US20090318711A1 - Non-Covalent Inhibitors of AmpC ß-Lactamase - Google Patents
Non-Covalent Inhibitors of AmpC ß-Lactamase Download PDFInfo
- Publication number
- US20090318711A1 US20090318711A1 US12/476,850 US47685009A US2009318711A1 US 20090318711 A1 US20090318711 A1 US 20090318711A1 US 47685009 A US47685009 A US 47685009A US 2009318711 A1 US2009318711 A1 US 2009318711A1
- Authority
- US
- United States
- Prior art keywords
- ampc
- lactamase
- compound
- compounds
- moiety
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003112 inhibitor Substances 0.000 title abstract description 50
- 108010056874 AmpC beta-lactamases Proteins 0.000 title description 66
- 150000001875 compounds Chemical class 0.000 claims description 78
- -1 benzothiazyl Chemical group 0.000 claims description 44
- 150000007942 carboxylates Chemical group 0.000 claims description 21
- 125000001424 substituent group Chemical group 0.000 claims description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 4
- 125000001544 thienyl group Chemical group 0.000 claims description 4
- 229940123930 Lactamase inhibitor Drugs 0.000 claims description 3
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 claims description 2
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 claims description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical group C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 2
- 125000002124 5'-adenosyl group Chemical group N1=CN=C2N(C=NC2=C1N)[C@H]1[C@H](O)[C@H](O)[C@H](O1)C* 0.000 claims description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000005078 alkoxycarbonylalkyl group Chemical group 0.000 claims description 2
- 125000003282 alkyl amino group Chemical group 0.000 claims description 2
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 2
- 125000005596 alkyl carboxamido group Chemical group 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 125000001769 aryl amino group Chemical group 0.000 claims description 2
- 125000005129 aryl carbonyl group Chemical group 0.000 claims description 2
- 125000005533 aryl carboxamido group Chemical group 0.000 claims description 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims description 2
- 239000004305 biphenyl Chemical group 0.000 claims description 2
- 235000010290 biphenyl Nutrition 0.000 claims description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- 125000006310 cycloalkyl amino group Chemical group 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 2
- 125000001188 haloalkyl group Chemical group 0.000 claims description 2
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 claims description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 claims description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 claims description 2
- 125000001041 indolyl group Chemical group 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 150000002825 nitriles Chemical class 0.000 claims description 2
- 125000004971 nitroalkyl group Chemical group 0.000 claims description 2
- 125000000018 nitroso group Chemical group N(=O)* 0.000 claims description 2
- 125000003431 oxalo group Chemical group 0.000 claims description 2
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 claims description 2
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 2
- 125000005495 pyridazyl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 2
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 2
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 claims 1
- 125000004103 aminoalkyl group Chemical group 0.000 claims 1
- 102000006635 beta-lactamase Human genes 0.000 abstract description 40
- 150000003952 β-lactams Chemical class 0.000 abstract description 31
- 102000004190 Enzymes Human genes 0.000 abstract description 20
- 108090000790 Enzymes Proteins 0.000 abstract description 20
- 239000003782 beta lactam antibiotic agent Substances 0.000 abstract description 16
- 239000002132 β-lactam antibiotic Substances 0.000 abstract description 16
- 229940124586 β-lactam antibiotics Drugs 0.000 abstract description 16
- 108020004256 Beta-lactamase Proteins 0.000 abstract description 12
- 230000008261 resistance mechanism Effects 0.000 abstract description 6
- 229930186147 Cephalosporin Natural products 0.000 abstract description 3
- 229930182555 Penicillin Natural products 0.000 abstract description 3
- 238000013459 approach Methods 0.000 abstract description 3
- 229940124587 cephalosporin Drugs 0.000 abstract description 3
- 150000001780 cephalosporins Chemical class 0.000 abstract description 3
- 150000002960 penicillins Chemical class 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 46
- 239000004480 active ingredient Substances 0.000 description 38
- 230000003993 interaction Effects 0.000 description 29
- 108090000204 Dipeptidase 1 Proteins 0.000 description 28
- 238000000034 method Methods 0.000 description 26
- 239000000758 substrate Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 238000003032 molecular docking Methods 0.000 description 24
- 229940125904 compound 1 Drugs 0.000 description 23
- 230000000694 effects Effects 0.000 description 23
- 230000027455 binding Effects 0.000 description 22
- 239000003446 ligand Substances 0.000 description 22
- 229940088598 enzyme Drugs 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 230000005764 inhibitory process Effects 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 15
- 241000894006 Bacteria Species 0.000 description 14
- 239000013078 crystal Substances 0.000 description 13
- 239000008194 pharmaceutical composition Substances 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 125000000565 sulfonamide group Chemical group 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 150000001408 amides Chemical class 0.000 description 10
- 230000002401 inhibitory effect Effects 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 0 O=S(=O)(NC1=CC=C(Cl)C=C1)C1=C(c(o)o)SC=C1 Chemical compound O=S(=O)(NC1=CC=C(Cl)C=C1)C1=C(c(o)o)SC=C1 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 229940124530 sulfonamide Drugs 0.000 description 9
- 108010067372 Pancreatic elastase Proteins 0.000 description 8
- 102000016387 Pancreatic elastase Human genes 0.000 description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 8
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 8
- 229960000723 ampicillin Drugs 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 208000035143 Bacterial infection Diseases 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 208000022362 bacterial infectious disease Diseases 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 7
- 150000003456 sulfonamides Chemical class 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 108090000631 Trypsin Proteins 0.000 description 6
- 102000004142 Trypsin Human genes 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 150000003951 lactams Chemical group 0.000 description 6
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 125000000068 chlorophenyl group Chemical group 0.000 description 5
- 239000006071 cream Substances 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000006072 paste Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 108010027597 alpha-chymotrypsin Proteins 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000013104 docking experiment Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 3
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 3
- HYNQTSZBTIOFKH-UHFFFAOYSA-N 2-Amino-5-hydroxybenzoic acid Chemical compound NC1=CC=C(O)C=C1C(O)=O HYNQTSZBTIOFKH-UHFFFAOYSA-N 0.000 description 3
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 3
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 3
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- HSMNQINEKMPTIC-UHFFFAOYSA-N N-(4-aminobenzoyl)glycine Chemical compound NC1=CC=C(C(=O)NCC(O)=O)C=C1 HSMNQINEKMPTIC-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 241000194017 Streptococcus Species 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- OIDXADKOPPNJOB-UHFFFAOYSA-N n-(4-amino-2-chloro-5-methylphenyl)benzamide Chemical compound C1=C(N)C(C)=CC(NC(=O)C=2C=CC=CC=2)=C1Cl OIDXADKOPPNJOB-UHFFFAOYSA-N 0.000 description 3
- XTBLDMQMUSHDEN-UHFFFAOYSA-N naphthalene-2,3-diamine Chemical compound C1=CC=C2C=C(N)C(N)=CC2=C1 XTBLDMQMUSHDEN-UHFFFAOYSA-N 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 235000010487 tragacanth Nutrition 0.000 description 3
- 239000000196 tragacanth Substances 0.000 description 3
- 229940116362 tragacanth Drugs 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- 238000002424 x-ray crystallography Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- CYNARAWTVHQHDI-UHFFFAOYSA-N (2,4-diaminopteridin-6-yl)methanol Chemical compound N1=C(CO)C=NC2=NC(N)=NC(N)=C21 CYNARAWTVHQHDI-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- IMLOZVNPFFXWAQ-UHFFFAOYSA-N (5-amino-6-cyanopyrazin-2-yl)methyl acetate Chemical compound CC(=O)OCC1=CN=C(N)C(C#N)=N1 IMLOZVNPFFXWAQ-UHFFFAOYSA-N 0.000 description 2
- LHNIIDJCEODSHA-OQRUQETBSA-N (6r,7r)-3-[(e)-2-(2,4-dinitrophenyl)ethenyl]-8-oxo-7-[(2-thiophen-2-ylacetyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@H]1[C@H]2SCC(=C(N2C1=O)C(=O)O)\C=C\C=1C(=CC(=CC=1)[N+]([O-])=O)[N+]([O-])=O)C(=O)CC1=CC=CS1 LHNIIDJCEODSHA-OQRUQETBSA-N 0.000 description 2
- MJIWQHRXSLOUJN-UHFFFAOYSA-N 1,2,4-triazin-3-amine Chemical compound NC1=NC=CN=N1 MJIWQHRXSLOUJN-UHFFFAOYSA-N 0.000 description 2
- XGNXYCFREOZBOL-UHFFFAOYSA-N 1,3-benzodioxol-5-amine Chemical compound NC1=CC=C2OCOC2=C1 XGNXYCFREOZBOL-UHFFFAOYSA-N 0.000 description 2
- ZCBIFHNDZBSCEP-UHFFFAOYSA-N 1H-indol-5-amine Chemical compound NC1=CC=C2NC=CC2=C1 ZCBIFHNDZBSCEP-UHFFFAOYSA-N 0.000 description 2
- BZKOZYWGZKRTIB-UHFFFAOYSA-N 2,3-dihydro-1,4-benzodioxin-6-amine Chemical compound O1CCOC2=CC(N)=CC=C21 BZKOZYWGZKRTIB-UHFFFAOYSA-N 0.000 description 2
- LEWZOBYWGWKNCK-UHFFFAOYSA-N 2,3-dihydro-1h-inden-5-amine Chemical compound NC1=CC=C2CCCC2=C1 LEWZOBYWGWKNCK-UHFFFAOYSA-N 0.000 description 2
- MQECGSWGDQIHHD-UHFFFAOYSA-N 2-(3-amino-4-chlorobenzoyl)benzoic acid Chemical compound C1=C(Cl)C(N)=CC(C(=O)C=2C(=CC=CC=2)C(O)=O)=C1 MQECGSWGDQIHHD-UHFFFAOYSA-N 0.000 description 2
- LIVAQMJLPOCEMO-UHFFFAOYSA-N 2-(4-amino-2-methylphenyl)-5-chloroisoindole-1,3-dione Chemical compound CC1=CC(N)=CC=C1N1C(=O)C2=CC(Cl)=CC=C2C1=O LIVAQMJLPOCEMO-UHFFFAOYSA-N 0.000 description 2
- HVAINFDIRWAPQM-UHFFFAOYSA-N 2-(4-aminoanilino)-2-oxoacetic acid Chemical compound NC1=CC=C(NC(=O)C(O)=O)C=C1 HVAINFDIRWAPQM-UHFFFAOYSA-N 0.000 description 2
- JBCUKQQIWSWEOK-UHFFFAOYSA-N 2-(benzenesulfonyl)aniline Chemical compound NC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1 JBCUKQQIWSWEOK-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- UOKLBOQEDRSRDJ-UHFFFAOYSA-N 2-amino-3-bromo-9h-fluoren-9-ol Chemical compound OC1C2=CC=CC=C2C2=C1C=C(N)C(Br)=C2 UOKLBOQEDRSRDJ-UHFFFAOYSA-N 0.000 description 2
- FXWFZIRWWNPPOV-UHFFFAOYSA-N 2-aminobenzaldehyde Chemical compound NC1=CC=CC=C1C=O FXWFZIRWWNPPOV-UHFFFAOYSA-N 0.000 description 2
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 2
- DTYBRSLINXBXMP-UHFFFAOYSA-N 2-methoxy-5-phenylaniline Chemical compound C1=C(N)C(OC)=CC=C1C1=CC=CC=C1 DTYBRSLINXBXMP-UHFFFAOYSA-N 0.000 description 2
- COCFIBRMFPWUDW-UHFFFAOYSA-N 2-methylquinolin-4-amine Chemical compound C1=CC=CC2=NC(C)=CC(N)=C21 COCFIBRMFPWUDW-UHFFFAOYSA-N 0.000 description 2
- NFCPRRWCTNLGSN-UHFFFAOYSA-N 2-n-phenylbenzene-1,2-diamine Chemical compound NC1=CC=CC=C1NC1=CC=CC=C1 NFCPRRWCTNLGSN-UHFFFAOYSA-N 0.000 description 2
- TWBPWBPGNQWFSJ-UHFFFAOYSA-N 2-phenylaniline Chemical compound NC1=CC=CC=C1C1=CC=CC=C1 TWBPWBPGNQWFSJ-UHFFFAOYSA-N 0.000 description 2
- GDMZHPUPLWQIBD-UHFFFAOYSA-N 2-pyrrol-1-ylaniline Chemical compound NC1=CC=CC=C1N1C=CC=C1 GDMZHPUPLWQIBD-UHFFFAOYSA-N 0.000 description 2
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 2
- NMCBWICNRJLKKM-UHFFFAOYSA-N 3-(benzyloxy)pyridin-2-amine Chemical compound NC1=NC=CC=C1OCC1=CC=CC=C1 NMCBWICNRJLKKM-UHFFFAOYSA-N 0.000 description 2
- YRWKEEDITQJPCZ-UHFFFAOYSA-N 3-[(4-chloroanilino)sulfonyl]thiophene-2-carboxylic acid Chemical compound S1C=CC(S(=O)(=O)NC=2C=CC(Cl)=CC=2)=C1C(=O)O YRWKEEDITQJPCZ-UHFFFAOYSA-N 0.000 description 2
- ULUIMLJNTCECJU-UHFFFAOYSA-N 3-amino-4-hydroxybenzenesulfonate;hydron Chemical compound NC1=CC(S(O)(=O)=O)=CC=C1O ULUIMLJNTCECJU-UHFFFAOYSA-N 0.000 description 2
- FDGAEAYZQQCBRN-UHFFFAOYSA-N 3-amino-4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1N FDGAEAYZQQCBRN-UHFFFAOYSA-N 0.000 description 2
- ZHVPTERSBUMMHK-UHFFFAOYSA-N 3-aminonaphthalen-2-ol Chemical compound C1=CC=C2C=C(O)C(N)=CC2=C1 ZHVPTERSBUMMHK-UHFFFAOYSA-N 0.000 description 2
- ZAGZIOYVEIDDJA-UHFFFAOYSA-N 3-aminopyrazine-2-carboxylic acid Chemical compound NC1=NC=CN=C1C(O)=O ZAGZIOYVEIDDJA-UHFFFAOYSA-N 0.000 description 2
- VTFGJEYZCUWSAM-UHFFFAOYSA-N 3-methoxy-5-(trifluoromethyl)aniline Chemical compound COC1=CC(N)=CC(C(F)(F)F)=C1 VTFGJEYZCUWSAM-UHFFFAOYSA-N 0.000 description 2
- XRTJYEIMLZALBD-UHFFFAOYSA-N 4-(6-methyl-1,3-benzothiazol-2-yl)aniline Chemical compound S1C2=CC(C)=CC=C2N=C1C1=CC=C(N)C=C1 XRTJYEIMLZALBD-UHFFFAOYSA-N 0.000 description 2
- QPQKUYVSJWQSDY-CCEZHUSRSA-N 4-(phenylazo)aniline Chemical compound C1=CC(N)=CC=C1\N=N\C1=CC=CC=C1 QPQKUYVSJWQSDY-CCEZHUSRSA-N 0.000 description 2
- KTQYLKORCCNJTQ-UHFFFAOYSA-N 4-amino-1,2-dihydropyrazolo[3,4-d]pyrimidin-6-one Chemical compound NC1=NC(=O)N=C2NNC=C12 KTQYLKORCCNJTQ-UHFFFAOYSA-N 0.000 description 2
- DNVVZWSVACQWJE-UHFFFAOYSA-N 4-amino-2-hydroxybenzoic acid phenyl ester Chemical compound OC1=CC(N)=CC=C1C(=O)OC1=CC=CC=C1 DNVVZWSVACQWJE-UHFFFAOYSA-N 0.000 description 2
- RLNLIVBLEZDLMZ-UHFFFAOYSA-N 4-amino-n-(1h-indazol-6-yl)benzenesulfonamide Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=CC=C(C=NN2)C2=C1 RLNLIVBLEZDLMZ-UHFFFAOYSA-N 0.000 description 2
- TXWROWPXUQZXFZ-UHFFFAOYSA-N 4-amino-n-(benzenesulfonyl)benzenesulfonamide Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NS(=O)(=O)C1=CC=CC=C1 TXWROWPXUQZXFZ-UHFFFAOYSA-N 0.000 description 2
- LUSIZUFVMKYWGX-UHFFFAOYSA-N 4-aminonaphthalene-1-carbonitrile Chemical compound C1=CC=C2C(N)=CC=C(C#N)C2=C1 LUSIZUFVMKYWGX-UHFFFAOYSA-N 0.000 description 2
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 2
- JLNMBIKJQAKQBH-UHFFFAOYSA-N 4-cyclohexylaniline Chemical compound C1=CC(N)=CC=C1C1CCCCC1 JLNMBIKJQAKQBH-UHFFFAOYSA-N 0.000 description 2
- PHNDZBFLOPIMSM-UHFFFAOYSA-N 4-morpholin-4-ylaniline Chemical compound C1=CC(N)=CC=C1N1CCOCC1 PHNDZBFLOPIMSM-UHFFFAOYSA-N 0.000 description 2
- UEALKTCRMBVTFN-UHFFFAOYSA-N 4-nitroanthranilic acid Chemical compound NC1=CC([N+]([O-])=O)=CC=C1C(O)=O UEALKTCRMBVTFN-UHFFFAOYSA-N 0.000 description 2
- SODWJACROGQSMM-UHFFFAOYSA-N 5,6,7,8-tetrahydronaphthalen-1-amine Chemical compound C1CCCC2=C1C=CC=C2N SODWJACROGQSMM-UHFFFAOYSA-N 0.000 description 2
- BOSVHBKQNJZNHK-UHFFFAOYSA-N 5,7-dimethyl-1,8-naphthyridin-2-amine Chemical compound C1=CC(N)=NC2=NC(C)=CC(C)=C21 BOSVHBKQNJZNHK-UHFFFAOYSA-N 0.000 description 2
- SSHFCFRJYJIJDV-UHFFFAOYSA-N 5-nitropyrimidin-2-amine Chemical compound NC1=NC=C([N+]([O-])=O)C=N1 SSHFCFRJYJIJDV-UHFFFAOYSA-N 0.000 description 2
- UOWCFGBLAMCSFY-UHFFFAOYSA-N 6-amino-5-nitroso-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound NC=1NC(=S)NC(=O)C=1N=O UOWCFGBLAMCSFY-UHFFFAOYSA-N 0.000 description 2
- ZLWYEPMDOUQDBW-UHFFFAOYSA-N 6-aminonicotinamide Chemical compound NC(=O)C1=CC=C(N)N=C1 ZLWYEPMDOUQDBW-UHFFFAOYSA-N 0.000 description 2
- ZCIFWRHIEBXBOY-UHFFFAOYSA-N 6-aminonicotinic acid Chemical compound NC1=CC=C(C(O)=O)C=N1 ZCIFWRHIEBXBOY-UHFFFAOYSA-N 0.000 description 2
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 description 2
- CLGFIVUFZRGQRP-UHFFFAOYSA-N 7,8-dihydro-8-oxoguanine Chemical compound O=C1NC(N)=NC2=C1NC(=O)N2 CLGFIVUFZRGQRP-UHFFFAOYSA-N 0.000 description 2
- LHCPRYRLDOSKHK-UHFFFAOYSA-N 7-deaza-8-aza-adenine Chemical compound NC1=NC=NC2=C1C=NN2 LHCPRYRLDOSKHK-UHFFFAOYSA-N 0.000 description 2
- VJUPMOPLUQHMLE-UUOKFMHZSA-N 8-Bromoadenosine Chemical compound BrC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VJUPMOPLUQHMLE-UUOKFMHZSA-N 0.000 description 2
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 2
- CFRFHWQYWJMEJN-UHFFFAOYSA-N 9h-fluoren-2-amine Chemical compound C1=CC=C2C3=CC=C(N)C=C3CC2=C1 CFRFHWQYWJMEJN-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 108090000317 Chymotrypsin Proteins 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 241000186781 Listeria Species 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108090000279 Peptidyltransferases Proteins 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 238000009635 antibiotic susceptibility testing Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- ORFOPKXBNMVMKC-DWVKKRMSSA-N ceftazidime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-N 0.000 description 2
- 229960000484 ceftazidime Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229960002376 chymotrypsin Drugs 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125808 covalent inhibitor Drugs 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- YQDHCCVUYCIGSW-LBPRGKRZSA-N ethyl (2s)-2-benzamido-5-(diaminomethylideneamino)pentanoate Chemical compound NC(=N)NCCC[C@@H](C(=O)OCC)NC(=O)C1=CC=CC=C1 YQDHCCVUYCIGSW-LBPRGKRZSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 229960001977 loracarbef Drugs 0.000 description 2
- JAPHQRWPEGVNBT-UTUOFQBUSA-M loracarbef anion Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)N)=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-M 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- CPGKXRAQZQULSF-UHFFFAOYSA-N methyl 3-[(4-chlorophenyl)sulfamoyl]thiophene-2-carboxylate Chemical compound S1C=CC(S(=O)(=O)NC=2C=CC(Cl)=CC=2)=C1C(=O)OC CPGKXRAQZQULSF-UHFFFAOYSA-N 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- UGQAMOBKUXTNCT-UHFFFAOYSA-N n-(4-methoxyphenyl)-2-nitrobenzenesulfonamide Chemical compound C1=CC(OC)=CC=C1NS(=O)(=O)C1=CC=CC=C1[N+]([O-])=O UGQAMOBKUXTNCT-UHFFFAOYSA-N 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- ATGUVEKSASEFFO-UHFFFAOYSA-N p-aminodiphenylamine Chemical compound C1=CC(N)=CC=C1NC1=CC=CC=C1 ATGUVEKSASEFFO-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- XFTQRUTUGRCSGO-UHFFFAOYSA-N pyrazin-2-amine Chemical compound NC1=CN=CC=N1 XFTQRUTUGRCSGO-UHFFFAOYSA-N 0.000 description 2
- LJXQPZWIHJMPQQ-UHFFFAOYSA-N pyrimidin-2-amine Chemical compound NC1=NC=CC=N1 LJXQPZWIHJMPQQ-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002922 simulated annealing Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 2
- CYFLXLSBHQBMFT-UHFFFAOYSA-N sulfamoxole Chemical compound O1C(C)=C(C)N=C1NS(=O)(=O)C1=CC=C(N)C=C1 CYFLXLSBHQBMFT-UHFFFAOYSA-N 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical class CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- VWXIHLCLIOQWRA-UHFFFAOYSA-N 1h-pteridin-2-one Chemical compound N1=CC=NC2=NC(O)=NC=C21 VWXIHLCLIOQWRA-UHFFFAOYSA-N 0.000 description 1
- BSKLZAJYYTUMBV-UHFFFAOYSA-N 2,5-dimethyl-4-(thiophen-2-ylsulfamoyl)furan-3-carboxylic acid Chemical compound OC(=O)C1=C(C)OC(C)=C1S(=O)(=O)NC1=CC=CS1 BSKLZAJYYTUMBV-UHFFFAOYSA-N 0.000 description 1
- BHTRKISIDQZUQX-UHFFFAOYSA-N 2-hydroxy-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-phenylbutanoic acid Chemical compound CC(C)(C)OC(=O)NC(C(O)C(O)=O)CC1=CC=CC=C1 BHTRKISIDQZUQX-UHFFFAOYSA-N 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- GGJKFCGFPZUTGH-UHFFFAOYSA-N 2-methyl-4-[(4-methylphenyl)sulfonylamino]thiophene-3-carboxylic acid Chemical compound OC(=O)C1=C(C)SC=C1NS(=O)(=O)C1=CC=C(C)C=C1 GGJKFCGFPZUTGH-UHFFFAOYSA-N 0.000 description 1
- DXSBAOMLHPFLMW-UHFFFAOYSA-N 3-(1,3-benzothiazol-2-ylsulfanyl)propanoic acid Chemical compound C1=CC=C2SC(SCCC(=O)O)=NC2=C1 DXSBAOMLHPFLMW-UHFFFAOYSA-N 0.000 description 1
- LVMRYUZGVABDST-UHFFFAOYSA-N 3-[(2-piperidin-1-ylphenyl)sulfamoyl]thiophene-2-carboxylic acid Chemical compound S1C=CC(S(=O)(=O)NC=2C(=CC=CC=2)N2CCCCC2)=C1C(=O)O LVMRYUZGVABDST-UHFFFAOYSA-N 0.000 description 1
- KLEYHCJUNMGZKE-UHFFFAOYSA-N 3-[4-[3-chloro-5-(trifluoromethyl)pyridin-1-ium-2-yl]piperazin-1-yl]sulfonylthiophene-2-carboxylate Chemical compound S1C=CC(S(=O)(=O)N2CCN(CC2)C=2C(=CC(=CN=2)C(F)(F)F)Cl)=C1C(=O)O KLEYHCJUNMGZKE-UHFFFAOYSA-N 0.000 description 1
- LKDMKWNDBAVNQZ-WJNSRDFLSA-N 4-[[(2s)-1-[[(2s)-1-[(2s)-2-[[(2s)-1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-WJNSRDFLSA-N 0.000 description 1
- WPBZMCGPFHZRHJ-UHFFFAOYSA-N 4-aminobenzohydrazide Chemical compound NNC(=O)C1=CC=C(N)C=C1 WPBZMCGPFHZRHJ-UHFFFAOYSA-N 0.000 description 1
- IICHURGZQPGTRD-UHFFFAOYSA-N 4-phenyldiazenylnaphthalen-1-amine Chemical compound C12=CC=CC=C2C(N)=CC=C1N=NC1=CC=CC=C1 IICHURGZQPGTRD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 241001541756 Acinetobacter calcoaceticus subsp. anitratus Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 102000004092 Amidohydrolases Human genes 0.000 description 1
- 108090000531 Amidohydrolases Proteins 0.000 description 1
- 108091029845 Aminoallyl nucleotide Proteins 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- RHJBNXFTGRLVDL-UHFFFAOYSA-L CC(C)C(=O)[O-].CC(C)N1C=NN=N1.CC(C)S(=O)(=O)[O-] Chemical compound CC(C)C(=O)[O-].CC(C)N1C=NN=N1.CC(C)S(=O)(=O)[O-] RHJBNXFTGRLVDL-UHFFFAOYSA-L 0.000 description 1
- ASWVTGNCAZCNNR-UHFFFAOYSA-N CC1=CC(C)=NC(NS(=O)(=O)C2=CC=C(N)C=C2)=N1 Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C2=CC=C(N)C=C2)=N1 ASWVTGNCAZCNNR-UHFFFAOYSA-N 0.000 description 1
- YOCBUUBPGVCJAD-UHFFFAOYSA-N CC1=CC2=C(C=C1)C(=O)C=CC2=O.CC1=CC=CC2=C1C=CC=C2.CC1C=CC=CC1.CC1CC2=C(C=CC=C2)C1 Chemical compound CC1=CC2=C(C=C1)C(=O)C=CC2=O.CC1=CC=CC2=C1C=CC=C2.CC1C=CC=CC1.CC1CC2=C(C=CC=C2)C1 YOCBUUBPGVCJAD-UHFFFAOYSA-N 0.000 description 1
- PIHQJEGGQRFKHO-UHFFFAOYSA-N CC1=CC=CS1.CC1=CNC2=C1C=CC=C2.CN1=C2=CC=CC=C2=C(=O)C2=C1C=CC=C2 Chemical compound CC1=CC=CS1.CC1=CNC2=C1C=CC=C2.CN1=C2=CC=CC=C2=C(=O)C2=C1C=CC=C2 PIHQJEGGQRFKHO-UHFFFAOYSA-N 0.000 description 1
- ZKWZUPPXTCQQJL-UHFFFAOYSA-N CC1=NC2=NC(N)=NC(O)=C2N=C1C Chemical compound CC1=NC2=NC(N)=NC(O)=C2N=C1C ZKWZUPPXTCQQJL-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102100035371 Chymotrypsin-like elastase family member 1 Human genes 0.000 description 1
- 101710138848 Chymotrypsin-like elastase family member 1 Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 101710099240 Elastase-1 Proteins 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000588915 Klebsiella aerogenes Species 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- 241000191938 Micrococcus luteus Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000186365 Mycobacterium fortuitum Species 0.000 description 1
- KTQXGFMQHZQJBP-UHFFFAOYSA-N N#CC1=NC(CNC2=CC=C(C(=O)O)C=C2)=CN=C1N Chemical compound N#CC1=NC(CNC2=CC=C(C(=O)O)C=C2)=CN=C1N KTQXGFMQHZQJBP-UHFFFAOYSA-N 0.000 description 1
- RSYYQCDERUOEFI-JTQLQIEISA-N N-benzoyl-L-arginine Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)C1=CC=CC=C1 RSYYQCDERUOEFI-JTQLQIEISA-N 0.000 description 1
- OPBOOIFXQHPAPJ-UHFFFAOYSA-M NC1=C2C(=O)C3=C(C=CC=C3)C(=O)C2=C(NC2=CC=CC=C2)C=C1S(=O)(=O)[O-].[Na+] Chemical compound NC1=C2C(=O)C3=C(C=CC=C3)C(=O)C2=C(NC2=CC=CC=C2)C=C1S(=O)(=O)[O-].[Na+] OPBOOIFXQHPAPJ-UHFFFAOYSA-M 0.000 description 1
- IICHURGZQPGTRD-VHEBQXMUSA-N NC1=C2C=CC=CC2=C(/N=N/C2=CC=CC=C2)C=C1 Chemical compound NC1=C2C=CC=CC2=C(/N=N/C2=CC=CC=C2)C=C1 IICHURGZQPGTRD-VHEBQXMUSA-N 0.000 description 1
- KYARBIJYVGJZLB-UHFFFAOYSA-N NC1=CC2=CC(S(=O)(=O)O)=CC(O)=C2C=C1 Chemical compound NC1=CC2=CC(S(=O)(=O)O)=CC(O)=C2C=C1 KYARBIJYVGJZLB-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- XBNHRNFODJOFRU-UHFFFAOYSA-M O=S(=O)([O-])CCCSC1=NC2=C(C=CC=C2)S1 Chemical compound O=S(=O)([O-])CCCSC1=NC2=C(C=CC=C2)S1 XBNHRNFODJOFRU-UHFFFAOYSA-M 0.000 description 1
- UVJYWQQCGJELQY-WPZCJLIBSA-N O[C@@H]1OC1c([s]cc1)c1S(N(CC1)CCN1c(ncc(C(F)(F)F)c1)c1Cl)(=O)=O Chemical compound O[C@@H]1OC1c([s]cc1)c1S(N(CC1)CCN1c(ncc(C(F)(F)F)c1)c1Cl)(=O)=O UVJYWQQCGJELQY-WPZCJLIBSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 108010013381 Porins Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000588770 Proteus mirabilis Species 0.000 description 1
- 241000588767 Proteus vulgaris Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000204087 Pseudonocardia autotrophica Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000607760 Shigella sonnei Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- LIKZXCROQGHXTI-UHFFFAOYSA-M acid blue 25 Chemical compound [Na+].C1=2C(=O)C3=CC=CC=C3C(=O)C=2C(N)=C(S([O-])(=O)=O)C=C1NC1=CC=CC=C1 LIKZXCROQGHXTI-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000002814 agar dilution Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 229960004567 aminohippuric acid Drugs 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 150000001508 asparagines Chemical class 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000003781 beta lactamase inhibitor Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940126813 beta-lactamase inhibitor Drugs 0.000 description 1
- 125000003460 beta-lactamyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 229940041011 carbapenems Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- VUFGUVLLDPOSBC-XRZFDKQNSA-M cephalothin sodium Chemical compound [Na+].N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C([O-])=O)C(=O)CC1=CC=CS1 VUFGUVLLDPOSBC-XRZFDKQNSA-M 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000002577 cryoprotective agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229940092559 enterobacter aerogenes Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 229940041009 monobactams Drugs 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940007042 proteus vulgaris Drugs 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000013037 reversible inhibitor Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229940115939 shigella sonnei Drugs 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- 229950000244 sulfanilic acid Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229940041007 third-generation cephalosporins Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 108010080050 trypsin drug combination chymotrypsin Proteins 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/18—Sulfonamides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/15—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
- C07C311/21—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/70—Sulfur atoms
- C07D277/74—Sulfur atoms substituted by carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/26—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D333/30—Hetero atoms other than halogen
- C07D333/34—Sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/26—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D333/38—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/26—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D333/38—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D333/40—Thiophene-2-carboxylic acid
Definitions
- ⁇ -lactams such as penicillins and cephalosporins
- penicillins and cephalosporins are the most widely prescribed class of antibiotics.
- bacterial resistance has developed.
- ⁇ -lactamase enzymes the most widespread resistance mechanism to this class of antibiotics. These enzymes hydrolyze the lactam ring and render the antibiotic inactive against their original cellular targets, bacteria cell wall transpeptidases ( FIG. 1 ).
- Transition-state analog inhibitors such as boronic acids and phosphonates, inhibit both class A and class C ⁇ -lactamases.
- boronic acids and phosphonates inhibit both class A and class C ⁇ -lactamases.
- Intensive study has been devoted to improving the binding affinities of these molecules.
- One concern with both types of molecules is the covalent adducts formed with activated serine nucleophiles, potentially reducing their specificity.
- FIGS. 1A-B Schematic illustrators of the mechanism of ⁇ -lactams and their inactivation by ⁇ -lactamases.
- FIGS. 2A-C Comparison of the chemical structures of several ⁇ -lactamase ligands.
- 2 A Loracarbef, a ⁇ -lactamase substrate of the prior art.
- 2 B Ceftazidime, a ⁇ -lactamase resistant molecule of the prior art.
- 2 C Compound 1 of this invention, 3-[(4-chloroanilino) sulfonyl]thiophene-2-carboxylic acid, a lactamase inhibitor, in accordance with this invention.
- FIGS. 3A-C Stereo view of the interactions observed between AmpC and compounds 1-3 in the DOCK predicted orientations.
- Spheres represent water molecules. All figures were generated with MidasPlus, unless otherwise noted.
- FIGS. 4A-B Stereo view of the active site region of the AmpC/1 complex determined to 1.94 ⁇ resolution.
- 4 A The 2F o -F c electron density map is shown contoured at 1.0 ⁇ . This figure was made with SETOR.
- 4 B Interactions observed between AmpC and 1 in the crystallographic complex. Spheres represent water molecules. Dashed lines indicate hydrogen bonds.
- FIG. 5 Overlay of the docked and crystallographic conformations of 1 in the AmpC site.
- the present invention relates, in part, to a structure-based approach to a class of novel, non-covalent inhibitors for AmpC ⁇ -lactamase (AmpC).
- AmpC ⁇ -lactamase
- DOCK molecular docking
- Cyclic alkene means a structure containing one or more rings, each ring containing 4 to 8 carbon atoms, and at least one double bond. Without limitation, one or more carbon atoms may be oxidized to a corresponding carbonyl, and one or more rings may be aromatic. Representative cyclic alkenes include—C 6 H 5 and
- Heterocyclic alkene means a cyclic alkene as defined above wherein at least one carbon atom of at least one of the ring structures has been replaced by a heteroatom including but not limited to S, N or O.
- Representative heterocyclic alkenes include:
- the present invention comprises a method of inhibiting ⁇ -lactamase activity, the method comprising (1) providing a medium comprising AmpC- ⁇ -lactamase, and (2) introducing to and/or contacting the medium or the lactamase with a compound and/or composition comprising a compound which can be represented by the formula A-SO 2 —NH—R, wherein A is an aryl, phenyl or thiophene moiety substituted with a carboxylate, a sulfonate or a tetraazolinyl group capable of binding with one or more lactamase substrate recognition residues electrophilic toward a ⁇ -lactam carbonyl functionality, and R is a cyclic alkene and/or heterocyclic alkene structural component/moiety capable of configurational interaction with lactamase substrate recognition residue Tyr221.
- Such a compound or composition is introduced to such a medium or contacted with a lactamase in an amount sufficient to inhibit lactamase activity.
- R can be a cyclic alkene or a heterocyclic alkene, including but not limited to phenyl, biphenyl, pyridinyl, pyrazinyl, thiophenyl, pyrrolyl, fluorenyl, benzothiazyl, anthryl, naphthyl, 1,8-diazanaphthyl, 1,4,6,8-tetranaphthyl, 1-azanaphthyl, indenyl, purinyl, indolyl, pyrimidyl, pyridazyl, pyrazopyrimidyl, indazolyl, azaadenyl, adenosyl, 1,2,4-triazinyl, and 1,3,5-triazinyl.
- Such an R moiety can further comprise a substituent including but not limited to alkyl, cycloalkyl, arylalkyl, nitroalkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, aminoallyl, azoalkyl, cyanoallyl, amidoalkyl, alkoxycarbonylalkyl, carboxyalkyl, alkoxy, alkoxycarbonyl, hydroxy, amino, alkylamino, cycloalkylamino, arylamino, amidocarbonyl, alkylcarboxamido, arylcarboxamido, carboxy, formyl, alkylcarbonyl, arylcarbonyl, carboxycarbonyl, sulfonyl, alkylsulfonyl, sulfoxy, sulfamoyl, nitrile, azo, alkylazo, arylazo, hydrazinyl, hydrazincarbonyl,
- compositions and methods of this invention can comprise structural or compositional variations of A or R, or a substituent thereof, having, respectively, binding, complexing and/or interactive capabilities in accordance with this invention with one or more lactamase substrate recognition residues electrophilic with respect to a ⁇ -lactam substrate and/or configurational or spatial interactive capabilities with a lactamase substrate recognition residue Tyr221.
- moiety A can vary by way of structure or substituent, limited only by the effect of such variation(s) on the binding or interaction of the sulfonamide group with a ⁇ -lactamase, the pertinent lactam substrate amide recognition residues thereof and/or inhibition of the lactamase enzyme.
- the aforementioned carboxylate, sulfonate or tetraazolinyl groups can, in the alternative, be replaced by one or more substitutents and/or functional groups, limited only by the effect of such variation on binding or interaction with the “oxyanion” or “electrophilic” hole of a ⁇ -lactamase, the pertinent lactam substrate recognition residues thereof and/or inhibition of the lactamase enzyme.
- moiety R can vary by way of structure or substituent, limited only by the effect of such variation(s) on the binding or interaction with a ⁇ -lactamase, the conserved Tyr221 residue or a functionally-equivalent residue thereof and/or inhibition of the lactamase enzyme.
- Such variations are in accordance herewith, would be understood by those skilled in the art made aware of this invention, and are consistent with the structural relationships described herein.
- the A and R moieties or components can comprise, consist of, or consist essentially of any of the aforementioned substituents and functional groups thereof.
- Each said compound or moiety/substituent thereof is distinguishable, characteristically contrasted, and can be practiced in conjunction with the present invention separate and apart from another.
- inventive compounds, compositions and/or methods, as illustratively disclosed herein can be practiced or utilized in the absence of any one compound, moiety and/or substituent which may or may not be disclosed, referenced or inferred herein, the absence of which may or may not be specifically disclosed, referenced, or inferred herein.
- the present invention can also comprise a method of using a sulfonamide functional moiety to inhibit ⁇ -lactamase activity.
- the method includes
- a compound having a sulfonamide functional moiety capable of binding to a lactamase site recognizing the amide side chain of a ⁇ -lactam substrate ; and (2) adding or introducing the sulfonamide compound or a composition thereof to a medium including AmpC- ⁇ -lactamase, such a compound/composition in an amount or having a concentration sufficient to inhibit lactamase activity.
- a sulfonamide functionality is a substituent to a phenyl or a thiophenyl moiety.
- the compound further includes a second substituent group/moiety capable of binding to a lactamase site electrophilic toward a ⁇ -lactam carbonyl functionality.
- Such a second substituent moiety can include but is not limited to a carboxylate, sulfonate or a tetraazolinyl group.
- certain other embodiments can include a third moiety bonded to the nitrogen center of the sulfonamide moiety and capable of configurational or spatial interaction with a lactamase substrate recognition residue Tyr221.
- the present invention can also include a composition comprising an AmpC- ⁇ -lactamase component and a ligand component, in accordance with this invention, non-covalently associated, bonded and/or complexed therewith.
- the ligand component has a sulfonamide moiety capable of binding to a lactamase site recognizing the amide side chain of a ⁇ -lactam substrate, and further includes a second moiety capable of binding to a lactamase site responsible for electrophilic interaction with the carbonyl group of a ⁇ -lactam substrate.
- such ligand is capable of inhibiting lactam hydrolysis by the lactamase component.
- the second moiety is a carboxylate functional group.
- Other such second moieties can include sulfonate and tetraazolinyl functional groups.
- Such a ligand component can comprise a compound of the preceding formula and/or any metabolic or decomposition analog thereof or intermediate en route thereto.
- the compounds of this invention may contain an acidic or basic functional group and are, thus, capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable acids and bases.
- pharmaceutically-acceptable salts refers to the relatively non-toxic, inorganic and organic acid and base addition salts of such compounds. These salts can be prepared by reacting the purified compound with a suitable acid or base.
- Suitable bases include the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, ammonia, or a pharmaceutically-acceptable organic primary, secondary or tertiary amine.
- Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.
- Representative organic amines useful for the formation of base addition salts include ethyl amine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.
- Representative acid addition salts include the hydrobromide, hydrochloride, sulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthalate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like.
- a ⁇ -lactamase can be inhibited by contacting the ⁇ -lactamase enzyme with an effective amount of an inventive compound or by contacting bacteria that produce the ⁇ -lactamase enzymes with an effective amount of such a compound so that the ⁇ -lactamase in the bacteria is contacted with the inhibitor.
- the contacting may take place in vitro or in vivo.
- Contacting means that the ⁇ -lactamase and the inhibitor are brought together so that the inhibitor can bind to the ⁇ -lactamase. Amounts of a compound effective to inhibit a ⁇ -lactamase may be determined empirically, and making such determinations is within the skill in the art. Inhibition includes both reduction and elimination of ⁇ -lactamase activity.
- ⁇ -lactam-antibiotic-resistant bacterial infection is used herein to refer to an infection caused by bacteria resistant to treatment with one or more ⁇ -lactam antibiotics due primarily to the action of a ⁇ -lactamase. Resistance to ⁇ -lactam antibiotics can be determined by standard antibiotic sensitivity testing. The presence of ⁇ -lactamase activity can be determined as is well known in the art (see above). Alternatively, the sensitivity of a particular bacterium to the combination of an inventive compound, or a pharmaceutically-acceptable salt thereof, and a ⁇ -lactam antibiotic can be determined by standard antibiotic sensitivity testing methods.
- an animal or subject suffering from such an infection is given an effective amount of a compound of this invention, or a pharmaceutically-acceptable salt thereof, and an effective amount of a ⁇ -lactam antibiotic.
- a compound, or a pharmaceutically-acceptable salt thereof, and the ⁇ -lactam antibiotic may be given at different times or given together. When administered together, they may be contained in separate pharmaceutical compositions or they may be in the same pharmaceutical composition.
- ⁇ -lactam antibiotics are known in the art, including but not limited to the cephalosporins, penicillins, monobactams, carbapenems, and carbacephems. ⁇ -lactam antibiotics are effective (in the absence of resistance) against a wide range of bacterial infections.
- bacteria of the genus Staphylococcus such as Staphylococcus aureus and Staphylococcus epidermidis
- Streptococcus such as Streptococcus agalactine, Streptococcus penumoniae and Streptococcus faecalis
- Micrococcus such as Micrococcus luteus
- Bacillus such as Bacillus subtilis
- Listerella such as Listerella monocytogenes
- Escherichia such as Escherichia coli
- Klebsiella such as Klebsiella pneumoniae
- Proteus such as Proteus mirabilis and Proteus vulgaris
- Salmonella such as Salmonella typhosa ), Shigella (such as Shigella sonnei ), Enterobacter (such as Enterobacter aerogenes and Enterobacter Cloacae ),
- a suitable daily dose will be that amount which is the lowest dose effective to produce a therapeutic effect.
- the total daily dosage will be determined by an attending physician or veterinarian within the scope of sound medical judgment.
- the effective daily dose of such a compound, or a pharmaceutically-acceptable salt thereof maybe administered as two, three, four, five, six or more sub-doses, administered separately at appropriate intervals throughout the day.
- Treatment of a ⁇ -lactam-antibiotic-resistant bacterial infection according to the invention includes mitigation, as well as elimination, of the infection.
- Animals treatable according to the invention include mammals. Mammals treatable according to the invention include dogs, cats, other domestic animals, and humans.
- compositions comprise the active ingredient(s) in admixture with one or more pharmaceutically-acceptable carriers and, optionally, with one or more other compounds, drugs or other materials.
- Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- compositions of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration. Regardless of the route of administration selected, the active ingredient(s) are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art.
- Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or nonaqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of the active ingredient(s).
- the active ingredient(s) may also be administered as a bolus, electuary or paste.
- compositions may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient(s) moistened with an inert liquid diluent.
- the tablets, and other solid dosage forms of the pharmaceutical compositions of the present invention may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient(s) therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter.
- compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
- opacifying agents include polymeric substances and waxes.
- the active ingredient(s) can also be in microencapsulated form.
- Liquid dosage forms for oral administration of the active ingredient(s) include pharmaceutically-acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art, such as, for example, water or other solvents, solubil
- the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- Suspensions in addition to the active ingredient(s), may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Formulations of the pharmaceutical compositions of the invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing the active ingredient(s) with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or salicylate and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active ingredient(s).
- suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or salicylate and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active ingredient(s).
- Formulations of the present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for the topical or transdermal administration of the active ingredient(s) include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
- the active ingredient(s) may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any buffers, or propellants which may be required.
- the ointments, pastes, creams and gels may contain, in addition to the active ingredient(s), excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to the active ingredient(s), excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- Transdermal patches have the added advantage of providing controlled delivery of the active ingredient(s) to the body.
- dosage forms can be made by dissolving, dispersing or otherwise incorporating the active ingredient(s) in a proper medium, such as an elastomeric matrix material.
- Absorption enhancers can also be used to increase the flux of the active ingredient(s) across the skin. The rate of such flux can be controlled by either providing a rate-controlling membrane or dispersing the active ingredient(s) in a polymer matrix or gel.
- compositions of this invention suitable for parenteral administration comprise the active ingredient(s) in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- compositions may also contain adjuvants such as wetting agents, emulsifying agents and dispersing agents. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like in the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- the absorption of the drug in order to prolong the effect of the active ingredient(s), it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the active ingredient(s) then depends upon its/their rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of parenterally-administered active ingredient(s) is accomplished by dissolving or suspending the active ingredient(s) in an oil vehicle.
- Injectable depot forms are made by forming microencapsule matrices of the active ingredient(s) in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of the active ingredient(s) to polymer, and the nature of the particular polymer employed, the rate of release of the active ingredient(s) can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the active ingredient(s) in liposomes or microemulsions which are compatible with body tissue. The injectable materials can be sterilized for example, by filtration through a bacterial-retaining filter.
- the formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a lyophilized condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use.
- sterile liquid carrier for example water for injection
- Extemporaneous injection solutions and suspensions maybe prepared from sterile powders, granules and tablets of the type described above.
- compositions of the present invention may also be used in the form of veterinary formulations, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or nonaqueous solutions or suspensions), tablets, boluses, powders, granules or pellets for admixture with feed stuffs, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension or, when appropriate, by intramammary injection where a suspension or solution is introduced into the udder of the animal via its teat; (3) topical application, for example, as a cream, ointment or spray applied to the skin; or (4) intravaginally, for example, as a pessary, cream or foam.
- oral administration for example, drenches (aqueous or nonaqueous solutions or suspensions), tablets, boluses, powders, granules or pellets for admixture with feed stuffs
- the sulfonamide group of compound 1 is believed to bind in the enzyme site that recognizes the ubiquitous C6(7)-amide side chains of ⁇ -lactams, where it hydrogen-bonds with two of the amide recognizing enzyme residues, Asn152 and Ala318. Although these hydrogen bonds resemble those made by made by the amide side chains of ⁇ -lactams, the atom order of the sulfonamide side chain in 1 is the reverse of that in the amide side chain of ⁇ -lactams ( FIG. 2 ).
- one of the oxygen atoms of the carboxylate group of 1 is believed to bind in the “oxyanion” or “electrophilic” hole of the ⁇ -lactamase, hydrogen bonding to the main chain nitrogens of residues Ser64 and Ala318. This resembles the interactions made by the carbonyl oxygen atom of ⁇ -lactams with these residues in several acyl-enzyme complexes of ⁇ -lactamases with ⁇ -lactams.
- Wat403 is at the center of the active site. Water was used in the docking calculation because it is highly conserved in all AmpC structures (present in 29 of 30 molecules previously examined) and because it is well coordinated by the enzyme. The inclusion of water appears to have influenced that calculation beneficially, as it hydrogen bonds with the inhibitor in both the docked and the crystallographic structures of compound 1 bound to AmpC. Accordingly, various aspects of this invention contemplate, in a broader context, an lactamase/inhibitor complex or association in the presence of any such water molecules.
- compound 1 exhibits selectivity for AmpC ⁇ -lactamase over several mechanistically related serine proteases. It binds at least two hundred-fold better to AmpC than to trypsin or elastase, and it is selective by at least sixty-fold more selective for AmpC over chymotrypsin.
- Compound 1 reversed ⁇ -lactam resistance in a strain of bacteria that overexpresses ⁇ -lactamase.
- Compound 1 to potentiated the activity of the ⁇ -lactam ampicillin against a strain of resistant bacteria, increasing the efficacy of ampicillin by four-fold and reducing its minimum inhibitory concentration (MIC) to 128 ⁇ g/ml.
- compound 1 is a competitive, non-covalent inhibitor of AmpC with a K i value of 23 ⁇ M. Compared to more traditional covalent inhibitors of AmpC, this is a modest level of inhibition. Nevertheless, the compound holds promise as a lead for drug discovery: it explores novel chemical functionality, which it uses to complement key recognition residues of the ⁇ -lactamase.
- the recognition “code” of the AmpC structure appears to be plastic, not only are ⁇ -lactams recognized by highly conserved active site residues, but compounds bearing very different functionality can also bind. Notwithstanding its modest level of inhibition, compound 1 reversed antibiotic resistance in bacterial cell culture and would be expected to do so, in vivo.
- Each of these binding sites was included in the docking experiment as part of the sphere set used to orient the rigid fragment of the ligands in the target site, and chemical matching was used to indicate the type of functionality recognized at the site.
- Two docking calculations differing in the partial atomic charges of several active site residues, were performed. The magnitudes of local partial atomic charges were increased, without changing the overall charges of a residue, in an effort to capture the polarization thought to occur when hydrogen bonding to these residues. This was done to improve polar complementarity between AmpC and the ligands in the docking calculation.
- the best inhibitor, compound 1 is a competitive, reversible inhibitor of AmpC with a K i value of 23 ⁇ M for AmpC.
- This compound was also tested for activity against the mechanistically related serine proteases ⁇ -chymotrypsin, ⁇ -trypsin, and elastase (Table 1).
- Compound 1 showed no inhibition of trypsin and elastase at concentrations up to 4 mM and was greater than fifty-fold more selective for AmpC over chymotrypsin.
- the carboxylate group is placed near the catalytic Ser64.
- One of the oxygens of the carboxylate interacts with O ⁇ of Ser64 and with the main chain nitrogen and oxygen atoms of Ala318; the other oxygen interacts with the main chain nitrogen of Ala318 and Wat403, a conserved water molecule that was included in the docking experiment as part of the receptor.
- the thiophene ring is placed in the hydrophobic binding site formed by Leu119 and Leu293; distances to these residues are approximately 5.1 ⁇ .
- 1 interacts with several active site residues ( FIG. 6 ; Table 3).
- the carboxylate group is bound near Ser64, with one of its oxygens interacting with the main chain nitrogen and O ⁇ atoms of Ser64 and the main chain nitrogen and oxygen of Ala318.
- the other oxygen of the carboxylate hydrogen bonds with Wat403 and in molecule 2, with Wat481.
- the thiophene ring is within van der Waals distance to residues Leu119 and Leu293 (distances range from 4.2 to 4.6 ⁇ ) that form a hydrophobic patch on AmpC.
- One of the sulfonamide oxygen atoms hydrogen bonds with O ⁇ of Ser64 and N ⁇ of Lys67; the other interacts with N ⁇ 2 of Asn152.
- the key interactions between the sulfonamide oxygen O17 and Asn152N ⁇ 2 and the sulfonamide nitrogen N1 and Ala318O are observed in both the experimental structure and the prediction.
- Interactions between the sulfonamide oxygen O16 and Lys67N ⁇ and the carboxylate oxygen and Ser64N are only observed in the crystal structure.
- the largest difference between the two structures is the orientation of the chlorophenyl ring; in the crystal structure, this ring has rotated approximately 60°, as measured by the dihedral angle around S13, N1, C2, C3.
- This ring now interacts in a more edge-to-face manner with Tyr221, presumably making quadrupole-quadrupole interactions with Tyr221 instead of the ⁇ - ⁇ stacking observed in the predicted structure.
- compound 1 was investigated to potentiate the activity of a ⁇ -lactam against a strain of resistant bacteria.
- compound 1 increased the efficacy of ampicillin by four-fold and reduced its minimum inhibitory concentration (MIC) to 128 ⁇ g/ml (Table 4). At this concentration compound 1 alone had no measurable antibiotic activity.
- the structure of the AmpC/1 complex allowed use of a structure-guided approach to search for analogs of compound 1.
- six commercially available analogs from the ACD were ordered and tested (compounds 4-9; Table 5).
- the carboxylate group appears to be a preferred structure or functionality; binding was somewhat problematic with the ester (5) and nitro (9) analogs.
- Switching the atom order of the sulfonamide group (4) reduced binding by three-fold.
- Disruption of the proton donating ability of the sulfonamide nitrogen (6) through incorporation into a piperazine ring system also hindered binding.
- the sphere set used was based on ligand atom positions from an ensemble of structures of nine boronic acid inhibitors and four ⁇ -lactam molecules determined in complex with AmpC ⁇ -lactamase by X-ray crystallography. This resulted in one cluster of 73 spheres, each of which represented a ligand atom position observed in the X-ray structures, which was used in the docking calculation.
- the spheres were labeled based on the chemical functionality of the ligand atoms they represented. Force field and electrostatic grids were calculated with CHEMGRID and DelPhi, respectively. DISTMAP was used to calculate the excluded volume grid.
- the compounds of this invention are typically synthesized from available starting materials and reagents, via corresponding condensation reactions and related procedural techniques. Other methodologies are of the sort used to prepare several of those compounds commercially available, and useful with the compositions and methods of this invention. For instance and without limitation, precursors B in Table 6, all known and available starting materials or synthetically available, can be utilized to provide inventive compounds 9 or 10 with a particular R moiety, through condensation with a particular precursor to a desired A moiety (again, known and commercially available or prepared in the literature—using known synthetic techniques or straight-forward modifications thereof, each as would be well-known to those skilled in the art of synthetic organic chemistry and without undue experimentation.
- the selectivity of compound 1 for AmpC was determined by measuring its activity against ⁇ -chymotrypsin (bovine pancreatic), ⁇ -trypsin (bovine pancreatic), and elastase (porcine pancreatic), all from Sigma (St. Louis, Mo.).
- the substrates for ⁇ -chymotrypsin succinyl-ala-ala-pro-phe-p-nitroanilide
- ⁇ -trypsin N-benzoyl-L-arginine ethyl ester, BAEE
- the elastase substrate used (elastase substrate 1, MeOSuc-Ala-Ala-Pro-Val-pNA) was purchased from Calbiochem (San Diego, Calif.). Substrates were diluted from 10 mM DMSO stock solutions, and all reactions were performed in 50 mM TRIS buffer, pH 7.0, 25° C. For ⁇ -chymotrypsin, 200 ⁇ M of substrate was used; the reactions were initiated by addition of 10 ⁇ L of a 0.1 mg/ml enzyme stock solution and monitored at 410 nm.
- ⁇ -trypsin 200 ⁇ M of BAEE was used, the reactions were initiated by the addition of 5 ⁇ L of a 0.2 mg/ml enzyme stock solution, and monitored at 260 nm.
- elastase 640 ⁇ M of elastase substrate was used, the reactions were initiated by the addition of 30 ⁇ L of a 0.2 mg/mL enzyme stock solution, and monitored at 385 nm.
- Initial rate fits to the absorbance data for the first 150 seconds of each reaction were used to determine reaction velocities.
- Data were measured on DND-CAT beam line (5IDB) of the Advanced Photon Source at Argonne National Lab at 100 K using a Mar345 image plate detector. Prior to data collection, co-crystals of AmpC/1 were immersed in a cryoprotectant solution of 20% sucrose, 1.2 mM compound 1, 1.7 M potassium phosphate, pH 8.7, for about 20 seconds, and then flash cooled in liquid nitrogen. The data set was measured from a single crystal.
- 5IDB DND-CAT beam line
- Reflections were indexed, integrated, and scaled using the HKL package (Table 3).
- the space group was C2, with two AmpC molecules in the asymmetric unit. Molecule 1 contained 355 residues, and molecule 2 contained 358 residues.
- the structure was determined by molecular replacement using a native apo AmpC structure (PDB entry 1KE4), with water molecules and ions removed, as the initial phasing model. The structure was refined using the maximum likelihood target in CNS and included simulated annealing, positional, and individual temperature factor refinement with a bulk solvent correction. Sigma A-weighted electron density maps were calculated with CNS and used in steps of manual rebuilding with the program O.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
β-lactamases are the most widespread resistance mechanism to β-lactam antibiotics, such as penicillins and cephalosporins. In response to these enzymes, inhibitors have been introduced. Unfortunately, these inhibitors are also β-lactams, and resistance to them has developed rapidly. Consequently, the present invention provides a novel structure-based approach to inhibitors of these enzymes.
Description
- This application is a continuation of and claims priority benefit from application Ser. No. 10/368,790 filed Feb. 19, 2003, issued on Jun. 2, 2009 as U.S. Pat. No. 7,541,381 and 60/358,053 filed Feb. 19, 2002, each of which is incorporated herein by reference in its entirety.
- The United States government has certain rights to this invention pursuant to Grant Nos. GM59957 and GM63815 from the National Institutes of Health to Northwestern University.
- β-lactams, such as penicillins and cephalosporins, are the most widely prescribed class of antibiotics. In response to their extensive use and misuse, bacterial resistance has developed. Continued usefulness is threatened by the expression of β-lactamase enzymes, the most widespread resistance mechanism to this class of antibiotics. These enzymes hydrolyze the lactam ring and render the antibiotic inactive against their original cellular targets, bacteria cell wall transpeptidases (
FIG. 1 ). - In an effort to combat these enzymes, β-lactamase inhibitors, like clavulanic acid, and β-lactamase resistant compounds, like the third-generation cephalosporins, have been introduced (
FIG. 2 ). Because these compounds are themselves β-lactams, bacteria responded rapidly to them; existing resistance mechanisms recognize the lactam ring functionality common to both substrates and inhibitors alike. These resistance mechanisms are easily disseminated among bacteria, allowing inhibitor resistance to spread rapidly. Novel inhibitors are required to avoid such pre-evolved resistance mechanisms. - It has been an on-going concern in the art to develop inhibitors that do not chemically and structurally resemble β-lactams, would not be hydrolyzed by β-lactamases, and would not be recognized by sensor proteins that bind β-lactams and upregulate the expression of β-lactamases. Additionally, a useful inhibitor would not be affected by porin channel mutants, which prevent access of β-lactams to their cellular targets. An inhibitor compound chemically and/or structurally dissimilar to a β-lactam minimizes the ability of bacteria to recruit and employ existing resistance mechanisms.
- Several classes of non-β-lactam inhibitors of β-lactamases have been identified. Transition-state analog inhibitors, such as boronic acids and phosphonates, inhibit both class A and class C β-lactamases. Intensive study has been devoted to improving the binding affinities of these molecules. One concern with both types of molecules is the covalent adducts formed with activated serine nucleophiles, potentially reducing their specificity.
-
FIGS. 1A-B . Schematic illustrators of the mechanism of β-lactams and their inactivation by β-lactamases. 1A. β-lactams can form stable covalent complexes with their cellular targets, the transpeptidases. 1B. Serine β-lactamases can form transient covalent complexes with β-lactams that are rapidly hydrolyzed. -
FIGS. 2A-C . Comparison of the chemical structures of several β-lactamase ligands. 2A. Loracarbef, a β-lactamase substrate of the prior art. 2B. Ceftazidime, a β-lactamase resistant molecule of the prior art. 2C. Compound 1 of this invention, 3-[(4-chloroanilino) sulfonyl]thiophene-2-carboxylic acid, a lactamase inhibitor, in accordance with this invention. -
FIGS. 3A-C . Stereo view of the interactions observed between AmpC and compounds 1-3 in the DOCK predicted orientations. 3A. Compound 1. 3B. Compound 2. 3C. Compound 3. Hydrogen bonds are shown as dashed lines. Spheres represent water molecules. All figures were generated with MidasPlus, unless otherwise noted. -
FIGS. 4A-B . Stereo view of the active site region of the AmpC/1 complex determined to 1.94 Å resolution. 4A. The 2Fo-Fc electron density map is shown contoured at 1.0 σ. This figure was made with SETOR. 4B. Interactions observed between AmpC and 1 in the crystallographic complex. Spheres represent water molecules. Dashed lines indicate hydrogen bonds. -
FIG. 5 . Overlay of the docked and crystallographic conformations of 1 in the AmpC site. - In light of the foregoing, it is an object of the present invention to provide a wide range of compounds, compositions and/or methods for their use in the inhibition of lactamase enzymes, thereby overcoming various deficiencies and shortcomings of the prior art, including those discussed above. It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can meet certain other objectives, each objective may not apply equally, in all its respects, to every aspect of this invention. As such, the following objects can be viewed in the alternative with respect to any one aspect of this invention.
- It is an object of the present invention to provide one or more compounds or compositions inhibiting lactamase activity, such compounds having neither chemical nor structural similarity to β-lactam antibiotics, in particular, such compounds absent the β-lactam ring structure of said antibiotics.
- It can be another object of the present invention to provide one or more compounds, of the type consistent with the preceding objective, substantially without tendency to form covalent adducts adversely affecting their affinity for inhibitory lactamase interaction.
- It can also be an object of the present invention to identify structural or functional moieties complimentary to or interactive with, in a non-covalent manner, with one or more lactam substrate recognition sites en route to compounds and/or compositions inhibiting lactamase activity.
- Other objects, features, benefits and advantages of the present invention will be apparent from this summary and its descriptions of various preferred embodiments, and will be readily apparent to those skilled in the art having knowledge of enzyme activity and the inhibition thereof through strategic choice of structural relationships between such enzymes and substrate ligands complexed thereto. Such objects, features, benefits and advantages will be apparent from the above as taken into conjunction with the accompanying examples, data, figures and all reasonable inferences to be drawn therefrom.
- The present invention relates, in part, to a structure-based approach to a class of novel, non-covalent inhibitors for AmpC β-lactamase (AmpC). As described more fully below, a consensus map of “hot spots” on AmpC was recently constructed based on crystal structures of AmpC in complexes with thirteen different prior art ligands. The map was used to devise a molecular docking (DOCK) calculation to screen a database of over 200,000 small molecules for one or more structural features complementary to the binding site(s). Based on the results of this initial screen, fifty-six compounds were tested for inhibition of AmpC, and of these, three were shown to have apparent Ki values of 650 μM or better (Table 1). Illustrating one or more aspects of this invention, compound 1, was further characterized kinetically and structurally. The stricture of AmpC in complex with 1 was determined to 1.94 Åresolution by X-ray crystallography and compared to the DOCK prediction.
- As mentioned above, all previously known inhibitors of AmpC β-lactamase form covalent adducts with the lactamase nucleophilic residue Ser64; with few exceptions, all are either β-lactams or molecules that mimic β-lactams. Conversely, compound 1 (see Table 1) forms a non-covalent complex, illustrating chemistry contrary to that exhibited by prior art inhibitors to bind to key substrate-recognition residues in the AmpC active site.
- For the purposes of the present compounds, compositions and/or methods, the following expression(s) and word(s), unless otherwise indicated, will be understood as having the meanings ascribed thereto by those skilled in the art or as otherwise indicated with respect thereto:
- “Cyclic alkene” means a structure containing one or more rings, each ring containing 4 to 8 carbon atoms, and at least one double bond. Without limitation, one or more carbon atoms may be oxidized to a corresponding carbonyl, and one or more rings may be aromatic. Representative cyclic alkenes include—C6H5 and
- “Heterocyclic alkene” means a cyclic alkene as defined above wherein at least one carbon atom of at least one of the ring structures has been replaced by a heteroatom including but not limited to S, N or O. Representative heterocyclic alkenes include:
- In part, the present invention comprises a method of inhibiting β-lactamase activity, the method comprising (1) providing a medium comprising AmpC-β-lactamase, and (2) introducing to and/or contacting the medium or the lactamase with a compound and/or composition comprising a compound which can be represented by the formula A-SO2—NH—R, wherein A is an aryl, phenyl or thiophene moiety substituted with a carboxylate, a sulfonate or a tetraazolinyl group capable of binding with one or more lactamase substrate recognition residues electrophilic toward a β-lactam carbonyl functionality, and R is a cyclic alkene and/or heterocyclic alkene structural component/moiety capable of configurational interaction with lactamase substrate recognition residue Tyr221. Such a compound or composition is introduced to such a medium or contacted with a lactamase in an amount sufficient to inhibit lactamase activity.
- Certain embodiments of the aforementioned compounds and/or compositions, as can be used in conjunction with the present methodologies, have a component A comprising phenyl, thiophene-2-yl and thiophene-3-yl moieties, any of which can be substituted with a carboxylate, sulfonate or tetraazolinyl group adjacent/ortho to the SO2 moiety. With further reference to the aforementioned formula, R can be a cyclic alkene or a heterocyclic alkene, including but not limited to phenyl, biphenyl, pyridinyl, pyrazinyl, thiophenyl, pyrrolyl, fluorenyl, benzothiazyl, anthryl, naphthyl, 1,8-diazanaphthyl, 1,4,6,8-tetranaphthyl, 1-azanaphthyl, indenyl, purinyl, indolyl, pyrimidyl, pyridazyl, pyrazopyrimidyl, indazolyl, azaadenyl, adenosyl, 1,2,4-triazinyl, and 1,3,5-triazinyl. Such an R moiety can further comprise a substituent including but not limited to alkyl, cycloalkyl, arylalkyl, nitroalkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, aminoallyl, azoalkyl, cyanoallyl, amidoalkyl, alkoxycarbonylalkyl, carboxyalkyl, alkoxy, alkoxycarbonyl, hydroxy, amino, alkylamino, cycloalkylamino, arylamino, amidocarbonyl, alkylcarboxamido, arylcarboxamido, carboxy, formyl, alkylcarbonyl, arylcarbonyl, carboxycarbonyl, sulfonyl, alkylsulfonyl, sulfoxy, sulfamoyl, nitrile, azo, alkylazo, arylazo, hydrazinyl, hydrazincarbonyl, nitroso, nitro, cyclicalkenyl, heterocyclicalkenyl and combinations thereof.
- Numerous other compounds, as can be used in conjunction with the compositions and methods of this invention, can comprise structural or compositional variations of A or R, or a substituent thereof, having, respectively, binding, complexing and/or interactive capabilities in accordance with this invention with one or more lactamase substrate recognition residues electrophilic with respect to a β-lactam substrate and/or configurational or spatial interactive capabilities with a lactamase substrate recognition residue Tyr221.
- More specifically, moiety A can vary by way of structure or substituent, limited only by the effect of such variation(s) on the binding or interaction of the sulfonamide group with a β-lactamase, the pertinent lactam substrate amide recognition residues thereof and/or inhibition of the lactamase enzyme. The aforementioned carboxylate, sulfonate or tetraazolinyl groups can, in the alternative, be replaced by one or more substitutents and/or functional groups, limited only by the effect of such variation on binding or interaction with the “oxyanion” or “electrophilic” hole of a β-lactamase, the pertinent lactam substrate recognition residues thereof and/or inhibition of the lactamase enzyme. Likewise, moiety R can vary by way of structure or substituent, limited only by the effect of such variation(s) on the binding or interaction with a β-lactamase, the conserved Tyr221 residue or a functionally-equivalent residue thereof and/or inhibition of the lactamase enzyme. Such variations are in accordance herewith, would be understood by those skilled in the art made aware of this invention, and are consistent with the structural relationships described herein.
- With respect to either the compounds, compositions and/or methods of the present invention, the A and R moieties or components can comprise, consist of, or consist essentially of any of the aforementioned substituents and functional groups thereof. Each said compound or moiety/substituent thereof is distinguishable, characteristically contrasted, and can be practiced in conjunction with the present invention separate and apart from another. Accordingly, it should also be understood that the inventive compounds, compositions and/or methods, as illustratively disclosed herein, can be practiced or utilized in the absence of any one compound, moiety and/or substituent which may or may not be disclosed, referenced or inferred herein, the absence of which may or may not be specifically disclosed, referenced, or inferred herein.
- Representative compounds and compositions, in accordance with this invention and illustrating one or more aspects thereof, are provided in a number of tables included herewith. In particular, reference is made to Table 6 (compounds 10 and 11) showing a number of such thiophene and aryl compounds, the preparation of which are as schematically shown therein, or as would otherwise be known to those skilled in the art made aware of this invention, using straight-forward synthetic techniques or modifications thereof, depending upon the particular thiophene or aryl precursor components (A and/or C substituent) or the identity of the R and its corresponding precursor component.
- More particularly, the present invention can also comprise a method of using a sulfonamide functional moiety to inhibit β-lactamase activity. The method includes
- (1) providing a compound having a sulfonamide functional moiety capable of binding to a lactamase site recognizing the amide side chain of a β-lactam substrate; and
(2) adding or introducing the sulfonamide compound or a composition thereof to a medium including AmpC-β-lactamase, such a compound/composition in an amount or having a concentration sufficient to inhibit lactamase activity. In certain embodiments, such a sulfonamide functionality is a substituent to a phenyl or a thiophenyl moiety. In preferred embodiments, the compound further includes a second substituent group/moiety capable of binding to a lactamase site electrophilic toward a β-lactam carbonyl functionality. Such a second substituent moiety can include but is not limited to a carboxylate, sulfonate or a tetraazolinyl group. Regardless, certain other embodiments can include a third moiety bonded to the nitrogen center of the sulfonamide moiety and capable of configurational or spatial interaction with a lactamase substrate recognition residue Tyr221. - In part, the present invention can also include a composition comprising an AmpC-β-lactamase component and a ligand component, in accordance with this invention, non-covalently associated, bonded and/or complexed therewith. The ligand component has a sulfonamide moiety capable of binding to a lactamase site recognizing the amide side chain of a β-lactam substrate, and further includes a second moiety capable of binding to a lactamase site responsible for electrophilic interaction with the carbonyl group of a β-lactam substrate. As associated or complexed therewith, such ligand is capable of inhibiting lactam hydrolysis by the lactamase component. In certain and/or preferred embodiments of this method, the second moiety is a carboxylate functional group. Other such second moieties can include sulfonate and tetraazolinyl functional groups. Such a ligand component can comprise a compound of the preceding formula and/or any metabolic or decomposition analog thereof or intermediate en route thereto.
- The compounds of this invention may contain an acidic or basic functional group and are, thus, capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable acids and bases. The term “pharmaceutically-acceptable salts” refers to the relatively non-toxic, inorganic and organic acid and base addition salts of such compounds. These salts can be prepared by reacting the purified compound with a suitable acid or base. Suitable bases include the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, ammonia, or a pharmaceutically-acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethyl amine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. Representative acid addition salts include the hydrobromide, hydrochloride, sulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthalate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like.
- As mentioned above, the compounds of this invention, and the pharmaceutically-acceptable salts thereof, are inhibitors of β-lactamases. Assays for the inhibition of β-lactamase activity are well known in the art. For instance, the ability of a compound to inhibit β-lactamase activity in a standard enzyme inhibition assay may be used (see, e.g., Example 1 below and M. G. Page, Biochem J. 295 (Pt. 1) 295-304 (1993)). β-lactamases for use in such assays may be purified from bacterial sources or, preferably, are produced by recombinant DNA techniques, since genes and cDNA clones coding for many β-lactamases are known. See, e.g., S. J. Cartwright and S. G. Waley, Biochem J. 221, 505-512 (1984). Alternatively, the sensitivity of bacteria known, or engineered, to produce a β-lactamase to an inhibitor may be determined. Other bacterial inhibition assays include agar disk diffusion and agar dilution. See, e.g., W. H. Traub & B. Leonhard, Chemotherapy 43, 159-167 (1997). Thus, a β-lactamase can be inhibited by contacting the β-lactamase enzyme with an effective amount of an inventive compound or by contacting bacteria that produce the β-lactamase enzymes with an effective amount of such a compound so that the β-lactamase in the bacteria is contacted with the inhibitor. The contacting may take place in vitro or in vivo. “Contacting” means that the β-lactamase and the inhibitor are brought together so that the inhibitor can bind to the β-lactamase. Amounts of a compound effective to inhibit a β-lactamase may be determined empirically, and making such determinations is within the skill in the art. Inhibition includes both reduction and elimination of β-lactamase activity.
- The present compounds, and the pharmaceutically-acceptable salts thereof, can be used to treat β-lactam-antibiotic-resistant bacterial infections. “β-lactam-antibiotic-resistant bacterial infection” is used herein to refer to an infection caused by bacteria resistant to treatment with one or more β-lactam antibiotics due primarily to the action of a β-lactamase. Resistance to β-lactam antibiotics can be determined by standard antibiotic sensitivity testing. The presence of β-lactamase activity can be determined as is well known in the art (see above). Alternatively, the sensitivity of a particular bacterium to the combination of an inventive compound, or a pharmaceutically-acceptable salt thereof, and a β-lactam antibiotic can be determined by standard antibiotic sensitivity testing methods.
- To treat a β-lactam resistant bacterial infection, an animal or subject suffering from such an infection is given an effective amount of a compound of this invention, or a pharmaceutically-acceptable salt thereof, and an effective amount of a β-lactam antibiotic. Such a compound, or a pharmaceutically-acceptable salt thereof, and the β-lactam antibiotic may be given at different times or given together. When administered together, they may be contained in separate pharmaceutical compositions or they may be in the same pharmaceutical composition.
- Many suitable β-lactam antibiotics are known in the art, including but not limited to the cephalosporins, penicillins, monobactams, carbapenems, and carbacephems. β-lactam antibiotics are effective (in the absence of resistance) against a wide range of bacterial infections. These include those caused by both gram-positive and gram-negative bacteria, for example, bacteria of the genus Staphylococcus (such as Staphylococcus aureus and Staphylococcus epidermidis), Streptococcus (such as Streptococcus agalactine, Streptococcus penumoniae and Streptococcus faecalis), Micrococcus (such as Micrococcus luteus), Bacillus (such as Bacillus subtilis), Listerella (such as Listerella monocytogenes), Escherichia (such as Escherichia coli), Klebsiella (such as Klebsiella pneumoniae), Proteus (such as Proteus mirabilis and Proteus vulgaris), Salmonella (such as Salmonella typhosa), Shigella (such as Shigella sonnei), Enterobacter (such as Enterobacter aerogenes and Enterobacter Cloacae), Serratia (such as Serratia marcescens), Pseudomonas (such as Pseudomonas aeruginosa), Acinetobacter such as Acinetobacter anitratus), Nocardia (such as Nocardia autotrophica), and Mycobacterium (such as Mycobacterium fortuitum). Effective doses and modes of administration of β-lactam antibiotics are known in the art or may be determined empirically or as described below for such compounds.
- To treat an animal/subject suffering from a β-lactam-antibiotic-resistant bacterial infection, an effective amount of one or more of the present compounds, or a pharmaceutically-acceptable salt thereof, is administered in combination with a β-lactam antibiotic. Effective dosage forms, modes of administration and dosage amounts may be determined empirically, and making such determinations is within the skill of the art. It is understood by those skilled in the art that the dosage amount will vary with the activity of the particular compound employed, the severity of the bacterial infection, the route of administration, the rate of excretion of the compound, the duration of the treatment, the identity of any other drugs being administered to the animal/subject, the age, size and species of the animal, and like factors well known in the medical and veterinary arts. In general, a suitable daily dose will be that amount which is the lowest dose effective to produce a therapeutic effect. The total daily dosage will be determined by an attending physician or veterinarian within the scope of sound medical judgment. If desired, the effective daily dose of such a compound, or a pharmaceutically-acceptable salt thereof, maybe administered as two, three, four, five, six or more sub-doses, administered separately at appropriate intervals throughout the day. Treatment of a β-lactam-antibiotic-resistant bacterial infection according to the invention, includes mitigation, as well as elimination, of the infection. Animals treatable according to the invention include mammals. Mammals treatable according to the invention include dogs, cats, other domestic animals, and humans.
- Compounds of this invention may be administered to an animal/patient for therapy by any suitable route of administration, including orally, nasally, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually. The preferred routes of administration are orally and parenterally.
- While it is possible for the active ingredient(s) (one or more compounds of this invention and/or pharmaceutically-acceptable salts thereof, alone or in combination with a β-lactam antibiotic) to be administered alone, it is preferable to administer the active ingredient(s) as a pharmaceutical formulation (composition). The pharmaceutical compositions of the invention comprise the active ingredient(s) in admixture with one or more pharmaceutically-acceptable carriers and, optionally, with one or more other compounds, drugs or other materials. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- Pharmaceutical formulations of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration. Regardless of the route of administration selected, the active ingredient(s) are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art.
- The amount of the active ingredient(s) which will be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration and all of the other factors described above. The amount of the active ingredient(s) which will be combined with a carrier material to produce a single dosage form will generally be that amount of the active ingredient(s) which is the lowest dose effective to produce a therapeutic effect.
- Methods of preparing pharmaceutical formulations or compositions include the step of bringing the active ingredient(s) into association with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing the active ingredient(s) into association with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or nonaqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of the active ingredient(s). The active ingredient(s) may also be administered as a bolus, electuary or paste.
- In solid dosage forms of the invention for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient(s) is/are mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethyl-cellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient(s) moistened with an inert liquid diluent.
- The tablets, and other solid dosage forms of the pharmaceutical compositions of the present invention, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient(s) therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient(s) can also be in microencapsulated form.
- Liquid dosage forms for oral administration of the active ingredient(s) include pharmaceutically-acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient(s), the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents. Suspensions, in addition to the active ingredient(s), may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Formulations of the pharmaceutical compositions of the invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing the active ingredient(s) with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or salicylate and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active ingredient(s). Formulations of the present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for the topical or transdermal administration of the active ingredient(s) include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active ingredient(s) may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any buffers, or propellants which may be required.
- The ointments, pastes, creams and gels may contain, in addition to the active ingredient(s), excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays can contain, in addition to the active ingredient(s), excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- Transdermal patches have the added advantage of providing controlled delivery of the active ingredient(s) to the body. Such dosage forms can be made by dissolving, dispersing or otherwise incorporating the active ingredient(s) in a proper medium, such as an elastomeric matrix material. Absorption enhancers can also be used to increase the flux of the active ingredient(s) across the skin. The rate of such flux can be controlled by either providing a rate-controlling membrane or dispersing the active ingredient(s) in a polymer matrix or gel.
- Pharmaceutical compositions of this invention suitable for parenteral administration comprise the active ingredient(s) in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- These compositions may also contain adjuvants such as wetting agents, emulsifying agents and dispersing agents. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like in the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of the active ingredient(s), it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the active ingredient(s) then depends upon its/their rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of parenterally-administered active ingredient(s) is accomplished by dissolving or suspending the active ingredient(s) in an oil vehicle.
- Injectable depot forms are made by forming microencapsule matrices of the active ingredient(s) in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of the active ingredient(s) to polymer, and the nature of the particular polymer employed, the rate of release of the active ingredient(s) can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the active ingredient(s) in liposomes or microemulsions which are compatible with body tissue. The injectable materials can be sterilized for example, by filtration through a bacterial-retaining filter.
- The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a lyophilized condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions maybe prepared from sterile powders, granules and tablets of the type described above.
- The pharmaceutical compositions of the present invention may also be used in the form of veterinary formulations, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or nonaqueous solutions or suspensions), tablets, boluses, powders, granules or pellets for admixture with feed stuffs, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension or, when appropriate, by intramammary injection where a suspension or solution is introduced into the udder of the animal via its teat; (3) topical application, for example, as a cream, ointment or spray applied to the skin; or (4) intravaginally, for example, as a pessary, cream or foam.
- Several aspects or features of the present invention can be illustrated with reference to compounds 1-3. Without restriction to any one theory or mode of operation, the sulfonamide group of compound 1 is believed to bind in the enzyme site that recognizes the ubiquitous C6(7)-amide side chains of β-lactams, where it hydrogen-bonds with two of the amide recognizing enzyme residues, Asn152 and Ala318. Although these hydrogen bonds resemble those made by made by the amide side chains of β-lactams, the atom order of the sulfonamide side chain in 1 is the reverse of that in the amide side chain of β-lactams (
FIG. 2 ). Additionally, one of the oxygen atoms of the carboxylate group of 1 is believed to bind in the “oxyanion” or “electrophilic” hole of the β-lactamase, hydrogen bonding to the main chain nitrogens of residues Ser64 and Ala318. This resembles the interactions made by the carbonyl oxygen atom of β-lactams with these residues in several acyl-enzyme complexes of β-lactamases with β-lactams. As can relate to another feature of this invention, the terminal chlorophenyl ring of the 1 stacks with the conserved Tyr221, similar to the aryl rings found in β-lactams such as cephalothin, loracarbef, and ceftazidime. - Numerous interactions believed useful in this invention were captured in the docking calculation that led to the discovery of this class of inhibitor compositions. The RMSD between the docked and experimental structures varied from 1.7-1.9 Å, depending on which molecule in the asymmetric unit was used in the comparison. Notwithstanding this quantitative difference, qualitatively and visually the two structures resemble each other closely. Of the ten hydrogen bonds observed in the X-ray structure, seven were predicted in the docked complex, and both of the two major non-polar interactions were predicted. The major difference between the docked and X-ray configurations is a consequence of the rotation of the chlorophenyl ring by 90° that results in a herring-bone rather than a π-stacking interaction between this ring and Tyr221.
- Consistent with experimental observations, the docking energy scores suggest that the carboxylate and sulfonamide functionalities of compound 1 are useful binding determinants. To investigate this further, analogs of 1 were tested as inhibitors.
- Replacing the carboxylate with a methyl ester (5) or a nitro group (9) compromised inhibition, consistent with the prediction. (See, Table 5.) Switching the order of the sulfonamide (cpd 4, Table 5) diminished inhibition three-fold, suggesting that this unusual amide arrangement is nevertheless useful in this non-covalent inhibitor. In light of the present invention, these effects seem sensible, since in the crystal structure this carboxylate hydrogen bonds with the enzyme; any disruption of these interactions would be expected to adversely affect affinity.
- Previously determined structures of AmpC complexes were used to flag hot spots for binding and to identify tightly bound water molecules. Based on thirteen previously determined structures of the prior art, consensus binding sites were identified for an amide/aryl site, a carbonyl/hydroxyl site, a hydroxyl site, a carboxylate site, and a hydrophobic site. In their docked complexes, new inhibitor compounds 1-3 of this invention exploited these hot spots; for example, an oxygen atom, from the carboxylate group of 1 and 3 and the sulfate group of 2, was predicted to bind in the carbonyl/hydroxyl site, and the hydrophobic site was complemented with hydrophobic portions of each of these compounds. Intriguingly, however, new inhibitor compounds 1-3 took advantage of the consensus hot spots using functionality not found in the thirteen prior art ligands used to identify the hot spots in the first place. Therefore, the prior art did not suggest placement of a sulfonamide group in the amide recognition site of AmpC; did not position a carboxylate or related group into the “oxyanion” hole of the β-lactamase; and did not suggest the benzoaminothiazole ring found in compounds 2 and 3.
- The inclusion of bound water molecules in the setup of the docking experiment also came out of analysis of the thirteen previous complexes used to identify the consensus hot spots. Water molecules included as part of the receptor can influence what ligands are identified in a docking calculation, both by acting as a point of interaction for the docked molecules and by excluding them from occupying the volume that the water itself occupies. Consequently, there is much interest in how water influences the results of docking and structure-based design calculations. Based on analysis of waters found conserved in AmpC structures, three waters were treated as non-displaceable parts of the receptor: Wat403, Wat404, and Wat405. Wat404 and Wat405 are relatively distant from the site of docking and will not be considered further. Wat403 is at the center of the active site. Water was used in the docking calculation because it is highly conserved in all AmpC structures (present in 29 of 30 molecules previously examined) and because it is well coordinated by the enzyme. The inclusion of water appears to have influenced that calculation beneficially, as it hydrogen bonds with the inhibitor in both the docked and the crystallographic structures of compound 1 bound to AmpC. Accordingly, various aspects of this invention contemplate, in a broader context, an lactamase/inhibitor complex or association in the presence of any such water molecules.
- As described more fully below, representing the broader utility of this invention, compound 1 exhibits selectivity for AmpC β-lactamase over several mechanistically related serine proteases. It binds at least two hundred-fold better to AmpC than to trypsin or elastase, and it is selective by at least sixty-fold more selective for AmpC over chymotrypsin. Compound 1 reversed β-lactam resistance in a strain of bacteria that overexpresses β-lactamase. Compound 1 to potentiated the activity of the β-lactam ampicillin against a strain of resistant bacteria, increasing the efficacy of ampicillin by four-fold and reducing its minimum inhibitory concentration (MIC) to 128 μg/ml.
- Illustrating one or more aspects of this invention, compound 1 is a competitive, non-covalent inhibitor of AmpC with a Ki value of 23 μM. Compared to more traditional covalent inhibitors of AmpC, this is a modest level of inhibition. Nevertheless, the compound holds promise as a lead for drug discovery: it explores novel chemical functionality, which it uses to complement key recognition residues of the β-lactamase. The recognition “code” of the AmpC structure appears to be plastic, not only are β-lactams recognized by highly conserved active site residues, but compounds bearing very different functionality can also bind. Notwithstanding its modest level of inhibition, compound 1 reversed antibiotic resistance in bacterial cell culture and would be expected to do so, in vivo. The compound was specific to AmpC and did not inhibit related serine amidases in counter-screens. Finally, it is relatively “drug-like”, passing four of four Lipinski rules and having several places for synthetic elaboration whereby analogs might be explored. The ability to discover such inhibitors through structure-based techniques, and the correspondence between the docking prediction and the experimental result, holds promise for the development of this and other families of novel inhibitors of serine β-lactamases. Such novel inhibitors are much needed as β-lactamase-mediated antibiotic resistance continues to spread among bacterial pathogens.
- The following non-limiting examples and data illustrate various aspects and features relating to the compounds, compositions, complexes and/or methods of the present invention, including the use of the compositions described herein to inhibit lactamase activity, such compounds and/or compositions as are available through these synthetic methodologies described herein. In comparison with the prior art, the present compositions and/or methods provide results and data which are surprising, unexpected and contrary thereto. While the utility of this invention is illustrated through the use of several compounds/compositions and structural moieties presented therewith, it will understood by those skilled in the art that comparable results are obtainable with various other compounds/compositions, as are commensurate with the scope of this invention.
- Northwestern University DOCK was used to screen the Available Chemicals Directory (ACD), a database of 229,810 commercially available small molecules. The docking experiment incorporated information about hot spots identified on AmpC using a consensus overlay. This consensus map, based on crystal structures of AmpC in complexes of nine boronic acid inhibitors and four β-lactam ligands, identified several favorable binding sites on AmpC: an amide recognition site, a hydrophobic site, an aryl site, a carboxylate site, a carbonyl/hydroxyl site, and a hydroxyl site, along with several conserved water sites. Each of these binding sites was included in the docking experiment as part of the sphere set used to orient the rigid fragment of the ligands in the target site, and chemical matching was used to indicate the type of functionality recognized at the site. Two docking calculations, differing in the partial atomic charges of several active site residues, were performed. The magnitudes of local partial atomic charges were increased, without changing the overall charges of a residue, in an effort to capture the polarization thought to occur when hydrogen bonding to these residues. This was done to improve polar complementarity between AmpC and the ligands in the docking calculation.
- The top five hundred molecules from each docking run were examined graphically for complementarity to the enzyme, for polar interactions with active site residues, and for agreement with binding sites identified in the consensus map. From the two lists, fifty-six compounds were tested for inhibition of AmpC. Three molecules inhibited AmpC with Ki values of 800 μM or better (compounds 1-3; Table 1). Compound 1 ranked 115th out of 500, 2 ranked 384th, and 3 ranked 415th in the list where the dipole was increased the most; these compounds were not present in the other top five hundred list. The DOCK-predicted conformations of these compounds and their interactions with AmpC are shown in
FIG. 3 . The best inhibitor, compound 1, is a competitive, reversible inhibitor of AmpC with a Ki value of 23 μM for AmpC. This compound was also tested for activity against the mechanistically related serine proteases α-chymotrypsin, β-trypsin, and elastase (Table 1). Compound 1 showed no inhibition of trypsin and elastase at concentrations up to 4 mM and was greater than fifty-fold more selective for AmpC over chymotrypsin. - Several intriguing interactions are observed between AmpC and 1 in the DOCK-predicted orientation (
FIG. 1B ; Table 2). The carboxylate group is placed near the catalytic Ser64. One of the oxygens of the carboxylate interacts with Oγ of Ser64 and with the main chain nitrogen and oxygen atoms of Ala318; the other oxygen interacts with the main chain nitrogen of Ala318 and Wat403, a conserved water molecule that was included in the docking experiment as part of the receptor. The thiophene ring is placed in the hydrophobic binding site formed by Leu119 and Leu293; distances to these residues are approximately 5.1 Å. One of the sulfonamide oxygens interacts with Oγ of Ser64, and the other oxygen interacts with Nδ2 of Asn152. The nitrogen of the sulfonamide interacts with the main chain oxygen of Ala318. Finally, the chlorophenyl ring appears to π-π stack with Tyr221. Several of these interactions agree with the consensus map; the Leu119/Leu293 hydrophobic patch is complemented with the thiophene ring, and one of the carboxylate oxygens is placed in the “oxyanion” or “electrophilic” hole, which can bind carbonyl and hydroxyl groups. - Subsequently, the structure of AmpC in complex with compound 1 was determined by X-ray crystallography to 1.94 Å resolution (
FIG. 6 ; Table 3). The location of the inhibitor in each of the two active sites was unambiguously identified in the initial Fo-Fc difference maps when contoured at a level of 3σ. In addition, Fo-Fc difference electron density indicated the presence of a third inhibitor molecule located at the interface between the two molecules. A simulated annealing omit map of the refined model agreed well with the conformation of the inhibitor in each site (not shown). The quality of the final model of the complex was analyzed with the program Procheck; 92.5% of the non-proline, non-glycine residues are in the most favored region of the Ramachandran plot (7.5% in the additionally allowed region). - In the experimentally determined structure, 1 interacts with several active site residues (
FIG. 6 ; Table 3). The carboxylate group is bound near Ser64, with one of its oxygens interacting with the main chain nitrogen and Oγ atoms of Ser64 and the main chain nitrogen and oxygen of Ala318. The other oxygen of the carboxylate hydrogen bonds with Wat403 and in molecule 2, with Wat481. The thiophene ring is within van der Waals distance to residues Leu119 and Leu293 (distances range from 4.2 to 4.6 Å) that form a hydrophobic patch on AmpC. One of the sulfonamide oxygen atoms hydrogen bonds with Oγ of Ser64 and Nζ of Lys67; the other interacts with Nδ2 of Asn152. The nitrogen atom of the sulfonamide group interacts with the main chain oxygen of Ala318. The chlorophenyl ring appears to be involved with quadrupole-quadrupole interactions with Tyr221; the distance between the centroids of these two rings is between 5.5 and 5.8 Å, and the angle of interaction ranges from 91 to 94°. - The DOCK-predicted conformation of 1 closely resembles the experimentally determined structure (Figure); the RMSD for all inhibitor atoms is 1.867 Å, when matching molecule 2 of both structures (RMSD Cα 0.14 Å), and 1.750 Å, when matching molecule 1 of the crystal structure to molecule 2 of the DOCK structure (RMSD Cα 0.26 Å). In the crystal structure, the entire molecule is shifted and slightly rotated from the predicted conformation. Despite this shift, most of the interactions between AmpC and 1 in the predicted conformation are also observed in the experimental structure. Of the nine hydrogen bonding interactions observed in both monomers in the crystallographic complex, seven are also observed in the docked prediction (Table 3). For instance, the key interactions between the sulfonamide oxygen O17 and Asn152Nδ2 and the sulfonamide nitrogen N1 and Ala318O are observed in both the experimental structure and the prediction. Interactions between the sulfonamide oxygen O16 and Lys67Nδ and the carboxylate oxygen and Ser64N are only observed in the crystal structure. The largest difference between the two structures is the orientation of the chlorophenyl ring; in the crystal structure, this ring has rotated approximately 60°, as measured by the dihedral angle around S13, N1, C2, C3. This ring now interacts in a more edge-to-face manner with Tyr221, presumably making quadrupole-quadrupole interactions with Tyr221 instead of the π-π stacking observed in the predicted structure.
- The ability of compound 1 was investigated to potentiate the activity of a β-lactam against a strain of resistant bacteria. In bacterial cell culture, compound 1 increased the efficacy of ampicillin by four-fold and reduced its minimum inhibitory concentration (MIC) to 128 μg/ml (Table 4). At this concentration compound 1 alone had no measurable antibiotic activity.
- The structure of the AmpC/1 complex allowed use of a structure-guided approach to search for analogs of compound 1. In an effort to determine the structure-activity relationship of this series and identify compounds with improved binding affinity, six commercially available analogs from the ACD were ordered and tested (compounds 4-9; Table 5). The carboxylate group appears to be a preferred structure or functionality; binding was somewhat problematic with the ester (5) and nitro (9) analogs. Switching the atom order of the sulfonamide group (4) reduced binding by three-fold. Disruption of the proton donating ability of the sulfonamide nitrogen (6) through incorporation into a piperazine ring system also hindered binding. With compound 7, the addition of a piperidine ring ortho to the sulfonamide group showed a slight improvement in affinity (Ki 14 μM). Referring to Table 6 and consistent with the structure-activity relationships of this invention, the range of compounds 9-10 can also be utilized, in accordance herewith.
- Docking. The Available Chemicals Directory was screened against molecule 2 of native AmpC (PDB entry 1KE4) using the Northwestern University version of DOCK. To prepare the site for docking, all water and ion molecules were removed, except for Wat403, Wat404, and Wat405. These specific water molecules were included as part of the receptor because they are observed in nearly all AmpC structures and are believed to be integral in maintaining protein structure. Protonation of receptor residues and water molecules was done with Sybyl (Tripos, St. Louis Mo.). Positions of some protons were then changed manually to more appropriate orientations in MidasPlus. The sphere set used was based on ligand atom positions from an ensemble of structures of nine boronic acid inhibitors and four β-lactam molecules determined in complex with AmpC β-lactamase by X-ray crystallography. This resulted in one cluster of 73 spheres, each of which represented a ligand atom position observed in the X-ray structures, which was used in the docking calculation. The spheres were labeled based on the chemical functionality of the ligand atoms they represented. Force field and electrostatic grids were calculated with CHEMGRID and DelPhi, respectively. DISTMAP was used to calculate the excluded volume grid.
- In the docking calculation, calculated interaction energies were corrected for ligand desolvation using AMSOL, which was also used to calculate ligand partial atomic charges. Each orientation of the docked ligands was refined with one hundred iterations of rigid-body minimization. The distance tolerance parameter for calculating orientations was set to 1.2 Å. The ligand and receptor bin sizes were each 0.2, and ligand and receptor overlap were also each 0.2. Chemical matching was used to specify how ligand atoms were to be matched to the spheres. To improve hydrogen bonding opportunities between active site residues and the ligands, the absolute magnitude of the partial atomic charges of the following active site residues were increased by 0.4 units and in a second docking calculation, by 0.8 units: Ser64Oγ and Hoγ; Gln120Oε1, HNε1, and HNε2; Tyr150OH and HOH; Asn152Oδ1, HNδ1, and HNδ2; Tyr221OH and HOH; Asn289Oδ1, HNδ1, and HNδ2; Thr316Oγ1 and Hoγ; Ala318O and HN; Asn343Oδ1, HNδ1, and HNδ2; and Asn346Oδ1, HNδ1, and HNδ2; for the asparagines and glutamine residues, the charge increase was split among the protons on the amide groups. The top scoring five hundred molecules from each docking run were displayed with MidasPlus. From these two lists, a total of fifty-six compounds were ordered and tested for inhibition of AmpC.
- Enzymology. AmpC from Escherichia coli was expressed and purified to homogeneity as described in the literature. Compound 1, 3-[(4-chloroanilino)sulfonyl]thiophene-2-carboxylic acid, 4, 2-methyl-4-[[(4-methylphenyl)sulfonyl]amino]thiophene-3-carboxylic acid, 5, methyl 3-[(4-chloroanilino)sulfonyl]thiophene-2-carboxylate, 6, 3-([4-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]piperazino]sulfonyl)thiophene-2-carboxylate, 7, 3-[(2-piperidinoanilino)sulfonyl]thiophene-2-carboxylic acid, and 8, 2,5-dimethyl-4-(2-thienylaminosulfonyl)furan-3-carboxylic acid, were obtained from Maybridge Chemical, (Cornwall, UK). Compound 2, 3-(2-benzothiazolylthio)-1-propanesulfonic acid, and 9, N-(4-methoxyphenyl)-2-nitro-benzenesulfonamide, were obtained from Aldrich Chemical (Milwaukee, Wis.). Compound 3, 3-(2-benzothiazolylthio)propionic acid, was obtained from TCI America (Portland, Oreg.). All were used without further purification. Kinetic measurements with AmpC were performed in 50 mM TRIS buffer, pH 7.0, using nitrocefin as a substrate. The Km of nitrocefin for AmpC in this buffer was determined to be 127 μM. Reactions were initiated by the addition of 0.875 nM enzyme and monitored in methacrylate cuvettes. No incubation effect was detected for any compound. IC50 values were determined at 200 μM substrate concentration. Ki values for the compounds were obtained by comparison of progress curves in the presence and absence of inhibitor. Sufficient inhibitor was used to give at least 50% inhibition. This method correlates well with full Ki analysis through coupled substrate and inhibitor concentration variation. For compound 1, a Ki consistent with the value of 23 μM determined by progress curve analysis, was also determined by Lineweaver-Burk analysis of multiple substrate and inhibitor concentrations. Comparable enzymatic techniques and analyses can be used to demonstrate the utilities. corresponding to other compounds or compositions of this invention.
- The compounds of this invention are typically synthesized from available starting materials and reagents, via corresponding condensation reactions and related procedural techniques. Other methodologies are of the sort used to prepare several of those compounds commercially available, and useful with the compositions and methods of this invention. For instance and without limitation, precursors B in Table 6, all known and available starting materials or synthetically available, can be utilized to provide inventive compounds 9 or 10 with a particular R moiety, through condensation with a particular precursor to a desired A moiety (again, known and commercially available or prepared in the literature—using known synthetic techniques or straight-forward modifications thereof, each as would be well-known to those skilled in the art of synthetic organic chemistry and without undue experimentation.
- Illustrating the broader utility of this invention, the selectivity of compound 1 for AmpC was determined by measuring its activity against α-chymotrypsin (bovine pancreatic), β-trypsin (bovine pancreatic), and elastase (porcine pancreatic), all from Sigma (St. Louis, Mo.). The substrates for α-chymotrypsin (succinyl-ala-ala-pro-phe-p-nitroanilide) and β-trypsin (N-benzoyl-L-arginine ethyl ester, BAEE) were also purchased from Sigma. The elastase substrate used (elastase substrate 1, MeOSuc-Ala-Ala-Pro-Val-pNA) was purchased from Calbiochem (San Diego, Calif.). Substrates were diluted from 10 mM DMSO stock solutions, and all reactions were performed in 50 mM TRIS buffer, pH 7.0, 25° C. For α-chymotrypsin, 200 μM of substrate was used; the reactions were initiated by addition of 10 μL of a 0.1 mg/ml enzyme stock solution and monitored at 410 nm. For β-trypsin, 200 μM of BAEE was used, the reactions were initiated by the addition of 5 μL of a 0.2 mg/ml enzyme stock solution, and monitored at 260 nm. For elastase, 640 μM of elastase substrate was used, the reactions were initiated by the addition of 30 μL of a 0.2 mg/mL enzyme stock solution, and monitored at 385 nm. Initial rate fits to the absorbance data for the first 150 seconds of each reaction were used to determine reaction velocities.
- Crystal growth and structure determination. Co-crystals of AmpC/1 were grown by vapor diffusion in hanging drops equilibrated over 1.7 M potassium phosphate buffer (pH 8.7) using microseeding techniques. The initial concentration of protein in the drop was 95 μM, and the concentration of the inhibitor was 1.2 mM. The inhibitor was added to the crystallization drop in a 4% dimethylsulfoxide (DMSO), 1.7 M potassium phosphate buffer (pH 8.7) solution. Crystals appeared within 3-5 days after equilibration at 23° C.
- Data were measured on DND-CAT beam line (5IDB) of the Advanced Photon Source at Argonne National Lab at 100 K using a Mar345 image plate detector. Prior to data collection, co-crystals of AmpC/1 were immersed in a cryoprotectant solution of 20% sucrose, 1.2 mM compound 1, 1.7 M potassium phosphate, pH 8.7, for about 20 seconds, and then flash cooled in liquid nitrogen. The data set was measured from a single crystal.
- Reflections were indexed, integrated, and scaled using the HKL package (Table 3). The space group was C2, with two AmpC molecules in the asymmetric unit. Molecule 1 contained 355 residues, and molecule 2 contained 358 residues. The structure was determined by molecular replacement using a native apo AmpC structure (PDB entry 1KE4), with water molecules and ions removed, as the initial phasing model. The structure was refined using the maximum likelihood target in CNS and included simulated annealing, positional, and individual temperature factor refinement with a bulk solvent correction. Sigma A-weighted electron density maps were calculated with CNS and used in steps of manual rebuilding with the program O. The inhibitor was built into the initial observed difference density in each active site of the asymmetric unit, and the structure of the complex was further refined using CNS (Table 3). Electron density for a third inhibitor molecule was observed between the two AmpC molecules, and the inhibitor was modeled into this electron density as well.
- Antimicrobial experiments. Susceptibility testing was performed and interpreted following the guidelines of the National Committee for Clinical Laboratory Standards. To test the inhibitory activity of 1, the compound was dissolved in 50% DMSO and dilutions were performed using Luria Broth growth medium. An adequate final concentration in which to determine the minimum inhibitory concentration (MIC) was obtained where the concentration of DMSO was maintained below 5%. The MIC of the β-lactam ampicillin, in the presence and absence of 1, was determined against JM109 E. coli expressing AmpC.
-
TABLE 2 Data collection and refinement statistics of AmpC/1. AmpC/1 Cell constants (Å; °) a = 118.67 b = 76.42 c = 97.90; β = 116.63 Resolution (Å) 1.94 (1.99-1.94)a Unique reflections 56,580 Total observations 208,148 Rmerge (%) 5.5 (31.5) Completeness (%)b 97.8 (95.1) <I>/<σI> 14.5 (4.2) Resolution range for refinement (Å) 20-1.94 Number of protein residues 713 Number of water molecules 352 RMSD bond lengths (Å) 0.009 RMSD bond angles (°) 1.5 R-factor (%) 17.3 Rfree(%)c 20.7 Average B-factor, protein atoms (Å2, 23.8 molecule 1) Average B-factor, protein atoms (Å2, 23.6 molecule 2) Average B-factor, inhibitor atoms (Å2, 29.8 molecule 1) Average B-factor, inhibitor atoms (Å2, 37.1 molecule 2) Average B-factor, water molecules (Å2) 31.1 aValues in parentheses are for the highest resolution shell. bFraction of theoretically possible reflections observed. cRfree was calculated with 5% of reflections set aside randomly. -
TABLE 3 Interactions in the crystallographic and DOCK-predicted complexes of AmpC with 1. Distance (Å) AmpC/1 DOCK prediction Interaction Molecule 1 Molecule 2 Molecule 2 S64N-O23 3.0 2.9 3.6 S64Oγ-O23 2.9 2.8 3.0 A318O-O23 2.9 3.0 2.7 A318N-O23 2.8 2.9 2.6 A318N-O24 3.4 3.4 3.1 Wat403a-O24 2.9 2.7 2.5 Wat481-O24 — 2.7 — S64Oγ-O16 2.7 2.7 2.4 K67Nζ-O16 3.1 3.1 4.3 N152Nδ2-O17 2.7 2.7 2.6 A318O-N1 2.7 2.7 2.6 aWat403 is called Wat401 in molecule 1 of the asymmetric unit. -
TABLE 4 MICa JM109/AmpC Ampicillinb 512 Ampicillin/1c 128 aMinimum inhibitory concentration. bThe MIC of ampicillin in JM109 that does not express AmpC is 4 μg/ml. cThe ampicillin:inhibitor ratio used was 1:2. -
TABLE 6 Representative R group precursors B, are listed below. NAME STRUCTURE 3-METHOXY-5- (TRIFLUOROMETHYL)ANILINE 2-AMINO-3-BROMO-9-HYDROXY- FLUORENE 2-AMINOFLUORENE ACID BLUE 25 4-CYCLOHEXYLANILINE 5,6,7,8-TETRAHYDRO-1- NAPHTHYLAMINE 3-AMINO-4-METHOXYBENZOIC ACID SULFISOXAZOLE 5-AMINOINDAN J ACID 1-NAPHTHYLAMINE 4-AMINO-1- NAPHTHALENECARBONITRILE 4-PHENYLAZO-1-NAPHTHYLAMINE 3-AMINO-2-NAPHTHOL 2,3-DIAMINONAPHTHALENE SULFAMOXOL 1-(2-AMINOPHENYL)PYRROLE 2-AMINO-6,8-DIHYDROXYPURINE 2-AMINOPURINE 5-AMINOINDOLE 4-AMINOPYRAZOLO[3,4-D]PYRIMIDINE 4-AMINO-6-HYDROXYPYRAZOLO(3,4- D)PYRIMIDINE N1-(6-INDAZOLYL)SULFANILAMIDE 8-AZAADENINE 8-BROMOADENOSINE 2-(4-AMINOPHENYL)-6- METHYLBENZOTHIAZOLE 3,4-METHYLENEDIOXYANILINE N-(4-AMINO-2-METHYLPHENYL)-4- CHLOROPHTHALIMIDE ATRAZINE-DESETHYL-DESISOPROPYL MELAMINE SULFADIAZINE SULFAMETHYAZINE 6-AMINO-5-NITROSO-2-THIOURACIL 2-AMINOPYRIMIDINE 2-AMINO-5-NITROPYRIMIDINE AMINOPYRAZINE 4-[N-(2-AMINO-3-CYANO-5-PYRA- ZINYLMETHYL)-AMINO]BENZOIC ACID 5-ACETOXYMETHYL-2-AMINO-3- CYANOPYRAZINE 3-AMINOPYRAZINE-2-CARBOXYLIC ACID 4-MORPHOLINOANILINE 2-AMINOPYRIDINE 2-AMINO-3-BENZYLOXYPYRIDINE 6-AMINONICOTINIC ACID 6-AMINONICOTINAMIDE 3-AMINO-1,2,4-TRIAZINE 2-AMINO-6,7-DIMETHYL-4- HYDROXYPTERIDINE 2,4-DIAMINO-6- (HYDROXYMETHYL)PTERIDINE 5,7-DIMETHYL[1,8]NAPHTHYRIDIN-2- AMINE 4-AMINO-2-METHYLQUINOLINE 3,4-ETHYLENEDIOXYANILINE LUMINOL 4-NITROANTHRANILIC ACID 4-AMINOBENZHYDRAZIDE ANILINE 2-(3-AMINO-4- CHLOROBENZOYL)BENZOIC ACID N-PHENYL-O-PHENYLENEDIAMINE 2-AMINOPHENOL-4-SULFONIC ACID 2-AMINOBIPHENYL 2-AMINO DIPHENYL SULFONE O-AMINOBENZALDEHYDE FAST RED VIOLET LB BASE PHENYL 4-AMINOSALICYLATE 4-AMINOSALICYLIC ACID 5-PHENYL-O-ANISIDINE 3,3′-DIAMINODIPHENYL SULFONE 4-AMINODIPHENYLAMINE P-AMINOOXANILIC ACID 4-AMINOAZOBENZENE 4-AMINOPHENOL 2-AMINO-5-HYDROXYBENZOIC ACID 4-AMINO-DI-BENZENE-SULFONAMIDE SULFANILIC ACID 4-AMINOHIPPURIC ACID 4-AMINOBENZOIC ACID
Claims (2)
1. A lactamase inhibitor compound of a formula
A-SO2—NH—R
A-SO2—NH—R
wherein A is a thiophen-2-yl moiety substituted with a carboxylate group and a pharmaceutically-acceptable cation at the 3-position of said thiophenyl moiety and adjacent said SO2 moiety; and wherein R is selected from phenyl, biphenyl, pyridinyl, pyrazinyl, thiophenyl, pyrrolyl, fluorenyl, benzothiazyl, anthryl, naphthyl, 1,8-diazanaphthyl, 1,4,6,8-tetranaphthyl, 1-azanaphthyl, indenyl, purinyl, indolyl, pyrimidyl, pyridazyl, pyrazopyrimidyl, indazolyl, azaadenyl, adenosyl, 1,2,4-triazinyl, and 1,3,5-triazinyl moieties and, wherein said R moiety comprises a substituent selected from alkyl, cycloalkyl, arylalkyl, nitroalkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, aminoalkyl, azoalkyl, cyanoallyl, amidoalkyl, alkoxycarbonylalkyl, carboxyalkyl, alkoxy, alkoxycarbonyl, hydroxy, amino, alkylamino, cycloalkylamino, arylamino, amidocarbonyl, alkylcarboxamido, arylcarboxamido, carboxy, formyl, alkylcarbonyl, arylcarbonyl, carboxycarbonyl, sulfonyl, alkylsulfonyl, sulfoxy, sulfamoyl, nitrile, azo, alkylazo, arylazo, hydrazinyl, hydrazincarbonyl, nitroso, nitro, cyclicalkenyl, heterocyclicalkenyl and combinations thereof.
2. The lactamase inhibitor compound of claim 1 wherein R is phenyl with a 4-chloro substituent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/476,850 US20090318711A1 (en) | 2002-02-19 | 2009-06-02 | Non-Covalent Inhibitors of AmpC ß-Lactamase |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35805302P | 2002-02-19 | 2002-02-19 | |
US10/368,790 US7541381B2 (en) | 2002-02-19 | 2003-02-19 | Non-covalent inhibitors of AmpC β-lactamase |
US12/476,850 US20090318711A1 (en) | 2002-02-19 | 2009-06-02 | Non-Covalent Inhibitors of AmpC ß-Lactamase |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/368,790 Continuation US7541381B2 (en) | 2002-02-19 | 2003-02-19 | Non-covalent inhibitors of AmpC β-lactamase |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090318711A1 true US20090318711A1 (en) | 2009-12-24 |
Family
ID=27757693
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/368,790 Expired - Fee Related US7541381B2 (en) | 2002-02-19 | 2003-02-19 | Non-covalent inhibitors of AmpC β-lactamase |
US12/476,850 Abandoned US20090318711A1 (en) | 2002-02-19 | 2009-06-02 | Non-Covalent Inhibitors of AmpC ß-Lactamase |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/368,790 Expired - Fee Related US7541381B2 (en) | 2002-02-19 | 2003-02-19 | Non-covalent inhibitors of AmpC β-lactamase |
Country Status (3)
Country | Link |
---|---|
US (2) | US7541381B2 (en) |
AU (1) | AU2003216312A1 (en) |
WO (1) | WO2003070682A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541381B2 (en) * | 2002-02-19 | 2009-06-02 | Northwestern University | Non-covalent inhibitors of AmpC β-lactamase |
WO2009114921A1 (en) * | 2008-03-17 | 2009-09-24 | Dmitrienko Gary I | INHIBITORS OF CLASS B AND CLASS D β-LACTAMASES |
JP2013525368A (en) * | 2010-04-23 | 2013-06-20 | キネタ・インコーポレイテツド | Antiviral compounds |
EP3795149A4 (en) * | 2018-05-14 | 2022-01-05 | National University Corporation Tokai National Higher Education and Research System | BETA-LACTAMASE INHIBITOR |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006007A (en) * | 1975-01-02 | 1977-02-01 | Monsanto Company | N-(Substituted phenyl) derivatives of saccharin |
US4531139A (en) * | 1983-10-02 | 1985-07-23 | The Standard Register Company | Color developers for pressure-sensitive or heat-sensitive recording papers |
US5571821A (en) * | 1993-05-20 | 1996-11-05 | Texas Biotechnology Corporation | Sulfonamides and derivatives thereof that modulate the activity of endothelin |
US5783705A (en) * | 1997-04-28 | 1998-07-21 | Texas Biotechnology Corporation | Process of preparing alkali metal salys of hydrophobic sulfonamides |
US5939431A (en) * | 1996-06-20 | 1999-08-17 | Schering Corporation | Naphthyridines which affect IL-4 and G-CSF |
US7541381B2 (en) * | 2002-02-19 | 2009-06-02 | Northwestern University | Non-covalent inhibitors of AmpC β-lactamase |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1155119B (en) * | 1961-07-20 | 1963-10-03 | Hoechst Ag | Process for the preparation of derivatives of 2-nitro-1-aminoaryl-N-sulfonic acids |
US6503935B1 (en) * | 1998-08-07 | 2003-01-07 | Abbott Laboratories | Imidazoles and related compounds as α1A agonists |
WO2002022137A1 (en) | 2000-09-12 | 2002-03-21 | Shoichet Brian K | β-LACTAM ANALOGS AND USES THEREFOR |
-
2003
- 2003-02-19 US US10/368,790 patent/US7541381B2/en not_active Expired - Fee Related
- 2003-02-19 WO PCT/US2003/004915 patent/WO2003070682A1/en not_active Application Discontinuation
- 2003-02-19 AU AU2003216312A patent/AU2003216312A1/en not_active Abandoned
-
2009
- 2009-06-02 US US12/476,850 patent/US20090318711A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006007A (en) * | 1975-01-02 | 1977-02-01 | Monsanto Company | N-(Substituted phenyl) derivatives of saccharin |
US4531139A (en) * | 1983-10-02 | 1985-07-23 | The Standard Register Company | Color developers for pressure-sensitive or heat-sensitive recording papers |
US5571821A (en) * | 1993-05-20 | 1996-11-05 | Texas Biotechnology Corporation | Sulfonamides and derivatives thereof that modulate the activity of endothelin |
US5939431A (en) * | 1996-06-20 | 1999-08-17 | Schering Corporation | Naphthyridines which affect IL-4 and G-CSF |
US5783705A (en) * | 1997-04-28 | 1998-07-21 | Texas Biotechnology Corporation | Process of preparing alkali metal salys of hydrophobic sulfonamides |
US7541381B2 (en) * | 2002-02-19 | 2009-06-02 | Northwestern University | Non-covalent inhibitors of AmpC β-lactamase |
Also Published As
Publication number | Publication date |
---|---|
AU2003216312A1 (en) | 2003-09-09 |
WO2003070682A1 (en) | 2003-08-28 |
US7541381B2 (en) | 2009-06-02 |
US20030232830A1 (en) | 2003-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6448238B1 (en) | Inhibitors of β-lactamases and uses therefor | |
Kaur et al. | Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant Enterococcus | |
US20210238167A1 (en) | Small molecule ire1-alpha inhibitors | |
US6417174B1 (en) | Inhibitors of β-lactamases and uses therefor | |
US20160229836A1 (en) | Multivalent ras binding compounds | |
US20220315546A1 (en) | Chemical compounds | |
WO2017181897A1 (en) | Novel broad-spectrum β-lactamase inhibitor | |
US20090318711A1 (en) | Non-Covalent Inhibitors of AmpC ß-Lactamase | |
US20120149710A1 (en) | Sortase a inhibitors | |
US20170088524A1 (en) | Compositions, Methods of Use, And Methods of Treatment | |
Matshwele et al. | Reduction of bacterial folic acid production and cell membrane disruption of Klebsiella pneumoniae by two amino substituted pyridyl compounds: an experimental and in silico approach | |
US10626087B2 (en) | Indoline and tetrahydroquinoline sulfonyl inhibitors of dimetalloenzymes and use of the same | |
Masood et al. | Synthesis, antimicrobial evaluation and in silico studies of novel 2, 4-disubstituted-1, 3-thiazole derivatives | |
GB2602096A (en) | Compounds | |
US11021469B2 (en) | Indoline sulfonamide inhibitors of DapE and NDM-1 and use of the same | |
EP2931883B1 (en) | P38 mapk inhibitors for the treatment of inflammatory diseases | |
US20230257373A1 (en) | Quorum sensing inhibitors and methods of use | |
KR20210063211A (en) | New inhibitors for the metallo-beta-lactamase produced by a multi-registant bacteria and methods of preparation thereof | |
US20160115136A1 (en) | Compounds, compositions comprsing same, and methods related thereto | |
US20220000841A1 (en) | Inhibitors of metallo-beta-lactamases | |
EP3431474A1 (en) | Chemical compounds | |
TW201000469A (en) | Oxo-imidazolyl compounds | |
GB2376944A (en) | Polycyclic heterocyclic compounds and their therapeutic use | |
EA038487B1 (en) | Thiazole derivatives, pharmaceutical composition comprising same and uses thereof | |
JP2007525947A (en) | Methionine aminopeptidase and method of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |