such as LiAlH 4 .
- an N-protected cyclohexyl- or cyclohexenyl amine containing an alcohol bearing substituent undergoes a Mitsunobu reaction (for example as reviewed in Mitsunobu, Synthesis , (1981), 1), for example with succinimide in the presence of diethyl azodicarboxylate and triphenylphosphine to give the phthalimidoethylcyclohexyl- or cyclohexenyl amine. Removal of the phthaloyl group, for example by treatment with methylhydrazine, gives the amine of formula (V).
- Compounds of formula (V) with a —C ⁇ CH group may be prepared from the ketone treated with trimethylsilylacetylene and n-butyl lithium in dimethylformamide at low temperature followed by removal of the trimethylsilyl group with potassium carbonate in methanol or a fluoride source such as KF or tetrabutylammonium fluoride.
- Compounds of formula (V) with a —CONHR 11 group may be prepared from the corresponding nitrile by partial hydrolysis with concentrated mineral acid at ambient temperature, such as concentrated hydrochloric acid (M. Brown et al, J. Med. Chem., 1999, 42, (9), 1537) or with concentrated sulphuric acid (F. Macias et al Tetrahedron, 2000, 56, (21), 3409).
- concentrated mineral acid such as concentrated hydrochloric acid (M. Brown et al, J. Med. Chem., 1999, 42, (9), 1537) or with concentrated sulphuric acid (F. Macias et al Tetrahedron, 2000, 56, (21), 3409).
- Compounds of formula (V) with a —OCONH 2 group may be prepared from the corresponding alcohol by reaction with phosgene followed by ammonia.
- Compounds of formula (V) substituted by R 3 at the 1- or 4-position may be prepared from a 1-keto derivative via a cyanohydrin reaction with sodium cyanide/hydrochloric acid in an ether/water two phase system (J. Marco et al Tetrahedron, 1999, 55, (24), 7625), or using trimethylsilylcyanide and zinc iodide catalysis in dichloromethane (A. Abad et al, J. Chem.
- amine protecting group eg N-carboxylic acid tert-butyl ester is concomitantly removed during the acid hydrolysis step, necessitating a standard reprotection with di-tert-butyl dicarbonate, giving key intermediates (V) such as (4-carbamoyl-4-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester.
- An alternative route to 1-substituted compounds (V) involves a Diels Alder reaction between butyl acrylate and acetoxy butadiene to give (1). Elimination of acetic acid and hetero Diels Alder reaction with an in-situ generated acyl nitroso compound gives the bicyclic hydroxylamine product (3). The ester is transformed to an amide in two steps, and catalytic hydrogenation is used to reduce the double bond, remove the nitrogen protection and cleave the NO bond. After reprotection of the amino group, the cyclohexane amide with the required stereochemistry is obtained.
- 3-Cyclohexene carboxylic acid (2) is resolved via -Me benzylamine salt (Schwartz et al, J. Am. Chem. Soc., 100, 5199, (1978)).
- a higher yield of lactone (3) can be achieved using a larger excess of reagents.
- Lactone opening with ammonia gives (4), which is treated with azide to give (5) which has the required trans relative stereochemistry between the amide and N-substituent.
- azide reduction and Boc protection gives (1) a compound of formula (V).
- R 3 halogen can be introduced onto a cyclohexane ring via treatment of a silyl enol ether with an electrophilic halogenating, such as a fluorinating, agent.
- an electrophilic halogenating such as a fluorinating, agent.
- ethyl-4-oxo cyclohexanecarboxylate is converted to its TMS enol ether (S-W Lin, Bioorg. Med. Chem. Lett, 10; 11; 1297-1298, 2000). This conversion may be carried out using an optically active base to give enantiomerically enriched material [K W Henderson et al, JCS Chem Comm, 479-480, (2000); N S Simpkins et al, Tet.
- Reductive amination with an amine for example benzylamine or a chiral benzylamine for example -methyl benzylamine using sodium cyanoborohydride or sodium triacetoxyborohydride yields the amino ester with predominantly the cis relationship between the amino and fluoro substituents. This may be converted to the amino amide. Diastereoisomers may be separated by an appropriate combination of silica gel chromatography, HPLC and crystallisation of the free base or a suitable salt.
- SelectfluorTM 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate ⁇ -MeBnNH 2 : ⁇ -methylbenzylamine (BOC) 2 O: di-tert-butyldicarbonate BOC: tert-butyloxycarbonyl HOAt: 1-hydroxy-7-azabenzotriazole
- EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride.
- R 4 -halides and R 4 —W derivatives, acyl derivatives or aldehydes are commercially available or are prepared conventionally.
- the aldehydes may be prepared by partial reduction of the corresponding ester with lithium aluminium hydride or di-isobutylaluminium hydride or more preferably by reduction to the alcohol, with lithium aluminium hydride or sodium borohydride (see Reductions by the Alumino - and Borohydrides in Organic Synthesis, 2nd ed., Wiley, N.Y., 1997; JOC, 3197, 1984; Org. Synth.
- the aldehydes may also be prepared from carboxylic acids in two stages by conversion to a mixed anhydride for example by reaction with isobutyl chloroformate followed by reduction with sodium borohydride (R. J.
- R 4 -halides such as bromides may be prepared from the alcohol R 4 OH by reaction with phosphorus tribromide in dichloromethane/triethylamine.
- X 2a is CO and X 3a is NR 13a the R 4 -halide may be prepared by coupling an X 4a —NH 2 amine and bromoacetyl bromide.
- R 4 —W derivatives such as methanesulphonyl derivatives may be prepared from the alcohol R 4 OH by reaction with methane sulphonyl chloride.
- the leaving group W may be converted to another leaving group W, e.g. a halogen group, by conventional methods.
- the aldehyde R 5 2 CHO and sulphonic acid derivative R 5 2 SO 2 W may be generated by treatment of the R 5 2 H heterocycle with suitable reagents.
- benzoxazinones, or more preferably their N-methylated derivatives can be formylated with hexamine in either trifluoroacetic acid or methanesulfonic acid, in a modified Duff procedure [O. I. Petrov et al. Collect.
- 4-Methyl-4H-benzo[1,4]oxazin-3-one may also be formylated using dichloromethyl methyl ether and aluminium chloride giving exclusively the 6-formyl derivative.
- the aldehyde R 5 2 CHO may be generated by conversion of an R 5 2 halogen or R 5 2 trifluoromethane sulphonyloxy derivative into an olefin with subsequent oxidative cleavage by standard methods.
- reaction of a bromo derivative under palladium catalysis with trans-2-phenylboronic acid under palladium catalysis affords a styrene derivative which upon ozonolysis affords the required R 5 2 CHO (Stephenson, G. R., Adv. Asymmetric Synth. (1996), 275-298. Publisher: Chapman & Hall, London).
- R 5 2 is an optionally substituted benzoimidazol-2-yl group
- the compound of formula (V) where R 4′ is R 4 may be obtained by converting a R 4′ cyanomethyl group with partial hydrolysis to give the 2-ethoxycarbonimidoylethyl group which can then be condensed with an appropriately substituted 1,2-diaminobenzene to give the required benzoimidazol-2-yl group.
- R 5 2 H heterocycles are commercially available or may be prepared by conventional methods.
- a nitrophenol may be alkylated with for example ethyl bromoacetate and the resulting nitro ester reduced with Fe in acetic acid (alternatively Zn/AcOH/HCl or H 2 /Pd/C or H 2 /Raney Ni).
- the resulting amine may undergo spontaneous cyclisation to the required benzoxazinone, or cyclisation may be induced by heating in acetic acid.
- a nitrophenol may be reduced to the aminophenol, which is reacted with chloroacetyl chloride [method of X. Huang and C.
- 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazine-7-carbaldehyde may be accessed from 5-fluoro-2-picoline (E. J. Blanz, F. A. French, J. R. DoAmaral and D. A. French, J. Med. Chem. 1970, 13, 1124-1130) by constructing the thiazinone ring onto the pyridyl ring then functionalising the methyl substituent.
- the dioxin analogue of this aza substitution pattern 2,3-dihydro-[1,4]dioxino[2,3-c]pyridine-7-carbaldehyde is accessible from Kojic acid by aminolysis from pyrone to pyridone then annelating the dioxin ring.
- Other aza substitution patterns with pyridothiazin-3-one, pyridooxazin-3-one, and pyridodioxin ring systems are also accessible.
- Ortho-aminothiophenols may be conveniently prepared and reacted as their zinc complexes [see for example V. Taneja et al Chem. Ind. 187 (1984)].
- Benzoxazolones may be prepared from the corresponding aminophenol by reaction with carbonyl diimidazole, phosgene or triphosgene. Reaction of benzoxazolones with diphosphorus pentasulfide affords the corresponding 2-thione.
- Thiazines and oxazines can be prepared by reduction of the corresponding thiazinone or oxazinone with a reducing agent such as lithium aluminium hydride.
- amines R 2′ R 4′ NH are available commercially or prepared conventionally.
- amines may be prepared from a bromo derivative by reaction with sodium azide in dimethylformamide (DMF), followed by hydrogenation of the azidomethyl derivative over palladium-carbon.
- DMF dimethylformamide
- An alternative method is to use potassium phthalimide/DMF to give the phthalimidomethyl derivative, followed by reaction with hydrazine in DCM to liberate the primary amine.
- Amines where X 2a is CO and X 3a is NR 13a may be prepared by reacting an N-protected glycine derivative HO 2 C—X 1a —NH 2 with X 4a —NH 2 by conventional coupling using eg EDC.
- compositions of the invention include those in a form adapted for oral, topical or parenteral use and may be used for the treatment of bacterial infection in mammals including humans.
- the antibiotic compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other antibiotics.
- compositions may be formulated for administration by any route, such as oral, topical or parenteral.
- the compositions may be in the form of tablets, capsules, powders, granules, lozenges, creams or liquid preparations, such as oral or sterile parenteral solutions or suspensions.
- topical formulations of the present invention may be presented as, for instance, ointments, creams or lotions, eye ointments and eye or ear drops, impregnated dressings and aerosols, and may contain appropriate conventional additives such as preservatives, solvents to assist drug penetration and emollients in ointments and creams.
- the formulations may also contain compatible conventional carriers, such as cream or ointment bases and ethanol or oleyl alcohol for lotions.
- suitable conventional carriers such as cream or ointment bases and ethanol or oleyl alcohol for lotions.
- Such carriers may be present as from about 1% up to about 98% of the formulation. More usually they will form up to about 80% of the formulation.
- Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrollidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants, for example potato starch; or acceptable wetting agents such as sodium lauryl sulphate.
- the tablets may be coated according to methods well known in normal pharmaceutical practice.
- Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use.
- Such liquid preparations may contain conventional additives, such as suspending agents, for example sorbitol, methyl cellulose, glucose syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and, if desired, conventional flavouring or colouring agents.
- suspending agents for example sorbitol, methyl cellulose, glucose syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or
- Suppositories will contain conventional suppository bases, e.g. cocoa-butter or other glyceride.
- fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, water being preferred.
- the compound depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle.
- the compound can be dissolved in water for injection and filter sterilised before filling into a suitable vial or ampoule and sealing.
- agents such as a local anaesthetic, preservative and buffering agents can be dissolved in the vehicle.
- the composition can be frozen after filling into the vial and the water removed under vacuum.
- the dry lyophilized powder is then sealed in the vial and an accompanying vial of water for injection may be supplied to reconstitute the liquid prior to use.
- Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilization cannot be accomplished by filtration.
- the compound can be sterilised by exposure to ethylene oxide before suspending in the sterile vehicle.
- a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
- compositions may contain from 0.1% by weight, preferably from 10-60% by weight, of the active material, depending on the method of administration. Where the compositions comprise dosage units, each unit will preferably contain from 50-500 mg of the active ingredient.
- the dosage as employed for adult human treatment will preferably range from 100 to 3000 mg per day, for instance 1500 mg per day depending on the route and frequency of administration. Such a dosage corresponds to 1.5 to 50 mg/kg per day. Suitably the dosage is from 5 to 20 mg/kg per day.
- the compound of formula (I) may be the sole therapeutic agent in the compositions of the invention or a combination with other antibiotics or with a -lactamase inhibitor may be employed.
- the benzyl ester (d) (12.0 g, 41.5 mmol) and 1-hydroxy-7-azabenzotriazole (6.26 g, 46 mmol) were dissolved in DMF (100 ml) then 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (8.79 g, 46 mmol) added. After stirring for 5 minutes ammonium hydrogen carbonate (8.22 g, 104 mmol) was added. Four further small portions of ammonium hydrogen carbonate were added over the next 7 hours. The mixture was then stirred overnight, diluted with water and extracted with ethyl acetate ( ⁇ 4).
- the benzyl ester (e) (9.75 g, 33.8 mmol) was dissolved in 1,4-dioxane (150 ml) and water (60 ml) and hydrogenated over 10% palladium on carbon (50% aqueous paste, 3.3 g) at 40° C. and 55 psi for 68 hours. More catalyst (2 g) was added after 4 hours. The mixture was then filtered through kieselguhr, washing well with 1,4-dioxane and water.
- the dihydrochloride salt (e) (55 mg, 0.14 mmol), aldehyde (1j) (50 mg, 0.25 mmol), triethylamine (0.10 mL, 0.72 mmol), DMF (0.5 mL), HOAc (0.5 mL) and MeOH (7 mL) were combined together and stirred in the presence of 3 ⁇ molecular sieves for 3 hours at 80° C. and then at room temperature overnight.
- NaCNBH 3 54 mg, 0.86 mmol was added and the reaction mixture was stirred at room temperature for 24 hours.
- the reaction mixture was diluted with 10% MeOH/CHCl 3 and aq Na 2 CO 3 was added.
- the aqueous layer was extracted with 10% MeOH/CHCl 3 (4 ⁇ ) and the combined organic extracts were dried (Na 2 SO 4 ).
- the product was purified on an ISCO Combiflash® automated column chromatography unit (silica, 0% to 10% MeOH/CHCl 3 ) to provide 31 mg (45%) of the title compound as a white solid.
- Dihydrochloride salt (65 mg, 0.16 mmol), aldehyde (b) (75 mg, 0.42 mmol), triethylamine (0.15 mL, 1.08 mmol), DMF (0.5 mL), HOAc (0.5 mL) and MeOH (7 mL) were combined together and stirred in the presence of 3 ⁇ molecular sieves for 3 hours at 80° C. and then at room temperature overnight.
- NaCNBH 3 47 mg, 0.75 mmol was added and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with 10% MeOH/CHCl 3 and aq Na 2 CO 3 was added.
- the aqueous layer was extracted with 10% MeOH/CHCl 3 (4 ⁇ ) and the combined organic extracts were dried (Na 2 SO 4 ).
- the product was purified on an ISCO Combiflash® automated column chromatography unit (silica, 0% to 10% MeOH/CHCl 3 ) to provide 70 mg (92%) of the title compound as a pale yellow solid.
- the hydroxypyridine (f) (30 g, 0.14 mole) was suspended in acetone (200 mL), and potassium carbonate (39 g, 0.28 mole) was added, followed by ethyl bromoacetate (15.7 mL, 0.14 mmole).
- the reaction was heated at reflux for 10 hr, then was cooled to room temperature and diluted with Et 2 O.
- the precipitate was removed by suction filtration, and the filtrate was concentrated in vacuo to afford material (38 g, 89%), which was used without further purification.
- nitropyridine (g) 38 g, 0.125 mole was dissolved in glacial AcOH (150 mL), and iron powder (20 g, 0.36 mole) was added. The mixture was mechanically stirred and heated at 90° C. for 5 hr, then was cooled to room temperature and diluted with EtOAc (300 mL). The mixture was filtered through a pad of silica gel and the filtrate was concentrated in vacuo and the residue recrystallized from MeOH (15 g, 52%).
- the pyridine (i) (1.2 g, 4.8 mmole) was dissolved in CH 2 Cl 2 (200 mL) and the solution was cooled to ⁇ 78° C. Ozone was bubbled through the solution with stirring until a pale blue color appeared, then the excess ozone was removed by bubbling oxygen through the solution for 15 min. Dimethylsulfide (1.76 mL, 24 mmole) was added to the solution, and the reaction was stirred at ⁇ 78° C. for 3 hr, then at room temperature overnight. The solvent was removed in vacuo, and the residue was triturated with Et 2 O (50 mL). The collected solid was washed with additional Et 2 O and dried to afford a solid (700 mg, 82%).
- Amine trifluoroacetate (e) (270 mg, 0.51 mmol) was added to a stirred solution of aldehyde (j) (100 mg, 0.561 mmol) dissolved in DMF (3 mL) and MeOH (2 mL). NaHCO 3 (214 mg, 2.55 mmol) was added to the reaction mixture and the solution was allowed to stir at 80° C. for 16 hours. The solution was cooled to 0° C. and sodium borohydride (0.042 g, 1.12 mmol) was added. The reaction was stirred at ambient temperature for 4 hours. The reaction mixture was partitioned between ethyl acetate and water.
- the pyridine N-oxide (b) (18.5 g) was dissolved in a cold mixture of fuming nitric acid (90 ml) and concentrated sulfuric acid (90 ml) and heated to 40° C. for 1 hour, then 65° C. overnight. The mixture was cooled, poured onto ice and EtOAc (250 ml) added. When the ice had melted, the mixture was shaken and solid filtered off. The EtOAc was dried and evaporated, the residue triturated with ether and filtered affording a solid (8.4 g).
- This compound was prepared from carboxylic acid (d) by the method of Example (1i) (73%).
- This compound was prepared (96%) from the ester (b) (11.84 g) by the method of Example (1h) to give a solid (9.6 g).
- This compound was prepared (70%) from the carboxylic acid (c) by the method of Example (1i).
- This compound was prepared (49%) from the alcohol (d) by the method of Example (1j) to give a solid (2.01 g).
- Phosphorous tribromide (0.38 ml, 4 mmol) was added to DMF (10 mL) with vigorous stirring. Naphthyridone (b) (584 mg, 4 mmol) was added. After 0.5 hours the mixture was added to ice/water, neutralised with aqueous sodium bicarbonate solution and extracted with ethyl acetate. Drying and evaporation afforded a solid (240 mg, 29%).
- Silyl enol ether (a) (3.5 g) in acetonitrile (40 mL) at 0° C. was treated portionwise with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), (SelectfluorTM), (6.16 g). After 75 min, saturated sodium hydrogen carbonate (50 mL) and water (50 mL) were added and the mixture extracted with ethyl acetate. The organic soluble material was purified by careful chromatography on silica gel eluting with 5-60% diethyl ether in hexane to give an oil (1.02 g).
- Ketone (b) (1.02 g, 5.4 mmol) in dichloroethane (24 mL) and acetic acid (1 mL) was treated with (R)- ⁇ -methyl benzylamine (0.88 mL) and sodium triacetoxyborohydride (2.2 g). After 4.5 hours, the reaction mixture was loaded onto a silica gel column packed in 0.5% (2M ammonia in methanol) in dichloromethane and eluted with 0.5-10% (2M ammonia in methanol) in dichloromethane to give an oil (1.2 g).
- ester (c) (1.5 g) in methanol (50 mL) was treated with lithium hydroxide (630 mg). After 2 hours acetic acid (1 mL) was added and the mixture was evaporated to dryness. Chromatography on silica eluting with 1:9:90 (acetic acid:methanol:dichloromethane) afforded an oil (1.02 g).
- the acetate salt (c) (15.6 g, 66 mmol) was suspended in tetrahydrofuran (200 ml) and treated with di-tert-butyl carbonate (16 g, 73 mmol) and diisopropylethylamine (14 ml, 10.4 g, 80 mmol). The mixture was heated at 50° C. for 18 hours then evaporated to dryness. The residue was partitioned between water and ethyl acetate. The aqueous phase was further extracted with ethyl acetate and the combined extracts washed with brine, dried and evaporated to give a solid (18.5 g, 100%).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Pharmacology & Pharmacy (AREA)
- Communicable Diseases (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Cyclohexane and cyclohexene derivatives and pharmaceutically acceptable derivatives thereof useful in methods of treatment of bacterial infections in mammals, particularly man.
Description
- This is a continuation of application Ser. No. 10/518,653, filed Apr. 3, 2006, (granted U.S. Pat. No. 7,622,481), which is a 371 application of PCT/EP03/06756 filed Jun. 25, 2003 which claim the benefit of U.S. Provisional 60/391,700 filed Jun. 26, 2002, and U.S. Provisional 60/460,961 filed Apr. 7, 2003.
- This invention relates to novel compounds, compositions containing them and their use as antibacterials.
- WO099/37635, WO00/21948, WO00/21952, WO00/43383, WO00/78748, WO01/07433, WO01/07432, WO02/08224, WO02/24684, WO02/50040, WO02/56882, WO02/96907, PCT/EP02/05708, WO03010138, WO01/25227 and WO0207572 disclose quinoline and naphthyridine derivatives having antibacterial activity.
- This invention provides a compound of formula (I) or a pharmaceutically acceptable derivative thereof:
- wherein:
Rv and Rw are hydrogen or Rv and Rw together are a bond;
RA is an optionally substituted bicyclic carbocyclic or heterocyclic ring system of structure: - containing 0-3 heteroatoms in each ring in which:
- at least one of rings (x) and (y) is aromatic;
- one of Z4 and Z5 is C or N and the other is C;
- Z3 is N, NR13, O, S(O)x, CO, CR1 or CR1R1a;
- Z1 and Z2 are independently a 2 or 3 atom linker group each atom of which is independently selected from N, NR13, O, S(O)x, CO, CR1 and CR1R1a; such that each ring is independently substituted with 0-3 groups R1 and/or R1a;
- R1 and R1a are independently selected from hydrogen; hydroxy; (C1-6) alkoxy optionally substituted by (C1-6)alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C1-6)alkyl, acyl or (C1-6)alkylsulphonyl groups, CONH2, hydroxy, (C1-6)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C1-6)alkylsulphonyloxy; (C1-6)alkoxy-substituted (C1-6)alkyl; hydroxy (C1-6)alkyl; halogen; (C1-6)alkyl; (C1-6)alkylthio; trifluoromethyl; trifluoromethoxy; cyano; carboxy; nitro; azido; acyl; acyloxy; acylthio; (C1-6)alkylsulphonyl; (C1-6)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C1-6)alkyl, acyl or (C1-6)alkylsulphonyl groups, or when Z3 and the adjacent atom are CR1 and CR1a, R1 and R1a may together represent (C1-2)alkylenedioxy,
provided that R1 and R1a, on the same carbon atom are not both optionally substituted hydroxy or amino;
provided that
(i) when RA is optionally substituted quinolin-4-yl: - it is unsubstituted in the 6-position; or
- it is substituted by at least one hydroxy (C1-6)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position; or
- it is substituted by at least one trifluoromethoxy group; or
- R3 is halogen;
- (ii) when RA is optionally substituted quinazolin-4-yl, cinnolin-4-yl, 1,5-naphthyridin-4-yl, 1,7-naphthyridin-4-yl or 1,8-naphthyridin-4-yl:
- it is substituted by at least one hydroxy (C1-6)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position as available; or
- it is substituted by at least one trifluoromethoxy group; or
- R3 is halogen;
- R2 is hydrogen, or (C1-4)alkyl or (C2-4)alkenyl optionally substituted with 1 to 3 groups selected from:
amino optionally substituted by one or two (C1-4)alkyl groups; carboxy; (C1-4)alkoxycarbonyl; (C1-4)alkylcarbonyl; (C2-4)alkenyloxycarbonyl; (C2-4)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-4)alkyl, hydroxy(C1-4)alkyl, aminocarbonyl(C1-4)alkyl, (C2-4)alkenyl, (C1-4)alkylsulphonyl, trifluoromethylsulphonyl, (C2-4)alkenylsulphonyl, (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl or (C2-4)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R10; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R10; 5-oxo-1,2,4-oxadiazol-3-yl; halogen; (C1-4)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C1-4)alkyl, (C2-4)alkenyl, (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl, (C2-4)alkenylcarbonyl; oxo; (C1-4)alkylsulphonyl; (C2-4)alkenylsulphonyl; or (C1-4)aminosulphonyl wherein the amino group is optionally substituted by (C1-4)alkyl or (C2-4)alkenyl;
R3 is hydrogen; or
when Rv and Rw are a bond, R3 is in the 2-, 3- or 4-position and when Rv and Rw are not a bond, R3 is in the 1-, 2-, 3- or 4-position and R3 is:
carboxy; (C1-6)alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, trifluoromethylsulphonyl, (C2-6)alkenylsulphonyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl or (C2-6)alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R10; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R10; or 5-oxo-1,2,4-oxadiazol-3-yl; or
(C1-4)alkyl or ethenyl optionally substituted with any of the groups listed above for R3 and/or 0 to 2 groups R12 independently selected from: - halogen; (C1-6)alkylthio; trifluoromethyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; (C2-6)alkenyloxycarbonyl; (C2-6)alkenylcarbonyl; hydroxy optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylcarbonyl or (C2-6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, (C2-6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl, hydroxy(C1-6), aminocarbonyl(C1-6) or (C2-6)alkenyl; oxo; (C1-6)alkylsulphonyl; (C2-6)alkenylsulphonyl; or (C1-6)aminosulphonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl; or
- hydroxy optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylcarbonyl or (C2-6)alkenylcarbonyl; or
amino optionally mono- or disubstituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, (C2-6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl; or
halogen;
provided that when R3 is in the 4-position it is not optionally substituted hydroxyl or amino or halogen;
in addition when R3 is disubstituted with a hydroxy or amino containing substituent and a carboxy containing substituent these may optionally together form a cyclic ester or amide linkage, respectively;
R10 is selected from (C1-4)alkyl and (C2-4)alkenyl either of which may be optionally substituted by a group R12 as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, trifluoromethylsulphonyl, (C2-6)alkenylsulphonyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl or (C2-6)alkenyl; (C1-6)alkylsulphonyl; trifluoromethylsulphonyl; (C2-6)alkenylsulphonyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; (C2-6)alkenyloxycarbonyl; and (C2-6)alkenylcarbonyl;
R4 is a group —CH2—R5 1 in which R5 1 is selected from: - (C4-8)alkyl; hydroxy(C4-8)alkyl; (C1-4)alkoxy(C4-8)alkyl; (C1-4)alkanoyloxy(C4-8)alkyl; (C3-8)cycloalkyl(C4-8)alkyl; hydroxy-, (C1-6)alkoxy- or (C1-6)alkanoyloxy-(C3-8)cycloalkyl(C4-8)alkyl; cyano(C4-8)alkyl; (C4-8)alkenyl; (C4-8)alkynyl; tetrahydrofuryl; mono- or di-(C1-6)alkylamino(C4-8)alkyl; acylamino(C4-8)alkyl; (C1-6)alkyl- or acyl-aminocarbonyl(C4-8)alkyl; mono- or di-(C1-6)alkylamino(hydroxy) (C4-8)alkyl; or
- R4 is a group —U—R5 2 where R5 2 is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):
- containing up to four heteroatoms in each ring in which
- at least one of rings (a) and (b) is aromatic;
- X1 is C or N when part of an aromatic ring or CR14 when part of a non aromatic ring;
- X2 is N, NR13, O, S(O)x, CO or CR14 when part of an aromatic or non-aromatic ring or may in addition be CR14R15 when part of a non aromatic ring;
- X3 and X5 are independently N or C;
- Y1 is a 0 to 4 atom linker group each atom of which is independently selected from N, NR13, O, S(O)x, CO and CR14 when part of an aromatic or non-aromatic ring or may additionally be CR14R15 when part of a non aromatic ring,
- Y2 is a 2 to 6 atom linker group, each atom of Y2 being independently selected from N, NR13, O, S(O)x, CO and CR14 when part of an aromatic or non-aromatic ring or may additionally be CR14R15 when part of a non aromatic ring;
- each of R14 and R15 is independently selected from: H; (C1-4)alkylthio; halo; carboxy(C1-4)alkyl; halo(C1-4)alkoxy; halo(C1-4)alkyl; (C1-4)alkyl; (C2-4)alkenyl; (C1-4)alkoxycarbonyl; formyl; (C1-4)alkylcarbonyl; (C2-4)alkenyloxycarbonyl; (C2-4)alkenylcarbonyl; (C1-4)alkylcarbonyloxy; (C1-4)alkoxycarbonyl(C1-4)alkyl; hydroxy; hydroxy(C1-4)alkyl; mercapto(C1-4)alkyl; (C1-4)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R3; (C1-4)alkylsulphonyl; (C2-4)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C1-4)alkyl or (C2-4)alkenyl; aryl; aryl(C1-4)alkyl; aryl(C1-4)alkoxy;
- each R13 is independently H; trifluoromethyl; (C1-4)alkyl optionally substituted by hydroxy, carboxy, (C1-6)alkoxycarbonyl, (C1-6)alkoxy, (C1-6)alkylthio, halo or trifluoromethyl; (C2-4)alkenyl; aryl; aryl (C1-4)alkyl; arylcarbonyl; heteroarylcarbonyl; (C1-4)alkoxycarbonyl; (C1-4)alkylcarbonyl; formyl; (C1-6)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl, (C2-4)alkenylcarbonyl, (C1-4)alkyl or (C2-4)alkenyl and optionally further substituted by (C1-4)alkyl or (C2-4)alkenyl;
- each x is independently 0, 1 or 2;
- R4 is a group -X1a-X2a-X3a-X4a in which:
- X1a is CH2, CO or SO2;
- X2a is CR14aR15a;
- X3a is NR13a, O, S, SO2 or CR14aR15a; wherein:
- each of R14a and R15a is independently selected from the groups listed above for R14 and R15, provided that R14a and R15a on the same carbon atom are not both selected from optionally substituted hydroxy and optionally substituted amino; or
- R14a and R15a together represent oxo;
- R13a is hydrogen; trifluoromethyl; (C1-6)alkyl; (C2-6)alkenyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl or (C2-6)alkenyl and optionally further substituted by (C1-6)alkyl or (C2-6)alkenyl; or
- two R14a groups or an R13a and an R14a group on adjacent atoms together represent a bond and the remaining R13a, R14a and R15a groups are as above defined; or
- two R14a groups and two R15a groups on adjacent atoms together represent bonds such that X2a and X3a is triple bonded;
- X4a is phenyl or C or N linked monocyclic aromatic 5- or 6-membered heterocycle containing up to four heteroatoms selected from O, S and N and: optionally C-substituted by up to three groups selected from (C1-4)alkylthio; halo; carboxy(C1-4)alkyl; halo(C1-4)alkoxy; halo(C1-4)alkyl; (C1-4)alkyl; (C2-4)alkenyl; (C1-4)alkoxycarbonyl; formyl; (C1-4)alkylcarbonyl; (C2-4)alkenyloxycarbonyl; (C2-4)alkenylcarbonyl; (C1-4)alkylcarbonyloxy; (C1-4)alkoxycarbonyl(C1-4)alkyl; hydroxy; hydroxy(C1-4)alkyl; mercapto(C1-4)alkyl; (C1-4)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R3; (C1-4)alkylsulphonyl; (C2-4)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C1-4)alkyl or (C2-4)alkenyl; aryl, aryl(C1-4)alkyl or aryl(C1-4)alkoxy; and
- optionally N substituted by trifluoromethyl; (C1-4)alkyl optionally substituted by hydroxy, (C1-6)alkoxy, (C1-6)alkylthio, halo or trifluoromethyl; (C2-4)alkenyl; aryl; aryl(C1-4)alkyl; (C1-4)alkoxycarbonyl; (C1-4)alkylcarbonyl; formyl; (C1-6)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl, (C2-4)alkenylcarbonyl, (C1-4)alkyl or (C2-4)alkenyl and optionally further substituted by (C1-4)alkyl or (C2-4)alkenyl;
n is 0 or 1 and AB is NR11CO, CONR11, CO—CR8R9, CR6R7—CO, O—CR8R9, CR6R7—O, NHR11—CR8R9, CR6R7—NHR11, NR11SO2, CR6R7—SO2 or CR6R7—CR8R9, provided that when Rv and Rw are a bond and n=0, B is not NR11, O or SO2, or n is 0 and AB is NH—CO—NH or NH—CO—O and RV/Rw are not a bond;
or n is 0 and AB is CR6R7SO2 NR2, CR6R7CONR2 or CR6R7CH2NR2 and Rv/Rw are not a bond;
provided that R6 and R7, and R8 and R9 are not both optionally substituted hydroxy or amino;
and wherein:
each of R6, R7, R8 and R9 is independently selected from: H; (C1-6)alkoxy; (C1-6)alkylthio; halo; trifluoromethyl; azido; (C1-6)alkyl; (C2-6)alkenyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; (C2-6)alkenyloxycarbonyl; (C2-6)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R3; (C1-6)alkylsulphonyl; (C2-6)alkenylsulphonyl; or (C1-6)aminosulphonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl;
or R6 and R8 together represent a bond and R7 and R9 are as above defined;
and each R11 is independently H; trifluoromethyl; (C1-6)alkyl; (C2-6)alkenyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl or (C2-6)alkenyl and optionally further substituted by (C1-6)alkyl or (C2-6)alkenyl;
or where one of R3 and R6, R7, R8 or R9 contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage or where R3 contains a carboxy group and A or B is NH they may be condensed to form a cyclic amide. - The invention also provides the use of a compound of formula (I) or a pharmaceutically acceptable derivative thereof in the manufacture of a medicament for use in the treatment of bacterial infections in mammals.
- The invention also provides a pharmaceutical composition, in particular for use in the treatment of bacterial infections in mammals, comprising a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.
- The invention further provides a method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment of an effective amount of a a compound of formula (I), or a pharmaceutically acceptable derivative thereof.
- Preferably Z2 is three atoms long.
- Preferably Z4 and Z5 are both carbon.
- Preferably Z1 is three atoms long with carbon joined to Z3 and with R1 on the carbon atom joined to Z3.
- In one preferred aspect, RA is aromatic and ring (y) is fused benzene. Preferably (x) is 6-membered containing one or two nitrogen atoms, the remainder being carbon. Most preferably Z3 is nitrogen and the remainder are carbon or Z1 is ═CH—CH═N— (N attached to Z5).
- In another preferred aspect, ring (y) is fused pyridin-4-yl (Z2 is three atoms long, the atom attached to Z5 in Z2 is nitrogen and the remainder and Z4 and Z5 are carbon), Z1 is two or three atoms long and Z3 is a heteroatom such as O or S.
- Suitable examples of rings RA include optionally substituted isoquinolin-5-yl, quinolin-8-yl, thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinoxalin-5-yl, isoquinolin-8-yl, [1,6]-naphthyridin-4-yl, 1,2,3,4-tetrahydroquinoxalin-5-yl and 1,2-dihydroisoquinoline-8-yl. Most preferably RA is optionally 2-substituted-quinolin-8-yl or optionally 3-substituted-quinoxalin-5-yl.
- R13 in rings (x) and (y) is preferably H or (C1-6)alkyl.
- When R1 or R1a is substituted alkoxy it is preferably (C2-6)alkoxy substituted by optionally N-substituted amino, or (C1-6)alkoxy substituted by piperidyl. Suitable examples of R1 alkoxy include methoxy, trifluoromethoxy, n-propyloxy, i-butyloxy, aminoethyloxy, aminopropyloxy, aminobutyloxy, aminopentyloxy, guanidinopropyloxy, piperidin-4-ylmethyloxy or 2-aminocarbonylprop-2-oxy.
- Preferably R1 and R1a are independently hydrogen, (C1-4)alkoxy, (C1-4)alkylthio, (C1-4)alkyl, amino(C3-5)alkyloxy, nitro, cyano, carboxy, hydroxymethyl or halogen; more preferably hydrogen, methoxy, methyl, cyano, halogen or amino(C3-5)alkyloxy.
- Ring RA is preferably substituted by one group R1. Most preferably R1 is H, methoxy, methyl, cyano or halogen and R1a is H. Halogen is preferably chloro or fluoro.
- R2 is preferably hydrogen; (C1-4)alkyl substituted with carboxy, optionally substituted hydroxy, optionally substituted aminocarbonyl, optionally substituted amino or (C1-4)alkoxycarbonyl; or (C2-4)alkenyl substituted with (C1-4)alkoxycarbonyl or carboxy. More preferred groups for R2 are hydrogen, carboxymethyl, hydroxyethyl, aminocarbonylmethyl, ethoxycarbonylmethyl, ethoxycarbonylallyl and carboxyallyl, most preferably hydrogen.
- Preferred examples of R3 include hydrogen; optionally substituted hydroxy; optionally substituted amino; halogen; (C1-4) alkyl; ethenyl; optionally substituted 1-hydroxy-(C1-4) alkyl; optionally substituted aminocarbonyl; carboxy(C1-4)alkyl; optionally substituted aminocarbonyl(C1-4)alkyl; cyano(C1-4)alkyl; optionally substituted 2-oxo-oxazolidinyl and optionally substituted 2-oxo-oxazolidinyl(C1-4alkyl). More preferred R3 groups are hydrogen; CONH2; 1-hydroxyalkyl e.g. CH2OH, CH(OH)CH2CN; CH2CO2H; CH2CONH2; —CONHCH2CONH2; 1,2-dihydroxyalkyl e.g. CH(OH)CH2OH; CH2CN; 2-oxo-oxazolidin-5-yl; 2-oxo-oxazolidin-5-yl(C1-4 alkyl); optionally substituted hydroxy; optionally substituted amino; and halogen, in particular fluoro. Most preferably R3 is hydrogen, fluoro or hydroxy, and if fluoro or hydroxy, most preferably substituted in the 1- or 3-position. R3 hydroxy in the 3-position preferably is trans to NR2R4 and has R stereochemistry or is cis to NR2R4 and has S stereochemistry.
- When R3 and R6, R7, R8 or R9 together form a cyclic ester or amide linkage, it is preferred that the resulting ring is 5-7 membered. It is further preferred that the group A or B which does not form the ester or amide linkage is CH2.
- When A is CH(OH) the R-stereochemistry is preferred.
- Preferably A is NH, NCH3, CH2, CHOH, CH(NH2), C(Me)(OH) or CH(Me).
- Preferably B is CH2 or CO.
- Preferably n=0.
- Preferably, when Rv and Rw are not a bond and n=1 or AB(CH2)n is NHCONH or NHCOO, AB(CH2)n and NR2R4 are cis.
- Preferably, when Rv and Rw are not a bond and n=0 and AB is not NHCONH or NHCOO, AB(CH2)n and NR2R4 are trans.
- More preferably:
- n is 0 and either A and B are both CH2, A is CHOH, CH2 and B is CH2 or A is NH and B is CO.
- Most preferably AB is NHCO.
- Preferably R11 is hydrogen or (C1-4)alkyl e.g. methyl, more preferably hydrogen.
- When R4 is CH2R5 1, preferably R5 1 is (C6-8)alkyl.
- When R4 is a group -X1a-X2a-X3a-X4a:
- X1a is preferably CH2.
- X2a is preferably CH2 or together with X3a forms a CH═CH or C≡C group.
- X3a is preferably CH2, O, S or NH, or together with X2a forms a CH═CH or C≡C group.
- Preferred linker groups -X1a-X2a-X3a- include —(CH2)2—O—, —(CH2)2—S—, —CH2—CH═CH—, —(CH2)3—, —(CH2)2—NH— or —CH2CONH—.
- Monocyclic aromatic heterocyclic groups for X4a include pyridyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, thienyl, isoimidazolyl, thiazolyl, furanyl and imidazolyl, 2H-pyridazone, 1H-pyrid-2-one. Preferred aromatic heterocyclic groups include pyrid-2-yl, pyrid-3-yl, thiazole-2-yl, pyrimidin-2-yl, pyrimidin-5-yl and fur-2-yl.
- Preferred substituents on heterocyclic X4a include halo especially fluoro, trifluoromethyl and nitro.
- Preferred substituents on phenyl X4a include halo, especially fluoro, nitro, cyano, trifluoromethyl, methyl, methoxycarbonyl and methylcarbonylamino.
- Preferably X4a is 2-pyridyl, 3-fluorophenyl, 3,5-difluorophenyl or thiazol-2-yl.
- Preferably R4 is —U—R5 2.
- The group —U— is preferably —CH2—.
- Preferably R5 2 is an aromatic heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR13 in which preferably Y2 contains 2-3 heteroatoms, one of which is S and 1-2 are N, with one N bonded to X3.
- Alternatively and preferably the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non-aromatic and Y2 has 3-5 atoms, more preferably 4 atoms, including a heteroatom bonded to X5 selected from O, S or NR13, where R13 is other than hydrogen, and NHCO bonded via N to X3, or O bonded to X3. The ring (a) preferably contains aromatic nitrogen, and more preferably ring (a) is pyridine. Examples of rings (A) include optionally substituted:
- 1H-pyrrolo[2,3-b]-pyridin-2-yl, 1H-pyrrolo[3,2-b]-pyridin-2-yl, 3H-imidazo[4,5-b]-pyrid-2-yl, 3H-quinazolin-4-one-2-yl, benzimidazol-2-yl, benzo[1,2,3]-thiadiazol-5-yl, benzo[1,2,5]-oxadiazol-5-yl, benzofur-2-yl, benzothiazol-2-yl, benzo[b]thiophen-2-yl, benzoxazol-2-yl, chromen-4-one-3-yl, imidazo[1,2-a]pyridin-2-yl, imidazo-[1,2-a]-pyrimidin-2-yl, indol-2-yl, indol-6-yl, isoquinolin-3-yl, [1,8]-naphthyridine-3-yl, oxazolo[4,5-b]-pyridin-2-yl, quinolin-2-yl, quinolin-3-yl, quinoxalin-2-yl, indan-2-yl, naphthalen-2-yl, 1,3-dioxo-isoindol-2yl, benzimidazol-2-yl, benzothiophen-2-yl, 1H-benzotriazol-5-yl, 1H-indol-5-yl, 3H-benzooxazol-2-one-6-yl, 3H-benzooxazol-2-thione-6-yl, 3H-benzothiazol-2-one-5-yl, 3H-quinazolin-4-one-2-yl, 3H-quinazolin-4-one-6-yl, 4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl, benzo[1,2,3]thiadiazol-6-yl, benzo[1,2,5]thiadiazol-5-yl, benzo[1,4]oxazin-2-one-3-yl, benzothiazol-5-yl, benzothiazol-6-yl, cinnolin-3-yl, imidazo[1,2-a]pyridazin-2-yl, imidazo[1,2-b]pyridazin-2-yl, pyrazolo[1,5-a]pyrazin-2-yl, pyrazolo[1,5-a]pyridin-2-yl, pyrazolo[1,5-a]pyrimidin-6-yl, pyrazolo[5,1-c][1,2,4]triazin-3-yl, pyrido[1,2-a]pyrimidin-4-one-2-yl, pyrido[1,2-a]pyrimidin-4-one-3-yl, quinazolin-2-yl, quinoxalin-6-yl, thiazolo[3,2-a]pyrimidin-5-one-7-yl, thiazolo[5,4-b]pyridin-2-yl, thieno[3,2-b]pyridin-6-yl, thiazolo[5,4-b]pyridin-6-yl, 4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl, 1-oxo-1,2-dihydro-isoquinolin-3-yl, thiazolo[4,5-b]pyridin-5-yl, [1,2,3]thiadiazolo[5,4-b]pyridin-6-yl, 2H-isoquinolin-1-one-3-yl
- (2S)-2,3-dihydro-1H-indol-2-yl, (2S)-2,3-dihydro-benzo[1,4]dioxine-2-yl, 3-(R,S)-3,4-dihydro-2H-benzo[1,4]thiazin-3-yl, 3-(R)-2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-3-yl, 3-(S)-2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-3-yl, 2,3-dihydro-benzo[1,4]dioxan-2-yl, 3-substituted-3H-quinazolin-4-one-2-yl,
- 1,1,3-trioxo-1,2,3,4-tetrahydro-1l6-benzo[1,4]thiazin-6-yl, benzo[1,3]dioxol-5-yl, 4H-benzo[1,4]oxazin-3-one-6-yl, 2,3-dihydro-benzo[1,4]dioxin-6-yl, 2-oxo-2,3-dihydro-benzooxazol-6-yl, 4H-benzo[1,4]oxazin-3-one-6-yl (3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl), 4H-benzo[1,4]thiazin-3-one-6-yl (3-oxo-3,4-dihydro-2H-benzo[1,4]thiazin-6-yl), 4H-benzo[1,4]oxazin-3-one-7-yl, 4-oxo-2,3,4,5-tetrahydro-benzo[b][1,4]thiazepine-7-yl, 5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidin-6-yl, benzo[1,3]dioxol-5-yl, 2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl, 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazin-7-yl, 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-6-yl, 2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl, 6,7-dihydro-[1,4]dioxino[2,3-d]pyrimidin-2-yl, 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl, 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]oxazin-7-yl, 2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]oxazin-7-yl, 6-oxo-6,7-dihydro-5H-8-thia-1,2,5-triaza-naphthalen-3-yl, 3,4-dihydro-2H-benzo[1,4]oxazin-6-yl, 3,4-dihydro-2H-benzo[1,4]thiazin-6-yl, 3-substituted-3H-benzooxazol-2-one-6-yl, 3-substituted-3H-benzooxazole-2-thione-6-yl, 3-substituted-3H-benzothiazol-2-one-6-yl, 2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl, 3,4-dihydro-2H-benzo[1,4]thiazin-6-yl, 3,4-dihydro-1H-quinolin-2-one-7-yl, 3,4-dihydro-1H-quinoxalin-2-one-7-yl, 6,7-dihydro-4H-pyrazolo[1,5-a]pyrimidin-5-one-2-yl, 5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl, 2-oxo-3,4-dihydro-1H-[1,8]naphthyridin-6-yl, 3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl.
- R13 is preferably H if in ring (a) or in addition (C1-4)alkyl such as methyl or isopropyl when in ring (b). More preferably, in ring (b) R13 is H when NR13 is bonded to X3 and (C1-4)alkyl when NR13 is bonded to X5.
- R14 and R15 are preferably independently selected from hydrogen, halo, hydroxy, (C1-4) alkyl, (C1-4)alkoxy, trifluoromethoxy, nitro, cyano, aryl(C1-4)alkoxy and (C1-4)alkylsulphonyl.
- More preferably R15 is hydrogen.
- More preferably each R14 is selected from hydrogen, chloro, fluoro, hydroxy, methyl, methoxy, trifluoromethoxy, benzyloxy, nitro, cyano and methylsulphonyl. Most preferably R14 is selected from hydrogen, hydroxy, fluorine or nitro. Preferably 0-3 groups R14 are substituents other than hydrogen.
- Most preferably R14 and R15 are each H.
- Most preferred groups R5 2 include:
- [1,2,3]thiadiazolo[5,4-b]pyridin-6-yl
- 1H-Pyrrolo[2,3-b]pyridin-2-yl
- 2,3-Dihydro-[1,4]dioxino[2,3-b]pyridin-6-yl
- 2,3-Dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl
- 2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl
- 2,3-dihydro-benzo[1,4]dioxin-6-yl
- 2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]oxazin-7-yl
- 2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl
- 3,4-dihydro-2H-benzo[1,4]oxazin-6-yl
- 3-Methyl-2-oxo-2,3-dihydro-benzooxazol-6-yl
- 3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl
- 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl
- 3-oxo-3,4-dihydro-2H-benzo[1,4]thiazin-6-yl (4H-benzo[1,4]thiazin-3-one-6-yl)
- 4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl
- 6-nitro-benzo[1,3]dioxol-5-yl
- 7-fluoro-3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl
- 8-Hydroxy-1-oxo-1,2-dihydro-isoquinolin-3-yl
- 8-hydroxyquinolin-2-yl
- benzo[1,2,3]thiadiazol-5-yl
- benzo[1,2,5]thiadiazol-5-yl
- benzothiazol-5-yl
- thiazolo-[5,4-b]pyridin-6-yl
- 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazin-7-yl
- especially
- 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl
- 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl.
- When used herein, the term “alkyl” includes groups having straight and branched chains, for instance, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, t-butyl, pentyl and hexyl. The term ‘alkenyl’ should be interpreted accordingly.
- Halo or halogen includes fluoro, chloro, bromo and iodo.
- Haloalkyl moieties include 1-3 halogen atoms.
- Unless otherwise defined, the term ‘heterocyclic’ as used herein includes aromatic and non-aromatic, single and fused, rings suitably containing up to four hetero-atoms in each ring selected from oxygen, nitrogen and sulphur, which rings may be unsubstituted or C-substituted by, for example, up to three groups selected from (C1-4)alkylthio; halo; carboxy(C1-4)alkyl; halo(C1-4)alkoxy; halo(C1-4)alkyl; (C1-4)alkyl; (C2-4)alkenyl; (C1-4)alkoxycarbonyl; formyl; (C1-4)alkylcarbonyl; (C2-4)alkenyloxycarbonyl; (C2-4)alkenylcarbonyl; (C1-4)alkylcarbonyloxy; (C1-4)alkoxycarbonyl(C1-4)alkyl; hydroxy; hydroxy(C1-4)alkyl; mercapto(C1-4)alkyl; (C1-4)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R3; (C1-4)alkylsulphonyl; (C2-4)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C1-4)alkyl or (C2-4)alkenyl; optionally substituted aryl, aryl(C1-4)alkyl or aryl(C1-4)alkoxy and oxo groups. Each heterocyclic ring suitably has from 4 to 7, preferably 5 or 6, ring atoms. A fused heterocyclic ring system may include carbocyclic rings and need include only one heterocyclic ring. Compounds within the invention containing a heterocyclyl group may occur in two or more tautometric forms depending on the nature of the heterocyclyl group; all such tautomeric forms are included within the scope of the invention.
- Where an amino group forms part of a single or fused non-aromatic heterocyclic ring as defined above suitable optional substituents in such substituted amino groups include H; trifluoromethyl; (C1-4)alkyl optionally substituted by hydroxy, (C1-6)alkoxy, (C1-6)alkylthio, halo or trifluoromethyl; (C2-4)alkenyl; aryl; aryl (C1-4)alkyl; (C1-4)alkoxycarbonyl; (C1-4)alkylcarbonyl; formyl; (C1-6)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl, (C2-4)alkenylcarbonyl, (C1-4)alkyl or (C2-4)alkenyl and optionally further substituted by (C1-4)alkyl or (C2-4)alkenyl.
- When used herein the term ‘aryl’, includes phenyl and naphthyl, each optionally substituted with up to five, preferably up to three, groups selected from (C1-4)alkylthio; halo; carboxy(C1-4)alkyl; halo(C1-4)alkoxy; halo(C1-4)alkyl; (C1-4)alkyl; (C2-4)alkenyl; (C1-4)alkoxycarbonyl; formyl; (C1-4)alkylcarbonyl; (C2-4)alkenyloxycarbonyl; (C2-4)alkenylcarbonyl; (C1-4)alkylcarbonyloxy; (C1-4)alkoxycarbonyl(C1-4)alkyl; hydroxy; hydroxy(C1-4)alkyl; mercapto(C1-4)alkyl; (C1-4)alkoxy; nitro; cyano, carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R3; (C1-4)alkylsulphonyl; (C2-4)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C1-4)alkyl or (C2-4)alkenyl; phenyl, phenyl(C1-4)alkyl or phenyl(C1-4)alkoxy.
- The term ‘acyl’ includes (C1-6)alkoxycarbonyl, formyl or (C1-6) alkylcarbonyl groups.
- Most preferred compounds of formula (I) are:
- (1R,3S,4R)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide t-4-[(2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)-amino]-1-hydroxy-c-cyclohexanecarboxylic acid (2-methyl-quinolin-8-yl)-amide (1R,3S,4R)-4-[(2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)-amino]-3-hydroxy-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide t-4-[(2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)-amino]-1-hydroxy-r-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide
t-4-[(2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)-amino]-1-hydroxy-r-cyclohexanecarboxylic acid (3-methoxy-quinoxalin-5-yl)-amide
or a pharmaceutically acceptable derivative thereof. - Some of the compounds of this invention may be crystallised or recrystallised from solvents such as aqueous and organic solvents. In such cases solvates may be formed. This invention includes within its scope stoichiometric solvates including hydrates as well as compounds containing variable amounts of water that may be produced by processes such as lyophilisation.
- Since the compounds of formula (I) are intended for use in pharmaceutical compositions it will readily be understood that they are each provided in substantially pure form, for example at least 60% pure, more suitably at least 75% pure and preferably at least 85%, especially at least 98% pure (% are on a weight for weight basis). Impure preparations of the compounds may be used for preparing the more pure forms used in the pharmaceutical compositions; these less pure preparations of the compounds should contain at least 1%, more suitably at least 5% and preferably from 10 to 59% of a compound of the formula (I) or pharmaceutically acceptable derivative thereof.
- Pharmaceutically acceptable derivatives of the above-mentioned compounds of formula (I) include the free base form or their acid addition or quaternary ammonium salts, for example their salts with mineral acids e.g. hydrochloric, hydrobromic, sulphuric nitric or phosphoric acids, or organic acids, e.g. acetic, fumaric, succinic, maleic, citric, benzoic, p-toluenesulphonic, methanesulphonic, naphthalenesulphonic acid or tartaric acids. Compounds of formula (I) may also be prepared as the N-oxide. Compounds of formula (I) having a free carboxy group may also be prepared as an in vivo hydrolysable ester. The invention extends to all such derivatives.
- Examples of suitable pharmaceutically acceptable in vivo hydrolysable ester-forming groups include those forming esters which break down readily in the human body to leave the parent acid or its salt. Suitable groups of this type include those of part formulae (i), (ii), (iii), (iv) and (v):
- wherein Ra is hydrogen, (C1-6) alkyl, (C3-7) cycloalkyl, methyl, or phenyl, Rb is (C1-6) alkyl, (C1-6) alkoxy, phenyl, benzyl, (C3-7) cycloalkyl, (C3-7) cycloalkyloxy, (C1-6) alkyl (C3-7) cycloalkyl, 1-amino (C1-6) alkyl, or 1-(C1-6 alkyl)amino (C1-6) alkyl; or Ra and Rb together form a 1,2-phenylene group optionally substituted by one or two methoxy groups; Rc represents (C1-6) alkylene optionally substituted with a methyl or ethyl group and Rd and Re independently represent (C1-6) alkyl; Rf represents (C1-6) alkyl; Rg represents hydrogen or phenyl optionally substituted by up to three groups selected from halogen, (C1-6) alkyl, or (C1-6) alkoxy; Q is oxygen or NH; Rh is hydrogen or (C1-6) alkyl; Ri is hydrogen, (C1-6) alkyl optionally substituted by halogen, (C2-6) alkenyl, (C1-6) alkoxycarbonyl, aryl or heteroaryl; or Rh and Ri together form (C1-6) alkylene; Rj represents hydrogen, (C1-6) alkyl or (C1-6) alkoxycarbonyl; and Rk represents (C1-8) alkyl, (C1-8) alkoxy, (C1-6) alkoxy(C1-6)alkoxy or aryl.
- Examples of suitable in vivo hydrolysable ester groups include, for example, acyloxy(C1-6)alkyl groups such as acetoxymethyl, pivaloyloxymethyl, -acetoxyethyl, -pivaloyloxyethyl, 1-(cyclohexylcarbonyloxy)prop-1-yl, and (1-aminoethyl)carbonyloxymethyl; (C1-6)alkoxycarbonyloxy(C1-6)alkyl groups, such as ethoxycarbonyloxymethyl, -ethoxycarbonyloxyethyl and propoxycarbonyloxyethyl; di(C1-6)alkylamino(C1-6)alkyl especially di(C1-4)alkylamino(C1-4)alkyl groups such as dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl or diethylaminoethyl; 2-((C1-6)alkoxycarbonyl)-2-(C2-6)alkenyl groups such as 2-(isobutoxycarbonyl)pent-2-enyl and 2-(ethoxycarbonyl)but-2-enyl; lactone groups such as phthalidyl and dimethoxyphthalidyl.
- A further suitable pharmaceutically acceptable in vivo hydrolysable ester-forming group is that of the formula:
- wherein Rk is hydrogen, C1-6 alkyl or phenyl.
- R is preferably hydrogen.
- Certain of the above-mentioned compounds of formula (I) may exist in the form of optical isomers, e.g. diastereoisomers and mixtures of isomers in all ratios, e.g. racemic mixtures. The invention includes all such forms, in particular the pure isomeric forms. For examples the invention includes compound in which an A-B group CH(OH)—CH2 is in either isomeric configuration the R-isomer is preferred. The different isomeric forms may be separated or resolved one from the other by conventional methods, or any given isomer may be obtained by conventional synthetic methods or by stereospecific or asymmetric syntheses.
- In a further aspect of the invention there is provided a process for preparing compounds of formula (I), or a pharmaceutically acceptable derivative thereof, which process comprises reacting a compound of formula (IV) with a compound of formula (V):
- wherein n is as defined in formula (I); Z1′, Z2′, Z3′R1′ and R3′ are Z1, Z2, Z3, R1 and R3 as defined in formula (I) or groups convertible thereto; Z4, Z5, Rv and Rw are as defined in formula (I);
Q1 is NR2′R4′ or a group convertible thereto wherein R2′ and R4′ are R2 and R4 as defined in formula (I) or groups convertible thereto and Q2 is H or R3′ or Q1 and Q2 together form an optionally protected oxo group;
and X and Y may be the following combinations:
(i) one of X and Y is CO2Ry and the other is CH2CO2Rx; - (iii) X is CR7═PRz 3 and Y is C(═O)R9;
- (v) one of Y and X is COW and the other is NHR11′, NCO or NR11′COW;
- (vii) X is NHR11′ and Y is CR8R9W;
(viii) X is W or OH and Y is CH2OH; - (x) one of X and Y is (CH2)p—W and the other is (CH2)qNHR11′, (CH2)qOH, (CH2)qSH or (CH2)qSCORx where p+q=1;
(xi) one of X and Y is OH and the other is —CH═N2;
(xii) X is NCO and Y is OH or NH2;
(xiii) X is CR6R7SO2W, A′COW, CR6═CH2 or oxirane and Y is NHR2′;
(xiv) X is W and Y is CONHR11 or OCONH2
(xv) X is W and Y is —C≡CH followed by hydrogenation of the intermediate —C≡C— group; in which W is a leaving group, e.g. halo, methanesulphonyloxy, trifluoromethanesulphonyloxy or imidazolyl; Rx and Ry are (C1-6)alkyl; Rz is aryl or (C1-6)alkyl; A′ and NR11′ are A and NR11 as defined in formula (I), or groups convertible thereto; and oxirane is: - wherein R6, R8 and R9 are as defined in formula (I);
and thereafter optionally or as necessary converting Q1 and Q2 to NR2′R4′; converting A′, Z1′, Z2′, Z3′, R1′, R2′, R3′, R4′ and NR11′ to A, Z1, Z2, Z3, R1, R2, R3, R4 and NR11′; converting A-B to other A-B, interconverting Rv, Rw, R1, R2, R3 and/or R4, and/or forming a pharmaceutically acceptable derivative thereof. - Process variant (i) initially produces compounds of formula (I) wherein A-B is CO—CH2 or CH2—CO.
- Process variant (ii) initially produces compounds of formula (I) wherein A-B is CR6R7—CR9OH.
- Process variant (iii) and (iv) initially produce compounds of formula (I) wherein A-B is CR7═CR9.
- Process variant (v) initially produces compounds of formula (I) where A-B is CO—NR11 or NR11—CO.
- Process variant (vi) initially produces compounds of formula (I) wherein A-B is NR11—CHR8. or CHR6—NHR11.
- Process variant (vii) initially produces compounds of formula (I) wherein A-B is NR11′—CR8R9.
- Process variant (viii) initially produces compounds of formula (I) wherein A-B is O—CH2.
- Process variant (ix) initially produces compounds where AB is NR11SO2.
- Process variant (x) initially produces compounds of formula (I) wherein one of A and B is CH2 and the other is NHR11, O or S.
- Process variant (xi) initially produces compounds of formula (I) wherein A-B is OCH2 or CH2O.
- Process variant (xii) initially produces compounds where AB is NH—CO—NH or NH—CO—O.
- Process variant (xiii) initially produces compounds where n is 0 and AB is CR6R7SO2 NR2, A′-CONR2 or CR6R7CH2NR2.
- Process variant (xiv) produces compounds where AB is NR11CO or NH—CO—O.
- Process variant (xv) produces compounds where AB is —CH2CH2— or —CH═CH—.
- In process variants (v) and (xiii) (second variant) the reaction is a standard amide or urea formation reaction involving e.g.:
- 1. Activation of a carboxylic acid (e.g. to an acid chloride, mixed anhydride, active ester, O-acyl-isourea or other species), and treatment with an amine (Ogliaruso, M. A.; Wolfe, J. F. in The Chemistry of Functional Groups (Ed. Patai, S.) Suppl. B: The Chemistry of Acid Derivatives, Pt. 1 (John Wiley and Sons, 1979), pp 442-8; Beckwith, A. L. J. in The Chemistry of Functional Groups (Ed. Patai, S.) Suppl. B: The Chemistry of Amides (Ed. Zabricky, J.) (John Wiley and Sons, 1970), p 73 ff. The acid and amine are preferably reacted in the presence of an activating agent such as 1-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) or 1-hydroxybenzotriazole (HOBT) or O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU); or
2. The specific methods of:
a. in situ conversion of an acid into the amine component by a modified Curtius reaction procedure (Shioiri, T., Murata, M., Hamada, Y., Chem. Pharm. Bull. 1987, 35, 2698)
b. in situ conversion of the acid component into the acid chloride under neutral conditions (Villeneuve, G. B.; Chan, T. H., Tetrahedron. Lett. 1997, 38, 6489). - A′ may be, for example. protected hydroxymethylene.
- The process variant (xiii) (third variant) is a standard addition reaction using methods well known to those skilled in the art. The process is preferably carried out in a polar organic solvent e.g. acetonitrile in the presence of an organic base e.g. triethylamine.
- In process variant (xiii) (fourth variant) the coupling may be effected in acetonitrile at room temperature in the presence of one equivalent of lithium perchlorate as catalyst (general method of J. E. Chateauneuf et al, J. Org. Chem., 56, 5939-5942, 1991) or more preferably with ytterbium triflate in dichloromethane. In some cases an elevated temperature such as 40-70° C. may be beneficial. Alternatively, the compound of formula (V) may be treated with a base, such as one equivalent of butyl lithium, and the resulting salt reacted with the oxirane in an inert solvent such as tetrahydrofuran, preferably at an elevated temperature such as 80° C. Use of a chiral epoxide will afford single diastereomers. Alternatively, mixtures of diastereomers may be separated by preparative HPLC or by conventional resolution through crystallisation of salts formed from chiral acids.
- The process variant (xii) is a standard urea or carbamate formation reaction from the reaction of an isocyanate with an amine or alcohol and is conducted by methods well known to those skilled in the art (for example see March, J; Advanced Organic Chemistry, Edition 3 (John Wiley and Sons, 1985), p 802-3). The process is preferably carried out in a polar solvent such as N,N-dimethylformamide.
- In process variant (i) the process is two step: firstly a condensation using a base, preferably sodium hydride or alkoxide, sodamide, alkyl lithium or lithium dialkylamide, preferably in an aprotic solvent e.g. ether, THF or benzene; secondly, hydrolysis using an inorganic acid, preferably HCl in aqueous organic solvent at 0-100° C. Analogous routes are described in DE330945, EP31753, EP53964 and H. Sargent, J. Am. Chem. Soc. 68, 2688-2692 (1946). Similar Claisen methodology is described in Soszko et. al., Pr. Kom. Mat. Przyr. Poznan. Tow. Przyj. Nauk., (1962), 10, 15.
- In process variant (ii) the reaction is carried out in the presence of a base, preferably organometallic or metal hydride e.g. NaH, lithium diisopropylamide or NaOEt, preferably in an aprotic solvent, preferably THF, ether or benzene at −78 to 25° C. (analogous process in Gutswiller et al. (1978) J. Am. Chem. Soc. 100, 576).
- In process variants (iii) and (iv) if a base is used it is preferably NaH, KH, an alkyl lithium e.g. BuLi, a metal alkoxide e.g. NaOEt, sodamide or lithium dialkylamide e.g. di-isopropylamide. An analogous method is described in U.S. Pat. No. 3,989,691 and M. Gates et. al. (1970) J. Amer. Chem. Soc., 92, 205, as well as Taylor et al. (1972) JACS 94, 6218.
- In process variant (vi) the reaction is a standard reductive alkylation using, e.g., sodium borohydride or sodium triacetoxyborohydride (Gribble, G. W. in Encyclopedia of Reagents for Organic Synthesis (Ed. Paquette, L. A.) (John Wiley and Sons, 1995), p 4649).
- The process variant (vii) is a standard alkylation reaction well known to those skilled in the art, for example where an alcohol or amine is treated with an alkyl halide in the presence of a base (for example see March, J; Advanced Organic Chemistry, Edition 3 (John Wiley and Sons, 1985), p 364-366 and p 342-343). The process is preferably carried out in a polar solvent such as N,N-dimethylformamide
- In process variant (xiii) (first variant) the reaction is a standard sulphonamide formation reaction well known to those skilled in the art. This may be e.g. the reaction of a sulphonyl halide with an amine.
- In process variant (viii) where X is W such as halogen, methanesulphonyloxy or trifluoromethanesulphonyloxy, the hydroxy group in Y is preferably converted to an OM group where M is an alkali metal by treatment of an alcohol with a base. The base is preferably inorganic such as NaH, lithium diisopropylamide or sodium. Where X is OH, the hydroxy group in Y is activated under Mitsunobu conditions (Fletcher et. al. J Chem. Soc. (1995), 623). Alternatively the X═O and Y═CH2OH groups can be reacted directly by activation with 1,3-dicyclohexylcarbodiimide (DCC) (Chem. Berichte 1962, 95, 2997 or Angewante Chemie 1963 75, 377).
- In process variant (ix) the reaction is conducted in the presence of an organic base such as triethylamine or pyridine such as described by Fuhrman et. al., J. Amer. Chem. Soc.; 67, 1245, 1945. The X═NR11′SO2W or Y═SO2W intermediates can be formed from the requisite amine e.g. by reaction with SO2Cl2 analogously to the procedure described by the same authors Fuhrman et. al., J. Amer. Chem. Soc.; 67, 1245, 1945.
- In process variant (x) where one of X and Y contains NHR11 the leaving group W is halogen and the reaction is a standard amine formation reaction such as direct alkylation described in (Malpass, J. R., in Comprehensive Organic Chemistry, Vol. 2 (Ed. Sutherland, I. O.), p 4 ff.) or aromatic nucleophilic displacement reactions (see references cited in Comprehensive Organic Chemistry, Vol. 6, p 946-947 (reaction index); Smith, D. M. in Comprehensive Organic Chemistry, Vol. 4 (Ed. Sammes, P. G.) p 20 ff.). This is analogous to the methods described in GB 1177849.
- In process variant (x) where one of X and Y contains OH or SH, this is preferably converted to an OM or SM group where M is an alkali metal by treatment of an alcohol, thiol or thioacetate with a base. The base is preferably inorganic such as NaH, lithium diisopropylamide or sodium, or, for SH, metal alkoxide such as sodium methoxide. The X/Y group containing the thioacetate SCORx is prepared by treatment of an alcohol or alkyl halide with thioacetic acid or a salt thereof under Mitsunobu conditions. The leaving group V is a halogen. The reaction may be carried out as described in Chapman et. al., J. Chem. Soc., (1956), 1563, Gilligan et. al., J. Med. Chem., (1992), 35, 4344, Aloup et. al., J. Med. Chem. (1987), 30, 24, Gilman et al., J.A.C.S. (1949), 71, 3667 and Clinton et al., J.A.C.S. (1948), 70, 491, Barluenga et al., J. Org. Chem. (1987) 52, 5190. Alternatively where X is OH and Y is CH2V, V is a hydroxy group activated under Mitsunobu conditions (Fletcher et. al. J Chem. Soc. (1995), 623).
- In process variant (xi) the reaction is as described in den Hertzog et. al., recl. Trav. Chim. Pays-Bas, (1950), 69, 700.
- In process variant (xiv) the leaving group W is preferably chloro, bromo or trifluoromethylsulphonyl and the reaction is the palladium catalysed process known as the “Buchwald” reaction (J. Yin and S. L. Buchwald, Org. Lett., 2000, 2, 1101).
- In process variant (xv) coupling of the acetylene compound (V) with the compound (IV) is accomplished using standard Pd-mediated chemistry, for example using Pd(Ph3P)2Cl2 as the catalyst along with the addition of CuI in a mixture of triethylamine and dimethylformamide. Hydrogenation of the intermediate —C≡C— group is carried out conventionally over a suitable catalyst eg Pd/C, either partially to —CH═CH— or fully to —CH2—CH2—.
- Reduction of a carbonyl group A or B to CHOH can be readily accomplished using reducing agents well known to those skilled in the art, e.g. sodium borohydride in aqueous ethanol or lithium aluminium hydride in ethereal solution. This is analogous to methods described in EP53964, U.S. Pat. No. 384,556 and J. Gutzwiller et al, J. Amer. Chem. Soc., 1978, 100, 576.
- The carbonyl group A or B may be reduced to CH2 by treatment with a reducing agent such as hydrazine in ethylene glycol, at e.g. 130-160° C., in the presence of potassium hydroxide.
- Reaction of a carbonyl group A or B with an organometallic reagent yields a group where R6 or R8 is OH and R7 or R9 is alkyl.
- A hydroxy group on A or B may be oxidised to a carbonyl group by oxidants well known to those skilled in the art, for example, manganese dioxide, pyridinium chlorochromate or pyridinium dichromate.
- A hydroxyalkyl A-B group CHR7CR9OH or CR7 (OH)CHR9 may be dehydrated to give the group CR7═CR9 by treatment with an acid anhydride such as acetic anhydride.
- Methods for conversion of CR7═CR9 by reduction to CHR7CHR9 are well known to those skilled in the art, for example using hydrogenation over palladium on carbon as catalyst. Methods for conversion of CR7═CR9 to give the A-B group CR7 (OH)CHR9 or CHR7CR9OH are well known to those skilled in the art for example by epoxidation and subsequent reduction by metal hydrides, hydration, hydroboration or oxymercuration. Where Rv and Rw together represent a bond it will be appreciated that such conversions may be inappropriate.
- An amide carbonyl group may be reduced to the corresponding amine using a reducing agent such as lithium aluminium hydride.
- A hydroxy group in A or B may be converted to azido by activation and displacement e.g. under Mitsunobu conditions using hydrazoic acid or by treatment with diphenylphosphorylazide and base, and the azido group in turn may be reduced to amino by hydrogenation.
- An example of a group Q1 convertible to NR2R4 is NR2′R4′ or halogen. Halogen may be displaced by an amine HNR2′R4′ by a conventional alkylation.
- When Q1Q2 together form a protected oxo group this may be an acetal such as ethylenedioxy which can subsequently be removed by acid treatment to give a compound of formula (VI):
- wherein the variables are as described for formula (I)
- Intermediates of formula (VI) are novel and as such form part of the invention.
- The ketone of formula (VI) is reacted with an amine HNR2′R4′ by conventional reductive alkylation as described above for process variant (x).
- Other novel intermediates of the invention are compounds of formula (VII):
- wherein the variables are as described for formula (I).
- Examples of groups Z1′, Z2′ and Z3′, are CR1′ or CR1′ R1a′ where R1′ and R1a′ are groups convertible to R1 and R1a. Z1′, Z2′ and Z3′, are preferably Z1, Z2 and Z3.
- R1a′, R1′ and R2′ are preferably R1a, R1 and R2. R2′ is preferably hydrogen. R3′ is R3 or more preferably hydrogen, vinyl, alkoxycarbonyl or carboxy. R4′ is R4 or more preferably H or an N-protecting group such as t-butoxycarbonyl, benzyloxycarbonyl or 9-fluorenylmethyloxycarbonyl.
- Conversions of R1a′, R1′, R2′, R3′ and R4′ and interconversions of R1a, R1, R2, R3 and R4 are conventional. In compounds which contain an optionally substituted hydroxy group, suitable conventional hydroxy protecting groups which may be removed without disrupting the remainder of the molecule include acyl and alkylsilyl groups. N protecting groups are removed by conventional methods.
- For example R1′ methoxy is convertible to R1′ hydroxy by treatment with lithium and diphenylphosphine (general method described in Ireland et. al. (1973) J. Amer. Chem. Soc., 7829) or HBr. Alkylation of the hydroxy group with a suitable alkyl derivative bearing a leaving group such as halide and a protected amino, piperidyl, amidino or guanidino group or group convertible thereto, yields, after conversion/deprotection, R1 alkoxy substituted by optionally N-substituted amino, piperidyl, guanidino or amidino.
- R3 alkenyl is convertible to hydroxyalkyl by hydroboration using a suitable reagent such as 9-borabicyclo[3.3.1]nonane, epoxidation and reduction or oxymercuration.
- R3 1,2-dihydroxy can be prepared from R3′ alkenyl using osmium tetroxide or other reagents well known to those skilled in the art (see Advanced Organic Chemistry (Ed. March, J.) (John Wiley and Sons, 1985), p 732-737 and refs. cited therein) or epoxidation followed by hydrolysis (see Advanced Organic Chemistry (Ed. March, J.) (John Wiley and Sons, 1985), p 332, 333 and refs. cited therein).
- R3 vinyl can be chain extended by standard homologation e.g by conversion to hydroxyethyl followed by oxidation to the aldehyde which is then subjected to a Wittig reaction.
- Opening an epoxide R3′ group with cyanide anion yields a CH(OH)—CH2CN group.
- Opening an epoxide-containing R3′ group with azide anion yields an azide derivative which can be reduced to the amine. Conversion of the amine to a carbamate is followed by ring closure with base to give the 2-oxo-oxazolidinyl containing R3 group.
- Substituents on R3 alkyl or alkenyl may be interconverted by conventional methods, for example hydroxy may be derivatised by esterification, acylation or etherification. Hydroxy groups may be converted to halogen, thiol, alkylthio, azido, alkylcarbonyl, amino, aminocarbonyl, oxo, alkylsulphonyl, alkenylsulphonyl or aminosulphonyl by conversion to a leaving group and substitution by the required group, hydrolysis or oxidation as appropriate or reaction with an activated acid, isocyanate or alkoxyisocyanate. Primary and secondary hydroxy groups can be oxidised to an aldehyde or ketone respectively and alkyated with a suitable agent such as an organometallic reagent to give a secondary or tertiary alcohol as appropriate. A carboxylate group may be converted to an hydroxymethyl group by reduction of an ester of this acid with a suitable reducing agent such as lithium aluminium hydride.
- Substituted 2-oxo-oxazolidinyl containing R3 groups may be prepared from the corresponding aldehyde by conventional reaction with a glycine anion equivalent, followed by cyclisation of the resulting amino alcohol (M Grauert et al, Ann Chem (1985) 1817, Rozenberg et al, Angew Chem Int Ed Engl (1994) 33(1) 91). The resulting 2-oxo-oxazolidinyl group contains a carboxy group which can be converted to other R10 groups by standard procedures.
- Carboxy groups within R3 may be prepared by Jones' oxidation of the corresponding alcohols CH2OH using chromic acid and sulphuric acid in water/methanol (E. R. H. Jones et al, J. C. S. 1946, 39). Other oxidising agents may be used for this transformation such as sodium periodate catalysed by ruthenium trichloride (G. F. Tutwiler et al, J. Med. Chem., 1987, 30(6), 1094), chromium trioxide-pyridine (G. Just et al, Synth. Commun. 1979, 9(7), 613), potassium permanganate (D. E. Reedich et al, J. Org. Chem., 1985, 50(19), 3535, and pyridinium chlorochromate (D. Askin et al, Tetrahedron Letters, 1988, 29(3), 277.
- The carboxy group may alternatively be formed in a two stage process, with an initial oxidation of the alcohol to the corresponding aldehyde using for instance dimethyl sulphoxide activated with oxalyl chloride (N. Cohen et al, J. Am. Chem. Soc., 1983, 105, 3661) or dicyclohexylcarbodiimide (R. M. Wengler, Angew. Chim. Int. Ed. Eng., 1985, 24(2), 77), or oxidation with tetrapropylammonium perruthenate (Ley et al, J. Chem. Soc. Chem. Commun., 1987, 1625). The aldehyde may then be separately oxidised to the corresponding acid using oxidising agents such as silver (II) oxide (R. Grigg et al, J. Chem. Soc. Perkin 1, 1983, 1929), potassium permanganate (A. Zurcher, Helv. Chim. Acta., 1987, 70 (7), 1937), sodium periodate catalysed by ruthenium trichloride (T. Sakata et al, Bull. Chem. Soc. Jpn., 1988, 61(6), 2025), pyridinium chlorochromate (R. S. Reddy et al, Synth. Commun., 1988, 18(51), 545) or chromium trioxide (R. M. Coates et al, J. Am. Chem. Soc., 1982, 104, 2198).
- An R3CO2H group may also be prepared from oxidative cleavage of the corresponding diol, CH(OH)CH2OH, using sodium periodate catalysed by ruthenium trichloride with an acetonitrile-carbontetrachloride-water solvent system (V. S. Martin et al, Tetrahedron Letters, 1988, 29(22), 2701).
- R3 groups containing a cyano or carboxy group may also be prepared by conversion of an alcohol to a suitable leaving group such as the corresponding tosylate by reaction with para-toluenesulphonyl chloride (M. R. Bell, J. Med. Chem., 1970, 13, 389), or the iodide using triphenylphosphine, iodine, and imidazole (G. Lange, Synth. Commun., 1990, 20, 1473). The second stage is the displacement of the leaving group with cyanide anion (LA. Paquette et al, J. Org. Chem., 1979, 44 (25), 4603; P.A. Grieco et al, J. Org. Chem., 1988, 53 (16), 3658). Finally acidic hydrolysis of the nitrile group gives the desired acids (H. Rosemeyer et al, Heterocycles, 1985, 23 (10), 2669). The hydrolysis may also be carried out with base e.g. potassium hydroxide (H. Rapoport, J. Org. Chem., 1958, 23, 248) or enzymatically (T. Beard et al, Tetrahedron Asymmetry, 1993, 4 (6), 1085).
- Other functional groups in R3 may be obtained by conventional conversions of carboxy or cyano groups.
- Tetrazoles are conveniently prepared by reaction of sodium azide with the cyano group (e.g. F. Thomas et al, Bioorg. Med. Chem. Lett., 1996, 6 (6), 631; K. Kubo et al, J. Med. Chem., 1993, 36, 2182) or by reaction of azidotri-n-butyl stannane with the cyano group followed by acidic hydrolysis (P. L. Ornstein, J. Org. Chem., 1994, 59, 7682 and J. Med. Chem, 1996, 39 (11), 2219).
- The 3-hydroxy-3-cyclobutene-1,2-dion-4-yl group (e.g. R. M. Soll, Bioorg. Med. Chem. Lett., 1993, 3 (4), 757 and W. A. Kinney, J. Med. Chem., 1992, 35 (25), 4720) can be prepared by the following sequence:—(1) a compound where R3 is (CH2)nCHO (n=0, 1, 2) is treated with triethylamine, carbon tetrabromide/triphenylphosphine to give initially (CH2)nCH═CBr2; (2) dehydrobromination of this intermediate to give the corresponding bromoethyne derivative (CH2)nC≡CBr (for this 2 stage sequence see D. Grandjean et al, Tetrahedron Letters, 1994, 35 (21), 3529); (3) palladium-catalysed coupling of the bromoethyne with 4-(1-methylethoxy)-3-(tri-n-butylstannyl)cyclobut-3-ene-1,2-dione (Liebeskind et al, J. Org. Chem., 1990, 55, 5359); (4) reduction of the ethyne moiety to —CH2CH2-under standard conditions of hydrogen and palladium on charcoal catalysis (see Howard et al, Tetrahedron, 1980, 36, 171); and finally (4) acidic hydrolysis of the methylethoxyester to generate the corresponding 3-hydroxy-3-cyclobutene-1,2-dione group (R. M. Soll, Bioorg. Med. Chem. Lett., 1993, 3 (4), 757).
- The tetrazol-5-ylaminocarbonyl group may be prepared from the corresponding carboxylic acid and 2-aminotetrazole by dehydration with standard peptide coupling agents such as 1,1′-carbonyldiimidazole (P. L. Ornstein et al, J. Med Chem, 1996, 39 (11), 2232).
- The alkyl- and alkenyl-sulphonylcarboxamides are similarly prepared from the corresponding carboxylic acid and the alkyl- or alkenyl-sulphonamide by dehydration with standard peptide coupling agents such as 1,1′-carbonyldiimidazole (P. L. Ornstein et al, J. Med. Chem., 1996, 39 (11), 2232).
- The hydroxamic acid groups are prepared from the corresponding acids by standard amide coupling reactions eg N. R. Patel et al, Tetrahedron, 1987, 43 (22), 5375
- 2,4-thiazolidinedione groups may prepared from the aldehydes by condensation with 2,4-thiazolidinedione and subsequent removal of the olefinic double bond by hydrogenation.
- The preparation of 5-oxo-1,2,4-oxadiazoles from nitriles is described by Y. Kohara et al, Bioorg. Med. Chem. Lett., 1995, 5(17), 1903.
- 1,2,4-triazol-5-yl groups may be prepared from the corresponding nitrile by reaction with an alcohol under acid conditions followed by reaction with hydrazine and then an R10-substituted activated carboxylic acid (see J B Polya in ‘Comprehensive Heterocyclic Chemistry’ Edition 1 p 762, Ed A R Katritzky and C W Rees, Pergamon Press, Oxford 1984 and J. J. Ares et al, J. Heterocyclic Chem., 1991, 28(5), 1197).
- The cyclohexylamine or cyclohexenylamine NH2 is converted to NR2R4 by conventional means such as amide or sulphonamide formation with an acyl derivative for compounds where U or X1a is CO or SO2 or, where R4 is —CH2R5 1 or U or X1a is CH2, by alkylation with an alkyl halide or other alkyl derivative R4—W in the presence of base, acylation/reduction or reductive alkylation with an aldehyde.
- Where one of R3 and R6, R7, R8 or R9 contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage. This linkage may form spontaneously during coupling of the compounds of formulae (IV) and (V) or in the presence of standard peptide coupling agents.
- It will be appreciated that under certain circumstances interconvertions may interfere, for example, hydroxy groups in A or B and the cyclohexyl- or cyclohexenylamine will require protection e.g. as a carboxy- or silyl-ester group for hydroxy and as an acyl derivative for nitrogen, during conversion of R1a′, R1′, R2′, R3′ or R4′, or during the coupling of the compounds of formulae (IV) and (V).
- Compounds of formulae (IV) and (V) are known compounds, (see for example Smith et al, J. Amer. Chem. Soc., 1946, 68, 1301) or prepared analogously, see for example the references cited above.
- Compounds of formula (IV) where X is CR6R7SO2W may be prepared by a route analogous to that of Ahmed El Hadri et al, J. Heterocyclic Chem., 1993, 30(3), 631. Thus compounds of formula (IV) where X is CH2 SO2 OH may be prepared by reacting the corresponding 4-methyl compound with N-bromosuccinimide, followed by treatment with sodium sulfite. The leaving group W may be converted to another leaving group W, e.g. a halogen group, by conventional methods.
- The isocyanate of formula (IV) may be prepared conventionally from a 4-amino derivative such as 4-amino-quinoline, and phosgene, or phosgene equivalent (eg triphosgene) or it may be prepared more conveniently from a 4-carboxylic acid by a “one-pot” Curtius Reaction with diphenyl phosphoryl azide (DPPA) [see T. Shiori et al. Chem. Pharm. Bull. 35, 2698-2704 (1987)].
- The 4-amino derivatives are commercially available or may be prepared by conventional procedures from a corresponding 4-chloro derivative by treatment with ammonia (O. G. Backeberg et. al., J. Chem. Soc., 381, 1942) or propylamine hydrochloride (R. Radinov et. al., Synthesis, 886, 1986).
- 4-Alkenyl compounds of formula (IV) may be prepared by conventional procedures from a corresponding 4-halogeno-derivative by e.g. a Heck synthesis as described in e.g. Organic Reactions, 1982, 27, 345.
- 4-Halogeno derivatives of compounds of formula (IV) are commercially available, or may be prepared by methods known to those skilled in the art. A 4-chloroquinoline is prepared from the corresponding quinolin-4-one by reaction with phosphorus oxychloride (POCl3) or phosphorus pentachloride, PCl5. A-4-bromo-substituent may be prepared from the quinolin- or naphthyridin-4-one by reaction with phosphorus tribromide (PBr3) in DMF. A 4-chloroquinazoline is prepared from the corresponding quinazolin-4-one by reaction with phosphorus oxychloride (POCl3) or phosphorus pentachloride, PCl5. A quinazolinone and quinazolines may be prepared by standard routes as described by T. A. Williamson in Heterocyclic Compounds, 6, 324 (1957) Ed. R. C. Elderfield.
- Activated carboxy derivatives X=A′COW of formula (IV) may be prepared from X=A′CO2H derivatives in turn prepared from CO2H derivatives by conventional methods such as homologation.
- 4-Carboxy derivatives of compounds of formula (IV) are commercially available or may be prepared by conventional procedures for preparation of carboxy heteroaromatics well known to those skilled in the art. For example, quinazolines may be prepared by standard routes as described by T. A. Williamson in Heterocyclic Compounds, 6, 324 (1957) Ed. R. C. Elderfield. These 4-carboxy derivatives may be activated by conventional means, e.g. by conversion to an acyl halide or anhydride.
- 4-Carboxy derivatives such as esters may be reduced to hydroxymethyl derivatives with for example lithium aluminium hydride. Reaction with mesyl chloride and triethylamine would give the mesylate derivative. A diazo compound (X is —CH═N2) may be prepared from the 4-carboxaldehyde via the tosyl hydrazone. The 4-carboxaldehyde may be obtained from from the acid by standard procedures well known to those skilled in the art.
- A 4-oxirane derivative of compounds of formula (IV) is conveniently prepared from the 4-carboxylic acid by first conversion to the acid chloride with oxalyl chloride and then reaction with trimethylsilyldiazomethane to give the diazoketone derivative. Subsequent reaction with 5M hydrochloric acid gives the chloromethylketone. Reduction with sodium borohydride in aqueous methanol gives the chlorohydrin which undergoes ring closure to afford the epoxide on treatment with base, e.g. potassium hydroxide in ethanol-tetrahydrofuran.
- Alternatively and preferably, 4-oxirane derivatives can be prepared from bromomethyl ketones which can be obtained from 4-hydroxy compounds by other routes well known to those skilled in the art. For example, hydroxy compounds can be converted to the corresponding 4-trifluoromethanesulphonates by reaction with trifluoromethanesulphonic anhydride under standard conditions (see K. Ritter, Synthesis, 1993, 735). Conversion into the corresponding butyloxyvinyl ethers can be achieved by a Heck reaction with butyl vinyl ether under palladium catalysis according to the procedure of W. Cabri et al, J. Org. Chem, 1992, 57 (5), 1481. (Alternatively, the equivalent intermediates can be attained by Stille coupling of the trifluoromethanesulphonates or the analaogous chloro derivatives with (1-ethoxyvinyl)tributyl tin, (T. R. Kelly, J. Org. Chem., 1996, 61, 4623).) The alkyloxyvinyl ethers are then converted into the corresponding bromomethylketones by treatment with N-bromosuccinimide in aqueous tetrahydrofuran in a similar manner to the procedures of J. F. W. Keana, J. Org. Chem., 1983, 48, 3621 and T. R. Kelly, J. Org. Chem., 1996, 61, 4623.
- The 4-hydroxyderivatives can be prepared from an aminoaromatic by reaction with methylpropiolate and subsequent cyclisation, analogous to the method described in N. E. Heindel et al, J. Het. Chem., 1969, 6, 77. For example, 5-amino-2-methoxy pyridine can be converted to 4-hydroxy-6-methoxy-[1,5]naphthyridine using this method.
- If a chiral reducing agent such as (+) or (−)-B-chlorodiisopinocamphenylborane [‘DIP-chloride’] is substituted for sodium borohydride, the prochiral chloromethylketone is converted into the chiral chlorohydrin with ee values generally 85-95% [see C. Bolm et al, Chem. Ber. 125, 1169-1190, (1992)]. Recrystallisation of the chiral epoxide gives material in the mother liquor with enhanced optical purity (typically ee 95%).
- The (R)-epoxide, when reacted with an amine derivative gives ethanolamine compounds as single diastereomers with (R)-stereochemistry at the benzylic position.
- Alternatively, the epoxide may be prepared from the 4-carboxaldehyde by a Wittig approach using trimethylsulfonium iodide [see G. A. Epling and K-Y Lin, J. Het. Chem., 1987, 24, 853-857], or by epoxidation of a 4-vinyl derivative.
- Pyridazines may be prepared by routes analogous to those described in Comprehensive Heterocyclic Chemistry, Volume 3, Ed A. J. Boulton and A. McKillop and napthyridines may be prepared by routes analogous to those described in Comprehensive Heterocyclic Chemistry, Volume 2, Ed A. J. Boulton and A. McKillop.
- 4-Hydroxy-1,5-naphthyridines can be prepared from 3-aminopyridine derivatives by reaction with diethyl ethoxymethylene malonate to produce the 4-hydroxy-3-carboxylic acid ester derivative with subsequent hydrolysis to the acid, followed by thermal decarboxylation in quinoline (as for example described for 4-Hydroxy-[1,5]naphthyridine-3-carboxylic acid, J. T. Adams et al., J. Amer. Chem. Soc., 1946, 68, 1317). A 4-hydroxy-[1,5]naphthyridine can be converted to the 4-chloro derivative by heating in phosphorus oxychloride, or to the 4-methanesulphonyloxy or 4-trifluoromethanesulphonyloxy derivative by reaction with methanesulphonyl chloride or trifluoromethanesulphonic anhydride, respectively, in the presence of an organic base. A 4-amino 1,5-naphthyridine can be obtained from the 4-chloro, 4-methanesulphonyloxy or 4-trifluoromethanesulphonyloxy derivative by reaction with n-propylamine in pyridine.
- Similarly, 6-methoxy-1,5-naphthyridine derivatives can be prepared from 3-amino-6-methoxypyridine.
- 1,5-Naphthyridines may be prepared by other methods well known to those skilled in the art (for examples see P.A. Lowe in “Comprehensive Heterocyclic Chemistry” Volume 2, p 581-627, Ed A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984).
- The 4-hydroxy and 4-amino-cinnolines may be prepared following methods well known to those skilled in the art [see A. R. Osborn and K. Schofield, J. Chem. Soc. 2100 (1955)]. For example, a 2-aminoacetophenone is diazotised with sodium nitrite and acid to produce the 4-hydroxycinnoline with conversion to chloro and amino derivatives as described for 1,5-naphthyridines.
- RA groups where the ring (y) is 4-pyridyl are available by the sequence described below, starting from an aromatic or heterocyclic amine (1), with at least one free CH position adjacent to the amine. Reaction with Meldrum's acid and trimethyl orthformate in ethanol at reflux affords the corresponding 2,2-dimethyl-5-phenylaminomethylene-[1,3]dioxane-4,6-dione derivatives (2). These can be cyclised at elevated temperatures (180-220° C.) in inert solvents such as Dowtherm to give the corresponding 1H-quinolin-4-one (3) or heterocyclic analogues eg 1H-[1,6]naphthyridin-4-one. These processes are well-established and are described by Walz and Sundberg (J. Org. Chem., 2000, 65 (23), 8001) and by Todter and Lackner (Synthesis, 1997 (5) 576).
- Activation of the quinolone species related to (3) into the corresponding 4-quinolyl bromides (4) can be accomplished with phosphorous oxybromide or more preferably phosphorous tribromide in N,N-dimethylformamide (see M. Schmittel et al, Synlett, 1997, (9), 1096 and K. Gould et al, J. Med., Chem., 1988, 31 (7), 1445). The corresponding chlorides (5) are available by using phosphoryl oxychloride (for instance C. W. Wright et al, J. Med., Chem., 2001, 44 (19), 3187).
- Alternatively, the quinolone species may be activated to the corresponding 1,1,1-trifluoro-methanesulfonic acid quinolin-4-yl esters (6) by the action of agents such as triflic anhydride or more preferably N-trifluoromethanesulphonimide (see for example M. Alvarez et al, Tet 2000, 56 (23) 3703; M. Alvarez et al, Eur. J. Org., Chem., 2000, (5), 849; J. Joule et al, Tet, 1998, 54 (17), 4405; J. K. Stille et al, J.A.C.S., 1988, 110 (12), 4051).
- Activated species such as (4), (5), and (6) can then be subjected to a variety of metal-catalysed coupling reactions, such as amidation with primary carboxamides to give compounds such as (7) following the procedures of S. L. Buchwald et al (J.A.C.S., 2001, 123, 4051 and 7727; Org. Lett., 1999, 1, 35) or Sonogashira coupling with acetylenes to give compounds such as (8) (see A. Droz et al, Helv. Chim. Acta., 2001, 84 (8), 2243; M. Belly et al, Synlett, 2001 (2), 222; M. Pirrung et al, J.A.C.S., 2001, 123 (16), 3638).
- RA thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinolin-8-yl and isoquinolin-5-yl derivatives are commercially available or prepared by conventional methods from commercially available or literature derivatives, for example 4H-thieno[3,2-b]pyridin-4-one, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridine (prepared by the method of H. Neunhoffer et al, Chem., Ber., 1990, 123), 2-methoxy-quinolin-8-ylamine (prepared by the method of K. Mislow et al J.A.C.S. 68, 1353 (1946)), 2,8-quinolinediol or trifluoromethane sulphonic acid-isoquinolin-5-yl ester (prepared as in D. Ortwine et al, J. Med. Chem., 1992, 35 (8), 1345).
- RA quinoxalin-5-yl derivatives may be obtained from 2- or 3-methylquinoxalin-5-ol prepared as described by Y. Abe et al, J. Med. Chem., 1998, 41 (21), 4062 or from suitable substituted derivatives prepared by analogous methods. RA 3-methoxyquinoxaline-5-yl derivatives may be obtained from 3-oxoquinoxalin-5-yl prepared by the general methods of F. J. Wolf et al., J.A.C.S. 1949, 71, 6, using a suitable methylating agent such as trimethylsilyl(diazomethane). The corresponding 1,2,3,4-tetrahydro-quinoxalin-5-yl may be prepared by reduction with a suitable reducing agent such as sodium cyanoborohydride in the presence of an acid such as acetic acid.
- The isoquinolin-8-yl system can be prepared from the appropriately substituted benzylamine by cyclocondensation with diethoxy-acetaldehyde (see, for example, K. Kido and Y. Watanabe, Chemical & Pharmaceutical Bulletin, 35(12), 4964-6; 1987). Alternatively 8-bromo-isoquinoline (prepared by the method of F. T. Tyson, J.A.C.S., 1939, 61, N. Briet et al., Tetrahedron (2002), 58(29), 5761-5766 or W. D. Brown, et al., Synthesis (2002), (1), 83-86. 183 can be subjected to N-oxidation and rearrangement to give 8-bromo-2H-isoquinolin-1-one. This can be N-methylated to give 8-bromo-2-methyl-2H-isoquinolin-1-one, an appropriate intermediate for the 2-methyl-1-oxo-1,2-dihydroisoquinolin-8-yl system.
- The 1-methoxy-isoquinolin-8-yl system can also be obtained from the 8-bromoisoquinoline-N-oxide above by rearrangement with methyl chloroformate to give 8-bromo-1-methoxy-isoquinoline, an appropriate intermediate for the 1-methoxy-isoquinolin-8-yl system
- The compounds of formula (V) are either commercially available or may be prepared by conventional methods.
- For compounds of formula (V), where Y is NHR11′ suitable amines may be prepared from the corresponding 4-substituted cyclohexyl- or cyclohexenyl acid or alcohol. In a first instance, an N-protected cyclohexyl- or cyclohexenyl amine containing an acid bearing substituent, can undergo a Curtius rearrangement and the intermediate isocyanate can be converted to a carbamate by reaction with an alcohol. Conversion to the amine may be achieved by standard methods well known to those skilled in the art used for amine protecting group removal. For example, an acid substituted N-protected cyclohexyl- or cyclohexenyl amine can undergo a Curtius rearrangement e.g. on treatment with diphenylphosphoryl azide and heating, and the intermediate isocyanate reacts in the presence of 2-trimethylsilylethanol to give the trimethylsilylethylcarbamate (T. L. Capson & C. D. Poulter, Tetrahedron Lett., 1984, 25, 3515). This undergoes cleavage on treatment with tetrabutylammonium fluoride to give the 4-amine substituted N-protected compound of formula (V). Alternatively, an acid group (CH2)n-1CO2H may be converted to (CH2)nNHR11 by reaction with an activating agent such as isobutyl chloroformate followed by an amine R11′NH2 and the resulting amide reduced with a reducing agent such as LiAlH4.
- In a second instance, an N-protected cyclohexyl- or cyclohexenyl amine containing an alcohol bearing substituent undergoes a Mitsunobu reaction (for example as reviewed in Mitsunobu, Synthesis, (1981), 1), for example with succinimide in the presence of diethyl azodicarboxylate and triphenylphosphine to give the phthalimidoethylcyclohexyl- or cyclohexenyl amine. Removal of the phthaloyl group, for example by treatment with methylhydrazine, gives the amine of formula (V).
- Compounds of formula (V) where n=1 may be prepared from the compound where n=0 by homologation eg starting from a compound of formula (V) where Y═CO2H.
- Compounds of formula (V) with a —C≡CH group may be prepared from the ketone treated with trimethylsilylacetylene and n-butyl lithium in dimethylformamide at low temperature followed by removal of the trimethylsilyl group with potassium carbonate in methanol or a fluoride source such as KF or tetrabutylammonium fluoride.
- Compounds of formula (V) with a —CONHR11 group may be prepared from the corresponding nitrile by partial hydrolysis with concentrated mineral acid at ambient temperature, such as concentrated hydrochloric acid (M. Brown et al, J. Med. Chem., 1999, 42, (9), 1537) or with concentrated sulphuric acid (F. Macias et al Tetrahedron, 2000, 56, (21), 3409).
- Compounds of formula (V) with a —OCONH2 group may be prepared from the corresponding alcohol by reaction with phosgene followed by ammonia.
- Compounds of formula (V) substituted by R3 at the 1- or 4-position may be prepared from a 1-keto derivative via a cyanohydrin reaction with sodium cyanide/hydrochloric acid in an ether/water two phase system (J. Marco et al Tetrahedron, 1999, 55, (24), 7625), or using trimethylsilylcyanide and zinc iodide catalysis in dichloromethane (A. Abad et al, J. Chem. Soc., Perkin 1, 1996, 17, 2193), followed by hydrolysis by heating in concentrated hydrochloric acid to give the -hydroxy acid (Compound (V), Y═CO2H, n=0, R3′═OH and Q1 is NR2′R4′) or partial hydrolysis to the carboxamide —CONH2 as described above. In examples where there is trimethylsilyl protection of the alcohol, this is removed under the acidic conditions of cyanide hydrolysis. It will be appreciated that the amine protecting group eg N-carboxylic acid tert-butyl ester is concomitantly removed during the acid hydrolysis step, necessitating a standard reprotection with di-tert-butyl dicarbonate, giving key intermediates (V) such as (4-carbamoyl-4-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester. It is noteworthy that during the cyanohydrin formation there is little or no stereoselectivity with regard to relative stereochemistry, and the (4-carbamoyl-4-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester produced in this process is a mixture of cis and trans stereoisomers. These isomers can be separated by careful chromatography.
- The same 1-keto-derivative could undergo a Wittig reaction with Ph3 PCH═CO2 Me to give the .-unsaturated carboxylic ester MeO2C—CH═C<Ring, which could be epoxidised (eg meta-chloroperbenzoic acid) to give the .-epoxy-ester. Alternatively this could be formed directly from the keto-derivative via a glycidic ester condensation with an -halogeno-ester. Base hydrolysis would afford the .-epoxy-carboxylic acid, which on reduction (eg lithium triethylborohydride—see J. Miklefield et al J. Amer. Chem. Soc. 117, 1153-1154 (1995) or hydrogenation over platinum oxide (see Artamonow Zh. Obshch. Khim. 28 1355-1359 (1958)) would afford the -hydroxy acid (Compound (V) Y═CO2H, n=1, R3′═OH). Alternatively a Reformatsky reaction with the keto-derivative and an -bromocarboxylic acid ester and zinc, followed by acid hydrolysis would afford the -hydroxycarboxylic acid directly. The 1-keto-derivative could also undergo a Strecker type synthesis via a Bucherer-Bergs procedure (potassium cyanide/ammonium carbonate) [see T. Scott Yokum et al. Tetrahedron Letters, 38, 4013-4016 (1997)] to give the -amino-carboxylic acid (Compound (V) Y═CO2H, n=0, R3′═NH2).
- An alternative route to 1-substituted compounds (V) involves a Diels Alder reaction between butyl acrylate and acetoxy butadiene to give (1). Elimination of acetic acid and hetero Diels Alder reaction with an in-situ generated acyl nitroso compound gives the bicyclic hydroxylamine product (3). The ester is transformed to an amide in two steps, and catalytic hydrogenation is used to reduce the double bond, remove the nitrogen protection and cleave the NO bond. After reprotection of the amino group, the cyclohexane amide with the required stereochemistry is obtained.
- Two steps can be avoided by starting with acrylamide:
- Compounds of formula (V) substituted by R3 at the 2- or 3-position may be prepared from the corresponding substituted phenyl derivative 1-Y(CH2)nPh(—R3)-4-NR2 (eg where Y=carboxylic acid) by hydrogenation at elevated temperature and pressure using a Pt or Ru catalyst.
- Compounds of formula (V) with a 3-hydroxyl group may be prepared from a 3,4 oxirane-cyclohexane carboxylic acid by reaction with an amine NHR2R4 or azide (followed by conversion of the azide to amino). [See for example K. Krajewski et al. Tetrahedron Asymmetry 10, 4591-4598 (1999)]. The ester group may be epimerised by heating in strong base, hydrolysed to the carboxylic acid and cyclised to the lactone using a conventional coupling reagent (EDC). Other conventional reagents eg DCC, Im2CO, HATU etc. may also be used. The lactone is readily purified by chromatography. The lactone is readily opened with aqueous ammonia in tetrahydrofuran to give the required (racemic) amide.
- An improved procedure starting from 3-cyclohexene carboxylic acid may be used to prepare single enantiomers. 3-Cyclohexene carboxylic acid (2) is resolved via -Me benzylamine salt (Schwartz et al, J. Am. Chem. Soc., 100, 5199, (1978)). A higher yield of lactone (3) can be achieved using a larger excess of reagents. Lactone opening with ammonia gives (4), which is treated with azide to give (5) which has the required trans relative stereochemistry between the amide and N-substituent. Finally, azide reduction and Boc protection gives (1) a compound of formula (V).
- R3 halogen can be introduced onto a cyclohexane ring via treatment of a silyl enol ether with an electrophilic halogenating, such as a fluorinating, agent. For example, ethyl-4-oxo cyclohexanecarboxylate is converted to its TMS enol ether (S-W Lin, Bioorg. Med. Chem. Lett, 10; 11; 1297-1298, 2000). This conversion may be carried out using an optically active base to give enantiomerically enriched material [K W Henderson et al, JCS Chem Comm, 479-480, (2000); N S Simpkins et al, Tet. Lett, 30, 51, 7241-7244, (1989); K Koga et al, J. Am. Chem. Soc., 108, 543-545, (1986); P Knochel, Ang. Chem. Int. Ed., 37, (21), 3014-3016 (1998); V K Aggarwal, J. Chem. Soc. Perkin Trans. 1, 2883 (1999)]. Treatment with an electrophilic fluorinating agent, for example Selectfluor, yields the chiral-fluoroketones which may be separated by silica gel chromatography. Reductive amination with an amine, for example benzylamine or a chiral benzylamine for example -methyl benzylamine using sodium cyanoborohydride or sodium triacetoxyborohydride yields the amino ester with predominantly the cis relationship between the amino and fluoro substituents. This may be converted to the amino amide. Diastereoisomers may be separated by an appropriate combination of silica gel chromatography, HPLC and crystallisation of the free base or a suitable salt.
- Selectfluor™: 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate α-MeBnNH2: α-methylbenzylamine
(BOC)2O: di-tert-butyldicarbonate
BOC: tert-butyloxycarbonyl
HOAt: 1-hydroxy-7-azabenzotriazole
EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. - R4-halides and R4—W derivatives, acyl derivatives or aldehydes are commercially available or are prepared conventionally. The aldehydes may be prepared by partial reduction of the corresponding ester with lithium aluminium hydride or di-isobutylaluminium hydride or more preferably by reduction to the alcohol, with lithium aluminium hydride or sodium borohydride (see Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed., Wiley, N.Y., 1997; JOC, 3197, 1984; Org. Synth. Coll., 102, 1990; 136, 1998; JOC, 4260, 1990; TL, 995, 1988; JOC, 1721, 1999; Liebigs Ann./Recl., 2385, 1997; JOC, 5486, 1987), followed by oxidation to the aldehyde with manganese (II) dioxide, or by a ‘Swern’ procedure (oxalyl chloride/DMSO), or by using potassium dichromate (PDC). The aldehydes may also be prepared from carboxylic acids in two stages by conversion to a mixed anhydride for example by reaction with isobutyl chloroformate followed by reduction with sodium borohydride (R. J. Alabaster et al., Synthesis, 598, 1989) to give the hydroxymethyl substituted heteroaromatic or aromatic and then oxidation with a standard oxidising agent such as pyridinium dichromate or manganese (II) dioxide. Acyl derivatives may be prepared by activation of the corresponding ester. R4-halides such as bromides may be prepared from the alcohol R4OH by reaction with phosphorus tribromide in dichloromethane/triethylamine. Where X2a is CO and X3a is NR13a the R4-halide may be prepared by coupling an X4a—NH2 amine and bromoacetyl bromide. R4—W derivatives such as methanesulphonyl derivatives may be prepared from the alcohol R4OH by reaction with methane sulphonyl chloride. The leaving group W may be converted to another leaving group W, e.g. a halogen group, by conventional methods. Alternatively the aldehyde R5 2CHO and sulphonic acid derivative R5 2SO2W may be generated by treatment of the R5 2H heterocycle with suitable reagents. For example benzoxazinones, or more preferably their N-methylated derivatives can be formylated with hexamine in either trifluoroacetic acid or methanesulfonic acid, in a modified Duff procedure [O. I. Petrov et al. Collect. Czech. Chem. Commun. 62, 494-497 (1997)]. 4-Methyl-4H-benzo[1,4]oxazin-3-one may also be formylated using dichloromethyl methyl ether and aluminium chloride giving exclusively the 6-formyl derivative.
- Reaction of a R5 2H heterocycle with chlorosulphonic acid gives the sulphonic acid derivative (by methods analogous to Techer et. al., C. R. Hebd. Seances Acad. Sci. Ser. C; 270, 1601, 1970).
- The aldehyde R5 2CHO may be generated by conversion of an R5 2 halogen or R5 2 trifluoromethane sulphonyloxy derivative into an olefin with subsequent oxidative cleavage by standard methods. For example, reaction of a bromo derivative under palladium catalysis with trans-2-phenylboronic acid under palladium catalysis affords a styrene derivative which upon ozonolysis affords the required R5 2CHO (Stephenson, G. R., Adv. Asymmetric Synth. (1996), 275-298. Publisher: Chapman & Hall, London).
- Where R5 2 is an optionally substituted benzoimidazol-2-yl group, the compound of formula (V) where R4′ is R4 may be obtained by converting a R4′ cyanomethyl group with partial hydrolysis to give the 2-ethoxycarbonimidoylethyl group which can then be condensed with an appropriately substituted 1,2-diaminobenzene to give the required benzoimidazol-2-yl group.
- R5 2H heterocycles are commercially available or may be prepared by conventional methods. For example where a benzoxazinone is required, a nitrophenol may be alkylated with for example ethyl bromoacetate and the resulting nitro ester reduced with Fe in acetic acid (alternatively Zn/AcOH/HCl or H2/Pd/C or H2/Raney Ni). The resulting amine may undergo spontaneous cyclisation to the required benzoxazinone, or cyclisation may be induced by heating in acetic acid. Alternatively a nitrophenol may be reduced to the aminophenol, which is reacted with chloroacetyl chloride [method of X. Huang and C. Chan, Synthesis 851 (1994)] or ethyl bromoacetate in DMSO [method of Z. Moussavi et al. Eur. J. Med. Chim. Ther. 24, 55-60 (1989)]. The same general routes can be applied to prepare benzothiazinones [See for example F. Eiden and F. Meinel, Arch. Pharm. 312, 302-312 (1979), H. Fenner and R Grauert Liebigs. Ann. Chem. 193-313 (1978)]]. A variety of routes are available to prepare aza analogues of benzothiazinones via the key corresponding aldehydes. For instance, 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazine-7-carbaldehyde may be accessed from 5-fluoro-2-picoline (E. J. Blanz, F. A. French, J. R. DoAmaral and D. A. French, J. Med. Chem. 1970, 13, 1124-1130) by constructing the thiazinone ring onto the pyridyl ring then functionalising the methyl substituent. The dioxin analogue of this aza substitution pattern, 2,3-dihydro-[1,4]dioxino[2,3-c]pyridine-7-carbaldehyde is accessible from Kojic acid by aminolysis from pyrone to pyridone then annelating the dioxin ring. Other aza substitution patterns with pyridothiazin-3-one, pyridooxazin-3-one, and pyridodioxin ring systems are also accessible. Ortho-aminothiophenols may be conveniently prepared and reacted as their zinc complexes [see for example V. Taneja et al Chem. Ind. 187 (1984)]. Benzoxazolones may be prepared from the corresponding aminophenol by reaction with carbonyl diimidazole, phosgene or triphosgene. Reaction of benzoxazolones with diphosphorus pentasulfide affords the corresponding 2-thione. Thiazines and oxazines can be prepared by reduction of the corresponding thiazinone or oxazinone with a reducing agent such as lithium aluminium hydride.
- The amines R2′R4′NH are available commercially or prepared conventionally. For example amines may be prepared from a bromo derivative by reaction with sodium azide in dimethylformamide (DMF), followed by hydrogenation of the azidomethyl derivative over palladium-carbon. An alternative method is to use potassium phthalimide/DMF to give the phthalimidomethyl derivative, followed by reaction with hydrazine in DCM to liberate the primary amine.
- Amines where X2a is CO and X3a is NR13a may be prepared by reacting an N-protected glycine derivative HO2C—X1a—NH2 with X4a—NH2 by conventional coupling using eg EDC.
- Conversions of R1a′, R1′, R2′, R3′ and R4′ may be carried out on the intermediates of formulae (IV) and (V) prior to their reaction to produce compounds of formula (I) in the same way as described above for conversions after their reaction.
- The pharmaceutical compositions of the invention include those in a form adapted for oral, topical or parenteral use and may be used for the treatment of bacterial infection in mammals including humans.
- The antibiotic compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other antibiotics.
- The composition may be formulated for administration by any route, such as oral, topical or parenteral. The compositions may be in the form of tablets, capsules, powders, granules, lozenges, creams or liquid preparations, such as oral or sterile parenteral solutions or suspensions.
- The topical formulations of the present invention may be presented as, for instance, ointments, creams or lotions, eye ointments and eye or ear drops, impregnated dressings and aerosols, and may contain appropriate conventional additives such as preservatives, solvents to assist drug penetration and emollients in ointments and creams.
- The formulations may also contain compatible conventional carriers, such as cream or ointment bases and ethanol or oleyl alcohol for lotions. Such carriers may be present as from about 1% up to about 98% of the formulation. More usually they will form up to about 80% of the formulation.
- Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrollidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants, for example potato starch; or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives, such as suspending agents, for example sorbitol, methyl cellulose, glucose syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and, if desired, conventional flavouring or colouring agents.
- Suppositories will contain conventional suppository bases, e.g. cocoa-butter or other glyceride.
- For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, water being preferred. The compound, depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilised before filling into a suitable vial or ampoule and sealing.
- Advantageously, agents such as a local anaesthetic, preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. The dry lyophilized powder is then sealed in the vial and an accompanying vial of water for injection may be supplied to reconstitute the liquid prior to use. Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilization cannot be accomplished by filtration. The compound can be sterilised by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
- The compositions may contain from 0.1% by weight, preferably from 10-60% by weight, of the active material, depending on the method of administration. Where the compositions comprise dosage units, each unit will preferably contain from 50-500 mg of the active ingredient. The dosage as employed for adult human treatment will preferably range from 100 to 3000 mg per day, for instance 1500 mg per day depending on the route and frequency of administration. Such a dosage corresponds to 1.5 to 50 mg/kg per day. Suitably the dosage is from 5 to 20 mg/kg per day.
- No toxicological effects are indicated when a compound of formula (I) or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof is administered in the above-mentioned dosage range.
- The compound of formula (I) may be the sole therapeutic agent in the compositions of the invention or a combination with other antibiotics or with a -lactamase inhibitor may be employed.
- Compounds of formula (I) are active against a wide range of organisms including both Gram-negative and Gram-positive organisms.
- The following examples illustrate the preparation of certain compounds of formula (I) and the activity of certain compounds of formula (I) against various bacterial organisms.
-
- 1-Acetoxy-1,3-butadiene (30.1 g, 0.268 mol) was dissolved in toluene (20 ml). To this was added butyl acrylate (37.9 ml, 0.265 mol) and hydroquinone (0.14 g). The colourless solution was heated at 120° C. for 26 hours under argon. More 1-acetoxy-1,3-butadiene (10.6 g, 0.095 mol) in toluene (2 ml) was then added, and heating continued for a further 68 hours. The solution was cooled then evaporated in vacuo to give a viscous yellow oil (69 g), which was used without further purification.
- δH(CDCl3) 0.91-0.95 (3H, m), 1.3-2.2 (11H, m), 2.6-2.72 (1H, m), 4.01-4.16 (2H, m), and 5.48-6.07 (3H, m).
- Crude butyl ester (a) (55.25 g, max 0.207 mol) was dissolved in dry tetrahydrofuran (320 ml) and cooled in an ice/salt bath. To this was added slowly, over 1 hour, potassium t-butoxide in tetrahydrofuran (1 M, 220 ml, 0.22 mol). After 0.5 hour water and petroleum ether were added and the mixture filtered quickly through kieselguhr. The phases were separated and the aqueous extracted with more petroleum ether (×2). The combined organic extracts were washed with brine, dried and evaporated to give a mobile orange oil (31.85 g, 86%), which was used immediately without further purification.
- δH(CDCl3) 0.93-0.99 (3H, m), 1.3-1.7 (4H, m), 2.2-2.5 (4H, m), 4.1-4.2 (2H, m), 6.0-6.2 (2H, m), and 6.95-7.02 (1H, m).
- Crude butyl ester (b) (31.84 g, max 0.176 mol) was dissolved in dichloromethane (300 ml). To this was added N-hydroxy carbamic acid benzyl ester (30.9 g, 0.185 mol). This solution was cooled in an ice/salt bath then a solution of tetrabutylammonium periodate (80.1 g, 0.185 mol) in dichloromethane (100 ml) was added dropwise over 1 hour. After stirring for a further 1 hour, with cooling, the mixture was reduced to a small volume in vacuo then stirred vigorously while adding diethyl ether (1 litre). The mixture was filtered washing well with diethyl ether. The filtrate was then washed with aqueous sodium bisulphite (×2), and brine, dried and evaporated to give a brown oil. This residue was purified by chromatography on silica gel, eluting with 25-28% diethyl ether in petroleum ether, to give a viscous pale orange oil (42.41 g, ˜69%) (contaminated with a little benzyl alcohol).
- δH(CDCl3) 0.94 (3H, t), 1.35-1.75 (6H, m), 2.15-2.4 (2H, m), 4.2-4.35 (2H, m), 4.84-4.89 (1H, m), 5.12-5.20 (2H, m), 6.59-6.71 (2H, m), and 7.28-7.39 (5H, m).
- To a solution of di-ester (c) (42.13 g, 0.122 mol) in 1,4-dioxane (250 ml) was added aqueous sodium hydroxide solution (0.5 M, 250 ml, 0.125 mol). The mixture was stirred for 1 hour then washed with diethyl ether (×3). The aqueous phase was adjusted to pH2 with 5 M hydrochloric acid, and extracted with ethyl acetate (×3). The combined organic extracts were washed with brine, dried and evaporated to give a cream solid (29.53 g, 84%).
- δH(CDCl3/CD3OD) 1.53-1.79 (2H, m), 2.13-2.39 (2H, m), 4.82-4.89 (1H, m), 5.11-5.23 (2H, m), 6.57-6.69 (2H, m), and 7.3-7.4 (5H, m).
- The benzyl ester (d) (12.0 g, 41.5 mmol) and 1-hydroxy-7-azabenzotriazole (6.26 g, 46 mmol) were dissolved in DMF (100 ml) then 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (8.79 g, 46 mmol) added. After stirring for 5 minutes ammonium hydrogen carbonate (8.22 g, 104 mmol) was added. Four further small portions of ammonium hydrogen carbonate were added over the next 7 hours. The mixture was then stirred overnight, diluted with water and extracted with ethyl acetate (×4). The combined organic extracts were washed with 5% aqueous citric acid then brine, dried and evaporated to give an off-white solid (9.9 g, 83%). MS (+ve ion electrospray) m/e 289 (MH+).
- The benzyl ester (e) (9.75 g, 33.8 mmol) was dissolved in 1,4-dioxane (150 ml) and water (60 ml) and hydrogenated over 10% palladium on carbon (50% aqueous paste, 3.3 g) at 40° C. and 55 psi for 68 hours. More catalyst (2 g) was added after 4 hours. The mixture was then filtered through kieselguhr, washing well with 1,4-dioxane and water. To this solution was added 2 N sodium hydroxide (25 ml, 50 mmol) followed by a solution of di-tert-butyl dicarbonate (11.12 g, 51 mmol) in 1,4-dioxane (10 ml). The reaction mixture was stirred for 5 hours then reduced in volume in vacuo, before extracting with ethyl acetate (×5). The combined organic extracts were dried and evaporated to give a white solid (5.96 g), which was chromatographed on silica (400 g). Elution with 0-7% methanol in dichloromethane gave a white powder (5.52 g, 63%) δH (d6-DMSO) 1.3-1.76 (17H, m), 3.17 (1H, br s), 4.95 (1H, s), 6.71 (1H, d), 7.0 (1H, s), and 7.14 (1H, s).
- A solution of ethyl 2-mercaptoacetate (1.473 ml) in DMF (48 ml) was ice-cooled and treated with sodium hydride (540 mg of a 60% dispersion in oil). After 1 hour methyl 6-amino-5-bromopyridine-2-carboxylate (3 g) (T. R. Kelly and F. Lang, J. Org. Chem. 61, 1996, 4623-4633) was added and the mixture stirred for 16 hours at room temperature. The solution was diluted with EtOAc (1 litre), washed with water (3×300 ml), dried and evaporated to about 10 ml. The white solid was filtered off and washed with a little EtOAc to the ester (0.95 g).
- MS (APCI−) m/z 223 ([M−H]−, 100%)
- A solution of ester (g) (788 mg) in dioxan (120 ml)/water (30 ml) was treated dropwise over 2 hours with 0.5M NaOH solution (8 ml) and stirred overnight. After evaporation to approx. 3 ml, water (5 ml) was added and 2N HCl to pH4. The precipitated solid was filtered off, washed with a small volume of water and dried under vacuum to give a solid (636 mg).
- MS (APCI−) m/z 209 ([M−H]−, 5%), 165([M-COOH]−, 100%)
- A solution of the carboxylic acid (h) (500 mg) in THF (24 ml) with triethylamine (0.396 ml) was cooled to −10° C. and isobutyl chloroformate (0.339 ml) added. After 20 minutes the suspension was filtered through kieselguhr into an ice-cooled solution of sodium borohydride (272 mg) in water (8 ml), the mixture stirred 30 minutes and the pH reduced to 7 with dilute HCl. The solvent was evaporated and the residue triturated under water. The product was filtered and dried under vacuum to give a white solid (346 mg).
- MS (APCI−) m/z 195 ([M−H]−, 50%), 165(100%)
- A solution of the alcohol (i) (330 mg) in dichloromethane (30 ml)/THF (30 ml) was treated with manganese dioxide (730 mg) and stirred at room temperature. Further manganese dioxide was added after 1 hour (730 mg) and 16 hours (300 mg). After a total of 20 hours the mixture was filtered through kieselguhr and the filtrate evaporated. The product was triturated with EtOAc/hexane (1:1) and collected to give a solid (180 mg).
- A suspension of 4H-thieno[3,2-b]pyridin-4-one (5 g, 33.1 mmol) in DMF (35 ml) was treated at 0° C. with phosphorous tribromide (3.1 ml, 39.7 mmol). After 1 hour the mixture was added to a mixture of ice/saturated aqueous sodium hydrogen carbonate solution. Filtration and drying in vacuo afforded a pale yellow solid (5.9 g, 83%).
- A mixture of the amide (f) (387 mg, 1.5 mmol), cesium carbonate (0.61 g), tris(dibenzylideneacetone)dipalladium(0) (27 mg), and rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (56 mg) in dry dioxan (12 ml) under argon was sonicated for 10 minutes. Bromide (k) (321 mg, 1.5 mmol) was added, and the mixture was stirred and heated at 100° C. for 24 hours under argon. The mixture was cooled, centrifuged, then the supernatant evaporated and chromatographed on silica gel, eluting with dichloromethane, then 0-10% methanol in ethyl acetate affording a solid (495 mg, 84%).
- MS (+ve ion electrospray) m/z 392 (MH+).
- A solution of carbamate (1) (490 mg, 1.25 mmol) in dichloromethane (7.5 ml) was treated with trifluoroacetic acid (7.5 ml). After 2 hours the mixture was evaporated, azeotroping with toluene. The residue was partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate solution. The organic extract was dried and evaporated affording a yellow solid (167 mg, 45%).
- MS (+ve ion electrospray) m/z 292 (MH+).
- A mixture of amine (m) (167 mg, 0.57 mmol) and aldehyde (j) (111 mg, 0.57 mmol) in methanol/DMF/acetic acid (7 ml/7 ml/0.7 ml) was treated with 3 A molecular sieves and heated at 80° C. for 1.5 hours. The mixture was allowed to cool to room temperature then sodium cyanoborohydride (72 mg, 1.15 mmol) was added. The mixture was stirred at room temperature overnight, acidified briefly with 5M hydrochloric acid (0.5 ml) then partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate solution. The organic extract was dried and evaporated affording a yellow solid. The residue was chromatographed on silica eluting with a 0-20% methanol in ethyl acetate gradient affording the free base of the title compound as a white solid (171 mg, 71%).
- 1H NMR δ(CD3OD) 8.55 (1H, d), 7.96 (2H, m), 7.70 (1H, d), 7.50 (1H, d), 7.05 (1H, d), 3.90 (2H, s), 3.50 (2H, s), 2.70 (1H, m), 2.10-1.60 (8H, m)
- MS (+ve ion electrospray) m/z 470 (MH+).
- This material was dissolved in chloroform/methanol (3 ml/3 ml) and treated with 1M HCl in ether (2 ml) with vigorous shaking. The resulting white solid was isolated by centrifugation and dried under vacuum to provide the title compound (119 mg).
-
- A solution of 2,3-dihydro-[1,4]dioxino[2,3-b]pyridine (prepared by the method of H. Neunhoffer et al, Chem., Ber., 1990, 123 (12), 2453) (1.37 g, 10 mmol) in tetrahydrofuran (20 ml) under argon at −78° C. was treated over 15 minutes with a solution of n-butyl lithium (20 mmol) in tetrahydrofuran (8 ml). After 30 minutes a solution of 1,2-dibromo-1,1,2,2-tetrafluoro-ethane (2.6 g, 10 mmol) in tetrahydrofuran (10 ml) was added dropwise over 5 minutes. After a further 30 minutes the cooling bath was removed and saturated aqueous ammonium chloride (20 ml) and ether (20 ml) were added. The mixture was allowed to warm to room temperature then partitioned between ether/water. The organic extract was washed with half-saturated brine, dried and evaporated. The residue was chromatographed on silica eluting with a 0-30% gradient of ethyl acetate in dichloromethane affording a yellow solid (1.1 g, 51%).
- MS (+ve ion electrospray) m/z 217 (MH+).
- This was prepared from bromide (a) (432 mg) and amide (1f) (516 mg) by the procedure of Example (1l) affording a yellow solid after chromatography (105 mg, 13%).
- MS (+ve ion electrospray) m/z 394 (MH+).
- This was prepared from carbamate (b) (105 mg) by the procedure of Example (1m) with the exception that the crude material was subjected to chromatography on silica eluting with a 0-30% methanol in ethyl acetate gradient affording an oil (25 mg, 32%).
- MS (+ve ion electrospray) m/z 394 (MH+).
- This was prepared from amine (c) (25 mg) and aldehyde (1j) (16 mg) according to the procedure of Example (1n) affording the free base of the title compound as a white solid (4 mg, 10%).
- 1H NMR δ(CD3OD) 7.95 (1H, d), 7.75 (1H, d), 7.65 (1H, d), 7.07 (1H, d), 4.45 (2H, m), 4.38 (2H, m), 4.10 (2H, s), 3.52 (2H, s), 2.80 (1H, m), 2.10-1.60 (8H, m)
- MS (+ve ion electrospray) m/z 472 (MH+).
- The free base was converted into the dihydrochloride salt by the procedure of Example 1 affording a white solid (5 mg).
-
- A solution of trans-4-tert-butoxycarbonylamino-cyclohexanecarboxylic acid (15 g, 61.7 mmol) and 1-hydroxysuccinimide (76 g, 61.7 mmol) in ethyl acetate (200 ml) was treated with a solution of dicyclohexylcarbodiimide (12.7 g, 61.7 mmol) in ethyl acetate (50 ml). After stirring overnight the mixture was filtered and evaporated affording a yellow solid. This was redissolved in tetrahydrofuran (300 ml) and treated gaseous ammonia was bubbled through the solution for 15 minutes. Filtration afforded a white solid which was stirred in water (200 ml) for 1 hour. Filtration and drying afforded a white solid (11.3 g, 76%).
- MS (+ve ion electrospray) m/z 243 (MH+).
- This was prepared from 4-chloroquinoline (0.49 g) and amide (a) (0.73 g) according to the procedure of Example (1l) affording a white solid (0.66 g, 60%).
- MS (+ve ion electrospray) m/z 370 (MH+).
- This was prepared from carbamate (b) (0.65 g) according to the procedure of Example (1m) affording a white solid (280 mg, 58%).
- MS (+ve ion electrospray) m/z 270 (MH+).
- This was prepared from amine (c) (220 mg) and aldehyde (1j) (160 mg) according to the procedure of Example (1n) affording the free base of the title compound as a white foam (104 mg, 27%).
- 1H NMR δ(CDCl3) 9.30 (1H, bs), 9.00 (1H, bs), 8.80 (1H, d), 8.20 (1H, d), 8.15 (1H, d), 8.05 (1H, d), 7.70 (1H, t), 7.60-7.50 (2H, m), 6.95 (1H, d), 3.90 (2H, s), 3.45 (2H, s), 2.70 (1H, m), 2.20-2.00 (4H, m), 1.80-1.70 (2H, m), 1.40-1.30 (2H, m)
- MS (+ve ion electrospray) m/z 448 (MH+).
- The free base was converted into the dihydrochloride salt by the procedure of Example 1 affording a white solid (110 mg).
-
- 3-Oxo-3,4-dihydro-2H-benzo[1,4]thiazine-6-carboxylic acid methyl ester (6.74 g) was suspended in tetrahydrofuran (100 ml) and 2M sodium hydroxide (30 ml) was added followed by water (20 ml). The solution was stirred for 2.5 hours, evaporated to half volume and acidified with 2M hydrochloric acid. The product was collected, washed with water and dried in vacuo, to give a white solid (6.2 g).
- MS (−ve ion electrospray) m/z 208 (M−H)−
- The acid (a) in tetrahydrofuran (50 ml) and triethylamine (4.7 ml) was cooled to 0° C. and isobutylchloroformate (4.02 ml) was added dropwise and the solution was stirred at 0° C. for 2 hours, when it was filtered into a stirred solution of sodium borohydride (3.14 g) in ice/water (50 ml). The mixture was stirred at 0° C. for 1 hour and allowed to warm to room temperature. It was acidified with 2M hydrochloric acid, evaporated to half volume, and the resulting product was collected, washed with water and dried in vacuo, to give a white solid (4.5 g).
- MS (−ve ion electrospray) m/z 194 (M−H)−
- A stirred solution of the alcohol (b) (3.5 g) in chloroform (150 ml) and tetrahydrofuran (300 ml) was treated with manganese dioxide (7.8 g) for 18 hours and was filtered and evaporated to give a white solid (2.5 g).
- MS (−ve ion electrospray) m/z 194 (M−H)−
- This was prepared from trifluoromethane sulphonic acid-isoquinolin-5-yl ester (prepared as in D. Ortwine et al, J. Med. Chem., 1992, 35 (8), 1345) and amide 3(a) by the same methodology as in Example 3, with the exception that aldehyde (c) was used in the final reductive alkylation step.
- LC/MS: (ES) m/z 447 (M+H)+.
-
- This was prepared by a slight modification of the procedure of Guo et al, Tet Lett, 1999, 40, 6999. To a stirred solution of 2,8-quinolinediol (4.97 g, 30.84 mmol) and 1,8-diazabicylo[5.4.0]undec-7-ene (DBU) (40.2 mmol, 6 mL) in isopropyl alcohol (60 mL) was added benzyl bromide (3.7 mL, 30.84 mmol). The solution was heated at reflux overnight. The reaction mixture was allowed to cool and then concentrated in vacuo. The resulting residue was diluted with CH2Cl2 and washed with 0.5 N NaOH, 10% HCl and water and dried over Na2SO4. Concentration provided 6 g (77%) of a tan solid, which was used without further purification.
- LC/MS: (ES) m/z 252 (M+H)+.
- 8-Benzyloxyquinolin-2-ol (a) (6 g, 23.9 mmol) was added to POCl3 (45 mL) and heated with stirring at 80° C. for 10 hours. The reaction was allowed to cool to room temperature and the excess POCl3 was decomposed by slowly pouring the mixture into water at 30° C. The product was then extracted into toluene and the combined organic layers were washed with saturated aqueous NaHCO3 and dried over MgSO4. Concentration provided 6.9 g of a colorless oil which was dissolved in toluene (100 mL) and added to a stirred 25 wt % solution of NaOMe in MeOH (50 mL). The reaction solution was heated overnight at 70° C. After cooling to room temperature, the reaction solution was poured onto ice and extracted with toluene. The combined organic extracts were dried (MgSO4) and concentrated in vacuo to give a colorless oil (6.14 g, 92%).
- LC/MS: (ES) m/z 266 (M+H)+.
- 8-Benzyloxy-2-methoxyquinoline (b) (6.14 g, 23 mmol) was dissolved in EtOH (50 mL) and treated with 10% Pd/C (600 mg). The reaction mixture was hydrogenated under an H2 atmosphere (20 psi) in a Parr shaker apparatus for 3.5 hours. The reaction was filtered and concentrated to give 3.8 g (96%) of a colorless oil. This was dissolved in DMF (40 mL) and treated with triethylamine (3.6 mL, 25.8 mmol) and N-phenyltrifluoromethanesulfonimide (8.54 g, 23.9 mmol). The reaction mixture was heated with stirring at 40° C. for 8 hours. Upon cooling to room temperature, aqueous K2 CO3 solution was added and the product was extracted into CH2Cl2. The combined organic extracts were washed with water (5×75 mL), dried (Na2SO4) and concentrated to give 6.8 g (100%) of a light tan crystalline solid.
- LC/MS: (ES) m/z 308 (M+H)+.
- A flask containing amide (1f) (847 mg, 3.28 mmol), rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (133 mg, 0.21 mmol) and Cs2 CO3 (1.33 g, 4.1 mmol) in dioxane (30 mL) was flushed with N2. To this was added Pd2 (dba)3 (63 mg, 0.07 mmol) and the reaction solution was sonicated for 10 min as the color changed from purple to brown. A solution of 1,1,1-trifluoromethanesulfonic acid 2-methoxyquinolin-8-yl ester (c) (1.09 g, 3.54 mmol) in dioxane (15 mL) was then added. The reaction mixture was heated with stirring at 100° C. for 18 hours. Upon cooling to room temperature, the reaction mixture was filtered through Celite® and concentrated. The product was purified on an ISCO Combiflash® automated column chromatography unit (silica, 0% to 10% MeOH/EtOAc) to provide 846 mg (65%) of the desired product as a pale yellow solid.
- LC/MS: (ES) m/z 416 (M+H)+.
- A solution of (d) (134 mg, 0.32 mmol) in CH2Cl2 (10 mL) was cooled to 0° C.
- To this was added 4M HCl/dioxane (1.57 mL, 6.28 mmol) in one portion and the reaction solution was stirred at room temperature for 5 hours. The reaction solution was filtered and the solids washed with ether and dried under vacuum to provide a pale yellow solid (65 mg).
- LC/MS: (ES) m/z 316 (M+H)+.
- The dihydrochloride salt (e) (55 mg, 0.14 mmol), aldehyde (1j) (50 mg, 0.25 mmol), triethylamine (0.10 mL, 0.72 mmol), DMF (0.5 mL), HOAc (0.5 mL) and MeOH (7 mL) were combined together and stirred in the presence of 3 Å molecular sieves for 3 hours at 80° C. and then at room temperature overnight. NaCNBH3 (54 mg, 0.86 mmol) was added and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with 10% MeOH/CHCl3 and aq Na2 CO3 was added. The aqueous layer was extracted with 10% MeOH/CHCl3 (4×) and the combined organic extracts were dried (Na2SO4). The product was purified on an ISCO Combiflash® automated column chromatography unit (silica, 0% to 10% MeOH/CHCl3) to provide 31 mg (45%) of the title compound as a white solid.
- 1H NMR (400 MHz) δ 1.80-2.10 (m, 8H), 3.10 (m, 1H), 3.51 (s, 2H), 4.09 (s, 3H), 4.18 (s, 2H), 6.95-6.98 (d, 1H), 7.04-7.07 (d, 1H), 7.30-7.35 (t, 1H), 7.48-7.50 (d, 1H), 7.73-7.75 (d, 1H), 8.09-8.11 (d, 1H), 8.56-8.58 (d, 1H).
- LC/MS: (ES) m/z 494 (M+H)+.
-
- A solution of methyl 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazine-6-carboxylate (1 g) (1.0 g) in dry tetrahydrofuran (170 ml) was treated with a 1M solution of lithium aluminium hydride in ether (14 ml) and the mixture was heated under reflux for 18 hours. It was cooled and a slight excess of 2N sodium hydroxide was added followed by chloroform and anhydrous sodium sulphate and the mixture was stirred for 30 minutes and filtered. The solution was evaporated to dryness to give a semi-solid (0.482 g).
- MS (APCI+) m/z 183 (MH+).
- The alcohol (a) (0.482 g) in dry dichloromethane (50 ml) was stirred with manganese dioxide (1.2 g) for 18 hours and the mixture was filtered. The filtrate was evaporated and chomatographed on silica gel, eluting with methanol-dichloromethane (1:50) to afford a yellow solid (0.24 g).
- MS (APCI+) m/z 181 (MH+).
- Dihydrochloride salt (5e) (65 mg, 0.16 mmol), aldehyde (b) (75 mg, 0.42 mmol), triethylamine (0.15 mL, 1.08 mmol), DMF (0.5 mL), HOAc (0.5 mL) and MeOH (7 mL) were combined together and stirred in the presence of 3 Å molecular sieves for 3 hours at 80° C. and then at room temperature overnight. NaCNBH3 (47 mg, 0.75 mmol) was added and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with 10% MeOH/CHCl3 and aq Na2 CO3 was added. The aqueous layer was extracted with 10% MeOH/CHCl3 (4×) and the combined organic extracts were dried (Na2SO4). The product was purified on an ISCO Combiflash® automated column chromatography unit (silica, 0% to 10% MeOH/CHCl3) to provide 70 mg (92%) of the title compound as a pale yellow solid.
- 1H NMR (400 MHz) δ 1.77-2.08 (m, 8H), 2.71 (m, 1H), 2.89-2.91 (m, 2H), 3.66-3.67 (m, 2H), 3.76 (s, 2H), 4.00 (s, 3H), 5.38 (br s, 1H), 6.40-6.42 (d, 1H), 6.81-6.83 (d, 1H), 7.08-7.10 (d, 1H), 7.24-7.28 (t, 1H), 7.33-7.35 (d, 1H), 7.87-7.89 (d, 1H), 8.61-8.63 (d, 1H) 10.92 (s, 1H).
- LC/MS: (ES) m/z 480 (M+H)+.
-
- A stirred solution of trimethylsilyl acetylene at −78° C. (4.14 g, 0.042 mol) in THF (60 mL) was treated with n-butyl lithium (29 mL, 0.042 mol; 1.6 M solution in THF). The resulting mixture was stirred at −78° C. for 15 min. A solution of N-4-Boc-aminocyclohexanone (3 g, 0.014 mol) in THF (120 mL) was added dropwise over a period of 30 min. The resulting mixture was stirred at −78° C. for 1 hour and then allowed to slowly warm to room temperature over 1 hour. The reaction was quenched with a saturated aqueous solution of ammonium chloride, diluted with EtOAc and washed with saturated aqueous NaHCO3 solution, H2O, and saturated aqueous NaCl solution. The organic extract was dried over MgSO4 and concentrated to yield the title compound as an off-white foam (4.38 g, 100%).
- MS (ES) m/z 312 (M+H)+.
- A solution of (a) (4.38 g, 0.014 mol) in MeOH (50 mL) was treated with K2 CO3 (5.83 g, 0.42 mol) and stirred at room temperature for 3 hours. The solvent was removed in vacuo and the residue was partitioned between EtOAc and aqueous NaCl, and the organic layer was dried (MgSO4) and concentrated to yield an oil (2.7 g, 89%).
- MS (ES) m/z 240 (M+H)+.
- A solution of (b) (500 mg, 2.09 mmol) and triflate (5c) (656 mg, 2.13 mmol) in a 1:1 mixture of triethylamine and DMF (10 mL total volume) was treated with (Ph3P)2 PdCl2 (60 mg; 4% mol) and CuI (32 mg, 8% mol). The resulting mixture was heated with stirring at 70° C. for 24 hours. The solvent was removed under reduced pressure and the residue was partitioned between CH2Cl2 and aqueous NaCl, and the organic layer was dried (MgSO4), and concentrated in vacuo. The resulting oil was purified by flash column chromatography on silica gel (gradient: 20-50% EtOAc/hexane) to afford a yellow foam (635 mg, 82%). LC/MS: MS (ES) m/z 397 (M+H)+.
- A solution of (c) (635 mg, 1.6 mmol) in MeOH (10 mL) was treated with 10% Pd/C (65 mg) and hydrogenated in a Parr bottle for 6 h at 40 psi. The solution was filtered through a plug of Celite®, and the filter pad was washed with MeOH. The filtrate was concentrated to yield the title compound (608 mg, 95%) as a light yellow foam.
- LC/MS: (ES) m/z 401 (M+H)+.
- A stirred solution of (d) (600 mg, 1.5 mmol) in CH2Cl2 (5 mL) was treated with trifluoroacetic acid (1.16 mL, 15 mmol). The solution was allowed to stir for 1 hour at room temperature and then concentrated under reduced pressure. MeOH was added and the solution was again concentrated to afford a solid (1.06 g)
- LC/MS: (ES) m/z 301 (M+H)+.
- 3-Hydroxy-2-nitropyridine (20 g, 0.143 mole) was dissolved in methanol (400 mL) and a solution of 25% sodium methoxide in methanol (33 mL, 0.13 mole) was added at room temperature. The mixture was stirred for 30 min, then was cooled to 0° C., and bromine (7.2 mL, 0.14 mole) was added slowly. The reaction was then stirred at 0° C. for min, then was quenched with glacial AcOH (2.5 mL). The solvent was removed in vacuo to afford material (30 g, 96%), which was used without further purification.
- MS (ES) m/z 219.0 (M+H)+.
- The hydroxypyridine (f) (30 g, 0.14 mole) was suspended in acetone (200 mL), and potassium carbonate (39 g, 0.28 mole) was added, followed by ethyl bromoacetate (15.7 mL, 0.14 mmole). The reaction was heated at reflux for 10 hr, then was cooled to room temperature and diluted with Et2O. The precipitate was removed by suction filtration, and the filtrate was concentrated in vacuo to afford material (38 g, 89%), which was used without further purification.
- MS (ES) m/z 305.0 (M+H)+.
- The nitropyridine (g) (38 g, 0.125 mole) was dissolved in glacial AcOH (150 mL), and iron powder (20 g, 0.36 mole) was added. The mixture was mechanically stirred and heated at 90° C. for 5 hr, then was cooled to room temperature and diluted with EtOAc (300 mL). The mixture was filtered through a pad of silica gel and the filtrate was concentrated in vacuo and the residue recrystallized from MeOH (15 g, 52%).
- MS (ES) m/z 229.0 (M+H)+.
- The bromopyridine (h) (6.0 g, 26.3 mmole) and trans-2-phenylvinylboronic acid (3.9 g, 26.3 mmole) were dissolved in 1,4-dioxane (150 mL) and the solution was degassed with argon. (Ph3P)4 Pd (230 mg, 0.2 mmole) was added, followed by a solution of potassium carbonate (6.9 g, 50 mmole) in H2O (20 mL). The reaction was heated at reflux under argon overnight, then was cooled to room temperature and diluted with EtOAc (200 mL). The solution was washed sequentially with H2O and brine, dried (Na2SO4), and concentrated in vacuo. The solid residue was purified by flash chromatography on silica gel (5-10% EtOAc/CHCl3) to afford a solid (2.5 g, 38%).
- MS (ES) m/z 253.0 (M+H)+.
- The pyridine (i) (1.2 g, 4.8 mmole) was dissolved in CH2Cl2 (200 mL) and the solution was cooled to −78° C. Ozone was bubbled through the solution with stirring until a pale blue color appeared, then the excess ozone was removed by bubbling oxygen through the solution for 15 min. Dimethylsulfide (1.76 mL, 24 mmole) was added to the solution, and the reaction was stirred at −78° C. for 3 hr, then at room temperature overnight. The solvent was removed in vacuo, and the residue was triturated with Et2O (50 mL). The collected solid was washed with additional Et2O and dried to afford a solid (700 mg, 82%).
- MS (ES) m/z 179.0 (M+H)+.
- Amine trifluoroacetate (e) (270 mg, 0.51 mmol) was added to a stirred solution of aldehyde (j) (100 mg, 0.561 mmol) dissolved in DMF (3 mL) and MeOH (2 mL). NaHCO3 (214 mg, 2.55 mmol) was added to the reaction mixture and the solution was allowed to stir at 80° C. for 16 hours. The solution was cooled to 0° C. and sodium borohydride (0.042 g, 1.12 mmol) was added. The reaction was stirred at ambient temperature for 4 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water (2×) and brine, dried (Na2SO4) and concentrated. Purification using flash column chromatography on silica gel (90:10:1 CHCl3/MeOH/NH4OH) provided the title compound (92 mg, 39%) as a light yellow foam.
- 1H NMR (400 MHz, CDCl3) 7.95 (d, 1H); 7.55 (d, 1H); 7.48 (d, 1H); 7.29 (t, 1H); 7.18 (d, 1H); 6.93 (d, 1H); 6.88 (d, 1H); 4.61 (s, 2H); 4.06 (s, 3H); 3.86 (s, 2H); 3.25 (m, 2H); 2.52 (m, 1H); 1.89 (m, 2H); 1.79 (m, 2H); 1.76 (m, 2H); 1.59 (m, 2H); 1.43 (m, 2H).
- LC/MS: (ES) m/z 465 (M+H)+
-
- The title compound was prepared in 57% purified yield according to the method described for (7k) above, substituting the carboxaldehyde with 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazine-6-carboxaldehyde (1j) affording a light yellow foam.
- 1H NMR (400 MHz, CDCl3) 7.95 (d, 1H); 7.55 (d, 1H); 7.48 (d, 1H); 7.29 (t, 1H); 7.18 (d, 1H); 6.93 (d, 1H); 6.88 (d, 1H); 4.61 (s, 2H); 4.06 (s, 3H); 3.86 (s, 2H); 3.25 (m, 2H); 2.52 (m, 1H); 1.89 (m, 2H); 1.79 (m, 2H); 1.76 (m, 2H); 1.59 (m, 2H); 1.43 (m, 2H).
- LC/MS: (ES) m/z 479 (M+H)+
-
- (R)-Cyclohex-3-enecarboxylic acid, 98.2% e.e, (2.30 g, 18.2 mmol) [Schwartz et al, J. Am. Chem. Soc., 100, 5199, (1978)] was reacted with trimethylsilyl bromide (3.01 mL, 22.8 mmol), DMSO (1.62 mL) and N,N-diisopropylethylamine (3.97 mL, 22.8 mmol) [by the method of Iwata et al, Heterocycles., 31, 987 (1990)] to give a white solid, (2.13 g, 57%).
- H (CDCl3) 1.68 (1H, m), 1.86 (1H, d), 1.98-2.02 (1H, m), 2.20 (1H, m), 2.42 (1H, m), 2.50-2.56 (1H, m), 2.73 (1H, br s), 4.15 (1H, dd), 4.91 (1H, d).
- (1R,4S,5R)-4-Bromo-6-oxabicyclo[3.2.1]octan-7-one (a) (2.13 g, 10.4 mmol) was taken up in THF (20 mL) and treated with 0.88 ammonia (5.3 mL) at 20° C. for 24 hours with stirring. The solvent was then removed in vacuo to give a white solid (2.31 g).
- H (CD3OD) 1.63 (1H, dd), 1.73-1.80 (1H, m), 1.85-2.03 (3H, m), 2.16-2.21 (1H, m), 2.36 (1H, tt), 3.54 (1H, dt), 4.55 (1H, bs)
- (1R,3R,4S)-4-Bromo-3-hydroxy-cyclohexanecarboxylic amide (b) (2.31 g, 10.4 mmol) was treated with sodium azide (1.35 g, 20.8 mmol) in DMF (100 mL) at 60° C. for 15.5 hours. The solvent was removed in vacuo and the residue purified by flash column chromatography (Silica gel, DCM:MeOH 0-10%) to give a white solid (1.09 g, 5.93 mmol, 57%).
- H (CD3OD) 1.30 (1H, dq), 1.42-1.56 (2H, m), 1.83 (1H, dt), 1.99-2.08 (2H, m), 2.30 (1H, tt), 3.16 (1H, m), 3.41 (1H, m)
- To (1R,3R,4R)-4-azido-3-hydroxy-cyclohexanecarboxylic acid amide (c) (765 mg, 4.15 mmol) in MeOH/AcOH (9:1, 30 mL) was added Pd/C (10%, 300 mg), and the mixture stirred under hydrogen at atmospheric pressure for 22 hours. The mixture was filtered through Celite®, the residue washed with MeOH, and the combined organic extracts concentrated in vacuo to give a white solid (905 mg, 100%).
- H (CD3OD) 1.42-1.59 (3H, m), 1.87-1.92 (1H, m), 1.92 (3H, s), 2.07-2.14 (2H, m), 2.37 (1H, m), 2.84 (1H, dt), 3.50 (1H, dt).
- (1R,3R,4R)-4-Amino-3-hydroxy-cyclohexanecarboxylic acid amide, acetate salt (d) (905 mg, 4.15 mmol) was treated with N,N-diisopropylethylamine (868 μL, 4.98 mmol) and di-tert-butyl-dicarbonate (1.08 g, 4.98 mmol) in dioxane (30 mL) and MeOH (50 mL) for 16 hours. The solvent was then removed in vacuo and the residue purified by flash column chromatography (silica gel, DCM:MeOH 0-10%) to give a white solid (804 mg, 3.11 mmol, 75%).
- H (CD3OD) 1.18-1.32 (1H, m), 1.44 (9H, s), 1.43-1.55 (2H, m), 1.81 (1H, d), 1.98 (1H, bd), 2.09 (1H, d), 2.29 (1H, m), 3.22 (1H, dt), 3.33 (1H, dt).
- To (1R,3R,4R)-3-hydroxy-4-tert-butoxycarbonylamino-cyclohexanecarboxylic acid amide (e) (2.78 g, 10.8 mmol), para-nitrobenzoic acid (2.16 g, 12.9 mmol) and triphenylphosphine (3.38 g, 12.9 mmol) in dry THF (200 mL) and DMF (25 mL) under argon was added dropwise diisopropyl azodicarboxylate (2.5 mL, 12.9 mmol) at 0° C. After 5 min at 0° C. and 17 hours at room temperature, the mixture was concentrated in vacuo and the residue purified by flash column chromatography (silica gel, DCM/MeOH, 0-4%) to give a white solid (2.36 g, 5.8 mmol, 54%).
- H (CD3OD/CDCl3) 1.41 (9H, s), 1.62-1.74 (1H, m), 1.80-1.92 (3H, m), 1.98-2.03 (1H, m), 2.18-2.22 (1H, m), 2.58-2.66 (1H, m), 3.64-3.73 (1H, m), 5.55 (1H, br s), 8.31 (2H, d), 8.35 (2H, d)
- m/z (ES+) 430 (MNa+).
- 4-Nitrobenzoic acid (1S,2R,5R)-2-tert-butoxycarbonylamino-5-carbamoyl-cyclohexyl ester (f) (3.62 g, 8.9 mmol) in dry MeOH (250 mL) was treated with potassium carbonate (1.84 g, 13.3 mmol). After 2 hours at room temperature, the mixture was concentrated and the residue purified by flash column chromatography (silica gel, DCM/MeOH, 5-15%) to give a white solid (1.62 g, 6.3 mmol, 71%).
- H (CD3OD) 1.44 (9H, s), 1.45-1.55 (1H, m), 1.62-1.72 (3H, m), 1.82-1.88 (1H, m), 1.89-1.94 (1H, m), 2.53-2.62 (1H, m), 3.37-3.43 (1H, m), 3.97-3.99 (1H, m) m/z (ES+) 281 (MNa+).
- A solution of 8-hydroxy-quinoline-2-carbonitrile (5 g, 29.4 mmol) in dichloromethane (50 mL) was treated with triethylamine (4.5 mL) then N-phenyltrifluoromethanesulfonimide (11.5 g, 32.3 mmol). After 18 h the mixture was washed with water, saturated aqueous sodium chloride solution, dried and evaporated. Chromatography on silica eluting with an ethyl acetate/petrol gradient afforded a white solid (8.0 g, 90%).
- MS (+ve ion electrospray) m/z 303 (MH+).
- This was prepared from amide (g) (1.7 g) and triflate (h) (2.0 g) by the method of Example (1l). Chromatography on silica eluting with 0-5% methanol in dichloromethane afforded a white solid (2.4 g, 89%).
- MS (+ve ion electrospray) m/z 411 (MH+).
- A solution of carbamate (i) (2.4 g, 6 mmol) in dichloromethane (50 mL) was treated with trifluoroacetic acid (10 mL). After 18 hours the mixture was evaporated and partitioned between saturated aqueous sodium bicarbonate solution and 20% methanol/dichloromethane. The aqueous phase was twice more extracted and the combined extracts dried and evaporated giving a solid. This was triturated with ether/ethyl acetate (1/1) and filtered, washing with ether, to afford a light brown solid (1.25 g, 61%).
- MS (+ve ion electrospray) m/z 311 (MH+).
- Amine (j) (0.59 g, 1.9 mmol) and aldehyde (7j) (0.36 g, 2 mmol) were reacted together with sodium cyanoborohydride (0.16 g, 2.5 mmol) according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (0.48 g, 54%).
- 1H NMR δ(CDCl3) 9.95 (1H, bs), 8.85 (1H, d), 8.28 (1H, d), 7.75 (1H, d), 7.65 (1H, d), 7.52 (1H, d), 7.25 (1H, d), 6.92 (1H, d), 4.65 (2H, s), 4.30 (1H, bs), 4.00 (2H, m), 3.05 (1H, m), 2.90 (1H, m), 2.35 (1H, m), 2.10 (1H, m), 1.90-1.80 (3H, m), 1.70 (1H, m)
- MS (+ve ion electrospray) m/z 473 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.38 g).
-
- This was prepared from amide (1f) and triflate (9h) according to the procedure for Example (1l) affording a solid.
- MS (+ve ion electrospray) m/z 411 (MH+).
- This was prepared from carbamate (a) by the procedure of Example (1m).
- MS (+ve ion electrospray) m/z 311 (MH+).
- Amine (b) (0.1 g, 0.32 mmol) and aldehyde (1j) (0.06 g, 0.32 mmol) were reacted together with sodium cyanoborohydride (0.1 g) according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (0.09 g, 56%).
- 1H NMR δ(CDCl3) 11.00 (1H, bs), 8.90 (1H, d), 8.28 (1H, d), 7.72 (1H, d), 7.66 (1H, t), 7.55 (2H, m), 6.95 (1H, d), 3.93 (2H, s), 3.50 (2H, s), 2.70 (1H, m), 2.30-1.90 (6H, m), 1.70 (2H, m)
- MS (+ve ion electrospray) m/z 489 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.09 g).
-
- This was prepared from amine (10b) (0.62 g) and aldehyde (7j) (0.36 g) according to the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (0.28 g, 30%).
- 1H NMR δ(CDCl3) 11.00 (1H, bs), 8.85 (1H, d), 8.25 (1H, d), 7.70 (1H, d), 7.60 (1H, t), 7.50 (1H, d), 7.20 (1H, d), 6.95 (1H, d), 4.65 (2H, s), 3.95 (2H, s), 2.75 (1H, m), 2.20-1.90 (6H, m), 1.80 (2H, m)
- MS (+ve ion electrospray) m/z 473 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.23 g).
-
- This was prepared from (S)-cyclohex-3-enecarboxylic acid [Schwartz et al, J. Am. Chem. Soc., 100, 5199, (1978)] by the analogous chemistry used to prepare amine (9j).
- MS (+ve ion electrospray) m/z 311 (MH+).
- This was prepared from amine (a) (310 mg) and aldehyde (1j) (194 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (247 mg).
- 1H NMR δ(CD3OD) 8.70 (1H, d), 8.47 (1H, d), 7.85 (1H, d), 7.75-7.65 (3H, m), 7.05 (1H, d), 4.30 (1H, bs), 4.15 (1H, d), 4.05 (1H, d), 3.52 (2H, s), 3.10 (1H, m), 2.97 (1H, m), 2.25 (1H, m), 2.15 (1H, m), 2.00-1.80 (3H, m), 1.70 (1H, m)
- MS (+ve ion electrospray) m/z 489 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.25 g).
-
- This was prepared from amine (12a) (310 mg) and aldehyde (7j) (180 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (241 mg).
- 1H NMR δ(CD3OD) 8.75 (1H, d), 8.52 (1H, d), 7.92 (1H, d), 7.72 (2H, m), 7.30 (1H, m), 7.05 (1H, d), 4.65 (2H, s), 4.30 (1H, m), 4.00 (1H, d), 3.95 (1H, d), 3.15 (1H, m), 2.95 (1H, m), 2.00-1.80 (3H, m), 1.70 (2H, m)
- MS (+ve ion electrospray) m/z 473 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.17 g).
-
- This was prepared from amide (9e) (1.7 g) and triflate (9h) (2.0 g) by the method of Example (1l). Chromatography on silica eluting with 2-5% methanol in dichloromethane afforded a white solid (2.0 g, 74%).
- MS (+ve ion electrospray) m/z 411 (MH+).
- A solution of carbamate (a) (2.0 g, 6 mmol) in dichloromethane (50 mL) was treated with trifluoroacetic acid (10 mL). After 18 hours the mixture was evaporated and partitioned between saturated aqueous sodium bicarbonate solution and 20% methanol/dichloromethane. The aqueous phase was twice more extracted and the combined extracts dried and evaporated giving a brown solid. This was chromatographed on silica eluting with 0-30% methanol in dichloromethane affording a white solid (1.3 g, 84%).
- MS (+ve ion electrospray) m/z 311 (MH+).
- (c) Title compound
- This was prepared from amine (b) (630 mg) and aldehyde (1j) (388 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (636 mg, 65%).
- 1H NMR δ(CDCl3) 9.52 (1H, bs), 8.85 (1H, d), 8.28 (1H, d), 7.70 (1H, d), 7.65-7.55 (2H, m), 7.50 (1H, d), 6.95 (1H, d), 4.25 (1H, d), 4.00 (1H, d), 3.85 (1H, m), 3.40 (1H, q), 2.85 (1H, m), 2.70 (1H, m), 2.40 (1H, m), 2.28 (1H, m), 2.15 (1H, m), 1.85-1.50 (3H, m)
- MS (+ve ion electrospray) m/z 489 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.51 g).
-
- This was prepared from amine (14b) (630 mg) and aldehyde (7j) (360 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (575 mg, 61%).
- 1H NMR δ(CDCl3) 9.55 (1H, bs), 8.85 (1H, d), 8.28 (1H, d), 7.72 (1H, d), 7.65 (1H, t), 7.52 (1H, d), 7.20 (1H, d), 6.90 (1H, d), 4.60 (2H, s), 4.18 (1H, d), 3.95 (1H, d), 3.75 (1H, m), 2.75 (2H, m), 2.40 (1H, m), 2.27 (1H, m), 2.15 (1H, m), 1.85-1.65 (2H, m), 1.55 (1H, m).
- MS (+ve ion electrospray) m/z 473 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.43 g).
-
- This was prepared from amine (9j) (590 mg) and aldehyde (1j) (388 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (488 mg, 52%).
- 1H NMR δ(CDCl3) 9.60 (1H, bs), 8.90 (1H, d), 8.30 (1H, d), 7.75 (1H, d), 7.68 (1H, t), 7.58 (1H, d), 7.52 (1H, d), 6.92 (1H, d), 4.15 (1H, m), 3.95 (1H, d), 3.85 (1H, d), 3.50 (2H, s), 3.00 (1H, m), 2.75 (1H, m), 2.35 (1H, m), 2.10 (2H, m), 1.90-1.70 (3H, m).
- MS (+ve ion electrospray) m/z 489 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.40 g).
-
- This was prepared from amine dihydrochloride (5e) (140 mg) and aldehyde (7j) (80 mg) by the reductive alkylation procedure of Example (5f) affording, after workup and chromatography, the title compound as a white solid (92 mg).
- 1H NMR δ (CD3OD) 8.60 (1H, d), 8.10 (1H, d), 7.50 (1H, d), 7.35 (1H, t), 7.20 (1H, d), 6.90 (2H, m), 4.65 (2H, s), 4.10 (3H, s), 3.95 (2H, s), 2.75 (1H, m), 2.20-1.90 (6H, m), 1.80 (2H, m)
- LC/MS: (ES) m/z 478 (M+H)+.
-
- This was prepared from 2-methyl-quinolin-8-ol (7.1 g) by the procedure of Example (9h) affording a clear oil (13.4 g, 100%).
- MS (+ve ion electrospray) m/z 292 (MH+).
- This was prepared from triflate (a) (1.0 g) and amide (1f) (0.9 g) according to the procedure for Example (1l) with the difference that 9,9-dimethyl-4,5bis(diphenylphosphino)xanthene (XANTPHOS) was used in place of BINAP, affording, after workup and chromatography, a white solid (1.1 g, 79%).
- MS (+ve ion electrospray) m/z 400 (MH+).
- This was prepared from carbamate (b) (1.1 g) by the same procedure as for Example (1m) affording a pale yellow solid (0.74 g, 91%).
- MS (+ve ion electrospray) m/z 300 (MH+).
- This was prepared from amine (c) (100 mg) and aldehyde (7j) (54 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (34 mg, 25%).
- 1H NMR δ(CDCl3) 11.20 (1H, bs), 8.72 (1H, d), 7.95 (1H, d), 7.30 (2H, m), 7.25-7.15 (2H, m), 6.95 (1H, d), 4.65 (2H, s), 3.95 (2H, s), 2.75 (1H, m), 2.65 (3H, s), 2.20-1.85 (8H, m).
- MS (+ve ion electrospray) m/z 462 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (44 mg).
-
- This was prepared from amine (18c) (100 mg) and aldehyde (1j) (64 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (88 mg, 56%).
- 1H NMR δ(CDCl3) 11.20 (1H, bs), 8.75 (1H, d), 8.00 (1H, d), 7.58 (1H, d), 7.40 (2H, m), 7.30 (1H, m), 6.98 (1H, d), 3.95 (2H, s), 3.50 (2H, s), 2.75 (1H, m), 2.70 (3H, s), 2.20-1.85 (8H, m).
- MS (+ve ion electrospray) m/z 478 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (96 mg).
-
- This was prepared from triflate (5c) (700 mg) and amide (9e) (620 mg) according to the procedure of Example (5d) affording the product as a solid (550 mg, 58%).
- MS (+ve ion electrospray) m/z 416 (MH+).
- This was prepared from carbamate (a) (550 mg) according to the procedure of Example (9j) affording a white solid (253 mg).
- MS (+ve ion electrospray) m/z 316 (MH+).
- This was prepared from amine (b) (76 mg) and aldehyde (1j) (47 mg) by the reductive alkylation procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (50 mg).
- 1H NMR δ(CDCl3) 9.55 (1H, bs), 8.68 (1H, d), 8.00 (1H, d), 7.55 (1H, d), 7.45-7.35 (2H, m), 6.92 (2H, m), 4.10 (3H, s), 4.05 (1H, d), 3.85 (1H, d), 3.50 (1H, m), 3.40 (2H, s), 2.50-2.35 (3H, m), 2.20 (2H, m), 1.80-1.55 (2H, m), 1.30 (1H, m)
- MS (+ve ion electrospray) m/z 494 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a pale yellow solid (57 mg).
-
- A solution of 6-chloro-5-nitro-nicotinic acid methyl ester (1.0 g) [prepared as described by A. H. Berrie et al. J. Chem. Soc. 2590-2594 (1951)] in dichloromethane (10 mL) containing triethylamine (0.76 mL) was treated with mercapto-acetic acid methyl ester (0.44 mL) and the solution was stirred at room temperature for 1 hour and evaporated to dryness. Sodium bicarbonate solution was added and the mixture was extracted with dichloromethane, dried (anhydrous sodium sulfate) and evaporated to afford a solid (1.0 g).
- MS (+ve ion electrospray) m/z 287 (MH+).
- The ester (a) (1.0 g) in acetic acid (50 mL) was treated with iron powder (10 g) and the mixture was stirred and heated at 60° C. for 1 hour, cooled and filtered. The filtrate was evaporated, treated with sodium bicarbonate solution and extracted with warm chloroform. It was dried (anhydrous sodium sulfate) and evaporated to give a white solid (0.85 g).
- MS (+ve ion electrospray) m/z 225 (MH+).
- The ester (b) (2.8 g) was hydrolysed with aqueous sodium hydroxide then acidified with 2M HCl and filtered to afford a solid (2.5 g) by the method of Example (1h).
- MS (−ve ion electrospray) m/z 209 (M−H−).
- The carboxylic acid (c) (2.48 g) was reacted with isobutylchloroformate and sodium borohydride by the method of Example (1i) to afford a solid (1.3 g), after recrystallisation from chloroform-methanol (9:1).
- MS (+ve ion electrospray) m/z 197 (MH+).
- The alcohol (d) (1.22 g) was oxidised with manganese dioxide by the method of Example (1j) to afford a solid (0.7 g).
- MS (−ve ion electrospray) m/z 193 (M−H−).
- This was prepared from amine trifluoroacetate (7e) (0.68 g) and aldehyde (e) (0.25 g) by the reductive alkylation procedure of Example (7k) affording, after workup and chromatography, the title compound as a white solid (0.31 g).
- MS (+ve ion electrospray) m/z 479 (MH+).
- 1H NMR δ (CDCl3) 8.10 (1H, s), 7.95 (1H, d), 7.53 (1H, d), 7.45 (1H, m), 7.35 (1H, t), 7.20 (1H, s), 6.90 (1H, d), 4.15 (3H, s), 3.85 (2H, s), 3.55 (2H, s), 3.25 (m, 2H); 2.52 (m, 1H); 1.80 (m, 2H), 1.70-1.40 (m, 8H).
-
- 5-Hydroxy-2-methylpyridine (25 g) was suspended in chloroform (500 ml) and treated with m-chloroperbenzoic acid (57 g of material described by the manufacturer as 57-86% pure). After stirring for 1 hour the solution was dried with MgSO4 and poured onto a silica column. Elution with EtOAc to remove byproducts and then with 20-50% EtOH in EtOAc gave a solid (27.7 g).
- MS (APCI+) m/z 126 (MH+).
- A solution of the pyridine N-oxide (a) (21.12 g) in DMF (450 ml) was treated with potassium carbonate (26.2 g) then, after 30 minutes, with methyl bromoacetate (16 ml), and stirred overnight. Solvent was evaporated, saturated brine (500 ml) added and the mixture extracted with chloroform (6×200 ml). The combined organic solution was dried and evaporated and the residue chromatographed (20% EtOH in EtOAc) to give a solid (18.5 g).
- MS (APCI+) m/z 198 (MH+).
- The pyridine N-oxide (b) (18.5 g) was dissolved in a cold mixture of fuming nitric acid (90 ml) and concentrated sulfuric acid (90 ml) and heated to 40° C. for 1 hour, then 65° C. overnight. The mixture was cooled, poured onto ice and EtOAc (250 ml) added. When the ice had melted, the mixture was shaken and solid filtered off. The EtOAc was dried and evaporated, the residue triturated with ether and filtered affording a solid (8.4 g).
- MS (+ve ion electrospray) m/z 229 (MH+).
- The carboxylic acid (c) (8.4 g) in DMF (100 ml) was treated with potassium carbonate (7.6 g) and iodomethane (2.8 ml) and stirred for 3 days. After evaporation of solvent, water (200 ml) was added and the solid filtered off and dried under vacuum to give the product (5.32 g).
- MS (+ve ion electrospray) m/z 243 (MH+).
- The pyridine N-oxide (d) (3.8 g) in trifluoroacetic anhydride (120 ml) was refluxed under argon for 24 hours, the solvent evaporated and the residue partitioned between chloroform and aqueous NaHCO3 (50 ml each). The aqueous fraction was re-extracted with chloroform (3×50 ml) and the combined organic solution dried and evaporated to give the product (1.8 g).
- MS (+ve ion electrospray) m/z 339 (MH+)
- When material (e) was chromatographed on silica gel, partial loss of trifluoroacetyl group occurred to give the product mixture.
- The mixture of nitropyridines (f) (7.37 mmole) in acetic acid (55 ml) was treated with iron powder (4.2 g) and stirred at 60° C. for 1 hour, cooled and filtered through kieselguhr. The filtrate was heated to 110° C. overnight, evaporated to dryness and partitioned between chloroform and aqueous NaHCO3 (100 ml each). After filtration to remove iron salts and separation of the layers, the aqueous fraction was re-extracted with chloroform (10×50 ml) and the combined organic solution dried and evaporated to give product (1.17 g).
- MS (−ve ion electrospray) m/z 221 ([M−H]−).
- A solution of acetate (g) (1.17 g) in dioxan (75 ml)/water (15 ml) was treated dropwise with 2M NaOH solution (3 ml) and left overnight. The mixture was acidified to pH6 with dilute HCl and the solvent evaporated. Water (5 ml) was added and the solid filtered off and dried under vacuum to give product (877 mg).
- MS (−ve ion electrospray) m/z 179 ([M−H]−).
- A mixture of the hydroxymethyloxazinone (h) (584 mg), manganese dioxide (2.3 g), THF (50 ml) and 1,2-dichloroethane (50 ml) was heated at 60° C. under argon for 20 hours. Filtration through kieselguhr and evaporation of solvent gave a solid which was triturated under EtOAc/hexane 1:3, filtered off and dried (383 mg).
- MS (−ve ion electrospray) m/z 177 ([M−H]−).
- This was prepared from amine (18c) (100 mg) and aldehyde (i) (54 mg) by the method of Example (1n) affording, after workup and chromatography the free base of the title compound as a white solid (62 mg, 45%). This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (60 mg).
- MS (+ve ion electrospray) m/z 462 (MH+).
- 1H NMR (dihydrochloride salt) δ (d6-DMSO) 11.35 (1H, bs), 11.25 (1H, bs), 9.05 (2H, bs), 8.70 (1H, d), 8.30 (1H, d), 8.22 (1H, s), 7.62 (1H, d), 7.50 (2H, m), 6.98 (1H, s), 6.20 (1H, bs), 4.75 (2H, s), 4.25 (2H, s), 3.20 (1H, m), 2.75 (3H, s), 2.05-1.80 (8H, m).
-
- A mixture of 6-amino-5-bromo-pyridine-2-carboxylic acid methyl ester (19.8 g) (T. R. Kelly and F. Lang, J. Org. Chem. 61, 1996, 4623-4633) and 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor™), (34.3 g) in acetonitrile (340 ml) under argon was heated to 40° C. for 1 hour, 60° C. for 1 hour and then 80° C. overnight. After partitioning between EtOAc and water (500 ml each) the aqueous fraction was re-extracted with EtOAc (300 ml) and the combined organic solution dried with MgSO4 and evaporated. Chromatography (20% then 30% EtOAc in hexane) afforded the product (2.09 g).
- MS (+ve ion electrospray) m/z 249 and 251 (MH+).
- A solution of ethyl mercaptoacetate (1.15 ml) in DMF (40 ml) was ice-cooled under argon, treated with sodium hydride (420 mg of a 60% dispersion in oil) and stirred until all was in solution (about 1 hour). The ester (a) (2.48 g) was added, the mixture allowed to warm to room temp. and stirred overnight. EtOAc (150 ml) was added, the solution washed with water (3×150 ml), dried and evaporated. Chromatography of the residue (40% EtOAc in hexane) gave an oil (1.7 g).
- MS (+ve ion electrospray) m/z 289 (MH+)
- A solution of the fluoropyridine (b) (1.7 g) in acetic acid (100 ml) was heated at 110° C. overnight, evaporated and dried under vacuum to give the product as a white solid (1.5 g).
- MS (+ve ion electrospray) m/z 243 (MH+).
- This compound was prepared from the ester (c) by the method of Example (1h) (86%).
- This compound was prepared from carboxylic acid (d) by the method of Example (1i) (73%).
- MS (−ve ion electrospray) m/z 213 ([M−H]−)
- A mixture of the alcohol (e) (971 mg), manganese dioxide (3.72 g), THF (70 ml) and 1,2-dichloroethane (70 ml) was heated at 60° C. under argon for 20 hours. Filtration through kieselguhr and evaporation of solvent gave a solid which was triturated with EtOAc/hexane 1:3 and collected by filtration (608 mg).
- MS (+ve ion electrospray) m/z 213 (MH+)
- This was prepared from amine dihydrochloride (5e) (100 mg) and aldehyde (f) (60 mg) by the method of Example (5f) affording, after workup and chromatography, the free base of the title compound as a white solid (70 mg).
- 1H NMR 6 (CD3OD) 8.65 (1H, d), 8.05 (1H, d), 7.55-7.45 (2H, m), 7.35 (1H, t), 6.95 (1H, d), 4.15 (3H, s), 3.95 (2H, s), 3.50 (2H, s), 2.60 (1H, m), 2.10 (2H, m), 2.00-1.80 (4H, m), 1.65 (2H, m).
- MS (+ve ion electrospray) m/z 512 (MH+).
- This material was converted into the dihydrochloride by the method of Example (1) affording a white solid (78 mg).
-
- To a solution methyl 6-amino-5-bromopyridine-2-carboxylate (20.04 g) in acetic acid (900 ml) was added N-chlorosuccinimide (14 g) and the resultant solution was heated to 120° C. for 1 hour. The solution was then evaporated and treated with excess aqueous sodium bicarbonate and extracted with dichloromethane. The organic fraction was dried and evaporated to give the product (21.98 g).
- MS (+ve ion electrospray) m/z 265 and 267 (MH+)
- This was prepared (51%) from the ester (a) (23.8 g) by the method of Example (1g) to give a solid (11.8 g).
- MS (+ve ion electrospray) m/z 257 (MH+)
- This compound was prepared (96%) from the ester (b) (11.84 g) by the method of Example (1h) to give a solid (9.6 g).
- MS (APCI−) m/z 243 ([M−H]−)
- This compound was prepared (70%) from the carboxylic acid (c) by the method of Example (1i).
- MS (+ve ion electrospray) m/z 231 (MH+)
- This compound was prepared (49%) from the alcohol (d) by the method of Example (1j) to give a solid (2.01 g).
- MS (+ve ion electrospray) m/z 229 (MH+)
- This was prepared from amine dihydrochloride (5e) (100 mg) and aldehyde (e) (58 mg) by the method of Example (5f) affording, after workup and chromatography the free base of the title compound as a white solid (55 mg).
- 1H NMR δ (CD3OD) 8.65 (1H, d), 8.05 (1H, d), 7.70 (1H, s), 7.50 (1H, d), 7.28 (1H, t), 6.95 (1H, d), 4.18 (3H, s), 4.00 (2H, s), 3.50 (2H, s), 2.62 (1H, m), 2.10 (2H, m), 2.00-1.80 (4H, m), 1.65 (2H, m).
- MS (+ve ion electrospray) m/z 528 (MH+).
- This material was converted into the dihydrochloride by the method of Example (1) affording a white solid (57 mg).
-
- A solution of 3-methyl-quinoxalin-5-ol (prepared as described by Y. Abe et al, J. Med. Chem., 1998, 41 (21), 4062) (630 mg, 3.9 mmol) in dichloromethane (5 ml) was treated with triethylamine (0.6 ml) then N-phenyltrifluoromethanesulfonimide (2.12 g) was added. The mixture was stirred overnight, washed with saturated aqueous sodium carbonate, dried and evaporated. The residue was chromatographed eluting with 40% ethyl acetate in petrol affording a pale yellow solid (1.04 g, 90%).
- MS (+ve ion electrospray) m/z 293 (MH+).
- This was prepared from amide (1f) (450 mg) and triflate (a) (500 mg) by the method of Example (1l). Chromatography on silica eluting with 2-5% methanol in dichloromethane afforded a white solid (320 mg, 47%).
- MS (+ve ion electrospray) m/z 401 (MH+).
- This was prepared from carbamate (b) (320 mg) by the procedure of Example (9j) affording a white solid (210 mg, 88%).
- MS (+ve ion electrospray) m/z 301 (MH+).
- This was prepared from amine (c) (100 mg) and aldehyde (1j) (64 mg) by the method of Example (1n) affording, after workup and chromatography the free base of the title compound as a white solid (64 mg, 41%).
- 1H NMR δ (CDCl3) 8.80-8.75 (2H, m), 7.80-7.70 (2H, m), 7.65 (1H, d), 6.95 (1H, d), 3.88 (2H, s), 3.50 (2H, s), 2.79 (3H, s), 2.65 (1H, m), 2.10 (2H, m), 2.00-1.80 (4H, m), 1.65 (2H, m).
- MS (+ve ion electrospray) m/z 479 (MH+).
- This material was converted into the dihydrochloride by the method of Example (1) affording a white solid (75 mg).
-
- A solution of 8-bromo-isoquinoline (prepared by the method of F. T. Tyson, J.A.C.S., 1939, 61, 183) (1.25 g, 6 mmol) in acetic acid (5 ml) was treated with 27% aqueous hydrogen peroxide solution (1.8 ml) and heated at 75° C. overnight. The mixture was evaporated and the residue partitioned between aqueous sodium carbonate solution and dichloromethane, re-extracting with dichloromethane twice more. The combined organic extracts were dried and evaporated. The residue was triturated with ether/petrol and isolated by filtration (1.14 g, 85%).
- MS (+ve ion electrospray) m/z 225 (MH+)
- A suspension of (a) (630 mg, 2.8 mmol) in DMF (10 ml) was treated with trifluoroacetic acid anhydride (4 ml). The clear solution was stirred at room temperature overnight then evaporated. The residue was treated with dilute aqueous sodium carbonate solution and extracted several times with 5% methanol/dichloromethane. The combined organic extracts were washed with brine, dried and evaporated. The crude product was chromatographed on silica eluting with 0-10% methanol in dichloromethane affording a white solid (180 mg, 29%).
- MS (+ve ion electrospray) m/z 225 (MH+)
- A solution of (b) (180 mg, 0.8 mmol) in DMF (5 ml) was treated with potassium carbonate (140 mg) and methyl iodide (0.062 ml) and stirred for 3 days then evaporated. The residue was partitioned between dilute aqueous sodium chloride solution and dichloromethane, re-extracting with dichloromethane twice more. The combined organic extracts were dried and evaporated affording a yellow solid (180 mg, 94%).
- MS (+ve ion electrospray) m/z 239 (MH+)
- This was prepared from amide (1f) (200 mg) and bromide (c) (180 mg) according to the procedure for Example (1l) affording a brown gum (290 mg, 92%).
- MS (+ve ion electrospray) m/z 416 (MH+).
- This was prepared from carbamate (d) (280 mg) by the procedure of Example (1m) affording a brown gum (210 mg, 100%).
- MS (+ve ion electrospray) m/z 316 (MH+).
- Amine (e) (110 mg) and aldehyde (1j) (68 mg) were reacted together with sodium cyanoborohydride (30 mg) according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (85 mg, 49%).
- 1H NMR δ(CDCl3) 13.65 (1H, bs), 8.80 (1H, d), 7.65-7.55 (2H, m), 7.20 (1H, d), 7.05-6.95 (2H, m), 6.48 (1H, d), 3.90 (2H, s), 3.55 (3H, s), 3.45 (2H, s), 2.70 (1H, m), 2.20-1.60 (8H, m)
- MS (+ve ion electrospray) m/z 494 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (82 mg).
-
- A solution of N-oxide (26a) (500 mg, 2.2 mmol) in methanol (15 ml) was treated at 0° C. with methyl chloroformate (0.22 ml, 2.9 mmol) and triethylamine (0.64 ml, 4.5 mmol). The mixture was stirred overnight then evaporated. The residue was partitioned between dilute aqueous sodium chloride solution and dichloromethane, re-extracting with dichloromethane. The combined organic extracts were dried and evaporated affording an oil which was chromatographed on silica eluting with dichloromethane affording an oil (280 mg, 53%).
- MS (+ve ion electrospray) m/z 239 (MH+)
- This was prepared from amide (1f) (300 mg) and bromide (a) (270 mg) according to the procedure for Example (1l) affording an off-white solid (160 mg, 34%).
- MS (+ve ion electrospray) m/z 416 (MH+).
- This was prepared from carbamate (c) (160 mg) by the procedure of Example (1m) affording a brown gum (130 mg, 100%).
- MS (+ve ion electrospray) m/z 316 (MH+).
- Amine (c) (130 mg) and aldehyde (1j) (86 mg) were reacted together with sodium cyanoborohydride (30 mg) according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (58 mg, 29%).
- 1H NMR δ(CDCl3) 11.90 (1H, bs), 8.82 (1H, d), 7.95 (1H, d), 7.20 (1H, d), 7.60-7.50 (2H, m), 7.45 (1H, d), 7.20 (1H, d), 6.95 (1H, d), 4.20 (3H, s), 3.95 (2H, s), 3.50 (2H, s), 2.70 (1H, m), 2.20-1.60 (8H, m)
- MS (+ve ion electrospray) m/z 494 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (64 mg).
-
- A solution of 2-bromo-5-methoxy-phenylamine (16.1 g, 80 mmol), 2,2-dimethyl-[1,3]dioxane-4,6-dione (Meldrum's acid) (13.7 g, 95 mmol) and triethyl orthoformate (14.1 g, 95 mmol) in ethanol (82 ml) was heated to reflux for 2 hours then allowed to cool to room temperature. Filtration and drying in vacuo afforded a white solid (25.7 g, 91%)
- MS (APCI−) m/z 354 (M−H)
- Dowtherm A (30 ml) was heated to reflux and enamine (a) (10 g) was added portionwise (CAUTION—vigorous evolution of CO2 and acetone) over 2 minutes. Heating was continued for a further 2 minutes then the mixture was allowed to cool to room temperature. Filtration and drying in vacuo afforded a brown solid (5.4 g, 76%).
- MS (APCI−) m/z 253 (M−H)
- Quinolone (b) (5.4 g, 21 mmol) was dissolved in a mixture of dioxin (300 ml) and 2M aqueous sodium hydroxide solution (21 ml, 42 mmol) then hydrogenated over 10% palladium on charcoal (2.3 g) for 18 hours. The mixture was filtered, neutralised (5M hydrochloric acid) and concentrated when crystallisation commenced. Filtration, washing with water and drying in vacuo afforded a solid (2.5 g, 70%).
- MS (APCI−) m/z 174 (M−H)
- A solution of quinolone (c) (3.2 g, 18 mmol) in DMF (22 ml) was treated with phosphorous tribromide (2.2 ml). After 2 hours the mixture was added to water and neutralised with saturated aqueous sodium bicarbonate solution. Filtration and drying afforded a yellow solid (3.6 g, 85%).
- MS (+ve ion electrospray) m/z 239 (MH+)
- This was prepared from amide (1f) (516 mg) and bromide (d) (478 mg) according to the procedure for Example (1l) affording an off-white solid (150 mg, 18%).
- MS (+ve ion electrospray) m/z 416 (MH+)
- This was prepared from carbamate (e) (470 mg) by the procedure of Example (9j) affording a white solid (302 mg, 85%).
- MS (+ve ion electrospray) m/z 316 (MH+)
- Amine (f) (302 mg) and aldehyde (1j) (186 mg) were reacted together with sodium cyanoborohydride (122 mg) according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (41 mg, 9%).
- 1H NMR δ(CD3OD) 8.80 (2H, m), 8.80-8.60 (3H, m), 7.15 (1H, d), 7.05 (1H, d), 4.15 (3H, s), 4.05 (2H, s), 3.50 (2H, s), 2.80 (1H, m), 2.10-1.60 (8H, m)
- MS (+ve ion electrospray) m/z 494 (MH+)
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (26 mg).
-
- A mixture of 2,2-dimethyl-[1,3]dioxane-4,6-dione (Meldrum's acid) (8.4 g, 59 mmol) and trimethyl orthoformate (50 mL) was heated to reflux for 2 hours. 4-Aminopyridine (5 g, 53 mmol) was added and the mixture heated for a further 0.25 hour. The resulting solid was washed with a small amount of cold ethanol and dried in vacuo (7.3 g, 55%).
- MS (APCI−) m/z 247 ([M−H]−)
- Dowtherm A (60 mL) was brought to reflux and (a) (6.3 g, 25.4 mmol) was added portionwise over 2 minutes. The mixture was heated for a further 5 minutes then allowed to cool to room temperature. The resulting solid was washed with a small amount of cold ethanol and dried in vacuo (2.6 g, 69%).
- MS (APCI−) m/z 145 ([M−H]−)
- Phosphorous tribromide (0.38 ml, 4 mmol) was added to DMF (10 mL) with vigorous stirring. Naphthyridone (b) (584 mg, 4 mmol) was added. After 0.5 hours the mixture was added to ice/water, neutralised with aqueous sodium bicarbonate solution and extracted with ethyl acetate. Drying and evaporation afforded a solid (240 mg, 29%).
- MS (+ve ion electrospray) m/z 210 (MH+).
- This was prepared from amide (1f) (142 mg) and bromide (c) (105 mg) according to the procedure for Example (11) affording an off-white solid (142 mg, 74%).
- MS (+ve ion electrospray) m/z 387 (MH+)
- This was prepared from carbamate (d) (112 mg) according to the procedure for Example (9j) affording a white solid.
- MS (+ve ion electrospray) m/z 287 (MH+).
- Amine trifluoroacetate (e) (prepared above, ca 0.4 mmol) was reductively alkylated with aldehyde (7j) (71 mg) according to the procedure for Example (7k) affording the title compound as a white solid (70 mg).
- MS (+ve ion electrospray) m/z 449 (MH+).
- 1H NMR δ (d6-DMSO) 9.60 (1H, s), 9.05 (1H, d), 8.80 (1H, d), 8.18 (1H, d), 7.90 (1H, d), 7.40 (1H, d), 7.10 (1H, d), 4.70 (2H, s), 3.85 (2H, s), 2.75 (1H, m), 2.20-1.90 (6H, m), 1.80 (2H, m)
-
- This was prepared from 2-methyl-quinoxalin-5-ol (prepared as described by Y. Abe et al, J. Med. Chem., 1998, 41 (21), 4062) according to the procedure for Example (25a).
- MS (+ve ion electrospray) m/z 293 (MH+).
- This was prepared from triflate (a) and amide (1f) according to the procedure for Example (1l).
- MS (+ve ion electrospray) m/z 401 (MH+).
- This was prepared from carbamate (b) according to the procedure for Example (9j).
- MS (+ve ion electrospray) m/z 301 (MH+).
- This was prepared from amine (c) (100 mg) and aldehyde (1j) (64 mg) by the method of Example (1n) affording, after workup and chromatography the free base of the title compound as a white solid (93 mg, 59%).
- 1H NMR δ (CDCl3) 8.72 (1H, m), 8.60 (1H, s), 7.75-7.70 (2H, m), 7.55 (1H, d), 6.95 (1H, d), 3.90 (2H, s), 3.50 (2H, s), 2.75 (3H, m), 2.68 (1H, m), 2.10 (2H, m), 2.00-1.80 (4H, m), 1.65 (2H, m).
- MS (+ve ion electrospray) m/z 479 (MH+).
- This material was converted into the dihydrochloride by the method of Example (1) affording a white solid (75 mg).
-
- To (S,S)-bis α-methyl benzylamine (9 g, 40 mmol) in THF (200 mL) under argon was added dibutyl magnesium in heptane (20 mL, 1M) and the mixture heated to reflux. After 1.5 hours, the mixture was cooled to −78° C. and trimethylsilyl chloride (10.1 mL) and N,N-dimethylpropyleneurea (1.2 mL) added dropwise. After a further 20 minutes ethyl-4-oxocyclohexane carboxylate (2.87 mL, 18 mmol) was added dropwise. The reaction was stirred at −78° C. for 16 hours, then saturated sodium hydrogen carbonate (100 mL), water (100 mL) and hexane (200 mL) were added. The organic soluble material was purified by chromatography on silica gel eluting with 0-5% diethyl ether in hexane to give an oil (3.5 g, 80%).
- 1H NMR δ(CDCl3) 4.88 (1H, m), 4.20 (2H, q), 2.50 (1H, m), 2.35 (2H, m), 2.10 (2H, m), 2.05 (1H, m), 1.85 (1H, m), 1.30 (3H, t), 0.20 (9H, s)
- Silyl enol ether (a) (3.5 g) in acetonitrile (40 mL) at 0° C. was treated portionwise with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), (Selectfluor™), (6.16 g). After 75 min, saturated sodium hydrogen carbonate (50 mL) and water (50 mL) were added and the mixture extracted with ethyl acetate. The organic soluble material was purified by careful chromatography on silica gel eluting with 5-60% diethyl ether in hexane to give an oil (1.02 g).
- 1H NMR δ(CDCl3) 5.06 (1H, m), 4.20 (2H, q), 3.05 (1H, m), 2.60-2.40 (2H, m), 2.30-2.20 (2H, m), 2.10 (2H, m), 1.30 (3H, t)
- Ketone (b) (1.02 g, 5.4 mmol) in dichloroethane (24 mL) and acetic acid (1 mL) was treated with (R)-α-methyl benzylamine (0.88 mL) and sodium triacetoxyborohydride (2.2 g). After 4.5 hours, the reaction mixture was loaded onto a silica gel column packed in 0.5% (2M ammonia in methanol) in dichloromethane and eluted with 0.5-10% (2M ammonia in methanol) in dichloromethane to give an oil (1.2 g).
- 1H NMR δ(d-6 MeOH) 7.50 (5H, m), 4.95 (1H, m), 4.62 (1H, q), 4.15 (2H, q), 3.20 (1H, m), 2.90 (1H, m), 2.50 (1H, m), 2.10 (1H, m), 1.95 (1H, m), 1.75 (1H, m), 1.70 (3H, d), 1.55 (2H, m), 1.25 (3H, t)
- A solution of ester (c) (1.5 g) in methanol (50 mL) was treated with lithium hydroxide (630 mg). After 2 hours acetic acid (1 mL) was added and the mixture was evaporated to dryness. Chromatography on silica eluting with 1:9:90 (acetic acid:methanol:dichloromethane) afforded an oil (1.02 g).
- 1H NMR δ(d-6 MeOH) 7.50 (5H, m), 5.25 (1H, m), 4.62 (1H, q), 3.20 (1H, m), 2.60 (1H, m), 2.40 (1H, m), 2.30 (3H, s), 2.10 (1H, m), 1.95 (1H, m), 1.75 (1H, m), 1.70 (3H, d), 1.60-1.40 (2H, m)
- A solution of (d) (75 mg) in DMF (2 mL) was treated with ammonium bicarbonate (80 mg), 1-hydroxy-7-azabenzotriazole (57 mg), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (60 mg). After 2.5 hours the reaction mixture was evaporated and the residue partitioned between ethyl acetate/dilute brine. The organic extract was dried and evaporated. The residue was chromatographed eluting with 2-8% methanol/dichloromethane affording a white solid (52 mg).
- 1H NMR δ(CDCl3) 7.30 (3H, m), 7.20 (2H, m), 5.40 (1H, bs), 5.30 (1H, bs), 5.02 (1H, m), 4.00 (1H, q), 2.40-2.20 (4H, m), 1.90 (1H, m), 1.78 (1H, m), 1.55-1.45 (2H, m), 1.30 (3H, d)
- A solution of (e) (280 mg) in ethanol (15 ml) and 20% palladium(II) hydroxide on charcoal (80 mg) was hydrogenated at 50 p.s.i. for 16 hours. Filtration and evaporation afforded a white solid (230 mg).
- 1H NMR δ 4.75 (1H, m), 2.70 (1H, m), 2.55 (1H, m), 2.15 (1H, m), 1.90-1.55 (5H, m)
- A solution of (f) (230 mg) in dichloromethane (10 mL) was treated with di-tert-butyl dicarbonate (324 mg). After 4 hours the mixture was concentrated and treated with ether and hexane. The resultant precipitate was isolated by filtration and dried in vacuo affording a solid (250 mg).
- 1H NMR δ 4.78 (1H, m), 3.50 (1H, m), 2.45 (1H, m), 2.15 (1H, m), 1.95-1.60 (5H, m), 1.45 (9H, s)
- This was prepared from amide (g) (250 mg) and 1,1,1-Trifluoro-methanesulfonic acid 6-methoxy-[1,5]naphthyridin-4-yl ester (WO002096907 Example 1(b)) (478 mg) according to the procedure for Example (1l) affording an off-white solid (390 mg).
- MS (+ve ion electrospray) m/z 419 (MH+)
- This was prepared from carbamate (e) (390 mg) by the procedure of Example (9j) affording a white solid (269 mg).
- MS (+ve ion electrospray) m/z 319 (MH+)
- Amine (i) (100 mg) and aldehyde (7j) (66 mg) were reacted together with sodium cyanoborohydride according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (107 mg).
- 1H NMR δ (d6-DMSO) 9.85 (1H, bs), 8.67 (1H, d), 8.40 (1H, d), 8.26 (1H, d), 7.05 (1H, d), 5.05 (1H, d), 4.60 (2H, s), 4.15 (3H, s), 4.75 (2H, s), 3.05 (1H, m), 2.70 (1H, m), 2.25 (1H, m), 1.90 (3H, m), 1.55 (2H, m)
- MS (+ve ion electrospray) m/z 481 (MH+)
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (110 mg).
-
- Amine (31i) (100 mg) and aldehyde (23f) (66 mg) were reacted together with sodium cyanoborohydride according to the procedure of Example (1n) affording, after workup and chromatography, the free base of the title compound as a white solid (102 mg).
- 1H NMR δ (d6-DMSO) 8.70 (1H, d), 8.42 (1H, d), 8.28 (1H, d), 7.85 (1H, d), 7.32 (1H, d), 5.05 (1H, d), 4.15 (3H, s), 3.85 (2H, s), 3.58 (2H, s), 3.05 (1H, m), 2.70 (1H, m), 2.25 (1H, m), 1.90 (3H, m), 1.55 (2H, m)
- MS (+ve ion electrospray) m/z 515 (MH+)
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (117 mg).
-
- The free base of the title compound was prepared in 11% yield from amine (25c) and aldehyde (7j) according to the general reductive alkylation procedure of Example (1n), affording an oil after chromatography (17 mg).
- 1H NMR δ (CDCl3) 8.80 (1H, bs), 7.18 (1H, d), 6.85 (1H, d), 6.73 (1H, d), 6.58 (1H, t), 6.38 (1H, d), 4.60 (2H, s), 3.85 (2H, s), 3.40 (1H, m), 3.25 (1H, m), 2.85 (1H, m), 2.60 (1H, m), 2.10-1.50 (7H, m), 1.18 (3H, d)
- MS (+ve ion electrospray) m/z 467 (MH+)
- This material was converted into the dihydrochloride salt by dissolving in CDCl3 (1 ml) and treating with 0.4M HCl in dioxan (0.2 ml) then evaporating to give a white solid (22 mg).
-
- A solution of 2-amino-3-nitro-phenol (42.9 g, 278 mmol) and imidazole (28.4 g, 417 mmol) in tetrahydrofuran (750 ml) was treated with chloro-triisopropyl-silane (62.3 g, 323 mmol). After 18 hours the mixture was filtered, diluted with ethyl acetate, washed with water, dried and evaporated to give an oil (91 g).
- MS (+ve ion electrospray) m/z 311 (MH+).
- A solution of (a) (91 g) in ethanol (500 ml) was hydrogenated over 10% palladium on charcoal (8.5 g) for 3 days then filtered and evaporated to give an oil (80.7 g).
- MS (+ve ion electrospray) m/z 281 (MH+).
- A solution of (b) (80.7 g) in ethanol (1 litre) was treated with a 50% solution of ethyl glyoxalate in toluene (60 ml, 294 mmol) and heated to reflux for 2 hours. The mixture was left at room temperature overnight and filtered affording 5-triisopropylsilanyloxy-1H-quinoxalin-2-one. The filtrate was evaporated and the residue chromatographed eluting with a 0-3% gradient of methanol in dichloromethane affording 8-triisopropylsilanyloxy-1H-quinoxalin-2-one as a white solid (14.9 g).
- MS (+ve ion electrospray) m/z 319 (MH+).
- A solution of (c) (2.0 g, 6.2 mmol) in dichloromethane/methanol/acetonitrile (40 ml/4 ml/40 ml) was treated with triethylamine (1.1 ml, 8 mmol) then a solution of (trimethylsilyl)diazomethane in hexane (2M; 4 ml, 8 mmol). The mixture was stirred overnight then evaporated. The residue was chromatographed on silica eluting with dichloromethane affording an oil (1.0 g, 48%).
- MS (+ve ion electrospray) m/z 333 (MH+).
- A solution of (d) (6.95 g, 21 mmol) in tetrahydrofuran/methanol (280 ml/140 ml) was treated with caesium fluoride (4.73 g, 31.4 mmol) and stirred for 18 hours. The mixture was evaporated and the residue partitioned between diethyl ether and dilute aqueous hydrochloric acid. The aqueous phase was further extracted with diethyl ether and the combined extracts dried and evaporated to give an oil (4.2 g).
- MS (+ve ion electrospray) m/z 177 (MH+).
- A solution of (e) (4.23 g, 21 mmol) in dichloromethane (35 ml) was treated with triethylamine (4.5 ml, 32.1 mmol) then N-phenyltrifluoromethanesulfonimide (11.4 g, 32 mmol) was added. The mixture was stirred overnight then washed with saturated aqueous sodium carbonate solution. The aqueous phase was further extracted with dichloromethane and the combined organic extracts were dried and evaporated. The residue was chromatographed on silica eluting with 50% hexane in dichloromethane and then dichloromethane, affording an oil (5.6 g, 87%).
- MS (+ve ion electrospray) m/z 309 (MH+).
- This was prepared from amide (1f) and triflate (f) according to the method of Example (18b) affording a white solid (320 mg).
- MS (+ve ion electrospray) m/z 417 (MH+).
- This was prepared in quantitative yield from carbamate (g) by the procedure of Example (1m) affording a white solid (243 mg).
- MS (+ve ion electrospray) m/z 317 (MH+).
- The free base of the title compound was prepared in 72% yield from amine (h) and aldehyde (1j) according to the general reductive alkylation procedure of Example (1n), affording a white solid after chromatography (135 mg).
- 1H NMR δ (CDCl3) 8.70 (1H, d), 8.50 (1H, s), 7.73 (1H, d), 7.65 (1H, d), 7.75 (1H, t), 6.95 (1H, d), 4.18 (3H, s), 4.03 (2H, s), 2.90 (1H, m), 2.20-1.70 (8H, m).
- MS (+ve ion electrospray) m/z 495 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (103 mg).
-
- A mixture of 5-benzyloxy-2-hydroxymethyl-4-pyrone (prepared from Kojic acid by the method of D. Erol, J. Med. Chem., 1994, 29, 893) (9.7 g, 40 mmol), concentrated aqueous (880) ammonia (100 ml), and ethanol (20 ml) was heated to reflux overnight. The mixture was allowed to cool to room temperature then filtered. The resultant solid was washed with ether and dried in vacuo (5.9 g).
- MS (APCI+) m/z 232 (MH+).
- A solution of (a) (2 g, 8.7 mmol) in water (220 ml) containing sodium hydroxide (17 mmol) was hydrogenated over 10% palladium on charcoal (1 g) for 4 hours. The mixture was filtered and evaporated to give a white solid. This solid was dissolved in N,N-dimethylformamide (8 ml) then treated with potassium carbonate (2.9 g) and 1,2-dibromoethane (0.6 ml, 7 mmol). The mixture was heated at 85° C. overnight. The cooled mixture was evaporated onto silica and chromatographed eluting with 10-30% methanol in ethyl acetate affording a white solid (250 mg, 21%).
- MS (APCI+) m/z 168 (MH+).
- A solution of (b) (250 mg, 1.5 mmol) in dichloromethane (5 ml) was treated with manganese dioxide (650 mg, 7.5 mmol). After 3 days the mixture was filtered and evaporated affording a white solid (150 mg, 61%).
- MS (APCI+) m/z 166 (MH+).
- A solution of amine (18c) (0.6 g, 2 mmol) and aldehyde (c) (0.33 g, 2 mmol) in DMF (10 ml) was treated with sodium triacetoxyborohydride (1.28 g, 6 mmol). After 5 hours the mixture was treated with 5M aqueous hydrochloric acid dropwise until no further effervescence was observed and then basified with half-saturated aqueous sodium bicarbonate solution (˜100 ml). The resulting precipitate was filtered, washed with water and dried in vacuo. The crude product was chromatographed on silica eluting with 2-10% methanol in dichloromethane affording the free base of the title compound as a white solid (0.58 g, 64%).
- 1H NMR δ (CDCl3) 8.75 (1H, m), 8.10 (1H, s), 8.00 (1H, d), 7.45 (2H, m), 7.30 (1H, d), 6.82 (1H, s), 4.30 (4H, m), 3.85 (2H, s), 2.75 (3H, s), 2.80 (1H, m), 2.20-1.85 (6H, m), 1.60 (2H, m).
- MS (+ve ion electrospray) m/z 449 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.61 g).
-
- This was prepared from amide (3a) and triflate (18a) according to the method of Example (18b) affording a white solid.
- MS (+ve ion electrospray) m/z 384 (MH+).
- This was prepared from carbamate (a) by the procedure of Example (1m) affording a white solid.
- MS (+ve ion electrospray) m/z 284 (MH+).
- A solution of amine (b) (570 mg, 2 mmol) and aldehyde (35c) (330 mg, 2 mmol) were reacted together according to the general reductive alkylation procedure of Example (35d) affording after chromatography the free base of the title compound as a white solid (690 mg, 79%).
- 1H NMR δ (CDCl3) 8.92 (1H, bs), 8.70 (1H, m), 8.10 (1H, s), 8.00 (1H, d), 7.42 (1H, d), 7.30 (1H, d), 6.88 (1H, s), 4.30 (4H, m), 4.00 (2H, s), 2.76 (3H, s), 2.75 (1H, m), 2.50 (1H, m), 2.20-2.10 (4H, m), 1.80-1.45 (4H, m).
- MS (+ve ion electrospray) m/z 433 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.71 g).
-
- The free base of the title compound was prepared in 40% yield from amine (9j) and aldehyde (35c) according to the general reductive alkylation procedure of Example (1n), affording a white solid after chromatography (350 mg).
- 1H NMR δ (d6-DMSO) 9.95 (1H, bs), 8.55 (2H, m), 8.15 (1H, d), 8.05 (1H, s), 7.80 (2H, m), 6.98 (1H, s), 4.55 (1H, bs), 4.30 (4H, m), 4.05 (1H, m), 3.80 (1H, d), 3.70 (1H, d), 3.10 (1H, m), 2.10-1.50 (7H, m).
- MS (+ve ion electrospray) m/z 460 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (380 mg).
-
- The free base of the title compound was prepared in 47% yield from amine (10b) and aldehyde (35c) according to the general reductive alkylation procedure of Example (1n), affording a yellow solid after chromatography (420 mg).
- 1H NMR δ (d6-DMSO) 11.08 (1H, bs), 8.85 (1H, m), 8.75 (1H, d), 8.15 (1H, d), 8.02 (1H, s), 7.80 (2H, m), 6.95 (1H, s) 4.35 (4H, m), 4.05 (1H, m), 3.70 (2H, s), 3.10 (1H, m), 2.10-1.50 (7H, m).
- MS (+ve ion electrospray) m/z 460 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (410 mg).
-
- A solution of bromolactone (9a) (46.6 g, 230 mmol) in methanol (600 ml) was treated with sodium bicarbonate (21 g, 250 mmol) and stirred for 18 hours. The mixture was evaporated and the solid residue extracted with dichloromethane (2×500 ml). The combined extracts were evaporated to afford an oil (52.4 g, 97%).
- MS (+ve ion electrospray) m/z 238 (MH+).
- A solution of bromide (a) (52.4 g, 221 mmol) in DMF (1.2 litres) was treated with sodium azide (21.5 g, 331 mmol) and heated at 60° C. for 8 hours. The mixture was stirred at room temperature overnight and then evaporated. The residue was extracted with warm iso-propanol (2×300 ml). Evaporation afforded an oil which was chromatographed on silica eluting with a gradient of ethyl acetate in petroleum ether affording an oil (31 g) which was a 2:1 mixture of desired (1R,3R,4R)-4-azido-3-hydroxy-cyclohexanecarboxylic acid methyl ester to (R)-3-oxo-cyclohexanecarboxylic acid methyl ester. Further chromatography on silica eluting with a methanol/dichloromethane gradient afforded the desired intermediate as an oil (18.4 g, 42%)
- MS (+ve ion electrospray) m/z 200 (MH+).
- A solution of azide (b) (18.4 g, 92 mmol) in methanol/acetic acid (360 ml/40 ml) was hydrogenated over 10% palladium on charcoal paste (50% w/w with water, 15 g) for 18 hours. The mixture was filtered through keiselguhr, evaporated, and then triturated with ether to afford a white solid that was isolated by filtration and dried in vacuo (15.6 g, 72%).
- MS (+ve ion electrospray) m/z 174 (MH+).
- The acetate salt (c) (15.6 g, 66 mmol) was suspended in tetrahydrofuran (200 ml) and treated with di-tert-butyl carbonate (16 g, 73 mmol) and diisopropylethylamine (14 ml, 10.4 g, 80 mmol). The mixture was heated at 50° C. for 18 hours then evaporated to dryness. The residue was partitioned between water and ethyl acetate. The aqueous phase was further extracted with ethyl acetate and the combined extracts washed with brine, dried and evaporated to give a solid (18.5 g, 100%).
- MS (+ve ion electrospray) m/z 274 (MH+).
- A mixture of alcohol (d) (6.5 g, 24 mmol), silver(I) oxide (16.5 g, 72 mmol), methyl iodide (4.5 ml) and 3 A molecular sieves (10 g) in dichloromethane (100 ml) was stirred at room temperature for 18 hours. The mixture was filtered and evaporated. The residue was chromatographed on silica eluting with 1:2 ethyl acetate:petrol affording an oil (5.47 g, 80%).
- MS (+ve ion electrospray) m/z 288 (MH+).
- The ester (e) (5.47 g, 19 mmol) and lithium hydroxide monohydrate (0.96 g, 23 mmol) in methanol/water (50 ml/50 ml) were stirred at room temperature for 18 hours then evaporated to dryness. The residue was partitioned between ethyl acetate and water (30 ml) containing sodium dihydrogen phosphate (7 g). The aqueous phase was further extracted with ethyl acetate and the combined extracts washed with brine, dried and evaporated to give a solid (5.0 g, 96%).
- MS (+ve ion electrospray) m/z 274 (MH+).
- A solution of the acid (f) (5.0 g, 18 mmol) and 1-hydroxy-7-azabenzotriazole (2.73 g, 20 mmol) in DMF (200 ml) was treated with (3-dimethylamino-propyl)-ethyl-carbodiimide hydrochloride (3.87 g, 20 mmol) and ammonium hydrogen carbonate (5.8 g, 73 mmol). The mixture was stirred at room temperature for 18 hours then evaporated to dryness. The residue was partitioned between ethyl acetate and saturated aqueous sodium bicarbonate solution. The organic extract was dried and evaporated. Trituration with ether and filtration afforded a white solid (3.72 g, 75%).
- MS (+ve ion electrospray) m/z 273 (MH+).
- This was prepared from triflate (18a) (110 mg, 0.37 mmol) and amide (g) (100 mg, 0.37 mmol) by the same procedure as for Example (18b) affording after chromatography a white solid (110 mg, 72%).
- MS (+ve ion electrospray) m/z 414 (MH+).
- Carbamate (h) (110 mg, 0.27 mmol) was dissolved in dichloromethane/triluoroacetic acid (2 ml/2 ml). After 1 hour the mixture was evaporated to dryness and the residue triturated with ether. The residue was then redissolved in 10% methanol in dichloromethane (20 ml) and treated with macroporous triethylammonium methylpolystyrene carbonate resin (2.8 mmol/g; 2.7 g, Argonaut Technologies). After 1 hour the mixture was filtered and the resin washed several times alternately with 10% methanol in dichloromethane then methanol. The combined filtrate and washings were evaporated affording a white solid (80 mg, 95%).
- MS (+ve ion electrospray) m/z 314 (MH+).
- The free base of the title compound was prepared in 63% yield from amine (39i) and aldehyde (35c) according to the general reductive alkylation procedure of Example (35d), affording a white solid after chromatography (76 mg).
- 1H NMR δ (CDCl3) 9.95 (1H, bs), 8.72 (1H, m), 8.12 (1H, s), 8.02 (1H, d), 7.45 (1H, d), 7.31 (1H, d), 6.85 (1H, s), 4.30 (4H, m), 3.90 (1H, d), 3.78 (1H, d), 3.40 (3H, s), 3.20 (1H, m), 2.75 (3H, s), 2.65-2.45 (2H, m), 2.25-2.05 (3H, m), 1.75-1.30 (3H, m).
- MS (+ve ion electrospray) m/z 463 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (85 mg).
-
- A mixture of 4-aminobenzonitrile (12.5 g, 0.106 mol), 2,2-dimethyl-[1,3]dioxane-4,6-dione (Meldrum's acid) (18.3 g, 0.127 mol) and triethyl orthoformate (16 ml) in ethanol (100 ml) was refluxed for 3 hours. After cooling to room temperature the product was filtered, washed with cold ethanol and air dried to afford an off-white solid (27.9 g, 97%).
- MS (ES) m/e 273 (M+H)+.
- Benzonitrile (a) (27.5 g) was added portionwise over 5 minutes to refluxing Dowtherm A (200 ml). After refluxing an additional 5 minutes, the mixture was allowed to cool to room temperature and diluted with ether (200 ml) with stirring. The product was filtered off, washed thoroughly with ether and air dried to provide a gold solid (16.2 g, 94%).
- MS (ES) m/e 171 (M+H)+.
- A solution of quinolinone (b) (12.0 g, 70.5 mmol) in DMF (60 ml) was treated dropwise with phosphorus tribromide (8.0 ml, 84.6 mmol) over 10 minutes (exothermic). After allowing to stir and cool to room temperature, ice water (100 ml) was added and the mixture was stirred 30 minutes, then basified to pH8 by dropwise addition of 50% NaOH with cooling. The resultant solid was filtered off, washed with water and air dried to afford a tan solid (14.3 g, 87%).
- MS (ES) m/e 234 (M+H)+.
- This was prepared from bromide (c) (350 mg, 1.5 mmol) and amide (1f) (387 mg, 1.5 mmol) by the same procedure as for Example (1l) affording after chromatography a white solid (580 mg, 94%).
- MS (+ve ion electrospray) m/z 411 (MH+).
- This was prepared from carbamate (d) (580 mg) by TFA deprotection and basic workup by the same procedure as Example (1m) affording a white solid (280 mg, 64%).
- MS (+ve ion electrospray) m/z 311 (MH+).
- A mixture of amine (e) (0.7 mmol) and aldehyde (1j)(136 mg, 0.7 mmol) in methanol/DMF/acetic acid (6 ml/6 ml/0.6 ml) was stirred at ambient temperature in the presence of 3 A molecular sieves. After 2 hours sodium cyanoborohydride (88 mg, 1.4 mmol) was added and the mixture stirred overnight. The mixture was acidified with a few drops of 5M HCl then basified with saturated sodium hydrogen carbonate. The resulting precipitate was isolated by filtration and dried in vacuo. This was chromatographed on silica eluting with a gradient of 0-10% methanol in dichloromethane affording the free base of the title compound as a white solid (160 mg, 47%).
- 1H NMR δ (DMSO) 10.80 (1H, bs), 10.35 (1H, bs), 8.95 (1H, d), 8.70 (1H, d), 8.12 (1H, d), 8.10-8.00 (2H, m), 7.75 (1H, d), 7.12 (1H, d), 4.00 (2H, s), 3.55 (2H, s), 2.50 (1H, m), 2.00-1.40 (8H, m).
- MS (+ve ion electrospray) m/z 489 (MH+).
- This material was converted into the dihydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.17 g).
-
- The free base of the title compound was prepared in 65% yield from amine (34h) and aldehyde (35c) according to the general reductive alkylation procedure of Example (35d), affording a white solid after chromatography (0.50 g).
- 1H NMR δ (CDCl3) 10.80 (1H, bs), 8.48 (1H, s), 8.08 (1H, s), 7.72 (1H, d), 7.53 (1H, t), 6.78 (1H, s), 4.30 (4H, m), 4.10 (3H, s), 3.85 (2H, s), 2.70 (1H, m), 2.25-1.50 (8H, m).
- MS (+ve ion electrospray) m/z 466 (MH+).
- This material was converted into the hydrochloride salt by the method of Example (1) affording the title compound as a white solid (0.57 g).
-
- A mixture of amine (25c) (0.24 mg, 0.75 mmol) and aldehyde (35c) (0.12 mg, 0.75 mmol) in DMF (7 ml) was treated with sodium triacetoxyborohydride (0.21 g, 1 mmol). After 18 hours the mixture was treated with more sodium triacetoxyborohydride (0.3 g) and stirred for a further 8 hours. The reaction mixture was diluted to 20 mL with water and an equal volume of saturated aqueous sodium bicarbonate solution was added. After cooling down to 4° C. for 1 hour, the precipitate formed was filtered, washed with water and dried in vacuo. The crude product was chromatographed on silica eluting with 2-10% methanol in dichloromethane affording the free base of the title compound as a white solid (160 mg, 47.5%).
- 1H NMR δ (CDCl3) 8.80-8.75 (2H, m), 8.1 (1H, s), 7.80-7.70 (2H, m), 6.79 (1H, s), 4.33-4.24 (4H, m), 3.84 (2H, s), 2.77 (3H, s), 2.65 (1H, m), 2.10 (2H, m), 2.00-1.80 (4H, m), 1.65 (2H, m).
- MS (+ve ion electrospray) m/z 450 (MH+).
- This material, as a solution in chloroform/methanol, was treated with an excess of 4M HCl in dioxan and evaporated to dryness. The solid was triturated under ether, filtered and dried under vacuum to provide the title compound.
- The MIC (g/ml) of test compounds against various organisms was determined including:
- S. epidermidis CL7, S. aureus WCUH29, S. pneumoniae 1629, S. pyogenes CN10, H. influenzae ATCC 49247, E. faecalis 2, M. catarrhalis Ravasio, E. coli 7623.
Examples 5, 7-22, 25, 26, 31, 32, 34, 37, 38, 40, 41 have an MIC≦2 g/ml versus all these organisms
Examples 1, 3, 6, 23, 27, 28, 35, 36, 42 have an MIC≦8 g/ml versus all these organisms
Examples 24, 29, 33, 39 have an MIC≦2 g/ml versus some of these organisms
Examples 2, 4, 30 has an MIC≦16 g/ml versus at least one of these organisms
Claims (16)
1. A compound selected from compounds of formula (I); pharmaceutically acceptable salts of compounds of formula (I), and pharmaceutically acceptable N-oxides of compounds of formula (I), wherein formula (I) is:
wherein:
Rv and Rw are hydrogen or Rv and Rw together are a bond;
RA is an optionally substituted bicyclic carbocyclic or heterocyclic ring system of structure:
containing 0-3 heteroatoms in each ring in which:
at least one of rings (x) and (y) is aromatic;
one of Z4 and Z5 is C or N and the other is C;
Z3 is N, NR13, O, S(O)x, CO, CR1 or CR1R1a;
Z1 and Z2 are independently a 2 or 3 atom linker group each atom of which is independently selected from N, NR13, O, S(O)x, CO, CR1 and CR1R1a;
such that each ring is independently substituted with 0-3 groups R1 and/or R1a;
R1 and R1a are independently selected from hydrogen; hydroxy; (C1-6) alkoxy optionally substituted by (C1-6)alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C1-6)alkyl, acyl or (C1-6)alkylsulphonyl groups, CONH2, hydroxy, (C1-6)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C1-6)alkylsulphonyloxy; (C1-6)alkoxy-substituted (C1-6)alkyl; hydroxy (C1-6)alkyl; halogen; (C1-6)alkyl; (C1-6)alkylthio; trifluoromethyl; trifluoromethoxy; cyano; carboxy; nitro; azido; acyl; acyloxy; acylthio;
(C1-6)alkylsulphonyl; (C1-6)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C1-6)alkyl, acyl or (C1-6)alkylsulphonyl groups, or when Z3 and the adjacent atom are CR1 and CR1a, R1 and R1a may together represent (C1-2)alkylenedioxy,
wherein acyl is (C1-6)alkoxycarbonyl, formyl, or (C1-6)alkylcarbonyl;
provided that R1 and R1a, on the same carbon atom are not both optionally substituted hydroxy or amino;
provided that
(i) when RA is optionally substituted quinolin-4-yl:
it is unsubstituted in the 6-position; or
it is substituted by at least one hydroxy (C1-6)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position; or
it is substituted by at least one trifluoromethoxy group; or
R3 is halogen;
(ii) when RA is optionally substituted quinazolin-4-yl, cinnolin-4-yl, 1,5-naphthyridin-4-yl, 1,7-naphthyridin-4-yl or 1,8-naphthyridin-4-yl:
it is substituted by at least one hydroxy (C1-6)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position as available; or
it is substituted by at least one trifluoromethoxy group; or
R3 is halogen;
R2 is hydrogen, or (C1-4)alkyl or (C2-4)alkenyl optionally substituted with 1 to 3 groups selected from:
amino optionally substituted by one or two (C1-4)alkyl groups; carboxy; (C1-4)alkoxycarbonyl; (C1-4)alkylcarbonyl; (C2-4)alkenyloxycarbonyl; (C2-4)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-4)alkyl, hydroxy(C1-4)alkyl, aminocarbonyl(C1-4)alkyl, (C2-4)alkenyl, (C1-4)alkylsulphonyl, trifluoromethylsulphonyl, (C2-4)alkenylsulphonyl, (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl or (C2-4)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R10; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R10; 5-oxo-1,2,4-oxadiazol-3-yl; halogen; (C1-4)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C1-4)alkyl, (C2-4)alkenyl, (C1-4)alkoxycarbonyl, (C1-4)alkylcarbonyl, (C2-4)alkenyloxycarbonyl, (C2-4)alkenylcarbonyl; oxo; (C1-4)alkylsulphonyl; (C2-4)alkenylsulphonyl; or (C1-4)aminosulphonyl wherein the amino group is optionally substituted by (C1-4)alkyl or (C2-4)alkenyl;
R3 is hydrogen; or
when Rv and Rw are a bond, R3 is in the 2-, 3- or 4-position and when Rv and Rw are not a bond, R3 is in the 1-, 2-, 3- or 4-position and R3 is:
carboxy; (C1-6)alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, trifluoromethylsulphonyl, (C2-6)alkenylsulphonyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl or (C2-6)alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R10; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R10; or 5-oxo-1,2,4-oxadiazol-3-yl; or
(C1-4)alkyl or ethenyl optionally substituted with any of the groups listed above for R3 and/or 0 to 2 groups R12 independently selected from:
halogen; (C1-6)alkylthio; trifluoromethyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; (C2-6)alkenyloxycarbonyl; (C2-6)alkenylcarbonyl; hydroxy optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylcarbonyl or (C2-6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, (C2-6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl, hydroxy(C1-6)alkyl, aminocarbonyl(C1-6)alkyl or (C2-6)alkenyl; oxo;
(C1-6)alkylsulphonyl; (C2-6)alkenylsulphonyl; or (C1-6)aminosulphonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl; or
hydroxy optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylcarbonyl or (C2-6)alkenylcarbonyl; or
amino optionally mono- or disubstituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, (C2-6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl; or halogen;
provided that when R3 is in the 4-position it is not optionally substituted hydroxyl or amino or halogen;
in addition when R3 is disubstituted with a hydroxy or amino containing substituent and a carboxy containing substituent these may optionally together form a cyclic ester or amide linkage, respectively;
R10 is selected from (C1-4)alkyl and (C2-4)alkenyl either of which may be optionally substituted by a group R12 as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, trifluoromethylsulphonyl, (C2-6)alkenylsulphonyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl or (C2-6)alkenyl; (C1-6)alkylsulphonyl; trifluoromethylsulphonyl; (C2-6)alkenylsulphonyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; (C2-6)alkenyloxycarbonyl; and (C2-6)alkenylcarbonyl;
R4 is a group —U—R5 2 where R5 2 includes a 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl group; a 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl group; a 3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl group; a 3-oxo-3,4-dihydro-2H-benzo[1,4]thiazin-6-yl group; a 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]oxazin-7-yl group; or a 1H-pyrido[2,3-b][1,4]thiazin-2-one-7-yl group;
U is CO, SO2 or CH2;
n is 0 or 1 and AB is NR11CO, CONR11, CO—CR8R9, CR6R7—CO, O—CR8R9, CR6R7—O, NHR11—CR8R9, CR6R7—NHR11, NR11SO2, CR6R7—SO2 or CR6R7—CR8R9, provided that when Rv and Rw are a bond and n=0, B is not NR11, O or SO2,
or n is 0 and AB is NH—CO—NH or NH—CO—O and Rv/Rw are not a bond;
or n is 0 and AB is CR6R7SO2NR2, CR6R7CONR2 or CR6R7CH2NR2 and Rv/Rw are not a bond;
provided that R6 and R7, and R8 and R9 are not both optionally substituted hydroxy or amino;
and wherein:
each of R6, R7, R8 and R9 is independently selected from: H; (C1-6)alkoxy; (C1-6)alkylthio; halo; trifluoromethyl; azido; (C1-6)alkyl; (C2-6)alkenyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; (C2-6)alkenyloxycarbonyl; (C2-6)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R3; (C1-6)alkylsulphonyl; (C2-6)alkenylsulphonyl; or (C1-6)aminosulphonyl wherein the amino group is optionally substituted by (C1-6)alkyl or (C2-6)alkenyl;
or R6 and R8 together represent a bond and R7 and R9 are as above defined;
and each R11 is independently H; trifluoromethyl; (C1-6)alkyl; (C2-6)alkenyl; (C1-6)alkoxycarbonyl; (C1-6)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl, (C1-6)alkyl or (C2-6)alkenyl and optionally further substituted by (C1-6)alkyl or (C2-6)alkenyl;
or where one of R3 and R6, R7, R8 or R9 contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage or where R3 contains a carboxy group and A or B is NH they may be condensed to form a cyclic amide.
2. The compound according to claim 1 wherein RA is optionally substituted isoquinolin-5-yl, quinolin-8-yl, thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinoxalin-5-yl, isoquinolin-8-yl, [1,6]-naphthyridin-4-yl, 1,2,3,4-tetrahydroquinoxalin-5-yl or 1,2-dihydroisoquinoline-8-yl.
3. The compound according to claim 1 wherein R1 is hydrogen, methoxy, methyl, cyano or halogen and R1a is H.
4. The compound according to claim 1 wherein R2 is hydrogen.
5. The compound according to claim 1 wherein R3 is hydrogen, fluoro or hydroxy substituted in the 1- or 3-position.
6. The compound according to claim 1 wherein n is 0 and either A and B are both CH2; A is CHOH or CH2 and B is CH2; or A is NH and B is CO.
7. The compound according to claim 1 wherein R5 2 is
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl;
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl;
7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl; or
7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl.
8. A compound, selected from the group consisting of:
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid thieno[3,2-b]pyridin-7-ylamide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl)-amide;
trans-4-[(3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid quinolin-4-ylamide;
trans-4-[(3-Oxo-3,4-dihydro-2H-benzo[1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid isoquinolin-5-ylamide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methoxy-quinolin-8-yl)-amide;
4-[(3,4-Dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-1-hydroxy-cyclohexanecarboxylic acid (2-methoxy-quinolin-8-yl)-amide;
6-({4-Hydroxy-4-[2-(2-methoxy-quinolin-8-yl)-ethyl]-cyclohexylamino}-methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one;
6-({4-Hydroxy-4-[2-(2-methoxy-quinolin-8-yl)-ethyl]-cyclohexylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one;
(1R,3S,4R)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
(1S,3R,4S)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
(1S,3R,4S)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
(1R,3R,4R)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
(1R,3R,4R)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
(1R,3S,4R)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-cyano-quinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methoxy-quinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methyl-quinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methyl-quinolin-8-yl)-amide;
(1R,3R,4R)-3-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (2-methoxy-quinolin-8-yl)-amide;
7-({r-4-Hydroxy-4-[2-(2-methoxy-quinolin-8-yl)-ethyl]-c-cyclohexylamino}-methyl)-1H-pyrido[2,3-b][1,4]thiazin-2-one;
1-Hydroxy-t-4-[(2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]oxazin-7-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methyl-quinolin-8-yl)-amide;
t-4-[(7-Fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-1-hydroxy-r-cyclohexanecarboxylic acid (2-methoxy-quinolin-8-yl)-amide;
t-4-[(7-Chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-1-hydroxy-r-cyclohexanecarboxylic acid (2-methoxy-quinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (3-methyl-quinoxalin-5-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methyl-1-oxo-1,2-dihydro-isoquinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (1-methoxy-isoquinolin-8-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (5-methoxy-quinolin-4-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid [1,6]naphthyridin-4-ylamide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (2-methyl-quinoxalin-5-yl)-amide;
(1R,3S,4R)-3-Fluoro-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b]][1,4]oxazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide;
(1R,3S,4R)-3-Fluoro-4-[(7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohexanecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-c-cyclohexanecarboxylic acid (3-methyl-1,2,3,4-tetrahydro-quinoxalin-5-yl)-amide;
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2Hpyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (3-methoxy-quinoxalin-5-yl)-amide; and
1-Hydroxy-t-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-r-cyclohexanecarboxylic acid (6-cyano-quinolin-4-yl)-amide;
or a pharmaceutically acceptable salt thereof.
9. A method of treatment of bacterial infection due to Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Haemophilus influenzae, E. coli, or Moraxella catarrhalis in mammals, which method comprises the administration to a mammal in need of such treatment an effective amount of the compound according to claim 1 .
10. A pharmaceutical composition comprising the compound according to claim 1 , and a pharmaceutically acceptable excipient.
11. A method of treatment of bacterial infection due to Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Haemophilus influenzae, E. coli, or Moraxella catarrhalis in mammals, which method comprises the administration to a mammal in need of such treatment an effective amount of the compound according to claim 7 .
12. A pharmaceutical composition comprising the compound according to claim 11 , and a pharmaceutically acceptable excipient.
13. The compound according to claim 1 wherein RA is 2-methyl-1-oxo-1,2-dihydro-isoquinolin-8-yl.
14. The compound according to claim 1 wherein RA is 3-methoxy-quinoxalin-5-yl.
15. The compound according to claim 1 wherein the compound is a compound of formula (I).
16. The compound according to claim 1 wherein the compound is a pharmaceutically acceptable salt of a compound of formula (I).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/620,129 US20100081650A1 (en) | 2002-06-26 | 2009-11-17 | Antimicrobial Compounds |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39170002P | 2002-06-26 | 2002-06-26 | |
US46096103P | 2003-04-07 | 2003-04-07 | |
US10/518,653 US7622481B2 (en) | 2002-06-26 | 2003-06-25 | Antibacterial compounds |
PCT/EP2003/006756 WO2004002992A1 (en) | 2002-06-26 | 2003-06-25 | Compounds |
US12/620,129 US20100081650A1 (en) | 2002-06-26 | 2009-11-17 | Antimicrobial Compounds |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/006756 Continuation WO2004002992A1 (en) | 2002-06-26 | 2003-06-25 | Compounds |
US11/518,653 Continuation US8096555B1 (en) | 2000-08-31 | 2006-09-11 | Method of conducting a wagering game with continuous depletion |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100081650A1 true US20100081650A1 (en) | 2010-04-01 |
Family
ID=30003201
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/518,653 Expired - Fee Related US7622481B2 (en) | 2002-06-26 | 2003-06-25 | Antibacterial compounds |
US12/620,129 Abandoned US20100081650A1 (en) | 2002-06-26 | 2009-11-17 | Antimicrobial Compounds |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/518,653 Expired - Fee Related US7622481B2 (en) | 2002-06-26 | 2003-06-25 | Antibacterial compounds |
Country Status (10)
Country | Link |
---|---|
US (2) | US7622481B2 (en) |
EP (1) | EP1537123B1 (en) |
JP (1) | JP4522262B2 (en) |
AR (1) | AR040335A1 (en) |
AT (1) | ATE430154T1 (en) |
AU (1) | AU2003266949A1 (en) |
DE (1) | DE60327438D1 (en) |
ES (1) | ES2325831T3 (en) |
TW (1) | TW200406413A (en) |
WO (1) | WO2004002992A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100137282A1 (en) * | 2007-04-20 | 2010-06-03 | David Evan Davies | Tricyclic nitrogen containing compounds as antibacterial agents |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0112834D0 (en) * | 2001-05-25 | 2001-07-18 | Smithkline Beecham Plc | Medicaments |
TW200406410A (en) | 2002-01-29 | 2004-05-01 | Glaxo Group Ltd | Compounds |
JP4508650B2 (en) | 2002-01-29 | 2010-07-21 | グラクソ グループ リミテッド | Aminopiperidine compound, process for producing the compound and pharmaceutical composition containing the compound |
AR040336A1 (en) | 2002-06-26 | 2005-03-30 | Glaxo Group Ltd | PIPERIDINE COMPOUND, USE OF THE SAME FOR THE MANUFACTURE OF A MEDICINAL PRODUCT, PHARMACEUTICAL COMPOSITION THAT INCLUDES IT AND PROCEDURE TO PREPARE SUCH COMPOUND |
DE60334016D1 (en) | 2002-11-05 | 2010-10-14 | Glaxo Group Ltd | ANTIBACTERIAL AGENTS |
DE60331849D1 (en) | 2002-11-05 | 2010-05-06 | Glaxosmithkline Llc | ANTIBACTERIAL ACTIVE SUBSTANCES |
AU2003294565A1 (en) * | 2002-12-04 | 2004-06-23 | Glaxo Group Limited | Quinolines and nitrogenated derivatives thereof and their use as antibacterial agents |
TW200427688A (en) * | 2002-12-18 | 2004-12-16 | Glaxo Group Ltd | Antibacterial agents |
EP1796466A4 (en) | 2004-06-15 | 2009-09-02 | Glaxo Group Ltd | Antibacterial agents |
DE102004041163A1 (en) * | 2004-08-25 | 2006-03-02 | Morphochem Aktiengesellschaft für kombinatorische Chemie | New compounds with antibacterial activity |
WO2006032466A2 (en) * | 2004-09-24 | 2006-03-30 | Actelion Pharmaceuticals Ltd | New bicyclic antibiotics |
WO2006038172A1 (en) * | 2004-10-05 | 2006-04-13 | Actelion Pharmaceuticals Ltd | New piperidine antibiotics |
JP5314244B2 (en) * | 2004-10-27 | 2013-10-16 | 富山化学工業株式会社 | Novel nitrogen-containing heterocyclic compounds and salts thereof |
EP1846417A4 (en) * | 2005-01-25 | 2009-12-23 | Glaxo Group Ltd | Antibacterial agents |
US7592334B2 (en) | 2005-01-25 | 2009-09-22 | Glaxo Group Limited | Antibacterial agents |
WO2006081179A1 (en) * | 2005-01-25 | 2006-08-03 | Glaxo Group Limited | Antibacterial agents |
JP2008528604A (en) | 2005-01-25 | 2008-07-31 | グラクソ グループ リミテッド | Antibacterial agent |
US7648980B2 (en) | 2005-01-25 | 2010-01-19 | Glaxo Group Limited | Antibacterial agents |
MY150958A (en) | 2005-06-16 | 2014-03-31 | Astrazeneca Ab | Compounds for the treatment of multi-drug resistant bacterial infections |
WO2006137485A1 (en) * | 2005-06-24 | 2006-12-28 | Toyama Chemical Co., Ltd. | Novel nitrogenated heterocyclic compound and salt thereof |
WO2007016610A2 (en) * | 2005-08-02 | 2007-02-08 | Glaxo Group Limited | Antibacterial agents |
CA2635126A1 (en) | 2006-01-26 | 2007-08-02 | Actelion Pharmaceuticals Ltd | Tetrahydropyrane antibiotics |
JP5191053B2 (en) | 2006-02-15 | 2013-04-24 | アクテリオン ファーマシューティカルズ リミテッド | Ethanol or 1,2-ethanediol cyclohexyl antibiotic derivatives |
DE602007009205D1 (en) | 2006-04-06 | 2010-10-28 | Glaxo Group Ltd | PYRROLOCHINOXALINONE DERIVATIVES AS ANTIBACTERIAL AGENTS |
WO2007118130A2 (en) * | 2006-04-06 | 2007-10-18 | Glaxo Group Limited | Antibacterial agents |
EP2022793B1 (en) | 2006-05-26 | 2014-06-04 | Toyama Chemical Co., Ltd. | Novel heterocyclic compound or salt thereof and intermediate thereof |
GB0613208D0 (en) | 2006-07-03 | 2006-08-09 | Glaxo Group Ltd | Compounds |
EP1992628A1 (en) | 2007-05-18 | 2008-11-19 | Glaxo Group Limited | Derivatives and analogs of N-ethylquinolones and N-ethylazaquinolones |
WO2008071962A1 (en) * | 2006-12-15 | 2008-06-19 | Astrazeneca Ab | Pteridines and pyrimidinopyridines as antibacterial agents |
CL2007003693A1 (en) * | 2006-12-22 | 2008-06-27 | Actelion Pharmaceuticals Ltd | COMPOUNDS DERIVED FROM PIRIDO [3,2-B] [1,4] THIAZINE; PHARMACEUTICAL COMPOSITION CONTAINING SUCH COMPOUNDS; AND ITS USE IN THE TREATMENT OF BACTERIAL INFECTIONS. |
CL2008001003A1 (en) | 2007-04-11 | 2008-10-17 | Actelion Pharmaceuticals Ltd | COMPOUNDS DERIVED FROM OXAZOLIDINONA; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUNDS; AND ITS USE TO PREPARE A MEDICINAL PRODUCT TO TREAT A BACTERIAL INFECTION. |
KR20100088693A (en) | 2007-11-26 | 2010-08-10 | 토야마 케미칼 컴퍼니 리미티드 | Novel naphthyridine derivative monohydrate and method for producing the same |
EP2080761A1 (en) | 2008-01-18 | 2009-07-22 | Glaxo Group Limited | Compounds |
KR101658681B1 (en) * | 2008-06-03 | 2016-09-21 | 액테리온 파마슈티칼 리미티드 | [4-(1-amino-ethyl)-cyclohexyl]-methyl-amine and [6-(1-amino-ethyl)-tetrahydro-pyran-3-yl]-methyl-amine derivatives as antibacterials |
EP2352734A1 (en) | 2008-10-17 | 2011-08-10 | Glaxo Group Limited | Tricyclic nitrogen compounds used as antibacterials |
WO2010045987A1 (en) * | 2008-10-23 | 2010-04-29 | Glaxo Group Limited | Substituted (aza) -1-methyl-1h-quin0lin-2-0nes as antibacterials |
WO2010055004A1 (en) | 2008-11-17 | 2010-05-20 | F. Hoffmann-La Roche Ag | Naphthylacetic acids |
ES2561631T3 (en) | 2009-01-15 | 2016-02-29 | Glaxo Group Limited | Naphthyridine-2 (1H) -one compounds useful as antibacterial agents |
US8716280B2 (en) | 2009-01-21 | 2014-05-06 | Basilea Pharmaceutica Ag | Bicyclic antibiotics |
AR076222A1 (en) * | 2009-04-09 | 2011-05-26 | Actelion Pharmaceuticals Ltd | DERIVATIVES 2-HYDROXIETIL-1H-QUINOLIN-ONA AND ITS AZAISOTHERAL ANALOGS WITH ANTIBACTERIAL ACTIVITY AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US8394858B2 (en) | 2009-12-03 | 2013-03-12 | Novartis Ag | Cyclohexane derivatives and uses thereof |
EP2513115B1 (en) | 2009-12-18 | 2013-10-09 | Basilea Pharmaceutica AG | Tricyclic antibiotics |
US8952010B2 (en) | 2011-02-07 | 2015-02-10 | Daiichi Sankyo Company, Limited | Amino group-containing pyrrolidinone derivative |
US9321788B2 (en) | 2011-06-17 | 2016-04-26 | Basilea Pharmaceutica Ag | Tricyclic antibiotics |
US8470884B2 (en) | 2011-11-09 | 2013-06-25 | Hoffmann-La Roche Inc. | Alkenyl naphthylacetic acids |
US9359275B2 (en) * | 2012-02-23 | 2016-06-07 | Children's Medical Center Corporation | Natural product antibiotics and analogs thereof |
CA2896338A1 (en) * | 2013-03-29 | 2014-10-02 | Daiichi Sankyo Company, Limited | Method for producing (1s,4s,5s)-4-bromo-6-oxabicyclo[3.2.1]octan-7-one |
CN103145709A (en) * | 2013-04-12 | 2013-06-12 | 苏州科捷生物医药有限公司 | Synthesis process for 4-chloro-1,6-naphthyridine |
MA38588B1 (en) | 2013-04-16 | 2018-04-30 | Idorsia Pharmaceuticals Ltd | Bi-aromatic antibacterial derivatives |
WO2015193506A1 (en) * | 2014-06-20 | 2015-12-23 | Institut Pasteur Korea | Anti-infective compounds |
AR101674A1 (en) | 2014-08-22 | 2017-01-04 | Glaxosmithkline Ip Dev Ltd | USE OF A TRICYCLIC COMPOUND CONTAINING NITROGEN |
AR102256A1 (en) | 2014-10-15 | 2017-02-15 | Actelion Pharmaceuticals Ltd | ANTIBACTERIAL BASIC BIAROMATIC DERIVATIVES WITH REPLACEMENT OF AMINOALCOXI |
HUE051299T2 (en) | 2014-10-24 | 2021-03-01 | Landos Biopharma Inc | Lanthionine synthetase c-like 2-based therapeutics |
UY36851A (en) | 2015-08-16 | 2017-03-31 | Glaxosmithkline Ip Dev Ltd | COMPOUNDS FOR USE IN ANTIBACTERIAL APPLICATIONS |
US11124534B2 (en) | 2017-08-10 | 2021-09-21 | President And Fellows Of Harvard College | Lincosamide antibiotics and uses thereof |
US11566039B2 (en) | 2017-08-10 | 2023-01-31 | President And Fellows Of Harvard College | Lincosamide antibiotics and uses thereof |
KR20200090873A (en) | 2017-11-30 | 2020-07-29 | 란도스 바이오파마, 인크. | Treatment with lanthionine C-like protein 2 ligand and cells prepared therewith |
CN108003100A (en) * | 2017-12-20 | 2018-05-08 | 北京六合宁远科技有限公司 | A kind of synthetic method of the nitrogenous heterocyclic aminated compounds of pharmaceutical intermediate |
EP3927427B1 (en) | 2019-12-20 | 2024-02-07 | Nimmune Biopharma, Inc. | Lanthionine c-like protein 2 ligands, cells prepared therewith, and therapies using same |
CN116102537B (en) * | 2021-11-10 | 2024-10-01 | 四川大学 | Quinolinone derivative and preparation method and application thereof |
IL313925A (en) | 2021-12-30 | 2024-08-01 | Jiangsu Hansoh Pharmaceutical Group Co Ltd | Tricyclic derivative inhibitor, preparation method therefor, and application thereof |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6403610B1 (en) * | 1999-09-17 | 2002-06-11 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, their preparation and the compositions which comprise them |
US6602884B2 (en) * | 2001-03-13 | 2003-08-05 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, their preparation, and compositions containing them |
US6602882B1 (en) * | 1998-10-14 | 2003-08-05 | Smithkline Beecham P.L.C. | Quinoline derivatives and their use as antibacterial agents |
US6603005B2 (en) * | 2000-11-15 | 2003-08-05 | Aventis Pharma S.A. | Heterocyclylalkylpiperidine derivatives, their preparation and compositions containing them |
US20040180964A1 (en) * | 1999-11-26 | 2004-09-16 | Shionogi & Co. | NPY Y5 antagonist |
US6806277B2 (en) * | 2002-07-23 | 2004-10-19 | Aventis, Pharma S.A. | Quinolylpropylpiperidine derivatives, preparation process and intermediates, and compositions including them |
US6841562B2 (en) * | 2002-09-11 | 2005-01-11 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, intermediates and compositions containing them, and preparation therefor |
US6939970B2 (en) * | 2002-12-20 | 2005-09-06 | Aventis Pharma S. A. | Crystalline form of (3R,4R)-4-[3-(S)-hydroxy-3-(6 methoxyquinolin-4-propyl]-1-[2-2-thienylthio)ethyl] piperidine-3-carboxylic acid |
US6962917B2 (en) * | 2000-07-26 | 2005-11-08 | Smithkline Beecham P.L.C. | Aminopiperidine quinolines and their azaisosteric analogues with antibacterical activity |
US20060058287A1 (en) * | 2002-06-26 | 2006-03-16 | Axten Jeffrey M | Compounds |
US20060205719A1 (en) * | 2003-04-08 | 2006-09-14 | Morphochem Aktiengesellschaft Fur | Novel compounds having an antibacterial activity |
US7109213B2 (en) * | 2002-01-29 | 2006-09-19 | Glaxo Group Limited | Aminopiperidine compounds, process for their preparation, and pharmaceutical compositions containing them |
US7141564B2 (en) * | 2001-05-25 | 2006-11-28 | Smithkline Beecham P.L.C. | Nitrogen-containing bicyclic heterocycles for use as antibacterials |
US20070004710A1 (en) * | 2002-11-05 | 2007-01-04 | Axten Jeffrey M | Antibacterial agents |
US7223776B2 (en) * | 2002-10-10 | 2007-05-29 | Morphochem Ag | Compounds with anti-bacterial activity |
US7232832B2 (en) * | 2002-11-05 | 2007-06-19 | Smithkline Beecham Corporation | Antibacterial agents |
US7232834B2 (en) * | 2002-09-11 | 2007-06-19 | Novexel Sa | Quinolylpropylpiperidine derivatives, intermediates and compositions containing them, and preparation therefor |
US7232833B2 (en) * | 2003-03-28 | 2007-06-19 | Novexel | 4-substituted quinoline derivatives, method and intermediates for their preparation and pharmaceutical compositions containing them |
US7312212B2 (en) * | 2002-01-29 | 2007-12-25 | Glaxo Group Limited | Aminopiperidine derivatives |
US7491714B2 (en) * | 2002-12-04 | 2009-02-17 | Glaxo Group Limited | Quinolines and nitrogenated derivatives thereof and their use as antibacterial agents |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1051413B1 (en) | 1998-01-26 | 2003-06-04 | SmithKline Beecham plc | Quinoline derivatives as antibacterials |
GB9822450D0 (en) | 1998-10-14 | 1998-12-09 | Smithkline Beecham Plc | Medicaments |
EP1144404A1 (en) | 1999-01-20 | 2001-10-17 | Smithkline Beecham Plc | Piperidinylquinolines as protein tyrosine kinase inhibitors |
GB9914486D0 (en) * | 1999-06-21 | 1999-08-18 | Smithkline Beecham Plc | Medicaments |
GB9917408D0 (en) | 1999-07-23 | 1999-09-22 | Smithkline Beecham Plc | Compounds |
GB9917406D0 (en) | 1999-07-23 | 1999-09-22 | Smithkline Beecham Plc | Compounds |
FR2798656B1 (en) | 1999-09-17 | 2004-12-17 | Aventis Pharma Sa | DERIVATIVES OF QUINOLYL PROPYL PIPERIDINE, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM |
EP1320529B1 (en) | 2000-09-21 | 2006-05-24 | Smithkline Beecham Plc | Quinoline derivatives as antibacterials |
FR2816618B1 (en) | 2000-11-15 | 2002-12-27 | Aventis Pharma Sa | HETEROCYCLYLALCOYL PIPERIDINE DERIVATIVES, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM |
GB0031086D0 (en) | 2000-12-20 | 2001-01-31 | Smithkline Beecham Plc | Medicaments |
GB0031088D0 (en) | 2000-12-20 | 2001-01-31 | Smithkline Beecham Plc | Medicaments |
GB0101577D0 (en) * | 2001-01-22 | 2001-03-07 | Smithkline Beecham Plc | Compounds |
WO2002078748A2 (en) | 2001-01-24 | 2002-10-10 | Becton Dickinson And Company | Lubricious coating for medical device |
FR2822154B1 (en) | 2001-03-13 | 2005-10-21 | Aventis Pharma Sa | QUINOLYL PROPYL PIPERIDINE DERIVATIVES, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM |
GB0112836D0 (en) | 2001-05-25 | 2001-07-18 | Smithkline Beecham Plc | Medicaments |
GB0118238D0 (en) * | 2001-07-26 | 2001-09-19 | Smithkline Beecham Plc | Medicaments |
GB0217294D0 (en) | 2002-07-25 | 2002-09-04 | Glaxo Group Ltd | Medicaments |
TW200427688A (en) | 2002-12-18 | 2004-12-16 | Glaxo Group Ltd | Antibacterial agents |
FR2849034A1 (en) | 2002-12-20 | 2004-06-25 | Aventis Pharma Sa | New stable, monohydrated crystalline form C of 1-substituted 4-quinolylpropyl-piperidine-3-carboxylic acid derivative, useful as antibacterial agent or intermediate for crystalline form A |
TW200507841A (en) | 2003-03-27 | 2005-03-01 | Glaxo Group Ltd | Antibacterial agents |
FR2852954B1 (en) | 2003-03-28 | 2006-07-14 | Aventis Pharma Sa | QUINOLINE-4-SUBSTITUTED DERIVATIVES, METHODS AND PREPARATION INTERMEDIATES THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
-
2003
- 2003-06-24 AR ARP030102248A patent/AR040335A1/en not_active Application Discontinuation
- 2003-06-24 TW TW092117044A patent/TW200406413A/en unknown
- 2003-06-25 EP EP03747857A patent/EP1537123B1/en not_active Expired - Lifetime
- 2003-06-25 US US10/518,653 patent/US7622481B2/en not_active Expired - Fee Related
- 2003-06-25 ES ES03747857T patent/ES2325831T3/en not_active Expired - Lifetime
- 2003-06-25 AT AT03747857T patent/ATE430154T1/en not_active IP Right Cessation
- 2003-06-25 AU AU2003266949A patent/AU2003266949A1/en not_active Abandoned
- 2003-06-25 WO PCT/EP2003/006756 patent/WO2004002992A1/en active Application Filing
- 2003-06-25 JP JP2004548887A patent/JP4522262B2/en not_active Expired - Fee Related
- 2003-06-25 DE DE60327438T patent/DE60327438D1/en not_active Expired - Lifetime
-
2009
- 2009-11-17 US US12/620,129 patent/US20100081650A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602882B1 (en) * | 1998-10-14 | 2003-08-05 | Smithkline Beecham P.L.C. | Quinoline derivatives and their use as antibacterial agents |
US6403610B1 (en) * | 1999-09-17 | 2002-06-11 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, their preparation and the compositions which comprise them |
US20040180964A1 (en) * | 1999-11-26 | 2004-09-16 | Shionogi & Co. | NPY Y5 antagonist |
US6962917B2 (en) * | 2000-07-26 | 2005-11-08 | Smithkline Beecham P.L.C. | Aminopiperidine quinolines and their azaisosteric analogues with antibacterical activity |
US6603005B2 (en) * | 2000-11-15 | 2003-08-05 | Aventis Pharma S.A. | Heterocyclylalkylpiperidine derivatives, their preparation and compositions containing them |
US6903217B2 (en) * | 2000-11-15 | 2005-06-07 | Aventis Pharma S.A. | Heterocyclylalkylpiperidine derivatives, their preparation and compositions containing them |
US6602884B2 (en) * | 2001-03-13 | 2003-08-05 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, their preparation, and compositions containing them |
US6815547B2 (en) * | 2001-03-13 | 2004-11-09 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, their preparation, and compositions containing them |
US7141564B2 (en) * | 2001-05-25 | 2006-11-28 | Smithkline Beecham P.L.C. | Nitrogen-containing bicyclic heterocycles for use as antibacterials |
US7109213B2 (en) * | 2002-01-29 | 2006-09-19 | Glaxo Group Limited | Aminopiperidine compounds, process for their preparation, and pharmaceutical compositions containing them |
US7312212B2 (en) * | 2002-01-29 | 2007-12-25 | Glaxo Group Limited | Aminopiperidine derivatives |
US20060058287A1 (en) * | 2002-06-26 | 2006-03-16 | Axten Jeffrey M | Compounds |
US6806277B2 (en) * | 2002-07-23 | 2004-10-19 | Aventis, Pharma S.A. | Quinolylpropylpiperidine derivatives, preparation process and intermediates, and compositions including them |
US7232834B2 (en) * | 2002-09-11 | 2007-06-19 | Novexel Sa | Quinolylpropylpiperidine derivatives, intermediates and compositions containing them, and preparation therefor |
US6841562B2 (en) * | 2002-09-11 | 2005-01-11 | Aventis Pharma S.A. | Quinolylpropylpiperidine derivatives, intermediates and compositions containing them, and preparation therefor |
US7223776B2 (en) * | 2002-10-10 | 2007-05-29 | Morphochem Ag | Compounds with anti-bacterial activity |
US20070004710A1 (en) * | 2002-11-05 | 2007-01-04 | Axten Jeffrey M | Antibacterial agents |
US7232832B2 (en) * | 2002-11-05 | 2007-06-19 | Smithkline Beecham Corporation | Antibacterial agents |
US7491714B2 (en) * | 2002-12-04 | 2009-02-17 | Glaxo Group Limited | Quinolines and nitrogenated derivatives thereof and their use as antibacterial agents |
US6939970B2 (en) * | 2002-12-20 | 2005-09-06 | Aventis Pharma S. A. | Crystalline form of (3R,4R)-4-[3-(S)-hydroxy-3-(6 methoxyquinolin-4-propyl]-1-[2-2-thienylthio)ethyl] piperidine-3-carboxylic acid |
US7232833B2 (en) * | 2003-03-28 | 2007-06-19 | Novexel | 4-substituted quinoline derivatives, method and intermediates for their preparation and pharmaceutical compositions containing them |
US20060205719A1 (en) * | 2003-04-08 | 2006-09-14 | Morphochem Aktiengesellschaft Fur | Novel compounds having an antibacterial activity |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100137282A1 (en) * | 2007-04-20 | 2010-06-03 | David Evan Davies | Tricyclic nitrogen containing compounds as antibacterial agents |
US8389524B2 (en) | 2007-04-20 | 2013-03-05 | Glaxo Group Limited | Tricyclic nitrogen containing compounds as antibacterial agents |
Also Published As
Publication number | Publication date |
---|---|
ATE430154T1 (en) | 2009-05-15 |
US7622481B2 (en) | 2009-11-24 |
DE60327438D1 (en) | 2009-06-10 |
EP1537123B1 (en) | 2009-04-29 |
AU2003266949A1 (en) | 2004-01-19 |
ES2325831T3 (en) | 2009-09-21 |
AR040335A1 (en) | 2005-03-30 |
US20060189604A1 (en) | 2006-08-24 |
WO2004002992A1 (en) | 2004-01-08 |
TW200406413A (en) | 2004-05-01 |
JP2005539087A (en) | 2005-12-22 |
EP1537123A1 (en) | 2005-06-08 |
JP4522262B2 (en) | 2010-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7622481B2 (en) | Antibacterial compounds | |
US7498326B2 (en) | Compounds | |
US7141564B2 (en) | Nitrogen-containing bicyclic heterocycles for use as antibacterials | |
EP1392686B1 (en) | Bicyclic nitrogen-containing heterocyclic derivatives for use as antibacterials | |
EP1539133B1 (en) | Aminocyclohexene quinolines and their azaisosteric analogues with antibacterial activity | |
US7312212B2 (en) | Aminopiperidine derivatives | |
EP1419155B1 (en) | Piperidine derivatives as antibacterial agents | |
US7205408B2 (en) | Quinolines and nitrogenated derivative thereof substituted in 4-position by a piperidine-containing moiety and their use as antibacterial agents | |
EP1343780B1 (en) | Piperazine derivatives for treatment of bacterial infections | |
US20050085494A1 (en) | Aminopiperidine compounds, process for their preparation, and pharmaceutical compositions containing them | |
EP1549156A1 (en) | Denatured carob flour (dcf) with a low content of soluble tannins and sugars, meant for human consumption and process to obtain it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |