US20100055470A1 - Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment - Google Patents
Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment Download PDFInfo
- Publication number
- US20100055470A1 US20100055470A1 US12/515,914 US51591407A US2010055470A1 US 20100055470 A1 US20100055470 A1 US 20100055470A1 US 51591407 A US51591407 A US 51591407A US 2010055470 A1 US2010055470 A1 US 2010055470A1
- Authority
- US
- United States
- Prior art keywords
- perfluoropolyether
- composition
- optical display
- free
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010702 perfluoropolyether Substances 0.000 title claims abstract description 79
- 239000000203 mixture Substances 0.000 title claims abstract description 69
- 239000000463 material Substances 0.000 title claims abstract description 47
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000002344 surface layer Substances 0.000 claims abstract description 23
- 239000011230 binding agent Substances 0.000 claims abstract description 19
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims description 63
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 47
- 239000012948 isocyanate Substances 0.000 claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 39
- 150000002513 isocyanates Chemical class 0.000 claims description 37
- 239000010410 layer Substances 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000005056 polyisocyanate Substances 0.000 claims description 23
- 229920001228 polyisocyanate Polymers 0.000 claims description 23
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 18
- 125000000524 functional group Chemical group 0.000 claims description 16
- 239000004971 Cross linker Substances 0.000 claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 12
- 125000005842 heteroatom Chemical group 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 9
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 229920002284 Cellulose triacetate Polymers 0.000 claims description 5
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 claims description 5
- 229920002301 cellulose acetate Polymers 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 125000003368 amide group Chemical group 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 36
- 238000000576 coating method Methods 0.000 description 35
- 235000019441 ethanol Nutrition 0.000 description 33
- 239000007787 solid Substances 0.000 description 32
- -1 e.g. Substances 0.000 description 30
- 239000011248 coating agent Substances 0.000 description 28
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 26
- 239000010408 film Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000002105 nanoparticle Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 13
- 239000010954 inorganic particle Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 11
- 239000008199 coating composition Substances 0.000 description 10
- 239000012788 optical film Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 238000001723 curing Methods 0.000 description 9
- 239000006224 matting agent Substances 0.000 description 9
- 229910044991 metal oxide Inorganic materials 0.000 description 9
- 150000004706 metal oxides Chemical class 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000376 reactant Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- JKXYOQDLERSFPT-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-octadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO JKXYOQDLERSFPT-UHFFFAOYSA-N 0.000 description 7
- 229920001940 conductive polymer Polymers 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 150000004756 silanes Chemical class 0.000 description 6
- 239000012756 surface treatment agent Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 5
- PGFXOWRDDHCDTE-UHFFFAOYSA-N hexafluoropropylene oxide Chemical compound FC(F)(F)C1(F)OC1(F)F PGFXOWRDDHCDTE-UHFFFAOYSA-N 0.000 description 5
- 150000004702 methyl esters Chemical class 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000002940 repellent Effects 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical group NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- QIRAYNIFEOXSPW-UHFFFAOYSA-N dimepheptanol Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(O)CC)C1=CC=CC=C1 QIRAYNIFEOXSPW-UHFFFAOYSA-N 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000004508 fractional distillation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 3
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- PCLLJCFJFOBGDE-UHFFFAOYSA-N (5-bromo-2-chlorophenyl)methanamine Chemical compound NCC1=CC(Br)=CC=C1Cl PCLLJCFJFOBGDE-UHFFFAOYSA-N 0.000 description 2
- QKOWXXDOHMJOMQ-UHFFFAOYSA-N 1,3,5-tris(6-isocyanatohexyl)biuret Chemical compound O=C=NCCCCCCNC(=O)N(CCCCCCN=C=O)C(=O)NCCCCCCN=C=O QKOWXXDOHMJOMQ-UHFFFAOYSA-N 0.000 description 2
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 2
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- JSOZORWBKQSQCJ-UHFFFAOYSA-N 3-[ethoxy(dimethyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(C)CCCOC(=O)C(C)=C JSOZORWBKQSQCJ-UHFFFAOYSA-N 0.000 description 2
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920002633 Kraton (polymer) Polymers 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000003670 easy-to-clean Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- IDXCKOANSQIPGX-UHFFFAOYSA-N (acetyloxy-ethenyl-methylsilyl) acetate Chemical compound CC(=O)O[Si](C)(C=C)OC(C)=O IDXCKOANSQIPGX-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical group O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 1
- ZVDJGAZWLUJOJW-UHFFFAOYSA-N 1-(4-ethenylphenyl)ethyl-trimethoxysilane Chemical compound CO[Si](OC)(OC)C(C)C1=CC=C(C=C)C=C1 ZVDJGAZWLUJOJW-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- ZQXIMYREBUZLPM-UHFFFAOYSA-N 1-aminoethanethiol Chemical compound CC(N)S ZQXIMYREBUZLPM-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- CLLLODNOQBVIMS-UHFFFAOYSA-N 2-(2-methoxyethoxy)acetic acid Chemical compound COCCOCC(O)=O CLLLODNOQBVIMS-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- YIJYFLXQHDOQGW-UHFFFAOYSA-N 2-[2,4,6-trioxo-3,5-bis(2-prop-2-enoyloxyethyl)-1,3,5-triazinan-1-yl]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN1C(=O)N(CCOC(=O)C=C)C(=O)N(CCOC(=O)C=C)C1=O YIJYFLXQHDOQGW-UHFFFAOYSA-N 0.000 description 1
- YHBWXWLDOKIVCJ-UHFFFAOYSA-N 2-[2-(2-methoxyethoxy)ethoxy]acetic acid Chemical compound COCCOCCOCC(O)=O YHBWXWLDOKIVCJ-UHFFFAOYSA-N 0.000 description 1
- HNUQMTZUNUBOLQ-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-(2-octadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO HNUQMTZUNUBOLQ-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- TYCFGHUTYSLISP-UHFFFAOYSA-N 2-fluoroprop-2-enoic acid Chemical class OC(=O)C(F)=C TYCFGHUTYSLISP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- WJIOHMVWGVGWJW-UHFFFAOYSA-N 3-methyl-n-[4-[(3-methylpyrazole-1-carbonyl)amino]butyl]pyrazole-1-carboxamide Chemical compound N1=C(C)C=CN1C(=O)NCCCCNC(=O)N1N=C(C)C=C1 WJIOHMVWGVGWJW-UHFFFAOYSA-N 0.000 description 1
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- IMJLWKZFJOIXJL-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C=C IMJLWKZFJOIXJL-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZLHNNQVOKNCBRY-UHFFFAOYSA-N C=CC(=O)C(=C)C(C)=O Chemical compound C=CC(=O)C(=C)C(C)=O ZLHNNQVOKNCBRY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- DIWVBIXQCNRCFE-UHFFFAOYSA-N DL-alpha-Methoxyphenylacetic acid Chemical compound COC(C(O)=O)C1=CC=CC=C1 DIWVBIXQCNRCFE-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102220588444 Keratin, type I cytoskeletal 18_S44A_mutation Human genes 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002596 Polyethylene Glycol 900 Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000271897 Viperidae Species 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical class C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010415 colloidal nanoparticle Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000005100 correlation spectroscopy Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- INSRQEMEVAMETL-UHFFFAOYSA-N decane-1,1-diol Chemical compound CCCCCCCCCC(O)O INSRQEMEVAMETL-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- FEHYCIQPPPQNMI-UHFFFAOYSA-N ethenyl(triphenoxy)silane Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(C=C)OC1=CC=CC=C1 FEHYCIQPPPQNMI-UHFFFAOYSA-N 0.000 description 1
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 1
- JEWCZPTVOYXPGG-UHFFFAOYSA-N ethenyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)C=C JEWCZPTVOYXPGG-UHFFFAOYSA-N 0.000 description 1
- MABAWBWRUSBLKQ-UHFFFAOYSA-N ethenyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C=C MABAWBWRUSBLKQ-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- DYFMAHYLCRSUHA-UHFFFAOYSA-N ethenyl-tris(2-methylpropoxy)silane Chemical compound CC(C)CO[Si](OCC(C)C)(OCC(C)C)C=C DYFMAHYLCRSUHA-UHFFFAOYSA-N 0.000 description 1
- GBFVZTUQONJGSL-UHFFFAOYSA-N ethenyl-tris(prop-1-en-2-yloxy)silane Chemical compound CC(=C)O[Si](OC(C)=C)(OC(C)=C)C=C GBFVZTUQONJGSL-UHFFFAOYSA-N 0.000 description 1
- BQRPSOKLSZSNAR-UHFFFAOYSA-N ethenyl-tris[(2-methylpropan-2-yl)oxy]silane Chemical compound CC(C)(C)O[Si](OC(C)(C)C)(OC(C)(C)C)C=C BQRPSOKLSZSNAR-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000012949 free radical photoinitiator Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000008131 herbal destillate Substances 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical group O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- UWSYCPWEBZRZNJ-UHFFFAOYSA-N trimethoxy(2,4,4-trimethylpentyl)silane Chemical compound CO[Si](OC)(OC)CC(C)CC(C)(C)C UWSYCPWEBZRZNJ-UHFFFAOYSA-N 0.000 description 1
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- OWOMRZKBDFBMHP-UHFFFAOYSA-N zinc antimony(3+) oxygen(2-) Chemical compound [O--].[Zn++].[Sb+3] OWOMRZKBDFBMHP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/288—Compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/2885—Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/283—Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- G02B1/105—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
- Y10T428/31544—Addition polymer is perhalogenated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31547—Of polyisocyanurate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- Hardcoats have been used to protect the face of optical displays.
- Hardcoats typically contain inorganic oxide particles, e.g., silica, of nanometer dimensions dispersed in a binder precursor resin matrix, and sometimes are referred to as “ceramers”.
- WO 2005/111157 describes (Abstract) a hardcoat coating composition for use as a stain repellent single layer on an optical display.
- the hardcoat coating composition comprises a mono or multi(methyl)acrylate bearing at least one monovalent hexafluoropolypropylene oxide derivative and a free radically reactive fluoroalkyl-group or fluoroalkylene-group containing acrylate compatibilizer.
- WO2006/102383 and WO 03/002628 describe various polymerizable perfluoropolyether urethane additives and their use in hardcoats.
- WO 03/002628 describes (Abstract) A perfluoropolyether-containing composition which has an affinity for nonfluorinated substrates and can form on the surface thereof a film firmly adherent to the surface. It is a composition containing carbon-carbon double bonds which comprises (A) a triisocyanate obtained by trimerizing a diisocyanate and (B) a combination of at least two compounds having active hydrogen, the component (B) comprising (B-1) a perfluoropolyether having at least one active hydrogen atom and (B-2) a monomer having an active hydrogen atom and a carbon-carbon double bond.
- optical displays comprising a (e.g. light-transmissive optical) substrate having a surface layer that comprises the reaction product of a polymerizable mixture comprising at least one perfluoropolyether (e.g. urethane) material comprising at least two free-radically polymerizable groups and at least one segment having greater than 6 ethylene oxide repeat units; and at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
- a polymerizable mixture comprising at least one perfluoropolyether (e.g. urethane) material comprising at least two free-radically polymerizable groups and at least one segment having greater than 6 ethylene oxide repeat units
- at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
- a free-radically polymerizable composition comprising a mixture of reaction products of i) at least one polyisocyanate; ii) at least one isocyanate reactive perfluoropolyether compound; iii) at least one isocyanate reactive compound comprising greater than 6 repeat units of ethylene oxide; and iv) at least one isocyanate reactive non-fluorinated crosslinker comprising at least two free-radically polymerizable groups.
- the composition may be a coating dispersed in an alcohol-containing solvent that is particularly useful for coating optical substrates such as polycarbonate, acrylic, cellulose acetate, and cellulose triacetate.
- the perfluoropolyether (e.g. urethane)material preferably comprises at least two (meth)acrylate groups such as a terminal group having at least two (meth)acrylate groups.
- the perfluoropolyether urethane may comprise a monovalent perfluoropolyether moiety such as F(CF(CF 3 )CF 2 O) a CF(CF 3 )— wherein “a” ranges from 4 to 15.
- the binder precursor preferably comprises least one (e.g. non-fluorinated) hydrocarbon crosslinker that comprises at least three free-radically polymerizable groups is typically employed.
- the surface layer or polymerizable composition further comprises inorganic oxide particles.
- a hardcoat layer comprising inorganic oxide particles is disposed between the substrate and the (e.g. inorganic particle-free) surface layer.
- optical displays including a light tranmissive optical substrate.
- the surface layer of the optical substrate comprises the reaction product of a polymerizable mixture comprising at least one free-radically polymerizable perfluoropolyether (e.g. urethane) material having at least one segment that comprises ethylene oxide repeat units; and at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
- a polymerizable mixture comprising at least one free-radically polymerizable perfluoropolyether (e.g. urethane) material having at least one segment that comprises ethylene oxide repeat units; and at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
- One exemplary free-radically polymerizable perfluoropolyether material is a perfluoropolyether urethane material that comprises a mixture of reaction products of
- At least one isocyanate reactive (e.g. non-fluorinated) hydrocarbon crosslinker comprising two or more free-radically polymerizable groups.
- the perfluoropolyether compound (i.e. ii) and ethylene oxide repeat unit containing compound (i.e. iii) preferably comprise at least one (e.g. terminal) alcohol, thiol, or amine group.
- both the perfluoropolyether compound and the ethylene oxide compound contain (e.g. terminal) reactive alcohol groups.
- a monofunctional perfluoropolyether compound and a monofunctional ethylene oxide repeat unit containing compound are employed as reactants with the polyisocyanate.
- a multifunctional perfluoropolyether compound and a monofunctional ethylene oxide repeat unit containing compound are employed.
- a multifunctional perfluoropolyether compound and a multifunctional ethylene oxide repeat unit containing compound are employed.
- the reaction product typically includes a major amount of a perfluoropolyether polymeric material.
- the hydrocarbon crosslinker typically comprises (meth)acryl groups such as (meth)acrylate groups.
- a substantial excess of hydrocarbon crosslinker (i.e. iv) is typically employed such that the perfluoropolyether urethane polymeric material as well as other reaction products of the reaction mixture comprise unreacted free-radically polymerizable groups which can be subsequently cured for example by radiation (e.g. UV) curing.
- the perfluoropolyether urethane composition is made by first reacting a polyisocyanate with a perfluoropolyether compound containing an alcohol, thiol, or amine group, followed by reaction with one or more ethylene oxide repeat unit-containing compounds containing an alcohol, thiol, or amine group.
- the perfluoropolyether urethane additive is then combined with the (e.g. non-fluorinated) isocyanate reactive multifunctional free-radically polymerizable (e.g. (meth)acrylate) crosslinker.
- these perfluoropolyether urethane additives can be formed by other reaction sequences such as by first reacting the polyisocyanate with the crosslinker, followed by the addition of the ethylene oxide repeat unitcontaining compound.
- the perfluoropolyether urethane additive could be made by reacting all four components concurrently.
- Alcohol based coating compositions are especially useful for coating light transmissive substrates such as polycarbonate, acrylic, cellulose acetate, and cellulose triacetate which are susceptible to swelling, cracking, or crazing by organic solvents such as ketones (e.g. MEK), aromatic solvents (e.g. toluene), and esters (e.g. acetate solvents).
- ketones e.g. MEK
- aromatic solvents e.g. toluene
- esters e.g. acetate solvents
- One or more polyisocyanate materials are employed in the preparation of the perfluoropolyether urethane.
- a variety of polyisocyanates may be utilized as component i) in the preparation of the perfluoropolyether urethane polymeric material.
- Polyisocyanate means any organic compound that has two or more reactive isocyanate (—NCO) groups in a single molecule such as diisocyanates, triisocyanates, tetraisocyanates, etc., and mixtures thereof. Cyclic and/or linear polyisocyanate molecules may usefully be employed. For improved weathering and diminished yellowing the polyisocyanate(s) of the isocyanate component is typically aliphatic.
- the isocyanate employed is typically at least trifunctional. However, when one of more of the isocyanate reactive compounds have at least difunctional isocyanate reactivity, difunctional isocyanates can be employed.
- Useful aliphatic polyisocyanates include, for example, bis(4-isocyanatocyclohexyl) methane (H 12 MDI) such as available from Bayer Corp., Pittsburgh, Pa. under the trade designation “Desmodur W“; isophorone diisocyanate (IPDI) such as commercially available from Huels America, Piscataway, N.J.; hexamethylene diisocyanate (HDI) such as commercially available from Aldrich Chemical Co., Milwaukee, Wis.; trimethyl hexamethylene diisocyanate such as commercially available from Degussa, Corp., Dusseldorf, Germany under the trade designation “Vestanate TMDI“; and m-tetramethylxylene diisocyanate (TMXDI) such as commercially available from Aldrich Chemical Co., Milwaukee, Wis.
- H 12 MDI bis(4-isocyanatocyclohexyl) methane
- H 12 MDI bis(4-
- aromatic isocyanates such as diphenylmethane diisocyanate (MDI) such as commercially available from Bayer Corp., Pittsburgh, Pa. under the trade designation “Mondur M”; toluene 2,4-diisocyanate (TDI) such as commercially available from Aldrich Chemical Co., Milwaukee, Wis., and 1,4-phenylene diisocyanate are also useful.
- MDI diphenylmethane diisocyanate
- TDI toluene 2,4-diisocyanate
- 1,4-phenylene diisocyanate 1,4-phenylene diisocyanate
- Preferred polyisocyanates include derivatives of the above-listed monomeric polyisocyanates. These derivatives include, but are not limited to, polyisocyanates containing biuret groups, such as the biuret adduct of hexamethylene diisocyanate (HDI) available from Bayer Corp. under the trade designation “Desmodur N-100”, polyisocyanates based on HDI containing isocyanurate groups, such as that available from Bayer Corp. under trade designation “Desmodur N-3300”, as well as polyisocyanates containing urethane groups, uretdione groups, carbodiimide groups, allophonate groups, and the like. These derivatives are preferred as they are polymeric, exhibit very low vapor pressures and are substantially free of isocyanate monomer.
- biuret groups such as the biuret adduct of hexamethylene diisocyanate (HDI) available from Bayer Corp. under the trade designation “Desmodur N-100”
- One or more isocyanate reactive perfluoropolyether materials are employed in the preparation of the perfluoropolyether urethane.
- Various isocyanate reactive perfluoropolyethers materials can be utilized as component ii).
- the synthesis of various perfluoropolyether materials having (e.g. terminal) isocyanate reactive groups such as OH, SH or NHR wherein R is H of an alkyl group of 1 to 4 carbon atoms is known.
- a methyl ester material e.g. having an average molecular weight of 1,211 g/mol
- Perfluoropolyether alcohol materials can be made by a procedure similar to that described in U.S. Publication No. 2004-0077775, filed May 24, 2002.
- Perfluoropolyether alcohol materials having an SH group can be made using this same process by use of aminoethane thiol rather than aminoethanol.
- Perfluoropolyether amine materials can be synthesized as described in US 2005/0250921.
- the isocyanate reactive perfluoropolyether materials include one or more compounds of those of the formula:
- Rf1 is a monovalent (where z is 1) or divalent (where z is 2) perfluoropolyether;
- Q is a connecting group having a valency of at least 2;
- X is O, S, or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
- y is 1 or 2
- z is 1 or 2.
- Q can comprise a straight chain, branched chain, or cyclic-containing connecting group.
- Q can include an alkylene, an arylene, an aralkylene, an alkarylene.
- Q can optionally include heteroatoms such as O, N, and S, and combinations thereof.
- Q can also optionally include a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof.
- the perfluoropolyether urethane material is preferably prepared from an isocyanate reactive HFPO— material.
- HFPO— refers to the end group F(CF(CF 3 )CF 2 O) a CF(CF 3 )— of the methyl ester F(CF(CF 3 )CF 2 O) a CF(CF 3 )C(O)OCH 3 , wherein “a” averages 2 to 15. In some embodiments, “a” averages between 3 and 10 or “a” averages between 5 and 8.
- Such species generally exist as a distribution or mixture of oligomers with a range of values for “a”, so that the average value of a may be non-integer.
- “a” averages 6.2.
- the molecular weight of the HFPO- perfluoropolyether material varies depending on the number “a” of repeat units from about 940 g/mole to about 1600 g/mole, with 1100 g/mole to 1400 g/mole typically being preferred.
- the ethylene oxide containing isocyanate reactive compound generally comprises greater than 6 repeat units of ethylene oxide.
- the number of ethylene oxide repeat units may be at least 7, 8, or 9 repeat units.
- the isocyanate reactive ethylene oxide containing compound has at least 10 repeat units of ethylene oxide.
- the number of repeat units may be 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
- the number of ethylene oxide repeat units does not exceed about 50 and may be for example up to 25, 30, or 35 repeat units.
- the ethylene oxide containing compounds may be represented by the following formula:
- X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
- R EO is H; a group selected from alkyl, aryl, alkaryl, aralkyl, that can optionally be substituted with a heteroatom, a heteoratom functional groups (such as —OH —SH, and —NH 2 ), or optionally substituted with a (meth)acryl functional group; or —C(O)C(R 2 ) ⁇ CH 2 where R 2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
- b ranges from 1 to 4 and is typically 1 or 2;
- j ranges from 7 to 50.
- R EO is H or a lower alkyl of 1 to 4 carbon atoms such as CH 3 . Such embodiments have been found to result in surface layers having low lint attraction.
- the ethylene oxide containing compound may also comprise other alkylene oxide compounds such as propylene oxide.
- alkylene oxide repeat units are typically ethylene oxide repeat units.
- Various isocyanate reactive non-fluorinated hydrocarbon crosslinkers can be employed in the synthesis of the perfluoropolyether urethane polymeric material.
- Such crosslinkers comprise at least two and preferably three free-radically polymerizable groups.
- the free-radically polymerizable groups are preferably (meth)acryl and more preferably (meth)acrylate groups.
- Suitable isocyanate reactive non-fluorinated hydrocarbon crosslinkers may be described by the formula:
- Q is a connecting group having a valency of at least 2;
- A is a (meth)acryl functional group such as —XC(O)C(R2) ⁇ CH2, where
- b ranges from 1 to 4 and is preferably 1 or 2;
- p ranges from 2 to 6.
- Q can comprise a straight chain, branched chain, or cyclic-containing connecting group as previously described.
- Exemplary isocyanate reactive crosslinkers include for example 1,3-glycerol dimethacrylate available from Echo Resin Inc. of Paris, Mo. and pentaerythritol triacrylate, available from Sartomer of Exton, Pa. under the trade designation “SR444C”.
- Additional useful isocyanate reactive (meth)acrylate crosslinkers include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al.).
- the total mole fraction of isocyanate reactive groups used in making the perfluoropolyether urethane material is 1.0 or greater.
- the polymerizable compositions described herein typically comprise at least 0.2 mole fraction of crosslinking agent(s), it is typically preferred to maximize the concentration of isocyanate reactive hydrocarbon crosslinker to improve the durability and compatibility with the binder of the hardcoat.
- the total amount of crosslinking agent(s) may comprise at least 0.5 mole fraction and may be at least 0.6 mole fraction, at least 0.7 mole fraction, at least 0.8 mole fraction, or at least 0.9 mole of the sum of the isocyanate reactants.
- the mole fraction of the perfluoropolyether reactant is typically at least 0.05 and no greater than 0.5.
- the mole fraction of ethylene oxide repeat unit containing reactant is also typically at least 0.05 or 0.10 and no greater than 0.7, 0.6, or 0.5.
- the reaction product generally includes a distribution of various reaction products.
- the reaction product of the polyisocyanate with all three reactants ii, iii, and iv
- the reaction product of the polyisocyanate with two of the three as well as reaction products of the polyisocyanate the individual reactants are also present.
- the perfluoropolyether urethane composition is of the formula:
- Ri is a residue of a multi-isocyanate
- X are each independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
- Q is independently a connecting group of valency at least 2;
- Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula F(RfcO)xCdF2d-, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
- A is a (meth)acryl functional group such as —XC(O)C(R2) ⁇ CH2, where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
- p 2 to 6
- R EO is H; a group selected from alkyl, aryl, alkaryl, aralkyl, that can optionally be substituted with a heteroatom, a heteoratom functional groups (such as —OH —SH, and —NH 2 ), or optionally substituted with a (meth)acryl functional group; or —C(O)C(R 2 ) ⁇ CH 2 where R 2 is a lower alkyl of 1 to 4 carbon atoms or H or F.
- perfluoropolyether urethane materials can be prepared having at least one of each of the units of this formula.
- Q in association with the Rf group is a straight chain, branched chain, or cycle-containing connecting group as previously described.
- Q when X is O, Q is typically not methylene and thus contains two or more carbon atoms. In other embodiments, X is S or NR. In some embodiments, Q is an alkylene having at least two carbon atoms. In other embodiments, Q is a straight chain, branched chain, or cycle-containing connecting group selected from arylene, aralkylene, and alkarylene. In yet other embodiments, Q contains a heteroatom such as O, N, and S and/or a heteroatom containing functional groups such as carbonyl and sulfonyl.
- Q is a branched or cycle-containing alkylene group that optionally contains heteroatoms selected from O, N, S and/or a heteroatom-containing functional group such as carbonyl and sulfonyl.
- Q contains a nitrogen containing group such an amide group such as —C(O)NHCH 2 CH 2 —, —C(O)NH(CH 2 ) 6 —, and —C(O)NH(CH 2 CH 2 O) 2 CH 2 CH 2 —.
- the perfluoropolyether urethane polymeric material described herein may be employed alone or in combination with various other fluorinated compounds having at least one moiety selected from fluoropolyether, fluoroalkyl, and fluoroalkylene linked to at least one free-radically reactive group.
- fluoropolyether fluoropolyether
- fluoroalkyl fluoroalkylene linked to at least one free-radically reactive group.
- second fluorinated compound it is typically preferred that such second fluorinated compound also comprises an HFPO-moiety.
- Various fluorinated materials that can be employed in combination with the perfluoropolyether urethane polymeric material described are also described in WO2006/102383.
- the polymerizable perfluoropolyether urethane composition is typically dispersed in a hardcoat composition in combination with a (e.g. alcohol based) solvent, applied to an optical substrate and photocured to form the easy to clean, stain and ink repellent light transmissible surface layer.
- the hardcoat is a tough, abrasion resistant layer that protects the optical substrate and the underlying display screen from damage from causes such as scratches, abrasion and solvents.
- the hardcoat is formed by coating a curable liquid ceramer composition onto the substrate and curing the composition in situ to form a hardened film.
- the surface energy can be characterized by various methods such as contact angle and ink repellency, as determined by the test methods described in the Examples.
- stain repellent refers to a surface treatment exhibiting a static contact angle with water of at least 70 degrees. More preferably, the contact angle is at least 80 degrees and most preferably at least 90 degrees. Alternatively, or in addition thereto, the advancing contact angle with hexadecane is at least 50 degrees and more preferably at least 60 degrees. Low surface energy results in anti-soiling and stain repellent properties as well as rendering the exposed surface easy to clean.
- Another indicator of low surface energy relates to the extent to which ink from a pen or marker beads up when applied to the exposed surface.
- the surface layer and articles exhibit “ink repellency” when ink from pens and markers beads up into discrete droplets and can be easily removed by wiping the exposed surface with tissues or paper towels, such as tissues available from the Kimberly Clark Corporation, Roswell, Ga. under the trade designation “SURPASS FACIAL TISSUE.”
- Durability can be defined in terms of results from a modified oscillating sand test (Method ASTM F 735-94) carried out at 250 rpm for 5 minutes as described in the Test Methods of this application.
- a durable coating exhibits an ink repellency loss value of 65 mm (75% loss) or less, more preferably 40 mm (45% loss) or less, most preferably 0 mm (no loss) of ink repellency (IR) in this test.
- the perfluoropolyether urethane polymeric material described herein can be employed as the sole fluorinated component of a one-layer hardcoat composition.
- the hardcoat composition typically further comprises (e.g. surface modified) inorganic particles.
- the thickness of the hardcoat surface layer is typically at least 0.5 microns, preferably at least 1 micron, and more preferably at least 2 microns.
- the thickness of the hardcoat layer is generally no greater than 25 microns. Preferably the thickness ranges from 3 microns to 5 microns.
- an inorganic particle free perfluoropolyether urethane polymer containing surface layer may be employed alone for uses where durability is not required.
- an inorganic particle free perfluoropolyether urethane polymer containing surface layer may be provided in combination with an inorganic particle containing hardcoat layer disposed between the substrate and the surface layer. This will be referred to as a two-layer hardcoat.
- the surface layer preferably has a thickness ranging from about 10 to 200 nanometers.
- the total of all (per)fluorinated compounds ranges from 0.01% to 10%, and more preferably from 0.1% to 5%, of the total solids of the hardcoat composition.
- the amount of perfluoropolyether urethane(s) in the coating compositions ranges from 0.0 1 to 50 wt-% solids, and more preferably from 1 to 25 wt-% solids.
- binder precursors that form a crosslinked polymeric matrix upon curing can be employed in the hardcoat.
- the isocyanate reactive non-fluorinated crosslinking materials previously described are suitable binder precursors.
- Di(meth)acryl binder precursors include for example 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, ethoxylated bisphenol A diacrylate, hydroxypivalaldehyde modified tri
- Tri(meth)acryl binder precursor include for example glycerol triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylates (e.g. having 3 to 20 ethoxylate repeat), propoxylated glyceral triacrylates, trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate.
- Higher functionality (meth)acryl containing compounds include for example ditrimethylolpropane tetraacrylate, dipentaerythritol pentaacrylate, ethoxylated pentaerythritol tetraacrylate, caprolactone modified dipentaerythritol hexaacrylate.
- PET3A pentaerythritol triacrylate
- PET4A pentaerythritol tetraacrylate
- Oligomeric (meth)acryl such as urethane acrylates, polyester acrylates, epoxy acrylates; and polyacrylamide analogues of the foregoing can also be employed as the binder.
- the binder may comprise one or more N,N-disubstituted acrylamide and or N-substituted-N-vinyl-amide monomers as described in Bilkadi et al.
- the hardcoat may be derived from a ceramer composition containing about 20 to about 80% ethylenically unsaturated monomers and about 5 to about 40% N,N-disubstituted acrylamide monomer or N-substituted-N-vinyl-amide monomer, based on the total weight of the solids in the ceramer composition.
- polymerizable compositions described herein may further comprise at least one free-radical thermal initiator and/or photoinitiator.
- an initiator and/or photoinitiator typically, if such an initiator and/or photoinitiator are present, it comprises less than about 10 percent by weight, more typically less than about 5 percent of the polymerizable composition, based on the total weight of the polymerizable composition.
- Free-radical curing techniques are well known in the art and include, for example, thermal curing methods as well as radiation curing methods such as electron beam or ultraviolet radiation. Further details concerning free radical thermal and photopolymerization techniques may be found in, for example, U.S. Pat. No. 4,654,233 (Grant et al.); U.S. Pat. No. 4,855,184 (Klun et al.); and U.S. Pat. No. 6,224,949 (Wright et al.).
- Useful free-radical thermal initiators include, for example, azo, peroxide, persulfate, and redox initiators, and combinations thereof.
- Useful free-radical photoinitiators include, for example, those known as useful in the UV cure of acrylate polymers such as described in WO2006/102383.
- the polymerizable composition for use as the surface layer or an underlying hardcoat layer preferably contains surface modified inorganic particles that add mechanical strength and durability to the resultant coating.
- the inorganic oxide particles can consist essentially of or consist of a single oxide such as silica, or can comprise a combination of oxides, such as silica and aluminum oxide, or a core of an oxide of one type (or a core of a material other than a metal oxide) on which is deposited an oxide of another type.
- Silica is a common inorganic particle.
- the inorganic oxide particles are often provided in the form of a sol containing a colloidal dispersion of inorganic oxide particles in liquid media.
- the sol can be prepared using a variety of techniques and in a variety of forms including hydrosols (where water serves as the liquid medium), organosols (where organic liquids so serve), and mixed sols (where the liquid medium contains both water and an organic liquid), e.g., as described in U.S. Pat. No. 5,648,407 (Goetz et al.); U.S. Pat. No. 5,677,050 (Bilkadi et al.) and U.S. Pat. No. 6,299,799 (Craig et al.).
- Aqueous sols e.g. of amorphous silica
- Sols generally contain at least 2 wt-%, at least 10 wt-%, at least 15 wt-%, at least 25 wt-%, and often at least 35 wt-% colloidal inorganic oxide particles based on the total weight of the sol.
- the amount of colloidal inorganic oxide particle is typically no more than 50 wt-% (e.g. 45 wt-%).
- the surface of the inorganic particles can be “acrylate functionalized” as described in Bilkadi et al.
- the sols can also be matched to the pH of the binder, and can contain counter ions or water-soluble compounds (e.g., sodium aluminate), all as described in Kang et al. '798.
- Various high refractive index inorganic oxide particles can be employed such as for example zirconia (“ZrO 2 ”), titania (“TiO 2 ”), antimony oxides, alumina, tin oxides, alone or in combination. Mixed metal oxide may also be employed.
- Zirconias for use in the high refractive index layer are available from Nalco Chemical Co. under the trade designation “Nalco OOSSOO8” and from Buhler AG Uzwil, Switzerland under the trade designation “Buhler zirconia Z-WO sol”.
- Zirconia nanoparticle can also be prepared such as described in U.S. Pat. Nos. 7,241,437and 6,376,590.
- the inorganic nanoparticles are preferably treated with a surface treatment agent.
- Surface-treating the nano-sized particles can provide a stable dispersion in the polymeric resin.
- the surface-treatment stabilizes the nanoparticles so that the particles will be well dispersed in the polymerizable resin and results in a substantially homogeneous composition.
- the nanoparticles can be modified over at least a portion of its surface with a surface treatment agent so that the stabilized particle can copolymerize or react with the polymerizable resin during curing.
- the incorporation of surface modified inorganic particles is amenable to covalent bonding of the particles to the free-radically polymerizable organic components, thereby providing a tougher and more homogeneous polymer/particle network.
- a surface treatment agent has a first end that will attach to the particle surface (covalently, ionically or through strong physisorption) and a second end that imparts compatibility of the particle with the resin and/or reacts with resin during curing.
- surface treatment agents include alcohols, amines, carboxylic acids, sulfonic acids, phosphonic acids, silanes and titanates.
- the preferred type of treatment agent is determined, in part, by the chemical nature of the metal oxide surface. Silanes are preferred for silica and other for siliceous fillers. Silanes and carboxylic acids are preferred for metal oxides such as zirconia.
- the surface modification can be done either subsequent to mixing with the monomers or after mixing.
- silanes it is preferred in the case of silanes to react the silanes with the particle or nanoparticle surface before incorporation into the resin.
- the required amount of surface modifier is dependant upon several factors such as particle size, particle type, modifier molecular wt, and modifier type. In general, it is preferred that approximately a monolayer of modifier is attached to the surface of the particle. The attachment procedure or reaction conditions required also depend on the surface modifier used. For silanes it is preferred to surface treat at elevated temperatures under acidic or basic conditions for from 1-24 hr approximately. Surface treatment agents such as carboxylic acids may not require elevated temperatures or extended time.
- surface treatment agents suitable for the compositions include compounds such as, for example, isooctyl trimethoxy-silane, N-(3-triethoxysilylpropyl)methoxyethoxyethoxyethyl carbamate, N-(3- triethoxysilylpropyl)methoxyethoxyethoxyethyl carbamate, 3- (methacryloyloxy)propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-(methacryloyloxy)propyltriethoxysilane, 3-(methacryloyloxy)propylmethyldimethoxysilane, 3-(acryloyloxypropyl)methyldimethoxysilane, 3-(methacryloyloxy)propyldimethylethoxysilane, 3-(methacryloyloxy)propyldimethylethoxysilane, vinyldimethylethoxysi
- the surface modification of the particles in the colloidal dispersion can be accomplished in a variety known ways, such as described in U.S. Pat. Nos. 7,241,437 and 6,376,590.
- a combination of surface modifying agents can be useful, wherein at least one of the agents has a functional group co-polymerizable with a hardenable resin. Combinations of surface modifying agent can result in lower viscosity.
- the polymerizing group can be ethylenically unsaturated or a cyclic function subject to ring opening polymerization.
- An ethylenically unsaturated polymerizing group can be, for example, an acrylate or methacrylate, or vinyl group.
- a cyclic functional group subject to ring opening polymerization generally contains a heteroatom such as oxygen, sulfur or nitrogen, and preferably a 3-membered ring containing oxygen such as an epoxide.
- a preferred combination of surface modifying agent includes at least one surface modifying agent having a functional group that is copolymerizable with the organic component of the polymerizable resin and a second amphiphilic modifying agent, such as a polyether silane, that may act as a dispersant.
- the second modifying agent is preferably a polyalkyleneoxide containing modifying agent that is optionally co-polymerizable with the organic component of the polymerizable composition.
- Non-silica containing fully condensed nanoparticles typically have a degree of crystallinity (measured as isolated metal oxide particles) greater than 55%, preferably greater than 60%, and more preferably greater than 70%.
- the degree of crystallinity can range up to about 86% or greater.
- the degree of crystallinity can be determined by X-ray diffraction techniques.
- Condensed crystalline (e.g. zirconia) nanoparticles have a high refractive index whereas amorphous nanoparticles typically have a lower refractive index.
- the inorganic particles preferably have a substantially monodisperse size distribution or a polymodal distribution obtained by blending two or more substantially monodisperse distributions.
- the inorganic particles can be introduced having a range of particle sizes obtained by grinding the particles to a desired size range.
- the inorganic oxide particles are typically non-aggregated (substantially discrete), as aggregation can result in optical scattering (haze) or precipitation of the inorganic oxide particles or gelation.
- the inorganic oxide particles are typically colloidal in size, having an average particle diameter of 5 nanometers to 100 nanometers.
- the particle size of the high index inorganic particles is preferably less than about 50 nm in order to provide sufficiently transparent high-refractive index coatings.
- the average particle size of the inorganic oxide particles can be measured using transmission electron microscopy to count the number of inorganic oxide particles of a given diameter.
- the optical film having a perfluoropolyether urethane containing surface layer as described herein may have a gloss or matte surface.
- Matte films typically have lower transmission and higher haze values than typical gloss films.
- the haze is generally at least 5%, 6%, 7%, 8%, 9%, or 10% as measured according to ASTM D1003.
- gloss surfaces typically have a gloss of at least 130 as measured according to ASTM D 2457-03 at 60°; matte surfaces have a gloss of less than 120.
- a particulate matting agent can be incorporated into the polymerizable composition in order to impart anti-glare properties to the surface layer.
- the particulate matting agent can prevent uneven coloration caused by interference with an associated hard coat layer.
- Exemplary systems incorporating matting agents into a hard coating layer, but having a different hard coating composition, are described, for example, in U.S. Pat. No. 6,693,746.
- exemplary matte films are commercially available from U.S.A. Kimoto Tech of Cedartown, Ga., under the trade designation “N4D2A.”
- the amount of particulate matting agent added is between about 0.5 and 10% of the total solids of the composition, depending upon the thickness of the layer, with a preferred amount around 2%.
- the average particle diameter of the particulate matting agent has a predefined minimum and maximum that is partially dependent upon the thickness of the layer. However, generally speaking, average particle diameters below 1.0 microns do not provide the degree of anti-glare sufficient to warrant inclusion, while average particle diameters exceeding 10.0 microns deteriorate the sharpness of the transmission image.
- the average particle size is thus preferably between about 1.0 and 10.0 microns, and more preferably between 1.7 and 3.5 microns, in terms of the number-averaged value measured by the Coulter method.
- inorganic particles or resin particles are used including, for example, amorphous silica particles, TiO 2 particles, Al 2 O 3 particles, cross-linked acrylic polymer particles such as those made of cross-linked poly(methyl methacrylate), cross-linked polystyrene particles, melamine resin particles, benzoguanamine resin particles, and cross-linked polysiloxane particles.
- resin particles are more preferred, and in particular cross-linked polystyrene particles are preferably used since resin particles have a high affinity for the binder material and a small specific gravity.
- spherical and amorphous particles can be used as for the shape of the particulate matting agent. However, to obtain a consistent anti-glare property, spherical particles are desirable. Two or more kinds of particulate materials may also be used in combination.
- silica particulate matting agent having an average particle size of 3.5 microns is commercially available from W.R. Grace and Co., Columbia, Md. under the trade designation “Syloid C803”.
- the attraction of the perfluoropolyurethane-containing hardcoat surface to lint can be further reduced by including an antistatic agent.
- an antistatic coating can be applied to the (e.g. optionally primed) substrate prior to coating the hardcoat.
- the thickness of the antistatic layer is typically at least 20 nm and generally no greater than 400 nm, 300 nm, or to 200 nm.
- the antistatic coating may comprise at least one conductive polymer as an antistatic agent.
- Various conductive polymers are known. Examples of useful conductive polymers include polyaniline and derivatives thereof, polypyrrole, and polythiophene and its derivatives.
- One particularly suitable polymer is poly(ethylenedioxythiophene) (PEDOT) such as poly(ethylenedioxythiophene) doped with poly(styrenesulfonic acid)(PEDOT:PSS) commercially available from H.C. Starck, Newton, Mass. under the trade designation “BAYTRON P”.
- PEDOT poly(ethylenedioxythiophene)
- PES poly(styrenesulfonic acid)
- the antistatic coating or hardcoat composition may comprise conductive metal-containing particles, such as metals or semiconductive metal oxides. Such particles may also be described as nanoparticles having a particle size or associated particle size of greater than 1 nm and less than 200 nm. Various granular, nominally spherical, fine particles of crystalline semiconductive metal oxides are known. Such conductive particles are generally binary metal oxides doped with appropriate donor heteroatoms or containing oxygen deficiencies. Preferred doped conductive metal oxide granular particles include Sb-doped tin oxide, Al-doped zinc oxide, In-doped zinc oxide, and Sb-doped zinc oxide.
- Antimony tin oxide (ATO) nanoparticle dispersions that can be used include a dispersion available from Air Products under the trade designation “Nano ATO S44A” (25 wt-% solids, water), 30 nm and 100 nm (20 wt-% solids, water) dispersions available from Advanced Nano Products Co. Ltd.
- ATO IPA sols (30 wt-%) also available from ANP, a dispersion available from Keeling & Walker Ltd under the trade designation “CPM10C” (19.1 wt-% solids), and a dispersion commercially available from Ishihara Sangyo Kaisha, Ltd under the trade designation “SN-100 D” (20 wt-% solids).
- CPM10C Keeling & Walker Ltd
- SN-100 D 20 wt-% solids
- AZO antimony zinc oxide
- CELNAX CX-Z2101P under the trade designations “CELNAX CX-Z2101P”, “CELNAX CX-Z300H” (in water), “CELNAX CX-Z401M” (in methanol), and “CELNAX CX-Z653M-F” (in methanol).
- the antistatic agent is present in an amount of at least 20 wt-%.
- levels can be up to 80 wt % solids for refractive index modification.
- the concentration is generally no greater than 20 wt-% solid, and preferably less than 15 wt-%.
- the amount of conductive polymer ranges from 2 wt-% to 5 wt-% solids of the dried antistatic layer.
- the perfluoropolyether urethane polymeric material alone or in combination with the hardcoat composition can be dispersed in a solvent to form a dilute coating composition.
- the amount of solids in the coating compositon is typically at least 20 wt-% and usually no greater than about 50 wt-%.
- an alcohol based solvent including for example methanol, ethyl alcohol, isopropyl alcohol, propanol, etc. as well as glycol ethers such as propylene glycol monomethyl ether or ethylene glycol monomethyl ether, etc.
- the coating compositions may contain predominantly alcohol solvent(s).
- alcohol based solvent(s) may be combined with other (i.e. non-alcohol) solvents.
- Thin coating layers can be applied to the optical substrate using a variety of techniques, including dip coating, forward and reverse roll coating, wire wound rod coating, and die coating.
- Die coaters include knife coaters, slot coaters, slide coaters, fluid bearing coaters, slide curtain coaters, drop die curtain coaters, and extrusion coaters among others. Many types of die coaters are described in the literature such as by Edward Cohen and Edgar Cutoff, Modern Coating and Drying Technology, VCH Publishers, NY 1992, ISBN 3-527-28246-7 and Gutoff and Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, Wiley Interscience, NY ISBN 0-471-59810-0.
- a die coater generally refers to an apparatus that utilizes a first die block and a second die block to form a manifold cavity and a die slot.
- the coating fluid under pressure, flows through the manifold cavity and out the coating slot to form a ribbon of coating material.
- Coatings can be applied as a single layer or as two or more superimposed layers. Although it is usually convenient for the substrate to be in the form of a continuous web, the substrate may also be a succession of discrete sheets.
- optical display can refer to any conventional optical displays, including but not limited to multi-character multi-line displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”), and signage, as well as single-character or binary displays such as light emitting diodes (“LEDs”), signal lamps, and switches.
- LCDs liquid crystal displays
- CRTs cathode ray tubes
- LEDs light emitting diodes
- the exposed surface of such display panels may be referred to as a “lens.”
- the invention is particularly useful for displays having a viewing surface that is susceptible to being touched or contacted by ink pens, markers and other marking devices, wiping cloths, paper items and the like.
- the protective coatings of the invention can be employed in a variety of portable and non-portable information display articles.
- These articles include PDAs, cell phones (including combination PDA/cell phones), LCD televisions (direct lit and edge lit), touch sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD and DVD players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays and the like.
- the viewing surfaces can have any conventional size and shape and can be planar or non-planar, although flat panel displays are preferred.
- the coating composition or coated film can be employed on a variety of other articles as well such as for example camera lenses, eyeglass lenses, binocular lenses, mirrors, retroreflective sheeting, automobile windows, building windows, train windows, boat windows, aircraft windows, vehicle headlamps and taillights, display cases, road pavement markers (e.g. raised) and pavement marking tapes, overhead projectors, stereo cabinet doors, stereo covers, watch covers, as well as optical and magneto-optical recording disks, and the like.
- camera lenses eyeglass lenses, binocular lenses, mirrors, retroreflective sheeting
- automobile windows building windows, train windows, boat windows, aircraft windows, vehicle headlamps and taillights
- display cases road pavement markers (e.g. raised) and pavement marking tapes
- overhead projectors stereo cabinet doors, stereo covers, watch covers, as well as optical and magneto-optical recording disks, and the like.
- Suitable substrates can be utilized in the articles of the invention.
- Suitable substrate materials include glass as well as thermosetting or thermoplastic polymers such as polycarbonate, poly(meth)acrylate (e.g., polymethyl methacrylate or “PMMA”), polyolefins (e.g., polypropylene or “PP”), polyurethane, polyesters (e.g., polyethylene terephthalate or “PET”), polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrene, styrene-acrylonitrile copolymers, epoxies, and the like.
- the substrate will be chosen based in part on the desired optical and mechanical properties for the intended use.
- Such mechanical properties typically will include flexibility, dimensional stability and impact resistance.
- the substrate thickness typically also will depend on the intended use. For most applications, a substrate thickness of less than about 0.5 mm is preferred, and is more preferably about 0.02 to about 0.2 mm.
- Self-supporting polymeric films are preferred. Films made from polyesters such as PET or polyolefins such as PP (polypropylene), PE (polyethylene) and PVC (polyvinyl chloride) are particularly preferred.
- the polymeric material can be formed into a film using conventional filmmaking techniques such as by extrusion and optional uniaxial or biaxial orientation of the extruded film.
- the substrate can be treated to improve adhesion between the substrate and the hardcoat layer, e.g., chemical treatment, corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation.
- corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation.
- an optional tie layer or primer can be applied to the substrate and/or hardcoat layer to increase the interlayer adhesion.
- Various light transmissive optical films are known including but not limited to, multilayer optical films, microstructured films such as retroreflective sheeting and brightness enhancing films, (e.g. reflective or absorbing) polarizing films, diffusive films, as well as (e.g. biaxial) retarder films and compensator films such as described in U.S. Patent Application Publication No. 2004/0184150.
- multilayer optical films provide desirable transmission and/or reflection properties at least partially by an arrangement of microlayers of differing refractive index.
- the microlayers have different refractive index characteristics so that some light is reflected at interfaces between adjacent microlayers.
- the microlayers are sufficiently thin so that light reflected at a plurality of the interfaces undergoes constructive or destructive interference in order to give the film body the desired reflective or transmissive properties.
- each microlayer For optical films designed to reflect light at ultraviolet, visible, or near-infrared wavelengths, each microlayer generally has an optical thickness (i.e., a physical thickness multiplied by refractive index) of less than about 1 ⁇ m.
- Multilayer optical film bodies can also comprise one or more thick adhesive layers to bond two or more sheets of multilayer optical film in a laminate.
- polymeric multilayer optical films and film bodies can comprise additional layers and coatings selected for their optical, mechanical, and/or chemical properties. See U.S. Pat. No. 6,368,699 (Gilbert et al.).
- the polymeric films and film bodies can also comprise inorganic layers, such as metal or metal oxide coatings or layers
- Suitable adhesive compositions include (e.g. hydrogenated) block copolymers such as those commercially available from Kraton Polymers of Westhollow, Tex. under the trade designation “Kraton G-1657”, as well as other (e.g. similar) thermoplastic rubbers.
- Other exemplary adhesives include acrylic-based, urethane-based, silicone-based, and epoxy-based adhesives.
- Preferred adhesives are of sufficient optical quality and light stability such that the adhesive does not yellow with time or upon weather exposure so as to degrade the viewing quality of the optical display.
- the adhesive can be applied using a variety of known coating techniques such as transfer coating, knife coating, spin coating, die coating and the like. Exemplary adhesives are described in U.S. Patent Application Publication No. 2003/0012936. Several of such adhesives are commercially available from 3M Company, St. Paul, Minn. under the trade designations 8141, 8142, and 8161.
- Free-radically polymerizable refers to the ability of monomers, oligomers, polymers or the like to participate in crosslinking reactions upon exposure to a suitable source of free radicals.
- (Meth)acryl refers to functional groups including acrylates, methacrylates, acrylamides, methacrylamides, alpha-fluoroacrylates, thioacrylates and thio-methacrylates.
- a preferred (meth)acryl group is acrylate.
- “Monovalent perfluoropolyether moiety” refers to a perfluoropolyether chain having one end terminated by a perfluoroalkyl group.
- HFPO— refers to the end group F(CF(CF 3 )CF 2 O)aCF(CF 3 )— of the methyl ester F(CF(CF 3 )CF 2 O)aCF(CF 3 )C(O)OCH3, wherein “a” averages 2 to 15. In some embodiments, a averages between 3 and 10 or a averages between 5 and 8. Such species generally exist as a distribution or mixture of oligomers with a range of values for a, so that the average value of a may be non-integer. In one embodiment a averages 6.2. This methyl ester has an average molecular weight of 1,211 g/mol, and can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), with purification by fractional distillation.
- spots The number of spots was determined visually in a 25 cm 2 area by counting the number of spots with the coating held against a black background. When the composition includes a particulate matting agent such as silica, the spots are white in appearance and can be more easily detected.
- PGX Contact Angle The static contact angle with water of Examples 4-12 was measured using a PGX goniometer from Fibro System AB, Sweden. A 4 microliter DI water drop was used and the PGX instrument automatically recorded the static contact angle.
- the methyl ester material for preparation of the alcohol can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), with purification by fractional distillation.
- Polyisocyanate was obtained from Bayer Polymers LLC, of Pittsburgh, Pa. under the trade designation “Desmodur N100”. (“DesN100”)
- Polyisocyanate was obtained from Bayer Polymers LLC, of Pittsburgh, Pa. under the trade designation “Desmodur N3300”. (“DesN3300”)
- Pentaerythritol triacrylate (“PET3A”), under the trade designation “SR444C”, was obtained from Sartomer Company of Exton, Pa.
- BHT 2,6-di-t-butyl-4-methylphenol
- DBTDL dibutyltin dilaurate
- a 500 ml roundbottom flask equipped with magnetic stir bar was charged with 25.0 g (0.131 eq, 191 EW, 1.0 mole fraction) Des N100, 106.75 g methyl ethyl ketone (MEK), and 0.05 g BHT.
- the reaction was swirled to dissolve all the reactants, the flask was placed in a oil bath at 55 degrees Celsius, and fitted with a condenser under dry air. Sixty-five microliters of a 10% dibutyltin dilaurate solution in MEK was added to the reaction. Over 20 min, 17.59 g (0.0131 eq, 1344 EW, 0.10 mole fraction)
- the perfluoropolyether urethane multiacrylates of Preparations 2-14, C1 and C2 were made by substantially the same procedure with 1.0 mole fraction (Des N100) isocyanate, the HFPO-alcohol at 0.10 mole fraction and each of the modifying alcohols at the mole fractions indicated in column 5 of the following Table 1.
- the HFPO—C(O)NHCH 2 CH 2 OH amidol of 1344 molecular weight was used for Example numbers C1, C3, 2, 3, 4, 5; whereas the HFPO—C(O)NHCH 2 CH 2 OH amidol of 1314 molecular weight was used for C2.
- DES N3300 has an equivalent weight of 193.
- Example HFPO Mole PET3A/Alcohol No. fraction Modifying Alcohol Mole Fractions C7 0.25 None 0.8/0.0 11 0.25 C 18 H 37 (OCH 2 CH 2 ) 20 OH 0.65/0.15 Brij 78 12 0.25 C 18 H 37 (OCH 2 CH 2 ) 20 OH 0.55/0.25 Brij 78
- ceramer hardcoat base compositions (“HCB-1”, “HCB-2” and “HCB-3”) used in the examples were made as described in column 10, line 25-39 and Example 1 of U.S. Pat. No. 5,677,050 to Bilkadi, et al. with the following (wt-% solids) additions:
- Syloid C 803 is a fine silica from W.R. Grace and Co., Columbia, Md.
- Disperbyk 163 is a dispersant from Byk-Chemie USA, Wallingford, Conn.
- Irgacure 819 and 184 are photoinitiators from Ciba Specialty Chemicals, Tarrytown, N.Y.
- Sartomer SR 295, SR238, SR399 are all multifunctional acrylate monomers from Sartomer Corp., West Chester, Pa.
- ZrO 2 soIs (40.8% solids in water) was prepared were prepared in accordance with the procedures described in U.S. Patent Publication No. 2006/0204745 that claims priority to U.S. patent application Ser. No. 11/078468 filed Mar. 11, 2005.
- the resulting ZrO 2 sols were evaluated with Photo Correlation Spectroscopy (PCS), X-Ray Diffraction and Thermal Gravimetric Analysis as described in U.S. Patent Publication No. 2006/0204745- and application Ser. No. 11/078468.
- the ZrO 2 sols used in the examples had properties in the ranges that follow:
- SM Zirconia Surface Modified Zirconia Nanoparticles
- the reaction mixture was heated under vacuum (24-40 torr) and the 1-methoxy-2-propanol/water azeotrope was distilled off to remove substantially all of the water, while slowly adding 70.5 lbs of additional 1-methoxy-2-propanol. 0.4 lbs of 30% ammonium hydroxide was added to the reaction mixture, then the reaction was concentrated to 59.2% solids by distilling off 1-methoxy-2-propanol.
- the surface modification reaction resulted in a mixture containing 59.2% surface modified zirconia (ZrO 2 —SM), by weight, in 1-methoxy-2-propanol.
- the final mixture was filtered through a 1 micron filter.
- Coating Composition Preparation To 62.5 grams of a ceramer hardcoat composition (as described in column 10, line 25-39 and Example 1 of U.S. Pat. No. 5,677,050 to Bilkadi, et al.) was added 18.75 grams of ethyl acetate and 18.75 grams of methoxy propanol. Various HFPO Urethane Acrylates were combined with this diluted ceramer hardcoat composition as set forth in Table 7.
- the hardcoat was coated onto an antistatic layer that was formed on the PET as follows:
- a coating solution was prepared by combining 970.8 g deionized water, 19.23 g of PEDOT/PSS (Baytron® P from H.C. Starck, 1.3 wt % solids), 7.5 g of surfactant (Tomadol® 25-9 from Tomah Products, 10 wt % in deionized water), and 2.5 g N-methylpyrrolidinone.
- This deep blue solution (0.025 wt % PEDOT/PSS) was coated on primed 5 mil PET film (prepared according to Example 29 of U.S. Pat. No. 6,893,731 B2) using a 4-in die coater. The web speed was 35 ft/min and the solution flow rate was 12.4 g/min. Hot zone temperatures were 140° F.
- the hard coat solution was coated onto this antistat coated polyester using a #12 wire wound rod and dried at 70° C. for 2 minutes.
- the dried coating having a thickness of about 4 microns was then cured with a Light Hammer 6 UV source using a Fusion H bulb (Fusion UV Systems, Inc., Gaithersburg, Md.), at 100% power, under nitrogen at 30 feet/min.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Polyurethanes Or Polyureas (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
Presently described are optical substrates having a surface layer and optical displays comprising such optical substrates. The surface layer comprises the reaction product of a polymerizable mixture comprising at least one perfluoropolyether material comprising at least two free-radically polymerizable groups and at least one segment with greater than 6 ethylene oxide repeat units; and at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
Description
- Hardcoats have been used to protect the face of optical displays. Hardcoats typically contain inorganic oxide particles, e.g., silica, of nanometer dimensions dispersed in a binder precursor resin matrix, and sometimes are referred to as “ceramers”.
- U.S. Pat. No. 6,132,861 (Kang et al. '861); U.S. Pat. No. 6,238,798 B1 (Kang et al. '798); U.S. Pat. No. 6,245,833 B1 (Kang et al. '833); U.S. Pat. No. 6,299,799 (Craig et al.) and Published PCT Application No. WO 99/57185 (Huang et al.) describe ceramer compositions containing blends of colloidal inorganic oxide particles, a curable binder precursor and certain fluorochemical compounds.
- U.S. Pat. Nos. 6,660,388; 6,660,389; 6,841,190 (Liu et al.) as well as U.S. Pat. No. 7,101,618 describe antisoiling hardcoated films suitable for use as protective films for display devices.
- WO 2005/111157 describes (Abstract) a hardcoat coating composition for use as a stain repellent single layer on an optical display. The hardcoat coating composition comprises a mono or multi(methyl)acrylate bearing at least one monovalent hexafluoropolypropylene oxide derivative and a free radically reactive fluoroalkyl-group or fluoroalkylene-group containing acrylate compatibilizer.
- WO2006/102383 and WO 03/002628 describe various polymerizable perfluoropolyether urethane additives and their use in hardcoats.
- WO 03/002628 describes (Abstract) A perfluoropolyether-containing composition which has an affinity for nonfluorinated substrates and can form on the surface thereof a film firmly adherent to the surface. It is a composition containing carbon-carbon double bonds which comprises (A) a triisocyanate obtained by trimerizing a diisocyanate and (B) a combination of at least two compounds having active hydrogen, the component (B) comprising (B-1) a perfluoropolyether having at least one active hydrogen atom and (B-2) a monomer having an active hydrogen atom and a carbon-carbon double bond.
- Presently described are articles such as optical displays comprising a (e.g. light-transmissive optical) substrate having a surface layer that comprises the reaction product of a polymerizable mixture comprising at least one perfluoropolyether (e.g. urethane) material comprising at least two free-radically polymerizable groups and at least one segment having greater than 6 ethylene oxide repeat units; and at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups. In another embodiment, a free-radically polymerizable composition is described comprising a mixture of reaction products of i) at least one polyisocyanate; ii) at least one isocyanate reactive perfluoropolyether compound; iii) at least one isocyanate reactive compound comprising greater than 6 repeat units of ethylene oxide; and iv) at least one isocyanate reactive non-fluorinated crosslinker comprising at least two free-radically polymerizable groups. The composition may be a coating dispersed in an alcohol-containing solvent that is particularly useful for coating optical substrates such as polycarbonate, acrylic, cellulose acetate, and cellulose triacetate.
- In each of these embodiments, the perfluoropolyether (e.g. urethane)material preferably comprises at least two (meth)acrylate groups such as a terminal group having at least two (meth)acrylate groups. The perfluoropolyether urethane may comprise a monovalent perfluoropolyether moiety such as F(CF(CF3)CF2O)aCF(CF3)— wherein “a” ranges from 4 to 15. The binder precursor preferably comprises least one (e.g. non-fluorinated) hydrocarbon crosslinker that comprises at least three free-radically polymerizable groups is typically employed. In some aspects, the surface layer or polymerizable composition further comprises inorganic oxide particles. In other aspects, a hardcoat layer comprising inorganic oxide particles is disposed between the substrate and the (e.g. inorganic particle-free) surface layer.
- Presently described are articles such as optical displays including a light tranmissive optical substrate. The surface layer of the optical substrate comprises the reaction product of a polymerizable mixture comprising at least one free-radically polymerizable perfluoropolyether (e.g. urethane) material having at least one segment that comprises ethylene oxide repeat units; and at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
- One exemplary free-radically polymerizable perfluoropolyether material is a perfluoropolyether urethane material that comprises a mixture of reaction products of
- i) at least one polyisocyanate,
- ii) at least one isocyanate reactive perfluoropolyether compound,
- iii) at least one isocyanate reactive compound containing greater than 6 ethylene oxide repeat units, and
- iv) at least one isocyanate reactive (e.g. non-fluorinated) hydrocarbon crosslinker comprising two or more free-radically polymerizable groups.
- The perfluoropolyether compound (i.e. ii) and ethylene oxide repeat unit containing compound (i.e. iii) preferably comprise at least one (e.g. terminal) alcohol, thiol, or amine group. Typically both the perfluoropolyether compound and the ethylene oxide compound contain (e.g. terminal) reactive alcohol groups.
- In one embodiment, a monofunctional perfluoropolyether compound and a monofunctional ethylene oxide repeat unit containing compound are employed as reactants with the polyisocyanate. In another embodiment, a multifunctional perfluoropolyether compound and a monofunctional ethylene oxide repeat unit containing compound are employed. In yet another embodiment, a multifunctional perfluoropolyether compound and a multifunctional ethylene oxide repeat unit containing compound are employed. When at least two multifunctional isocyanate reactive compounds are employed in the synthesis, the reaction product typically includes a major amount of a perfluoropolyether polymeric material.
- The hydrocarbon crosslinker (i.e. iv) typically comprises (meth)acryl groups such as (meth)acrylate groups. A substantial excess of hydrocarbon crosslinker (i.e. iv) is typically employed such that the perfluoropolyether urethane polymeric material as well as other reaction products of the reaction mixture comprise unreacted free-radically polymerizable groups which can be subsequently cured for example by radiation (e.g. UV) curing.
- Typically, the perfluoropolyether urethane composition is made by first reacting a polyisocyanate with a perfluoropolyether compound containing an alcohol, thiol, or amine group, followed by reaction with one or more ethylene oxide repeat unit-containing compounds containing an alcohol, thiol, or amine group. The perfluoropolyether urethane additive is then combined with the (e.g. non-fluorinated) isocyanate reactive multifunctional free-radically polymerizable (e.g. (meth)acrylate) crosslinker. Alternatively, these perfluoropolyether urethane additives can be formed by other reaction sequences such as by first reacting the polyisocyanate with the crosslinker, followed by the addition of the ethylene oxide repeat unitcontaining compound. In addition, the perfluoropolyether urethane additive could be made by reacting all four components concurrently.
- Although these reaction sequences are generally conducted in a solvent that does not contain hydroxyl groups (such as MEK) in the presence of a catalyst such as an organotin compound, the composition thus formed has improved compatibility with hydroxyl group containing solvents, commonly know as alcohols. Alcohol based coating compositions are especially useful for coating light transmissive substrates such as polycarbonate, acrylic, cellulose acetate, and cellulose triacetate which are susceptible to swelling, cracking, or crazing by organic solvents such as ketones (e.g. MEK), aromatic solvents (e.g. toluene), and esters (e.g. acetate solvents).
- One or more polyisocyanate materials are employed in the preparation of the perfluoropolyether urethane. A variety of polyisocyanates may be utilized as component i) in the preparation of the perfluoropolyether urethane polymeric material.
- “Polyisocyanate” means any organic compound that has two or more reactive isocyanate (—NCO) groups in a single molecule such as diisocyanates, triisocyanates, tetraisocyanates, etc., and mixtures thereof. Cyclic and/or linear polyisocyanate molecules may usefully be employed. For improved weathering and diminished yellowing the polyisocyanate(s) of the isocyanate component is typically aliphatic.
- For embodiments wherein the perfluoropolyether compound, ethylene oxide repeat unit-containing compound, and hydrocarbon crosslinker have monofunctional isocyanate reactivity the isocyanate employed is typically at least trifunctional. However, when one of more of the isocyanate reactive compounds have at least difunctional isocyanate reactivity, difunctional isocyanates can be employed.
- Useful aliphatic polyisocyanates include, for example, bis(4-isocyanatocyclohexyl) methane (H12 MDI) such as available from Bayer Corp., Pittsburgh, Pa. under the trade designation “Desmodur W“; isophorone diisocyanate (IPDI) such as commercially available from Huels America, Piscataway, N.J.; hexamethylene diisocyanate (HDI) such as commercially available from Aldrich Chemical Co., Milwaukee, Wis.; trimethyl hexamethylene diisocyanate such as commercially available from Degussa, Corp., Dusseldorf, Germany under the trade designation “Vestanate TMDI“; and m-tetramethylxylene diisocyanate (TMXDI) such as commercially available from Aldrich Chemical Co., Milwaukee, Wis. Although typically less preferred, aromatic isocyanates such as diphenylmethane diisocyanate (MDI) such as commercially available from Bayer Corp., Pittsburgh, Pa. under the trade designation “Mondur M”; toluene 2,4-diisocyanate (TDI) such as commercially available from Aldrich Chemical Co., Milwaukee, Wis., and 1,4-phenylene diisocyanate are also useful.
- Preferred polyisocyanates include derivatives of the above-listed monomeric polyisocyanates. These derivatives include, but are not limited to, polyisocyanates containing biuret groups, such as the biuret adduct of hexamethylene diisocyanate (HDI) available from Bayer Corp. under the trade designation “Desmodur N-100”, polyisocyanates based on HDI containing isocyanurate groups, such as that available from Bayer Corp. under trade designation “Desmodur N-3300”, as well as polyisocyanates containing urethane groups, uretdione groups, carbodiimide groups, allophonate groups, and the like. These derivatives are preferred as they are polymeric, exhibit very low vapor pressures and are substantially free of isocyanate monomer.
- Other polyisocyanates that may be used are available from Bayer Polymers LLC of Pittsburgh, Pa. under the trade designations “Desmodur TPLS2294”, and “Desmodur N 3600”
- One or more isocyanate reactive perfluoropolyether materials are employed in the preparation of the perfluoropolyether urethane. Various isocyanate reactive perfluoropolyethers materials can be utilized as component ii). The synthesis of various perfluoropolyether materials having (e.g. terminal) isocyanate reactive groups such as OH, SH or NHR wherein R is H of an alkyl group of 1 to 4 carbon atoms is known. For example, a methyl ester material (e.g. having an average molecular weight of 1,211 g/mol) for preparation of the alcohol can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), with purification by fractional distillation. Perfluoropolyether alcohol materials can be made by a procedure similar to that described in U.S. Publication No. 2004-0077775, filed May 24, 2002. Perfluoropolyether alcohol materials having an SH group can be made using this same process by use of aminoethane thiol rather than aminoethanol. Perfluoropolyether amine materials can be synthesized as described in US 2005/0250921.
- The isocyanate reactive perfluoropolyether materials include one or more compounds of those of the formula:
-
Rf1-[Q(XH)y]z, - where
- Rf1 is a monovalent (where z is 1) or divalent (where z is 2) perfluoropolyether;
- Q is a connecting group having a valency of at least 2;
- X is O, S, or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
- y is 1 or 2, and
- z is 1 or 2.
- Q can comprise a straight chain, branched chain, or cyclic-containing connecting group. Q can include an alkylene, an arylene, an aralkylene, an alkarylene. Q can optionally include heteroatoms such as O, N, and S, and combinations thereof. Q can also optionally include a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof.
- The perfluoropolyether urethane material is preferably prepared from an isocyanate reactive HFPO— material. Unless otherwise noted, “HFPO—” refers to the end group F(CF(CF3)CF2O)aCF(CF3)— of the methyl ester F(CF(CF3)CF2O)aCF(CF3)C(O)OCH3, wherein “a” averages 2 to 15. In some embodiments, “a” averages between 3 and 10 or “a” averages between 5 and 8. Such species generally exist as a distribution or mixture of oligomers with a range of values for “a”, so that the average value of a may be non-integer. For example, in one embodiment, “a” averages 6.2. The molecular weight of the HFPO- perfluoropolyether material varies depending on the number “a” of repeat units from about 940 g/mole to about 1600 g/mole, with 1100 g/mole to 1400 g/mole typically being preferred.
- One or more isocyanate reactive ethylene oxide repeat unit-containing materials are employed in the preparation of the perfluoropolyether urethane. The ethylene oxide containing isocyanate reactive compound generally comprises greater than 6 repeat units of ethylene oxide. The number of ethylene oxide repeat units may be at least 7, 8, or 9 repeat units. In some embodiments, the isocyanate reactive ethylene oxide containing compound has at least 10 repeat units of ethylene oxide. For example, the number of repeat units may be 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. Generally the number of ethylene oxide repeat units does not exceed about 50 and may be for example up to 25, 30, or 35 repeat units.
- The ethylene oxide containing compounds may be represented by the following formula:
-
(HX)b(C2H4O)jREO - wherein
- X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms; and
- REO is H; a group selected from alkyl, aryl, alkaryl, aralkyl, that can optionally be substituted with a heteroatom, a heteoratom functional groups (such as —OH —SH, and —NH2), or optionally substituted with a (meth)acryl functional group; or —C(O)C(R2)═CH2 where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
- b ranges from 1 to 4 and is typically 1 or 2; and
- j ranges from 7 to 50.
- In some embodiments, REO is H or a lower alkyl of 1 to 4 carbon atoms such as CH3. Such embodiments have been found to result in surface layers having low lint attraction.
- The ethylene oxide containing compound may also comprise other alkylene oxide compounds such as propylene oxide. In such embodiment, a major amount of the alkylene oxide repeat units are typically ethylene oxide repeat units.
- Various isocyanate reactive non-fluorinated hydrocarbon crosslinkers can be employed in the synthesis of the perfluoropolyether urethane polymeric material. Such crosslinkers comprise at least two and preferably three free-radically polymerizable groups. The free-radically polymerizable groups are preferably (meth)acryl and more preferably (meth)acrylate groups.
- Suitable isocyanate reactive non-fluorinated hydrocarbon crosslinkers may be described by the formula:
-
(HO)bQ(A)p; - wherein
- Q is a connecting group having a valency of at least 2;
- A is a (meth)acryl functional group such as —XC(O)C(R2)═CH2, where
-
- X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms, and
- R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
- b ranges from 1 to 4 and is preferably 1 or 2; and
- p ranges from 2 to 6.
- Q can comprise a straight chain, branched chain, or cyclic-containing connecting group as previously described.
- Exemplary isocyanate reactive crosslinkers include for example 1,3-glycerol dimethacrylate available from Echo Resin Inc. of Versailles, Mo. and pentaerythritol triacrylate, available from Sartomer of Exton, Pa. under the trade designation “SR444C”. Additional useful isocyanate reactive (meth)acrylate crosslinkers include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al.).
- If the mole fraction of isocyanate groups is arbitrarily given a value of 1.0, then the total mole fraction of isocyanate reactive groups used in making the perfluoropolyether urethane material is 1.0 or greater. Although, the polymerizable compositions described herein typically comprise at least 0.2 mole fraction of crosslinking agent(s), it is typically preferred to maximize the concentration of isocyanate reactive hydrocarbon crosslinker to improve the durability and compatibility with the binder of the hardcoat. Accordingly, the total amount of crosslinking agent(s) may comprise at least 0.5 mole fraction and may be at least 0.6 mole fraction, at least 0.7 mole fraction, at least 0.8 mole fraction, or at least 0.9 mole of the sum of the isocyanate reactants. The mole fraction of the perfluoropolyether reactant is typically at least 0.05 and no greater than 0.5. The mole fraction of ethylene oxide repeat unit containing reactant is also typically at least 0.05 or 0.10 and no greater than 0.7, 0.6, or 0.5.
- The reaction product generally includes a distribution of various reaction products. In addition to the reaction product of the polyisocyanate with all three reactants (ii, iii, and iv) the reaction product of the polyisocyanate with two of the three as well as reaction products of the polyisocyanate the individual reactants are also present.
- For example, one representative structure formed by the reaction product of a biuret of HDI with one equivalent of HFPO oligomer amidol HFPO—C(O)NHCH2CH2OH wherein “a” averages 2 to 15, and further with two equivalents of pentaerythritol triacrylate is shown as follows
- In one preferred embodiment, the perfluoropolyether urethane composition is of the formula:
-
Ri-(NHC(O)XQRf), —(NHC(O)OQ(A)p), —(NHC(O)X(C2H4O)jREO - wherein Ri is a residue of a multi-isocyanate;
- X are each independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
- Q is independently a connecting group of valency at least 2;
- Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula F(RfcO)xCdF2d-, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
- A is a (meth)acryl functional group such as —XC(O)C(R2)═CH2, where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
- p is 2 to 6;
- j ranges from 7 to 40; and
- REO is H; a group selected from alkyl, aryl, alkaryl, aralkyl, that can optionally be substituted with a heteroatom, a heteoratom functional groups (such as —OH —SH, and —NH2), or optionally substituted with a (meth)acryl functional group; or —C(O)C(R2)═CH2 where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F.
- Depending on the number of individual materials employed as well as the functionality of the reactants, a variety of perfluoropolyether urethane materials can be prepared having at least one of each of the units of this formula.
- Q in association with the Rf group is a straight chain, branched chain, or cycle-containing connecting group as previously described.
- In some embodiments when X is O, Q is typically not methylene and thus contains two or more carbon atoms. In other embodiments, X is S or NR. In some embodiments, Q is an alkylene having at least two carbon atoms. In other embodiments, Q is a straight chain, branched chain, or cycle-containing connecting group selected from arylene, aralkylene, and alkarylene. In yet other embodiments, Q contains a heteroatom such as O, N, and S and/or a heteroatom containing functional groups such as carbonyl and sulfonyl. In other embodiments, Q is a branched or cycle-containing alkylene group that optionally contains heteroatoms selected from O, N, S and/or a heteroatom-containing functional group such as carbonyl and sulfonyl. In some embodiments Q contains a nitrogen containing group such an amide group such as —C(O)NHCH2CH2—, —C(O)NH(CH2)6—, and —C(O)NH(CH2CH2O)2CH2CH2—.
- Various other reactants can be included in the preparation of the perfluoropolyether urethane such as described in WO2006/102383.
- The perfluoropolyether urethane polymeric material described herein may be employed alone or in combination with various other fluorinated compounds having at least one moiety selected from fluoropolyether, fluoroalkyl, and fluoroalkylene linked to at least one free-radically reactive group. When a second fluorinated compound is employed, it is typically preferred that such second fluorinated compound also comprises an HFPO-moiety. Various fluorinated materials that can be employed in combination with the perfluoropolyether urethane polymeric material described are also described in WO2006/102383.
- The polymerizable perfluoropolyether urethane composition is typically dispersed in a hardcoat composition in combination with a (e.g. alcohol based) solvent, applied to an optical substrate and photocured to form the easy to clean, stain and ink repellent light transmissible surface layer. The hardcoat is a tough, abrasion resistant layer that protects the optical substrate and the underlying display screen from damage from causes such as scratches, abrasion and solvents. Typically the hardcoat is formed by coating a curable liquid ceramer composition onto the substrate and curing the composition in situ to form a hardened film.
- The surface energy can be characterized by various methods such as contact angle and ink repellency, as determined by the test methods described in the Examples. In this application, “stain repellent” refers to a surface treatment exhibiting a static contact angle with water of at least 70 degrees. More preferably, the contact angle is at least 80 degrees and most preferably at least 90 degrees. Alternatively, or in addition thereto, the advancing contact angle with hexadecane is at least 50 degrees and more preferably at least 60 degrees. Low surface energy results in anti-soiling and stain repellent properties as well as rendering the exposed surface easy to clean.
- Another indicator of low surface energy relates to the extent to which ink from a pen or marker beads up when applied to the exposed surface. The surface layer and articles exhibit “ink repellency” when ink from pens and markers beads up into discrete droplets and can be easily removed by wiping the exposed surface with tissues or paper towels, such as tissues available from the Kimberly Clark Corporation, Roswell, Ga. under the trade designation “SURPASS FACIAL TISSUE.” Durability can be defined in terms of results from a modified oscillating sand test (Method ASTM F 735-94) carried out at 250 rpm for 5 minutes as described in the Test Methods of this application. Preferably, a durable coating exhibits an ink repellency loss value of 65 mm (75% loss) or less, more preferably 40 mm (45% loss) or less, most preferably 0 mm (no loss) of ink repellency (IR) in this test.
- The perfluoropolyether urethane polymeric material described herein can be employed as the sole fluorinated component of a one-layer hardcoat composition. For embodiments wherein high durability is desired, the hardcoat composition typically further comprises (e.g. surface modified) inorganic particles. The thickness of the hardcoat surface layer is typically at least 0.5 microns, preferably at least 1 micron, and more preferably at least 2 microns. The thickness of the hardcoat layer is generally no greater than 25 microns. Preferably the thickness ranges from 3 microns to 5 microns.
- Alternatively, an inorganic particle free perfluoropolyether urethane polymer containing surface layer may be employed alone for uses where durability is not required. In yet other embodiments, an inorganic particle free perfluoropolyether urethane polymer containing surface layer may be provided in combination with an inorganic particle containing hardcoat layer disposed between the substrate and the surface layer. This will be referred to as a two-layer hardcoat. In these embodiments, the surface layer preferably has a thickness ranging from about 10 to 200 nanometers.
- For one-layer hardcoat embodiments, the total of all (per)fluorinated compounds, (e.g. the perfluoropolyether urethane(s) alone or in combination with other fluorinated compounds) ranges from 0.01% to 10%, and more preferably from 0.1% to 5%, of the total solids of the hardcoat composition. For two-layer hardcoat embodiments the amount of perfluoropolyether urethane(s) in the coating compositions ranges from 0.0 1 to 50 wt-% solids, and more preferably from 1 to 25 wt-% solids.
- A variety of binder precursors that form a crosslinked polymeric matrix upon curing can be employed in the hardcoat. The isocyanate reactive non-fluorinated crosslinking materials previously described are suitable binder precursors.
- Di(meth)acryl binder precursors include for example 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, ethoxylated bisphenol A diacrylate, hydroxypivalaldehyde modified trimethylolpropane diacrylate, neopentyl glycol diacrylate, polyethylene glycol diacrylate, propoxylated neopentyl glycol diacrylate, tetraethylene glycol diacrylate, tricyclodecanedimethanol diacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate.
- Tri(meth)acryl binder precursor include for example glycerol triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylates (e.g. having 3 to 20 ethoxylate repeat), propoxylated glyceral triacrylates, trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate. Higher functionality (meth)acryl containing compounds include for example ditrimethylolpropane tetraacrylate, dipentaerythritol pentaacrylate, ethoxylated pentaerythritol tetraacrylate, caprolactone modified dipentaerythritol hexaacrylate.
- One commercially available form of pentaerythritol triacrylate (“PET3A”) is SR444C and one commercially available form of pentaerythritol tetraacrylate (“PET4A”) is SR295, each available from Sartomer Company of Exton, Pa.
- Oligomeric (meth)acryl such as urethane acrylates, polyester acrylates, epoxy acrylates; and polyacrylamide analogues of the foregoing can also be employed as the binder.
- In one embodiment, the binder may comprise one or more N,N-disubstituted acrylamide and or N-substituted-N-vinyl-amide monomers as described in Bilkadi et al. The hardcoat may be derived from a ceramer composition containing about 20 to about 80% ethylenically unsaturated monomers and about 5 to about 40% N,N-disubstituted acrylamide monomer or N-substituted-N-vinyl-amide monomer, based on the total weight of the solids in the ceramer composition.
- To facilitate curing, polymerizable compositions described herein may further comprise at least one free-radical thermal initiator and/or photoinitiator. Typically, if such an initiator and/or photoinitiator are present, it comprises less than about 10 percent by weight, more typically less than about 5 percent of the polymerizable composition, based on the total weight of the polymerizable composition. Free-radical curing techniques are well known in the art and include, for example, thermal curing methods as well as radiation curing methods such as electron beam or ultraviolet radiation. Further details concerning free radical thermal and photopolymerization techniques may be found in, for example, U.S. Pat. No. 4,654,233 (Grant et al.); U.S. Pat. No. 4,855,184 (Klun et al.); and U.S. Pat. No. 6,224,949 (Wright et al.).
- Useful free-radical thermal initiators include, for example, azo, peroxide, persulfate, and redox initiators, and combinations thereof.
- Useful free-radical photoinitiators include, for example, those known as useful in the UV cure of acrylate polymers such as described in WO2006/102383.
- The polymerizable composition for use as the surface layer or an underlying hardcoat layer preferably contains surface modified inorganic particles that add mechanical strength and durability to the resultant coating.
- A variety of inorganic oxide particles can be used in the hardcoat. The inorganic oxide particles can consist essentially of or consist of a single oxide such as silica, or can comprise a combination of oxides, such as silica and aluminum oxide, or a core of an oxide of one type (or a core of a material other than a metal oxide) on which is deposited an oxide of another type. Silica is a common inorganic particle. The inorganic oxide particles are often provided in the form of a sol containing a colloidal dispersion of inorganic oxide particles in liquid media. The sol can be prepared using a variety of techniques and in a variety of forms including hydrosols (where water serves as the liquid medium), organosols (where organic liquids so serve), and mixed sols (where the liquid medium contains both water and an organic liquid), e.g., as described in U.S. Pat. No. 5,648,407 (Goetz et al.); U.S. Pat. No. 5,677,050 (Bilkadi et al.) and U.S. Pat. No. 6,299,799 (Craig et al.). Aqueous sols (e.g. of amorphous silica) can be employed. Sols generally contain at least 2 wt-%, at least 10 wt-%, at least 15 wt-%, at least 25 wt-%, and often at least 35 wt-% colloidal inorganic oxide particles based on the total weight of the sol. The amount of colloidal inorganic oxide particle is typically no more than 50 wt-% (e.g. 45 wt-%). The surface of the inorganic particles can be “acrylate functionalized” as described in Bilkadi et al. The sols can also be matched to the pH of the binder, and can contain counter ions or water-soluble compounds (e.g., sodium aluminate), all as described in Kang et al. '798.
- Various high refractive index inorganic oxide particles can be employed such as for example zirconia (“ZrO2”), titania (“TiO2”), antimony oxides, alumina, tin oxides, alone or in combination. Mixed metal oxide may also be employed. Zirconias for use in the high refractive index layer are available from Nalco Chemical Co. under the trade designation “Nalco OOSSOO8” and from Buhler AG Uzwil, Switzerland under the trade designation “Buhler zirconia Z-WO sol”. Zirconia nanoparticle can also be prepared such as described in U.S. Pat. Nos. 7,241,437and 6,376,590.
- The inorganic nanoparticles are preferably treated with a surface treatment agent. Surface-treating the nano-sized particles can provide a stable dispersion in the polymeric resin. Preferably, the surface-treatment stabilizes the nanoparticles so that the particles will be well dispersed in the polymerizable resin and results in a substantially homogeneous composition. Furthermore, the nanoparticles can be modified over at least a portion of its surface with a surface treatment agent so that the stabilized particle can copolymerize or react with the polymerizable resin during curing. The incorporation of surface modified inorganic particles is amenable to covalent bonding of the particles to the free-radically polymerizable organic components, thereby providing a tougher and more homogeneous polymer/particle network.
- In general, a surface treatment agent has a first end that will attach to the particle surface (covalently, ionically or through strong physisorption) and a second end that imparts compatibility of the particle with the resin and/or reacts with resin during curing. Examples of surface treatment agents include alcohols, amines, carboxylic acids, sulfonic acids, phosphonic acids, silanes and titanates. The preferred type of treatment agent is determined, in part, by the chemical nature of the metal oxide surface. Silanes are preferred for silica and other for siliceous fillers. Silanes and carboxylic acids are preferred for metal oxides such as zirconia. The surface modification can be done either subsequent to mixing with the monomers or after mixing. It is preferred in the case of silanes to react the silanes with the particle or nanoparticle surface before incorporation into the resin. The required amount of surface modifier is dependant upon several factors such as particle size, particle type, modifier molecular wt, and modifier type. In general, it is preferred that approximately a monolayer of modifier is attached to the surface of the particle. The attachment procedure or reaction conditions required also depend on the surface modifier used. For silanes it is preferred to surface treat at elevated temperatures under acidic or basic conditions for from 1-24 hr approximately. Surface treatment agents such as carboxylic acids may not require elevated temperatures or extended time.
- Representative embodiments of surface treatment agents suitable for the compositions include compounds such as, for example, isooctyl trimethoxy-silane, N-(3-triethoxysilylpropyl)methoxyethoxyethoxyethyl carbamate, N-(3- triethoxysilylpropyl)methoxyethoxyethoxyethyl carbamate, 3- (methacryloyloxy)propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-(methacryloyloxy)propyltriethoxysilane, 3-(methacryloyloxy)propylmethyldimethoxysilane, 3-(acryloyloxypropyl)methyldimethoxysilane, 3-(methacryloyloxy)propyldimethylethoxysilane, 3-(methacryloyloxy)propyldimethylethoxysilane, vinyldimethylethoxysilane, phenyltrimethoxysilane, n-octyltrimethoxysilane, dodecyltrimethoxysilane, octadecyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, vinylmethyldiacetoxysilane, vinylmethyldiethoxysilane, vinyltriacetoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriphenoxysilane, vinyltri-t-butoxysilane, vinyltris-isobutoxysilane, vinyltriisopropenoxysilane, vinyltris(2-methoxyethoxy)silane, styrylethyltrimethoxysilane, mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, acrylic acid, methacrylic acid, oleic acid, stearic acid, dodecanoic acid, 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEAA), beta-carboxyethylacrylate (BCEA), 2-(2-methoxyethoxy)acetic acid, methoxyphenyl acetic acid, and mixtures thereof.
- The surface modification of the particles in the colloidal dispersion can be accomplished in a variety known ways, such as described in U.S. Pat. Nos. 7,241,437 and 6,376,590.
- A combination of surface modifying agents can be useful, wherein at least one of the agents has a functional group co-polymerizable with a hardenable resin. Combinations of surface modifying agent can result in lower viscosity. For example, the polymerizing group can be ethylenically unsaturated or a cyclic function subject to ring opening polymerization. An ethylenically unsaturated polymerizing group can be, for example, an acrylate or methacrylate, or vinyl group. A cyclic functional group subject to ring opening polymerization generally contains a heteroatom such as oxygen, sulfur or nitrogen, and preferably a 3-membered ring containing oxygen such as an epoxide.
- A preferred combination of surface modifying agent includes at least one surface modifying agent having a functional group that is copolymerizable with the organic component of the polymerizable resin and a second amphiphilic modifying agent, such as a polyether silane, that may act as a dispersant. The second modifying agent is preferably a polyalkyleneoxide containing modifying agent that is optionally co-polymerizable with the organic component of the polymerizable composition.
- Surface modified colloidal nanoparticles can be substantially fully condensed. Non-silica containing fully condensed nanoparticles typically have a degree of crystallinity (measured as isolated metal oxide particles) greater than 55%, preferably greater than 60%, and more preferably greater than 70%. For example, the degree of crystallinity can range up to about 86% or greater. The degree of crystallinity can be determined by X-ray diffraction techniques. Condensed crystalline (e.g. zirconia) nanoparticles have a high refractive index whereas amorphous nanoparticles typically have a lower refractive index.
- The inorganic particles preferably have a substantially monodisperse size distribution or a polymodal distribution obtained by blending two or more substantially monodisperse distributions. Alternatively, the inorganic particles can be introduced having a range of particle sizes obtained by grinding the particles to a desired size range. The inorganic oxide particles are typically non-aggregated (substantially discrete), as aggregation can result in optical scattering (haze) or precipitation of the inorganic oxide particles or gelation. The inorganic oxide particles are typically colloidal in size, having an average particle diameter of 5 nanometers to 100 nanometers. The particle size of the high index inorganic particles is preferably less than about 50 nm in order to provide sufficiently transparent high-refractive index coatings. The average particle size of the inorganic oxide particles can be measured using transmission electron microscopy to count the number of inorganic oxide particles of a given diameter.
- The optical film having a perfluoropolyether urethane containing surface layer as described herein may have a gloss or matte surface. Matte films typically have lower transmission and higher haze values than typical gloss films. For examples the haze is generally at least 5%, 6%, 7%, 8%, 9%, or 10% as measured according to ASTM D1003. Whereas gloss surfaces typically have a gloss of at least 130 as measured according to ASTM D 2457-03 at 60°; matte surfaces have a gloss of less than 120.
- A particulate matting agent can be incorporated into the polymerizable composition in order to impart anti-glare properties to the surface layer. The particulate matting agent can prevent uneven coloration caused by interference with an associated hard coat layer.
- Exemplary systems incorporating matting agents into a hard coating layer, but having a different hard coating composition, are described, for example, in U.S. Pat. No. 6,693,746. Further, exemplary matte films are commercially available from U.S.A. Kimoto Tech of Cedartown, Ga., under the trade designation “N4D2A.”
- The amount of particulate matting agent added is between about 0.5 and 10% of the total solids of the composition, depending upon the thickness of the layer, with a preferred amount around 2%.
- The average particle diameter of the particulate matting agent has a predefined minimum and maximum that is partially dependent upon the thickness of the layer. However, generally speaking, average particle diameters below 1.0 microns do not provide the degree of anti-glare sufficient to warrant inclusion, while average particle diameters exceeding 10.0 microns deteriorate the sharpness of the transmission image. The average particle size is thus preferably between about 1.0 and 10.0 microns, and more preferably between 1.7 and 3.5 microns, in terms of the number-averaged value measured by the Coulter method.
- As the particulate matting agent, inorganic particles or resin particles are used including, for example, amorphous silica particles, TiO2 particles, Al2O3 particles, cross-linked acrylic polymer particles such as those made of cross-linked poly(methyl methacrylate), cross-linked polystyrene particles, melamine resin particles, benzoguanamine resin particles, and cross-linked polysiloxane particles. By taking into account the dispersion stability and sedimentation stability of the particles in the coating mixture for the anti-glare layer and/or the hard coat layer during the manufacturing process, resin particles are more preferred, and in particular cross-linked polystyrene particles are preferably used since resin particles have a high affinity for the binder material and a small specific gravity.
- As for the shape of the particulate matting agent, spherical and amorphous particles can be used. However, to obtain a consistent anti-glare property, spherical particles are desirable. Two or more kinds of particulate materials may also be used in combination.
- One commercially available silica particulate matting agent having an average particle size of 3.5 microns is commercially available from W.R. Grace and Co., Columbia, Md. under the trade designation “Syloid C803”.
- The attraction of the perfluoropolyurethane-containing hardcoat surface to lint can be further reduced by including an antistatic agent. For example, an antistatic coating can be applied to the (e.g. optionally primed) substrate prior to coating the hardcoat. The thickness of the antistatic layer is typically at least 20 nm and generally no greater than 400 nm, 300 nm, or to 200 nm.
- The antistatic coating may comprise at least one conductive polymer as an antistatic agent. Various conductive polymers are known. Examples of useful conductive polymers include polyaniline and derivatives thereof, polypyrrole, and polythiophene and its derivatives. One particularly suitable polymer is poly(ethylenedioxythiophene) (PEDOT) such as poly(ethylenedioxythiophene) doped with poly(styrenesulfonic acid)(PEDOT:PSS) commercially available from H.C. Starck, Newton, Mass. under the trade designation “BAYTRON P”. This conductive polymer can be added at low concentrations to sulfopolyester dispersions to provide antistatic compositions that provided good antistatic performance in combination with good adhesion particularly to polyester and cellulose acetate substrates.
- In other embodiments, the antistatic coating or hardcoat composition may comprise conductive metal-containing particles, such as metals or semiconductive metal oxides. Such particles may also be described as nanoparticles having a particle size or associated particle size of greater than 1 nm and less than 200 nm. Various granular, nominally spherical, fine particles of crystalline semiconductive metal oxides are known. Such conductive particles are generally binary metal oxides doped with appropriate donor heteroatoms or containing oxygen deficiencies. Preferred doped conductive metal oxide granular particles include Sb-doped tin oxide, Al-doped zinc oxide, In-doped zinc oxide, and Sb-doped zinc oxide.
- Various antistatic particles are commercially available as water-based and solvent-based dispersions. Antimony tin oxide (ATO) nanoparticle dispersions that can be used include a dispersion available from Air Products under the trade designation “Nano ATO S44A” (25 wt-% solids, water), 30 nm and 100 nm (20 wt-% solids, water) dispersions available from Advanced Nano Products Co. Ltd. (ANP), 30 nm and 100 nm ATO IPA sols (30 wt-%) also available from ANP, a dispersion available from Keeling & Walker Ltd under the trade designation “CPM10C” (19.1 wt-% solids), and a dispersion commercially available from Ishihara Sangyo Kaisha, Ltd under the trade designation “SN-100 D” (20 wt-% solids). Further, an antimony zinc oxide (AZO) IPA sol (20 nm, 20.8 wt-% solids) is available from Nissan Chemical America, Houston Tex. under the trade designations “CELNAX CX-Z2101P”, “CELNAX CX-Z300H” (in water), “CELNAX CX-Z401M” (in methanol), and “CELNAX CX-Z653M-F” (in methanol).
- For nanoparticle antistats, the antistatic agent is present in an amount of at least 20 wt-%. For conducting inorganic oxide nanoparticles, levels can be up to 80 wt % solids for refractive index modification. When a conductive polymer antistat is employed, it is generally preferred to employ as little as possible due to the strong absorption of the conductive polymer in the visible region. Accordingly, the concentration is generally no greater than 20 wt-% solid, and preferably less than 15 wt-%. In some embodiments the amount of conductive polymer ranges from 2 wt-% to 5 wt-% solids of the dried antistatic layer.
- The perfluoropolyether urethane polymeric material alone or in combination with the hardcoat composition can be dispersed in a solvent to form a dilute coating composition. The amount of solids in the coating compositon is typically at least 20 wt-% and usually no greater than about 50 wt-%. For some optical substrate such as polycarbonate, acrylic, cellulose acetate, and cellulose triacetate, it is preferred to employ an alcohol based solvent including for example methanol, ethyl alcohol, isopropyl alcohol, propanol, etc. as well as glycol ethers such as propylene glycol monomethyl ether or ethylene glycol monomethyl ether, etc. For such optical substrates, the coating compositions may contain predominantly alcohol solvent(s). For other uses, however, alcohol based solvent(s) may be combined with other (i.e. non-alcohol) solvents.
- Thin coating layers can be applied to the optical substrate using a variety of techniques, including dip coating, forward and reverse roll coating, wire wound rod coating, and die coating. Die coaters include knife coaters, slot coaters, slide coaters, fluid bearing coaters, slide curtain coaters, drop die curtain coaters, and extrusion coaters among others. Many types of die coaters are described in the literature such as by Edward Cohen and Edgar Cutoff, Modern Coating and Drying Technology, VCH Publishers, NY 1992, ISBN 3-527-28246-7 and Gutoff and Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, Wiley Interscience, NY ISBN 0-471-59810-0.
- A die coater generally refers to an apparatus that utilizes a first die block and a second die block to form a manifold cavity and a die slot. The coating fluid, under pressure, flows through the manifold cavity and out the coating slot to form a ribbon of coating material. Coatings can be applied as a single layer or as two or more superimposed layers. Although it is usually convenient for the substrate to be in the form of a continuous web, the substrate may also be a succession of discrete sheets.
- The term “optical display”, or “display panel”, can refer to any conventional optical displays, including but not limited to multi-character multi-line displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”), and signage, as well as single-character or binary displays such as light emitting diodes (“LEDs”), signal lamps, and switches. The exposed surface of such display panels may be referred to as a “lens.” The invention is particularly useful for displays having a viewing surface that is susceptible to being touched or contacted by ink pens, markers and other marking devices, wiping cloths, paper items and the like. The protective coatings of the invention can be employed in a variety of portable and non-portable information display articles. These articles include PDAs, cell phones (including combination PDA/cell phones), LCD televisions (direct lit and edge lit), touch sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD and DVD players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays and the like. The viewing surfaces can have any conventional size and shape and can be planar or non-planar, although flat panel displays are preferred. The coating composition or coated film, can be employed on a variety of other articles as well such as for example camera lenses, eyeglass lenses, binocular lenses, mirrors, retroreflective sheeting, automobile windows, building windows, train windows, boat windows, aircraft windows, vehicle headlamps and taillights, display cases, road pavement markers (e.g. raised) and pavement marking tapes, overhead projectors, stereo cabinet doors, stereo covers, watch covers, as well as optical and magneto-optical recording disks, and the like.
- A variety of substrates can be utilized in the articles of the invention. Suitable substrate materials include glass as well as thermosetting or thermoplastic polymers such as polycarbonate, poly(meth)acrylate (e.g., polymethyl methacrylate or “PMMA”), polyolefins (e.g., polypropylene or “PP”), polyurethane, polyesters (e.g., polyethylene terephthalate or “PET”), polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrene, styrene-acrylonitrile copolymers, epoxies, and the like. Typically the substrate will be chosen based in part on the desired optical and mechanical properties for the intended use. Such mechanical properties typically will include flexibility, dimensional stability and impact resistance. The substrate thickness typically also will depend on the intended use. For most applications, a substrate thickness of less than about 0.5 mm is preferred, and is more preferably about 0.02 to about 0.2 mm. Self-supporting polymeric films are preferred. Films made from polyesters such as PET or polyolefins such as PP (polypropylene), PE (polyethylene) and PVC (polyvinyl chloride) are particularly preferred. The polymeric material can be formed into a film using conventional filmmaking techniques such as by extrusion and optional uniaxial or biaxial orientation of the extruded film. The substrate can be treated to improve adhesion between the substrate and the hardcoat layer, e.g., chemical treatment, corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation. If desired, an optional tie layer or primer can be applied to the substrate and/or hardcoat layer to increase the interlayer adhesion.
- Various light transmissive optical films are known including but not limited to, multilayer optical films, microstructured films such as retroreflective sheeting and brightness enhancing films, (e.g. reflective or absorbing) polarizing films, diffusive films, as well as (e.g. biaxial) retarder films and compensator films such as described in U.S. Patent Application Publication No. 2004/0184150.
- As described is U.S. Patent Application Publication 2003/0217806, multilayer optical films provide desirable transmission and/or reflection properties at least partially by an arrangement of microlayers of differing refractive index. The microlayers have different refractive index characteristics so that some light is reflected at interfaces between adjacent microlayers. The microlayers are sufficiently thin so that light reflected at a plurality of the interfaces undergoes constructive or destructive interference in order to give the film body the desired reflective or transmissive properties. For optical films designed to reflect light at ultraviolet, visible, or near-infrared wavelengths, each microlayer generally has an optical thickness (i.e., a physical thickness multiplied by refractive index) of less than about 1 μm. However, thicker layers can also be included, such as skin layers at the outer surfaces of the film, or protective boundary layers disposed within the film that separate packets of microlayers. Multilayer optical film bodies can also comprise one or more thick adhesive layers to bond two or more sheets of multilayer optical film in a laminate.
- Further details of suitable multilayer optical films and related constructions can be found in U.S. Pat. No. 5,882,774 (Jonza et al.), and PCT Publications WO 95/17303 (Ouderkirk et al.) and WO 99/39224 (Ouderkirk et al.). Polymeric multilayer optical films and film bodies can comprise additional layers and coatings selected for their optical, mechanical, and/or chemical properties. See U.S. Pat. No. 6,368,699 (Gilbert et al.). The polymeric films and film bodies can also comprise inorganic layers, such as metal or metal oxide coatings or layers
- Various permanent and removable grade adhesive compositions may be coated on the opposite side (i.e. to the hardcoat) of the substrate so the article can be easily mounted to a display surface. Suitable adhesive compositions include (e.g. hydrogenated) block copolymers such as those commercially available from Kraton Polymers of Westhollow, Tex. under the trade designation “Kraton G-1657”, as well as other (e.g. similar) thermoplastic rubbers. Other exemplary adhesives include acrylic-based, urethane-based, silicone-based, and epoxy-based adhesives. Preferred adhesives are of sufficient optical quality and light stability such that the adhesive does not yellow with time or upon weather exposure so as to degrade the viewing quality of the optical display. The adhesive can be applied using a variety of known coating techniques such as transfer coating, knife coating, spin coating, die coating and the like. Exemplary adhesives are described in U.S. Patent Application Publication No. 2003/0012936. Several of such adhesives are commercially available from 3M Company, St. Paul, Minn. under the trade designations 8141, 8142, and 8161.
- For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in the specification.
- “Free-radically polymerizable” refers to the ability of monomers, oligomers, polymers or the like to participate in crosslinking reactions upon exposure to a suitable source of free radicals.
- “(Meth)acryl” refers to functional groups including acrylates, methacrylates, acrylamides, methacrylamides, alpha-fluoroacrylates, thioacrylates and thio-methacrylates. A preferred (meth)acryl group is acrylate.
- “Monovalent perfluoropolyether moiety” refers to a perfluoropolyether chain having one end terminated by a perfluoroalkyl group.
- Unless otherwise noted, “HFPO—” refers to the end group F(CF(CF3)CF2O)aCF(CF3)— of the methyl ester F(CF(CF3)CF2O)aCF(CF3)C(O)OCH3, wherein “a” averages 2 to 15. In some embodiments, a averages between 3 and 10 or a averages between 5 and 8. Such species generally exist as a distribution or mixture of oligomers with a range of values for a, so that the average value of a may be non-integer. In one embodiment a averages 6.2. This methyl ester has an average molecular weight of 1,211 g/mol, and can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), with purification by fractional distillation.
- The recitation of numerical ranges by endpoints includes all numbers subsumed within the range (e.g. the range 1 to 10 includes 1, 1.5, 3.33, and 10).
- Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.
- Test Methods
- 1. Spots: The number of spots was determined visually in a 25 cm2 area by counting the number of spots with the coating held against a black background. When the composition includes a particulate matting agent such as silica, the spots are white in appearance and can be more easily detected.
- 2. PGX Contact Angle: The static contact angle with water of Examples 4-12 was measured using a PGX goniometer from Fibro System AB, Sweden. A 4 microliter DI water drop was used and the PGX instrument automatically recorded the static contact angle.
- 3. Durability of Ink Repellency was assessed using a modified Oscillating Sand Method (ASTM F 735-94). An orbital shaker was used (VWR DS-500E, from VWR Bristol, Conn.). A disk of diameter 89 mm was cut from the sample, placed in a 16 ounce jar lid Oar W216922 from Wheaton, Millville, N.J.), and covered with 40 grams of 20-30 mesh Ottawa sand (VWR, Bristol, Conn.). The jar was capped and placed in the shaker set at 250 rpm for 5 minutes. After shaking, a Sharpie permanent marker was used to draw a line across the diameter of the disk surface. The portion of the ink line that did not bead up was measured. A measure of 89 mm is equal to 100% ink repellency loss; a measure of 0 mm would be perfect durability or 0% ink repellency (IR) loss.
- 4. Cellulose Surface Attraction Test—After the coated PET film was prepared it was allowed to condition for 24 hours at ambient temperature and 50%±10% relative humidity to allow it to be charged. After conditioning each coated PET sample was cleaned with a Simco “Viper” static neutralizing gun to remove any dust. Then 0.35 grams of alpha-cellulose (C-8002) from Sigma Chemical Company (St. Louis, Mo.) was applied to the top of the coating in a 7 cm diameter area. The coated film was tilted back and forth several times to allow the cellulose to evenly coat the 7 cm. diameter test area. The excess cellulose was then shaken off and the haze of the coating plus cellulose was measured according to ASTM D1003.
- Synthesis of Perfluoropolyether Alcohol Starting Materials
- HFPO—C(O)N(H)CH2CH2OH of different molecular weights (938.5, 1314, 1344, and 1547.2) were made by a procedure similar to that described in U.S. Publication No. 2004-0077775, (Docket Number 57823), entitled “Fluorochemical Composition Comprising a Fluorinated Polymer and Treatment of a Fibrous Substrate Therewith,” filed on May 24, 2002, for Synthesis of HFPO-oligomer alcohols with the exception that HFPO methyl ester F(CF(CF3)CF2O)aCF(CF3)C(O)CH3 with a=6.2 was replaced with F(CF(CF3)CF20)aCF(CF3)C(O)OCH3 wherein a=4.41, 6.67, 6.85, and 8.07 respectively.
- The methyl ester material for preparation of the alcohol can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), with purification by fractional distillation.
- 1. HFPO—C(O)N(H)(CH2CH2O)3H, MW 1329 was prepared according to the procedures for HFPO—C(O)N(H)CH2CH2OH, using F(CF(CF3)CF2O)aCF(CF3)C(O)CH3 with a=6.2 (1211 MW) and substituting H2N(CH2CH2O)3H for H2NCH2CH2OH.
- 2. HFPO—C(O)N(H)(CH2)6OH, MW 1297 was prepared according to the procedures for HFPO—C(O)N(H)CH2CH2OH, using F(CF(CF3)CF2O)aCF(CF3)C(O)CH3 with a=6.2 (1211 MW) and substituting H2N(CH2)6OH for H2NCH2CH2OH
- Polyisocyanate was obtained from Bayer Polymers LLC, of Pittsburgh, Pa. under the trade designation “Desmodur N100”. (“DesN100”)
- Polyisocyanate was obtained from Bayer Polymers LLC, of Pittsburgh, Pa. under the trade designation “Desmodur N3300”. (“DesN3300”)
- Pentaerythritol triacrylate (“PET3A”), under the trade designation “SR444C”, was obtained from Sartomer Company of Exton, Pa.
- 2,6-di-t-butyl-4-methylphenol (BHT) and dibutyltin dilaurate (DBTDL) are each available from Sigma Aldrich of Milwaukee, Wis.
- Synthesis of Perfluoropolyether Urethane Multiacrylate
- A 500 ml roundbottom flask equipped with magnetic stir bar was charged with 25.0 g (0.131 eq, 191 EW, 1.0 mole fraction) Des N100, 106.75 g methyl ethyl ketone (MEK), and 0.05 g BHT. The reaction was swirled to dissolve all the reactants, the flask was placed in a oil bath at 55 degrees Celsius, and fitted with a condenser under dry air. Sixty-five microliters of a 10% dibutyltin dilaurate solution in MEK was added to the reaction. Over 20 min, 17.59 g (0.0131 eq, 1344 EW, 0.10 mole fraction)
- F(CF(CF3)CF2O)6.85CF(CF3)C(O)NHCH2CH2OH was added to the reaction via addition funnel. Two hours after the addition was complete, 9.07 g (0.0131 eq, 692.6 EW, 0.10 mole fraction) C18H37(OCH2CH2)10OH (Brij 76) was added over 20 min. After reaction overnight, the following afternoon, 54.99 g (0.1115 eq, at 494.3 EW, 0.85 mole fraction) of Sartomer SR444C was added in one portion to the reaction which was allowed to proceed overnight. (The actual OH equivalent weight of the SR444C was 421.8, but 494.3 is used in calculations for all lots of SR444C, so that for any given material made, the weight percentage of SR444C will remain constant). The reaction was monitored by FTIR and initially showed an isocyanate absorption at 2273 cm−1. This absorption was gone after reaction overnight, and 7.40 g of MEK was added to compensate for MEK lost during the reaction to adjust the final solids to 50% solids.
- The perfluoropolyether urethane multiacrylates of Preparations 2-14, C1 and C2 were made by substantially the same procedure with 1.0 mole fraction (Des N100) isocyanate, the HFPO-alcohol at 0.10 mole fraction and each of the modifying alcohols at the mole fractions indicated in column 5 of the following Table 1. The HFPO—C(O)NHCH2CH2OH amidol of 1344 molecular weight was used for Example numbers C1, C3, 2, 3, 4, 5; whereas the HFPO—C(O)NHCH2CH2OH amidol of 1314 molecular weight was used for C2.
-
Ex. Trade Supplier, Modifying Alcohol PET3A/Alcohol No. Designation location Molecular Weight Mole Fraction C1 None 0.95/0.0 C2 Aldrich, HO(CH2)10OH 0.75/0.2 St. Louis, MO 1-10 decane diol Mn = 174.3 g/mole C3 Bisomer Cognis, HO(CH2CH2O)6C(O)CH═C2 0.75/0.2 PEA6 Cincinnati, OH Polyethylene glycol (6) monoacrylate 2 MA-100 Nippon Nyukazai, HO(CH2CH2O)10C(O)CH(CH3)═CH2 0.85/0.1 Tokyo, Japan Hydroxyl alkylene oxide methacrylate Mn = 517 g/mole 3 NOVEL II Sasol North 50:50 blend of 0.85/0.1 810-10-10 America, HO—(CH2CH2O)10C8H17 and Huston, TX. HO—(CH2CH2O)10C10H21 Mn = 592.4 g/mole 4 CALGENE Lambent C11H23C(O)(CH2CH2O)10 OH 0.85/0.1 40-L Technologies, Mn = 640 g/mole Gurnee, IL 5 Brij 78 Uniqema, New C18H37(OCH2CH2)20OH 0.85/0.1 Castle, DE Mn = 1058.5 g/mole - Ex. 6 and C4—1.0 DES N3300/PET3A/0.1 HFPOC(O)NHCH2CH2OH/C18H37(OCH2CH2)20OH
- Brij 78 at 50% solids in MEK. Both made with SR444C 421.8 EW.,
- HFPOC(O)NHCH2CH2OH MW 1314, DES N3300 has an equivalent weight of 193.
-
Example No. PET3A/Alcohol Mole Fraction C4 0.95/0.0 6 0.85/0.10 - Ex. 7 and C5—1.0 DES N100/PET3A/0.1 HFPOC(O)NHCH2CH2OH C18H37(OCH2CH2)20OH
- Brij 78 at 50% solids in MEK. Both made with SR444C 421.8 EW.,
- HFPOC(O)NHCH2CH2OH MW 938.5.
-
Example No. PET3A/Alcohol Mole Fraction C5 0.95/0.0 7 0.85/0.10 - Ex. 8 and C6—1.0 DES N100/PET3A/0.1 HFPOC(O)NH(CH2CH2O)3H/C18H37(OCH2CH2)20OH
- Brij 78 at 50% solids in MEK.
- Both made with SR444C 421.8 EW., HFPOC(O)NH(CH2CH2O)3H MW 1329
-
Example No. PET3A/Alcohol Mole Fraction C6 0.95/0.0 8 0.85/0.10 - Ex. 9 and 10—1.0 DES N100/0.1 PET3A/0.1 HFPOC(O)NHCH2CH2OH/Modifying Alcohol
- at 50 % solids in MEK. Both made with SR444C 421.8 EW., HFPOC(O)NHCH2CH2OH MW 1314
-
Example Trade Supplier, Modifying Alcohol, PET3A/Alcohol No. Designation location Molecular Weight Mole Fraction 9 “Carbowax Dow Chemical Co., CH3—(OCH2CH2)13—OH 0.85/0.1 MPEG 550” Midland, MI Mn = 553 g/mole 10 “Carbowax Dow Chemical Co., H—(OCH2CH2)20—OH 0.85/0.20 PEG 900” Midland, MI Mn = 900 g/mole - The perfluoropolyether urethane multiacrylates of Examples 11-12 and C7 and C8 were made by substantially the same procedure with 1.0 mole fraction (Des N100) isocyanate and the HFPO-alcohol (MW=1314) amounts indicated in column 2 and the modifying alcohols indicated in column 3, at the ew amounts indicated in column 4 of the following Table 3:
-
Example HFPO Mole PET3A/Alcohol No. fraction Modifying Alcohol Mole Fractions C7 0.25 None 0.8/0.0 11 0.25 C18H37(OCH2CH2)20OH 0.65/0.15 Brij 78 12 0.25 C18H37(OCH2CH2)20OH 0.55/0.25 Brij 78 - Ex. 13 and C8—1.0 DES N100/PET3A/0.1 HFPOC(O)NHCH2CH2OH/C18H37(OCH2CH2)20OH
- Brij 78 at 50% solids in MEK. Both made with SR444C 421.8 EW.,
- HFPOC(O)NHCH2CH2OH MW 1547
-
Example No. PET3A/Alcohol Mole Fraction C8 0.95/0.0 13 0.85/0.10 - Ceramer Hardcoat Comprising the Perfluoropolyether Urethane Multiacrylates
- The ceramer hardcoat base compositions (“HCB-1”, “HCB-2” and “HCB-3”) used in the examples were made as described in column 10, line 25-39 and Example 1 of U.S. Pat. No. 5,677,050 to Bilkadi, et al. with the following (wt-% solids) additions:
-
Material HCB-1 HCB-2 HCB-3 Example 1, U.S. Pat. No. 5,677,050 (solids) 94.4 Syloid C803 (silica) 2.8 2.75 2.7 Disperbyk 163 (dispersant) 2.8 2.75 2.7 Sartomer SR 295 46.75 Sartomer SR 238 46.75 Irgacure 819 1.0 SM Zirconia 74.1 Irgacure 184 1.4 Sartomer 399 19.1 - Syloid C 803 is a fine silica from W.R. Grace and Co., Columbia, Md.
- Disperbyk 163 is a dispersant from Byk-Chemie USA, Wallingford, Conn.
- Irgacure 819 and 184 are photoinitiators from Ciba Specialty Chemicals, Tarrytown, N.Y.
- Sartomer SR 295, SR238, SR399 are all multifunctional acrylate monomers from Sartomer Corp., West Chester, Pa.
- ZrO2 soIs (40.8% solids in water) was prepared were prepared in accordance with the procedures described in U.S. Patent Publication No. 2006/0204745 that claims priority to U.S. patent application Ser. No. 11/078468 filed Mar. 11, 2005. The resulting ZrO2 sols were evaluated with Photo Correlation Spectroscopy (PCS), X-Ray Diffraction and Thermal Gravimetric Analysis as described in U.S. Patent Publication No. 2006/0204745- and application Ser. No. 11/078468. The ZrO2 sols used in the examples had properties in the ranges that follow:
-
PCS Data Dispersion Intensity avg size Volume-avg size (Intensity-avg)/ Index (nm) (nm) (Volume-avg) 1.0-2.4 23.0-37.0 8.0-18.8 1.84-2.97 -
Relative Intensities Apparent Crystallite Size (nm) Weighted Cubic/ (C, T) M M Avg M Avg XRD Tetragonal Monoclinic (1 1 1) (−1 1 1) (1 1 1) Size % C/T Size 100 6-12 7.0-8.5 3.0-6.0 4.0-11.0 4.5-8.3 89%-94% 7.0-8.4 - Surface Modified Zirconia Nanoparticles (SM Zirconia)
- 20.4 lbs of an aqueous dispersion of 10 nm zirconia nanoparticles (40.8% solids in water) was added to a 10 gallon reactor. 12.9 lbs additional water and 33.3 lbs 1-methoxy-2-propanol were added to the reactor with stirring. 2.5 lbs of 3-methacryloxypropyltrimethoxysilane was added slowly to the reactor with stirring. 0.021 lbs of a 5% solution in water of Prostab 5198 was added to the reactor with stirring. The mixture was stirred 18 hours at 80° C.
- The reaction mixture was heated under vacuum (24-40 torr) and the 1-methoxy-2-propanol/water azeotrope was distilled off to remove substantially all of the water, while slowly adding 70.5 lbs of additional 1-methoxy-2-propanol. 0.4 lbs of 30% ammonium hydroxide was added to the reaction mixture, then the reaction was concentrated to 59.2% solids by distilling off 1-methoxy-2-propanol. The surface modification reaction resulted in a mixture containing 59.2% surface modified zirconia (ZrO2—SM), by weight, in 1-methoxy-2-propanol. The final mixture was filtered through a 1 micron filter.
- Coating and Curing of Hardcoat Composition on Optical Film
- Solutions were prepared at 30% solids in a solvent blend of 1:1 isopropanol:propylene glycol methyl ether and coated to yield a dry thickness of about 4 microns using a number 12 wire wound rod onto 5-mil Melinex 618 film. The coatings were dried in a 100 degree Celsius oven for 2 minutes and then placed on a conveyer belt coupled to a ultraviolet (“UV”) light curing device and UV cured under nitrogen using a Fusion 500 watt H bulb at 30 ft/min. The values reported in the Tables refer to the percent solids of each component of the dried coating. The coatings were then visually inspected for surface smoothness (dewetting). The coatings were also tested for durability of ink repellency. Results are shown in Tables 4 and 5.
-
TABLE 4 Hardcoat Composition Comprising Perfluoropolyether (PFPE) Urethane Additive Wt-% solids Wt-% PFPE HCB-1 Solids Urethane Spots in PFPE Example (per Contact coating Urethane No. cm2) Angle HC-1 99.4 0.6 C1 1.2 100 HC-2 99.4 0.6 C2 0.32 100 HC-3 99.4 0.6 C3 0.36 105 Ex. 14 99.4 0.6 2 0.2 105 Ex. 15 99.4 0.6 1 0.04 102 Ex. 16 99.4 0.6 3 0.08 102 Ex. 17 99.4 0.6 4 0.04 105 Ex. 18 99.4 0.6 5 0 103 HC-4 99.4 0.6 C4 1.6 104 Ex. 19 99.4 0.6 6 0.8 102 HC-5 99.4 0.6 C5 0.04 95 Ex. 20 99.4 0.6 7 0.04 94 HC-6 99.4 0.6 C6 0.28 103 Ex. 21 99.4 0.6 8 0.04 102 Ex. 22 99.4 0.6 9 0.04 105 Ex. 23 99.4 0.6 10 0.12 100 HC-7 99.4 0.6 C7 2.8 103 Ex. 24 99.4 0.6 11 2.8 103 Ex. 25 99.4 0.6 12 0.88 94 HC-8 99.4 0.6 C8 0.16 106 Ex. 26 99.4 0.6 13 0.04 102 HCB-2 HC-9 99.4 0.6 C1 0.36 102 Ex. 27 99.4 0.6 5 0.16 93 HCB-3 HC-10 99.4 0.6 C1 0.6 103 Ex. 28 99.4 0.6 5 0.24 94 - Examples 16-18 were tested for Durability of Ink Repellency.
- The results are as follows:
-
TABLE 5 Durability of Ink Repellency (% loss) HC1 Comparative 0 Example 16 0 Example 17 11 Example 18 34 - The perfluoropolyether urethane multiacrylates of Examples 29-32 were made by substantially the same procedure as Example 1, with 1.0 mole fraction (Des N100) isocyanate and the HFPO-alcohol (MW=1344) mole fractions indicated in column 2 and the modifying alcohols indicated in column 3, at the equivalent fractions indicated in column 6.
-
TABLE 6 PET3A/ Alcohol Example HFPO Mole Trade Supplier, Modifying Alcohol, Equivalent No. fraction Designation location Molecular Weight Fraction 29 0.10 “Carbowax Dow Chemical H(OCH2CH2)32—OH 0.85/0.1 MPEG 1450 Co., Midland, Mn ~1450 g/mole Diol” MI 30 0.15 “Carbowax Dow Chemical CH3—(OCH2CH2)13—OH 0.60/0.30 MPEG 750” Co., Midland, Mn = 553 g/mole MI 31 0.15 “Carbowax Dow Chemical CH3—(OCH2CH2)13—OH 0.30/0.60 MPEG 750” Co., Midland, Mn = 553 g/mole MI 32 0.20 “Carbowax Dow Chemical CH3—(OCH2CH2)13—OH 0.35/0.50 MPEG 750” Co., Midland, Mn = 553 g/mole MI - Coating Composition Preparation—To 62.5 grams of a ceramer hardcoat composition (as described in column 10, line 25-39 and Example 1 of U.S. Pat. No. 5,677,050 to Bilkadi, et al.) was added 18.75 grams of ethyl acetate and 18.75 grams of methoxy propanol. Various HFPO Urethane Acrylates were combined with this diluted ceramer hardcoat composition as set forth in Table 7.
-
TABLE 7 Additives in Hardcoat Coating Composition Sample No. Wt-% Solids HFPO Urethane HFPO Urethane type 33 0.4 29 34 2.5 30 35 2.5 31 36 3.3 32 (For Sample 36, 37.5 grams of methoxy propanol and 0 grams of ethyl acetate was used for dilution) - The hardcoat was coated onto an antistatic layer that was formed on the PET as follows:
- A coating solution was prepared by combining 970.8 g deionized water, 19.23 g of PEDOT/PSS (Baytron® P from H.C. Starck, 1.3 wt % solids), 7.5 g of surfactant (Tomadol® 25-9 from Tomah Products, 10 wt % in deionized water), and 2.5 g N-methylpyrrolidinone. This deep blue solution (0.025 wt % PEDOT/PSS) was coated on primed 5 mil PET film (prepared according to Example 29 of U.S. Pat. No. 6,893,731 B2) using a 4-in die coater. The web speed was 35 ft/min and the solution flow rate was 12.4 g/min. Hot zone temperatures were 140° F. in the gap dryer and 140° F., 160° F., and 180° F. in the ovens. The hard coat solution was coated onto this antistat coated polyester using a #12 wire wound rod and dried at 70° C. for 2 minutes. The dried coating having a thickness of about 4 microns was then cured with a Light Hammer 6 UV source using a Fusion H bulb (Fusion UV Systems, Inc., Gaithersburg, Md.), at 100% power, under nitrogen at 30 feet/min.
-
TABLE 8 Test Results Water Static Cellulose Surface Sample Contact Angle Attraction Test 33 102 7% 34 101 9 35 95 7 36 105 1
Claims (23)
1. An optical display comprising:
an optical substrate having a surface layer comprising the reaction product of a polymerizable mixture comprising
at least one perfluoropolyether material comprising at least two free-radically polymerizable groups and at least one segment with greater than 6 ethylene oxide repeat units; and
at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups; wherein the surface layer exhibits a cellulose surface attraction of no greater than 10%.
2. The optical display of claim 1 wherein the perfluoropolyether material comprises at least two (meth)acrylate groups.
3. The optical display of claim 1 whererin the perfluoropolyether material is a perfluoropolyether urethane material.
4. The optical display of claim 3 wherein the perfluoropolyether urethane comprises a terminal group having at least two (meth)acrylate groups.
5. The optical display of claim 1 wherein the perfluoropolyether urethane comprises a monovalent perfluoropolyether moiety.
6. The optical display of claim 4 wherein the perfluoropolyether moiety is F(CF(CF3)CF2O)aCF(CF3)— wherein a ranges from 4 to 15.
7. The optical display of claim 1 wherein the non-fluorinated binder precursor comprising at least three free-radically polymerizable groups.
8. The optical display of claim 1 wherein the substrate is selected from polycarbonate, acrylic, cellulose acetate, and cellulose triacetate.
9. The optical display of claim 1 wherein the surface layer further comprises inorganic oxide particles.
10. The optical display of claim 1 wherein a hardcoat layer comprising inorganic oxide particles is disposed between the substrate and the surface layer.
11. The optical display of claim 1 wherein the ethylene oxide units has the general formula
HXb(C2H4O)jREO
HXb(C2H4O)jREO
wherein
X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms; and
REO is H or a lower alkyl of 1 to 4 carbon atoms;
b ranges from 1 to 2; and
j ranges from 7 to 50.
12. (canceled)
13. The optical display of claim 1 wherein the display further comprises an antistatic layer between the optical substrate and the surface layer.
14. A substrate having a surface layer comprising the reaction product of a polymerizable mixture comprising
at least one perfluoropolyether material comprising at least two free-radically polymerizable groups and at least one segment with greater than 6 ethylene oxide repeat units;
at least one non-fluorinated binder precursor comprising at least two free-radically polymerizable groups.
15. A multifunctional perfluoropolyether urethane composition having the general formula
Ri-(NHC(O)XQRf),-(NHC(O)OQ(A)p),-(NHC(O)X(C2H4O)jREO
Ri-(NHC(O)XQRf),-(NHC(O)OQ(A)p),-(NHC(O)X(C2H4O)jREO
wherein Ri is a residue of a multi-isocyanate;
X are each independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
Q is independently a straight chain, branched chain, or cyclic-containing connecting group having a valency at least 2;
Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula F(RfcO)xCdF2d-, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
A is a (meth)acryl functional group —XC(O)C(R2)═CH2, where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
p is 2 to 6;
j ranges from 7 to 50; and
REO is H; a group selected from alkyl, aryl, alkaryl, aralkyl, that can optionally be substituted with a heteroatom, a heteoratom functional groups, or a (meth)acryl functional group; or —C(O)C(R2)═CH2 where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F.
16. The composition of claim 15 wherein Q comprise a nitrogen containing group.
17. The composition of claim 16 wherein Q contains an amide group.
18. The composition of claim 17 wherien Q is selected from —C(O)NHCH2CH2—, —C(O)NH(CH2)6—, and —C(O)NH(CH2CH2O)CH2CH2—.
19. A free-radically polymerizable composition comprising
a mixture of reaction products of
i) at least one polyisocyanate;
ii) at least one isocyanate reactive perfluoropolyether compound;
iii) at least one isocyanate reactive compound comprising greater than 6 repeat units of ethylene oxide; and
iv) at least one isocyanate reactive non-fluorinated crosslinker comprising at least two free-radically polymerizable groups.
20. The composition of claim 19 dispersed in an alcohol-containing solvent.
21. The composition of claim 19 wherein ii) and iii) comprise alcohol isocyanate reactive groups.
22. The composition of claim 19 further comprising a non-fluorinated binder precursor.
23. The composition of claim 19 further comprising inorganic oxide particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/515,914 US20100055470A1 (en) | 2006-11-29 | 2007-11-27 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/564,463 US20080124555A1 (en) | 2006-11-29 | 2006-11-29 | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
US12/515,914 US20100055470A1 (en) | 2006-11-29 | 2007-11-27 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
PCT/US2007/085551 WO2008067262A1 (en) | 2006-11-29 | 2007-11-27 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/564,463 Continuation-In-Part US20080124555A1 (en) | 2006-11-29 | 2006-11-29 | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
US11/564,463 Continuation US20080124555A1 (en) | 2006-11-29 | 2006-11-29 | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
PCT/US2007/085551 A-371-Of-International WO2008067262A1 (en) | 2006-11-29 | 2007-11-27 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/396,158 Division US8383694B2 (en) | 2006-11-29 | 2012-02-14 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100055470A1 true US20100055470A1 (en) | 2010-03-04 |
Family
ID=39464059
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/564,463 Abandoned US20080124555A1 (en) | 2006-11-29 | 2006-11-29 | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
US12/515,914 Abandoned US20100055470A1 (en) | 2006-11-29 | 2007-11-27 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US13/396,158 Active US8383694B2 (en) | 2006-11-29 | 2012-02-14 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US13/615,688 Active US8415014B2 (en) | 2006-11-29 | 2012-09-14 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/564,463 Abandoned US20080124555A1 (en) | 2006-11-29 | 2006-11-29 | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/396,158 Active US8383694B2 (en) | 2006-11-29 | 2012-02-14 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US13/615,688 Active US8415014B2 (en) | 2006-11-29 | 2012-09-14 | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
Country Status (7)
Country | Link |
---|---|
US (4) | US20080124555A1 (en) |
EP (1) | EP2087053B1 (en) |
JP (1) | JP5694667B2 (en) |
KR (1) | KR101455421B1 (en) |
CN (1) | CN101541900B (en) |
TW (1) | TWI457587B (en) |
WO (1) | WO2008067262A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100160595A1 (en) * | 2005-03-23 | 2010-06-24 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US20100310875A1 (en) * | 2007-12-12 | 2010-12-09 | Encai Hao | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units |
US20110086221A1 (en) * | 2007-08-31 | 2011-04-14 | Pokorny Richard J | Hardcoats having low surface energy and low lint attraction |
US8383694B2 (en) | 2006-11-29 | 2013-02-26 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US8660663B2 (en) | 2010-12-20 | 2014-02-25 | Cardiac Pacemakers, Inc. | Lead having a conductive polymer conductor |
US8903507B2 (en) | 2009-09-02 | 2014-12-02 | Cardiac Pacemakers, Inc. | Polyisobutylene urethane, urea and urethane/urea copolymers and medical leads containing the same |
US8927660B2 (en) | 2009-08-21 | 2015-01-06 | Cardiac Pacemakers Inc. | Crosslinkable polyisobutylene-based polymers and medical devices containing the same |
US8942823B2 (en) | 2009-09-02 | 2015-01-27 | Cardiac Pacemakers, Inc. | Medical devices including polyisobutylene based polymers and derivatives thereof |
US8962785B2 (en) | 2009-01-12 | 2015-02-24 | University Of Massachusetts Lowell | Polyisobutylene-based polyurethanes |
US9926399B2 (en) | 2012-11-21 | 2018-03-27 | University Of Massachusetts | High strength polyisobutylene polyurethanes |
US10526429B2 (en) | 2017-03-07 | 2020-01-07 | Cardiac Pacemakers, Inc. | Hydroboration/oxidation of allyl-terminated polyisobutylene |
US10835638B2 (en) | 2017-08-17 | 2020-11-17 | Cardiac Pacemakers, Inc. | Photocrosslinked polymers for enhanced durability |
EP3938411A1 (en) * | 2019-03-11 | 2022-01-19 | Joanneum Research Forschungsgesellschaft mbH | Oligomere hexafluoropropylenoxide derivatives |
US11472911B2 (en) | 2018-01-17 | 2022-10-18 | Cardiac Pacemakers, Inc. | End-capped polyisobutylene polyurethane |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI450043B (en) * | 2008-03-11 | 2014-08-21 | 3M Innovative Properties Co | Phototools having a protective layer |
PL2370536T3 (en) * | 2008-12-18 | 2014-04-30 | 3M Innovative Properties Co | Coating composition |
TWI476223B (en) * | 2009-06-16 | 2015-03-11 | Mitsubishi Rayon Co | Anti-fouling composition, anti-fouling film, anti-fouling laminated film, transfer film and resin laminate and method for fabricating resin laminate |
CN102597116B (en) | 2009-07-21 | 2013-12-11 | 3M创新有限公司 | Curable composition, method of coating a phototool, and coated phototool |
JP5781075B2 (en) | 2009-08-28 | 2015-09-16 | スリーエム イノベイティブ プロパティズ カンパニー | Polymerizable ionic liquids and antistatic coatings containing polyfunctional cations |
EP2470509A2 (en) | 2009-08-28 | 2012-07-04 | 3M Innovative Properties Company | Compositions and articles comprising polymerizable ionic liquid mixture, and methods of curing |
US20120225301A1 (en) | 2009-08-28 | 2012-09-06 | Hunt Bryan V | Optical device with antistatic coating |
US8420281B2 (en) * | 2009-09-16 | 2013-04-16 | 3M Innovative Properties Company | Epoxy-functionalized perfluoropolyether polyurethanes |
US9051423B2 (en) | 2009-09-16 | 2015-06-09 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
WO2011034847A1 (en) | 2009-09-16 | 2011-03-24 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
RU2012131166A (en) | 2009-12-22 | 2014-01-27 | 3М Инновейтив Пропертиз Компани | CURABLE DENTAL COMPOSITIONS AND ARTICLES CONTAINING POLYMERIZABLE IONIC LIQUIDS |
TW201219420A (en) * | 2010-08-24 | 2012-05-16 | Sipix Imaging Inc | Electrophoretic dispersion |
US8475926B2 (en) * | 2010-10-29 | 2013-07-02 | Eastman Kodak Company | Intermediate transfer member and imaging apparatus and method |
US8742022B2 (en) * | 2010-12-20 | 2014-06-03 | 3M Innovative Properties Company | Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility |
US9296904B2 (en) | 2010-12-20 | 2016-03-29 | 3M Innovative Properties Company | Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility |
EP2670796B1 (en) * | 2011-02-03 | 2018-05-16 | 3M Innovative Properties Company | Hardcoat |
NO20111218A1 (en) | 2011-09-08 | 2013-02-25 | Presens As | Retractable pressure sensor |
EP2631254A1 (en) * | 2012-02-27 | 2013-08-28 | Cytec Surface Specialties, S.A. | Fluorinated water-oil repellency agents |
WO2013172480A1 (en) * | 2012-05-18 | 2013-11-21 | Ricoh Company, Ltd. | Photopolymerizable composition, photopolymerizable inkjet ink, and ink cartridge |
US9701850B2 (en) | 2012-06-19 | 2017-07-11 | 3M Innovative Properties Company | Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility |
JP6363072B2 (en) * | 2012-06-19 | 2018-07-25 | スリーエム イノベイティブ プロパティズ カンパニー | Additives containing low surface energy groups and hydroxyl groups, and coating compositions |
EP2872537A1 (en) | 2012-07-13 | 2015-05-20 | 3M Innovative Properties Company | Hardcoats comprising alkoxylated multi (meth)acrylate monomers |
JP6062680B2 (en) * | 2012-08-01 | 2017-01-18 | スリーエム イノベイティブ プロパティズ カンパニー | Antifouling hard coat and antifouling hard coat precursor |
JP6371032B2 (en) * | 2012-08-01 | 2018-08-08 | スリーエム イノベイティブ プロパティズ カンパニー | Anti-reflective hard coat and anti-reflective article |
US9057817B2 (en) * | 2013-04-15 | 2015-06-16 | Corning Incorporated | Low diameter optical fiber |
JP6111843B2 (en) * | 2013-05-14 | 2017-04-12 | 信越化学工業株式会社 | Curable composition and article having cured film thereof |
CN108084911A (en) * | 2013-12-30 | 2018-05-29 | 艾利丹尼森公司 | Coating film |
CN105899623B (en) | 2014-01-15 | 2018-08-10 | 3M创新有限公司 | Include the hard coat film of alkoxylated more (methyl) acrylate monomers and surface treated nano-particle |
KR101539262B1 (en) * | 2014-08-20 | 2015-07-29 | 주식회사 콘텍 | Polymer composition using diol including fluorine and surface-treated article using the same |
US9797237B2 (en) | 2014-11-17 | 2017-10-24 | General Electric Company | Constant volume temperature to pressure transducer for use with retrievable pressure sensor assemblies |
US10596739B2 (en) | 2015-03-18 | 2020-03-24 | Riken Technos Corporation | Molded body |
CN107405901B (en) | 2015-03-18 | 2020-04-17 | 理研科技株式会社 | Anti-glare hard-coat laminated film |
US11352473B2 (en) | 2015-03-18 | 2022-06-07 | Riken Technos Corporation | Hard coat laminated film and method for producing same |
KR102479158B1 (en) | 2015-03-18 | 2022-12-19 | 리껭테크노스 가부시키가이샤 | Hard coat laminated film |
EP3865301B1 (en) | 2015-03-18 | 2024-06-12 | Riken Technos Corporation | Hard coat laminated film |
KR102748410B1 (en) | 2015-03-18 | 2024-12-31 | 리껭테크노스 가부시키가이샤 | Adhesive film |
US11433651B2 (en) | 2015-03-18 | 2022-09-06 | Riken Technos Corporation | Hard coat laminated film |
CN104851522A (en) * | 2015-05-21 | 2015-08-19 | 郑州大学 | Preparation method of large-area PEDOT/PSS transparent conductive film |
TWI745316B (en) | 2015-11-25 | 2021-11-11 | 日商理研科技股份有限公司 | Door |
US11774166B2 (en) | 2015-11-25 | 2023-10-03 | Riken Technos Corporation | Door body |
JP6644534B2 (en) | 2015-12-08 | 2020-02-12 | リケンテクノス株式会社 | Hard coat laminated film |
KR102355571B1 (en) | 2016-09-14 | 2022-01-25 | 리껭테크노스 가부시키가이샤 | hard coat laminated film |
JP7064313B2 (en) | 2016-11-25 | 2022-05-10 | リケンテクノス株式会社 | Hardcourt laminated film |
US11447657B2 (en) | 2017-12-12 | 2022-09-20 | 3M Innovative Properties Company | Compositions including alpha-alumina particles and methods of their use |
ES2913266T3 (en) * | 2017-12-26 | 2022-06-01 | Akzo Nobel Coatings Int Bv | Fluorinated polyacrylate coating composition, the method of preparing the same and use thereof |
WO2020016708A2 (en) | 2018-07-18 | 2020-01-23 | 3M Innovative Properties Company | Vehicle sensors comprising repellent surface, protective films, repellent coating compositions, and methods |
JP2020015852A (en) * | 2018-07-26 | 2020-01-30 | 富士ゼロックス株式会社 | Resin particle for adding surface protective resin member, and surface protective resin member |
CN109679483B (en) * | 2018-12-10 | 2020-10-09 | 成都晨光博达橡塑有限公司 | UV photocureable coating containing perfluoropolyether modification auxiliary agent and preparation method and application thereof |
CN113061240B (en) * | 2021-04-07 | 2022-11-11 | 天津承科翊华科技有限公司 | Precursor and preparation method thereof, super-amphiphobic coating material and preparation method thereof, and super-amphiphobic coating |
KR102584963B1 (en) * | 2022-01-11 | 2023-10-05 | 삼성전기주식회사 | Lens and lens assembly comprising the same |
CN115011210B (en) * | 2022-07-25 | 2023-03-14 | 喜跃发国际环保新材料股份有限公司 | Luminous paint and spraying method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4818801A (en) * | 1982-01-18 | 1989-04-04 | Minnesota Mining And Manufacturing Company | Ophthalmic device comprising a polymer of a telechelic perfluoropolyether |
US4825249A (en) * | 1987-03-14 | 1989-04-25 | Ntn-Rulon Industries Co., Ltd. | Cleaning blade for use with photoelectronic copying machine |
US5822489A (en) * | 1996-12-31 | 1998-10-13 | Lucent Technologies, Inc. | Low refractive index photo-curable composition for waveguide applications |
US5846650A (en) * | 1996-05-10 | 1998-12-08 | Minnesota Mining And Manufacturing Company | Anti-reflective, abrasion resistant, anti-fogging coated articles and methods |
US6582759B1 (en) * | 2002-02-15 | 2003-06-24 | 3M Innovative Properties Company | Optical elements comprising a fluorinated surface treatment comprising urethane, ester or phosphate linkages |
US6815040B2 (en) * | 2000-10-27 | 2004-11-09 | 3M Innovative Properites Company | Optical elements comprising a polyfluoropolyether surface treatment |
US20050106404A1 (en) * | 2001-12-26 | 2005-05-19 | Tdk Corporation | Article having composite hard coat layer and method for forming composite hard coat layer |
US20050112319A1 (en) * | 2003-10-31 | 2005-05-26 | Tdk Corporation | Optical information medium |
US6906115B2 (en) * | 2001-06-27 | 2005-06-14 | Daikin Industries, Ltd. | Surface treatment composition and preparation thereof |
US20050158558A1 (en) * | 2002-06-04 | 2005-07-21 | Naoki Hayashida | Method of obtaining 3-d coordinates |
US20050158504A1 (en) * | 2003-12-24 | 2005-07-21 | Tdk Corporation | Hard coat agent composition and optical information medium using the same |
US20050249940A1 (en) * | 2004-05-07 | 2005-11-10 | 3M Innovative Properties Company | Fluoropolyether poly(meth)acryl compounds |
US20050288385A1 (en) * | 2002-11-13 | 2005-12-29 | Asahi Glass Company Limited | Active energy ray curable coating composition and molded product having coating film made of cured product of said composition |
US20060084756A1 (en) * | 2004-04-22 | 2006-04-20 | Dsm Ip Assets B.V. | Low refractive index coating composition |
US20060216500A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US20080124555A1 (en) * | 2006-11-29 | 2008-05-29 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
US7537828B2 (en) * | 2006-06-13 | 2009-05-26 | 3M Innovative Properties Company | Low refractive index composition comprising fluoropolyether urethane compound |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3250808A (en) | 1963-10-31 | 1966-05-10 | Du Pont | Fluorocarbon ethers derived from hexafluoropropylene epoxide |
US4262072A (en) | 1979-06-25 | 1981-04-14 | Minnesota Mining And Manufacturing Company | Poly(ethylenically unsaturated alkoxy) heterocyclic protective coatings |
US4654233A (en) | 1984-11-21 | 1987-03-31 | Minnesota Mining And Manufacturing Company | Radiation-curable thermoplastic coating |
US4855184A (en) | 1988-02-02 | 1989-08-08 | Minnesota Mining And Manufacturing Company | Radiation-curable protective coating composition |
US4929692A (en) | 1989-01-11 | 1990-05-29 | Ciba-Geigy Corporation | Crosslinked copolymers and ophthalmic devices made from vinylic macromers containing perfluoropolyalkyl ether and polyalkyl ether segments and minor amounts of vinylic comonomers |
DE69017055T2 (en) | 1989-01-11 | 1995-06-29 | Ciba Geigy Ag | Vinyl macromers containing perfluoropolyalkyl ether and polyalkyl ether segments, polymers made therefrom, interpolymers and ophthalmic devices. |
WO1992018560A1 (en) | 1991-04-22 | 1992-10-29 | Takata Corporation | Surface-coated member |
DE69423651T2 (en) | 1993-12-21 | 2000-09-21 | Minnesota Mining And Mfg. Co., Saint Paul | MULTI-LAYER OPTICAL FILM |
US5882774A (en) | 1993-12-21 | 1999-03-16 | Minnesota Mining And Manufacturing Company | Optical film |
JP4006761B2 (en) | 1993-12-29 | 2007-11-14 | ダイキン工業株式会社 | Fluorine-in-water emulsion in water and surface treatment composition |
IT1273609B (en) | 1995-04-28 | 1997-07-08 | Ausimont Spa | PROCEDURE FOR THE PROTECTION OF STONE OR COATING SURFACES |
US5648407A (en) | 1995-05-16 | 1997-07-15 | Minnesota Mining And Manufacturing Company | Curable resin sols and fiber-reinforced composites derived therefrom |
US5677050A (en) | 1995-05-19 | 1997-10-14 | Minnesota Mining And Manufacturing Company | Retroreflective sheeting having an abrasion resistant ceramer coating |
KR100468560B1 (en) | 1995-06-26 | 2005-08-04 | 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 | Multilayer polymer film with additional coatings or layers |
JPH10110118A (en) | 1996-08-13 | 1998-04-28 | Toray Ind Inc | Antifouling hard coat agent and optical recording media |
IT1290462B1 (en) | 1997-04-08 | 1998-12-03 | Ausimont Spa | MODIFIED HYDROGENATED POLYMERS |
EP1569015A3 (en) | 1998-01-28 | 2006-03-29 | Minnesota Mining And Manufacturing Company | An optical detector system |
US7351470B2 (en) | 1998-02-19 | 2008-04-01 | 3M Innovative Properties Company | Removable antireflection film |
US6589650B1 (en) | 2000-08-07 | 2003-07-08 | 3M Innovative Properties Company | Microscope cover slip materials |
US6245833B1 (en) | 1998-05-04 | 2001-06-12 | 3M Innovative Properties | Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics |
US6132861A (en) | 1998-05-04 | 2000-10-17 | 3M Innovatives Properties Company | Retroreflective articles including a cured ceramer composite coating having a combination of excellent abrasion, dew and stain resistant characteristics |
US6352758B1 (en) | 1998-05-04 | 2002-03-05 | 3M Innovative Properties Company | Patterned article having alternating hydrophilic and hydrophobic surface regions |
US6224949B1 (en) | 1998-06-11 | 2001-05-01 | 3M Innovative Properties Company | Free radical polymerization method |
US6238798B1 (en) | 1999-02-22 | 2001-05-29 | 3M Innovative Properties Company | Ceramer composition and composite comprising free radically curable fluorochemical component |
US6299799B1 (en) | 1999-05-27 | 2001-10-09 | 3M Innovative Properties Company | Ceramer compositions and antistatic abrasion resistant ceramers made therefrom |
IT1312344B1 (en) | 1999-06-03 | 2002-04-15 | Ausimont Spa | COMPOSITIONS FOR LOW REFRACTION INDEX FILM. |
ATE367591T1 (en) | 1999-09-29 | 2007-08-15 | Fujifilm Corp | ANTI-GLARE AND ANTI-REFLECTION LAYER, POLARIZER AND IMAGE DISPLAY DEVICE |
US6376590B2 (en) | 1999-10-28 | 2002-04-23 | 3M Innovative Properties Company | Zirconia sol, process of making and composite material |
WO2001038448A1 (en) | 1999-11-22 | 2001-05-31 | 3M Innovative Properties Company | Water-based coating composition |
KR100487025B1 (en) | 2002-02-28 | 2005-05-11 | 주식회사 루밴틱스 | Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom |
US6991695B2 (en) | 2002-05-21 | 2006-01-31 | 3M Innovative Properties Company | Method for subdividing multilayer optical film cleanly and rapidly |
AU2003239605B2 (en) | 2002-05-24 | 2008-11-20 | 3M Innovative Properties Company | Fluorochemical composition comprising a fluorinated polyether and treatment of a fibrous substrate therewith |
WO2004002735A1 (en) | 2002-06-27 | 2004-01-08 | Tdk Corporation | Object with composite hard coating layer and method of forming composite hard coating layer |
JP2004043671A (en) | 2002-07-12 | 2004-02-12 | Nippon Kayaku Co Ltd | Low refractive index resin composition and its cured product |
JP2004176054A (en) * | 2002-11-13 | 2004-06-24 | Asahi Glass Co Ltd | Active energy ray-curing coating composition and plastic molded product |
JP4886152B2 (en) | 2002-12-26 | 2012-02-29 | 日本合成化学工業株式会社 | Urethane (meth) acrylate-based compound and active energy ray-curable resin composition using the same |
US6965474B2 (en) | 2003-02-12 | 2005-11-15 | 3M Innovative Properties Company | Polymeric optical film |
JP4590849B2 (en) | 2003-10-03 | 2010-12-01 | Tdk株式会社 | Hard coating agent composition and optical information medium using the same |
JP4779293B2 (en) | 2003-10-21 | 2011-09-28 | Tdk株式会社 | Hard coating agent composition and optical information medium using the same |
US7342080B2 (en) | 2004-05-07 | 2008-03-11 | 3M Innovative Properties Company | Polymerizable compositions, methods of making the same, and composite articles therefrom |
US20050249956A1 (en) * | 2004-05-07 | 2005-11-10 | Naiyong Jing | Stain repellent optical hard coating |
EP1758959A1 (en) | 2004-05-07 | 2007-03-07 | 3M Innovative Properties Company | Stain repellent optical hard coating |
US7101618B2 (en) | 2004-05-07 | 2006-09-05 | 3M Innovative Properties Company | Article comprising fluorochemical surface layer |
WO2006007507A1 (en) | 2004-07-01 | 2006-01-19 | 3M Innovative Properties Company | Hardcoat compositions and methods |
JP2006037024A (en) | 2004-07-29 | 2006-02-09 | Daikin Ind Ltd | Anti-reflection film forming composition |
JP4661140B2 (en) * | 2004-09-07 | 2011-03-30 | 旭硝子株式会社 | Solution composition for water and oil repellent agent, substrate and method for producing the same |
JP4993242B2 (en) * | 2004-10-07 | 2012-08-08 | 大日本印刷株式会社 | Anti-reflective film with improved water and oil repellency and scratch resistance |
JPWO2006046643A1 (en) * | 2004-10-29 | 2008-05-22 | ダイキン工業株式会社 | Fluorine-containing treatment composition |
US7241437B2 (en) | 2004-12-30 | 2007-07-10 | 3M Innovative Properties Company | Zirconia particles |
EP1831727A2 (en) | 2004-12-30 | 2007-09-12 | 3M Innovative Properties Company | Internal components of optical device comprising hardcoat |
US20060204745A1 (en) | 2005-03-14 | 2006-09-14 | Jones Clint L | Light management films with zirconia particles |
-
2006
- 2006-11-29 US US11/564,463 patent/US20080124555A1/en not_active Abandoned
-
2007
- 2007-11-27 CN CN2007800440739A patent/CN101541900B/en not_active Expired - Fee Related
- 2007-11-27 KR KR1020097013347A patent/KR101455421B1/en not_active Expired - Fee Related
- 2007-11-27 WO PCT/US2007/085551 patent/WO2008067262A1/en active Application Filing
- 2007-11-27 EP EP07854772.6A patent/EP2087053B1/en not_active Not-in-force
- 2007-11-27 US US12/515,914 patent/US20100055470A1/en not_active Abandoned
- 2007-11-27 JP JP2009539429A patent/JP5694667B2/en not_active Expired - Fee Related
- 2007-11-28 TW TW96145191A patent/TWI457587B/en not_active IP Right Cessation
-
2012
- 2012-02-14 US US13/396,158 patent/US8383694B2/en active Active
- 2012-09-14 US US13/615,688 patent/US8415014B2/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4818801A (en) * | 1982-01-18 | 1989-04-04 | Minnesota Mining And Manufacturing Company | Ophthalmic device comprising a polymer of a telechelic perfluoropolyether |
US4825249A (en) * | 1987-03-14 | 1989-04-25 | Ntn-Rulon Industries Co., Ltd. | Cleaning blade for use with photoelectronic copying machine |
US5846650A (en) * | 1996-05-10 | 1998-12-08 | Minnesota Mining And Manufacturing Company | Anti-reflective, abrasion resistant, anti-fogging coated articles and methods |
US5822489A (en) * | 1996-12-31 | 1998-10-13 | Lucent Technologies, Inc. | Low refractive index photo-curable composition for waveguide applications |
US6815040B2 (en) * | 2000-10-27 | 2004-11-09 | 3M Innovative Properites Company | Optical elements comprising a polyfluoropolyether surface treatment |
US6906115B2 (en) * | 2001-06-27 | 2005-06-14 | Daikin Industries, Ltd. | Surface treatment composition and preparation thereof |
US20050106404A1 (en) * | 2001-12-26 | 2005-05-19 | Tdk Corporation | Article having composite hard coat layer and method for forming composite hard coat layer |
US6582759B1 (en) * | 2002-02-15 | 2003-06-24 | 3M Innovative Properties Company | Optical elements comprising a fluorinated surface treatment comprising urethane, ester or phosphate linkages |
US20050158558A1 (en) * | 2002-06-04 | 2005-07-21 | Naoki Hayashida | Method of obtaining 3-d coordinates |
US20050288385A1 (en) * | 2002-11-13 | 2005-12-29 | Asahi Glass Company Limited | Active energy ray curable coating composition and molded product having coating film made of cured product of said composition |
US20050112319A1 (en) * | 2003-10-31 | 2005-05-26 | Tdk Corporation | Optical information medium |
US20050158504A1 (en) * | 2003-12-24 | 2005-07-21 | Tdk Corporation | Hard coat agent composition and optical information medium using the same |
US20060084756A1 (en) * | 2004-04-22 | 2006-04-20 | Dsm Ip Assets B.V. | Low refractive index coating composition |
US20050249940A1 (en) * | 2004-05-07 | 2005-11-10 | 3M Innovative Properties Company | Fluoropolyether poly(meth)acryl compounds |
US20060216500A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US7537828B2 (en) * | 2006-06-13 | 2009-05-26 | 3M Innovative Properties Company | Low refractive index composition comprising fluoropolyether urethane compound |
US20080124555A1 (en) * | 2006-11-29 | 2008-05-29 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8981151B2 (en) | 2005-03-23 | 2015-03-17 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US8147966B2 (en) * | 2005-03-23 | 2012-04-03 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US8476398B2 (en) | 2005-03-23 | 2013-07-02 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US20100160595A1 (en) * | 2005-03-23 | 2010-06-24 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US8729211B2 (en) | 2005-03-23 | 2014-05-20 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US8383694B2 (en) | 2006-11-29 | 2013-02-26 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US8415014B2 (en) | 2006-11-29 | 2013-04-09 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US20110086221A1 (en) * | 2007-08-31 | 2011-04-14 | Pokorny Richard J | Hardcoats having low surface energy and low lint attraction |
US8728623B2 (en) | 2007-08-31 | 2014-05-20 | 3M Innovative Properties Company | Hardcoats having low surface energy and low lint attraction |
US20100310875A1 (en) * | 2007-12-12 | 2010-12-09 | Encai Hao | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units |
US8628855B2 (en) | 2007-12-12 | 2014-01-14 | 3M Innovative Properties Company | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units |
US9377563B2 (en) | 2007-12-12 | 2016-06-28 | 3M Innovative Properties Company | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units |
US10513576B2 (en) | 2009-01-12 | 2019-12-24 | University of Masschusetts Lowell | Polyisobutylene-based polyurethanes |
US11174336B2 (en) | 2009-01-12 | 2021-11-16 | University Of Massachusetts Lowell | Polyisobutylene-based polyurethanes |
US8962785B2 (en) | 2009-01-12 | 2015-02-24 | University Of Massachusetts Lowell | Polyisobutylene-based polyurethanes |
US8927660B2 (en) | 2009-08-21 | 2015-01-06 | Cardiac Pacemakers Inc. | Crosslinkable polyisobutylene-based polymers and medical devices containing the same |
US8903507B2 (en) | 2009-09-02 | 2014-12-02 | Cardiac Pacemakers, Inc. | Polyisobutylene urethane, urea and urethane/urea copolymers and medical leads containing the same |
US8942823B2 (en) | 2009-09-02 | 2015-01-27 | Cardiac Pacemakers, Inc. | Medical devices including polyisobutylene based polymers and derivatives thereof |
US8660663B2 (en) | 2010-12-20 | 2014-02-25 | Cardiac Pacemakers, Inc. | Lead having a conductive polymer conductor |
US9926399B2 (en) | 2012-11-21 | 2018-03-27 | University Of Massachusetts | High strength polyisobutylene polyurethanes |
US10562998B2 (en) | 2012-11-21 | 2020-02-18 | University Of Massachusetts | High strength polyisobutylene polyurethanes |
US10526429B2 (en) | 2017-03-07 | 2020-01-07 | Cardiac Pacemakers, Inc. | Hydroboration/oxidation of allyl-terminated polyisobutylene |
US10835638B2 (en) | 2017-08-17 | 2020-11-17 | Cardiac Pacemakers, Inc. | Photocrosslinked polymers for enhanced durability |
US11472911B2 (en) | 2018-01-17 | 2022-10-18 | Cardiac Pacemakers, Inc. | End-capped polyisobutylene polyurethane |
US11851522B2 (en) | 2018-01-17 | 2023-12-26 | Cardiac Pacemakers, Inc. | End-capped polyisobutylene polyurethane |
EP3938411A1 (en) * | 2019-03-11 | 2022-01-19 | Joanneum Research Forschungsgesellschaft mbH | Oligomere hexafluoropropylenoxide derivatives |
Also Published As
Publication number | Publication date |
---|---|
EP2087053A1 (en) | 2009-08-12 |
EP2087053A4 (en) | 2013-01-09 |
US20120142856A1 (en) | 2012-06-07 |
JP5694667B2 (en) | 2015-04-01 |
CN101541900B (en) | 2013-07-10 |
US8415014B2 (en) | 2013-04-09 |
KR20090086613A (en) | 2009-08-13 |
CN101541900A (en) | 2009-09-23 |
TW200837381A (en) | 2008-09-16 |
TWI457587B (en) | 2014-10-21 |
WO2008067262A1 (en) | 2008-06-05 |
JP2010511206A (en) | 2010-04-08 |
US20080124555A1 (en) | 2008-05-29 |
KR101455421B1 (en) | 2014-10-27 |
US8383694B2 (en) | 2013-02-26 |
US20130004773A1 (en) | 2013-01-03 |
EP2087053B1 (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8415014B2 (en) | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment | |
US8728623B2 (en) | Hardcoats having low surface energy and low lint attraction | |
US8628855B2 (en) | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units | |
EP1866355B1 (en) | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats | |
US20090004478A1 (en) | Flexible hardcoat compositions, articles, and methods | |
WO2009005975A1 (en) | Flexible hardcoat compositions, articles, and methods | |
US20080075951A1 (en) | Fluoroacrylates and hardcoat compositions including the same | |
US11180662B2 (en) | Ultraviolet absorbing hardcoat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |