+

US20090301608A1 - Carburized and induction-hardened component - Google Patents

Carburized and induction-hardened component Download PDF

Info

Publication number
US20090301608A1
US20090301608A1 US11/919,068 US91906806A US2009301608A1 US 20090301608 A1 US20090301608 A1 US 20090301608A1 US 91906806 A US91906806 A US 91906806A US 2009301608 A1 US2009301608 A1 US 2009301608A1
Authority
US
United States
Prior art keywords
induction
carburized
maximum
mass
hardened component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/919,068
Other versions
US8430974B2 (en
Inventor
Takao Taniguchi
Hisao Shirai
Kouji Ohbayashi
Kazuaki Okada
Hideo Kanisawa
Shuji Kozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Nippon Steel Corp
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Assigned to NIPPON STEEL CORPORATION MURORAN WORKS, AISIN AW CO., LTD. reassignment NIPPON STEEL CORPORATION MURORAN WORKS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANISAWA, HIDEO, KOZAWA, SHUJI, OKADA, KAZUAKI, TANIGUCHI, TAKAO, OHBAYASHI, KOUJI, SHIRAI, HISAO
Publication of US20090301608A1 publication Critical patent/US20090301608A1/en
Assigned to NIPPON STEEL & SUMITOMO METAL CORPORATION reassignment NIPPON STEEL & SUMITOMO METAL CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NIPPON STEEL CORPORATION
Assigned to NIPPON STEEL CORPORATION MURORAN WORKS, AISIN AW CO., LTD reassignment NIPPON STEEL CORPORATION MURORAN WORKS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANISAWA, HIDEO, KOZAWA, SHUJI, OKADA, KAZUAKI, TANIGUCHI, TAKAO, OHBAYASHI, KOUJI, SHIRAI, HISAO
Application granted granted Critical
Publication of US8430974B2 publication Critical patent/US8430974B2/en
Assigned to NIPPON STEEL CORPORATION reassignment NIPPON STEEL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NIPPON STEEL & SUMITOMO METAL CORPORATION
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a component of a mechanical apparatus, and more specifically relates to a component such as a gear that can be applied and used as a power transmission component in an automobile or the like, and which has little heat treatment distortion and high fatigue strength and toughness.
  • Carburized gears undergo almost no mechanical processing and are used as is following carburizing treatment, or used after undergoing only low-temperature tempering following carburizing treatment. As a consequence, heat treatment distortion due to carburizing and hardening remains, which causes noise during operation.
  • a method disclosed in Japanese application publication H08-311607 subjects a steel, containing by mass 0.30% to 0.60% C, to a carburizing treatment to form a carburized layer.
  • the steel is gradually cooled after the carburizing treatment, after which only the surface layer is subjected to induction hardening.
  • the result is considerably less martensitic transformation and heat treatment distortion.
  • the high C content leads to a problem of reduced toughness.
  • the poor machinability of the material before carburizing is also a problem.
  • a steel with excellent machinability beforehand and excellent toughness after carburizing and gradual cooling can be obtained if the amount of C is a minimum of 0.08% and less than 0.3% by mass, with inclusion of other components in appropriate amounts; and (2) by appropriate control of cooling after the carburizing treatment, a core structure can be obtained that has excellent toughness, little heat treatment distortion, and excellent bending fatigue strength.
  • the steel component subjected to carburizing, followed by induction-hardening has a composition consisting essentially of, by mass,
  • the product has a surface layer having a hardness of at least 55 HRC and a core having a hardness of from 20 to 50 HRC, wherein the core does not include a martensite structure.
  • the steel component which is subjected to the carburizing induction-hardening treatments, consists essentially of, by mass,
  • the product has a surface layer having a hardness of at least 55 HRC and a core having a hardness of from 20 to 50 HRC, wherein the core does not include a martensite structure and has a surface area ratio of a bainite structure of at least 70%.
  • the steel component subjected to carburizing treatment, followed by induction-hardening has a composition consisting essentially of, by mass,
  • the product has a surface layer with a hardness of at least 55 HRC and a core having a hardness of from 20 to 50 HRC, wherein the core does not include a martensite structure and has a surface area ratio of a bainite structure of at least 70%.
  • the present invention thereby provides a carburized and induction-hardened component, e.g. a gear or other component, that can be used as a power transmission component in an automobile or the like, that has little heat treatment distortion and high fatigue strength and toughness, and that also has excellent machinability prior to carburizing.
  • a carburized and induction-hardened component e.g. a gear or other component
  • the present invention contributes to increasing output and reducing noise in an automobile.
  • FIG. 1 is a plan view of a ring gear according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along a line A-A in FIG. 1 ;
  • FIG. 3 is a plan view of a differential ring gear representing another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along a line A-A in FIG. 3 .
  • the lower limit of the C content is 0.08% to ensure the strength of the core (interior).
  • the upper limit for carbon is 0.3%.
  • the C content is 0.2 to 0.3%.
  • Silicon need not be added. However, silicon may be added to improve the temper softening resistance of the hardened layer and to thereby improve the pitching life, for example, of a gear. To obtain such an effect, the Si content is preferably 0.2% or more. However, if the amount of Si added is in excess of 2.0%, the result is deterioration in the effect of the carburizing, and thus 2.0% is considered the upper limit for Si. Thus, the Si content is preferably 0.2 to 0.6%, and most preferably 0.4 to 0.6%.
  • Manganese is effective in improving hardening, and also in improving temper softening resistance. To obtain such an effect, the amount of Mn must be at least 0.2%. However, if the Mn content is 1.3% or more, then the bainite structure will form at 70% of the surface area of the core structure, depending on the cooling speed after the carburizing treatment described later, and the hardness is improved as compared to when the content is less than 1.3%. However, an amount of Mn in excess of 3.0% creates a martensite structure in the core that results in increased distortion, and thus 3.0% is considered the upper limit. Most preferably, the Mn content is 1.4 to 2.0%.
  • Phosphorous causes grain boundary segregation that lowers toughness and, accordingly, the amount of phosphorus should be minimized to the extent possible. Therefore, it is necessary to limit the amount of P added to 0.03% or less.
  • Sulfur must be included in the amount of at least 0.005% from the standpoint of machinability.
  • the lower limit of the S content is set to 0.005%.
  • the amount of S added is in excess of 0.05%, this inhibits forgeability, and thus 0.05% is considered the upper limit. It is most preferable that S be added in the amount of 0.01 to 0.02%.
  • Nickel need not be added. Adding Ni has the effect of improving hardenability. To obtain such an effect, it is preferable that the amount of Ni added is at least 0.2%. However, if the amount of Ni added is in excess of 2.0%, this creates a martensite structure in the core structure that generates increased distortion, and thus 2.0% was set as the upper limit.
  • Chromium need not be added. If added, it has the effect of improving the temper softening resistance of the hardened layer and has the effect of improving the pitching life of the gear. To obtain such an effect, the Cr content is preferably 0.5% or more. However, if the amount of Cr added is in excess of 3.0%, Cr type carbides are generated on the component surface during carburizing, resulting in impeding the hardening. Thus, 3.0% is considered the upper limit.
  • the amount of Cr is preferably 0.2 to 0.6%, and most preferably 0.4 to 0.6%.
  • Molybdenum need not be added.
  • molybdenum has the effect of toughening the hardened layer and improving bending fatigue strength.
  • the Mo content is preferably 0.01% or more.
  • the upper limit of Mo added is in the amount of 0.4%, and more preferably 0.1% or less, or 0.3 to 0.4%.
  • Oxygen is present in steel as an oxide inclusion of alumina, titania or the like.
  • a large O content increases the size of these oxides, which can result in damage to the power transmission component. Therefore, O must be limited to 0.0025% or less.
  • the smaller the amount, the better, and in particular, 0.0020% or less is preferred in cases of application to components that require a contact fatigue characteristic, while 0.0015% or less is preferred in cases that place an emphasis on long life.
  • Nitrogen has the effect of preventing coarsening of the austenite structure during carburizing treatment and during induction-hardening treatment by forming various nitrides. Therefore, the Ni content must be at least 0.005%. However, if the amount of Ni added is in excess of 0.03%, forgeability is significantly inhibited, and thus 0.03% was set as the upper limit. It is most preferable that N be added in the amount of 0.005 to 0.02%.
  • Aluminum and titanium have the effect of preventing coarsening of the austenite structure during carburizing treatment and during induction-hardening treatment through deposition and scattering throughout steel as nitrides.
  • the respective contents of either or both Al and Ti must be at least 0.005%. However, if the amount added is in excess of 0.05%, the deposition coarsens and results in brittle steel. Thus, 0.05% was set as the upper limit. It is most preferable that Al is added in the amount of 0.005 to 0.05%.
  • V Maximum 0.3% (Including 0%)
  • Nb Maximum 0.3% (Including 0%)
  • Vanadium and niobium need not be added, but their addition lowers the bainite transformation temperature during gradual cooling after carburizing treatment, increases toughness using bainite as the microstructure, and strengthens steel through partial deposition as carbonitrides during gradual cooling.
  • the respective contents of either or both V and Nb must be at least 0.01%. However, even if the amount added is in excess of 0.3%, such effects do not become further enhanced, and is therefore unnecessary from an economical standpoint. Thus, 0.3% was set as the upper limit. It is preferable that V is added in the amount of 0.01 to 0.3%, and most preferably in the amount of 0.05 to 0.25%.
  • the steel contain at least one or more elements selected from the group consisting of: Ca: maximum 0.01%, Mg: maximum 0.01%, Zr: maximum 0.05%, and Te: maximum 0.1%, all amounts being by mass.
  • these are elements that, for example, suppress MnS elongation and further improve bending fatigue strength with respect to bending fatigue cracks of the gear and fatigue cracks at the spline base of axial parts.
  • the steel should contain at least one or more elements selected from the group consisting of: Ca: maximum 0.01%, Mg: maximum 0.01%, Zr: maximum 0.05%, and Te: maximum 0.1%, all amounts being by mass.
  • the above amounts are set as upper limits.
  • the carburized and induction-hardened component according to the present invention is subjected to carburizing treatment and then induction-hardening treatment.
  • the hardness of the surface layer becomes at least 55 HRC and the hardness of the core part becomes from 20 to 50 HRC.
  • the hardness of the surface layer (a surface layer whose depth extends 50 ⁇ m from the surface) must be at least 55 HRC from the standpoints of bending fatigue strength and pitching strength.
  • the hardness of the core portion must be at least 20 HRC because this influences bending fatigue strength: the harder the core portion, the more bending fatigue strength is improved.
  • the bending fatigue strength does not improve any further once the hardness of the core portion exceeds 50 HRC, and in some cases the bending fatigue strength may even decrease.
  • the hardness of the core portion was set from 20 to 50 HRC.
  • steel material with appropriate hardenability. More specifically, in following a hardenability test method (end quenching test method) of G0561 steel, steel material whose hardness is in the range from 20 to 50 HRC at a distance of 25 mm from the hardened end may be used, and a component formed from such steel material may be cooled at a cooling speed of 4 to 10° C. per second after undergoing carburizing treatment.
  • the carburized and induction-hardened component according to the present invention does not have a martensite structure in its core portion.
  • the core portion has an austenite structure during carburizing, which transforms thereafter due to gradual cooling into a ferrite, pearlite, bainite, or martensite structure.
  • the martensite structure experiences larger transformation expansion as compared to the ferrite, pearlite, and bainite structures. Therefore, the martensite structure must not form, since this will increase distortion from heat treatment.
  • the cooling speed after carburizing treatment may be set to 10° C. per second or less, in addition to using a steel composition in accordance with the present invention.
  • the surface area of the bainite structures be at least 70% of the total surface area of all metal structures in the core.
  • a bainite structure providing a 70% surface ratio of the metal structures of the core portion is preferable in terms of toughness.
  • the amount of Mn included may be 1.3 to 3.0%, with cooling performed at a cooling speed of 4 to 10° C. per second after carburizing. A cooling speed exceeding 10° C. per second is not desirable because it produces a martensite structure and increases distortion.
  • Performing induction-hardening treatment thereafter to harden only the surface layer is essential. However, induction-hardening that also hardens the interior of the component is not desirable because of increased distortion.
  • the amount of carbon in surface layer is preferably 0.5 to 1.5 mass %.
  • the amount of carbon influences the hardness of the surface layer, and it is therefore necessary to adjust the amount of carbon in the surface layer using appropriate carburizing conditions. If the surface carbon amount is under 0.5 mass %, then the surface layer hardness becomes insufficient regardless of subsequent induction-hardening. If the amount of carbon exceeds 1.5 mass % of the surface layer, this also leads to a surface layer having insufficient hardness due to increased formation of carbides and significantly lower base hardenability. Hence, in the present invention, the amount of carbon in the surface layer is 0.5 to 1.5 mass %.
  • the method of carburizing is not particularly limited, and any conventional method may be used.
  • the depth of the induction-hardened layer is preferably 0.3 to 2.0 times the depth of the carburized layer. Increasing the depth of the induction-hardened layer improves bending fatigue strength, and therefore hardening up to a depth that is 0.3 times the total hardness depth during carburizing is required. However, if the depth of the hardened layer exceeds 2.0 times the total hardness depth, this results in decreased bending fatigue strength, rather than further improvement. Hence, in the present invention, the depth of the induction-hardened layer is 0.3 to 2.0 times the depth of the carburized layer. Any conventional method may be used for induction heating.
  • the surface area ratio of residual austenite in the induction-hardened layer is preferably no greater than 20%.
  • the cooling medium used in induction-hardening should be water or a water-based hardening agent.
  • the cooling speed is faster than in conventional carburizing, and the residual austenite surface area ratio can be reduced to 20% or less. Achieving such a low residual austenite makes it possible, for example, to reduce treatment-induced transformation to martensite and to reduce distortion, regardless of whether or not subjected to a shot peening treatment thereafter.
  • the depth of surface grain boundary oxidation is preferably no greater than 3 ⁇ m.
  • the grain boundary oxide layer has less strength than the carburized and induction-hardened layers. If the depth of the grain boundary oxide layer exceeds 3 ⁇ m, the component may have insufficient strength.
  • the carburizing is preferably performed in a reduced-pressure atmosphere, i.e. at a pressure of 1 to 30 hPa. If a conventional gas carburizing method is employed, oxidizing gas (CO 2 and H 2 O) included in the gas creates a grain boundary oxide layer on the surface of the component, which is accompanied by the formation of an imperfectly quenched structure (troostite), whereby surface hardness and fatigue strength are reduced.
  • a vacuum carburizing method is preferred. Grain boundary oxidation can be adequately prevented by utilizing vacuum carburizing in a reduced-pressure atmosphere of 1 to 30 hPa. A pressure of less than 1 hPa for the aforementioned reduced-pressure atmosphere is excessive with respect to suppressing oxidation, and the apparatus is required to meet high reduced-pressure specifications, which is undesirable from an economic point of view. On the other hand, a pressure exceeding 30 hPa also encounters problems such as increased oxidation and the generation of soot inside the carburizing furnace.
  • the carburizing treatment is preferably performed in an atmosphere of mainly inert gas, in which case oxidation is also suppressed.
  • the inert gas may be, for example, nitrogen gas, argon gas, helium gas or the like. Even with a conventional gas carburizing treatment, it is possible to suppress the grain boundary oxide layer with the amount of Si under 0.05%.
  • a shot peening treatment is performed following the induction-hardening.
  • the bending fatigue strength of carburized and induction-hardened components in particular, can be further improved, as compared to only induction-hardening.
  • the above carburized and induction-hardened component may be a gear.
  • the above carburized and induction-hardened component has the strength characteristics required of automotive drive train components, and is extremely well suited, for example, for use as a gear in an automatic transmission.
  • Hot-rolled material having the chemical components shown in Table 1 was subjected to hot forging and then to an annealing treatment. It was then machined to produce Ono type rotating-bending fatigue test specimens having ⁇ 9 mm plane portions and half-circle notches with 1.14 mm radii.
  • Ono type rotating-bending fatigue test specimens JIS Z 2202, FIG. 2 a
  • ring gears for which gear distortion was measured pitch diameter: ⁇ 157 mm, module: 2.45, number of teeth: 51, inner diameter: ⁇ 86 mm
  • test specimens and ring gears were processed according to the following three methods (methods 1 to 3).
  • Method 1 This method consists of carburizing for 30 min at 950° C. in a 20 hPa reduced-pressure atmosphere; gradual cooling at the cooling speeds shown in Table 2; induction-hardening at 100 kHz and 950° C.; and tempering for 90 min at 150° C.
  • the ratio of the carburizing period to the diffusion period during carburizing was adjusted to produce the surface C concentrations, as shown in Table 3.
  • the heating time was adjusted to vary the depth of the induction-hardened layer as shown in Table 2.
  • Method 2 Following the tempering for 90 min at 150° C. in method 1, a shot peening treatment using an arc height of 1.0 mmA was performed.
  • Method 3 Instead of carburizing for 30 min at 950° C. in a reduced-pressure atmosphere according to method 1, gas carburizing was performed for 30 min at 950° C. and a carbon potential of 0.6%.
  • test specimens and ring gears processed according to the above methods were then tested and measured.
  • test specimens produced in test nos. 1 to 15 in accordance with the invention examples had good material machinability and the ring gears had passing grades in tests for gear distortion. These specimens and ring gears also showed excellent high impact values of 12 J/cm 2 or more and bending fatigue strengths of 650 MPa or more. Higher impact values were even seen for test nos. 12 to 15, representative of the invention, containing 1.3 to 3.0% Mn and having a core portion containing 70% or more bainite.
  • gas carburizing was conducted according to method 3 on a steel containing 0.03% Si. A grain boundary oxidation depth of 3 ⁇ m was thus obtained in accordance with the present invention.
  • comparative test no. 16 showed excessive ring gear distortion attributed to the creation of a deep martensite structure caused by cooling at a speed over 10° C. per second after carburizing.
  • Comparative test no. 17 showed a low fatigue strength of 480 MPa attributed to the hardness of the core portion falling below 20 HRC, due to cooling at a speed less than 4° C. per second after carburizing.
  • Comparative test no. 18 showed a low bending fatigue strength of 450 MPa attributed to the depth of the induction-hardened layer exceeding two times the depth of the carburized layer.
  • Comparative test no. 19 had a low bending fatigue strength of 460 MPa attributed to the hardness of the surface layer falling below 55 HRC due to the carbon concentration rising above 1.5% in the surface layer.
  • Comparative test no. 20 had a low bending fatigue strength of 500 MPa attributed to performing gas carburizing treatment according to method 3 and inclusion of 0.26% Si. As a consequence, the grain boundary oxidation depth exceeded 3 ⁇ m. Comparative test no. 21 had poor material machinability, and it was necessary to replace the hob blade partway through the production of a ring gear. The impact value was also low, i.e. 6 J/cm 2 . These deficiencies can be attributed to the hardness of the core portion exceeding 50 HRC due to the C content in the steel exceeding 0.3%.
  • Comparative test no. 22 showed excessive ring gear distortion attributed to the creation of a deep martensite structure due to a Mn content of more than 3%. Comparative test no. 23 had a low bending fatigue strength of 460 MPa. After testing, fish-eye fractures were observed originating from oxide inclusions in the Ono type rotating-bending fatigue test specimen. This was most likely caused by an increase in the size of the oxide inclusions due to the O content exceeding 0.0025%.
  • 0.24 0.50 1.85 0.008 0.015 — 0.50 — 0.0008 0.018 0.032 — 0.12 — — 13 Invention ex. 0.28 0.26 2.99 0.020 0.015 — 1.05 — 0.0011 0.012 0.001 0.032 — — — 14 Invention ex. 0.24 0.51 1.85 0.011 0.016 — 0.50 0.03 0.0008 0.012 0.040 — 0.10 — — 15 Invention ex. 0.24 0.50 1.84 0.010 0.015 — 0.50 0.39 0.0007 0.012 0.040 — 0.10 — — 16 Comparative ex.
  • Method 1 5° C./s 0.5 1.20 2.4 19 Comparative ex. Method 1 5° C./s 0.5 0.80 1.6 20 Comparative ex. Method 3 5° C./s 0.5 0.80 1.6 21 Comparative ex. Method 1 5° C./s 0.7 0.80 1.1 22 Comparative ex. Method 1 5° C./s 0.5 0.80 1.6 23 Comparative ex. Method 2 5° C./s 0.6 0.80 1.3
  • FIGS. 1 and 2 A ring gear 8 to which the carburizing and induction-hardening according to the present invention is applicable is illustrated in FIGS. 1 and 2 , the ring gear 8 also exemplifying the ring gear used in the tests described above.
  • the ring gear 8 which may be employed in an automotive automatic transmission, has a cylindrical body portion 80 with teeth 81 provided on the inner peripheral surface thereof. Furthermore, the teeth have a high degree of hardness. In such a gear, conformance to a true circle (“circularity”) is extremely important.
  • the present invention is also applicable to a ring-shaped differential ring gear 7 , as shown in FIGS. 3 and 4 , which has a ring-shaped body portion 70 and teeth 71 on its outer peripheral surface.
  • the differential ring gear 7 is also a component employed in an automotive automatic transmission. Here too, a high degree of hardness of the teeth and circularity are extremely important.
  • the present invention is not limited to the examples of gears given here, and is applicable to gears of various other forms. Further, the present invention is not particularly limited to gears but, rather, is applicable to various steel parts such as power transmission components in automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

A steel component formed by carburizing and then induction-hardening of a steel consisting essentially of, by mass, C: minimum 0.08% and less than 0.3%; Si: maximum 2.0%; Mn: from 0.2% to 3.0%; P: maximum 0.03%; S: from 0.005% to 0.05%; Ni: maximum 1.5%; Cr: maximum 3.0%; Mo: maximum 1.0%; O: maximum 0.0025%; and N: from 0.005% to 0.03%; and further including either or both of, by mass, Al: from 0.005% to 0.05%, and Ti: from 0.005% to 0.05%; and still further including either or both of, by mass, V: maximum 0.3%, and Nb: maximum 0.3%; and a balance including Fe and unavoidable impurities. The hardness of the surface layer is at least 55 HRC and the hardness of the core portion is from 20 to 50 HRC. The core portion does not include a martensite structure.

Description

    TECHNICAL FIELD
  • The present invention relates to a component of a mechanical apparatus, and more specifically relates to a component such as a gear that can be applied and used as a power transmission component in an automobile or the like, and which has little heat treatment distortion and high fatigue strength and toughness.
  • BACKGROUND ART
  • Mechanical components, such as a gear or the like acting as a power transmission component in an automatic transmission, must have bending fatigue strength and toughness. Due to environmental issues, high dimensional accuracy has also been demanded in recent years in order to suppress noise during gear operation. In the past, case-hardened steels such as JIS SCr420 and SCM420 were often used as material for such gears. However, the growing trends toward less noise and more strength in automotive components have created demands, in terms of strength and dimensional accuracy, that cannot be fully met by conventional case-hardened steels.
  • Carburized gears undergo almost no mechanical processing and are used as is following carburizing treatment, or used after undergoing only low-temperature tempering following carburizing treatment. As a consequence, heat treatment distortion due to carburizing and hardening remains, which causes noise during operation.
  • In an attempt to meet such demands, a method disclosed in Japanese application publication H08-311607 subjects a steel, containing by mass 0.30% to 0.60% C, to a carburizing treatment to form a carburized layer. The steel is gradually cooled after the carburizing treatment, after which only the surface layer is subjected to induction hardening. In this method, because the core of the steel is not affected by induction hardening and is not subjected to quenching, the result is considerably less martensitic transformation and heat treatment distortion. However, the high C content leads to a problem of reduced toughness. Furthermore, the poor machinability of the material before carburizing is also a problem.
  • DISCLOSURE OF THE INVENTION
  • Accordingly, it is an object of the present invention to resolve the aforementioned problems in the related art, and more specifically, to provide a carburized and induction-hardened gear or other component that can be used as a power transmission component in an automobile, that has little heat treatment distortion and high fatigue strength and toughness, and also has excellent machinability prior to carburizing.
  • The inventors have discovered that, in a process involving carburizing and then gradual cooling, after which only a surface layer is subjected to induction-hardening treatment:
  • (1) a steel with excellent machinability beforehand and excellent toughness after carburizing and gradual cooling can be obtained if the amount of C is a minimum of 0.08% and less than 0.3% by mass, with inclusion of other components in appropriate amounts; and
    (2) by appropriate control of cooling after the carburizing treatment, a core structure can be obtained that has excellent toughness, little heat treatment distortion, and excellent bending fatigue strength.
  • According to a first aspect of the present invention, the steel component subjected to carburizing, followed by induction-hardening, has a composition consisting essentially of, by mass,
  • C: minimum 0.08% and under 0.3%;
    Si: maximum 2.0% (including 0%);
    Mn: from 0.2% to 3.0%;
    P: maximum 0.03%;
    S: from 0.005% to 0.05%;
    Ni: maximum 1.5% (including 0%);
    Cr: maximum 3.0% (including 0%);
    Mo: maximum 1.0% (including 0%);
    O: maximum 0.0025%; and
    N: from 0.005% to 0.03%; and
    further including either or both of, by mass,
    Al: from 0.005% to 0.05%, and
    Ti: from 0.005% to 0.05%; and
    still further including either or both of, by mass,
    V: maximum 0.3% (including 0%), and
    Nb: maximum 0.3% (including 0%); and
    a balance of Fe and unavoidable impurities. The product has a surface layer having a hardness of at least 55 HRC and a core having a hardness of from 20 to 50 HRC, wherein the core does not include a martensite structure.
  • According to a second aspect of the present invention, the steel component, which is subjected to the carburizing induction-hardening treatments, consists essentially of, by mass,
  • C: minimum 0.08% and under 0.3%;
    Si: maximum 2.0% (including 0%);
    Mn: from 1.3% to 3.0%;
    P: maximum 0.03%;
    S: from 0.005% to 0.05%;
    Ni: maximum 2.0% (including 0%);
    Cr: maximum 3.0% (including 0%);
    Mo: maximum 1.0% (including 0%);
    O: maximum 0.0025%; and
    N: from 0.005% to 0.03%; and
    further including either or both of, by mass,
    Al: from 0.005% to 0.05%, and
    Ti: from 0.005% to 0.05%; and
    still further including either or both of, by mass,
    V: from 0.01% to 0.3%, and
    Nb: from 0.01% to 0.3%; and
    a balance of Fe and unavoidable impurities. The product has a surface layer having a hardness of at least 55 HRC and a core having a hardness of from 20 to 50 HRC, wherein the core does not include a martensite structure and has a surface area ratio of a bainite structure of at least 70%.
  • According to a third aspect of the present invention, the steel component subjected to carburizing treatment, followed by induction-hardening, has a composition consisting essentially of, by mass,
  • C: minimum 0.2% and under 0.3%;
    Si: from 0.2% to 0.6%;
    Mn: from 1.4% to 2.0%;
    P: maximum 0.03%;
    S: from 0.01% to 0.02%;
    Cr: from 0.2% to 0.6%;
    Mo: maximum 0.4% (including 0%);
    O: maximum 0.0025%;
    N: from 0.005% to 0.02%;
    Al: from 0.005% to 0.05%;
    V: from 0.05% to 0.25%; and
    a balance of Fe and unavoidable impurities. The product has a surface layer with a hardness of at least 55 HRC and a core having a hardness of from 20 to 50 HRC, wherein the core does not include a martensite structure and has a surface area ratio of a bainite structure of at least 70%.
  • The present invention thereby provides a carburized and induction-hardened component, e.g. a gear or other component, that can be used as a power transmission component in an automobile or the like, that has little heat treatment distortion and high fatigue strength and toughness, and that also has excellent machinability prior to carburizing. Thus, the present invention contributes to increasing output and reducing noise in an automobile.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a ring gear according to one embodiment of the present invention;
  • FIG. 2 is a cross-sectional view taken along a line A-A in FIG. 1;
  • FIG. 3 is a plan view of a differential ring gear representing another embodiment of the present invention; and
  • FIG. 4 is a cross-sectional view taken along a line A-A in FIG. 3.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An explanation of the ranges of the alloying elements follows.
  • C: Minimum 0.08%, Under 0.3%
  • Carbon is added in order to ensure the strength of the core portion in particular. Hence, in the present invention, the lower limit of the C content is 0.08% to ensure the strength of the core (interior). However, an amount of 0.3% or more results in increased hardness, which leads to reduced toughness in the final product and poor machinability prior to carburizing. Therefore, the upper limit for carbon is 0.3%. Most preferably, the C content is 0.2 to 0.3%.
  • Si: 0% to 2.0%
  • Silicon need not be added. However, silicon may be added to improve the temper softening resistance of the hardened layer and to thereby improve the pitching life, for example, of a gear. To obtain such an effect, the Si content is preferably 0.2% or more. However, if the amount of Si added is in excess of 2.0%, the result is deterioration in the effect of the carburizing, and thus 2.0% is considered the upper limit for Si. Thus, the Si content is preferably 0.2 to 0.6%, and most preferably 0.4 to 0.6%.
  • Mn: 0.2 to 3.0%
  • Manganese is effective in improving hardening, and also in improving temper softening resistance. To obtain such an effect, the amount of Mn must be at least 0.2%. However, if the Mn content is 1.3% or more, then the bainite structure will form at 70% of the surface area of the core structure, depending on the cooling speed after the carburizing treatment described later, and the hardness is improved as compared to when the content is less than 1.3%. However, an amount of Mn in excess of 3.0% creates a martensite structure in the core that results in increased distortion, and thus 3.0% is considered the upper limit. Most preferably, the Mn content is 1.4 to 2.0%.
  • P: Maximum 0.3%
  • Phosphorous causes grain boundary segregation that lowers toughness and, accordingly, the amount of phosphorus should be minimized to the extent possible. Therefore, it is necessary to limit the amount of P added to 0.03% or less.
  • S: 0.005 to 0.05%
  • Sulfur must be included in the amount of at least 0.005% from the standpoint of machinability. Hence, in the present invention, the lower limit of the S content is set to 0.005%. However, if the amount of S added is in excess of 0.05%, this inhibits forgeability, and thus 0.05% is considered the upper limit. It is most preferable that S be added in the amount of 0.01 to 0.02%.
  • Ni: Maximum 2.0% (Including 0%)
  • Nickel need not be added. Adding Ni has the effect of improving hardenability. To obtain such an effect, it is preferable that the amount of Ni added is at least 0.2%. However, if the amount of Ni added is in excess of 2.0%, this creates a martensite structure in the core structure that generates increased distortion, and thus 2.0% was set as the upper limit.
  • Cr: Maximum 3.0% (Including 0%)
  • Chromium need not be added. If added, it has the effect of improving the temper softening resistance of the hardened layer and has the effect of improving the pitching life of the gear. To obtain such an effect, the Cr content is preferably 0.5% or more. However, if the amount of Cr added is in excess of 3.0%, Cr type carbides are generated on the component surface during carburizing, resulting in impeding the hardening. Thus, 3.0% is considered the upper limit. The amount of Cr is preferably 0.2 to 0.6%, and most preferably 0.4 to 0.6%.
  • Mo: 0% to 1.0%
  • Molybdenum need not be added. However, molybdenum has the effect of toughening the hardened layer and improving bending fatigue strength. To obtain such effects, the Mo content is preferably 0.01% or more. However, even if the content of Mo is in excess of 1.0%, its benefit is not further enhanced, and is therefore unnecessary from the viewpoint of economy. It is preferable that the upper limit of Mo added is in the amount of 0.4%, and more preferably 0.1% or less, or 0.3 to 0.4%.
  • O: Maximum 0.0025%
  • Oxygen is present in steel as an oxide inclusion of alumina, titania or the like. A large O content increases the size of these oxides, which can result in damage to the power transmission component. Therefore, O must be limited to 0.0025% or less. The smaller the amount, the better, and in particular, 0.0020% or less is preferred in cases of application to components that require a contact fatigue characteristic, while 0.0015% or less is preferred in cases that place an emphasis on long life.
  • N: 0.005% to 0.03%
  • Nitrogen has the effect of preventing coarsening of the austenite structure during carburizing treatment and during induction-hardening treatment by forming various nitrides. Therefore, the Ni content must be at least 0.005%. However, if the amount of Ni added is in excess of 0.03%, forgeability is significantly inhibited, and thus 0.03% was set as the upper limit. It is most preferable that N be added in the amount of 0.005 to 0.02%.
  • Al: 0.005 to 0.05%, Ti: 0.005 to 0.05%, (Either or Both)
  • Aluminum and titanium have the effect of preventing coarsening of the austenite structure during carburizing treatment and during induction-hardening treatment through deposition and scattering throughout steel as nitrides. The respective contents of either or both Al and Ti must be at least 0.005%. However, if the amount added is in excess of 0.05%, the deposition coarsens and results in brittle steel. Thus, 0.05% was set as the upper limit. It is most preferable that Al is added in the amount of 0.005 to 0.05%.
  • V: Maximum 0.3% (Including 0%), Nb: Maximum 0.3% (Including 0%), (Either or Both)
  • Vanadium and niobium need not be added, but their addition lowers the bainite transformation temperature during gradual cooling after carburizing treatment, increases toughness using bainite as the microstructure, and strengthens steel through partial deposition as carbonitrides during gradual cooling. To take advantage of such effects, the respective contents of either or both V and Nb must be at least 0.01%. However, even if the amount added is in excess of 0.3%, such effects do not become further enhanced, and is therefore unnecessary from an economical standpoint. Thus, 0.3% was set as the upper limit. It is preferable that V is added in the amount of 0.01 to 0.3%, and most preferably in the amount of 0.05 to 0.25%.
  • In the first to third aspects of the present invention described above, it is preferable that the steel contain at least one or more elements selected from the group consisting of: Ca: maximum 0.01%, Mg: maximum 0.01%, Zr: maximum 0.05%, and Te: maximum 0.1%, all amounts being by mass. These are elements that, for example, suppress MnS elongation and further improve bending fatigue strength with respect to bending fatigue cracks of the gear and fatigue cracks at the spline base of axial parts. More specifically, to gain the MnS elongation suppression effect, the steel should contain at least one or more elements selected from the group consisting of: Ca: maximum 0.01%, Mg: maximum 0.01%, Zr: maximum 0.05%, and Te: maximum 0.1%, all amounts being by mass. However, including these elements in excess of the above amounts does not further enhance the effect and is therefore unnecessary from an economical standpoint. Thus, the above amounts are set as upper limits.
  • Explanations are given below regarding reasons for limiting the component hardness and structure.
  • The carburized and induction-hardened component according to the present invention is subjected to carburizing treatment and then induction-hardening treatment. By performing the carburizing treatment and the induction-hardening treatment, the hardness of the surface layer becomes at least 55 HRC and the hardness of the core part becomes from 20 to 50 HRC. The hardness of the surface layer (a surface layer whose depth extends 50 μm from the surface) must be at least 55 HRC from the standpoints of bending fatigue strength and pitching strength. The hardness of the core portion must be at least 20 HRC because this influences bending fatigue strength: the harder the core portion, the more bending fatigue strength is improved. However, the bending fatigue strength does not improve any further once the hardness of the core portion exceeds 50 HRC, and in some cases the bending fatigue strength may even decrease. Hence, in the present invention, the hardness of the core portion was set from 20 to 50 HRC. In order to achieve a hardness of 20 to 50 HRC in the core portion, it is necessary to use steel material with appropriate hardenability. More specifically, in following a hardenability test method (end quenching test method) of G0561 steel, steel material whose hardness is in the range from 20 to 50 HRC at a distance of 25 mm from the hardened end may be used, and a component formed from such steel material may be cooled at a cooling speed of 4 to 10° C. per second after undergoing carburizing treatment.
  • In addition, the carburized and induction-hardened component according to the present invention does not have a martensite structure in its core portion. The core portion has an austenite structure during carburizing, which transforms thereafter due to gradual cooling into a ferrite, pearlite, bainite, or martensite structure. The martensite structure experiences larger transformation expansion as compared to the ferrite, pearlite, and bainite structures. Therefore, the martensite structure must not form, since this will increase distortion from heat treatment. To ensure that the martensite structure does not form, the cooling speed after carburizing treatment may be set to 10° C. per second or less, in addition to using a steel composition in accordance with the present invention.
  • Furthermore, it is especially preferred that the surface area of the bainite structures be at least 70% of the total surface area of all metal structures in the core. In other words, a bainite structure providing a 70% surface ratio of the metal structures of the core portion is preferable in terms of toughness. To achieve this 70% surface ratio, the amount of Mn included may be 1.3 to 3.0%, with cooling performed at a cooling speed of 4 to 10° C. per second after carburizing. A cooling speed exceeding 10° C. per second is not desirable because it produces a martensite structure and increases distortion. Performing induction-hardening treatment thereafter to harden only the surface layer is essential. However, induction-hardening that also hardens the interior of the component is not desirable because of increased distortion.
  • The amount of carbon in surface layer is preferably 0.5 to 1.5 mass %. The amount of carbon influences the hardness of the surface layer, and it is therefore necessary to adjust the amount of carbon in the surface layer using appropriate carburizing conditions. If the surface carbon amount is under 0.5 mass %, then the surface layer hardness becomes insufficient regardless of subsequent induction-hardening. If the amount of carbon exceeds 1.5 mass % of the surface layer, this also leads to a surface layer having insufficient hardness due to increased formation of carbides and significantly lower base hardenability. Hence, in the present invention, the amount of carbon in the surface layer is 0.5 to 1.5 mass %. The method of carburizing is not particularly limited, and any conventional method may be used.
  • The depth of the induction-hardened layer is preferably 0.3 to 2.0 times the depth of the carburized layer. Increasing the depth of the induction-hardened layer improves bending fatigue strength, and therefore hardening up to a depth that is 0.3 times the total hardness depth during carburizing is required. However, if the depth of the hardened layer exceeds 2.0 times the total hardness depth, this results in decreased bending fatigue strength, rather than further improvement. Hence, in the present invention, the depth of the induction-hardened layer is 0.3 to 2.0 times the depth of the carburized layer. Any conventional method may be used for induction heating.
  • The surface area ratio of residual austenite in the induction-hardened layer is preferably no greater than 20%. The cooling medium used in induction-hardening should be water or a water-based hardening agent. Thus, the cooling speed is faster than in conventional carburizing, and the residual austenite surface area ratio can be reduced to 20% or less. Achieving such a low residual austenite makes it possible, for example, to reduce treatment-induced transformation to martensite and to reduce distortion, regardless of whether or not subjected to a shot peening treatment thereafter.
  • The depth of surface grain boundary oxidation is preferably no greater than 3 μm. The grain boundary oxide layer has less strength than the carburized and induction-hardened layers. If the depth of the grain boundary oxide layer exceeds 3 μm, the component may have insufficient strength. To ensure that the grain boundary oxide layer does not exceed 3 μm, the carburizing is preferably performed in a reduced-pressure atmosphere, i.e. at a pressure of 1 to 30 hPa. If a conventional gas carburizing method is employed, oxidizing gas (CO2 and H2O) included in the gas creates a grain boundary oxide layer on the surface of the component, which is accompanied by the formation of an imperfectly quenched structure (troostite), whereby surface hardness and fatigue strength are reduced. For this reason, a vacuum carburizing method is preferred. Grain boundary oxidation can be adequately prevented by utilizing vacuum carburizing in a reduced-pressure atmosphere of 1 to 30 hPa. A pressure of less than 1 hPa for the aforementioned reduced-pressure atmosphere is excessive with respect to suppressing oxidation, and the apparatus is required to meet high reduced-pressure specifications, which is undesirable from an economic point of view. On the other hand, a pressure exceeding 30 hPa also encounters problems such as increased oxidation and the generation of soot inside the carburizing furnace. In addition, the carburizing treatment is preferably performed in an atmosphere of mainly inert gas, in which case oxidation is also suppressed. The inert gas, may be, for example, nitrogen gas, argon gas, helium gas or the like. Even with a conventional gas carburizing treatment, it is possible to suppress the grain boundary oxide layer with the amount of Si under 0.05%.
  • Preferably, following the induction-hardening, a shot peening treatment is performed. By performing the shot peening treatment after the induction-hardening, the bending fatigue strength of carburized and induction-hardened components, in particular, can be further improved, as compared to only induction-hardening.
  • The above carburized and induction-hardened component may be a gear. In other words, the above carburized and induction-hardened component has the strength characteristics required of automotive drive train components, and is extremely well suited, for example, for use as a gear in an automatic transmission.
  • Examples
  • The present invention will be further explained by the following examples. Note that these examples are used for the purpose of describing the present invention and do not limit the scope of the present invention.
  • Hot-rolled material having the chemical components shown in Table 1 was subjected to hot forging and then to an annealing treatment. It was then machined to produce Ono type rotating-bending fatigue test specimens having φ9 mm plane portions and half-circle notches with 1.14 mm radii. In similar fashion, U-notch impact test specimens (JIS Z 2202, FIG. 2 a) and ring gears for which gear distortion was measured (pitch diameter: φ157 mm, module: 2.45, number of teeth: 51, inner diameter: φ86 mm) were also produced.
  • Next, the test specimens and ring gears were processed according to the following three methods (methods 1 to 3).
  • Method 1: This method consists of carburizing for 30 min at 950° C. in a 20 hPa reduced-pressure atmosphere; gradual cooling at the cooling speeds shown in Table 2; induction-hardening at 100 kHz and 950° C.; and tempering for 90 min at 150° C. However, the ratio of the carburizing period to the diffusion period during carburizing was adjusted to produce the surface C concentrations, as shown in Table 3. Likewise, the heating time was adjusted to vary the depth of the induction-hardened layer as shown in Table 2.
    Method 2: Following the tempering for 90 min at 150° C. in method 1, a shot peening treatment using an arc height of 1.0 mmA was performed.
    Method 3: Instead of carburizing for 30 min at 950° C. in a reduced-pressure atmosphere according to method 1, gas carburizing was performed for 30 min at 950° C. and a carbon potential of 0.6%.
  • The test specimens and ring gears processed according to the above methods were then tested and measured.
  • Machinability was evaluated, and a passing grade was given to those materials from which one ring gear was cut without the normally required hob blade replacement. The fatigue strength of the Ono type rotating-bending fatigue test specimens was measured as having a fatigue limit of 106 cycles. For the U-notch impact test specimens, the impact value at normal temperature was measured. The distortion of the ring gears was evaluated and the thickness of each tooth was measured according to the over pin method of JIS B 1752 after carburizing, based on which a passing grade was given to those showing a difference of 50 μm or less between the largest dimension and the smallest dimension. The tests and results of measurement are shown in Table 3.
  • As Table 3 shows, test specimens produced in test nos. 1 to 15 in accordance with the invention examples had good material machinability and the ring gears had passing grades in tests for gear distortion. These specimens and ring gears also showed excellent high impact values of 12 J/cm2 or more and bending fatigue strengths of 650 MPa or more. Higher impact values were even seen for test nos. 12 to 15, representative of the invention, containing 1.3 to 3.0% Mn and having a core portion containing 70% or more bainite. In test no. 6 representative of the invention, gas carburizing was conducted according to method 3 on a steel containing 0.03% Si. A grain boundary oxidation depth of 3 μm was thus obtained in accordance with the present invention.
  • In contrast, comparative test no. 16 showed excessive ring gear distortion attributed to the creation of a deep martensite structure caused by cooling at a speed over 10° C. per second after carburizing. Comparative test no. 17 showed a low fatigue strength of 480 MPa attributed to the hardness of the core portion falling below 20 HRC, due to cooling at a speed less than 4° C. per second after carburizing. Comparative test no. 18 showed a low bending fatigue strength of 450 MPa attributed to the depth of the induction-hardened layer exceeding two times the depth of the carburized layer. Comparative test no. 19 had a low bending fatigue strength of 460 MPa attributed to the hardness of the surface layer falling below 55 HRC due to the carbon concentration rising above 1.5% in the surface layer.
  • Comparative test no. 20 had a low bending fatigue strength of 500 MPa attributed to performing gas carburizing treatment according to method 3 and inclusion of 0.26% Si. As a consequence, the grain boundary oxidation depth exceeded 3 μm. Comparative test no. 21 had poor material machinability, and it was necessary to replace the hob blade partway through the production of a ring gear. The impact value was also low, i.e. 6 J/cm2. These deficiencies can be attributed to the hardness of the core portion exceeding 50 HRC due to the C content in the steel exceeding 0.3%.
  • Comparative test no. 22 showed excessive ring gear distortion attributed to the creation of a deep martensite structure due to a Mn content of more than 3%. Comparative test no. 23 had a low bending fatigue strength of 460 MPa. After testing, fish-eye fractures were observed originating from oxide inclusions in the Ono type rotating-bending fatigue test specimen. This was most likely caused by an increase in the size of the oxide inclusions due to the O content exceeding 0.0025%.
  • TABLE 1
    Test Chemical Composition (mass %)
    No. Category C Si Mn P S Ni Cr Mo O N Al Ti V Nb Other
    1 Invention ex. 0.20 0.25 0.73 0.020 0.015 1.05 0.0012 0.012 0.030
    2 Invention ex. 0.29 0.24 0.74 0.018 0.016 1.06 0.0010 0.012 0.030 0.02
    3 Invention ex. 0.20 0.25 0.73 0.030 0.015 1.04 0.22 0.0013 0.011 0.031
    4 Invention ex. 0.19 0.26 0.55 0.020 0.015 1.80 0.53 0.21 0.0011 0.012 0.030 Ca: 0.0020
    5 Invention ex. 0.08 0.25 0.74 0.019 0.014 1.05 0.75 0.0024 0.012 0.031 Mg: 0.0008
    6 Invention ex. 0.20 0.03 0.73 0.020 0.015 1.06 0.20 0.0012 0.012 0.028 Zr: 0.0022
    7 Invention ex. 0.21 1.96 0.73 0.021 0.049 1.05 0.0012 0.012 0.030
    8 Invention ex. 0.20 0.25 0.21 0.020 0.015 1.04 0.50 0.0011 0.029 0.048
    9 Invention ex. 0.20 0.26 0.73 0.018 0.015 2.00 1.06 0.0015 0.012 0.029
    10 Invention ex. 0.19 0.25 0.74 0.020 0.015 2.96 0.0012 0.011 0.030
    11 Invention ex. 0.20 0.24 0.73 0.020 0.016 0.50 0.98 0.0009 0.012 0.031 Te: 0.0053
    12 Invention ex. 0.24 0.50 1.85 0.008 0.015 0.50 0.0008 0.018 0.032 0.12
    13 Invention ex. 0.28 0.26 2.99 0.020 0.015 1.05 0.0011 0.012 0.001 0.032
    14 Invention ex. 0.24 0.51 1.85 0.011 0.016 0.50 0.03 0.0008 0.012 0.040 0.10
    15 Invention ex. 0.24 0.50 1.84 0.010 0.015 0.50 0.39 0.0007 0.012 0.040 0.10
    16 Comparative ex. 0.20 0.24 0.73 0.022 0.014 1.05 0.0012 0.012 0.029
    17 Comparative ex. 0.20 0.24 0.73 0.022 0.014 1.05 0.0011 0.012 0.029
    18 Comparative ex. 0.21 0.25 0.73 0.021 0.016 1.06 0.0012 0.011 0.030
    19 Comparative ex. 0.20 0.26 0.74 0.020 0.015 1.05 0.0013 0.012 0.029
    20 Comparative ex. 0.20 0.26 0.74 0.020 0.015 1.05 0.0011 0.012 0.029
    21 Comparative ex. 0.45 0.25 0.73 0.020 0.015 1.05 0.22 0.0009 0.012 0.031
    22 Comparative ex. 0.21 0.25 3.05 0.020 0.015 1.04 0.0012 0.012 0.030
    23 Comparative ex. 0.24 0.50 1.80 0.011 0.015 0.50 0.03 0.0027 0.011 0.035 0.11
  • TABLE 2
    B:
    A: Induction-
    Cooling Carburizing Hardened
    Speed Layer Layer
    Test After Depth Depth
    No. Category Method Carburizing (mm) (mm) B/A
    1 Invention ex. Method 1 10° C./s  0.5 0.80 1.6
    2 Invention ex. Method 1 4° C./s 0.7 0.80 1.1
    3 Invention ex. Method 1 5° C./s 0.5 0.15 0.3
    4 Invention ex. Method 1 5° C./s 0.5 1.00 2.0
    5 Invention ex. Method 1 5° C./s 0.4 0.80 2.0
    6 Invention ex. Method 3 5° C./s 0.5 0.80 1.6
    7 Invention ex. Method 1 5° C./s 0.5 0.80 1.6
    8 Invention ex. Method 1 7° C./s 0.5 0.80 1.6
    9 Invention ex. Method 1 5° C./s 0.5 0.80 1.6
    10 Invention ex. Method 1 5° C./s 0.5 0.80 1.6
    11 Invention ex. Method 1 5° C./s 0.5 0.80 1.6
    12 Invention ex. Method 1 5° C./s 0.6 0.80 1.3
    13 Invention ex. Method 1 5° C./s 0.7 0.80 1.1
    14 Invention ex. Method 2 5° C./s 0.6 0.80 1.3
    15 Invention ex. Method 2 5° C./s 0.6 0.80 1.3
    16 Comparative ex. Method 1 15° C./s  0.5 0.80 1.6
    17 Comparative ex. Method 1 3° C./s 0.5 0.80 1.6
    18 Comparative ex. Method 1 5° C./s 0.5 1.20 2.4
    19 Comparative ex. Method 1 5° C./s 0.5 0.80 1.6
    20 Comparative ex. Method 3 5° C./s 0.5 0.80 1.6
    21 Comparative ex. Method 1 5° C./s 0.7 0.80 1.1
    22 Comparative ex. Method 1 5° C./s 0.5 0.80 1.6
    23 Comparative ex. Method 2 5° C./s 0.6 0.80 1.3
  • TABLE 3
    Grain
    Boundary Residual Surface Bending
    Oxidation Surface C Austenite Layer Core Impact Fatigue
    Test Depth Concentration Amount Hardness Hardness Structure of Material Value Strength
    No. Category (mm) (%) (%) (HRC) (HRC) Core part Machinability Distortion (J/cm2) (MPa)
    1 Invention ex. 0 0.6 3 65 20 Ferrite/pearlite Good Pass 17 650
    2 Invention ex. 0 0.6 8 65 26 Ferrite/pearlite Good Pass 12 660
    3 Invention ex. 0 0.5 9 55 26 Ferrite/pearlite Good Pass 17 650
    4 Invention ex. 0 0.6 8 65 21 Ferrite/pearlite Good Pass 25 650
    5 Invention ex. 0 0.6 7 65 21 Ferrite/pearlite Good Pass 30 660
    6 Invention ex. 3 0.6 8 65 23 Ferrite/pearlite Good Pass 20 650
    7 Invention ex. 0 1.5 19 65 30 Ferrite/pearlite Good Pass 12 660
    8 Invention ex. 0 0.6 7 65 24 Ferrite/pearlite Good Pass 21 650
    9 Invention ex. 0 0.6 9 65 26 Ferrite/pearlite Good Pass 24 650
    10 Invention ex. 0 0.6 16 65 31 Bainite 60%, Good Pass 23 650
    ferrite 40%
    11 Invention ex. 0 0.6 19 65 32 Bainite 60%, Good Pass 30 660
    ferrite 40%
    12 Invention ex. 0 0.5 15 56 35 Bainite 80%, Good Pass 44 680
    ferrite 20%
    13 Invention ex. 0 0.6 20 65 50 Bainite 90%, Good Pass 42 660
    ferrite 10%
    14 Invention ex. 0 0.6 0 67 36 Bainite 90%, Good Pass 43 700
    ferrite 10%
    15 Invention ex. 0 0.6 0 67 37 Bainite 90%, Good Pass 45 710
    ferrite 10%
    16 Comparative 0 0.6 3 65 28 Martensite/ Good Fail 12 650
    ex. bainite/ferrite
    17 Comparative 0 0.6 3 65 19 Bainite 60%, Good Pass 13 480
    ex. ferrite 40%
    18 Comparative 0 0.6 4 65 20 Ferrite/pearlite Good Pass 17 450
    ex.
    19 Comparative 0 1.6 19 54 20 Ferrite/pearlite Good Pass 15 460
    ex.
    20 Comparative 10 0.6 3 65 20 Ferrite/pearlite Good Pass 15 500
    ex.
    21 Comparative 0 0.6 17 65 51 Ferrite/pearlite Poor Pass 6 650
    ex.
    22 Comparative 0 0.6 20 65 46 Martensite/ Good Fail 42 650
    ex. bainite/ferrite
    23 Comparative 0 0.6 0 67 36 Bainite 90%, Good Pass 42 460
    ex. ferrite 10%
  • A ring gear 8 to which the carburizing and induction-hardening according to the present invention is applicable is illustrated in FIGS. 1 and 2, the ring gear 8 also exemplifying the ring gear used in the tests described above. The ring gear 8, which may be employed in an automotive automatic transmission, has a cylindrical body portion 80 with teeth 81 provided on the inner peripheral surface thereof. Furthermore, the teeth have a high degree of hardness. In such a gear, conformance to a true circle (“circularity”) is extremely important.
  • The present invention is also applicable to a ring-shaped differential ring gear 7, as shown in FIGS. 3 and 4, which has a ring-shaped body portion 70 and teeth 71 on its outer peripheral surface. The differential ring gear 7 is also a component employed in an automotive automatic transmission. Here too, a high degree of hardness of the teeth and circularity are extremely important.
  • The present invention is not limited to the examples of gears given here, and is applicable to gears of various other forms. Further, the present invention is not particularly limited to gears but, rather, is applicable to various steel parts such as power transmission components in automobiles.

Claims (25)

1. A carburized and induction-hardened component formed by carburizing and then induction-hardening a steel consisting essentially of, by mass:
C: minimum 0.08% and under 0.3%;
Si: maximum 2.0% (including 0%);
Mn: from 0.2% to 3.0%;
P: maximum 0.03%;
S: from 0.005% to 0.05%;
Ni: maximum 1.5% (including 0%);
Cr: maximum 3.0% (including 0%);
Mo: maximum 1.0% (including 0%);
O: maximum 0.0025%; and
N: from 0.005% to 0.03%; and
further comprising either or both of, by mass,
Al: from 0.005% to 0.05%, and
Ti: from 0.005% to 0.05%; and
still further comprising either or both of, by mass,
V: maximum 0.3% (including 0%), and
Nb: maximum 0.3% (including 0%); and
a balance of Fe and unavoidable impurities,
the carburized and induction-hardened component having a surface layer with a hardness of at least 55 HRC and a core portion with a hardness of 20 to 50 HRC, and wherein the core portion does not have a martensite structure.
2. A carburized and induction-hardened component formed by carburizing and then induction-hardening a steel consisting essentially of, by mass:
C: minimum 0.08% and under 0.3%;
Si: maximum 2.0% (including 0%);
Mn: from 1.3% to 3.0%;
P: maximum 0.03%;
S: from 0.005% to 0.05%;
Ni: maximum 2.0% (including 0%);
Cr: maximum 3.0% (including 0%);
Mo: maximum 1.0% (including 0%);
O: maximum 0.0025%; and
N: from 0.005% to 0.03%; and
further comprising either or both of, by mass,
Al: from 0.005% to 0.05%, and
Ti: from 0.005% to 0.05%; and
still further comprising either or both of, by mass,
V: from 0.01% to 0.3%, and
Nb: from 0.01% to 0.3%; and
a balance of Fe and unavoidable impurities,
the carburized and induction-hardened component having a surface layer with hardness of at least 55 HRC and a core portion with a hardness of from 20 to 50 HRC, wherein the core portion does not have a martensite structure and wherein the core portion has an area ratio of a bainite structure in cross section of at least 70%.
3. A carburized and induction-hardened component formed by carburizing and then induction-hardening a steel consisting essentially of, by mass:
C: minimum 0.2% and under 0.3%;
Si: from 0.2% to 0.6%;
Mn: from 1.4% to 2.0%;
P: maximum 0.03%;
S: from 0.01% to 0.02%;
Cr: from 0.2% to 0.6%;
Mo: maximum 0.4% (including 0%);
O: maximum 0.0025%;
N: from 0.005% to 0.02%;
Al: from 0.005% to 0.05%;
V: from 0.05% to 0.25%; and
a balance of Fe and unavoidable impurities,
the carburized and induction-hardened component having a surface layer with hardness of at least 55 HRC and a core portion with a hardness of from 20 to 50 HRC, wherein the core portion does not have a martensite structure and wherein the core portion has an area ratio of a bainite structure in cross section of at least 70%.
4. The carburized and induction-hardened component according to claim 3, wherein Si is from 0.4% to 0.6%; Cr is from 0.4% to 0.6%; and Mo is a maximum of 0.1% (including 0%).
5. The carburized and induction-hardened component according to claim 3, wherein Si is from 0.4% to 0.6%; Cr is from 0.4% to 0.6%; and Mo is from 0.3 to 0.4%.
6. The carburized and induction-hardened component according to claim 1, wherein the steel further consists essentially of at least one element selected from the group consisting of: Ca: maximum 0.01% by mass; Mg: maximum 0.01% by mass; Zr: maximum 0.05% by mass; and Te: maximum 0.1% by mass.
7. The carburized and induction-hardened component according to claim 1, wherein the amount of carbon in the surface layer is from 0.5 to 1.5% by mass.
8. The carburized and induction-hardened component according to claim 1, having a carburized layer and an induction-hardened layer having a depth that is from 0.3 to 2.0 times the depth of the carburized layer.
9. The carburized and induction-hardened component according to claim 8 having a surface area ratio of residual austenite in the induction-hardened layer of no greater than 20%.
10. The carburized and induction-hardened component according to claim 1 having a surface grain boundary oxidation depth of no greater than 3 μm.
11. The carburized and induction-hardened component according to claim 1, wherein the carburized and induction-hardened component is formed by shot peening after the induction-hardening.
12. The carburized and induction-hardened component according to claim 1, wherein the carburized and induction-hardened component is a gear.
13. The carburized and induction-hardened component according to claim 2, wherein the steel chemical further consists essentially of at least one element selected from the group consisting of: Ca: maximum 0.01% by mass; Mg: maximum 0.01% by mass; Zr: maximum 0.05% by mass; and Te: maximum 0.1% by mass.
14. The carburized and induction-hardened component according to claim 2, wherein the amount of carbon in the surface layer is from 0.5 to 1.5% by mass.
15. The carburized and induction-hardened component according to claim 2 having a carburized layer and an induction-hardened layer having a depth that is from 0.3 to 2.0 times the depth of the carburized layer.
16. The carburized and induction-hardened component according to claim 15 having a surface area ratio of residual austenite in the induction-hardened layer of no greater than 20%.
17. The carburized and induction-hardened component according to claim 2 having a surface grain boundary oxidation depth of no greater than 3 μm.
18. The carburized and induction-hardened component according to claim 2, wherein the carburized and induction-hardened component is formed by shot peening after the induction-hardening.
19. The carburized and induction-hardened component according to claim 2, wherein the carburized and induction-hardened component is a gear.
20. The carburized and induction-hardened component according to claim 3, wherein the steel further consists essentially of at least one element selected from the group consisting of: Ca: maximum 0.01% by mass; Mg: maximum 0.01% by mass; Zr: maximum 0.05% by mass; and Te: maximum 0.1% by mass.
21. The carburized and induction-hardened component according to claim 3, wherein the amount of carbon in the surface layer is from 0.5 to 1.5% by mass.
22. The carburized and induction-hardened component according to claim 3 having a carburized layer and an induction-hardened layer having a depth that is from 0.3 to 2.0 times the depth of the carburized layer.
23. The carburized and induction-hardened component according to claim 22 having a surface area ratio of residual austenite in the induction-hardened layer is no greater than 20%.
24. The carburized and induction-hardened component according to claim 3 having a surface grain boundary oxidation depth of no greater than 3 μm.
25. The carburized and induction-hardened component according to claim 3, wherein the carburized and induction-hardened component is formed by shot peening after the induction-hardening.
US11/919,068 2005-04-28 2006-04-28 Carburized and induction-hardened component Expired - Fee Related US8430974B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005-131201 2005-04-28
JP2005131201 2005-04-28
JP2005278105 2005-09-26
JP2005-278105 2005-09-26
PCT/JP2006/308964 WO2006118243A1 (en) 2005-04-28 2006-04-28 Carburized induction-hardened component

Publications (2)

Publication Number Publication Date
US20090301608A1 true US20090301608A1 (en) 2009-12-10
US8430974B2 US8430974B2 (en) 2013-04-30

Family

ID=37308037

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/919,068 Expired - Fee Related US8430974B2 (en) 2005-04-28 2006-04-28 Carburized and induction-hardened component

Country Status (6)

Country Link
US (1) US8430974B2 (en)
EP (1) EP1876256B1 (en)
JP (2) JPWO2006118242A1 (en)
KR (1) KR100961584B1 (en)
CN (1) CN101184860B (en)
WO (2) WO2006118242A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129382A1 (en) * 2009-12-01 2011-06-02 Hyundai Motor Company Alloy steel for low temperature vacuum carburizing
US20120247249A1 (en) * 2010-04-01 2012-10-04 Nippon Steel Corporation Gears and its process of manufacture
US20120297910A1 (en) * 2011-05-24 2012-11-29 Aisin Aw Co., Ltd. Drive plate and manufacturing method for the same
US20130216856A1 (en) * 2010-07-02 2013-08-22 Marco Burtchen Mechanical component and method of surface hardening
US20130319154A1 (en) * 2011-03-31 2013-12-05 Aisin Aw Co., Ltd. Steel gear and manufacturing method for the same
US20140144558A1 (en) * 2010-07-02 2014-05-29 Marco Burtchen Bearing component and method for surface hardening
DE112012000484B4 (en) * 2011-03-31 2016-02-25 Aisin Aw Co., Ltd. Steel gear and manufacturing method therefor
US20170081738A1 (en) * 2014-06-27 2017-03-23 Aktiebolaget Skf Method & metal component
US9915335B2 (en) 2011-03-22 2018-03-13 Hispano Suiza Method for treating a component such as a gearwheel
US11326244B2 (en) * 2016-07-15 2022-05-10 Aisin Corporation Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
US20230003256A1 (en) * 2017-10-24 2023-01-05 Ntn Corporation Wheel bearing device and method for manufacturing said device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760664B2 (en) 2006-10-26 2011-08-31 アイシン・エィ・ダブリュ株式会社 Sheave member for belt type continuously variable transmission and method for manufacturing the same
JP5018586B2 (en) * 2007-04-09 2012-09-05 大同特殊鋼株式会社 High strength carburizing induction hardening parts
JP5305820B2 (en) 2008-10-08 2013-10-02 アイシン・エィ・ダブリュ株式会社 Manufacturing method of carburized parts and steel parts
KR101115761B1 (en) * 2008-12-26 2012-06-12 주식회사 포스코 Steel restrained from surface decarborization and manufacturing method for the same
JP5530763B2 (en) 2009-05-13 2014-06-25 新日鐵住金株式会社 Carburized steel parts with excellent low cycle bending fatigue strength
JP5336972B2 (en) * 2009-08-03 2013-11-06 新日鐵住金株式会社 Nitriding steel and nitride parts
JP5447278B2 (en) * 2009-08-17 2014-03-19 新日鐵住金株式会社 Spiral steel pipe with internal protrusion and its manufacturing method
JP5123335B2 (en) * 2010-01-28 2013-01-23 本田技研工業株式会社 Crankshaft and manufacturing method thereof
JP5422045B2 (en) 2010-03-30 2014-02-19 アイシン・エィ・ダブリュ株式会社 Carburized steel member and manufacturing method thereof
JP2012036475A (en) * 2010-08-10 2012-02-23 Sanyo Special Steel Co Ltd Method for manufacturing rolling part and gear with long service life under hydrogen environment
JP5505364B2 (en) * 2011-04-22 2014-05-28 アイシン・エィ・ダブリュ株式会社 Composite steel parts and manufacturing method thereof
JP5794397B2 (en) * 2012-10-19 2015-10-14 新日鐵住金株式会社 Case-hardened steel with excellent fatigue properties
CN103343213A (en) * 2013-07-15 2013-10-09 南京金鑫传动设备有限公司 Heat treatment method for thin-walled gear ring
JP6171910B2 (en) * 2013-12-12 2017-08-02 トヨタ自動車株式会社 Manufacturing method of ferrous metal parts
FR3023851A1 (en) * 2014-07-21 2016-01-22 Hydromecanique & Frottement PROCESS FOR TREATING A NITRIDEE / NITROCARBON PIECE
CN104404208A (en) * 2014-09-26 2015-03-11 无锡市羊尖盛裕机械配件厂 Fastener annealing process
CN104294178A (en) * 2014-09-30 2015-01-21 合肥恒泰钢结构有限公司 Carburizing manganese steel
JP6447064B2 (en) * 2014-11-28 2019-01-09 新日鐵住金株式会社 Steel parts
US10774413B2 (en) * 2015-11-11 2020-09-15 Honeywell International Inc. Low pressure induction carburization
US10889870B2 (en) 2016-03-08 2021-01-12 Aisin Aw Co., Ltd. Steel component, gear component, and producing method for steel component
CN105671434A (en) * 2016-03-19 2016-06-15 上海大学 Magnesium, calcium and sulfur containing 20MnCr free-cutting gear steel and preparation method thereof
CN107881420A (en) * 2016-09-29 2018-04-06 上海梅山钢铁股份有限公司 A kind of tensile strength 550Mpa level hot rolled steel plates and its manufacture method
JP6828593B2 (en) * 2017-05-25 2021-02-10 日本製鉄株式会社 Carburized parts
CN109112417A (en) * 2017-06-26 2019-01-01 上海梅山钢铁股份有限公司 A kind of tensile strength 590MPa grades of hot rolled steel plates used for automobile wheels
JP7063071B2 (en) * 2018-04-05 2022-05-09 日本製鉄株式会社 Carburized parts
US20220074034A1 (en) * 2018-09-18 2022-03-10 Ezm Edelstahlzieherei Mark Gmbh Steel for Surface Hardening, Having a High Edge Hardness and Having a Fine Ductile Grain Structure
JP7077906B2 (en) * 2018-10-12 2022-05-31 トヨタ自動車株式会社 Gear manufacturing method
CN110106445B (en) * 2019-06-05 2021-04-16 上海大学 High-strength high-low-temperature-toughness steel for ocean platform casting node and preparation method thereof
CN110373607B (en) * 2019-07-25 2021-04-02 广东韶钢松山股份有限公司 High-temperature carburized steel, high-temperature carburized steel component and preparation method thereof
JP7422527B2 (en) * 2019-12-05 2024-01-26 日本製鉄株式会社 Rolling parts and their manufacturing method
CN115725894B (en) * 2021-08-25 2023-12-12 宝山钢铁股份有限公司 High-temperature carburized NiMo gear steel with excellent impact performance and manufacturing method thereof
CN116445807B (en) * 2022-01-07 2025-05-02 宝山钢铁股份有限公司 Narrow-hardenability bandwidth high-temperature carburized MnCr gear steel and manufacturing method thereof
CN115522121B (en) * 2022-08-31 2023-06-23 马鞍山钢铁股份有限公司 Low-silicon Nb-V composite microalloyed gear steel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595610A (en) * 1991-06-07 1997-01-21 Kabushiki Kaisha Kobe Seiko Sho Method of manufacturing case-hardened parts with little distortion in heat treatment and superior strength in bending fatigue
US5935352A (en) * 1996-05-21 1999-08-10 Ovako Steel Ab Process for production of a steel component
WO2003056054A1 (en) * 2001-12-25 2003-07-10 Aisin Aw Co., Ltd. Carburized and quenched member and method for production thereof
US20030205297A1 (en) * 2002-05-01 2003-11-06 Tipps Jerry A. Carburizing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149313A (en) * 1986-12-12 1988-06-22 Daido Steel Co Ltd Gas quenching furnace
JP2579640B2 (en) 1987-07-30 1997-02-05 新日本製鐵株式会社 Manufacturing method of high fatigue strength case hardened product
JPH08311607A (en) 1995-05-16 1996-11-26 Sumitomo Metal Ind Ltd Low distortion carburized gear excellent in root bending strength and method of manufacturing the same
JP3517515B2 (en) * 1996-04-23 2004-04-12 エヌケーケー条鋼株式会社 High-strength, low heat-treated deformed gear and manufacturing method thereof
JP3159372B2 (en) * 1996-09-05 2001-04-23 日立金属株式会社 Mold and quenching method
JP2000129341A (en) * 1998-10-20 2000-05-09 Toyota Motor Corp Low distortion quenching method
JP5428031B2 (en) * 2001-06-05 2014-02-26 Dowaサーモテック株式会社 Carburizing method and apparatus
JP4229609B2 (en) * 2001-12-25 2009-02-25 新日本製鐵株式会社 Carburized and hardened gear and manufacturing method thereof
JP3978111B2 (en) 2002-09-30 2007-09-19 株式会社神戸製鋼所 Carburizing steel with excellent torsional fatigue properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595610A (en) * 1991-06-07 1997-01-21 Kabushiki Kaisha Kobe Seiko Sho Method of manufacturing case-hardened parts with little distortion in heat treatment and superior strength in bending fatigue
US5935352A (en) * 1996-05-21 1999-08-10 Ovako Steel Ab Process for production of a steel component
WO2003056054A1 (en) * 2001-12-25 2003-07-10 Aisin Aw Co., Ltd. Carburized and quenched member and method for production thereof
US20050173026A1 (en) * 2001-12-25 2005-08-11 Takao Taniguchi Carburized and quenched member and method for production thereof
US20030205297A1 (en) * 2002-05-01 2003-11-06 Tipps Jerry A. Carburizing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129382A1 (en) * 2009-12-01 2011-06-02 Hyundai Motor Company Alloy steel for low temperature vacuum carburizing
US20120247249A1 (en) * 2010-04-01 2012-10-04 Nippon Steel Corporation Gears and its process of manufacture
US8733199B2 (en) * 2010-04-01 2014-05-27 Aisin Aw Co., Ltd. Gears and its process of manufacture
US20140144558A1 (en) * 2010-07-02 2014-05-29 Marco Burtchen Bearing component and method for surface hardening
US20130216856A1 (en) * 2010-07-02 2013-08-22 Marco Burtchen Mechanical component and method of surface hardening
US9915335B2 (en) 2011-03-22 2018-03-13 Hispano Suiza Method for treating a component such as a gearwheel
US20130319154A1 (en) * 2011-03-31 2013-12-05 Aisin Aw Co., Ltd. Steel gear and manufacturing method for the same
DE112012000484B4 (en) * 2011-03-31 2016-02-25 Aisin Aw Co., Ltd. Steel gear and manufacturing method therefor
US9388476B2 (en) * 2011-03-31 2016-07-12 Aisin Aw Co., Ltd. Steel gear and manufacturing method for the same
US9441723B2 (en) * 2011-03-31 2016-09-13 Aisin Aw Co., Ltd. Steel gear and manufacturing method for the same
US9328811B2 (en) * 2011-05-24 2016-05-03 Aisin Aw Co., Ltd. Drive plate and manufacturing method for the same
US20120297910A1 (en) * 2011-05-24 2012-11-29 Aisin Aw Co., Ltd. Drive plate and manufacturing method for the same
US20170081738A1 (en) * 2014-06-27 2017-03-23 Aktiebolaget Skf Method & metal component
US11326244B2 (en) * 2016-07-15 2022-05-10 Aisin Corporation Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
US20230003256A1 (en) * 2017-10-24 2023-01-05 Ntn Corporation Wheel bearing device and method for manufacturing said device
US12247621B2 (en) * 2017-10-24 2025-03-11 Ntn Corporation Wheel bearing device

Also Published As

Publication number Publication date
CN101184860B (en) 2011-01-19
JPWO2006118243A1 (en) 2008-12-18
JPWO2006118242A1 (en) 2008-12-18
WO2006118242A1 (en) 2006-11-09
WO2006118243A1 (en) 2006-11-09
US8430974B2 (en) 2013-04-30
KR100961584B1 (en) 2010-06-04
EP1876256A1 (en) 2008-01-09
CN101184860A (en) 2008-05-21
JP5129564B2 (en) 2013-01-30
EP1876256A4 (en) 2010-08-04
KR20070108569A (en) 2007-11-12
EP1876256B1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US8430974B2 (en) Carburized and induction-hardened component
US8961710B2 (en) Carburized component and manufacturing method
CN108603261B (en) Steel parts, gear parts, and methods of manufacturing steel parts
WO2014192117A1 (en) Soft-nitrided induction-quenched steel component
WO2012077705A1 (en) Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
CN112292471B (en) Mechanical component
JP4229609B2 (en) Carburized and hardened gear and manufacturing method thereof
JP4354277B2 (en) Method for manufacturing carburized and quenched members
JP3517515B2 (en) High-strength, low heat-treated deformed gear and manufacturing method thereof
JP2009299148A (en) Method for manufacturing high-strength carburized component
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP2790788B2 (en) Low distortion type steel material for carburized hardened gears
JPH08109435A (en) Steel for low strain type carburized and quenched gear
JP2769135B2 (en) Low distortion type steel material for carburized hardened gears
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
JP2010007117A (en) Method for manufacturing high-strength carburized component
JP2010007119A (en) Method for manufacturing high-strength carburized component
JP2769136B2 (en) Low distortion type steel material for carburized hardened gears
JP2023097583A (en) Steel and carburized and quenched component
JP2009299146A (en) Method for manufacturing high-strength carburized component
JP2023069388A (en) Steel and carburized component
JP2023163967A (en) Bar steel and carburized component
JP6601359B2 (en) Carburized parts with excellent wear resistance and manufacturing method thereof
JP2023163969A (en) Bar steel and carburized component
JP2023163968A (en) Bar steel and carburized component

Legal Events

Date Code Title Description
AS Assignment

Owner name: AISIN AW CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, TAKAO;SHIRAI, HISAO;OHBAYASHI, KOUJI;AND OTHERS;REEL/FRAME:023109/0509;SIGNING DATES FROM 20071003 TO 20071015

Owner name: NIPPON STEEL CORPORATION MURORAN WORKS, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, TAKAO;SHIRAI, HISAO;OHBAYASHI, KOUJI;AND OTHERS;REEL/FRAME:023109/0509;SIGNING DATES FROM 20071003 TO 20071015

Owner name: NIPPON STEEL CORPORATION MURORAN WORKS, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, TAKAO;SHIRAI, HISAO;OHBAYASHI, KOUJI;AND OTHERS;SIGNING DATES FROM 20071003 TO 20071015;REEL/FRAME:023109/0509

Owner name: AISIN AW CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, TAKAO;SHIRAI, HISAO;OHBAYASHI, KOUJI;AND OTHERS;SIGNING DATES FROM 20071003 TO 20071015;REEL/FRAME:023109/0509

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION, JAPAN

Free format text: MERGER;ASSIGNOR:NIPPON STEEL CORPORATION;REEL/FRAME:029822/0654

Effective date: 20121001

AS Assignment

Owner name: NIPPON STEEL CORPORATION MURORAN WORKS, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, TAKAO;SHIRAI, HISAO;OHBAYASHI, KOUJI;AND OTHERS;SIGNING DATES FROM 20071003 TO 20071015;REEL/FRAME:030032/0764

Owner name: AISIN AW CO., LTD, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, TAKAO;SHIRAI, HISAO;OHBAYASHI, KOUJI;AND OTHERS;SIGNING DATES FROM 20071003 TO 20071015;REEL/FRAME:030032/0764

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NIPPON STEEL CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NIPPON STEEL & SUMITOMO METAL CORPORATION;REEL/FRAME:049257/0828

Effective date: 20190401

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210430

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载