US20090305014A1 - Optical member, optical system using the optical member, and method of manufacturing an optical member - Google Patents
Optical member, optical system using the optical member, and method of manufacturing an optical member Download PDFInfo
- Publication number
- US20090305014A1 US20090305014A1 US12/544,264 US54426409A US2009305014A1 US 20090305014 A1 US20090305014 A1 US 20090305014A1 US 54426409 A US54426409 A US 54426409A US 2009305014 A1 US2009305014 A1 US 2009305014A1
- Authority
- US
- United States
- Prior art keywords
- optical member
- substrate
- main component
- organic resin
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 131
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 229920005989 resin Polymers 0.000 claims abstract description 121
- 239000011347 resin Substances 0.000 claims abstract description 121
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 239000013078 crystal Substances 0.000 claims abstract description 75
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 52
- 125000003118 aryl group Chemical group 0.000 claims abstract description 45
- 239000010410 layer Substances 0.000 claims description 129
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000010521 absorption reaction Methods 0.000 claims description 17
- 239000002344 surface layer Substances 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims description 10
- 229910001593 boehmite Inorganic materials 0.000 claims description 9
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 125000005462 imide group Chemical group 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 6
- 150000004706 metal oxides Chemical class 0.000 abstract description 6
- 125000005842 heteroatom Chemical group 0.000 abstract description 2
- 239000011800 void material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 71
- 229920001721 polyimide Polymers 0.000 description 59
- 239000004642 Polyimide Substances 0.000 description 58
- 150000004985 diamines Chemical class 0.000 description 39
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 30
- 238000000034 method Methods 0.000 description 28
- -1 salt compounds Chemical class 0.000 description 26
- 239000004417 polycarbonate Substances 0.000 description 25
- 229920000515 polycarbonate Polymers 0.000 description 25
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- 150000008064 anhydrides Chemical class 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 16
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 15
- 229910052593 corundum Inorganic materials 0.000 description 15
- 229910001845 yogo sapphire Inorganic materials 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 229930185605 Bisphenol Natural products 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 12
- 229920001187 thermosetting polymer Polymers 0.000 description 12
- 150000003949 imides Chemical group 0.000 description 11
- 239000003999 initiator Substances 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 238000004528 spin coating Methods 0.000 description 10
- 239000004696 Poly ether ether ketone Substances 0.000 description 9
- 239000004793 Polystyrene Substances 0.000 description 9
- 229920002492 poly(sulfone) Polymers 0.000 description 9
- 229920000570 polyether Polymers 0.000 description 9
- 229920002530 polyetherether ketone Polymers 0.000 description 9
- 229920002223 polystyrene Polymers 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 8
- 229910020442 SiO2—TiO2 Inorganic materials 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 8
- 229910052906 cristobalite Inorganic materials 0.000 description 8
- 108010025899 gelatin film Proteins 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 229910052682 stishovite Inorganic materials 0.000 description 8
- 229910052905 tridymite Inorganic materials 0.000 description 8
- 230000000737 periodic effect Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 150000004703 alkoxides Chemical class 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000005077 polysulfide Substances 0.000 description 6
- 229920001021 polysulfide Polymers 0.000 description 6
- 150000008117 polysulfides Polymers 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 4
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229920006259 thermoplastic polyimide Polymers 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- GPXCORHXFPYJEH-UHFFFAOYSA-N 3-[[3-aminopropyl(dimethyl)silyl]oxy-dimethylsilyl]propan-1-amine Chemical compound NCCC[Si](C)(C)O[Si](C)(C)CCCN GPXCORHXFPYJEH-UHFFFAOYSA-N 0.000 description 3
- JYCTWJFSRDBYJX-UHFFFAOYSA-N 5-(2,5-dioxooxolan-3-yl)-3a,4,5,9b-tetrahydrobenzo[e][2]benzofuran-1,3-dione Chemical compound O=C1OC(=O)CC1C1C2=CC=CC=C2C(C(=O)OC2=O)C2C1 JYCTWJFSRDBYJX-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- PLVUIVUKKJTSDM-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)sulfonylbenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=C(F)C=C1 PLVUIVUKKJTSDM-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 2
- FPHRTSFRLFDOHZ-UHFFFAOYSA-N 3-[[4-[3-aminopropyl(dimethyl)silyl]phenyl]-dimethylsilyl]propan-1-amine Chemical compound NCCC[Si](C)(C)C1=CC=C([Si](C)(C)CCCN)C=C1 FPHRTSFRLFDOHZ-UHFFFAOYSA-N 0.000 description 2
- LSQARZALBDFYQZ-UHFFFAOYSA-N 4,4'-difluorobenzophenone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 LSQARZALBDFYQZ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 2
- KMKWGXGSGPYISJ-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=CC(N)=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(N)C=C1 KMKWGXGSGPYISJ-UHFFFAOYSA-N 0.000 description 2
- HYDATEKARGDBKU-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]phenoxy]aniline Chemical group C1=CC(N)=CC=C1OC1=CC=C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 HYDATEKARGDBKU-UHFFFAOYSA-N 0.000 description 2
- UTDAGHZGKXPRQI-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 UTDAGHZGKXPRQI-UHFFFAOYSA-N 0.000 description 2
- NUDSREQIJYWLRA-UHFFFAOYSA-N 4-[9-(4-hydroxy-3-methylphenyl)fluoren-9-yl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(O)=CC=2)=C1 NUDSREQIJYWLRA-UHFFFAOYSA-N 0.000 description 2
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 2
- QHHKLPCQTTWFSS-UHFFFAOYSA-N 5-[2-(1,3-dioxo-2-benzofuran-5-yl)-1,1,1,3,3,3-hexafluoropropan-2-yl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)(C(F)(F)F)C(F)(F)F)=C1 QHHKLPCQTTWFSS-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- CJYIPJMCGHGFNN-UHFFFAOYSA-N bicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylic acid Chemical compound C1C2C(C(O)=O)C(C(=O)O)C1C(C(O)=O)C2C(O)=O CJYIPJMCGHGFNN-UHFFFAOYSA-N 0.000 description 2
- XQBSPQLKNWMPMG-UHFFFAOYSA-N bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic acid Chemical compound C1CC2C(C(O)=O)C(C(=O)O)C1C(C(O)=O)C2C(O)=O XQBSPQLKNWMPMG-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- ASBGGHMVAMBCOR-UHFFFAOYSA-N ethanolate;zirconium(4+) Chemical compound [Zr+4].CC[O-].CC[O-].CC[O-].CC[O-] ASBGGHMVAMBCOR-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- OLQWMCSSZKNOLQ-ZXZARUISSA-N (3s)-3-[(3r)-2,5-dioxooxolan-3-yl]oxolane-2,5-dione Chemical compound O=C1OC(=O)C[C@H]1[C@@H]1C(=O)OC(=O)C1 OLQWMCSSZKNOLQ-ZXZARUISSA-N 0.000 description 1
- SHXHPUAKLCCLDV-UHFFFAOYSA-N 1,1,1-trifluoropentane-2,4-dione Chemical compound CC(=O)CC(=O)C(F)(F)F SHXHPUAKLCCLDV-UHFFFAOYSA-N 0.000 description 1
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- KHAWDEWNXJIVCJ-UHFFFAOYSA-N 1-fluoro-4-(4-fluoro-3-nitrophenyl)sulfonyl-2-nitrobenzene Chemical compound C1=C(F)C([N+](=O)[O-])=CC(S(=O)(=O)C=2C=C(C(F)=CC=2)[N+]([O-])=O)=C1 KHAWDEWNXJIVCJ-UHFFFAOYSA-N 0.000 description 1
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 1
- CVBUKMMMRLOKQR-UHFFFAOYSA-N 1-phenylbutane-1,3-dione Chemical compound CC(=O)CC(=O)C1=CC=CC=C1 CVBUKMMMRLOKQR-UHFFFAOYSA-N 0.000 description 1
- MOFZHBRFFAIMKM-UHFFFAOYSA-N 2,3,5,6-tetrafluoro-4-(2,3,5,6-tetrafluoro-4-hydroxyphenyl)phenol Chemical compound FC1=C(F)C(O)=C(F)C(F)=C1C1=C(F)C(F)=C(O)C(F)=C1F MOFZHBRFFAIMKM-UHFFFAOYSA-N 0.000 description 1
- WVHMPQKZPHOCRD-UHFFFAOYSA-N 2,4,5,6-tetrafluorobenzene-1,3-dicarbonitrile Chemical compound FC1=C(F)C(C#N)=C(F)C(C#N)=C1F WVHMPQKZPHOCRD-UHFFFAOYSA-N 0.000 description 1
- LJFDXXUKKMEQKE-UHFFFAOYSA-N 2,4-difluorobenzonitrile Chemical compound FC1=CC=C(C#N)C(F)=C1 LJFDXXUKKMEQKE-UHFFFAOYSA-N 0.000 description 1
- KCUDEOWPXBMDJE-UHFFFAOYSA-N 2,4-dinitrobenzonitrile Chemical compound [O-][N+](=O)C1=CC=C(C#N)C([N+]([O-])=O)=C1 KCUDEOWPXBMDJE-UHFFFAOYSA-N 0.000 description 1
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 1
- BNBRIFIJRKJGEI-UHFFFAOYSA-N 2,6-difluorobenzonitrile Chemical compound FC1=CC=CC(F)=C1C#N BNBRIFIJRKJGEI-UHFFFAOYSA-N 0.000 description 1
- ZYDGHQSJZAFMLU-UHFFFAOYSA-N 2,6-dinitrobenzonitrile Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1C#N ZYDGHQSJZAFMLU-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZYXNLVMBIHVDRH-UHFFFAOYSA-N 2-Methylpropyl 3-oxobutanoate Chemical compound CC(C)COC(=O)CC(C)=O ZYXNLVMBIHVDRH-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- PLHCSZRZWOWUBW-UHFFFAOYSA-N 2-methoxyethyl 3-oxobutanoate Chemical compound COCCOC(=O)CC(C)=O PLHCSZRZWOWUBW-UHFFFAOYSA-N 0.000 description 1
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 1
- DNUJFAMUTDPJDN-UHFFFAOYSA-N 3,5-dichloro-1-methoxy-2,4-dihydrotriazine Chemical compound CON1NN(Cl)CC(Cl)=C1 DNUJFAMUTDPJDN-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- FGWQCROGAHMWSU-UHFFFAOYSA-N 3-[(4-aminophenyl)methyl]aniline Chemical compound C1=CC(N)=CC=C1CC1=CC=CC(N)=C1 FGWQCROGAHMWSU-UHFFFAOYSA-N 0.000 description 1
- UCQABCHSIIXVOY-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]phenoxy]aniline Chemical group NC1=CC=CC(OC=2C=CC(=CC=2)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 UCQABCHSIIXVOY-UHFFFAOYSA-N 0.000 description 1
- AHYFYQKMYMKPKD-UHFFFAOYSA-N 3-ethoxysilylpropan-1-amine Chemical compound CCO[SiH2]CCCN AHYFYQKMYMKPKD-UHFFFAOYSA-N 0.000 description 1
- LJMPOXUWPWEILS-UHFFFAOYSA-N 3a,4,4a,7a,8,8a-hexahydrofuro[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1C2C(=O)OC(=O)C2CC2C(=O)OC(=O)C21 LJMPOXUWPWEILS-UHFFFAOYSA-N 0.000 description 1
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 description 1
- WECDUOXQLAIPQW-UHFFFAOYSA-N 4,4'-Methylene bis(2-methylaniline) Chemical compound C1=C(N)C(C)=CC(CC=2C=C(C)C(N)=CC=2)=C1 WECDUOXQLAIPQW-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical group CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 1
- FYYYKXFEKMGYLZ-UHFFFAOYSA-N 4-(1,3-dioxo-2-benzofuran-5-yl)-2-benzofuran-1,3-dione Chemical compound C=1C=C2C(=O)OC(=O)C2=CC=1C1=CC=CC2=C1C(=O)OC2=O FYYYKXFEKMGYLZ-UHFFFAOYSA-N 0.000 description 1
- QYIMZXITLDTULQ-UHFFFAOYSA-N 4-(4-amino-2-methylphenyl)-3-methylaniline Chemical compound CC1=CC(N)=CC=C1C1=CC=C(N)C=C1C QYIMZXITLDTULQ-UHFFFAOYSA-N 0.000 description 1
- SUCTVKDVODFXFX-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfonyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 SUCTVKDVODFXFX-UHFFFAOYSA-N 0.000 description 1
- WREGWRFRXHKFGE-UHFFFAOYSA-N 4-(4-sulfanylphenoxy)benzenethiol Chemical compound C1=CC(S)=CC=C1OC1=CC=C(S)C=C1 WREGWRFRXHKFGE-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- ZSQIQUAKDNTQOI-UHFFFAOYSA-N 4-[1-(4-aminophenyl)cyclohexyl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)CCCCC1 ZSQIQUAKDNTQOI-UHFFFAOYSA-N 0.000 description 1
- SVOBELCYOCEECO-UHFFFAOYSA-N 4-[1-(4-hydroxy-3-methylphenyl)cyclohexyl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C2(CCCCC2)C=2C=C(C)C(O)=CC=2)=C1 SVOBELCYOCEECO-UHFFFAOYSA-N 0.000 description 1
- BEKFRNOZJSYWKZ-UHFFFAOYSA-N 4-[2-(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]aniline Chemical compound C1=CC(N)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(N)C=C1 BEKFRNOZJSYWKZ-UHFFFAOYSA-N 0.000 description 1
- PVFQHGDIOXNKIC-UHFFFAOYSA-N 4-[2-[3-[2-(4-hydroxyphenyl)propan-2-yl]phenyl]propan-2-yl]phenol Chemical compound C=1C=CC(C(C)(C)C=2C=CC(O)=CC=2)=CC=1C(C)(C)C1=CC=C(O)C=C1 PVFQHGDIOXNKIC-UHFFFAOYSA-N 0.000 description 1
- SIDYFHJPUCRHJY-UHFFFAOYSA-N 4-[2-[4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]phenyl]propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=CC(=CC=2)C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 SIDYFHJPUCRHJY-UHFFFAOYSA-N 0.000 description 1
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 1
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 1
- HHLMWQDRYZAENA-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropan-2-yl]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)(C(F)(F)F)C(F)(F)F)C=C1 HHLMWQDRYZAENA-UHFFFAOYSA-N 0.000 description 1
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 1
- KIFDSGGWDIVQGN-UHFFFAOYSA-N 4-[9-(4-aminophenyl)fluoren-9-yl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 KIFDSGGWDIVQGN-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 1
- YWFPGFJLYRKYJZ-UHFFFAOYSA-N 9,9-bis(4-hydroxyphenyl)fluorene Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YWFPGFJLYRKYJZ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- JLLMOYPIVVKFHY-UHFFFAOYSA-N Benzenethiol, 4,4'-thiobis- Chemical compound C1=CC(S)=CC=C1SC1=CC=C(S)C=C1 JLLMOYPIVVKFHY-UHFFFAOYSA-N 0.000 description 1
- WOFAGNLBCJWEOE-UHFFFAOYSA-N Benzyl acetoacetate Chemical compound CC(=O)CC(=O)OCC1=CC=CC=C1 WOFAGNLBCJWEOE-UHFFFAOYSA-N 0.000 description 1
- VOWWYDCFAISREI-UHFFFAOYSA-N Bisphenol AP Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=CC=C1 VOWWYDCFAISREI-UHFFFAOYSA-N 0.000 description 1
- GIXXQTYGFOHYPT-UHFFFAOYSA-N Bisphenol P Chemical compound C=1C=C(C(C)(C)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 GIXXQTYGFOHYPT-UHFFFAOYSA-N 0.000 description 1
- PRQLVDASXOYCNU-UHFFFAOYSA-N C1=CC=C2C=CC=CC2=C1.C1=CC=CC=C1.C1=CCC=C1.C1=NC=NC=N1.O=C1CCC(=O)N1.O=C1CCCC(=O)N1 Chemical compound C1=CC=C2C=CC=CC2=C1.C1=CC=CC=C1.C1=CCC=C1.C1=NC=NC=N1.O=C1CCC(=O)N1.O=C1CCCC(=O)N1 PRQLVDASXOYCNU-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- ZWOASCVFHSYHOB-UHFFFAOYSA-N benzene-1,3-dithiol Chemical compound SC1=CC=CC(S)=C1 ZWOASCVFHSYHOB-UHFFFAOYSA-N 0.000 description 1
- WYLQRHZSKIDFEP-UHFFFAOYSA-N benzene-1,4-dithiol Chemical compound SC1=CC=C(S)C=C1 WYLQRHZSKIDFEP-UHFFFAOYSA-N 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- VRPKUXAKHIINGG-UHFFFAOYSA-N biphenyl-4,4'-dithiol Chemical compound C1=CC(S)=CC=C1C1=CC=C(S)C=C1 VRPKUXAKHIINGG-UHFFFAOYSA-N 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- NZZIMKJIVMHWJC-UHFFFAOYSA-N dibenzoylmethane Chemical compound C=1C=CC=CC=1C(=O)CC(=O)C1=CC=CC=C1 NZZIMKJIVMHWJC-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 229940113088 dimethylacetamide Drugs 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- MFGZXPGKKJMZIY-UHFFFAOYSA-N ethyl 5-amino-1-(4-sulfamoylphenyl)pyrazole-4-carboxylate Chemical compound NC1=C(C(=O)OCC)C=NN1C1=CC=C(S(N)(=O)=O)C=C1 MFGZXPGKKJMZIY-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- WXPNTKUIDRYHOP-UHFFFAOYSA-L magnesium;3-oxobutanoate Chemical compound [Mg+2].CC(=O)CC([O-])=O.CC(=O)CC([O-])=O WXPNTKUIDRYHOP-UHFFFAOYSA-L 0.000 description 1
- HFTSQAKJLBPKBD-UHFFFAOYSA-N magnesium;butan-1-olate Chemical compound [Mg+2].CCCC[O-].CCCC[O-] HFTSQAKJLBPKBD-UHFFFAOYSA-N 0.000 description 1
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 1
- CRGZYKWWYNQGEC-UHFFFAOYSA-N magnesium;methanolate Chemical compound [Mg+2].[O-]C.[O-]C CRGZYKWWYNQGEC-UHFFFAOYSA-N 0.000 description 1
- WNJYXPXGUGOGBO-UHFFFAOYSA-N magnesium;propan-1-olate Chemical compound CCCO[Mg]OCCC WNJYXPXGUGOGBO-UHFFFAOYSA-N 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- AXLMPTNTPOWPLT-UHFFFAOYSA-N prop-2-enyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCC=C AXLMPTNTPOWPLT-UHFFFAOYSA-N 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- GVIIRWAJDFKJMJ-UHFFFAOYSA-N propan-2-yl 3-oxobutanoate Chemical compound CC(C)OC(=O)CC(C)=O GVIIRWAJDFKJMJ-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- ZDYVRSLAEXCVBX-UHFFFAOYSA-N pyridinium p-toluenesulfonate Chemical compound C1=CC=[NH+]C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 ZDYVRSLAEXCVBX-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- JKUYRAMKJLMYLO-UHFFFAOYSA-N tert-butyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OC(C)(C)C JKUYRAMKJLMYLO-UHFFFAOYSA-N 0.000 description 1
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 1
- MDDPTCUZZASZIQ-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]alumane Chemical compound [Al+3].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] MDDPTCUZZASZIQ-UHFFFAOYSA-N 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- LPEBYPDZMWMCLZ-CVBJKYQLSA-L zinc;(z)-octadec-9-enoate Chemical compound [Zn+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LPEBYPDZMWMCLZ-CVBJKYQLSA-L 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/006—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/42—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D171/00—Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/02—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/425—Coatings comprising at least one inhomogeneous layer consisting of a porous layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/465—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/77—Coatings having a rough surface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/269—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31616—Next to polyester [e.g., alkyd]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31623—Next to polyamide or polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31667—Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
Definitions
- glass may include no alkali glass and alumina silicate glass.
- Substrates for use in the present invention which may be formed of any materials capable of being finally formed into a shape according to a use purpose, include flat plates, films, and sheets, and may have a two-dimensional or three-dimensional curved surface. The thickness can be appropriately determined, and is generally 5 nm or less, but is not limited thereto.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- This application is a continuation of International Application No. PCT/JP2008/053129, filed Feb. 19, 2008, which claims the benefit of Japanese Patent Applications No. 2007-040003, filed Feb. 20, 2007, and No. 2008-033290, filed Feb. 14, 2008.
- 1. Field of the Invention
- The present invention relates to an optical member having an antireflection property and an optical system using the same, and more particularly, to an optical member suitable for obtaining a high antireflection property in a visible region to a near infrared region over a long period of time, and an optical system using the same.
- 2. Description of the Related Art
- It is known that an antireflection structure using a fine periodic structure having a wavelength of the visible light region or a shorter wavelength forms a fine periodic structure having an appropriate pitch and height, and thereby shows an excellent antireflection property in a wide wavelength region. As a method for forming a fine periodic structure, coating of a film in which fine particles having a particle diameter equal to or less than the wavelength are dispersed (Japanese Patent No. 03,135,944) or the like is known.
- Further, it is known that a method of forming a fine periodic structure by formation of a pattern by a finely processing apparatus (electron beam lithography apparatus, laser interference light exposure apparatus, semiconductor light exposure apparatus, etching apparatus, etc.) allows a pith and a height to be controlled, and enables the formation of the fine periodic structure having an excellent antireflection property (Japanese Patent Application Laid-Open No. S50-70040).
- As methods other than the methods described above, methods of growing boehmite that is an oxide hydroxide of aluminum on a substrate to obtain an antireflection effect are known. In those methods, a layer of aluminum oxide (alumina) formed by the vacuum film formation process (Japanese Patent Publication No. S61-48124) or the liquid phase process (sol-gel process) (Japanese Patent Application Laid-Open No. H09-202649) is subjected to water vapor treatment or hot water dipping treatment to form a surface layer into boehmite to form a fine periodic structure, and thereby an antireflection film is obtained.
- Further, an antireflection film in which a film which contains SiO2 as a main component and has a refractive index between that of a substrate and that of boehmite is provided between the substrate and the boehmite has been proposed (Japanese Patent Application Laid-Open No. 2006-259711).
- A metal oxide and a metal halide layer to be formed by a technology using fine particles or a method of growing boehmite on a substrate is produced easily with a high productivity and exhibits excellent optical characteristics. On the other hand, such a metal oxide and a metal halide layer have a low density and a number of voids, so moisture or the like reaches the substrate easily from outside, which easily causes the erosion of the substrate and the elution of a substrate component such as alkali ions. Further, there is a problem in that the eluted component makes it difficult to keep the fine structure, resulting in decreased performance.
- Further, in an antireflection film including a film containing SiO2 as a main component between a substrate and boehmite, a film component is eluted from the film containing SiOn2 as a main component due to hot water treatment, which changes optical characteristics.
- There is a demand for an antireflection film using a fine periodic structure, which can be formed more easily and has high reliability in low-temperature sintering.
- The present invention has been made in view of the related art described above, and an object is to provide an optical member which can maintain a high-performance antireflection effect over a long period of time for any substrate, an optical system using the same and a method of manufacturing an optical member.
- The present invention provides an optical member configured in a manner described below for achieving the above-mentioned object.
- The present invention provides an optical member having plural layers formed on a substrate, including at least one plate crystal layer formed of a plate crystal containing aluminum oxide as a main component, and at least one layer containing an organic resin as a main component formed between the substrate and the plate crystal layer, the organic resin including an aromatic ring and/or an imide ring in a main chain.
- Further, the present invention provides the optical member, in which the plate crystal is boehmite.
- Further, the present invention provides the optical member, in which the plate crystal layer has a refractive index that continuously increases from a surface layer side to a substrate side.
- Further, the present invention provides the optical member, in which a surface of the plate crystal layer has an uneven profile.
- Further, the present invention provides the optical member, in which a percentage of water absorption of the organic resin is 0.05% or more and 2% or less.
- Further, the present invention provides the optical member, in which the organic resin is a thermoplastic resin.
- Further, the present invention provides the optical member, in which at least a part of the organic resin has a repeating unit (—SiR2—O—)m, where R is a methyl group or a phenyl group, and m is an integer of 1 or more and 6 or less.
- Further, the present invention provides the optical member, in which the refractive index nb of the substrate, the refractive index ni of the layer containing the organic resin as a main component, and the refractive index ns of the plate crystal layer formed of a plate crystal containing the aluminum oxide as a main component satisfy nb≧ni≧ns.
- Further, the present invention provides the optical member, in which the thickness of the layer containing the organic resin as a main component is 10 nm or more and 150 nm or less.
- Further, the present invention provides the optical member, in which the substrate is made of glass.
- Further, the present invention provides an optical system including the optical member according to any one of the above-described ones.
- Further, the present invention provides a method of manufacturing an optical member, including: forming a layer containing an organic resin as a main component on a substrate; forming a layer containing aluminum oxide as a main component; and subjecting the layer containing aluminum oxide as a main component to hot water treatment to form unevenness on a surface, characterized in that the refractive index nb of the substrate, the refractive index ni of the layer containing an organic resin as a main component, and the refractive index ns of the layer containing aluminum oxide as a main component satisfy nb≧ni≧ns.
- According to the present invention, an optical member capable of exhibiting a high antireflection effect stably over a long period of time can be provided.
- Further, according to the present invention, an optical system having the above optical member can be provided.
-
FIG. 1 is a schematic diagram illustrating one embodiment of an optical transparent element of the present invention. -
FIG. 2 is a schematic diagram illustrating one embodiment of a refractive index profile of an optical transparent element of the present invention. -
FIGS. 3A and 3B are each a schematic diagram illustrating one embodiment of an optical transparent element of the present invention. -
FIG. 4 is a photograph in Example 1 (magnification: ×100,000) illustrating a result of observation of a thin film formed on a glass substrate and having fine unevenness on the surface from the top surface by an FE-SEM. -
FIG. 5 is a photograph in Example 1 (magnification: ×150,000) illustrating a result of observation of the cross-section of a thin film formed on a glass substrate and having fine unevenness by an FE-SEM. -
FIG. 6 is a front view of Example 16 of the present invention. -
FIG. 7 is a cross-sectional view of Example 16 of the present invention. -
FIG. 8 is a front view of Example 17 of the present invention. -
FIG. 9 is a cross-sectional view of Example 17, of the present invention. -
FIG. 10 is a front view of Example 18 of the present invention. -
FIG. 11 is a cross-sectional view of Example 18 of the present invention. -
FIG. 12 is a front view of Example 19 of the present invention. -
FIG. 13 is a cross-sectional view of Example 19 of the present invention. -
FIG. 14 is a front view of Example 20 of the present invention. -
FIG. 15 is a cross-sectional view of Example 21 of the present invention. -
FIG. 16 is a cross-sectional view of Example 22 of the present invention. -
FIG. 17 is a cross-sectional view of Example 23 of the present invention. - Hereinafter, the present invention will be described.
-
FIG. 1 is a schematic cross-sectional view schematically illustrating an optical member according to the embodiment of the present invention. As shown inFIG. 1 , in the optical member of the present invention, a laminated structure including alayer 26 containing an organic resin as a main component and aplate crystal layer 27 formed of a plate crystal containing aluminum oxide as a main component formed on the surface of thelayer 26 is formed on the surface of asubstrate 25. The plate crystal forming theplate crystal layer 27 that is one layer of the laminated structure refers to a plate crystal that is deposited and grows on the surface layer of a film containing aluminum oxide as a main component when the film is soaked in hot water and then the surface layer of the aluminum oxide film is subjected to a deflocculating action or the like. - The
plate crystal layer 27 is preferably a layer of which the refractive index continuously increases from the surface layer side to the substrate side, and a change in the refractive index with respect to the film thickness can be represented by a straight line (a) or a curve (b) or (c) as shown inFIG. 2 . Due to the continuous increase in the refractive index from the surface layer side to the substrate side, a reflectance reduction effect is larger compared with the case where a layer having higher refractive index is laminated subsequently from the surface layer side. - Further, the refractive index of the
plate crystal layer 27 continuously increases from the surface layer side to the substrate side, so it is preferred that the surface have an uneven profile.FIGS. 3A and 3B are schematic cross-sectional views schematically illustrating an optical member according to the embodiment of the present invention in this case. - In
FIGS. 3A and 3B , the optical member of the present invention has alayer 29 containing an organic resin as a main component and aplate crystal layer 30 formed of a plate crystal containing aluminum oxide as a main component on thesubstrate 28. - The surface of the
plate crystal layer 30 has anuneven profile 31. - The
plate crystal layer 30 containing aluminum oxide as a main component are formed of a crystal containing an oxide or a hydroxide of aluminum or a hydrate thereof as a main component. Especially preferred crystals are boehmite. By placing these plate crystals, their end portions formfine unevenness 31, and therefore it is preferred that the plate crystals be selectively arranged with a predetermined angle to the surface of a layer for increasing the height of the fine unevenness and reducing the intervals therebetween. In the present application, an oxide or hydroxide of aluminum, or a hydrate thereof is referred to as aluminum oxide. Further, one or more oxide layers, which contain aluminum oxide alone or any of ZrO2, SiO2, TiO2, ZnO, and MgO, and of which the amount of aluminum oxide is 70 mol % or more, may be referred to as a layer containing aluminum oxide as a main component. - A case where the surface of the
substrate 28 is a flat surface such as flat plate, a film, or a sheet is shown inFIG. 3A . It is preferred that the plate crystal be arranged with respect to the surface layer of the substrate with an average angle of an angle θ1, between aninclination direction 32 of the plate crystal and the substrate surface, of 45° or more and 90° or less, and more preferably 60° or more and 90° or less. Further, a case where the surface of thesubstrate 28 has a two-dimensional or three-dimensional curved surface is shown inFIG. 3B . It is preferred that the plate crystal be arranged with respect to the surface layer of the substrate with an average angle of an angle θ2, between aninclination direction 32 of the plate crystal and the substrate surface, of 45° or more and 90° or less, and more preferably 60° or more and 90° or less. Note that there may be a case where the value of the angles θ1 and θ2 exceeds 90° depending on the gradient of the plate crystals. In this case, measurement is conducted so that the value is 90° or less. - The thickness of the
plate crystal layer 30 is preferably 20 nm or more and 1,000 nm or less, more preferably 50 nm or more and 1,000 nm or less. If the thickness of the layer forming the unevenness is 20 nm or more and 1,000 nm or less, an antireflection property owing to a fine uneven configuration is effective, the possibility that the mechanical strength of the unevenness is impaired is eliminated and the fine uneven configuration becomes advantageous in terms of manufacturing costs. By setting the thickness to 50 nm or more and 1,000 nm or less, the antireflection property is further improved, which is more preferred. - The surface density of the fine unevenness of the present invention is also important, and the corresponding average surface roughness Ra′ value obtained by two-dimensional extension of a center line average roughness is 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more and 100 nm or less, and the surface area ratio Sr is 1.1 or more, more preferably 1.15 or more, still more preferably 1.2 or more and 3.5 or less.
- One method for evaluating an obtained fine uneven structure is observation of the surface of the fine uneven structure by a scanning probe microscope, and by the observation, the average surface roughness Ra′ value obtained by two-dimensional extension of the center line average roughness Ra of the film and the surface area ratio Sr are determined. Namely, the average surface roughness, Ra′ value (nm), is such a value that the center line average roughness Ra defined in JIS B 0601 is applied to a measurement surface and three-dimensionally extended, and the Ra′ value is expressed as a “value obtained by averaging absolute values of deviations from a reference surface to a specified surface” and given by the following formula (1).
-
- Ra′: average surface roughness value (nm),
S0: area when the measurement surface is ideally flat,
|XR—XL|×|YT-TB|, F(X, Y): height at a measurement point (X, Y), where X is an X coordinate and Y is a Y coordinate,
XL to XR: range of X coordinates on the measurement surface,
YB to YT: range of Y coordinates on the measurement surface, and
Z0: average height within the measurement surface. - The surface area ratio Sr is determined by Sr═S/S0 (S0: area when the measurement surface is ideally flat. S: surface area of an actual measurement surface). The surface area of an actual measurement surface is determined as follows. The measurement surface is divided into minute triangles consisting of closest three data points (A, B, C), and then the area AS of each minute triangle is determined using a vector product. ΔS(ΔBC)=[s(s−AB)(s−BC)(s−AC)]0.5 (where AB, BC and AC are the lengths of the sides, and thus s=0.5(AB+BC+AC)), and the total sum of the areas ΔS is a surface area S to be determined. If Ra′ as the surface density of the fine unevenness is 5 nm or more and Sr is 1.1 or more, antireflection owing to the uneven configuration can be realized. If Ra′ is 10 nm or more and Sr is 1.15 or more, the antireflection effect becomes higher than that of the former case. If, Ra′ is 15 nm or more and Sr is 1.2 or more, the uneven configuration has a performance capable of enduring practical use. However, if Ra′ is 100 nm or more and Sr is 3.5 or more, the effect of scattering by the uneven configuration predominates over the antireflection effect so that a sufficient antireflection property cannot be obtained.
- The
plate crystal layer 30 formed of a plate crystal containing aluminum oxide as a main component in the present invention is obtained by compounding an Al metal alone film or a metal film containing metal Al and one of metal Zn or metal Mg into thelayer 29 containing an organic resin as a main component followed by soaking in hot water at 50° C. or higher or exposure to water vapor. At this time, theuneven profile 31 is formed on the surface of the above metal due to hydration, dissolution, and redeposition. Theplate crystal layer 30 can also be obtained by forming a layer containing aluminum oxide as a main component on thelayer 29 containing an organic resin as a main component, and dissolving or depositing the surface selectively. The above layer containing aluminum oxide as a main component can be formed by a known vapor phase method such as CVD or PVD, a liquid phase method such as a sol-gel process, hydrothermal synthesis using an inorganic salt, or the like. According to the method of providing a plate crystal of aluminum oxide, an amorphous aluminum oxide layer may remain in a lower portion of theuneven profile 31 in theplate crystal layer 30. - It is preferred to use a method of treating a gel film with hot water, the gel film being formed by coating a sol-gel coating solution containing aluminum oxide to grow an alumina plate crystal, because a uniform antireflection layer can be formed on a substrate with a large area or on a non-planar substrate.
- For a raw material of the gel film obtained from a sol-gel coating solution containing aluminum oxide, an Al compound is used, or at least one of compounds of Zr, Si, Ti, Zn and Mg is used together with the Al compound. As raw materials of Al2O3, ZrO2, SiO2, TiO2, ZnO and MgO, metal alkoxides of the respective metals and salt compounds such as chlorides and nitrates of the respective metals may be used. Metal alkoxides are preferably used in terms of film formability particularly for ZrO2, SiO2 and TiO2 raw materials.
- Aluminum compounds include, for example, aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-sec-butoxide, aluminum-tert-butoxide, aluminum acetylacetnate or oligomers of these compounds, aluminum nitrate, aluminum chloride, aluminum acetate, aluminum phosphate, aluminum sulfate, and aluminum hydroxide.
- Specific examples of zirconium alkoxides include zirconium tetraethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, and zirconium tetra-t-butoxide.
- For the silicon alkoxide, various kinds of compounds expressed by the general formula Si(OR)4 may be used. R is the same or different lower alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or an isobutyl group.
- Titanium alkoxides include, for example, tetramethoxy titanate, tetraethoxy titanate, tetra n-propoxy titanate, tetraisopropoxy titanate, tetra n-butoxy titanate, and tetraisobutoxy titanate.
- Zinc compounds include, for example, zinc acetate, zinc chloride, zinc nitrate, zinc stearate, zinc oleate, and zinc salicylate, and especially preferred are zinc acetate and zinc chloride.
- Magnesium compounds include magnesium alkoxides such as magnesium dimethoxide, magnesium diethoxide, magnesium dipropoxide and magnesium dibutoxide, magnesium acetylacetate, and magnesium chloride.
- Organic solvents, which may be any organic solvents which do not cause raw materials such as the above-mentioned alkoxides to gelate, include: for example, alcohols such as methanol, ethanol, 2-propanol, butanol, ethylene glycol, and ethylene glycol-mono-n-propyl ether; various kinds of aliphatic or alicyclic hydrocarbons such as n-hexane, n-octane, cyclohexane, cyclopentane, and cyclooctane; various kinds of aromatic hydrocarbons such as toluene, xylene, and ethyl benzene; various kinds of esters such as ethyl formate, ethyl acetate, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and ethylene glycol monobuthyl ether acetate; various kinds of ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; various kinds of ethers such as dimethoxy ethane, tetrahydrofuran, dioxane, and diisopropyl ether; various kinds of chlorinated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, and tetrachloroethane; and aprotic polar solvents such as N-methylpyrrolidone, dimethyl formamide, dimethyl acetamide, and ethylene carbonate. Of the various kinds of solvents described above, alcohols are preferably used in terms of stability of a solution.
- If an alkoxide raw material is used, particularly alkoxides of aluminum, zirconium, and titanium are highly reactive to water, and are abruptly hydrolyzed by addition of moisture in air or water, resulting in opacity and precipitation. Aluminum salt compounds, zinc salt compounds and magnesium salt compounds are hard to be dissolved in an organic solvent alone, and the stability of their solutions is low. For prevention of such a situation, a stabilizer is preferably added to stabilize the solution.
- Stabilizers may include, for example: β-diketone compounds such as acetyl acetone, dipyrobilemethane, trifluoroacetylacetone, hexafluoroacetylacetone, benzoylacetone, and dibenzoylmethane; β-ketoester compounds such as methyl acetoacetate, ethyl acetoacetate, allyl acetoacetate, benzyl acetoacetate, iso-propyl acetoacetate, tert-butyl acetoacetate, iso-butyl acetoacetate, 2-methoxyethyl acetoacetate, and 3-keto-n-methyl valeriate; and alkanol amines such as monoethanol amine, diethanol amine and triethanol amine. The amount of stabilizer added is preferably about 1 in terms of molar ratio to the alkoxide or salt compound. After the stabilizer is added, a catalyst is preferably added for the purpose of promoting part of the reaction in order to form an appropriate precursor. Catalysts may include, for example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, and ammonia. As a method for forming a film using the above-described sol-gel coating solution, for example, a known coating method such as a dipping method, a spin coating method, a spray method, a printing method, a flow coating method, and a combination thereof may be appropriately employed.
- After being coated with the above sol-gel coating solution, it is preferable to conduct heat-treatment in a range of 120° C. or more and 230° C. or less. As the temperature of heat treatment is higher, the film is likely to become more dense. However, when the temperature of the heat treatment exceeds 230° C., the damage such as deformation is caused in the substrate. The temperature of the heat treatment is more preferably 150° C. or more and 210° C. or less. The heating time is preferably 10 minutes or longer, although depending upon the heating temperature.
- Then, a gel film which had undergone drying or heat treatment is immersed in hot water, whereby plate crystals containing aluminum oxide as a main component is precipitated to form an unevenness profile of the outermost surface. By immersion in hot water, the surface layer of the gel film containing aluminum oxide undergoes a deflocculating action or the like, and some components are eluted, but due to a difference in solubility in hot water between various kinds of hydroxides, plate crystals containing aluminum oxide as a main component are precipitated on the surface layer of the gel film, and grow. The temperature of hot water is preferably 40° C. to 100° C. The hot water treatment time is about 5 minutes to about 24 hours.
- For the hot water treatment of a gel film with oxides such as TiO2, ZrO2, SiO2, ZnO and MgO added as different kinds of components to the film containing aluminum oxide as a main component, crystallization is carried out using a difference in solubility in hot water between the components, and therefore unlike the hot water treatment of the single component film of aluminum oxide, the size of plate crystals can be controlled over a wide range by changing the composition of inorganic components. As a result, the unevenness profile formed by plate crystals can be controlled over the wide range. Moreover, if ZnO is used as a subcomponent, coprecipitation with aluminum oxide is possible, and therefore the refractive index can be controlled over a further wide range. Therefore, an excellent antireflection property is realized.
- The organic resin used in the
layer 29 containing an organic resin as a main component of the present invention may have a function of adjusting the refractive index difference between thesubstrate 28 and theplate crystal layer 30 containing aluminum oxide as a main component, and may be transparent in a wavelength region of light to be used. - The
layer 29 containing an organic resin as a main component of the present invention adjusts the refractive index difference between thesubstrate 28 and theplate crystal layer 30 containing aluminum oxide as a main component, thereby contributing to the exhibition of high antireflection property. Therefore, it is desired that thelayer 29 have an optimum film thickness and refractive index, and the optimum film thickness and refractive index are kept stably from the time when the film is produced. In the application of the present invention, a layer containing 80% by weight or more of an organic resin may be referred to as a layer containing an organic resin as a main component. - It is preferred that an organic resin having an aromatic ring and/or an imide ring in a main chain be used in the layer containing an organic resin as a main component of the present invention. An example of the aromatic ring or imide ring includes structures represented by the following chemical formulae.
- Because an aromatic ring or an imide ring has a planar structure, molecular chains of an organic resin in which these structures are introduced in a main chain are likely to be aligned parallel to the substrate during the formation of a film. Therefore, even in the case where the
organic resin layer 29 of the present invention having a film thickness of several 100 nm or less is used, the uniformity of film thickness and refractive index is high. Further, in that case, solvent resistance is excellent, a glass transition temperature is high, heat resistance is excellent, and film thickness and refractive index are unlikely to change. - When an organic resin having no aromatic ring and/or no imide ring in a main chain is used, molecular chains get entangled with each other randomly, so a decrease in refractive index probably caused by a decrease in density is observed when the resin is formed into a thin film. This also applies to the case where the
plate crystal layer 30 formed of plate crystal containing aluminum oxide as a main component is produced from a sol-gel coating solution containing aluminum oxide. That is, for the same reasons as those in the above, the dissolution in a solvent contained in a sol-gel coating solution, a change in film thickness and refractive index due to swelling, deformation during drying by heating, decomposition, and coloring are likely to occur. - Further, in order to obtain the
plate crystal layer 30 formed of plate crystals containing aluminum oxide as a main component, a gel film containing the aluminum oxide is exposed to water vapor or is soaked in hot water. At this time, it is desired that the change in film thickness and refractive index of the organic resin layer be minimized. In view of foregoing, it is preferred to use theorganic resin layer 29 in which dissolution and swelling are unlikely to occur with hot water, unlike the organic resin having an aromatic ring and/or imide ring in a main chain. Further, the density of the film in the plate crystal layer is low, so moisture or the like from outside passes through the metal oxide layer easily and reaches the surface of the substrate. At this time, the surface of the substrate is eroded with moisture or the like, and a substrate component is eluted to degrade the performance of the optical member. Thelayer - Regarding the kind of the organic resin, any of a thermosetting resin and a thermoplastic resin can be used as long as it is an organic resin having an aromatic ring and/or an imide ring in a main chain. Examples of the thermosetting resin include cured products of a compound or an oligomer having one or more reactive or polymerizable substituents, such as an epoxy group, an oxetanyl group, an episulphide group, a methylol group, an isocyanate group, a thioisocynate group, a vinyl ether group, an acryloyl group, a methacryloyl group, and a maleimide group. Even if one compound or oligomer contains two or more kinds of reactive or polymerizable substituents, a cured resin obtained by mixing two or more kinds of compounds having different reactive or polymerizable substituents or oligomers, followed by curing can be used. Examples of the cured resin having an aromatic ring and/or an imide ring in a main chain include a cured product of bisphenol A epoxy, a cured product of m-phenylenediisocyanate, and cured products of a methylomelamine resin, a guanamine resin, and a maleimide resin.
- In the case of using a cured resin, an initiator and a curing agent can be used together when the above compound is cured. The initiator is mostly selected from radical, cation, and anion initiators depending upon the reactivity of a substituent of the above compound. Further, in the case of heat curing, a thermal decomposition type initiator is widely used. Examples of the thermal decomposition type initiator include N,N-azobisbutyronitrile as a radical initiator, and pyridinium p-toluenesulfonate as a cation initiator. Further, in the case of heat curing, an organic acid such as p-toluenesulfonic acid as a cation initiator and an organic amine such as diazabicycloundecene as an anion initiator may be mixed in small amounts. In the case of conducting curing with light such as UV-light, a photosensitive initiator is used.
- On the other hand, examples of the thermoplastic resin having an aromatic ring and/or an imide ring in a main chain include aromatic polyethers such as polyether ketone and polyether sulfone, aromatic polyesters such as polyethylene terephthalate, aromatic polycarbonate, aromatic polyurethane, aromatic polyurea, aromatic polyamide, and thermoplastic polyimide. Of those, the aromatic polyethers, aromatic polysulfides, polycarbonate, and thermoplastic polyimides are preferred in terms of heat resistance.
- Further, the thermoplastic resin is more preferred since a refractive index and a film thickness do not change under baking conditions, and less uncured monomer remains.
- Further, in order to enhance the adherence between the
substrate 25 and thelayer 29 containing an organic resin as a main component, it is preferred to use an organic resin containing siloxane structure (—SiR2—O—)m, where R is a methyl group or a phenyl group, and m is an integer of 1 to 6. - When the adherence between the
substrate 25 and thelayer 29 is enhanced, film peeing particularly under high temperature and high humidity, cracks and the like can be suppressed. - In the organic resin containing (—SiR2—O—)m, the repeating unit including (—SiR2—O—)m is preferably 30 mol % or less based on the whole repeating units. When it is 30 mol % or more, heat resistance is decreased due to the decrease in glass transition temperature, and wettability with respect to a glass substrate is decreased.
- By changing the structure of an organic resin, the refractive index of the
layer - Polyimide is synthesized generally by polyaddition reaction and dehydration-condensation reaction between a dianhydride and a diamine. By introducing an aliphatic chain, an alicyclic structure, or a fluoroalkyl group into a diamine and/or a dianhydride, a transparent polyimide in a visible light region is obtained. In particular, by using dianhydride having an alicyclic structure, and introducing one or a plurality of various kinds of structures such as siloxane structure, an aliphatic chain, an alicyclic structure, and an aromatic ring into diamine, the refractive index can be changed arbitrarily from 1.5 to 1.7.
- Examples of a dianhydride used for the synthesis of thermoplastic polyimide include: aromatic acid dianhydrides such as pyromellitic dianhydride, 3,3′-biphthalic anhydride, 3,4′-biphthalic anhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, and 4,4′-oxydiphthalic dianhydride; and aliphatic acid dianhydrides such as meso-butane-1,2,3,4-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanecarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo[2.2.2]octo-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicalboxylic anhydride, and 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride. From the viewpoint of enhancing solubility, coating property, and transparency of polyimide, preferred are 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 1,2,3,4-cyclobutanecarboxylic dianhydride, bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicalboxylic anhydride, and 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride.
- Examples of the diamine used for the synthesis of thermoplastic polyimide include: aromatic diamines such as m-phenylenediamine, p-phenylenediamine, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyldiphenylmethane, o-tolidine, m-tolidine, 4,4′-diaminobenzophenone, 1,1-bis(4-aminophenyl)cyclohexane, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4′-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]sulfone, 4,4′-bis(3-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]sulfone, 9,9-bis(4-aminophenyl)fluorene, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, and 2,2′-bis(trifluoromethyl)benzidine; aliphatic diamines such as 1,4-diaminobutane, 1,5-diaminopentane, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4′-methylenebis(cyclohexylamine), 4,4′-methylenebis(2-methylcyclohexylamine), and 1,4-bis(aminomethyl)cyclohexane; and —SiR2—O— group-containing diamines such as 1,3-bis(3-aminopropyl)tetramethyldisiloxane and 1,4-bis(3-aminopropyldimethylsilyl)benzene. From the viewpoint of adherence with an inorganic substrate such as glass, it is preferred to include at least —SiR2—O— group-containing diamines such as 1,3-bis(3-aminopropyl)tetramethyldisiloxane and 1,4-bis(3-aminopropyldimethylsilyl)benzene.
- The aromatic polyethers are synthesized generally by subjecting a bisphenol and an aromatic dihalide to condensation reaction in a solvent in the presence of a base such as potassium carbonate. When bisphenol is replaced by aromatic disulfide, aromatic polysulfide is synthesized. By introducing one or a plurality of various kinds of structures into bisphenol or aromatic disulfide and aromatic dihalide, the refractive index can be changed arbitrarily from 1.5 to 1.7. Examples of the bisphenol used for the synthesis of aromatic polyether include resorcinol, hydroquinone, 4,4′-biphenol, 2,2-bis(4-hydroxyphenyl)propane, 4,4′-dihydroxydiphenylmethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, 4,4′-(1-α-methylbenzylidene)bisphenol, 1,3-bis[2-(4-hydroxyphenyl)-2-propyl]benzene, α,α′-bis(4-hydroxyphenyl)-1,4-diisopropylbenzene, α,α′-bis(4-hydroxy-3,5-dimethylphenyl)-1,4-diisopropylbenzene, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 4,4′-dihydroxybenzophenone, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxy-3,5-dimethylphenyl)sulfone, octafluoro-4,4′-biphenol, bis(4-fluorophenyl)sulfone, and 2,2-bis(4-hydroxyphenyl)hexafluoropropane.
- Examples of the aromatic disulfide used for the synthesis of aromatic polysulfide include p-benzenedithiol, m-benzenedithiol, 4,4′-oxybisbenzenethiol, 4,4′-thiobisbenzenethiol, and 4,4′-biphenyldithiol.
- Examples of the aromatic dihalide used for the synthesis of aromatic polyether or aromatic polysulfide include 4,4′-dichlorobenzophenone, 4,4′-difluorobenzophenone, 4,4′-dichlorophenyl sulfone, bis(4-fluorophenyl)sulfone, bis(4-fluoro-3-nitrophenyl)sulfone, 2,6-dichlorobenzonitrile, 2,6-difluorobenzonitrile, 2,4-difluorobenzonitrile, tetrafluoroisophthalonitrile, perfluorobiphenyl, and 3,5-dichloro-1-methoxytriazine. Further, instead of dihalide, dinitro compounds such as 2,4-dinitrobenzonitrile and 2,6-dinitrobenzonitrile may be used.
- The aromatic polycarbonate is synthesized generally by a method of allowing bisphenol to react with phosgene in a solution, or a method of allowing bisphenol to react with a carbonate such as diphenyl carbonate in a melt state. By introducing one or a plurality of various kinds of structures into bisphenol, the refractive index can be changed arbitrarily from 1.5 to 1.65.
- As bisphenol used for synthesizing aromatic polycarbonate, bisphenol used for synthesizing the above aromatic polyether is used.
- In addition to the above bisphenol or aromatic disulfide, aliphatic diol and aliphatic disulfide can be used together with aromatic polyether, aromatic polysulfide, and aromatic polycarbonate.
- Further, it is more preferred that a compound having one or more o-hydroxyphenoxypropylsiloxy groups be substituted for a part of bisphenol or aromatic disulfide. According to this method, a (—SiR2—O—)n group can be introduced into a resin, whereby the adherence with respect to a substrate is enhanced.
- It is preferred that the refractive index ni of the
layer 29 containing an organic resin as a main component of the present invention satisfy nb≧ni≧ns with respect to the refractive index nb of thesubstrate 25 and the refractive index ns of theplate crystal layer 30 formed of plate crystal containing the aluminum oxide as a main component. It is preferred to select an organic resin or a structure in the organic resin as such. By adjusting ni in this range, a high antireflection property can be exhibited. - Further, the
layer 29 containing an organic resin as a main component can contain a silane coupling agent in addition to the organic resin so that adherence can be enhanced. Further, in order to adjust the refractive index and decrease the percentage of water absorption, inorganic fine particles such as SiO2, TiO2, ZrO2, SiO2, ZnO, MgO, and Al2O3 can be mixed in a small amount. The amount of components other than the organic resin, which can be mixed, is less than 20 parts by weight based on 100 parts by weight of the entire organic resin layer, and when the components are mixed in an amount exceeding 20 parts by weight, there is a possibility that transparency and uniformity of a film thickness may be impaired. - It is easy to apply the organic resin to a substrate as a solution, which is preferred because this method is suitable for forming a thin film. In the case of a cured resin, a reactive or polymerizable compound or oligomer can be used by dissolving them in an organic solvent together with an initiator and a curing agent. On the other hand, a thermoplastic resin can be used by dissolving it in an organic solvent alone or together with a component other than an organic resin. In the case where the thermoplastic resin itself is insoluble or difficult to be solved in an organic solvent, a thermoplastic resin precursor can be used by dissolving it in an organic solvent. In the case of the latter, the process of converting the precursor into a thermoplastic resin is required.
- Examples of an organic solvent used for forming the
layer 29 containing an organic resin as a main component of the present invention include: ketones such as 2-butanone, methylisobutyl ketone, cyclopentanone, and cyclohexanone; esters such as ethyl acetate, n-butyl acetate, ethyleneglycol monomethylether acetate, propyleneglycol monomethylether acetate, and ethyl lactate; ethers such as tetrahydrofuran, dioxane, and diisopropyl ether; various aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; chlorinated hydrocarbons such as chloroform, methylene chloride, and tetrachloroethane; and solvents such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, and sulfolane. Further, alcohols such as 1-butanol, methyl cellosolve, diglime, and methoxypropanol may also be used. - As the method of forming the
layer 29 containing an organic resin as a main component using a solution of an organic resin, known coating means can be appropriately used, such as dipping, spin coating, spraying, printing, flow coating, and a combination thereof. - After coating of an organic resin solution, it is preferred to heat the solution at 60° C. to 240° C. for 5 minutes to 2 hours so as to remove the solvent. In the case of a resin curable with heat, the removal of the solvent and the curing of the resin can be performed simultaneously by this heat treatment. On the other hand, in the case of a resin curable with another means other than heat, it is necessary to appropriately select the irradiation of light such as UV-light, a laser, an electron beam, an X-ray, and a microwave, a radiation or an electromagnetic wave. Even in the case of curing a resin with another means other than heat, the reaction can be promoted by conducting further heat treatment.
- The thickness of the
layer 29 of the present invention containing an organic resin as a main component is 10 nm or more and 150 nm or less, more preferably 20 nm or more and 100 nm or less. If the thickness is less than the range, it is difficult to form a uniform coating, and desirable optical characteristics cannot be obtained. If the thickness is greater than the range, contribution to the reflection reducing effect is reduced due to interference and the like. - Substrates to be used in the present invention include glass, resins, glass mirrors and mirrors formed of resin. Typical examples of resin substrate include films and molded products of thermoplastic resins, such as polyester, triacetyl cellulose, cellulose acetate, polyethylene terephthalate, polypropylene, polystyrene, polycarbonate, polysulfone, polyacrylate, polymethacrylate, an ABS resin, polyphenylene oxide, polyurethane, polyethylene, polycycloolefin, and polyvinyl chloride; cross-linked films and cross-linked molded products obtained from various kinds of thermosetting resins, such as an unsaturated polyester resin, a phenol resin, a cross-linked polyurethane, a cross-linked acryl resin, and a cross-linked saturated polyester resin. Specific examples of glass may include no alkali glass and alumina silicate glass. Substrates for use in the present invention, which may be formed of any materials capable of being finally formed into a shape according to a use purpose, include flat plates, films, and sheets, and may have a two-dimensional or three-dimensional curved surface. The thickness can be appropriately determined, and is generally 5 nm or less, but is not limited thereto.
- The optical transparent element of the present invention may be further provided with a layer for imparting various kinds of functions, in addition to the layers described above. For example, a hard coat layer may be provided on the layer of plate crystals for improving the hardness of the film, or a water-repellent layer of fluoroalkyl silane or alkyl silane may be provided for imparting water repellency. For the purpose of preventing deposition of contaminants, or the like, a layer of a material having a refractive index lower than that of plate crystals containing aluminum oxide as a main component, or a layer formed of an amphipathic compound may be provided. For improving the adherence between the substrate and the layer containing an organic resin as a main component, an adhesive layer or a primer layer may be used.
- Hereinafter, the present invention will be described specifically with examples. However, the present invention is not limited to the examples. Optical films obtained in examples and comparative examples and having fine unevenness on the surface were evaluated by the methods described below.
- Synthesis of
Polyimides 1 to 5 - Diamine (1), diamine (2), and diamine (3) in an amount of 0.012 mol in total were dissolved in N,N-dimethylacetamide (hereinafter, abbreviated as DMAc). While the diamine solution was cooled with water, 0.12 mol of acid dianhydride was added thereto. The amount of DMAc was set so that the total mass of diamine and acid dianhydride became 20% by weight. The solution was stirred at room temperature for 15 hours, whereby a polymerization reaction was performed. After the solution was diluted with DMAc so as to be 8% by weight, and 7.4 ml of pyridine and 3.8 ml of acetic anhydride were added to the resultant solution, followed by stirring at room temperature for 1 hour. Further, the solution was stirred for 5 hours while it was heated to 50° C. in an oil bath. The polymerized solution was re-precipitated in methanol to extract a polymer, and thereafter, washed in methanol several times. After the solution was dried in vacuum at 100° C., a light yellow powdery polyimide was obtained. The remaining amount of a carboxyl group was measured from a 1H-NMR spectrum to obtain the imidization rate. Table 1 shows compositions of
polyimides 1 to 5. -
TABLE 1 Imidization Diamine Diamine rate Anhydride (1) (2) Diamine (3) (%) Polyimide 1TDA-100 BAPB (0.9) BAPS (0.1) — 98 Polyimide 2TDA-100 BAPP (0.9) LS- — 98 7430 (0.1) Polyimide 3TDA-100 m-TB (0.9) DADCM (0.4) LS- 96 7430 (0.1) Polyimide 4TDA-100 DADCM (0.9) LS- — 95 7430 (0.1) Polyimide 56FDA DADCM (0.9) LS- — 98 7430 (0.1) TDA-100: 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride 6FDA: 4,4′-(hexafluoroisopropylidene)diphtalic dianhydride BAPB: 4,4′-bis(4-aminophenoxy)biphenyl BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propane DADCM: 4,4′-diaminodicyclohexylmethane LS-7430: 1,3-bis(3-aminopropyl)tetramethyldisiloxane - (2) Synthesis of
Polyether Ether Ketone 6 - 2.18 g of 4,4′-difluorobenzophenone, 3.79 g of 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, and 1.72 g of potassium carbonate were added to 15 ml of DMAc, and stirred at room temperature. Further, 7.5 ml of toluene was added to the mixture, and moisture in the system was azeotropically removed while being heated to 120° C. The temperature was raised to 150° C., whereby toluene was removed completely. Further, the temperature was raised to 165° C., and polymerization was performed for 8 hours. After the mixture was diluted with 15 ml of DMAc, the polymerized solution was poured to acidic methanol to obtain a white fibrous polymer. The polymer was washed repeatedly with methanol, followed by drying, whereby
polyether ether ketone 6 was obtained with a yield of 95%. - (3) Preparation of
Polyimide Solutions 6 to 10 - 2.5 g powder of
polyimides 1 to 5 was dissolved in cyclohexanone to preparepolyimide solutions 6 to 10. - (4) Preparation of
Polycarbonate Solution 11 - 2.5 g of bisphenol Z polycarbonate (Z-400 (Trade Name) manufactured by Mitsubishi Gas Chemical Company, Inc.) was dissolved in cyclohexanone to prepare
polycarbonate solution 11. - (5) Preparation of
Thermosetting Resin Solution 12 - 5 g of melamine resin (NIKALAC MX-750LM (Trade Name) manufactured by Nippon Carbide Industries Co., Inc.) and 0.025 g of p-toluene sulfonic acid were dissolved in 95 g of 1-methoxy-2-propanol to prepare
thermosetting resin solution 12. - (6) Preparation of SiO2—TiO2 Sol Solution 13
- A mixed solvent of 3.15 g of 0.01 M diluted hydrochloric acid [HClaq.] and 29.5 g of 1-butanol/2-propanol (hereinafter, abbreviated as IPA) at a ratio of 1/1 (wt.) was added slowly to 14.6 g of ethyl silicate, and stirred at room temperature. After stirring for 6 hours, the resultant mixture was diluted with 92.5 g of a mixed solvent of 1-butanol/IPA at a ratio of 1/1 (wt.) to obtain an A-solution. Then, 10.2 g of tetra n-butoxytitanate and 3.9 g of ethylacetacetate were successively dissolved in 25.5 g of the mixed solvent of 1-butanol/IPA at a ratio of 1/1 (wt.). This solution was stirred at room temperature for 3 hours to obtain a B-solution. While the A-solution was being stirred, the B-solution was added thereto slowly, and the mixture was stirred for further 3 hours at room temperature, whereby a SiO2—TiO2 sol solution 13 with a Si/Ti molar ratio of 7/3 was prepared.
- (7) Preparation of Aluminum Oxide (alumina(Al2O3))
Sol Solution 14 - 24.6 g of Al(O-sec-Bu)3 was dissolved in 115.3 g of a mixed solvent of 1-butanol/2-propanol (hereinafter, abbreviated as IPA) at a ratio of 1/1 (wt.), and 6.51 g of 3-ethyl oxybutanoate was added to the mixture, followed by stirring at room temperature for about 1 hour. After that, 0.01 M diluted hydrochloric acid [HClaq.] was added to the solution, and stirred at room temperature for about 3 hours. Further, the solution was stirred in an oil bath at 120° C. for 6 hours, whereby an alumina (Al2O3)
sol solution 13 was prepared. - (8) Preparation of Aluminum Oxide (alumina(Al2O3)
Sol Solution 15 - 17.2 g of Al(O-sec-Bu)3 was dissolved in 122.3 g of a mixed solvent of 1-butanol/2-propanol (hereinafter, abbreviated as IPA) at a ratio of 1/1 (wt.), and 4.56 g of 3-ethyl oxybutanoate was added to the solution, followed by stirring at room temperature for about 1 hour. After that, 0.01 M diluted hydrochloric acid [HClaq.] was added to the solution, and stirred at room temperature for about 3 hours. Further, the solution was stirred in an oil bath at 120° C. for 6 hours, whereby an alumina (Al2O3)
sol solution 14 was prepared. - (9) Preparation of a Silane
Coupling Agent Solution 16 - 0.5 g of 3-aminopropylethoxysilane was dissolved in 99.5 g of ethanol, and 0.5 g of ion exchange water was further added to the resultant solution. The solution was stirred at room temperature overnight to obtain a silane
coupling agent solution 15. - (10) Preparation of Polyether
Ether Ketone Solution 17 - 2.5 g of powder of
polyether ether ketone 6 was dissolved in 10 g of cyclohexanone to prepare a polyetherether ketone solution 17. - (11) Preparation of a Polysulfone Solution 18
- 2.5 g of pellet-shaped polysulfone (Mn of 16,000 or more, manufactured by Sigma-Aldrich Corp.) was dissolved in 10 g of γ-butyrolactone to prepare a polysulfone solution 18.
- (12) Preparation of a Polystyrene Solution 19
- 2.5 g of powder of polystyrene (manufactured by Sigma-Aldrich Corp.) was dissolved in 10 g of cyclohexanone to prepare a polystyrene solution 19.
- (13) Measurement of Percentage of Water Absorption of an Organic Resin
- A coating film of various kinds of organic resins was formed on a silicon substrate and sintered at 200° C. for 60 minutes. After that, the water absorption amount of the film after being soaked in ion-exchanged water at 23° C. for 24 hours was measured with a thermogravimetric apparatus (TG/TDA, Thermo plus 2 manufactured by Rigaku Corporation) to obtain the water absorption ratio of the film.
- (14) Washing of Substrate
- Various kinds of glass substrates with a size of about φ30 mm and a thickness of about 2 mm with both surfaces polished were subjected to ultrasonic washing with an alkali detergent and IPA, and dried in an oven.
- (15) Observation of Shape of Coating
- The surface of a surface layer of a coating was photographically observed (acceleration voltage; 10.0 kV, magnification; 30,000) using a scanning electron microscope (FE-SEM, S4500 manufactured by Hitachi Ltd.).
- (16) Measurement of Transmittance
- A transmittance was measured over a range of 350 nm to 850 nm using an automatic optical member measuring apparatus (V-570 manufactured by JASCO). A disc glass plate was used. The angle of incidence of light in measurements of transmittance was 00.
- (17) Measurement of Film Thickness and Refractive Index
- Measurements were made over a range of wavelengths from 380 nm to 800 nm by a spectral ellipsometer (VASE manufactured by J. A. Woollam JAPAN Co., Inc.).
- An appropriate amount of the
polyimide solution 6 was dropped onto one surface of the S-TIH53 (n550nm=1.84) substrate washed by the above method, followed by spin coating at 3,000 rpm for 20 seconds. The substrate was pre-dried at 80° C. for 10 minutes, and thereafter, the other surface was similarly spin-coated with thepolyimide solution 6. After that, the resultant substrate was sintered in a hot air circulation oven at 200° C. for 30 minutes, whereby a substrate with an organic resin layer having thepolyimide 1 on both surfaces was produced. Table 2 shows the thickness, refractive index, and percentage of water absorption of thepolyimide film 1. - An appropriate amount of an
alumina sol solution 14 was dropped onto one surface of the substrate with the film of thepolyimide 1, followed by spin coating at 4,000 rpm for 20 seconds and pre-drying at 80° C. for 10 minutes. The other surface was similarly spin coated with the alumina sol solution. After that, the resultant substrate was sintered in a hot air circulation oven at 200° C. for 30 minutes, whereby the substrate was covered with transparent amorphous Al2O3 films. - Next, the substrate was soaked in hot water at 80° C. for 30 minutes, and dried at 60° C. for 10 minutes.
- The surface of the obtained film was observed by the FE-SEM to find a fine uneven structure in which plate crystals containing Al2O3 as a main component were tangled randomly and complicatedly as shown in
FIG. 4 . By the observation of the cross-section by the FE-SEM, it was observed that a plate crystal layer containing Al2O3 as a main component was arranged selectively with an average angle of 75° with respect to the surface of the substrate. - Then, for the obtained film, the film thickness and the refractive index were measured using ellipsometry. The thickness and the refractive index of each film are shown in Table 3.
- For this substrate, a high-temperature and high-humidity test at a temperature of 60° C. and a humidity of 90% was conducted as an accelerated test for examination on durability of optical performance, and the transmittance was measured at the start, after 250 hours and after 500 hours. The results thereof are shown in Table 3.
- The same operation as in Example 1 was conducted except for using the
polyimide solution 7 in place of thepolyimide solution 6 to form an organic resin layer formed of thepolyimide 2. - The same operation as in Example 2 was conducted except for replacing the substrate by S-LAH65 (n550nm=1.80).
- The same operation as in Example 3 was conducted except for using the
polyimide solution 8 in place of thepolyimide solution 7 to form an organic resin layer formed of thepolyimide 3. - The same operation as in Example 3 was conducted except for using the
polyimide solution 9 in place of thepolyimide solution 7 to form an organic resin layer formed of thepolyimide 4. - An appropriate amount of the silane
coupling agent solution 16 was dropped onto one surface of the washed S-LAH65 (n550nm=1.80) substrate, followed by spin coating at 4,000 rpm for 20 seconds. The resultant substrate was dried at 80° C. for 10 minutes, and the other surface was similarly spin-coated with the silanecoupling agent solution 16, followed by sintering at 80° C. for 10 minutes. An appropriate amount of thepolycarbonate solution 11 was dropped onto one surface of the substrate, followed by spin coating at 3,000 rpm for 20 seconds. The resultant substrate was pre-dried at 80° C. for 10 minutes, and thereafter the other surface was similarly spin-coated with thepolycarbonate solution 11. The resultant substrate was sintered in a hot air circulation oven at 200° C. for 60 minutes, whereby a substrate with an organic resin layer formed of bisphenol Z polycarbonate was produced. Table 2 shows the film thickness, refractive index, and percentage of water absorption of the thermosetting resin film. - Hereinafter, a transparent amorphous Al2O3 film was coated in the same way as in Example 1, and evaluated.
- The same operation as in Example 6 was conducted except for using the
thermosetting resin solution 12 in place of thepolycarbonate solution 11 to form an organic resin layer formed of a thermosetting resin. - The same operation as in Example 4 was conducted except for replacing the substrate by S-LAH66 (n550nm=1.77).
- The same operation as in Example 8 was conducted except for using the
polyimide solution 9 in place of thepolyimide solution 8 to form the organic resin layer formed of thepolyimide 4. - The same operation as in Example 6 was conducted except for replacing the substrate by S-LAH66 (n550nm=1.77).
- The same operation as in Example 7 was conducted except for replacing the substrate by S-LAH66 (n550nm=1.77).
- The same operation as in Example 1 was conducted except for replacing the substrate by S-TIH1(n550nm=1.71) and using the
polyimide solution 10 in place of thepolyimide solution 6 to form an organic resin layer formed of thepolyimide 5. - The same operation as in Example 6 was conducted except for replacing the substrate by S-TIH1 (n550nm=1.71).
- An appropriate amount of the
polyimide solution 7 was dropped onto one surface of the washed S-LAH65 (n550nm=1.80) substrate, followed by spin coating at 3,000 rpm for 20 seconds. The substrate was pre-dried at 80° C. for 10 minutes, and thereafter, the other surface was similarly spin-coated with thepolyimide solution 7. After that, the resultant substrate was sintered in a hot air circulation oven at 200° C. for 30 minutes, whereby a substrate with an organic resin layer having thepolyimide 2 on both surfaces was produced. - An appropriate amount of an
alumina sol solution 15 was dropped onto one surface of the substrate with the film of thepolyimide 2, followed by spin coating at 2,700 rpm for 20 seconds and pre-drying at 80° C. for 10 minutes. The other surface was similarly spin coated with thealumina sol solution 15. After that, the resultant substrate was sintered in a hot air circulation oven at 200° C. for 10 minutes. Further, both surfaces were coated again with thealumina sol solution 15 by the same method, and the substrate was finally sintered at 200° C. for 30 minutes, whereby the substrate was covered with transparent amorphous Al2O3 films. - Next, the substrate was soaked in hot water at 80° C. for 30 minutes, and dried at 60° C. for 10 minutes.
- Hereinafter, the same evaluation as that in Example 1 was conducted.
- The same operation as in Example 14 was conducted except for using the
polycarbonate solution 11 in place of thepolyimide solution 9 to form an organic resin layer formed of polycarbonate. - The same operation as in Example 6 was conducted except for using the polyether
ether ketone solution 17 in place of thepolycarbonate solution 11 to form an organic resin layer formed of polyether ether ketone. - The same operation as in Example 6 was conducted except for using the polysulfone solution 18 in place of the
polycarbonate solution 11 to form an organic resin layer formed of polysulfone. - An appropriate amount of the
alumina sol solution 14 was dropped onto one surface of the washed S-TIH53 (n550nm=1.84) substrate, followed by spin coating at 4,000 rpm for 20 seconds and pre-drying at 80° C. for 10 minutes. The other surface was similarly spin coated with the alumina sol solution. After that, the resultant substrate was sintered in a hot air circulation oven at 200° C. for 30 minutes, whereby the substrate was covered with transparent amorphous Al2O3 films. - Next, the substrate was soaked in hot water at 80° C. for 30 minutes, and dried at 60° C. for 10 minutes.
- Hereinafter, the same evaluation as that in Example 1 was conducted.
- The same operation as that in Comparative Example 1 was conducted except for replacing the substrate by S-LAH65 (n550nm=1.80).
- An appropriate amount of the SiO2—TiO2 sol solution 13 was dropped onto one surface of the washed S-TIH53 (n550nm=1.84) substrate, followed by spin coating at 3,000 rpm for 20 seconds. After the substrate was pre-dried at 80° C. for 10 minutes, the other surface was similarly spin-coated with the SiO2—TiO2 sol solution 13. After that, the substrate was sintered in a hot air circulation oven at 200° C. for 60 minutes, whereby the substrate with amorphous SiO2—TiO2 films on both surfaces was produced. Table 2 shows the film thickness, refractive index, and percentage of water absorption of the amorphous SiO2—TiO2 film.
- Hereinafter, an antireflection film was formed by the same method as that in Example 1 after covering the substrate with the amorphous Al2O3 films, and evaluation was conducted.
- The same operation as that in Comparative Example 3 was conducted except for replacing the substrate by S-LAH65 (n550nm=1.80).
- The same operation as in Example 6 was conducted except for using the polystyrene solution 19 in place of the
polycarbonate solution 11 to form an organic resin layer formed of polystyrene. However, when the substrate was soaked in hot water after being covered with the amorphous Al2O3 films, film peeling occurred from an organic intermediate layer, with the result that an antireflection film was not obtained. -
TABLE 2 Percentage of water Solution absorption (%) Polyimide 1Polyimide solution 61.2 Polyimide 2Polyimide solution 71.3 Polyimide 3Polyimide solution 80.8 Polyimide 4Polyimide solution 91.8 Polyimide 5Polyimide solution 100.6 Bisphenol z Polycarbonate solution 11 0.2 polycarbonate Thermosetting Thermosetting resin 0.8 resin solution 12 Polyether ether Polyether ether ketone 0.2 ketone solution 17 Polysulfone Polysulfone solution 18 0.3 Polystyrene Polystyrene solution 19 0.1 (Note) Percentage of water absorption: after soaking in ion exchanged water at 23° C. for 24 hours -
TABLE 3 Plate crystal layer Transmittance containing Al2O3 measurement result (550 nm) Substrate Organic resin layer as a main component high-temperature and Refractive Film Refractive Film high-humidity test Kind index Kind thickness index thickness Refractive index At start 250 hours 500 hours Example 1 S-TIH53 1.84 Polyimide 1 78 1.66 250 1.42-1.0 99.3 99.2 99.2 Example 2 S-TIH53 1.84 Polyimide 2 75 1.63 250 1.42-1.0 99.2 99.1 99.0 Example 3 S-LAH65 1.80 Polyimide 2 75 1.63 250 1.42-1.0 99.2 99.2 99.2 Example 4 S-LAH65 1.80 Polyimide 3 79 1.61 250 1.42-1.0 99.4 99.5 99.4 Example 5 S-LAH65 1.80 Polyimide 4 78 1.57 250 1.43-1.0 99.4 99.3 99.2 Example 6 S-LAH65 1.80 Polycarbonate 80 1.59 250 1.43-1.0 99.3 99.3 99.2 Example 7 S-LAH65 1.80 Thermosetting resin 70 1.61 250 1.42-1.0 99.2 99.2 99.0 Example 8 S-LAH66 1.77 Polyimide 3 79 1.61 250 1.42-1.0 99.4 99.5 99.4 Example 9 S-LAH66 1.77 Polyimide 4 78 1.57 250 1.42-1.0 99.5 99.5 99.4 Example 10 S-LAH66 1.77 Polycarbonate 80 1.59 250 1.42-1.0 99.5 99.4 99.4 Example 11 S-LAH66 1.77 Thermosetting resin 70 1.61 250 1.42-1.0 99.4 99.3 99.1 Example 12 5-TIH1 1.71 Polyimide 5 78 1.56 250 1.43-1.0 99.4 99.3 99.3 Example 13 5-TIH1 1.71 Polycarbonate 80 1.59 250 1.42-1.0 99.5 99.4 99.3 Example 14 S-LAH65 1.80 Polyimide 2 75 1.63 200 1.42-1.0 99.2 99.1 99.1 Example 15 S-LAH65 1.80 Polycarbonate 80 1.59 200 1.42-1.0 99.2 99.2 99.1 Example 16 S-LAH65 1.80 Polyether ether ketone 75 1.62 250 1.42-1.0 99.5 99.4 99.3 Example 14 S-LAH65 1.80 Polysulfone 78 1.63 200 1.42-1.0 99.2 99.1 99.0 Comparative S-TIH53 1.84 — — — 250 1.40-1.0 97.5 94.2 90.0 Example 1 Comparative S-LAH65 1.80 — — — 250 1.40-1.0 98.0 95.4 93.3 Example 2 Comparative S-TIH53 1.84 SiO2—TiO2 85 1.61 250 1.40-1.0 99.2 98.2 94.2 Example 3 Comparative S-LAH65 1.80 SiO2—TiO2 85 1.61 250 1.40-1.0 99.4 97.8 93.5 Example 4 Comparative S-LAH65 1.80 Polystyrene 70 1.59 Peeling from intermediate layer during hot water treatment Example 5
(Note) The refractive index of the crystal layer of plate crystals shows values of a starting point and an ending point of an inclination refractive index part. For example, the refractive index 1.42-1.0 in Example 1 shows that the refractive index continuously decreases from 1.42 to 1.0. - Performance Evaluation
- As a result of comparing the transmittance at 550 nm with respect to the produced optical films, optical members were obtained with which a high transmittance was kept even after an acceleration durability test in high temperature and high humidity in Examples 1 to 17. On the other hand, in Comparative Example 5, an antireflection film capable of being evaluated for the performance was not obtained due to film peeling. In Comparative Examples 1 and 2, the transmittance was low from the beginning, and the transmittance was decreased after the acceleration durability test in Comparative Examples 3 and 4.
-
FIG. 6 is a front view of an optical member of Example 16. In this figure, anoptical member 1 is a concave lens, and asubstrate 2 is provided with anoptical member 3. -
FIG. 7 illustrates a cross-section of the optical member of Example 18 cut taken along the 7-7 section inFIG. 6 . A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed on an optical surface, and anoptical member 3 having an uneven profile is formed on the outermost surface, whereby reflection of light at the optical surface is reduced. - In this example, the optical member is a concave lens, but the present invention is not limited thereto, and the lens may be either a convex lens or a meniscus lens.
-
FIG. 8 is a front view of an optical member of Example 19. In this figure, anoptical member 1 is a prism, and abase body 2 is provided with anoptical member 3. -
FIG. 9 shows a cross-section of the optical member of Example 19 cut taken along the 9-9 section inFIG. 8 . A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed on an optical surface, and theoptical member 3 having an uneven profile is formed on the outermost surface, whereby reflection of light at the optical surface is reduced. - In this example, angles formed by optical surfaces of the prism are 90° C. and 45° C., but the present invention is not limited thereto, and the optical surfaces of the prism may form any angle.
-
FIG. 10 is a front view of an optical member of Example 20 of the present invention. In this figure, anoptical member 1 is a fly eye integrator, and asubstrate 2 is provided with anoptical member 3. -
FIG. 11 shows a cross-section of an optical member of Example 20 cut taken along the 11-11 section inFIG. 10 . A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed on an optical surface, and anoptical member 3 having an uneven profile is formed on the outermost surface, whereby reflection of light at the optical surface is reduced. -
FIG. 12 is a front view of an optical member of Example 21 of the present invention. In this figure, anoptical member 1 is an fθ lens, and asubstrate 2 is provided with anoptical member 3. -
FIG. 13 illustrates a cross-section of an optical member of Example 21 cut taken along the 13-13 section inFIG. 12 . A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed on an optical surface, an theoptical member 3 having an uneven profile is formed on the outermost surface, whereby reflection of light at the optical surface is reduced. - An example in which the optical member of the present invention is used in an observation optical system is shown as Example 22 of the present invention.
FIG. 14 illustrates a cross-section of one of a pair of optical systems of a binocular. - In this figure,
reference numeral 4 denotes an objective lens,reference numeral 5 denotes a prism (shown in an exposed form) for inverting animages reference numeral 6 denotes an eye lens,reference numeral 7 denotes an image formation surface, andreference numeral 8 denotes a pupil surface (evaluation surface). In the figure reference numeral 3 (shown with a legend) denotes an optical transparent element relating to the present invention. A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed, and the outermost surface has an uneven profile, whereby reflection of light at each optical surface is reduced. In this example, theoptical member 3 formed of a fine uneven configuration is provided neither on anoptical surface 9 of the objective lens closest to an object nor on anoptical surface 10 of the eye lens closest to the evaluation surface. The reason why theoptical member 3 is not provided on these surfaces is that its performance will be degraded due to contact while it is used, but the present invention is not limited thereto, and theoptical member 3 may be provided on theoptical surfaces - An example in which the optical member of the present invention is used in an imaging optical system is shown as Example 23 of the present invention.
FIG. 15 illustrates a cross-section of a photographing lens (telephoto lens is illustrated in this figure) of a camera or the like. - In this figure,
reference numeral 7 denotes a film as an image formation surface, or a solid imaging device (photoelectric conversion element) such as a CCD or a CMOS, andreference numeral 11 denotes a diaphragm. In the figure, reference numeral 3 (shown with a legend) denotes an optical member relating to the present invention. A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed, and the outermost surface has an uneven profile, whereby reflection of light at each optical surface is reduced. In this example, theoptical member 3 formed of a fine uneven configuration is not provided on anoptical surface 9 of the objective lens closest to an object. The reason why theoptical member 3 is not provided on the surface is that its performance will be degraded due to contact while it is used, but the present invention is not limited thereto, and theoptical member 3 may be provided on theoptical surface 9. - An example in which the optical member of the present invention is used in a projection optical system (projector) is shown as Example 24 of the present invention.
FIG. 16 illustrates a cross-section of a projector optical system. - In this figure,
reference numeral 12 denotes a light source,reference numerals reference numeral 14 denotes a polarizing conversion element,reference numeral 15 denotes a condenser lens,reference numeral 16 denotes a mirror,reference numeral 17 denotes a field lens,reference numerals reference numerals reference numeral 20 denotes a projection lens. In the figure, reference numeral 3 (shown with a legend) denotes an optical transparent element relating to the present invention. A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed, and the outermost surface has an uneven profile, whereby reflection of light at each optical surface is reduced. - Because the
optical member 3 of this example is configured to contain an inorganic component such as silica or alumina as a main component, optical member has a high heat resistance, and never suffers from a degradation in performance even if placed at aposition 13 a so close to thelight source 12 that theoptical member 3 is exposed to high heat. - An example in which the optical member of the present invention is used in a scan optical system (laser beam printer) is shown as Example 25 of the present invention.
FIG. 17 illustrates a cross-section of a scan optical system. - In this figure,
reference numeral 12 denotes a light source,reference numeral 21 denotes a collimator lens,reference numeral 11 denotes an aperture diaphragm,reference numeral 22 denotes a cylindrical lens,reference numeral 23 denotes a light deflector,reference numerals reference numeral 7 denotes an image surface. In the figure, reference numeral 3 (shown with a legend) denotes an optical transparent element relating to the present invention. A layer containing an organic resin as a main component, and a layer having arranged plate crystals containing aluminum oxide as a main component are formed, and the outermost surface has an uneven profile, whereby reflection of light at each optical surface is reduced to realize formation of high-quality images. - The optical member of the present invention can be adapted to a transparent substrate having any refractive index, shows an excellent antireflection effect to visible light, and has a long-term weather resistance, and therefore it can be used for various kinds of displays of word processors, computers, televisions, plasma display panels, and the like; optical members such as polarizing plates of liquid crystal apparatuses, sunglass lenses, graduated eyeglass lenses, finder lenses for cameras, prisms, fly-eye lenses, toric lenses, various kinds of optical filters, sensors and the like, which are formed of various kinds of optical glass materials and transparent plastics; and further, photographic optical systems using those optical members, observation optical systems such as binoculars, projection optical systems for use in liquid crystal projectors, various optical lenses of scan optical systems for use in laser printers and the like, covers of various kinds of instruments, and window glasses of automobiles, electric trains, and the like.
- While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
- This application claims the benefit of Japanese Patent Application No. 2007-040003, filed Feb. 20, 2007, and Japanese Patent Application No. 2008-033290, filed Feb. 14, 2008 which are hereby incorporated by reference herein in their entirety.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/544,264 US8163333B2 (en) | 2007-02-20 | 2009-08-20 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US13/417,722 US8541049B2 (en) | 2007-02-20 | 2012-03-12 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-040003 | 2007-02-20 | ||
JP2007040003 | 2007-02-20 | ||
JP2008033290A JP4639241B2 (en) | 2007-02-20 | 2008-02-14 | OPTICAL MEMBER, OPTICAL SYSTEM USING SAME, AND OPTICAL MEMBER MANUFACTURING METHOD |
JP2008-033290 | 2008-02-14 | ||
PCT/JP2008/053129 WO2008102902A1 (en) | 2007-02-20 | 2008-02-19 | Optical member, optical system using the same, and method for producing optical member |
US12/180,987 US7771832B2 (en) | 2007-02-20 | 2008-07-28 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US12/544,264 US8163333B2 (en) | 2007-02-20 | 2009-08-20 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/180,987 Continuation US7771832B2 (en) | 2007-02-20 | 2008-07-28 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/417,722 Continuation US8541049B2 (en) | 2007-02-20 | 2012-03-12 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090305014A1 true US20090305014A1 (en) | 2009-12-10 |
US8163333B2 US8163333B2 (en) | 2012-04-24 |
Family
ID=39710172
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/180,987 Active US7771832B2 (en) | 2007-02-20 | 2008-07-28 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US12/544,264 Active 2028-07-15 US8163333B2 (en) | 2007-02-20 | 2009-08-20 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US12/544,271 Expired - Fee Related US8084082B2 (en) | 2007-02-20 | 2009-08-20 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US12/830,480 Expired - Fee Related US8034437B2 (en) | 2007-02-20 | 2010-07-06 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US13/417,722 Expired - Fee Related US8541049B2 (en) | 2007-02-20 | 2012-03-12 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/180,987 Active US7771832B2 (en) | 2007-02-20 | 2008-07-28 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/544,271 Expired - Fee Related US8084082B2 (en) | 2007-02-20 | 2009-08-20 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US12/830,480 Expired - Fee Related US8034437B2 (en) | 2007-02-20 | 2010-07-06 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
US13/417,722 Expired - Fee Related US8541049B2 (en) | 2007-02-20 | 2012-03-12 | Optical member, optical system using the optical member, and method of manufacturing an optical member |
Country Status (5)
Country | Link |
---|---|
US (5) | US7771832B2 (en) |
EP (2) | EP2977794B1 (en) |
JP (1) | JP4639241B2 (en) |
CN (1) | CN101646960B (en) |
WO (1) | WO2008102902A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110149063A1 (en) * | 2009-12-17 | 2011-06-23 | Industrial Technology Research Institute | Measurement device and method of double-sided optical films |
JP2018086802A (en) * | 2016-11-29 | 2018-06-07 | 旭化成株式会社 | Polyimide film laminate |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7114990B2 (en) | 2005-01-25 | 2006-10-03 | Corning Gilbert Incorporated | Coaxial cable connector with grounding member |
US8501270B2 (en) * | 2005-02-18 | 2013-08-06 | Canon Kabushiki Kaisha | Optical transparent member and optical system using the same |
JP4639241B2 (en) | 2007-02-20 | 2011-02-23 | キヤノン株式会社 | OPTICAL MEMBER, OPTICAL SYSTEM USING SAME, AND OPTICAL MEMBER MANUFACTURING METHOD |
US20110007494A1 (en) * | 2008-03-18 | 2011-01-13 | Masashi Takai | Optical Member And Backlight Device Using The Same |
JP2010072046A (en) * | 2008-09-16 | 2010-04-02 | Canon Inc | Optical element and optical device having the same |
JP5511313B2 (en) * | 2008-11-07 | 2014-06-04 | キヤノン株式会社 | Optical element molding die, optical element molding mold manufacturing method, optical element, and optical element manufacturing method |
JP5814512B2 (en) * | 2009-03-31 | 2015-11-17 | キヤノン株式会社 | OPTICAL MEMBER, ITS MANUFACTURING METHOD, AND OPTICAL SYSTEM |
JP5511307B2 (en) | 2009-10-23 | 2014-06-04 | キヤノン株式会社 | Optical member and manufacturing method thereof |
JP4991943B2 (en) * | 2010-02-26 | 2012-08-08 | キヤノン株式会社 | Optical member, polyimide, and manufacturing method thereof |
TWI549386B (en) | 2010-04-13 | 2016-09-11 | 康寧吉伯特公司 | Coaxial connector with inhibited ingress and improved grounding |
JP5279858B2 (en) * | 2010-05-07 | 2013-09-04 | キヤノン株式会社 | Aluminum oxide precursor sol and method for producing optical member |
JP2012073590A (en) * | 2010-08-31 | 2012-04-12 | Canon Inc | Optical member, production method of the same, and optical system |
JP5553717B2 (en) * | 2010-09-17 | 2014-07-16 | 富士フイルム株式会社 | Light measuring method and measuring apparatus using photoelectric field enhancement device |
JP5552007B2 (en) * | 2010-09-17 | 2014-07-16 | 富士フイルム株式会社 | Photoelectric field enhancement device |
JP5641851B2 (en) | 2010-09-30 | 2014-12-17 | キヤノン株式会社 | Coating liquid for optical film production, method for producing the same, and method for producing optical film |
JP5932222B2 (en) | 2011-01-19 | 2016-06-08 | キヤノン株式会社 | Optical member and manufacturing method thereof |
US20120207973A1 (en) * | 2011-02-15 | 2012-08-16 | Canon Kabushiki Kaisha | Optical member, method of manufacturing the same, and optical system using the same |
JP5647924B2 (en) * | 2011-03-18 | 2015-01-07 | 富士フイルム株式会社 | Manufacturing method of optical member |
KR20140020274A (en) * | 2011-03-31 | 2014-02-18 | 소니 주식회사 | Printed material and photographic material |
JP5801587B2 (en) * | 2011-03-31 | 2015-10-28 | 富士フイルム株式会社 | Method for manufacturing photoelectric field enhancing device |
JP5936444B2 (en) | 2011-07-26 | 2016-06-22 | キヤノン株式会社 | Optical element, optical system and optical apparatus using the same |
US20130072057A1 (en) | 2011-09-15 | 2013-03-21 | Donald Andrew Burris | Coaxial cable connector with integral radio frequency interference and grounding shield |
US9136654B2 (en) | 2012-01-05 | 2015-09-15 | Corning Gilbert, Inc. | Quick mount connector for a coaxial cable |
JP6433110B2 (en) * | 2012-02-10 | 2018-12-05 | キヤノン株式会社 | Optical member and manufacturing method thereof |
US9407016B2 (en) | 2012-02-22 | 2016-08-02 | Corning Optical Communications Rf Llc | Coaxial cable connector with integral continuity contacting portion |
EP2645136B1 (en) | 2012-03-29 | 2017-01-18 | Canon Kabushiki Kaisha | Optical member having textured structure and method of producing same |
EP2644661B1 (en) * | 2012-03-29 | 2018-12-05 | Canon Kabushiki Kaisha | Precursor sol of aluminum oxide and method for manufacturing the same, method for manufacturing optical member, optical member, and optical system |
JP5950667B2 (en) * | 2012-04-16 | 2016-07-13 | キヤノン株式会社 | OPTICAL MEMBER, MANUFACTURING METHOD THEREOF, AND OPTICAL FILM FOR OPTICAL MEMBER |
JP2014006496A (en) * | 2012-05-30 | 2014-01-16 | Canon Inc | Optical member, image pickup apparatus, and method for manufacturing optical member |
JP5885595B2 (en) * | 2012-06-12 | 2016-03-15 | キヤノン株式会社 | Antireflection film, and optical element, optical system, and optical apparatus having the same |
US9287659B2 (en) | 2012-10-16 | 2016-03-15 | Corning Optical Communications Rf Llc | Coaxial cable connector with integral RFI protection |
JP6164824B2 (en) | 2012-11-30 | 2017-07-19 | キヤノン株式会社 | Optical member and manufacturing method thereof |
JP5885649B2 (en) | 2012-12-20 | 2016-03-15 | キヤノン株式会社 | Optical element having antireflection film, optical system and optical apparatus |
FR3000487B1 (en) * | 2012-12-28 | 2015-02-13 | Saint Gobain | TRANSPARENT SUBSTRATE, IN PARTICULAR GLASS SUBSTRATE, COATED BY AT LEAST ONE OR MORE BIFUNCTIONAL POROUS LAYER, MANUFACTURING METHOD AND APPLICATIONS |
US20140252619A1 (en) * | 2013-03-08 | 2014-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect structure that avoids insulating layer damage and methods of making the same |
US10290958B2 (en) | 2013-04-29 | 2019-05-14 | Corning Optical Communications Rf Llc | Coaxial cable connector with integral RFI protection and biasing ring |
EP3000154B1 (en) | 2013-05-20 | 2019-05-01 | Corning Optical Communications RF LLC | Coaxial cable connector with integral rfi protection |
US9548557B2 (en) * | 2013-06-26 | 2017-01-17 | Corning Optical Communications LLC | Connector assemblies and methods of manufacture |
US20170176644A1 (en) * | 2013-11-27 | 2017-06-22 | Canon Kabushiki Kaisha | Optical member and method for manufacturing the same |
WO2015081987A1 (en) * | 2013-12-03 | 2015-06-11 | Vertu Corporation Limited | Optical element with sapphire layer |
JP2015194691A (en) * | 2014-03-24 | 2015-11-05 | パナソニックIpマネジメント株式会社 | Composite optical element and optical material for composite optical element |
JP5805274B2 (en) * | 2014-06-25 | 2015-11-04 | キヤノン株式会社 | Lens manufacturing method |
JP6362105B2 (en) | 2014-08-27 | 2018-07-25 | キヤノン株式会社 | Optical element, optical system, and optical device having antireflection film |
JP2016062014A (en) * | 2014-09-19 | 2016-04-25 | 日本碍子株式会社 | Optical component |
WO2016073309A1 (en) | 2014-11-03 | 2016-05-12 | Corning Optical Communications Rf Llc | Coaxial cable connector with integral rfi protection |
TWI545078B (en) * | 2014-11-25 | 2016-08-11 | 華碩電腦股份有限公司 | Substrate with moth-eye structure and manufacturing method thereof |
US10033122B2 (en) | 2015-02-20 | 2018-07-24 | Corning Optical Communications Rf Llc | Cable or conduit connector with jacket retention feature |
US9590287B2 (en) | 2015-02-20 | 2017-03-07 | Corning Optical Communications Rf Llc | Surge protected coaxial termination |
US10211547B2 (en) | 2015-09-03 | 2019-02-19 | Corning Optical Communications Rf Llc | Coaxial cable connector |
US9525220B1 (en) | 2015-11-25 | 2016-12-20 | Corning Optical Communications LLC | Coaxial cable connector |
JP6227051B2 (en) * | 2016-05-02 | 2017-11-08 | キヤノン株式会社 | Optical member and manufacturing method thereof |
US11105960B2 (en) | 2017-12-19 | 2021-08-31 | Canon Kabushiki Kaisha | Optical element and method of producing the element, and optical instrument |
US11520083B2 (en) | 2017-12-19 | 2022-12-06 | Canon Kabushiki Kaisha | Member, imaging apparatus, and method for producing member |
JP7125863B2 (en) * | 2018-06-08 | 2022-08-25 | デクセリアルズ株式会社 | Method for manufacturing optical laminate |
US12034264B2 (en) | 2021-03-31 | 2024-07-09 | Corning Optical Communications Rf Llc | Coaxial cable connector assemblies with outer conductor engagement features and methods for using the same |
US20230058946A1 (en) * | 2021-08-03 | 2023-02-23 | Largan Precision Co., Ltd. | Optical lens assembly and optical module |
US20240393502A1 (en) * | 2023-05-24 | 2024-11-28 | Canon Kabushiki Kaisha | Optical element, optical system, image pickup apparatus, and manufacturing method of an optical element |
FI20235855A1 (en) * | 2023-08-01 | 2025-02-02 | Teknologian Tutkimuskeskus Vtt Oy | An antireflection coating and method for manufacturing such |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6663957B1 (en) * | 1996-08-14 | 2003-12-16 | Pentax Corporation | Adhesive transparent resin and a composite including the same |
US20060154044A1 (en) * | 2005-01-07 | 2006-07-13 | Pentax Corporation | Anti-reflection coating and optical element having such anti-reflection coating for image sensors |
US20060199040A1 (en) * | 2005-02-18 | 2006-09-07 | Canon Kabushiki Kaisha | Optical transparent member and optical system using the same |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1462618A (en) | 1973-05-10 | 1977-01-26 | Secretary Industry Brit | Reducing the reflectance of surfaces to radiation |
US4190321A (en) * | 1977-02-18 | 1980-02-26 | Minnesota Mining And Manufacturing Company | Microstructured transmission and reflectance modifying coating |
US4690857A (en) | 1984-08-14 | 1987-09-01 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
JPS6148124A (en) | 1984-08-14 | 1986-03-08 | Fuji Photo Film Co Ltd | Magnetic recording medium |
JPS61162001A (en) * | 1985-01-11 | 1986-07-22 | Toray Ind Inc | Optical lens having antireflection film |
CA2026165A1 (en) | 1989-10-19 | 1991-04-20 | John C. Hansen | Perfluoro-n,n,n',n'-tetrapropyldiaminopropane and use thereof in vapor phase heating |
JPH03193442A (en) * | 1989-12-25 | 1991-08-23 | Mitsubishi Kasei Poritetsuku Kk | transparent moisture proof film |
JP3135944B2 (en) | 1991-07-19 | 2001-02-19 | ワシ興産株式会社 | Low reflection transparent body |
JP3193442B2 (en) | 1992-03-11 | 2001-07-30 | 日本合成化学工業株式会社 | Laminate structure |
JPH07168006A (en) | 1993-09-24 | 1995-07-04 | Dainippon Printing Co Ltd | Antireflection coating, antireflection film and manufacture thereof |
US5693415A (en) * | 1995-06-21 | 1997-12-02 | Hanita Coatings | Composite film for windows comprising a non-stoichiometric aluminum oxide layer |
JPH09202649A (en) | 1996-01-24 | 1997-08-05 | Central Glass Co Ltd | Flower pedal-like transparent alumina membrane and its formation |
JP2000066004A (en) * | 1998-08-14 | 2000-03-03 | Fuji Photo Film Co Ltd | Antireflection film and display device with same |
JP2001332130A (en) | 2000-05-19 | 2001-11-30 | Tdk Corp | Functional film |
JP4182236B2 (en) | 2004-02-23 | 2008-11-19 | キヤノン株式会社 | Optical member and optical member manufacturing method |
JP4350597B2 (en) * | 2004-06-14 | 2009-10-21 | 信越ポリマー株式会社 | Antistatic resin composition, antistatic resin paint, optical filter |
JP5005922B2 (en) | 2005-02-03 | 2012-08-22 | 株式会社アサヒオプティカル | Primer composition and plastic lens using the same |
JP4772347B2 (en) | 2005-03-11 | 2011-09-14 | 信越ポリマー株式会社 | Method for producing antistatic paint and method for producing antistatic hard coat layer |
JP4762631B2 (en) | 2005-08-04 | 2011-08-31 | 三和シヤッター工業株式会社 | Attaching structure of the cap to the end of the decorative molding |
JP2008033290A (en) | 2006-06-30 | 2008-02-14 | Pentax Corp | Projection device |
EP1947486B9 (en) | 2007-01-22 | 2012-03-14 | Canon Kabushiki Kaisha | Optical member with antireflection coating and method of manufacturing the same |
JP4639241B2 (en) | 2007-02-20 | 2011-02-23 | キヤノン株式会社 | OPTICAL MEMBER, OPTICAL SYSTEM USING SAME, AND OPTICAL MEMBER MANUFACTURING METHOD |
EP2000289A3 (en) | 2007-06-06 | 2016-04-06 | Canon Kabushiki Kaisha | Method of manufacturing optical element, and optical element |
JP6148124B2 (en) | 2013-09-04 | 2017-06-14 | 東洋ゴム工業株式会社 | Rubber extrusion molding die, tire molding rubber component, and method for manufacturing tire molding rubber component |
JP3193442U (en) | 2014-09-10 | 2014-10-02 | 株式会社Jk | Cardboard box |
-
2008
- 2008-02-14 JP JP2008033290A patent/JP4639241B2/en active Active
- 2008-02-19 CN CN2008800053213A patent/CN101646960B/en active Active
- 2008-02-19 WO PCT/JP2008/053129 patent/WO2008102902A1/en active Application Filing
- 2008-02-19 EP EP15180511.6A patent/EP2977794B1/en active Active
- 2008-02-19 EP EP08711893.1A patent/EP2113797B1/en active Active
- 2008-07-28 US US12/180,987 patent/US7771832B2/en active Active
-
2009
- 2009-08-20 US US12/544,264 patent/US8163333B2/en active Active
- 2009-08-20 US US12/544,271 patent/US8084082B2/en not_active Expired - Fee Related
-
2010
- 2010-07-06 US US12/830,480 patent/US8034437B2/en not_active Expired - Fee Related
-
2012
- 2012-03-12 US US13/417,722 patent/US8541049B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6663957B1 (en) * | 1996-08-14 | 2003-12-16 | Pentax Corporation | Adhesive transparent resin and a composite including the same |
US20060154044A1 (en) * | 2005-01-07 | 2006-07-13 | Pentax Corporation | Anti-reflection coating and optical element having such anti-reflection coating for image sensors |
US20060199040A1 (en) * | 2005-02-18 | 2006-09-07 | Canon Kabushiki Kaisha | Optical transparent member and optical system using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110149063A1 (en) * | 2009-12-17 | 2011-06-23 | Industrial Technology Research Institute | Measurement device and method of double-sided optical films |
JP2018086802A (en) * | 2016-11-29 | 2018-06-07 | 旭化成株式会社 | Polyimide film laminate |
Also Published As
Publication number | Publication date |
---|---|
US20080310026A1 (en) | 2008-12-18 |
US8084082B2 (en) | 2011-12-27 |
WO2008102902A1 (en) | 2008-08-28 |
CN101646960A (en) | 2010-02-10 |
WO2008102902A8 (en) | 2008-12-18 |
EP2113797A4 (en) | 2011-11-09 |
US8163333B2 (en) | 2012-04-24 |
US20100279090A1 (en) | 2010-11-04 |
US7771832B2 (en) | 2010-08-10 |
US8034437B2 (en) | 2011-10-11 |
US20120171370A1 (en) | 2012-07-05 |
EP2977794B1 (en) | 2018-10-31 |
JP4639241B2 (en) | 2011-02-23 |
JP2008233880A (en) | 2008-10-02 |
EP2113797B1 (en) | 2015-09-30 |
EP2113797A1 (en) | 2009-11-04 |
US8541049B2 (en) | 2013-09-24 |
EP2977794A1 (en) | 2016-01-27 |
US20090304929A1 (en) | 2009-12-10 |
CN101646960B (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8163333B2 (en) | Optical member, optical system using the optical member, and method of manufacturing an optical member | |
US9145473B2 (en) | Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide | |
US10459125B2 (en) | Optical member, method for manufacturing optical member, and optical film of optical member | |
JP4520418B2 (en) | Optical transparent member and optical system using the same | |
EP2645136B1 (en) | Optical member having textured structure and method of producing same | |
CN100595608C (en) | Optically transparent component and optical system using the optically transparent component | |
US8980401B2 (en) | Optical member and method of producing the same | |
JP6433110B2 (en) | Optical member and manufacturing method thereof | |
JP5535052B2 (en) | Optical member and optical system using the same | |
JP6227051B2 (en) | Optical member and manufacturing method thereof | |
JP2024065684A (en) | Member having light interference layer and method for manufacturing the same | |
WO2024095908A1 (en) | Member having optical interference layer, and optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |