US20090311235A1 - Use of Polymeric Materials with Other Substances for Improved Performance - Google Patents
Use of Polymeric Materials with Other Substances for Improved Performance Download PDFInfo
- Publication number
- US20090311235A1 US20090311235A1 US12/403,788 US40378809A US2009311235A1 US 20090311235 A1 US20090311235 A1 US 20090311235A1 US 40378809 A US40378809 A US 40378809A US 2009311235 A1 US2009311235 A1 US 2009311235A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- stomach
- group
- canceled
- combinations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000126 substance Substances 0.000 title claims description 73
- 239000000463 material Substances 0.000 title description 25
- 229920000642 polymer Polymers 0.000 claims abstract description 176
- 210000002784 stomach Anatomy 0.000 claims abstract description 103
- 239000003814 drug Substances 0.000 claims abstract description 56
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000000017 hydrogel Substances 0.000 claims abstract description 38
- 241001465754 Metazoa Species 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 229940079593 drug Drugs 0.000 claims abstract description 26
- 239000002830 appetite depressant Substances 0.000 claims abstract description 23
- 230000008961 swelling Effects 0.000 claims abstract description 20
- 239000013543 active substance Substances 0.000 claims abstract description 17
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 239000002552 dosage form Substances 0.000 claims abstract description 14
- 238000009472 formulation Methods 0.000 claims abstract description 11
- 229920001577 copolymer Polymers 0.000 claims abstract description 9
- 230000001965 increasing effect Effects 0.000 claims abstract description 9
- 229920002959 polymer blend Polymers 0.000 claims abstract description 9
- 229920000247 superabsorbent polymer Polymers 0.000 claims abstract description 9
- 229920001519 homopolymer Polymers 0.000 claims abstract description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 48
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- -1 H2 blockers Substances 0.000 claims description 34
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 108090000623 proteins and genes Proteins 0.000 claims description 30
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical group [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 24
- 239000001099 ammonium carbonate Substances 0.000 claims description 24
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 24
- 239000000883 anti-obesity agent Substances 0.000 claims description 23
- 235000016709 nutrition Nutrition 0.000 claims description 21
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 20
- 229940125710 antiobesity agent Drugs 0.000 claims description 19
- 239000000872 buffer Substances 0.000 claims description 18
- 235000005911 diet Nutrition 0.000 claims description 18
- 239000011782 vitamin Substances 0.000 claims description 17
- 235000013343 vitamin Nutrition 0.000 claims description 17
- 229940088594 vitamin Drugs 0.000 claims description 17
- 229930003231 vitamin Natural products 0.000 claims description 17
- 230000004580 weight loss Effects 0.000 claims description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 16
- DHHVAGZRUROJKS-UHFFFAOYSA-N phentermine Chemical compound CC(C)(N)CC1=CC=CC=C1 DHHVAGZRUROJKS-UHFFFAOYSA-N 0.000 claims description 16
- 229940069428 antacid Drugs 0.000 claims description 15
- 239000003159 antacid agent Substances 0.000 claims description 15
- 229940126409 proton pump inhibitor Drugs 0.000 claims description 14
- 239000000612 proton pump inhibitor Substances 0.000 claims description 14
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 12
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 12
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 12
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 12
- 239000000908 ammonium hydroxide Substances 0.000 claims description 12
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 12
- 239000000920 calcium hydroxide Substances 0.000 claims description 12
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 12
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 claims description 12
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 12
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 12
- 239000001095 magnesium carbonate Substances 0.000 claims description 12
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 12
- 239000011736 potassium bicarbonate Substances 0.000 claims description 12
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 12
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 12
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 12
- 235000011181 potassium carbonates Nutrition 0.000 claims description 12
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 11
- 239000002775 capsule Substances 0.000 claims description 10
- 239000003485 histamine H2 receptor antagonist Substances 0.000 claims description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 10
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 10
- 239000000347 magnesium hydroxide Substances 0.000 claims description 10
- 235000010755 mineral Nutrition 0.000 claims description 10
- 239000011707 mineral Substances 0.000 claims description 10
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 claims description 10
- 239000003826 tablet Substances 0.000 claims description 10
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 9
- 229960001596 famotidine Drugs 0.000 claims description 9
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 9
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 9
- 229960001243 orlistat Drugs 0.000 claims description 9
- 229960003015 rimonabant Drugs 0.000 claims description 9
- JZCPYUJPEARBJL-UHFFFAOYSA-N rimonabant Chemical compound CC=1C(C(=O)NN2CCCCC2)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 JZCPYUJPEARBJL-UHFFFAOYSA-N 0.000 claims description 9
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 8
- ZPXSCAKFGYXMGA-UHFFFAOYSA-N Mazindol Chemical compound N12CCN=C2C2=CC=CC=C2C1(O)C1=CC=C(Cl)C=C1 ZPXSCAKFGYXMGA-UHFFFAOYSA-N 0.000 claims description 8
- MFOCDFTXLCYLKU-CMPLNLGQSA-N Phendimetrazine Chemical compound O1CCN(C)[C@@H](C)[C@@H]1C1=CC=CC=C1 MFOCDFTXLCYLKU-CMPLNLGQSA-N 0.000 claims description 8
- UWAOJIWUVCMBAZ-UHFFFAOYSA-N [1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl]-dimethylazanium;chloride Chemical compound Cl.C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UWAOJIWUVCMBAZ-UHFFFAOYSA-N 0.000 claims description 8
- YXKTVDFXDRQTKV-HNNXBMFYSA-N benzphetamine Chemical compound C([C@H](C)N(C)CC=1C=CC=CC=1)C1=CC=CC=C1 YXKTVDFXDRQTKV-HNNXBMFYSA-N 0.000 claims description 8
- 229960002837 benzphetamine Drugs 0.000 claims description 8
- XXEPPPIWZFICOJ-UHFFFAOYSA-N diethylpropion Chemical compound CCN(CC)C(C)C(=O)C1=CC=CC=C1 XXEPPPIWZFICOJ-UHFFFAOYSA-N 0.000 claims description 8
- 229960004890 diethylpropion Drugs 0.000 claims description 8
- 229940088598 enzyme Drugs 0.000 claims description 8
- 229960000299 mazindol Drugs 0.000 claims description 8
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 claims description 8
- 235000015097 nutrients Nutrition 0.000 claims description 8
- 229960000381 omeprazole Drugs 0.000 claims description 8
- 229960000436 phendimetrazine Drugs 0.000 claims description 8
- 229960003562 phentermine Drugs 0.000 claims description 8
- 235000019553 satiation Nutrition 0.000 claims description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 8
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 claims description 7
- WJBLNOPPDWQMCH-MBPVOVBZSA-N Nalmefene Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=C)O)CC1)O)CC1CC1 WJBLNOPPDWQMCH-MBPVOVBZSA-N 0.000 claims description 7
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 claims description 7
- 108090000284 Pepsin A Proteins 0.000 claims description 7
- 102000057297 Pepsin A Human genes 0.000 claims description 7
- 229940025084 amphetamine Drugs 0.000 claims description 7
- 229940035676 analgesics Drugs 0.000 claims description 7
- 239000000730 antalgic agent Substances 0.000 claims description 7
- 239000000935 antidepressant agent Substances 0.000 claims description 7
- 229940005513 antidepressants Drugs 0.000 claims description 7
- 239000003246 corticosteroid Substances 0.000 claims description 7
- 229960001334 corticosteroids Drugs 0.000 claims description 7
- 230000000378 dietary effect Effects 0.000 claims description 7
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 claims description 7
- 229960004770 esomeprazole Drugs 0.000 claims description 7
- 229960001582 fenfluramine Drugs 0.000 claims description 7
- 239000004083 gastrointestinal agent Substances 0.000 claims description 7
- 229960001545 hydrotalcite Drugs 0.000 claims description 7
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 7
- 239000003326 hypnotic agent Substances 0.000 claims description 7
- 230000000147 hypnotic effect Effects 0.000 claims description 7
- 229960003174 lansoprazole Drugs 0.000 claims description 7
- 239000003149 muscarinic antagonist Substances 0.000 claims description 7
- 229940035363 muscle relaxants Drugs 0.000 claims description 7
- 239000003158 myorelaxant agent Substances 0.000 claims description 7
- 229960005297 nalmefene Drugs 0.000 claims description 7
- 229960004872 nizatidine Drugs 0.000 claims description 7
- 239000002417 nutraceutical Substances 0.000 claims description 7
- 235000021436 nutraceutical agent Nutrition 0.000 claims description 7
- 150000007524 organic acids Chemical class 0.000 claims description 7
- 229960005019 pantoprazole Drugs 0.000 claims description 7
- 229960000620 ranitidine Drugs 0.000 claims description 7
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 claims description 7
- 239000000932 sedative agent Substances 0.000 claims description 7
- 229940125723 sedative agent Drugs 0.000 claims description 7
- 229960003466 sibutramine hydrochloride Drugs 0.000 claims description 7
- 239000000021 stimulant Substances 0.000 claims description 7
- 239000006188 syrup Substances 0.000 claims description 7
- 235000020357 syrup Nutrition 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 229940118662 aluminum carbonate Drugs 0.000 claims description 6
- 229940024545 aluminum hydroxide Drugs 0.000 claims description 6
- 230000001539 anorectic effect Effects 0.000 claims description 6
- 230000001458 anti-acid effect Effects 0.000 claims description 6
- 230000001088 anti-asthma Effects 0.000 claims description 6
- 229940124599 anti-inflammatory drug Drugs 0.000 claims description 6
- 230000001022 anti-muscarinic effect Effects 0.000 claims description 6
- 230000001754 anti-pyretic effect Effects 0.000 claims description 6
- 239000000924 antiasthmatic agent Substances 0.000 claims description 6
- 239000000739 antihistaminic agent Substances 0.000 claims description 6
- 229940125715 antihistaminic agent Drugs 0.000 claims description 6
- 229940124433 antimigraine drug Drugs 0.000 claims description 6
- 239000000164 antipsychotic agent Substances 0.000 claims description 6
- 229940005529 antipsychotics Drugs 0.000 claims description 6
- 239000002221 antipyretic Substances 0.000 claims description 6
- 229940125716 antipyretic agent Drugs 0.000 claims description 6
- 229940124630 bronchodilator Drugs 0.000 claims description 6
- 239000000168 bronchodilator agent Substances 0.000 claims description 6
- 229960003563 calcium carbonate Drugs 0.000 claims description 6
- 239000002327 cardiovascular agent Substances 0.000 claims description 6
- 229940125692 cardiovascular agent Drugs 0.000 claims description 6
- 229960001380 cimetidine Drugs 0.000 claims description 6
- 206010061428 decreased appetite Diseases 0.000 claims description 6
- 230000003291 dopaminomimetic effect Effects 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 229940037395 electrolytes Drugs 0.000 claims description 6
- 229940127227 gastrointestinal drug Drugs 0.000 claims description 6
- 229960000816 magnesium hydroxide Drugs 0.000 claims description 6
- 239000000734 parasympathomimetic agent Substances 0.000 claims description 6
- 230000001499 parasympathomimetic effect Effects 0.000 claims description 6
- 229940005542 parasympathomimetics Drugs 0.000 claims description 6
- 229940111202 pepsin Drugs 0.000 claims description 6
- 239000013589 supplement Substances 0.000 claims description 6
- 108010019160 Pancreatin Proteins 0.000 claims description 5
- 229920006037 cross link polymer Polymers 0.000 claims description 5
- 229940055695 pancreatin Drugs 0.000 claims description 5
- 239000007894 caplet Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical group N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 claims 2
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims 2
- 208000008589 Obesity Diseases 0.000 abstract description 23
- 235000020824 obesity Nutrition 0.000 abstract description 23
- 230000002496 gastric effect Effects 0.000 abstract description 20
- 230000001939 inductive effect Effects 0.000 abstract description 3
- 239000003242 anti bacterial agent Substances 0.000 abstract description 2
- 239000000599 controlled substance Substances 0.000 abstract description 2
- 238000012377 drug delivery Methods 0.000 abstract description 2
- 239000000945 filler Substances 0.000 abstract description 2
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 229940088710 antibiotic agent Drugs 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 25
- 241000700159 Rattus Species 0.000 description 18
- 238000004132 cross linking Methods 0.000 description 14
- 235000013305 food Nutrition 0.000 description 14
- 238000003305 oral gavage Methods 0.000 description 12
- 239000000546 pharmaceutical excipient Substances 0.000 description 12
- 229940122957 Histamine H2 receptor antagonist Drugs 0.000 description 11
- 230000037213 diet Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 235000011116 calcium hydroxide Nutrition 0.000 description 10
- 235000011118 potassium hydroxide Nutrition 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 235000019627 satiety Nutrition 0.000 description 9
- 230000036186 satiety Effects 0.000 description 9
- 239000006172 buffering agent Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 235000012254 magnesium hydroxide Nutrition 0.000 description 8
- 238000011887 Necropsy Methods 0.000 description 7
- 239000012736 aqueous medium Substances 0.000 description 7
- 235000012054 meals Nutrition 0.000 description 7
- 239000004014 plasticizer Substances 0.000 description 7
- 239000003963 antioxidant agent Substances 0.000 description 6
- 235000006708 antioxidants Nutrition 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- PWZFXELTLAQOKC-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide;tetrahydrate Chemical compound O.O.O.O.[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O PWZFXELTLAQOKC-UHFFFAOYSA-A 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 235000019634 flavors Nutrition 0.000 description 6
- 239000003755 preservative agent Substances 0.000 description 6
- 238000011477 surgical intervention Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 102000008186 Collagen Human genes 0.000 description 5
- 108010035532 Collagen Proteins 0.000 description 5
- AQIXAKUUQRKLND-UHFFFAOYSA-N cimetidine Chemical group N#C/N=C(/NC)NCCSCC=1N=CNC=1C AQIXAKUUQRKLND-UHFFFAOYSA-N 0.000 description 5
- 229920001436 collagen Polymers 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 230000035807 sensation Effects 0.000 description 5
- 235000019615 sensations Nutrition 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 4
- 241000283984 Rodentia Species 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 235000019789 appetite Nutrition 0.000 description 4
- 230000036528 appetite Effects 0.000 description 4
- 235000010216 calcium carbonate Nutrition 0.000 description 4
- 210000003736 gastrointestinal content Anatomy 0.000 description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 235000014380 magnesium carbonate Nutrition 0.000 description 4
- 230000035764 nutrition Effects 0.000 description 4
- 235000015205 orange juice Nutrition 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 241000271566 Aves Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 241000282465 Canis Species 0.000 description 3
- 241000283073 Equus caballus Species 0.000 description 3
- 241000282324 Felis Species 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 241000700157 Rattus norvegicus Species 0.000 description 3
- 244000290333 Vanilla fragrans Species 0.000 description 3
- 235000009499 Vanilla fragrans Nutrition 0.000 description 3
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 235000019577 caloric intake Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000012631 food intake Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229920005615 natural polymer Polymers 0.000 description 3
- YNWDKZIIWCEDEE-UHFFFAOYSA-N pantoprazole sodium Chemical compound [Na+].COC1=CC=NC(CS(=O)C=2[N-]C3=CC=C(OC(F)F)C=C3N=2)=C1OC YNWDKZIIWCEDEE-UHFFFAOYSA-N 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 208000012895 Gastric disease Diseases 0.000 description 2
- 208000018522 Gastrointestinal disease Diseases 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108010073771 Soybean Proteins Proteins 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 235000019219 chocolate Nutrition 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 235000004626 essential fatty acids Nutrition 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 230000004634 feeding behavior Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011169 microbiological contamination Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229940072273 pepcid Drugs 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000009101 premedication Methods 0.000 description 2
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 description 2
- 229960004425 sibutramine Drugs 0.000 description 2
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940001941 soy protein Drugs 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000002110 toxicologic effect Effects 0.000 description 2
- 231100000027 toxicology Toxicity 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001673391 Entandrophragma candollei Species 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 244000187656 Eucalyptus cornuta Species 0.000 description 1
- 208000034347 Faecal incontinence Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010021403 Illusion Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 229940124091 Keratolytic Drugs 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 102000015494 Mitochondrial Uncoupling Proteins Human genes 0.000 description 1
- 108010050258 Mitochondrial Uncoupling Proteins Proteins 0.000 description 1
- VMXUWOKSQNHOCA-UHFFFAOYSA-N N1'-[2-[[5-[(dimethylamino)methyl]-2-furanyl]methylthio]ethyl]-N1-methyl-2-nitroethene-1,1-diamine Chemical compound [O-][N+](=O)C=C(NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UHFFFAOYSA-N 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229940062327 aciphex Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 239000000464 adrenergic agent Substances 0.000 description 1
- 239000003741 agents affecting lipid metabolism Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000000507 anthelmentic effect Effects 0.000 description 1
- 239000000921 anthelmintic agent Substances 0.000 description 1
- 239000004004 anti-anginal agent Substances 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 230000003262 anti-osteoporosis Effects 0.000 description 1
- 229940124345 antianginal agent Drugs 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002255 antigout agent Substances 0.000 description 1
- 229960002708 antigout preparations Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 239000002282 antimigraine agent Substances 0.000 description 1
- 229940125684 antimigraine agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000003904 antiprotozoal agent Substances 0.000 description 1
- 239000003200 antithyroid agent Substances 0.000 description 1
- 229940043671 antithyroid preparations Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 229940072293 axid Drugs 0.000 description 1
- 230000037208 balanced nutrition Effects 0.000 description 1
- 235000019046 balanced nutrition Nutrition 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 239000003576 central nervous system agent Substances 0.000 description 1
- 229940125693 central nervous system agent Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960000632 dexamfetamine Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- XIBQUVXDOIQHNW-UHFFFAOYSA-H dialuminum carbonate tetrahydroxide Chemical compound O[Al+]O.O[Al+]O.[O-]C([O-])=O XIBQUVXDOIQHNW-UHFFFAOYSA-H 0.000 description 1
- 235000001916 dieting Nutrition 0.000 description 1
- 230000037228 dieting effect Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- KWORUUGOSLYAGD-YPPDDXJESA-N esomeprazole magnesium Chemical compound [Mg+2].C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C.C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C KWORUUGOSLYAGD-YPPDDXJESA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 230000001200 fecal consistency Effects 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 230000003636 fecal output Effects 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229940125695 gastrointestinal agent Drugs 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000004041 inotropic agent Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000001530 keratinolytic effect Effects 0.000 description 1
- 239000003410 keratolytic agent Substances 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000015263 low fat diet Nutrition 0.000 description 1
- 229940099076 maalox Drugs 0.000 description 1
- 229940045623 meridia Drugs 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 229940039506 mylanta Drugs 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229940112641 nexium Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000000014 opioid analgesic Substances 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 description 1
- 229960000395 phenylpropanolamine Drugs 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229940032668 prevacid Drugs 0.000 description 1
- 229940089505 prilosec Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229940061276 protonix Drugs 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229960004157 rabeprazole Drugs 0.000 description 1
- KRCQSTCYZUOBHN-UHFFFAOYSA-N rabeprazole sodium Chemical compound [Na+].COCCCOC1=CC=NC(CS(=O)C=2[N-]C3=CC=CC=C3N=2)=C1C KRCQSTCYZUOBHN-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920013730 reactive polymer Polymers 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- UUYQXLQNUVEFGD-UHFFFAOYSA-M sodium;hydrogen carbonate;6-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1h-benzimidazole Chemical compound [Na+].OC([O-])=O.N1C2=CC(OC)=CC=C2N=C1S(=O)CC1=NC=C(C)C(OC)=C1C UUYQXLQNUVEFGD-UHFFFAOYSA-M 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 229940106721 tagamet Drugs 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 102000004217 thyroid hormone receptors Human genes 0.000 description 1
- 108090000721 thyroid hormone receptors Proteins 0.000 description 1
- 229940035288 titralac Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229940056345 tums Drugs 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
- 229940002552 xenical Drugs 0.000 description 1
- 229940108322 zantac Drugs 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0065—Forms with gastric retention, e.g. floating on gastric juice, adhering to gastric mucosa, expanding to prevent passage through the pylorus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
Definitions
- the present invention is in the field of methods for inducing weight loss and treatment of gastrointestinal disorders through mechanical and physiological means using polymers which are pH dependent by inducing the appropriate stomach pH and by further using the polymers in conjunction with other pharmacological and surgical means to induce weight loss.
- Obesity is associated with increased morbidity and mortality.
- Detrimental effects of obesity on health include an increased risk of cardiovascular disease and the associated conditions of hypertension, diabetes, and hyperlipidemia. Millions of people are clinically obese and, in view of the deleterious effects of obesity on health, would benefit from treatment. Additionally, many people, although not clinically obese, can improve their health and well-being by losing weight.
- the pathogenesis of obesity is multifactorial and includes the control of feeding behavior, mechanisms of fat storage, the components of energy intake and expenditure, and genetic and psychological influences.
- the treatment of obesity is generally multifactorial.
- the mechanisms of fat storage and genetic influences are not, generally speaking, amenable to treatment.
- the control of feeding behavior and psychological influences require prolonged treatment.
- the components of energy intake and expenditure are treatable, many obese individuals are resistant to or incapable of engaging in activities which significantly increase their energy expenditure. Therefore, controlling energy intake is an attractive approach for the treatment of obesity.
- ⁇ -3 stimulators/agonist, uncoupling protein homologues, and thyroid receptor agonists agents that may increase resting metabolic rate
- suppressants typically do not create a true feeling of satiation, such as that brought on by a “full” stomach and/or they cause undesirable side-effects, such as anxiety, and hyperactivity and may have adverse side effects.
- Amphetamines have been used as weight loss and anti-obesity drugs, but can cause unacceptable tachycardia and hypertension. They also have a high rate of abuse potential.
- Other sympathomimetic adrenergic agents including phentermine, benzphetamine, phendimetrazine, mazindol, and diethylpropion, may have adverse cardiovascular side effects, and their indicated use is only short-term (12 weeks), In 2000, the appetite suppressant phenylpropanolamine was removed from United States market because of unacceptable risks of stroke, especially in adult women.
- Other weight loss agents such as orlistat and sibutramine, also can have adverse side effects.
- orlistat use frequently results in adverse events including flatus, oily stools, fecal urgency or fecal incontinence, and abdominal pain, particularly among patients who do not follow the recommended low-fat diet.
- daily multivitamin supplementation is recommended to prevent the potential of impaired absorption of fat-soluble vitamins (A, D, E, and K) that may theoretically occur with long-term use.
- the use of sibutramine may increase blood pressure and heart rate, and its use is contraindicated in patients with uncontrolled hypertension, CHD, cardiac dysrhythmias, congestive heart failure, or stroke.
- U.S. Pat. Nos. 5,405,616 and 6,103,269 to Wounderlich et al. describe a material composed of gelatin or collagen hydrolysate, one or more active agents and one or more excipients (i.e., plasticizers, odorants, etc.).
- the material is prepared as a solution or suspension and then freeze-dried to obtain a solid material.
- the solid material can be administered as a powder, tablet or capsule. When the dried polymeric material comes in contact with the aqueous medium of the stomach, it first becomes swollen in a few minutes and then is dissolved, resulting in a solution that will not interfere with the emptying of the gastrointestinal tract.
- Low caloric products for controlling body weight can be obtained by using collagenic biopolymers, such as: soluble collagen, gelatin or collagen hydrolysate. See U.S. Pat. Nos. 5,100,688; 5,211,976; 5,219,599; 5,665,234; 5,665,419.
- Commercial products such as “Dietary Supplement—CALORAD®”, produced by EYI—Essentially Yours Industries, Inc.—USA, have been used for weight loss control and also as a muscular stimulant, as well as an aid for osteoporosis and for arthritis treatment.
- Absorbent materials for water and aqueous media are well known in the literature. These materials are typically polymer-based and are produced in the form of powders, granules, microparticles or fibers. Upon contact with an aqueous medium, these polymeric materials swell by absorbing the liquid phase into their structure without dissolving.
- a “hydrogel” is a polymeric material which has the ability to absorb water and swell. If the water absorbency is more than 20 g water per 1 g of dried polymer, the material is referred to as a “superabsorbent polymer” (SAP).
- SAP superabsorbent polymer
- the swelling of these materials in the stomach can cause a sensation of satiety (i.e., full stomach).
- the sensation of satiety as a means of suppressing appetite is well known in the art and has been used to treat obesity and/or induce weight loss.
- Polymeric hydrogels have also been used for controlled drug delivery, particularly for extended release and/or delayed release formulations.
- the drug is typically dispersed within the polymeric material.
- the rate of release of the drug is dependent on the rate of diffusion of the drug from the hydrogel and/or the rate of degradation of the polymer material.
- the oral administration of drugs generally uses one of two classes of hydrogens a) those which release drug in the stomach and b) those which release drug in the small intestine or other locations such as the oral cavity, duodenum, etc.
- the use of hydrogels for the controlled release of active agents, using the “full stomach” principle, has been described in U.S. Pat. Nos.
- the stomach produces a gastric secretion that is an aqueous medium containing water, hydrochloric acid, pepsin and mucus (polysaccharide biogel).
- This medium has a pH of 1-3 and contains pepsin proteolytic enzyme.
- the small intestine secretes an aqueous medium with a chemical composition more complex than that of the stomach. It is characterized by pH of 5-9 and displays biodegradative enzymatic activity in both proteins and polysaccharides.
- Hydrogels which are designed to function in the stomach, must be able to (1) swell in acid aqueous media and maintain its volume for a sufficient amount of time to induce therapeutically relevant effects; and (2) be easily eliminated once its function has been fulfilled, to avoid obstruction of the intestinal or gastric tract and to avoid the generation of toxic byproducts.
- HPC hydroxypropyl cellulose
- the present invention relates to a method of enabling or improving the ability of a hydrogel to swell in the stomach of an animal and/or increasing the amount of time said hydrogel remains swollen in the stomach comprising administering to the animal a water-swellable polymer in combination with one or more substances which raise and maintain the pH of the microenvironment of the polymer and/or the stomach.
- the polymer is a superabsorbent polymer.
- the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, cross-linked polymers, polymer composites, and combinations thereof.
- the polymer is a polymer composite.
- the one or more substances which alter the pH are selected from the group consisting of buffers, H 2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof.
- the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- the H 2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof.
- the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof.
- the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- the polymer further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof.
- the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- the polymer is administered with one or more therapeutically active, diagnostic or prophylactically active agents.
- the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof.
- the agent is an appetite suppressant or antiobesity agent.
- the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- the polymer is formulated for oral administration.
- the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in different dosage forms. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered before or after administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 24 hours of administration of the polymer.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 2 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 6 hours of administration of the polymer.
- the methods of the present invention further comprise administering a substance which causes the hydrogel to degrade, disperse, and/or shrink after the hydrogel has resided in the stomach for a time.
- the substance is administered after the administration of the polymer.
- the substance acts to lower the pH of the microenvironment of the polymer and/or the stomach.
- the substance is an organic acid.
- the substance is an acidic drink, such as orange juice or Coca Cola.
- the substance is a protein.
- the protein is an enzyme.
- the enzyme is selected from the group consisting of pepsin, pancreatin, and combinations thereof.
- the polymer and substance are administered in conjunction with a surgical intervention for obesity.
- the surgical intervention to treat obesity is selected from the group consisting of gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator and gastric electrical stimulation.
- the water-swellable formulation is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- the animal is a primate, bovine, ovine, equine, porcine, avian, rodent, feline, or canine. In a further embodiment, the animal is a human.
- the present invention relates to a method of delivering a drug to an animal comprising administering to the animal a water-swellable polymer comprising the drug, and one or more substances which raises the pH of the microenvironment of the polymer and/or stomach of the animal.
- the drug is released from the polymer in a sustained manner.
- the drug is selected from the group consisting of a therapeutically active, diagnostic, and prophylactically active agent.
- the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof.
- the agent is an appetite suppressant or antiobesity agent.
- the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- the polymer is a superabsorbent polymer.
- the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, cross-linked polymers, polymer composites, and combinations thereof.
- the polymer is a polymer composite.
- the one or more substances which alter the pH are selected from the group consisting of buffers, H 2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof.
- the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- the H 2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof.
- the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof.
- the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- the polymer further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof.
- the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- the polymer is formulated for oral administration.
- the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in different dosage forms. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered before or after administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 24 hours of administration of the polymer.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 2 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 6 hours of administration of the polymer.
- the methods of the present invention further comprise administering a substance which causes the hydrogel to degrade, disperse, and/or shrink after the hydrogel has resided in the stomach for a time.
- the substance is administered after the administration of the polymer.
- the substance acts to lower the pH of the microenvironment of the polymer and/or the stomach.
- the substance is an organic acid.
- the substance is an acidic drink, such as orange juice or Coca Cola.
- the substance is a protein.
- the protein is an enzyme.
- the enzyme is selected from the group consisting of pepsin, pancreatin, and combinations thereof.
- the polymer and substance are administered in conjunction with a surgical intervention for obesity.
- the surgical intervention to treat obesity is selected from the group consisting of gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator and gastric electrical stimulation.
- the water-swellable formulation is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- the animal is a primate, bovine, ovine, equine, porcine, avian, rodent, feline, or canine. In a further embodiment, the animal is a human.
- the methods of the present invention are to treat obesity, induce weight loss, and/or increase gastric retention.
- the present invention relates to a medicament for enabling or improving the ability of a hydrogel to swell in the stomach of an animal and/or to increase the amount of time said hydrogel remains swollen in the stomach comprising a water-swellable polymer in combination with one or more substances which raise and maintain the pH of the microenvironment of the polymer and/or the stomach.
- the polymer is a superabsorbent polymer.
- the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, polymer composites, and combinations thereof.
- the polymer is a polymer composite.
- the one or more substances which alter the pH are selected from the group consisting of buffers, H 2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof.
- the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- the H 2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof.
- the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof.
- the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- the medicament further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof.
- the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- the medicament further comprises one or more therapeutically active, diagnostic or prophylactically active agents.
- the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof.
- the agent is an appetite suppressant or antiobesity agent.
- the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- the medicament is formulated for oral administration.
- the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach and the polymer are in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach and the polymer are in different dosage forms.
- the medicaments of the present invention further comprise a substance which causes the polymer to degrade, disperse, and/or shrink after the polymer has resided in the stomach for a time.
- the substance acts to lower the pH of the microenvironment or the polymer and/or the stomach.
- the substance is an organic acid.
- the substance is an acidic drink, such as orange juice or Coca Cola.
- the substance is a protein.
- the medicament is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- the present invention relates to a medicament for delivering a drug to an animal comprising a water-swellable polymer comprising the drug, and one or more substances which raises the pH of the microenvironment of the polymer and/or stomach of the animal.
- the drug is released from the polymer in a sustained manner.
- the drug is selected from the group consisting of a therapeutically active, diagnostic, and prophylactically active agent.
- the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof.
- the agent is an appetite suppressant or antiobesity agent.
- the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- the polymer is a superabsorbent polymer.
- the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, cross-linked polymers, polymer composites, and combinations thereof.
- the polymer is a polymer composite.
- the one or more substances which alter the pH are selected from the group consisting of buffers, H 2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof.
- the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- the H 2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof.
- the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof.
- the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- the polymer further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof.
- the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- the polymer is formulated for oral administration.
- the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in different dosage forms. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered before or after administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 24 hours of administration of the polymer.
- the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 2 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 6 hours of administration of the polymer.
- the medicaments of the present invention further comprise a substance which causes the hydrogel to degrade, disperse, and/or shrink after the hydrogel has resided in the stomach for a time.
- the substance is administered after the administration of the polymer.
- the substance acts to lower the pH of the microenvironment of the polymer and/or the stomach.
- the substance is an organic acid.
- the substance is an acidic drink, such as orange juice or Coca Cola.
- the substance is a protein.
- the protein is an enzyme.
- the enzyme is selected from the group consisting of pepsin, pancreatin, and combinations thereof.
- the medicament is administered in conjunction with a surgical intervention for obesity.
- the surgical intervention to treat obesity is selected from the group consisting of gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator and gastric electrical stimulation.
- the water-swellable formulation is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- the animal is a primate, bovine, ovine, equine, porcine, avian, rodent, feline, or canine. In a further embodiment, the animal is a human.
- polymer composite refers to a macromolecular material composed of two or more polymer chains, wherein the polymer chains interact via non-covalent interactions such as Van der Waals forces, hydrogen bondings, ionic interactions, etc.
- the composite has a macromolecular configuration of a three-dimensional network type stabilized by multiple bond types.
- polymer blend refers to a macroscopically homogeneous mixture of two or more different species of polymer.
- the polymer can be a homopolymer, a copolymer, a cross-linked polymer, a polymer blend or polymer composite.
- the polymer is a superabsorbent polymer.
- Suitable polymers which form can form a hydrogel include, but are not limited to, synthetic or natural polymers.
- synthetic polymers include polyacrylic and polymethacrylic acid polymers, cellulose derivatives such as hydroxypropyl cellulose, polyethyleneglycol polymers, copolymers and block copolymers, and other water swellable, biocompatible polymers.
- Examples of natural polymers include collagen, hyaluronic acid, gelatin, albumin, polysaccharide, and derivatives thereof. Natural polymers can also be of the type isolated from various plant materials such as psyllium.
- the water-absorbent polymeric materials are three-dimensional macromolecular configurations. They are produced through several methods: a) synthesis from monomers (cross-linking polymerization); b) synthesis from polymers and polymerization auxiliary (grafting and crosslinking polymerization); c) synthesis from polymers and non-polymerization auxiliary (cross-linking polymers); d) synthesis from polymers with energy sources (cross-linking polymers without auxiliaries) and e) synthesis from polymers (cross-linking by reactive polymer-polymer intercoupling).
- the raw materials and technology used in synthesis are main factors in the creation of hydrogels' key properties and their range of applications.
- Dehydrothermo-crosslinking as with the other physical methods for obtaining three-dimensional structures, eliminates the risk of toxic effects that can be produced by secondary products of the reaction or energy state modification of the reaction product (in which appear new types of covalent, ionic or coordinative bonds), which can occur in the activation of some chemical processes. Moreover, compared with freeze-drying or cross-linking via microwaves, dehydrothermo-crosslinking offers many more possibilities to regulate the structural characteristics of the resulting three-dimensional networks (i.e., Scotchford C. A., Cascone G.
- the polymeric material can be co-administered with one or more pH modifying agents to raise and maintain the pH of the microenvironment of the polymer and/or the stomach.
- pH modifying agents include buffers, proton pump inhibitors, H 2 blocker, and antacids. Example of these pH modifying agents are described below.
- the compositions can act as stomach filling materials which, upon hydration, swell and generate a sensation of satiety.
- the pH modifying agent can be administered simultaneously with the polymer in the same dosage form, simultaneously with the polymer is separate dosage forms or sequentially. If the pH modifying agent in administered sequentially with the polymer composition, than the pH modifying agent is preferably administered within 24 hours, more preferably with 12 hours, and most preferably within 6 hours of administration of the polymer composition.
- Suitable pH buffers include, but are not limited to, ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- Suitable proton pump inhibitors include, but are not limited to, omeprazole (Losec®, Prilosec®), omeprazole in combinations with bicarbonate (Zegerid®, Rapinex®), lansoprazole (Prevacid®, Zoton®, esomeprazole (Nexium®), pantoprazole (Protonix®, Somac®, Pantoloc®), and rabeprazole (Aciphex®, Pariet®) iii H 2 Blockers Suitable H 2 blockers include, but are not limited to, climetidine (Tagamet®)), ranitidine (Zantac®), famotidine (Pepcid®), famotidine in combination with calcium carbonate and magnesium hydroxide (Pepcid® complete), and nizatidine (Axid®, Tazac®) iv Antacids Suitable over-the-counter antacids include, but are not limited to, aluminum hydroxide (Am
- compositions can also be used for the controlled delivery of one or more therapeutically active, diagnostic, or prophylactic agents.
- the release rate of the active agent is dependent on the rate of diffusion of the active agent from the hydrogel as well as the rate of degradation of the polymeric composite.
- agents include analgesics, anti-inflammatory agents, antihelmintics, anti-arrhythmic agents, anti-bacterial agents, anti-viral agents, anti-hypertensive agents, anti-coagulants, anti-depressants, anti-diabetics, anti-epileptics, anti-fungal agents, anti-gout agents, anti-malarials, anti-migraine agents, anti-muscarinic agents, anti-neoplastic agents, erectile dysfunction improvement agents, immunosupressants, anti-protozoal agents, anti-thyroid agents, anxiolytic agents, sedatives, hypnotics, neuroleptics, -blockers, cardiac inotropic agents, corticosteroids, diuretics, anti-parkinsonian agents, gastro-intestinal agents, histamine H 1 and H 2 receptor antagonists, keratolytics, lipid regulating agents, anti-anginal agents, nutritional agents, opioid analgesics, sex hormones, stimulants, muscle relaxants
- the polymer composition is administered in combination with an appetite suppressant.
- the appetite suppressant can be administered before or after administration of the polymer composition.
- the appetite suppressant can be administered simultaneously with the polymer composition.
- Suitable appetite suppressants include, but are not limited to, Meridia (sibutramine hydrochloride available from Abbott Laboratories), Xenical (orlistat available from Roche USA), Acomplia (Rimonabant, developed by Sanofi-Aventis and awaiting FDA approval), rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- the polymer composition can also be administered in combination with surgical treatments to treat obesity such as gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator (awaiting U.S. approval) and gastric electrical stimulation (awaiting U.S. approval).
- the polymeric composites described herein can be formulated with one or more pharmaceutically acceptable excipients to treat a variety of gastrointestinal disorders as well as to provide controlled release of one or more active agents.
- Suitable excipients include pH modifying agents, plasticizers, colorants, flavorants, preservatives, anti-oxidants, surfactants, dispering agents, glidants, diluents, binding agents, and combinations thereof.
- Shakes include any drink containing food additives.
- Food additives include, but are not limited to, flavorings, vitamins, minerals, and buffers.
- the polymer composition is administered as a shake or in conjunction with a shake, which is consumed by the patient.
- a shake containing vitamins, minerals, optionally nutraceuticals, can serve the purpose of supplying nutrients which the patient might otherwise not ingest due to reduced meal size.
- the shake can contain one or more proteins which are co-administered with the polymer composition. It is well known in the art that proteins can raise and maintain the pH of the stomach.
- the shake can contain buffers which raise the pH of the stomach, allowing the polymer to swell and exert a therapeutic effect.
- Such buffers may include, but are not limited to, ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- the shake can contain any combination of vitamins, minerals and buffers. A number of shakes are known to induce satiety, leading to weight loss (e.g., Slim Fast®).
- the polymer can be used in combination with the shake to have an advantageous effect in promoting satiety.
- the polymer may be taken in combination with commercially available shakes to raise stomach pH and/or supply required nutrients patients lack due to reduced meal size and/or produce an enhanced effect on satiety.
- shakes include, but are not limited to, Slim Fast®, Golcan® Protein Meal Chocolate Shake, Optimum Nutrition Complete Protein Diet Meal Shake Mix, Walker Diet Low Carb Shake, Walker Diet® Fiber Combinations, Diet Lean Low Carb Shakes, NATURADE® Diet Lean—Low Carb Dieter's Shake, DIET SHAKE VANILLA ATKINS® NUTRITIONALS, OxeSlim Diet Shake 2 Go, Protein Drink Mix by Herbalife®, Formula I Nutritional Shake Mix by Herbalife®, Basic Organics Pat's Diet Shake, UNIVERSAL NUTRITION® Specialized Protein for Dieting, Meal Replacement Protein Shake by SportPharma, Whey Protein Shake by SportPharmag, Medifast® Ready-toDrink Shakes, Eating for LifeRight!
- the polymer compositions are typically administered orally.
- Suitable oral dosage forms include tablets, capsules, caplets, powders, syrups, solutions, suspension and shakes.
- the polymer compositions is compressed with one or more excipients and optionally with one or more pH modifying agents, and/or one or more active agents to form a tablet.
- Suitable excipients used to prepare tablets include binding agents, preservatives, antioxidants, glidants, flavorants, colorants, and combinations thereof.
- the polymer is encapsulated in a hard or soft gelatin capsule.
- the capsule fill material contains the polymer, and optionally one or more pH modifying agents and/or active agents.
- the fill material may also contain one or more excipients. Suitable excipients include, but are not limited to, plasticizers, crystallization inhibitors, wetting agents, bulk filling agents, solubilizers, bioavailability enhancers, solvents, and combinations thereof.
- a substance which increases the acidity of the microenvironment of the polymer and/or the stomach is administered to cause the polymer to shrink (by lowering the pH).
- Suitable substances include, but are not limited to, organic acids such as citric acid and phosphonic acid salts.
- organic acids such as citric acid and phosphonic acid salts.
- enzymes such as pepsin or pancreatin are suitable substances.
- the primary objective of this study was to understand the residence time of PMSF-1 in the stomachs of rats following oral gavage of PMSF-1 in three different experimental conditions: 1) when animals do not eat food following intake of PMSF-1; 2) when animals are given H2 blockers which raises stomach pH prior to oral gavage of the polymer; and 3) when animals are allowed to eat food following oral gavage of the PMSF-1 polymer.
- a combination of visual inspection and quantification of stomach contents were used to reach conclusions.
- the animals which were pre-medicated with H2 blockers, clearly had a greater amount of PMSF-1 in their stomachs at the observed time points compared to animals which did not received H2 blockers.
- the secondary objective of this study was to determine if oral gavage of the PMSF-1 materials produced any gross toxicology or obvious GI pathology. No acute toxicology was observed in the animals. In addition, fecal output and consistency was normal suggesting normal GI function. Gross histopathological examination of the stomach did not reveal any obvious abnormalities.
- Wistar rats with the characteristics listed in Table 1 were housed individually in Velaz T4 cages in conventional laboratory conditions. Room temperature was 20-24° C. and the relative humidity was between 30-70%. Fluorescent lighting provided illumination approximately 12 hours per day. Feed and water containers were changed and sanitized at least once weekly. Lignocel (Velaz Ltd., Czech Republic) was used as bedding.
- the animals were fed ad libium with standard pelletized rodent diet (NOE H4, Racio Breclav, Czech Republic) of monitored quality (analyzed minimally 2 times per year for possible toxic or microbiological contamination) during the acclimation and study periods. Water of monitored quality (analyzed minimally 2 times per year for possible toxic or microbiological contamination) was supplied ad libitum during the acclimation and study period.
- the rats were branded with picric acid solution and acclimated for 5 days.
- the experimental design and group allocation are presented in Tables 2 and 3, respectively.
- the first group of rats were premedicated with the H2 blocker PepcidAC® (10 mg Famotidine, Johnson & Johnson-Merck Consumer Pharmaceuticals, 1 capsule/rat) 4 hours before administration.
- the second group was not premedicated and was not allowed access to food following oral gavage of PMSF-1.
- the third group was not premedicated, but was allowed access to food following oral gavage of PMSF-1.
- the PMSF-1 powder was mixed with tap water at a ratio of 640 mg PMSF-1 to 50 mL water in order to swell the material. Rats were administered 5 mL of the swollen PMSF-1 by oral gavage. Rats in Group 3 (F5, F6) were given food which had been weighed immediately following oral gavage of PMSF-1 and were kept in the dark until necropsy. The food consumption of Group 3 was measured and recorded. Necropsy was performed according to Table 4.
- Rats were euthanized using ether, the animals' stomachs were excised and after the stomach outlets were tied off to prevent leakage, the stomachs were weighed. Next, the stomachs were cleaned and the stomach contents were weighed and visually inspected. Rats were observed for any signs of toxicity including vomiting, diarrhea, changes in activity and behavior after oral gavage of PMSF-1. Food consumption of Group 3 was recorded. Results for real time of PMSF-1 administration, necropsy period, and stomach contents examination are presented in Table 5.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Child & Adolescent Psychology (AREA)
- Pulmonology (AREA)
- Biomedical Technology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- This application claims the benefit of priority to U.S. Provisional Patent Application Ser. Nos. 60/786,615, filed Mar. 28, 2006, and 60/787,396, filed Mar. 30, 2006, both of which are hereby incorporated by reference in their entirety.
- The present invention is in the field of methods for inducing weight loss and treatment of gastrointestinal disorders through mechanical and physiological means using polymers which are pH dependent by inducing the appropriate stomach pH and by further using the polymers in conjunction with other pharmacological and surgical means to induce weight loss.
- Public health efforts and current antiobesity agents have not controlled the increasing epidemic of obesity. This disorder is increasingly prevalent in industrialized nations because of the abundance of food and the reduced activity levels that accompany the movement of populations from rural to urban settings. Obesity is loosely defined as an excess of body fat over that needed to maintain health.
- Obesity is associated with increased morbidity and mortality. Detrimental effects of obesity on health include an increased risk of cardiovascular disease and the associated conditions of hypertension, diabetes, and hyperlipidemia. Millions of people are clinically obese and, in view of the deleterious effects of obesity on health, would benefit from treatment. Additionally, many people, although not clinically obese, can improve their health and well-being by losing weight.
- The pathogenesis of obesity is multifactorial and includes the control of feeding behavior, mechanisms of fat storage, the components of energy intake and expenditure, and genetic and psychological influences. Likewise, the treatment of obesity is generally multifactorial. Unfortunately, the mechanisms of fat storage and genetic influences are not, generally speaking, amenable to treatment. Moreover, the control of feeding behavior and psychological influences require prolonged treatment. In addition, although the components of energy intake and expenditure are treatable, many obese individuals are resistant to or incapable of engaging in activities which significantly increase their energy expenditure. Therefore, controlling energy intake is an attractive approach for the treatment of obesity.
- Various drugs and drug classes are known to be weight loss and antiobesity agents. These drugs consist of biological path way affecting agents such as 1) central nervous system agents that affect neurotransmitters or neural ion channels; 2) leptin/insulin/central nervous system pathway agents; 3) gastrointestinal-neural pathway agents; 4) agents that may increase resting metabolic rate (“selective” β-3 stimulators/agonist, uncoupling protein homologues, and thyroid receptor agonists); and 5) other more diverse agents. These suppressants, however, typically do not create a true feeling of satiation, such as that brought on by a “full” stomach and/or they cause undesirable side-effects, such as anxiety, and hyperactivity and may have adverse side effects.
- Amphetamines (dextroamphetamine) have been used as weight loss and anti-obesity drugs, but can cause unacceptable tachycardia and hypertension. They also have a high rate of abuse potential. Other sympathomimetic adrenergic agents, including phentermine, benzphetamine, phendimetrazine, mazindol, and diethylpropion, may have adverse cardiovascular side effects, and their indicated use is only short-term (12 weeks), In 2000, the appetite suppressant phenylpropanolamine was removed from United States market because of unacceptable risks of stroke, especially in adult women. Other weight loss agents, such as orlistat and sibutramine, also can have adverse side effects. For example, orlistat use frequently results in adverse events including flatus, oily stools, fecal urgency or fecal incontinence, and abdominal pain, particularly among patients who do not follow the recommended low-fat diet. Further, daily multivitamin supplementation is recommended to prevent the potential of impaired absorption of fat-soluble vitamins (A, D, E, and K) that may theoretically occur with long-term use. The use of sibutramine may increase blood pressure and heart rate, and its use is contraindicated in patients with uncontrolled hypertension, CHD, cardiac dysrhythmias, congestive heart failure, or stroke.
- The sensation of satiety as a means of suppressing of appetite is well known in the art and is linked to both obesity treatment and effecting weight loss. For example, U.S. Pat. No. 5,336,486 to Acharya et al. describes the false sensation of satiety induced by filling the stomach with heavy digestible vegetable fibers. Consuming large amounts of fiber, however, requires the patient to expel large quantities of fiber which can cause gastrointestinal discomfort. Others are unable tolerate such high volumes of fiber for other reasons. To diminish the discomfort caused by a full stomach which retains vegetable fibers for a period of time higher than is normal, diet recipes based on vegetable fibers have been refined by the addition of easily digestible products with a low number of calories. See U.S. Pat. Nos. 5,063,073 to Kratochvil; 5,654,028 to Christensen et al.; and 6,426,077 to Grace et al. U.S. Pat. Nos. 5,405,616 and 6,103,269 to Wounderlich et al. describe a material composed of gelatin or collagen hydrolysate, one or more active agents and one or more excipients (i.e., plasticizers, odorants, etc.). The material is prepared as a solution or suspension and then freeze-dried to obtain a solid material. The solid material can be administered as a powder, tablet or capsule. When the dried polymeric material comes in contact with the aqueous medium of the stomach, it first becomes swollen in a few minutes and then is dissolved, resulting in a solution that will not interfere with the emptying of the gastrointestinal tract.
- Low caloric products for controlling body weight can be obtained by using collagenic biopolymers, such as: soluble collagen, gelatin or collagen hydrolysate. See U.S. Pat. Nos. 5,100,688; 5,211,976; 5,219,599; 5,665,234; 5,665,419. Commercial products, such as “Dietary Supplement—CALORAD®”, produced by EYI—Essentially Yours Industries, Inc.—USA, have been used for weight loss control and also as a muscular stimulant, as well as an aid for osteoporosis and for arthritis treatment.
- None of these drugs and materials, however, has provided a satisfactory means for control of obesity or to induce weight loss with adequate safety for the user.
- Absorbent materials for water and aqueous media, including fluids secreted by the human body, are well known in the literature. These materials are typically polymer-based and are produced in the form of powders, granules, microparticles or fibers. Upon contact with an aqueous medium, these polymeric materials swell by absorbing the liquid phase into their structure without dissolving. A “hydrogel” is a polymeric material which has the ability to absorb water and swell. If the water absorbency is more than 20 g water per 1 g of dried polymer, the material is referred to as a “superabsorbent polymer” (SAP). The swelling of these materials in the stomach can cause a sensation of satiety (i.e., full stomach). The sensation of satiety as a means of suppressing appetite is well known in the art and has been used to treat obesity and/or induce weight loss.
- Polymeric hydrogels have also been used for controlled drug delivery, particularly for extended release and/or delayed release formulations. In pharmaceutical applications, the drug is typically dispersed within the polymeric material. The rate of release of the drug is dependent on the rate of diffusion of the drug from the hydrogel and/or the rate of degradation of the polymer material. The oral administration of drugs generally uses one of two classes of hydrogens a) those which release drug in the stomach and b) those which release drug in the small intestine or other locations such as the oral cavity, duodenum, etc. The use of hydrogels for the controlled release of active agents, using the “full stomach” principle, has been described in U.S. Pat. Nos. 3,574,820 to Johnson et al.; 4,264,493 to Battista; 4,758,436 to Caldwell et al.; 5,614,223 to Sipos; 6,319,510 to Yates; 6,476,006 to Flashner-Barak et al.; and 6,485,710 to Zuckerman.
- The stomach produces a gastric secretion that is an aqueous medium containing water, hydrochloric acid, pepsin and mucus (polysaccharide biogel). This medium has a pH of 1-3 and contains pepsin proteolytic enzyme. The small intestine secretes an aqueous medium with a chemical composition more complex than that of the stomach. It is characterized by pH of 5-9 and displays biodegradative enzymatic activity in both proteins and polysaccharides. Hydrogels, which are designed to function in the stomach, must be able to (1) swell in acid aqueous media and maintain its volume for a sufficient amount of time to induce therapeutically relevant effects; and (2) be easily eliminated once its function has been fulfilled, to avoid obstruction of the intestinal or gastric tract and to avoid the generation of toxic byproducts.
- Unfortunately, many hydrogels that could be used for therapeutic purposes including weight loss and obesity treatment do not swell or swell poorly in the acidic pH of the stomach. Park et al. demonstrated that the swelling ratio of the poly(acrylamide-co-acrylic acid) was dependent on the pH of the medium. At a pH of around 5 the hydrogel showed maximum swelling. The poly(acrylamide-co-acrylic acid) showed repeated swelling and shrinking by alternating the medium pH between 1.2 and 7.5, and the changes in swelling ratio was quite fast occurring in a matter of minutes (Park et al., J Biomater Sci Polym Ed., 11(12), 1371-80 (2000)). Peppas et al. describe copolymers of methacrylic acid (MAA) and 2-methacryloxyethy 1 glucoside (MEG), have pH dependent swelling, with a transition between the swollen and the collapsed states occurred at a pH of 5. The swelling ratios of the hydrogels increased at pH values above 5 (Peppas et al., J. Biomater. Sci. Polymer Edn, Vol. 13, No. 1, pp. 1271-1281 (2002)).
- U.S. Pat. No. 5,876,741 to Ron et al describes hydroxypropyl cellulose (HPC) hydrogels crosslinked with adipic acid exhibiting a swelling curve with minimal response at pH<5.0 and a significant response for pH>5.0. This HPC hydrogel crosslinked with adipic acid exhibited nearly ideal results with zero water absorbance at pH<5.0, moderate swelling for 5<pH<7 and over 20 fold swelling for pH>7.
- There exists a need for methods to induce swelling of polymeric hydrogels in the low acidity of the stomach for the treatment of obesity and other gastric disorders.
- It is therefore an object of the present invention to provide methods to induce satiation and reduce appetite utilizing mechanical and physiological means for the treatment of obesity and other gastric disorders.
- In one aspect, the present invention relates to a method of enabling or improving the ability of a hydrogel to swell in the stomach of an animal and/or increasing the amount of time said hydrogel remains swollen in the stomach comprising administering to the animal a water-swellable polymer in combination with one or more substances which raise and maintain the pH of the microenvironment of the polymer and/or the stomach. In a further embodiment, the polymer is a superabsorbent polymer. In a further embodiment, the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, cross-linked polymers, polymer composites, and combinations thereof. In a further embodiment, the polymer is a polymer composite.
- In a further embodiment, the one or more substances which alter the pH are selected from the group consisting of buffers, H2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof. In a further embodiment, the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof. In a further embodiment, the H2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof. In a further embodiment, the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof. In a further embodiment, the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- In a further embodiment, the polymer further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof. In a further embodiment, the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- In a further embodiment, the polymer is administered with one or more therapeutically active, diagnostic or prophylactically active agents. In a further embodiment, the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof. In a further embodiment, the agent is an appetite suppressant or antiobesity agent. In a further embodiment, the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- In a further embodiment, the polymer is formulated for oral administration. In a further embodiment, the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in different dosage forms. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered before or after administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 24 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 2 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 6 hours of administration of the polymer.
- In a further embodiment, the methods of the present invention further comprise administering a substance which causes the hydrogel to degrade, disperse, and/or shrink after the hydrogel has resided in the stomach for a time. In a further embodiment, the substance is administered after the administration of the polymer. In a further embodiment, the substance acts to lower the pH of the microenvironment of the polymer and/or the stomach. In a further embodiment, the substance is an organic acid. In a further embodiment, the substance is an acidic drink, such as orange juice or Coca Cola. In a further embodiment, the substance is a protein. In a further embodiment, the protein is an enzyme. In a further embodiment, the enzyme is selected from the group consisting of pepsin, pancreatin, and combinations thereof.
- In a further embodiment, the polymer and substance are administered in conjunction with a surgical intervention for obesity. In a further embodiment, the surgical intervention to treat obesity is selected from the group consisting of gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator and gastric electrical stimulation.
- In a further embodiment, the water-swellable formulation is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- In a further embodiment, the animal is a primate, bovine, ovine, equine, porcine, avian, rodent, feline, or canine. In a further embodiment, the animal is a human.
- In another aspect, the present invention relates to a method of delivering a drug to an animal comprising administering to the animal a water-swellable polymer comprising the drug, and one or more substances which raises the pH of the microenvironment of the polymer and/or stomach of the animal. In a further embodiment, the drug is released from the polymer in a sustained manner. In a further embodiment, the drug is selected from the group consisting of a therapeutically active, diagnostic, and prophylactically active agent. In a further embodiment, the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof. In a further embodiment, the agent is an appetite suppressant or antiobesity agent. In a further embodiment, the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- In a further embodiment, the polymer is a superabsorbent polymer. In a further embodiment, the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, cross-linked polymers, polymer composites, and combinations thereof. In a further embodiment, the polymer is a polymer composite.
- In a further embodiment, the one or more substances which alter the pH are selected from the group consisting of buffers, H2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof. In a further embodiment, the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof. In a further embodiment, the H2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof. In a further embodiment, the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof. In a further embodiment, the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- In a further embodiment, the polymer further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof. In a further embodiment, the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- In a further embodiment, the polymer is formulated for oral administration. In a further embodiment, the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in different dosage forms. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered before or after administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 24 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 2 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 6 hours of administration of the polymer.
- In a further embodiment, the methods of the present invention further comprise administering a substance which causes the hydrogel to degrade, disperse, and/or shrink after the hydrogel has resided in the stomach for a time. In a further embodiment, the substance is administered after the administration of the polymer. In a further embodiment, the substance acts to lower the pH of the microenvironment of the polymer and/or the stomach. In a further embodiment, the substance is an organic acid. In a further embodiment, the substance is an acidic drink, such as orange juice or Coca Cola. In a further embodiment, the substance is a protein. In a further embodiment, the protein is an enzyme. In a further embodiment, the enzyme is selected from the group consisting of pepsin, pancreatin, and combinations thereof.
- In a further embodiment, the polymer and substance are administered in conjunction with a surgical intervention for obesity. In a further embodiment, the surgical intervention to treat obesity is selected from the group consisting of gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator and gastric electrical stimulation.
- In a further embodiment, the water-swellable formulation is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- In a further embodiment, the animal is a primate, bovine, ovine, equine, porcine, avian, rodent, feline, or canine. In a further embodiment, the animal is a human.
- In a further embodiment, the methods of the present invention are to treat obesity, induce weight loss, and/or increase gastric retention.
- In another aspect, the present invention relates to a medicament for enabling or improving the ability of a hydrogel to swell in the stomach of an animal and/or to increase the amount of time said hydrogel remains swollen in the stomach comprising a water-swellable polymer in combination with one or more substances which raise and maintain the pH of the microenvironment of the polymer and/or the stomach. In a further embodiment, the polymer is a superabsorbent polymer. In a further embodiment, the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, polymer composites, and combinations thereof. In a further embodiment, the polymer is a polymer composite.
- In a further embodiment, the one or more substances which alter the pH are selected from the group consisting of buffers, H2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof. In a further embodiment, the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof. In a further embodiment, the H2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof. In a further embodiment, the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof. In a further embodiment, the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- In a further embodiment, the medicament further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof. In a further embodiment, the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- In a further embodiment, the medicament further comprises one or more therapeutically active, diagnostic or prophylactically active agents. In a further embodiment, the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof. In a further embodiment, the agent is an appetite suppressant or antiobesity agent. In a further embodiment, the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- In a further embodiment, the medicament is formulated for oral administration. In a further embodiment, the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach and the polymer are in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach and the polymer are in different dosage forms.
- In a further embodiment, the medicaments of the present invention further comprise a substance which causes the polymer to degrade, disperse, and/or shrink after the polymer has resided in the stomach for a time. In a further embodiment, the substance acts to lower the pH of the microenvironment or the polymer and/or the stomach. In a further embodiment, the substance is an organic acid. In a further embodiment, the substance is an acidic drink, such as orange juice or Coca Cola. In a further embodiment, the substance is a protein.
- In a further embodiment, the medicament is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- In another aspect, the present invention relates to a medicament for delivering a drug to an animal comprising a water-swellable polymer comprising the drug, and one or more substances which raises the pH of the microenvironment of the polymer and/or stomach of the animal. In a further embodiment, the drug is released from the polymer in a sustained manner. In a further embodiment, the drug is selected from the group consisting of a therapeutically active, diagnostic, and prophylactically active agent. In a further embodiment, the agent is selected from the group consisting of analgesics, anti-inflammatory drugs, antipyretics, antidepressants, altiepileptics, antihistamines, antimigraine drugs, antimuscarinics, anxioltyics, sedatives, hypnotics, antipsychotics, bronchodilators, anti asthma drugs, cardiovascular drugs, corticosteroids, dopaminergics, electrolytes, gastro-intestinal drugs, muscle relaxants, nutritional agents, vitamins, parasympathomimetics, stimulants, anorectics, appetite suppressants, antiobesity agent, anti-narcoleptics, and combinations thereof. In a further embodiment, the agent is an appetite suppressant or antiobesity agent. In a further embodiment, the appetite suppressant or antiobesity agent is selected from the group consisting of sibutramine hydrochloride, orlistat, rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof.
- In a further embodiment, the polymer is a superabsorbent polymer. In a further embodiment, the polymer is selected from the group consisting of homopolymers, copolymers, polymer blends, cross-linked polymers, polymer composites, and combinations thereof. In a further embodiment, the polymer is a polymer composite.
- In a further embodiment, the one or more substances which alter the pH are selected from the group consisting of buffers, H2 blockers, proton pump inhibitors, antacids, proteins, nutritional shakes, and combinations thereof. In a further embodiment, the buffer is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof. In a further embodiment, the H2 blocker is selected from the group consisting of cimetidine, ranitidine, famotidine, nizatidine, and combinations hereof. In a further embodiment, the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, esomeprazole, pantoprazole, abeprazole, and combinations thereof. In a further embodiment, the antacid is selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum carbonate, calcium carbonate, and hydrotalcite.
- In a further embodiment, the polymer further comprises one or more pharmaceutically acceptable excipients selected from the group consisting of plasticizers, diluents, binders, lubricants, colorants, stabilizers, surfactants, flavorants, preservatives, anti-oxidants, buffering agents and combinations thereof. In a further embodiment, the buffering agent is selected from the group consisting of ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, odium carbonate, sodium hydroxide, and combinations thereof.
- In a further embodiment, the polymer is formulated for oral administration. In a further embodiment, the formulation is selected from the group consisting of tablets, capsules, syrups, solutions, suspensions, powders, bars and shakes.
- In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in the same dosage form. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered simultaneously with the polymer in different dosage forms. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered before or after administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 24 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 2 hours of administration of the polymer. In a further embodiment, the substance which raises the pH of the microenvironment of the polymer and/or the stomach is administered within 6 hours of administration of the polymer.
- In a further embodiment, the medicaments of the present invention further comprise a substance which causes the hydrogel to degrade, disperse, and/or shrink after the hydrogel has resided in the stomach for a time. In a further embodiment, the substance is administered after the administration of the polymer. In a further embodiment, the substance acts to lower the pH of the microenvironment of the polymer and/or the stomach. In a further embodiment, the substance is an organic acid. In a further embodiment, the substance is an acidic drink, such as orange juice or Coca Cola. In a further embodiment, the substance is a protein. In a further embodiment, the protein is an enzyme. In a further embodiment, the enzyme is selected from the group consisting of pepsin, pancreatin, and combinations thereof.
- In a further embodiment, the medicament is administered in conjunction with a surgical intervention for obesity. In a further embodiment, the surgical intervention to treat obesity is selected from the group consisting of gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator and gastric electrical stimulation.
- In a further embodiment, the water-swellable formulation is in the form of a shake, optionally including vitamins, mineral, or nutraceuticals, which is effective to increase stomach pH to enhance swelling of the polymer, to supplement dietary nutrients, or induce satiation and weight loss.
- In a further embodiment, the animal is a primate, bovine, ovine, equine, porcine, avian, rodent, feline, or canine. In a further embodiment, the animal is a human.
- These embodiments of the present invention, other embodiments, and their features and characteristics, will be apparent from the description and claims that follow.
- The term “polymer composite” as used herein, refers to a macromolecular material composed of two or more polymer chains, wherein the polymer chains interact via non-covalent interactions such as Van der Waals forces, hydrogen bondings, ionic interactions, etc. The composite has a macromolecular configuration of a three-dimensional network type stabilized by multiple bond types.
- The term “polymer blend” as used herein, refers to a macroscopically homogeneous mixture of two or more different species of polymer.
- Methods of enabling and/or improving hydrogel swelling in the stomach of an animal or human by administering a composition containing a polymer in combinations with one or more pH modifying agents which raise and maintain the pH of the microenvironment of the polymer and/or the stomach and increasing the time the polymer remains swollen in the stomach are described herein.
- A. Polymers
- The polymer can be a homopolymer, a copolymer, a cross-linked polymer, a polymer blend or polymer composite. In one embodiment, the polymer is a superabsorbent polymer. Suitable polymers which form can form a hydrogel include, but are not limited to, synthetic or natural polymers. Examples of synthetic polymers include polyacrylic and polymethacrylic acid polymers, cellulose derivatives such as hydroxypropyl cellulose, polyethyleneglycol polymers, copolymers and block copolymers, and other water swellable, biocompatible polymers. Examples of natural polymers include collagen, hyaluronic acid, gelatin, albumin, polysaccharide, and derivatives thereof. Natural polymers can also be of the type isolated from various plant materials such as psyllium.
- Structurally, the water-absorbent polymeric materials are three-dimensional macromolecular configurations. They are produced through several methods: a) synthesis from monomers (cross-linking polymerization); b) synthesis from polymers and polymerization auxiliary (grafting and crosslinking polymerization); c) synthesis from polymers and non-polymerization auxiliary (cross-linking polymers); d) synthesis from polymers with energy sources (cross-linking polymers without auxiliaries) and e) synthesis from polymers (cross-linking by reactive polymer-polymer intercoupling). The raw materials and technology used in synthesis are main factors in the creation of hydrogels' key properties and their range of applications.
- There are a known number of methods for obtaining high purity absorbent materials for aqueous media with three-dimensional polymeric configurations and with potential applications in pharmaceutical and/or medical field: a) chemical methods: ionic and/or coordinative intercomplexing (i.e., U.S. Pat. No. 4,570,629 to Widra and U.S. Pat. No. 5,153,174 to Band et al.); cross-linking with oligomers or reactive polymers that have reactive groups with double bonds or rings (i.e., U.S. Pat. No. 5,489,261 Franzblau et al and U.S. Pat. No. 5,863,984 to Doillon et at.); cross-linking with radiation (i.e., U.S. Pat. No. RE33,997 to Kuamz et al.; U.S. Pat. No. 4,264,155 to Miyata; and U.S. Pat. No. 5,948,429 to Bell et al.); and b) physical methods: cross-linking with microwaves (i.e., U.S. Pat. Nos. 5,859,077 and 6,168,762 to Reichman et al.); freeze-drying (i.e., U.S. Pat. Nos. 5,676,967 to Williams et al. and 5,869,080 to McGregor et al); and dehydrothermo-crosslinking (i.e., U.S. Pat. No. 4,837,285 to Berg et al; U.S. Pat. No. 4,950,485 to Akhtar et al.; and U.S. Pat. No. 4,971,954 to Brodsky et al.).
- Dehydrothermo-crosslinking, as with the other physical methods for obtaining three-dimensional structures, eliminates the risk of toxic effects that can be produced by secondary products of the reaction or energy state modification of the reaction product (in which appear new types of covalent, ionic or coordinative bonds), which can occur in the activation of some chemical processes. Moreover, compared with freeze-drying or cross-linking via microwaves, dehydrothermo-crosslinking offers many more possibilities to regulate the structural characteristics of the resulting three-dimensional networks (i.e., Scotchford C. A., Cascone G. D., Ownes S., Gusti P., “Osteoblast responses of collagen-PVA bioartificial polymers in vitro: the effects of cross-linking method and collagen content”, Biomaterials 19,1-11,1998; Giunchedi P., Genta I., Conti B., Muzzarelli R. A. A., Conti B., Biomaterials 19,157-161,1998). The hydrogels based on collagenic biopolymers obtained by dehydrothermo-crosslinking, however, do not have high absorption capacities.
- B. pH Modifying Agents
- The polymeric material can be co-administered with one or more pH modifying agents to raise and maintain the pH of the microenvironment of the polymer and/or the stomach. Suitable pH modifying agents include buffers, proton pump inhibitors, H2 blocker, and antacids. Example of these pH modifying agents are described below. The compositions can act as stomach filling materials which, upon hydration, swell and generate a sensation of satiety. The pH modifying agent can be administered simultaneously with the polymer in the same dosage form, simultaneously with the polymer is separate dosage forms or sequentially. If the pH modifying agent in administered sequentially with the polymer composition, than the pH modifying agent is preferably administered within 24 hours, more preferably with 12 hours, and most preferably within 6 hours of administration of the polymer composition.
- i Buffers
- Suitable pH buffers include, but are not limited to, ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof.
- II Proton Pump Inhibitors
- Suitable proton pump inhibitors include, but are not limited to, omeprazole (Losec®, Prilosec®), omeprazole in combinations with bicarbonate (Zegerid®, Rapinex®), lansoprazole (Prevacid®, Zoton®, esomeprazole (Nexium®), pantoprazole (Protonix®, Somac®, Pantoloc®), and rabeprazole (Aciphex®, Pariet®) iii H2 Blockers Suitable H2 blockers include, but are not limited to, climetidine (Tagamet®)), ranitidine (Zantac®), famotidine (Pepcid®), famotidine in combination with calcium carbonate and magnesium hydroxide (Pepcid® complete), and nizatidine (Axid®, Tazac®) iv Antacids Suitable over-the-counter antacids include, but are not limited to, aluminum hydroxide (Amphojel®, AlthemaGEL®), magnesium hydroxide (Milk of Magnesia®), aluminum hydroxide in combination with magnesium hydroxide (Maalox®, Mylanta®), aluminum carbonate gel (Basajel®), calcium carbonate (Tums®, Titralac®, calcium rich Rolaids®), and hydrotalcite (Talcid®).
- C. Active Agents
- The compositions can also be used for the controlled delivery of one or more therapeutically active, diagnostic, or prophylactic agents. The release rate of the active agent is dependent on the rate of diffusion of the active agent from the hydrogel as well as the rate of degradation of the polymeric composite.
- Exemplary agents include analgesics, anti-inflammatory agents, antihelmintics, anti-arrhythmic agents, anti-bacterial agents, anti-viral agents, anti-hypertensive agents, anti-coagulants, anti-depressants, anti-diabetics, anti-epileptics, anti-fungal agents, anti-gout agents, anti-malarials, anti-migraine agents, anti-muscarinic agents, anti-neoplastic agents, erectile dysfunction improvement agents, immunosupressants, anti-protozoal agents, anti-thyroid agents, anxiolytic agents, sedatives, hypnotics, neuroleptics, -blockers, cardiac inotropic agents, corticosteroids, diuretics, anti-parkinsonian agents, gastro-intestinal agents, histamine H1 and H2 receptor antagonists, keratolytics, lipid regulating agents, anti-anginal agents, nutritional agents, opioid analgesics, sex hormones, stimulants, muscle relaxants, anti-osteoporosis agents, anti-obesity agents, cognition enhancers, anti-urinary incontinence agents, nutritional oils, anti-benign prostate hypertrophy agents, essential fatty acids, non essential fatty acids, vitamins, minerals, appetite suppressants and mixtures thereof.
- In one embodiment, the polymer composition is administered in combination with an appetite suppressant. The appetite suppressant can be administered before or after administration of the polymer composition. Alternatively, the appetite suppressant can be administered simultaneously with the polymer composition. Suitable appetite suppressants include, but are not limited to, Meridia (sibutramine hydrochloride available from Abbott Laboratories), Xenical (orlistat available from Roche USA), Acomplia (Rimonabant, developed by Sanofi-Aventis and awaiting FDA approval), rimonabant, benzphetamine, diethylpropion, mazindol phendimetrazine, phentermine, amphetamine, fenfluramine, nalmetrene, and combinations thereof. The polymer composition can also be administered in combination with surgical treatments to treat obesity such as gastric banding, gastric bypass surgery, intragastric balloon, implantable gastric stimulator (awaiting U.S. approval) and gastric electrical stimulation (awaiting U.S. approval).
- D. Other Excipients
- The polymeric composites described herein can be formulated with one or more pharmaceutically acceptable excipients to treat a variety of gastrointestinal disorders as well as to provide controlled release of one or more active agents. Suitable excipients include pH modifying agents, plasticizers, colorants, flavorants, preservatives, anti-oxidants, surfactants, dispering agents, glidants, diluents, binding agents, and combinations thereof.
- E. Nutritional Shakes
- Shakes include any drink containing food additives. Food additives include, but are not limited to, flavorings, vitamins, minerals, and buffers. In one embodiment, the polymer composition is administered as a shake or in conjunction with a shake, which is consumed by the patient. A shake containing vitamins, minerals, optionally nutraceuticals, can serve the purpose of supplying nutrients which the patient might otherwise not ingest due to reduced meal size. The shake can contain one or more proteins which are co-administered with the polymer composition. It is well known in the art that proteins can raise and maintain the pH of the stomach. The shake can contain buffers which raise the pH of the stomach, allowing the polymer to swell and exert a therapeutic effect. Such buffers may include, but are not limited to, ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, sodium bicarbonate, calcium carbonate, calcium hydroxide, magnesium carbonate, potassium bicarbonate, potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, and combinations thereof. The shake can contain any combination of vitamins, minerals and buffers. A number of shakes are known to induce satiety, leading to weight loss (e.g., Slim Fast®). The polymer can be used in combination with the shake to have an advantageous effect in promoting satiety. The polymer may be taken in combination with commercially available shakes to raise stomach pH and/or supply required nutrients patients lack due to reduced meal size and/or produce an enhanced effect on satiety. Commercially available shakes, include, but are not limited to, Slim Fast®, Golcan® Protein Meal Chocolate Shake, Optimum Nutrition Complete Protein Diet Meal Shake Mix, Walker Diet Low Carb Shake, Walker Diet® Fiber Combinations, Diet Lean Low Carb Shakes, NATURADE® Diet Lean—Low Carb Dieter's Shake, DIET SHAKE VANILLA ATKINS® NUTRITIONALS, OxeSlim Diet Shake 2 Go, Protein Drink Mix by Herbalife®, Formula I Nutritional Shake Mix by Herbalife®, Basic Organics Pat's Diet Shake, UNIVERSAL NUTRITION® Specialized Protein for Dieting, Meal Replacement Protein Shake by SportPharma, Whey Protein Shake by SportPharmag, Medifast® Ready-toDrink Shakes, Eating for LifeRight! for Women Nutrition Shake, Chocolate, Genisoy® Soy Protein Powder Natural, Atkins % Rtd Shake, Muscletech®) NITRO-Tech RTDs, Keto® Slim Shake, Genisoy® Soy Protein Shake, SpiruTein® Sport, Spiru-Tein®, Eas Myoplex® Lite, Protein Diet by Optimum, Power Shake, NutriMelt® Meal Replacement Protein Shake, NRG Protein Booster, Nature's Plus® Ketoslim Shake, To-Diet-For® shakes, NutriTech® All One Powder, Total Soy French Vanilla, Balance Total Balance Drink Mix, Pro V60 Straw, Slim & Trim Vanilla Cream, Scitec Nutrition Protein Delite, MetRx® Meal Replacement, Ensure® High Protein Complete Balanced Nutrition Drink.
- The polymer compositions are typically administered orally. Suitable oral dosage forms include tablets, capsules, caplets, powders, syrups, solutions, suspension and shakes. In one embodiment, the polymer compositions is compressed with one or more excipients and optionally with one or more pH modifying agents, and/or one or more active agents to form a tablet. Suitable excipients used to prepare tablets include binding agents, preservatives, antioxidants, glidants, flavorants, colorants, and combinations thereof.
- In one embodiment, the polymer is encapsulated in a hard or soft gelatin capsule. The capsule fill material contains the polymer, and optionally one or more pH modifying agents and/or active agents. The fill material may also contain one or more excipients. Suitable excipients include, but are not limited to, plasticizers, crystallization inhibitors, wetting agents, bulk filling agents, solubilizers, bioavailability enhancers, solvents, and combinations thereof. Once the hydrogel has resided in the stomach for an appropriate amount of time (to suppress appetite and/or release one or more active agents), the polymer composition can be degraded, dispersed, or eroded to alleviate the sensation of satiety and/or avoid discomfort and/or harm to the patient. In one embodiment, a substance which increases the acidity of the microenvironment of the polymer and/or the stomach is administered to cause the polymer to shrink (by lowering the pH). Suitable substances include, but are not limited to, organic acids such as citric acid and phosphonic acid salts. For polymers which are composed partially of protein, enzymes such as pepsin or pancreatin are suitable substances.
- Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
- Laboratory rats were given a polymeric material of the present invention, PMSF-1, by oral gavage under different experimental conditions (see Example 1 in the Exemplification section). PMSF-1 was prepared in accordance with the procedures presented in U.S. Pat. No. 6,833,488 and PCT Published Patent Application No. WO2005/084724A1, both of which are hereby incorporated by reference in their entirety. The animals were sacrificed, their stomachs excised and the contents of the stomach were analyzed. No acute toxicity or change in behavior was noted in the animals following oral gavage of PMSF-1. Following sacrifice of the rats, no gross histopathalogy was observed in the rats' stomachs. The PMSF-1 device was observed in the stomachs of rats with an increased residence time noted for animals that were premedicated with H2 blockers or allowed to eat food following the device administration.
- The primary objective of this study was to understand the residence time of PMSF-1 in the stomachs of rats following oral gavage of PMSF-1 in three different experimental conditions: 1) when animals do not eat food following intake of PMSF-1; 2) when animals are given H2 blockers which raises stomach pH prior to oral gavage of the polymer; and 3) when animals are allowed to eat food following oral gavage of the PMSF-1 polymer. A combination of visual inspection and quantification of stomach contents were used to reach conclusions. The animals which were pre-medicated with H2 blockers, clearly had a greater amount of PMSF-1 in their stomachs at the observed time points compared to animals which did not received H2 blockers. For instance, 90 minutes following oral gavage of the PMSF-1, 27% of the original PMSF-1 was recovered from the stomach of a rat pre-medicated with H2 blockers compared with no PMSF-1 being recovered at 90 minutes from a rat which received no H2 blockers. In addition, food which is documented to increase the pH of the stomach also caused the PMSF-1 to remain swollen for a greater period of time which is consistent with the results observed with H2 blockers.
- The secondary objective of this study was to determine if oral gavage of the PMSF-1 materials produced any gross toxicology or obvious GI pathology. No acute toxicology was observed in the animals. In addition, fecal output and consistency was normal suggesting normal GI function. Gross histopathological examination of the stomach did not reveal any obvious abnormalities.
- Wistar rats with the characteristics listed in Table 1 were housed individually in Velaz T4 cages in conventional laboratory conditions. Room temperature was 20-24° C. and the relative humidity was between 30-70%. Fluorescent lighting provided illumination approximately 12 hours per day. Feed and water containers were changed and sanitized at least once weekly. Lignocel (Velaz Ltd., Czech Republic) was used as bedding.
-
TABLE 1 Wistar rats used in test system. Species & Strain Wistar rat Quality conventional Age on delivery 6-9 weeks Body weight at administration 200-300 g Number of groups 3 Rats per group 2 Total number of animals 6 - The animals were fed ad libium with standard pelletized rodent diet (NOE H4, Racio Breclav, Czech Republic) of monitored quality (analyzed minimally 2 times per year for possible toxic or microbiological contamination) during the acclimation and study periods. Water of monitored quality (analyzed minimally 2 times per year for possible toxic or microbiological contamination) was supplied ad libitum during the acclimation and study period. The rats were branded with picric acid solution and acclimated for 5 days. The experimental design and group allocation are presented in Tables 2 and 3, respectively.
-
TABLE 2 Experimental design. Procedure Date Study initiation day 1 Acclimation 5 days Initiation of experimental part 30 days before Health check 31 days before Start of the test tem administration day 1 Dosing single oral administration by gavage Necropsy intervals 30, 90 minutes Body weight Before administration Proposed end of the experimental part day 1 -
TABLE 3 Group allocation. Group # Rats Test Condition 1 F1, F2 premedicated with H2 blocker 2 F3, F4 no premedication 3 F5, F6 with food consumption - All rats were fasted overnight. The first group of rats were premedicated with the H2 blocker PepcidAC® (10 mg Famotidine, Johnson & Johnson-Merck Consumer Pharmaceuticals, 1 capsule/rat) 4 hours before administration. The second group was not premedicated and was not allowed access to food following oral gavage of PMSF-1. The third group was not premedicated, but was allowed access to food following oral gavage of PMSF-1.
- The PMSF-1 powder was mixed with tap water at a ratio of 640 mg PMSF-1 to 50 mL water in order to swell the material. Rats were administered 5 mL of the swollen PMSF-1 by oral gavage. Rats in Group 3 (F5, F6) were given food which had been weighed immediately following oral gavage of PMSF-1 and were kept in the dark until necropsy. The food consumption of Group 3 was measured and recorded. Necropsy was performed according to Table 4.
-
TABLE 4 Necropsy intervals and stomach observation. Animal No. H2 blocker premedication Necropsy intervals (min) F1 Yes 90 F2 Yes 105 F3 No 30 F4 No 90 F5 No 70 F6 No 50 - Rats were euthanized using ether, the animals' stomachs were excised and after the stomach outlets were tied off to prevent leakage, the stomachs were weighed. Next, the stomachs were cleaned and the stomach contents were weighed and visually inspected. Rats were observed for any signs of toxicity including vomiting, diarrhea, changes in activity and behavior after oral gavage of PMSF-1. Food consumption of Group 3 was recorded. Results for real time of PMSF-1 administration, necropsy period, and stomach contents examination are presented in Table 5.
-
TABLE 5 Stomach observation results. Administered Food PMSF-1 + Necropsy Stomach Remaining Animal H2 PMSF-1 Consumed Food Intervals Content Content Number Blocker (ml) (g) (g) (Min.) (g)* (%) F1 + 5.00 0.00 5.00 90 1.34 27% F2 + 5.00 0.00 5.00 105 0.48 10% F3 − 5.00 0.00 5.00 30 4.08 82% F4 − 5.00 0.00 5.00 90 0.00 0% F5 − 5.00 2.70 7.70 70 6.87 89% F6 − 5.00 0.50 5.50 50 4.05 74% *F1-F4 only swollen PMSF-1 is included F5 and F6 include the mixture of PMSF-1 and food, as the two could not be separated - The above results demonstrate that H2-blockers increase the total amount of time that PMSF-1 remains swollen in the stomachs of animals. Furthermore, food which is known to increase the pH of the stomach also caused the PMSF-1 to remain swollen for a greater period of time and the PMSF-1 mixed with the food. The results obtained with food therefore further shows that when taken in combination with PMSF-1, agents whether pharmacological or nutritional in nature, can improve the performance of PMSF-1 in the stomach environment.
Claims (59)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/403,788 US20090311235A1 (en) | 2006-03-28 | 2009-03-13 | Use of Polymeric Materials with Other Substances for Improved Performance |
US14/597,600 US10272155B2 (en) | 2006-03-28 | 2015-01-15 | Use of polymeric materials with other substances for improved performance |
US16/364,908 US20190351061A1 (en) | 2005-12-06 | 2019-03-26 | Use of polymeric materials with other substances for improved performance |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78661506P | 2006-03-28 | 2006-03-28 | |
US78739606P | 2006-03-30 | 2006-03-30 | |
PCT/US2007/065351 WO2007112436A2 (en) | 2006-03-28 | 2007-03-28 | Use of polymeric materials with other substances for improved performance |
US12/403,788 US20090311235A1 (en) | 2006-03-28 | 2009-03-13 | Use of Polymeric Materials with Other Substances for Improved Performance |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12295145 Continuation | 2007-03-28 | ||
PCT/US2007/065351 Continuation WO2007112436A2 (en) | 2005-12-06 | 2007-03-28 | Use of polymeric materials with other substances for improved performance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/597,600 Continuation US10272155B2 (en) | 2005-12-06 | 2015-01-15 | Use of polymeric materials with other substances for improved performance |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090311235A1 true US20090311235A1 (en) | 2009-12-17 |
Family
ID=38541890
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/403,788 Abandoned US20090311235A1 (en) | 2005-12-06 | 2009-03-13 | Use of Polymeric Materials with Other Substances for Improved Performance |
US14/597,600 Active US10272155B2 (en) | 2005-12-06 | 2015-01-15 | Use of polymeric materials with other substances for improved performance |
US16/364,908 Abandoned US20190351061A1 (en) | 2005-12-06 | 2019-03-26 | Use of polymeric materials with other substances for improved performance |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/597,600 Active US10272155B2 (en) | 2005-12-06 | 2015-01-15 | Use of polymeric materials with other substances for improved performance |
US16/364,908 Abandoned US20190351061A1 (en) | 2005-12-06 | 2019-03-26 | Use of polymeric materials with other substances for improved performance |
Country Status (9)
Country | Link |
---|---|
US (3) | US20090311235A1 (en) |
EP (1) | EP2012752A4 (en) |
JP (1) | JP2009531462A (en) |
AU (1) | AU2007230234A1 (en) |
BR (1) | BRPI0708842A2 (en) |
CA (1) | CA2646066A1 (en) |
MX (1) | MX2008012248A (en) |
RU (1) | RU2008142623A (en) |
WO (1) | WO2007112436A2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090324537A1 (en) * | 2006-03-30 | 2009-12-31 | Mircea Dan Bucevschi | Polymeric Materials as Stomach Filler and Their Preparation |
US20100234233A1 (en) * | 2007-08-10 | 2010-09-16 | Alessandro Sannino | Polymer hydrogels and methods of preparation thereof |
WO2011149877A3 (en) * | 2010-05-26 | 2012-08-30 | Ethicon Endo-Surgery, Inc. | Intestinal brake inducing intraluminal therapeutic substance eluting devices and methods |
US9353191B2 (en) | 2011-06-07 | 2016-05-31 | Gelesis Llc | Method for producing hydrogels |
WO2017040849A1 (en) * | 2015-09-02 | 2017-03-09 | Bremer Troy M | Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor |
US9855294B2 (en) | 2014-06-20 | 2018-01-02 | Gelesis, Llc | Methods for treating overweight or obesity |
US10098907B2 (en) | 2016-04-25 | 2018-10-16 | Gelesis Llc | Method for treating constipation |
WO2018191752A1 (en) * | 2017-04-14 | 2018-10-18 | Gelesis Llc | Compositions and methods for treating or preventing gut permeability-related disorders |
US10179824B2 (en) | 2015-01-29 | 2019-01-15 | Gelesis Llc | Method for producing hydrogels coupling high elastic modulus and absorbance |
US11160474B2 (en) | 2003-12-18 | 2021-11-02 | Metronom Health, Inc. | Implantable biosensor and methods of use thereof |
RU2782530C2 (en) * | 2017-04-14 | 2022-10-28 | Джелесис ЭлЭлСи | Compositions and methods for treatment or prevention of disorders related to intestinal permeability |
WO2025072841A1 (en) * | 2023-09-28 | 2025-04-03 | Syntis Bio, Inc. | Synergistic permeation enhancers for gastrointestinal synthetic epithelial linings |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9457048B2 (en) | 2008-02-05 | 2016-10-04 | Wellosophy Corporation | Absorbent ingestible agents and associated methods of manufacture and use |
IN2012DE02302A (en) * | 2012-07-31 | 2015-10-16 | Council Scient Ind Res | |
EP3027233A4 (en) * | 2013-08-01 | 2017-04-05 | Intellisiv Ltd | Hydrogel fibers and preparation thereof |
EP3363442A4 (en) * | 2015-10-13 | 2019-03-06 | Techno Guard CO. LTD. | Protective composition for gastrointestinal mucosa |
US11918602B2 (en) | 2018-08-10 | 2024-03-05 | Simeon Investment, Inc. | Methods for reducing cholesterol with superabsorbent materials |
US11925660B2 (en) | 2018-08-10 | 2024-03-12 | Simeon Investment, Inc. | Treatment for obesity with superabsorbent materials |
US12285738B2 (en) | 2018-08-10 | 2025-04-29 | Simeon Investment, Inc. | Modulation of glucose bioaccessibility with superabsorbent materials |
BR102020014545A2 (en) * | 2020-07-16 | 2022-01-25 | Edson Luiz Peracchi | Long-term resorbable subcutaneous implant with sustained release of pre-concentrated polymer pharmacologically active substance for obesity treatment and process |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3844890A (en) * | 1971-09-30 | 1974-10-29 | Rikagaku Kenkyusho | Alkaline cellulase and preparation of the same |
US4606918A (en) * | 1983-08-22 | 1986-08-19 | Syntex (U.S.A.) Inc. | Polyoxypropylene-polyoxyethylene block polymer based adjuvants |
US5151433A (en) * | 1987-11-24 | 1992-09-29 | Hoechst Aktiengesellschaft | Stabilized medicinal substances, a process for the preparation thereof, and stable medicinal formulations |
US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
US6120803A (en) * | 1997-08-11 | 2000-09-19 | Alza Corporation | Prolonged release active agent dosage form adapted for gastric retention |
US6271278B1 (en) * | 1997-05-13 | 2001-08-07 | Purdue Research Foundation | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties |
US6706817B2 (en) * | 2002-06-21 | 2004-03-16 | Isp Investments Inc. | Polymeric hydrogels |
US20040219186A1 (en) * | 2001-08-16 | 2004-11-04 | Ayres James W. | Expandable gastric retention device |
US6833488B2 (en) * | 2001-03-30 | 2004-12-21 | Exotech Bio Solution Ltd. | Biocompatible, biodegradable, water-absorbent material and methods for its preparation |
US20080095911A1 (en) * | 2004-12-08 | 2008-04-24 | Sarah Adams | Satiety Enhancing Food Product And A Method For Manufacturing Such |
US20120052151A1 (en) * | 2008-11-18 | 2012-03-01 | Alessandro Sannino | Methods and compositions for weight management and for improving glycemic control |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5104676A (en) * | 1991-06-27 | 1992-04-14 | Abbott Laboratories | Weight control product |
US5543405A (en) * | 1993-10-22 | 1996-08-06 | Keown; Wendy J. | Composition and method for weight reduction and long term management of obesity |
US20030059471A1 (en) * | 1997-12-15 | 2003-03-27 | Compton Bruce Jon | Oral delivery formulation |
US20040192582A1 (en) * | 2002-12-19 | 2004-09-30 | Burnett Daniel R. | Ingestible formulations for transient, noninvasive reduction of gastric volume |
WO2004056393A1 (en) * | 2002-12-19 | 2004-07-08 | Beisel Guenther | Agent with a retarded release of substances |
KR20050115017A (en) * | 2004-06-03 | 2005-12-07 | 주식회사 엔바이오테크놀러지 | Functional food composition having obesity control effect and the preparation method thereof |
-
2007
- 2007-03-28 AU AU2007230234A patent/AU2007230234A1/en not_active Abandoned
- 2007-03-28 WO PCT/US2007/065351 patent/WO2007112436A2/en active Application Filing
- 2007-03-28 CA CA002646066A patent/CA2646066A1/en not_active Abandoned
- 2007-03-28 RU RU2008142623/14A patent/RU2008142623A/en unknown
- 2007-03-28 JP JP2009503243A patent/JP2009531462A/en active Pending
- 2007-03-28 MX MX2008012248A patent/MX2008012248A/en not_active Application Discontinuation
- 2007-03-28 BR BRPI0708842-6A patent/BRPI0708842A2/en not_active Application Discontinuation
- 2007-03-28 EP EP07759567A patent/EP2012752A4/en not_active Withdrawn
-
2009
- 2009-03-13 US US12/403,788 patent/US20090311235A1/en not_active Abandoned
-
2015
- 2015-01-15 US US14/597,600 patent/US10272155B2/en active Active
-
2019
- 2019-03-26 US US16/364,908 patent/US20190351061A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3844890A (en) * | 1971-09-30 | 1974-10-29 | Rikagaku Kenkyusho | Alkaline cellulase and preparation of the same |
US4606918A (en) * | 1983-08-22 | 1986-08-19 | Syntex (U.S.A.) Inc. | Polyoxypropylene-polyoxyethylene block polymer based adjuvants |
US5151433A (en) * | 1987-11-24 | 1992-09-29 | Hoechst Aktiengesellschaft | Stabilized medicinal substances, a process for the preparation thereof, and stable medicinal formulations |
US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
US6271278B1 (en) * | 1997-05-13 | 2001-08-07 | Purdue Research Foundation | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties |
US6120803A (en) * | 1997-08-11 | 2000-09-19 | Alza Corporation | Prolonged release active agent dosage form adapted for gastric retention |
US6833488B2 (en) * | 2001-03-30 | 2004-12-21 | Exotech Bio Solution Ltd. | Biocompatible, biodegradable, water-absorbent material and methods for its preparation |
US20040219186A1 (en) * | 2001-08-16 | 2004-11-04 | Ayres James W. | Expandable gastric retention device |
US6706817B2 (en) * | 2002-06-21 | 2004-03-16 | Isp Investments Inc. | Polymeric hydrogels |
US20080095911A1 (en) * | 2004-12-08 | 2008-04-24 | Sarah Adams | Satiety Enhancing Food Product And A Method For Manufacturing Such |
US20120052151A1 (en) * | 2008-11-18 | 2012-03-01 | Alessandro Sannino | Methods and compositions for weight management and for improving glycemic control |
Non-Patent Citations (3)
Title |
---|
de la Torre et al., "Poly(acrylic acid) Chitosan Interpolymer Complexes for Stomach Controlled Antibiotic Delivery" J Biomed Mat Res, 72B(1), 2004, pp191-197. * |
Gemeinhart et al. "pH-sensitivity of fast responsive superporous hydrogels" J Biomater Sci Polymer Edn, 11(12), 2000, pp1371-1380. * |
Halter et al. "Effect of food on antacid neutralizing capacity in man" European Journal of Clinical Investigation, 12, 1982, pp 209-217. * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11160474B2 (en) | 2003-12-18 | 2021-11-02 | Metronom Health, Inc. | Implantable biosensor and methods of use thereof |
US20090324537A1 (en) * | 2006-03-30 | 2009-12-31 | Mircea Dan Bucevschi | Polymeric Materials as Stomach Filler and Their Preparation |
US20100234233A1 (en) * | 2007-08-10 | 2010-09-16 | Alessandro Sannino | Polymer hydrogels and methods of preparation thereof |
US8658147B2 (en) | 2007-08-10 | 2014-02-25 | Gelesis Llc | Polymer hydrogels and methods of preparation thereof |
WO2011149877A3 (en) * | 2010-05-26 | 2012-08-30 | Ethicon Endo-Surgery, Inc. | Intestinal brake inducing intraluminal therapeutic substance eluting devices and methods |
US8876761B2 (en) | 2010-05-26 | 2014-11-04 | Ethicon Endo-Surgery, Inc. | Intestinal brake inducing intraluminal therapeutic substance eluting devices and methods |
US9353191B2 (en) | 2011-06-07 | 2016-05-31 | Gelesis Llc | Method for producing hydrogels |
US11130823B2 (en) | 2011-06-07 | 2021-09-28 | Gelesis Llc | Method for producing hydrogels |
US11628184B2 (en) | 2014-06-20 | 2023-04-18 | Gelesis, Llc | Methods for treating overweight or obesity |
US9855294B2 (en) | 2014-06-20 | 2018-01-02 | Gelesis, Llc | Methods for treating overweight or obesity |
US10179824B2 (en) | 2015-01-29 | 2019-01-15 | Gelesis Llc | Method for producing hydrogels coupling high elastic modulus and absorbance |
US10584183B2 (en) | 2015-01-29 | 2020-03-10 | Gelesis, Llc | Method for producing hydrogels coupling high elastic modulus and absorbance |
US11130824B2 (en) | 2015-01-29 | 2021-09-28 | Gelesis Llc | Method for producing hydrogels coupling high elastic modulus and absorbance |
US10695000B2 (en) | 2015-09-02 | 2020-06-30 | Metronom Health, Inc. | Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor |
US11439351B2 (en) | 2015-09-02 | 2022-09-13 | Metronom Health, Inc. | Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor |
US11553879B2 (en) | 2015-09-02 | 2023-01-17 | Metronom Health, Inc. | Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor |
WO2017040849A1 (en) * | 2015-09-02 | 2017-03-09 | Bremer Troy M | Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor |
US10098907B2 (en) | 2016-04-25 | 2018-10-16 | Gelesis Llc | Method for treating constipation |
US10695363B2 (en) | 2017-04-14 | 2020-06-30 | Gelesis Llc | Compositions and methods for treating or preventing gut permeability-related disorders |
WO2018191752A1 (en) * | 2017-04-14 | 2018-10-18 | Gelesis Llc | Compositions and methods for treating or preventing gut permeability-related disorders |
RU2782530C2 (en) * | 2017-04-14 | 2022-10-28 | Джелесис ЭлЭлСи | Compositions and methods for treatment or prevention of disorders related to intestinal permeability |
WO2025072841A1 (en) * | 2023-09-28 | 2025-04-03 | Syntis Bio, Inc. | Synergistic permeation enhancers for gastrointestinal synthetic epithelial linings |
Also Published As
Publication number | Publication date |
---|---|
BRPI0708842A2 (en) | 2011-06-14 |
JP2009531462A (en) | 2009-09-03 |
CA2646066A1 (en) | 2007-10-04 |
AU2007230234A1 (en) | 2007-10-04 |
MX2008012248A (en) | 2009-02-20 |
US10272155B2 (en) | 2019-04-30 |
EP2012752A4 (en) | 2013-03-06 |
US20150196641A1 (en) | 2015-07-16 |
EP2012752A2 (en) | 2009-01-14 |
WO2007112436A3 (en) | 2007-12-27 |
WO2007112436A2 (en) | 2007-10-04 |
US20190351061A1 (en) | 2019-11-21 |
RU2008142623A (en) | 2010-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10272155B2 (en) | Use of polymeric materials with other substances for improved performance | |
WO2009049105A2 (en) | Methods for inducing satiation | |
AU2004317895B2 (en) | Dietary supplement and method for treating digestive system-related disorders | |
CN1531419A (en) | In-situ gel formation of pectins | |
US20090324537A1 (en) | Polymeric Materials as Stomach Filler and Their Preparation | |
JP2005034135A (en) | Functionally reinforcing composition for common food, health functional food or health supplemental food, and method for the same | |
CN108135835A (en) | For treating the composition of metabolic disorder and method | |
CN108451941A (en) | Treat the composition and method of diabetes | |
CN104093413A (en) | Compositions and methods for treating diabetes and/or obesity | |
US20100215689A1 (en) | Soluble Fiber Combinations for Weight Control and Improving Parameters of Cardiovascular Health | |
CN101453987A (en) | Use of polymeric materials with other substances for improved performance | |
CN1799409A (en) | Diet fiber composition with fat-reducing face-beautifying functions and its production method | |
US11813363B1 (en) | Concentrated nutritional or supplemental compound for intestinal, gut-brain axis and neurobiological homeostasis through calibrated absorption including neurotransmitter or any equilibrating compound release to treat or mitigate disease and co-morbidities, particularly obesity and malnourishment | |
WO2002102415A1 (en) | Gastric floating system | |
CN110507623B (en) | Composition containing levothyroxine sodium and application thereof | |
CN1212151A (en) | Health-care products composition | |
KR101045868B1 (en) | Pharmaceutical composition comprising anionic polysaccharide and polyamino acid for combinational administration with lipase inhibitor | |
AU5778801A (en) | Improvements in effervescent tablet manufacture | |
US20220046972A1 (en) | Compositions for weight management | |
Jasińska-Balwierz et al. | GLP-1 and GIP analogues in the treatment of obesity | |
Spyropoulos et al. | Hydrocolloid Formulations Engineered for Properties in the GI Tract | |
CN113712990A (en) | Composition and preparation method and application thereof | |
CN109172625A (en) | A kind of compound preparation for treating diabete peripheral herve pathology | |
AU5508799A (en) | Compressed compositions comprising clarified xanthan gum | |
US20190314327A1 (en) | Pharmaceutical Compositions Containing Cannabis, Uses Thereof and Methods for Improving Digestion and/or Treating Symptoms Associated with Gastrointestinal Complications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GELESIS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ELENKO, ERIC;RON, EYAL S.;ZOHAR, YISHAI;SIGNING DATES FROM 20090915 TO 20091104;REEL/FRAME:023625/0647 |
|
AS | Assignment |
Owner name: HERCULES TECHNOLOGY II, L.P., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:GELESIS, INC.;REEL/FRAME:023710/0438 Effective date: 20091130 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GELESIS, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERCULES TECHNOLOGY II, L.P.;REEL/FRAME:035795/0207 Effective date: 20120809 |