US20090286729A1 - Epidermal Growth Factor Receptor Antagonists and Methods of Use - Google Patents
Epidermal Growth Factor Receptor Antagonists and Methods of Use Download PDFInfo
- Publication number
- US20090286729A1 US20090286729A1 US12/261,233 US26123308A US2009286729A1 US 20090286729 A1 US20090286729 A1 US 20090286729A1 US 26123308 A US26123308 A US 26123308A US 2009286729 A1 US2009286729 A1 US 2009286729A1
- Authority
- US
- United States
- Prior art keywords
- amino acid
- egfr
- growth factor
- epidermal growth
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102000001301 EGF receptor Human genes 0.000 title claims abstract description 133
- 108060006698 EGF receptor Proteins 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 title claims description 26
- 229940044551 receptor antagonist Drugs 0.000 title claims 6
- 239000002464 receptor antagonist Substances 0.000 title claims 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 85
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 82
- 229920001184 polypeptide Polymers 0.000 claims abstract description 80
- 239000003446 ligand Substances 0.000 claims abstract description 43
- 230000000694 effects Effects 0.000 claims abstract description 33
- 239000005557 antagonist Substances 0.000 claims abstract description 29
- 229940122558 EGFR antagonist Drugs 0.000 claims abstract description 18
- 101800003838 Epidermal growth factor Proteins 0.000 claims description 86
- 235000001014 amino acid Nutrition 0.000 claims description 67
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical group C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 claims description 67
- GVUGOAYIVIDWIO-UFWWTJHBSA-N nepidermin Chemical group C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CS)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C(C)C)C(C)C)C1=CC=C(O)C=C1 GVUGOAYIVIDWIO-UFWWTJHBSA-N 0.000 claims description 54
- 150000001413 amino acids Chemical group 0.000 claims description 51
- 229940116977 epidermal growth factor Drugs 0.000 claims description 51
- 229940024606 amino acid Drugs 0.000 claims description 41
- 238000006467 substitution reaction Methods 0.000 claims description 35
- 101000851176 Homo sapiens Pro-epidermal growth factor Proteins 0.000 claims description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 21
- 201000010099 disease Diseases 0.000 claims description 18
- 241000282414 Homo sapiens Species 0.000 claims description 16
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 16
- 229930195712 glutamate Natural products 0.000 claims description 15
- 238000012217 deletion Methods 0.000 claims description 13
- 230000037430 deletion Effects 0.000 claims description 13
- 230000035772 mutation Effects 0.000 claims description 11
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 10
- 230000037431 insertion Effects 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 108010033760 Amphiregulin Proteins 0.000 claims description 8
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 claims description 8
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 8
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 claims description 8
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 claims description 8
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims description 8
- 230000002018 overexpression Effects 0.000 claims description 8
- 206010028980 Neoplasm Diseases 0.000 claims description 7
- 101800001382 Betacellulin Proteins 0.000 claims description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 6
- 102100029837 Probetacellulin Human genes 0.000 claims description 6
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 6
- 101800000155 Epiregulin Proteins 0.000 claims description 5
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 5
- 102100025498 Proepiregulin Human genes 0.000 claims description 5
- 235000003704 aspartic acid Nutrition 0.000 claims description 5
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 5
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- 229960000310 isoleucine Drugs 0.000 claims description 5
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 5
- 201000011510 cancer Diseases 0.000 claims description 4
- NMWKYTGJWUAZPZ-WWHBDHEGSA-N (4S)-4-[[(4R,7S,10S,16S,19S,25S,28S,31R)-31-[[(2S)-2-[[(1R,6R,9S,12S,18S,21S,24S,27S,30S,33S,36S,39S,42R,47R,53S,56S,59S,62S,65S,68S,71S,76S,79S,85S)-47-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-18-(4-aminobutyl)-27,68-bis(3-amino-3-oxopropyl)-36,71,76-tribenzyl-39-(3-carbamimidamidopropyl)-24-(2-carboxyethyl)-21,56-bis(carboxymethyl)-65,85-bis[(1R)-1-hydroxyethyl]-59-(hydroxymethyl)-62,79-bis(1H-imidazol-4-ylmethyl)-9-methyl-33-(2-methylpropyl)-8,11,17,20,23,26,29,32,35,38,41,48,54,57,60,63,66,69,72,74,77,80,83,86-tetracosaoxo-30-propan-2-yl-3,4,44,45-tetrathia-7,10,16,19,22,25,28,31,34,37,40,49,55,58,61,64,67,70,73,75,78,81,84,87-tetracosazatetracyclo[40.31.14.012,16.049,53]heptaoctacontane-6-carbonyl]amino]-3-methylbutanoyl]amino]-7-(3-carbamimidamidopropyl)-25-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-28-(1H-imidazol-4-ylmethyl)-10-methyl-6,9,12,15,18,21,24,27,30-nonaoxo-16-propan-2-yl-1,2-dithia-5,8,11,14,17,20,23,26,29-nonazacyclodotriacontane-4-carbonyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@H](Cc4ccccc4)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CSSC[C@H](NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](Cc4ccccc4)NC3=O)[C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc3ccccc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C)C(=O)N2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](Cc2c[nH]cn2)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)C(C)C)C(=O)N[C@@H](Cc2c[nH]cn2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1)C(=O)N[C@@H](C)C(O)=O NMWKYTGJWUAZPZ-WWHBDHEGSA-N 0.000 claims description 3
- 208000026310 Breast neoplasm Diseases 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 3
- 206010005003 Bladder cancer Diseases 0.000 claims description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 2
- 206010018338 Glioma Diseases 0.000 claims description 2
- 201000004681 Psoriasis Diseases 0.000 claims description 2
- 201000001531 bladder carcinoma Diseases 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 201000001441 melanoma Diseases 0.000 claims description 2
- 208000010570 urinary bladder carcinoma Diseases 0.000 claims description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims 9
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims 9
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims 9
- 102100033237 Pro-epidermal growth factor Human genes 0.000 claims 6
- 102100038778 Amphiregulin Human genes 0.000 claims 2
- 102000047916 Epidermal growth factor receptor ligand Human genes 0.000 claims 2
- 108700037877 Epidermal growth factor receptor ligand Proteins 0.000 claims 2
- 101710098940 Pro-epidermal growth factor Proteins 0.000 claims 2
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 claims 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims 1
- 230000004663 cell proliferation Effects 0.000 abstract description 27
- 230000003042 antagnostic effect Effects 0.000 abstract description 12
- 108020004707 nucleic acids Proteins 0.000 abstract description 11
- 102000039446 nucleic acids Human genes 0.000 abstract description 11
- 150000007523 nucleic acids Chemical class 0.000 abstract description 11
- 230000004071 biological effect Effects 0.000 abstract description 10
- 108091000080 Phosphotransferase Proteins 0.000 abstract description 8
- 230000005764 inhibitory process Effects 0.000 abstract description 8
- 230000001404 mediated effect Effects 0.000 abstract description 8
- 102000020233 phosphotransferase Human genes 0.000 abstract description 8
- 230000004913 activation Effects 0.000 abstract description 6
- 102000005962 receptors Human genes 0.000 abstract description 6
- 108020003175 receptors Proteins 0.000 abstract description 6
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 69
- 101500025419 Homo sapiens Epidermal growth factor Proteins 0.000 description 31
- 210000004027 cell Anatomy 0.000 description 30
- 229940116978 human epidermal growth factor Drugs 0.000 description 29
- 125000003275 alpha amino acid group Chemical group 0.000 description 24
- 238000003556 assay Methods 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 20
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 19
- 239000000203 mixture Substances 0.000 description 16
- JUJBNYBVVQSIOU-UHFFFAOYSA-M sodium;4-[2-(4-iodophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=N1 JUJBNYBVVQSIOU-UHFFFAOYSA-M 0.000 description 15
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000002401 inhibitory effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 239000004471 Glycine Substances 0.000 description 8
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 7
- 238000001516 cell proliferation assay Methods 0.000 description 7
- 230000035755 proliferation Effects 0.000 description 7
- 102000007299 Amphiregulin Human genes 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 6
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 6
- 239000004472 Lysine Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 235000018977 lysine Nutrition 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 5
- 235000004554 glutamine Nutrition 0.000 description 5
- 238000000099 in vitro assay Methods 0.000 description 5
- 238000000021 kinase assay Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000013207 serial dilution Methods 0.000 description 5
- 239000004017 serum-free culture medium Substances 0.000 description 5
- 230000036964 tight binding Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000004474 valine Substances 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 4
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- -1 human Chemical compound 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 238000007423 screening assay Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 3
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 108020005199 Dehydrogenases Proteins 0.000 description 2
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 101710082439 Hemagglutinin A Proteins 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000012131 assay buffer Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000010874 in vitro model Methods 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101100118554 Homo sapiens EGF gene Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102220497052 Insulin-induced gene 2 protein_G39F_mutation Human genes 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108010079246 OMPA outer membrane proteins Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 150000003938 benzyl alcohols Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002333 glycines Chemical group 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 238000003674 kinase activity assay Methods 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000035409 positive regulation of cell proliferation Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1808—Epidermal growth factor [EGF] urogastrone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- Epidermal growth factor is a 53 amino acid cytokine which is proteolytically cleaved from a large integral membrane protein precursor. EGF plays an important role in the growth control of mammalian cells.
- the amino acid and nucleotide sequences of human EGF are, for example, disclosed in Hollenberg, “Epidermal Growth Factor-Urogastrone, A Polypeptide Acquiring Hormonal States”; eds., Academic Press, Inc., New York (1979), pp. 69-110; or Urdea et al., Proc. Natl. Acad. Sci . USA, 80:7461 (1983).
- the amino acid sequence of hEGF is also disclosed in U.S. Pat. No. 5,102,789 and copending U.S. patent application Ser. No. 10/820,640 both of which are incorporated herein by reference in their entirety.
- Epidermal growth factor receptor is a well known example of receptor tyrosine kinases. Interaction of EGFR with its cognate ligand, EGF, or with structurally related ligands (e.g. tissue growth factor ⁇ ), leads to dimerization of EGFR and activation of the EGFR kinase domain. This initiates a signaling cascade, leading to cell division. Overexpression of the gene coding for the EGFR has been implicated in a number of cancers including breast, ovarian, and head and neck cancer.
- Molecules that target EGFR by inhibiting its kinase activity or by interfering with the binding of EGF to EGFR have been shown to inhibit cell proliferation and have been developed as anticancer therapeutics, for example, Iressa® (gefitinib), a tyrosine kinase inhibitor and ErbituxTM (cetuximab), an EGFR-specific monoclonal antibody. Although these therapeutics have been shown to be effective in some cases, there is still a need for novel therapies for EGFR-related cancers.
- EGFR antagonists are EGFR antagonists.
- EGFR antagonists any molecule that inhibits, suppresses or causes the cessation of at least one EGFR-mediated biological activity, e.g. by reducing, interfering with, blocking, or otherwise preventing the interaction or binding of a native or active EFGR ligand to EGFR.
- EGFR antagonists are EGFR ligand polypeptide variants.
- Preferred ligand variants are polypeptide molecules that are capable of blocking or interrupting at least one biological activity of EGFR, for example, reducing or inhibiting EGFR kinase activation, signaling, regulation, dimerization, or EGFR-regulated cell proliferation.
- Preferred ligand variants of the invention are EGF polypeptide variants capable of selectively inhibiting at least one EGFR-mediated biological activity.
- EGF polypeptide variants capable of selectively inhibiting at least one EGFR-mediated biological activity.
- Such polypeptide variants, and nucleic acids encoding these polypeptide variants can be used therapeutically in situations in which inhibition of EGFR biological activity is indicated.
- polypeptide is used herein as a generic term to refer to native protein, fragments, homologs or analogs of a relevant polypeptide sequence.
- an EGFR ligand e.g., EGF
- EGF EGFR ligand
- a mutation that binds, preferably tightly, to Domain I of the EGFR can result in good to excellent EGFR antagonists having therapeutic properties.
- the invention relates to EGFR antagonists having a polypeptide sequence substantially similar to EGF (or other EGFR ligand) characterized by at least one amino acid substitution, deletion or insertion that prevents the antagonist from binding Domain III of EGFR and, optionally at least one amino acid substitution, deletion or insertion that results in antagonist binding to Domain I of EGFR, preferably tight binding.
- An example of tight binding includes the formation of an ionic, covalent, hydrophobic, electrostatic or hydrogen bonds between one or more amino acids of the antagonist and the receptor. Binding can be considered “tight” if the antagonist is not substantially displaced from EGFR by EGF, e.g., in an in vitro assay such as an assay described herein.
- the antagonist is not substantially displaced if at least 50%, preferably at least 70%, more preferably at least about 90%, such as 100%, of the antagonist remains bound to EGFR in an assay described herein.
- the domains of EGFR, and similar receptors, are known and are described in Ogiso et al., Cell , 110:775-787 (2002), which is incorporated herein by reference.
- the present invention features an epidermal growth factor (EGF) polypeptide variant having at least one amino acid substitution at glycine of position 39 (G39 or Gly 39) of the wild-type human EGF (hEGF) and having EGFR antagonist activity and, optionally, at valine of position 35 (V35 or Val 35).
- Glycine is preferably substituted with leucine (G39L) and/or valine is preferably substituted with glutamic acid (V35E).
- the present invention features an epidermal growth factor (EGF) polypeptide variant having at least one amino acid substitution at glycine of position 18 (G18 or Gly 18) of the wild-type EGF, preferably wild-type human EGF, and having EGFR antagonist and/or inhibitory activity.
- the present invention features an epidermal growth factor (EGF) polypeptide variant having at least one amino acid substitution at glycine of position 39 (G39 or Gly 39) of the wild-type human EGF and having EGFR antagonist activity.
- the present invention also features a method of treating a condition characterized by EGFR over-expression in a patient, comprising administering to the patient a therapeutically effective amount of a pharmaceutical composition comprising at least one polypeptide variant of the invention.
- FIG. 1 is a graph of EGFR binding data for hEGF, the G39L variant and the V35EG39L variant.
- FIG. 2 is a graph of an EGFR kinase assay with hEGF, the G39L variant and the V35EG39L variant, showing inhibition with the G39L mutations.
- FIG. 3 is a graph of stimulation of cell proliferation with hEGF, the G39L variant and the V35EG39L variant.
- FIG. 4 is a graph showing inhibition of hEGF-stimulated cell proliferation by the G39L variant.
- FIG. 5 is a graph showing inhibition of hEGF-stimulated cell proliferation by the V35EG39L variant.
- FIG. 6 illustrates that V35EG39L does not trigger EGFR dimerization.
- FIG. 7 is a graph of an EGFR kinase assay with EFG G18 variants.
- FIG. 8 is a graph of an EGFR kinase assay with EFG G39 variants
- FIG. 9 is a graph of an EGFR kinase competition assay with G18 and G39 variants.
- FIG. 10 is a graph showing the effect of G18E, G18K and G18Q on HER5 cell proliferation (measured as the conversion of WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate), to a yellow-orange, water soluble formazan by the mitochondrial dehydrogenases of viable cells which is followed by changes in the absorbance of light at 450 nm (OD 450)).
- WST-1 3-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate
- FIG. 11 is a graph showing the effect of G18F and G18L on HER5 cell proliferation (measured as the conversion of WST-1).
- FIG. 12 is a graph showing the effect of G39 series mutants on HER 5 cell proliferation (measured as the conversion of WST-1).
- FIG. 13 is a graph showing the effect of G18 series mutants on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 14 is a graph showing the effect of G39 series mutants on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 15 is a graph showing the effect of hEGF on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 16 is a graph showing the effect of G18K on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 17 is a graph showing the effect of a G18L on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 18 is a graph showing the effect of G39K on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 19 is a graph showing the effect of a G39L on BALB/3T3 cell proliferation (measured as the conversion of WST-1).
- FIG. 20 is a graph showing the effect of G18F on A431 cell proliferation (measured as the conversion of WST-1).
- the present invention features EGFR antagonists.
- EGFR antagonists are EGFR-ligand variants.
- EGFR ligands include mammalian EGF (e.g. human, pig, cat, dog, mouse, horse and rat).
- Other examples of EGFR ligands include transforming growth factor- ⁇ (TGF ⁇ ), betacellulin, heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR) and epiregulin.
- TGF ⁇ transforming growth factor- ⁇
- betacellulin betacellulin
- HB-EGF heparin-binding EGF-like growth factor
- AR amphiregulin
- epiregulin epiregulin.
- Preferred ligand variants of the invention are human EGF polypeptide variants capable of selectively inhibiting EGFR-mediated biological activity.
- an EGFR ligand e.g., EGF
- EGF EGFR ligand
- a mutation that binds, preferably tightly, to Domain I of the EGFR can result in good to excellent EGF antagonists having therapeutic properties.
- the invention relates to EGFR antagonists having a polypeptide sequence substantially similar to EGF (or other EGFR ligand) characterized by at least one amino acid substitution, deletion or insertion that prevents the antagonist from binding Domain III of EGFR and, optionally at least one amino acid substitution, deletion or insertion that results in antagonist binding to Domain I of EGFR, preferably tight binding.
- tight binding includes the formation of an ionic or covalent, hydrophobic, electrostatic, or hydrogen bonds between one or more amino acids of the antagonist and the receptor. Binding can be considered “tight” if the antagonist is not substantially displaced from EGFR by EGF, e.g., in an in vitro assay such as an assay described herein.
- the antagonist is not substantially displaced if at least 50%, preferably at least 70%, more preferably at least about 90%, such as 100%, of the antagonist remains bound to EGFR in an assay described herein. Binding can also be considered tight if the antagonist substantially displaces EGF from EGFR, e.g., in an in vitro assay such as an assay described herein.
- the antagonist substantially displaces EGF if at least 50%, preferably at least 70%, more preferably at least about 90%, such as 100%, of the EGF is displaced from EGFR in an assay described herein.
- the present invention features EGF polypeptide variants having substantial amino acid sequence identity to wild-type EGF, preferably wild-type human EGF and more preferably to the 53 amino acid human wild-type EGF, and that function to inhibit EGFR-mediated biological activity.
- EGFR-mediated biological activity as used herein is meant the intrinsic protein-tyrosine kinase activity of EGFR and its downstream signal transduction cascade which ultimately leads to DNA synthesis and cell proliferation.
- EGFR antagonist is meant any molecule that inhibits, suppresses or causes the cessation of EGFR-mediated biological activity, e.g. by reducing, interfering with, blocking, or otherwise preventing the interaction or binding of a native or active EFGR ligand to EGFR.
- the term “antagonist” is used herein in a functional sense and is not intended to limit the invention to compounds having a particular mechanism of action.
- the term “antagonist” includes, but is not limited to, a molecule that functions as a competitive antagonist.
- a competitive antagonist binds the EGFR receptor but does not trigger the biological activity of the EGFR receptor and prevents wild-type ligands from binding and activating.
- the term “antagonist” may also include a molecule that causes down-regulation of the EGFR receptor such that the receptor is no longer present in the cell membrane and therefore cannot associate with its ligand to cause activation of the receptor.
- EGF polypeptide variants of the invention possess a number of useful properties.
- the polypeptide variants of the present invention can be used to treat diseases wherein overexpression of EGFR is implicated in the pathological process of the disease (e.g. cancer).
- EGF polypeptide variants are provided that have substantial identity with human wild-type EGF in which the amino acid position that corresponds to amino acid Gly 18 (G18) and/or amino acid Gly 39 (G39) and/or amino acid Arg 41 (R41) and/or amino acid Val 35 (V35) of wild type human EGF is substituted with an amino acid, and wherein the polypeptide has (EGFR) antagonist activity.
- the phrase “the amino acid position that corresponds to amino acid G18 and/or amino acid G39 and/or R41 and/or amino acid V35 of wild-type human EGF” means that when the unmodified EGF polypeptides from various mammalian species are aligned with human wild-type EGF for optimal comparison, the glycine, arginine or valine amino acids that appear at or near the positions that correspond to G18, G39, R41 and, optionally, V35 of human wild-type EGF may be substituted with another amino acid.
- G18 is replaced by glutamate (G18E), glutamine (G18Q), lysine (G18K), phenylalanine (G18F), or leucine (G18L).
- G18 is replaced by phenylalanine (G18F) or leucine (G18L).
- G18 is replaced by phenylalanine (G 18F).
- G39 is replaced by glutamate (G39E), glutamine (G39Q), lysine (G39K), aspartic acid (G39D) or isoleucine (G39I), or leucine (G39L).
- G39 is replaced by phenylalanine (G39F), leucine (G39L), aspartic acid (G39D), or isoleucine (G39I).
- G39L is preferred.
- R41 is replaced by aspartate (R41D).
- Modifications to G18, G39 and R41 are believed to be responsible for preventing, banishing or abrogating binding of the variant to EGFR Domain III. In other words, the variant is believed to not bind to Domain III of EGFR.
- V35 is replaced by glutamate (V35E). It is believed that the modification to V35 is responsible for tight binding of the variant to Domain I of the EGFR.
- mutations at V35 along with mutations at G18 and additionally or alternatively G39 and additionally or alternatively R41 result in a polypeptide with antagonist properties.
- G18, G39 and/or V35 may be substituted with any suitable amino acid such that the EGFR antagonistic activity of the modified EGF polypeptide of the invention remain intact. While substitution of V35 with aspartic acid resulted in a loss of some of the antagonist function of the variant in at least one assay, more research is required.
- EGF and EGFR can identify additional amino acids that can be modified to remove, introduce or displace a reactive or functional group on an amino acid side chain to prevent or cause binding to the EGFR, as the case may be. It is known that changes in an adjacent or proximal amino acid can alter the confirmation of another amino acid, changing its binding properties. Thus, the variants exemplified herein are expected to be representative of a broader class of antagonists that possess the desired binding characteristics and resulting therapeutic antagonist properties.
- the crystal structure of EGF and EGFR is known and described, for example, in Ogiso et al., Cell , 110:775-787 (2002), which is incorporated herein by reference.
- homologs, analogs and fragments of the preferred human EGF polypeptide variants are within the scope of the present invention.
- homologs is meant the corresponding polypeptides of EGF from other mammalian species having substantial identity to human wild-type EGF, so long as such homologs retain EGFR antagonist activity.
- the EGF polypeptide sequences for various mammalian species are as follows:
- NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR Human SEQ ID NO: 1 NSYSECPPSHDGYCLHGGVCMYIEAVDSYACNCVFGYVGERCQHRDLKWWELR Pig (SEQ ID NO: 2) NSYQECPPSYDGYCLYNGVCMYIEAVDRYACNCVFGYVGERCQHRDLK-WELR Cat (SEQ ID NO: 3) NGYRECPSSYDGYCLYNGVCMYIEAVDRYACNCVFGYVGERCQHRDLK-WELR Dog (SEQ ID NO: 4) NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR Mouse (SEQ ID NO: 5) NSYQECSQSYDGYCLHGGKCVYLVQVDTHACNCVVGYVGERCQHQDLR----- Horse (SEQ ID NO: 6) NSNTGCPPSY
- mutations at positions G18, G39, R41 and V35 of EGF polypeptide variants are possible which will leave the EGFR inhibitory activity or antagonist activity of the EGF polypeptide variant substantially intact.
- mutations may take the form of single or multiple substitutions, deletions, or insertions.
- Amino acid substitutions may take the form of conservative or non-conservative amino acid substitutions at one or more locations on the polypeptide.
- conservative amino acid substitution refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity.
- conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine, and leucine for another non-polar residue.
- examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine.
- substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions.
- non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
- a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine
- a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
- the N-terminus of EGF does not participate in binding to the EGFR and is thought to move freely, even upon ligand binding.
- deletion of the N-terminus of the ligand is envisioned as an example of a further modification that will not detract from the antagonist properties of the variant.
- Modification of the N-terminus to add one or more binding functionalities that will cause or assist the N-terminus to bind to EGFR can also be made.
- the C-terminus is believed to be implicated in Domain III binding.
- modifications to the C-terminus can also be envisioned to be changed to prevent, banish or abrogate Domain III binding.
- G18, V35, G39 or R41 EGF peptide variants may also be further improved through amino acid substitutions, deletions and insertions at locations in addition to G18, V35, G39 or R41.
- improved therapeutic qualities include, but are not limited to, enhanced affinity, increased half-life, increased solubility, and increased bioavailability.
- EGF polypeptide variants in accordance with the present invention can be designed and tested using any number of methods. Amino acid substitutions, deletions or insertions at positions G18, V35, G39 and/or R41 or at any other suitable positions that contribute to the EGFR antagonistic or EGFR inhibitory activity of an EGF polypeptide variant of the invention can be identified by methods known in the art such as site directed mutagenesis. The resulting mutated EGF polypeptides are then tested for EGFR antagonistic activity using in vitro screening assays such as those described herein or any other suitable screening assay.
- EGF polypeptides having a combination of amino acid substitutions at V35 as well as at G18, G39 and/or R41 can inhibit the activation of the kinase moiety of EGFR in the presence of wild-type recombinant human EGF (MLX hEGF).
- Polypeptides of the invention were also tested in cell proliferation assays and shown to inhibit the proliferation of cells. Competition kinase activity and cell proliferation assays show that polypeptides of the invention compete with MLX hEGF to inhibit the activation of the kinase moiety of EGFR as well as cell proliferation.
- inhibitory or other antagonistic activity of a candidate polypeptide of the invention can be assessed in any assay or method described herein, or in any other suitable assay or other method with EGFR, and compared to the activity in the presence of wild-type human EGF polypeptide.
- the modified EGF polypeptide variants of the present invention have substantial identity to wild-type EGF, preferably wild-type human EGF.
- substantially identity means at least 60% sequence identity, preferably at least 70% identity, preferably at least 80% and more preferably at least 90% sequence identity to the amino acid sequence of wild-type human EGF, while maintaining EGFR inhibitory or other EGFR antagonist activity.
- the polypeptide variants of the present invention have at least 91%, at least 92%, at least 93%, at least 94%, at least 95% at least 96%, at least 97%, or at least 98% amino acid identity to the amino acid sequence of wild-type human EGF, while maintaining EGFR inhibitory or other EGFR antagonist activity.
- the EGF polypeptide variants of the invention may be produced by several techniques.
- the EGF polypeptide variants of the invention are produced by expression in a suitable host of a gene coding for the relevant polypeptide variant.
- a gene is most readily prepared by site-directed mutagenesis of wild-type human EGF gene as described herein.
- the EGF polypeptide variants of the invention may be produced in whole or in part by chemical synthetic techniques such as by a Merrifield-type synthesis. Chemical synthesis of all or a portion of a modified EGF polypeptide of the invention may be particularly desirable in the case of the use of a non-naturally occurring amino acid substituent in the polypeptide variant.
- the modified EGF polypeptides of the present invention can be designed and tested using any number of methods. Amino acid substitutions at positions G18, V35, G39 or at any other suitable positions that contribute to the EGFR antagonistic or other EGFR inhibitory activity of a modified EGF polypeptide can be generated by methods known in the art, such as site directed mutagenesis. The resulting mutated EGF polypeptides are then tested for EGFR antagonistic activity using an in vitro screening assay such as those described herein or any other suitable screening assay.
- the present invention also provides nucleic acid molecules encoding a polypeptide having substantial identity with an EGFR ligand variant, such as a modified EGF polypeptide of the invention and having EGFR antagonistic activity.
- the nucleic acid molecules of the present invention can be RNA, for example, mRNA, or DNA.
- DNA molecules can be double-stranded or single-stranded.
- the nucleic acid molecule can also be fused to a marker sequence, for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide.
- Such sequences include, but are not limited to, those that encode a glutathione-S-transferase (GST) fusion protein, those that encode a hemagglutinin A (HA) polypeptide marker from influenza, and sequences encoding a His tag.
- GST glutathione-S-transferase
- HA hemagglutinin A
- the expression vectors of the invention can be introduced into host cells to thereby produce the modified EGFR ligand or EGF polypeptides of the invention, including fusion polypeptides, encoded by nucleic acid molecules as described herein.
- Molecular biology techniques for carrying out recombinant production of the modified EGF polypeptides of the invention are well known in the art and are described for example, in, Sambrook, et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab Press); 3 rd ed., 2000).
- an EGF polypeptide variant of the invention can be formulated with a physiologically acceptable carrier or excipient to prepare a pharmaceutical composition.
- the carrier and composition can be sterile.
- the formulation should suit the mode of administration.
- Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), saline, buffered saline, alcohols, glycerol, ethanol, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylase or starch, dextrose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrrolidone, etc., as well as combinations thereof.
- carriers such as liposomes and microemulsions may be used.
- polypeptide variants of the invention may also be covalently attached to a protein carrier such as albumin, or a polymer, such as polyethylene glycol so as to minimize premature clearing of the polypeptides.
- a protein carrier such as albumin
- a polymer such as polyethylene glycol
- the pharmaceutical preparations can, if desired, be mixed with auxiliary agents, e.g. lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like that do not deleteriously react with the active agent in the composition (i.e., a polypeptide and/or nucleic acid molecule of the invention).
- the composition can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- the composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder.
- the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrrolidone, sodium saccharine, cellulose, magnesium carbonate, etc.
- compositions of this invention include, but are not limited to, transdermal, intramuscular, intraperitoneal, intraocular, intravenous, subcutaneous, topical, oral and intranasal.
- Other suitable methods of introduction can also include gene therapy (as described below), rechargeable or biodegradable devices, particle acceleration devices (“gene guns”) and slow release polymeric devices.
- the pharmaceutical compositions of this invention can also be administered as part of a combination therapy with other compounds.
- compositions for intravenous administration typically are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentration in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active compound (polypeptide and/or nucleic acid).
- composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- EGF polypeptide variants described herein can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- the EGF polypeptide variants of the invention are administered in a therapeutically effective amount.
- the amount of polypeptide that will be therapeutically effective in the treatment of a particular disorder or conditions will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques.
- in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the symptoms of the disease or condition, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the present invention also pertains to methods of treatment (prophylactic, diagnostic, and/or therapeutic) for conditions characterized by EGFR overexpression.
- a “condition characterized by EGFR overexpression” is a condition in which the presence of an EGF polypeptide variant of the invention is therapeutic.
- Such conditions include many types of cancer. For example, many tumors of mesodermal and ectodermal origin overexpress the EGF receptor. The EGF receptor has been shown to be overexpressed in many gliomas, squamous cell carcinomas, breast carcinomas, melanomas, invasive bladder carcinomas and esophageal cancers.
- EGF receptors have also been implicated in a variety of other disorders such as psoriasis, and fibrosis.
- treatment refers not only to ameliorating symptoms associated with the disease or condition, but also preventing or delaying the onset of the disease, and also lessening the severity or frequency of symptoms of the disease or condition. More than one modified EGF polypeptide of the present invention can be used concurrently as co-therapeutic treatment regimen, if desired.
- a “co-therapeutic treatment regimen” means a treatment regimen wherein two drugs are administered simultaneously, in either separate or combined formulations, or sequentially at different times separated by minutes, hours or days, but in some way act together to provide the desired therapeutic response.
- the polypeptides of the invention may also be used in conjunction with other drugs that inhibit various aberrant activities of the EGFR receptor. Such additional drugs include but are not limited to EGFR-specific antibodies, small molecule kinase inhibitors, and traditional chemotherapeutic agents.
- the therapeutic compound(s) of the present invention are administered in a therapeutically effective amount (i.e., an amount that is sufficient to treat the disease or condition, such as by ameliorating symptoms associated with the disease or condition, preventing or delaying the onset of the disease or condition, and/or also lessening the severity or frequency of symptoms of the disease or condition).
- a therapeutically effective amount i.e., an amount that is sufficient to treat the disease or condition, such as by ameliorating symptoms associated with the disease or condition, preventing or delaying the onset of the disease or condition, and/or also lessening the severity or frequency of symptoms of the disease or condition.
- the amount that will be therapeutically effective in the treatment of a particular individual's disease or condition will depend on the symptoms and severity of the disease, and can be determined by standard clinical techniques.
- in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges.
- Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the therapeutic compounds of the present invention can be used either alone or in a pharmaceutical composition as described above.
- the gene for a modified EGF polypeptide of the present invention can be introduced into cells (either in vitro or in vivo) such that the cells produce the desired polypeptide.
- cells that have been transfected with the nucleic acid molecule of the present invention can be introduced (or re-introduced) into an individual affected with the disease.
- gene transfer systems including viral and nonviral transfer systems
- nonviral gene transfer methods such as calcium phosphate co-precipitation, mechanical techniques (e.g., microinjection); electroporation; membrane fusion-mediated transfer via liposomes; or direct DNA uptake, can also be used to introduce the desired nucleic acid molecule into a cell.
- the invention relates to polypeptide variants of EGFR ligands that possess EGFR antagonistic properties other than the EGF polypeptide variants previously described herein.
- Polypeptide variants of EGFR ligands such as transforming growth factor- ⁇ (TGF ⁇ ), betacellulin, heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR) and epiregulin may be designed, and assayed for antagonistic properties in accordance with the methods previously described herein and in the accompanying examples, and used as an EGFR antagonist.
- TGF ⁇ transforming growth factor- ⁇
- betacellulin betacellulin
- HB-EGF heparin-binding EGF-like growth factor
- AR amphiregulin
- epiregulin may be designed, and assayed for antagonistic properties in accordance with the methods previously described herein and in the accompanying examples, and used as an EGFR antagonist.
- the EGFR ligands have amino acid sequences that include glycines at positions that corresponds to G18 and/or G39 of human wild-type EGF as well as an arginine that correspond to R41.
- the residues that correspond to V35 in human wild-type EGF vary in the different EGFR ligands, including a glutamate in betacellulin.
- a position that corresponds to G18 and/or G39 of human wild-type EGF means that when the EGFR ligand peptides from (TGF ⁇ ), betacellulin, HB-EGF, AR and epiregulin, are aligned with human EGF for optimal comparison, the amino acids that correspond to G18, V35, G39 and R41 of human EGF may be substituted with another amino acid as previously described herein.
- the unmodified polypeptide sequences of the above-mentioned EGFR ligands as compared to human EGF are as follows (SEQ ID NOS:1, 8, 9, 10, 11, and 12, respectively):
- Polypeptide variants of EGFR ligands can be designed and tested for EGFR antagonistic activity as described above for EGF ligands. Additional modifications can be made to these EGFR ligand variants as described above with respect to EGF ligands and as if repeated herein for each EGFR ligand variant. Such EGFR ligand polypeptide variants, their homologs and analogs are useful as pharmaceutical compositions and in methods of treating diseases associated with EGFR overexpression, as discussed above with respect to EGF ligands and as if repeated herein in its entirety for each EGFR ligand.
- the human epidermal growth factor (hEGF) gene was chemically synthesized and ligated into the Pet-9a vector (Novagen, EMD Biosciences, San Diego, Calif.) at the NdeI and BamHI cloning sites.
- the hEGF gene contained the OmpA leader sequence followed by an N-terminal 6x-his tag and a factor Xa cleavage site.
- all hEGF and variants produced in this manner are fused at the N-terminus to the following peptide: HHHHHHIEGR (SEQ ID NO: 13).
- EGF plasmids were transformed into E. coli strain BL21 (DE3) pLysS (Novagen).
- the plasmid containing the EGF variant genes contains the gene for kanamycin resistance as the selectable marker.
- the E. coli strain used is chloramphenicol resistant. Competent E. coli cells were transformed with the plasmid by heat shock (42° C. for 45 seconds). Transformed cells were selected by exposure to both kanamycin and chloramphenicol.
- the highest EGF expression clones were streaked to a fresh plate, and single colonies were inoculated into test tube cultures containing 15 ml LB+Km25+Cm30. After growth overnight, samples of culture were frozen for stocks, and for plasmid preps to confirm the identities of the EGF variant gene inserts. The remaining cultures were used to inoculate production cultures in TB+Km25+Cm30. Again, 0.2 uM IPTG was added when OD600>0.25 (about 2-4 hrs), and the cultures were grown overnight. Culture supernatants were collected after centrifugation and production was confirmed by dot blot with mouse anti-penta his antibody.
- Ni-NTA resin Qiagen #30230
- Qiagen cat#34964 3 ml of Ni-NTA resin (Qiagen #30230) was used to pack 5 ml columns (Qiagen cat#34964) which were equilibrated with PBS pH 8.0. Culture supernatants were adjusted to pH 7.5-8.0 with 1N HCL before loading on columns. Columns were washed with PBS and PBS+10 mM imidazole; EGF variant proteins were eluted from columns with PBS+250 mM imidazole. Bradford protein assays were used to monitor protein concentrations.
- an ELISA was developed. Briefly, an ELISA plate is coated with poly-glu, tyr (4:1) which serves as a substrate for tyrosine phosphorylation by the EGFR. The ELISA plate is then incubated with assay buffer, which includes an ATP generating system, EGFR in the form of A431 cell membrane receptor preparations, and EGF variant. After a 15 minute incubation ATP is added to the reaction to allow the kinase activity to proceed. Anti-phosphotyrosine antibody is added to bind to the phosphorylated tyrosine bound to the plate. Anti-mouse HRP conjugate antibody is added as the detection antibody, which is visualized with the addition of tetramethyl benzidine (TMB).
- TMB tetramethyl benzidine
- the glycine at position 18 was replaced by glutamate (G18E), glutamine (G18Q), lysine (G18K), phenylalanine (G18F), and leucine (G18L). These variants were tested in the kinase assay described above and compared with recombinant wild-type human EGF (MLX hEGF). It can be seen in the figures that the G18Q variant had slight activity at the highest concentrations tested. Other variants were unable to activate the EGFR kinase.
- G39E G39Q, G39K, and G39L. These were also tested in the kinase assay, and the results are shown in the figures. In these assays, G39K and G39E had some slight activity; the others were unable to activate the EGFR kinase, including V35EG39L.
- the EGFR kinase competition assay is basically the same as outlined above in the description of the kinase ELISA. The difference is that in the initial incubation with the EGFR and EGF variant, 50 nM human EGF is added which competes with the EGF variant for binding to the EGFR. Both the variant EGF and the human EGF are added to the assay plate before the addition of the EGFR and assay buffer, making sure neither ligand has an advantage in binding to the EGFR.
- the HER5 cell line a murine fibroblast line (derived from the NR-6 line) that has been stably transfected to express the human EGF receptor was provided by Dr. M. C. Hung (MD Anderson Cancer Center).
- Stock cultures of HER5 were propagated in D-MEM/F12 medium containing 10% fetal bovine serum, 100 units/ml of penicillin and 100 ug/ml of streptomycin in a water-jacketed incubator at 37° C. in a humidified 5% CO 2 atmosphere.
- the cells were changed into DMEM/F12 without serum for 24 hours. Cells were then trypsinized and suspended at 1E5 cells/ml.
- WST-1 is a tetrazolium salt that is cleaved to formazan dye by mitochondrial dehydrogenases in viable cells.
- the amount of formazan was measured at 450 nm using a microplate reader (Dynex Technologies) with MRX Revelation software.
- the murine fibroblast line BALB/3T3 clone A31 (ATCC CCL-163) is cultured in D-MEM (4 mM L-glutamine, 4.5 g/L glucose, 1.5 g/L sodium bicarbonate) supplemented with 10% fetal calf serum at 37° C., 5% CO2 in air.
- D-MEM 4 mM L-glutamine, 4.5 g/L glucose, 1.5 g/L sodium bicarbonate
- 10% fetal calf serum at 37° C., 5% CO2 in air.
- BALB/3T3 proliferation assays 3000 cells were plated per well in 96-well plates with 100 ul of complete media and incubated for 20-24 hours. Media was aspirated from the wells, and the cells were washed once with DPBS. Serial dilutions of human EGF, His-tagged hEGF, or test proteins were added in 100 ul. Assay plates were incubated for 48 hours and cell proliferation was determined with WST-1
- G18K, G18L, and G18F have the least potency of the 5 G18 variants tested in the HER5 proliferation assay.
- G39K and G39L have the least potency in that series. All the G18 and G39 variants except for G18Q and G39Q were inactive in the BALB/3T3 assays.
- the BALB/3T3 proliferation assay was modified to test variants for competition with hEGF in the stimulation of BALB/3T3 cell proliferation. Serial dilutions of the test mutants were tested for proliferation in the presence of 0 nM, 0.5 nM, and 5 nM of the MLX-hEGF.
- BALB/3T3 cells were suspended at 3E4 cells/ml in complete serum media. 100 ul of cell suspension was plated per well in 96-well plates and incubated for 20-24 hours. Media was then aspirated from the wells, and the cells were washed once with DPBS. His-tagged wild-type hEGF at twice the final concentration was added in 50 ul/well.
- test mutants Serial dilutions of test mutants were prepared at twice the final concentration in serum-free media and 50 ul was added per well, bringing the final volume per well to 100 ml at the target concentrations of wt-hEGF and test mutants. Assay plates were incubated for 48 hours and cell proliferation was determined with WST-1 cell proliferation reagent (10 ul/well, 5 hr incubation). The absorbance at 450 nm was read with a microplate reader.
- A-431 cells are an epidermoid carcinoma cell line obtained from the American Type Culture Collection.
- the method for A431 cell proliferation inhibition is as follows. Cells are transferred to serum-free media (SFM) approx 20 hrs prior to use. Serial dilutions of test proteins (and pos. and neg. controls) are prepared to deliver twice the final concentration in 50 ul in SFM. The treatment solutions are added to appropriate wells of 96-well microtiter plates. The cells are then released from their culture plates with Trypsin-EDTA solution, centrifuged, resuspended at 1E5 c/ml in SFM and 50 ul (5000 cells) are added to each well. This brings the concentration in the wells to 1 ⁇ . The plates are then incubated for 48 hours in the incubator (37 C/5% CO2). 10 ul of WST-1 reagent (Roche) is added to each well for the final three hours of the proliferation period. The OD is then read at 450 nm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention features epidermal growth factor receptor (EGFR) antagonists. These EGFR antagonists are polypeptide variants of ligands of EGFR. The EGFR ligand polypeptide variants of the invention possess EGFR antagonistic properties and can inhibit at least one EGFR-mediated biological activity such as inhibition of the receptor's kinase activation activity and subsequently, cell proliferation. Such polypeptide variants, and nucleic acids encoding these polypeptide variants can be used therapeutically in situations in which inhibition of EGFR activity is indicated.
Description
- This application is a continuation of U.S. application Ser. No. 11/172,610, filed Jun. 30, 2005, which claims the benefit of U.S. Provisional Application No. 60/584,471, filed on Jun. 30, 2004 and U.S. Provisional Application No. 60/643,082, filed on Jan. 11, 2005, the contents of which are incorporated herein by reference.
- The Invention was supported, in whole, or in part, by National Cancer Institute Grant Number R43 CA095930-02. The Government has certain rights in the invention
- Epidermal growth factor (EGF) is a 53 amino acid cytokine which is proteolytically cleaved from a large integral membrane protein precursor. EGF plays an important role in the growth control of mammalian cells. The amino acid and nucleotide sequences of human EGF (hEGF) are, for example, disclosed in Hollenberg, “Epidermal Growth Factor-Urogastrone, A Polypeptide Acquiring Hormonal States”; eds., Academic Press, Inc., New York (1979), pp. 69-110; or Urdea et al., Proc. Natl. Acad. Sci. USA, 80:7461 (1983). The amino acid sequence of hEGF is also disclosed in U.S. Pat. No. 5,102,789 and copending U.S. patent application Ser. No. 10/820,640 both of which are incorporated herein by reference in their entirety.
- Epidermal growth factor receptor (EGFR) is a well known example of receptor tyrosine kinases. Interaction of EGFR with its cognate ligand, EGF, or with structurally related ligands (e.g. tissue growth factor α), leads to dimerization of EGFR and activation of the EGFR kinase domain. This initiates a signaling cascade, leading to cell division. Overexpression of the gene coding for the EGFR has been implicated in a number of cancers including breast, ovarian, and head and neck cancer. Molecules that target EGFR by inhibiting its kinase activity or by interfering with the binding of EGF to EGFR have been shown to inhibit cell proliferation and have been developed as anticancer therapeutics, for example, Iressa® (gefitinib), a tyrosine kinase inhibitor and Erbitux™ (cetuximab), an EGFR-specific monoclonal antibody. Although these therapeutics have been shown to be effective in some cases, there is still a need for novel therapies for EGFR-related cancers.
- The present invention features EGFR antagonists. By “EGFR antagonist” is meant any molecule that inhibits, suppresses or causes the cessation of at least one EGFR-mediated biological activity, e.g. by reducing, interfering with, blocking, or otherwise preventing the interaction or binding of a native or active EFGR ligand to EGFR. These EGFR antagonists are EGFR ligand polypeptide variants. Preferred ligand variants are polypeptide molecules that are capable of blocking or interrupting at least one biological activity of EGFR, for example, reducing or inhibiting EGFR kinase activation, signaling, regulation, dimerization, or EGFR-regulated cell proliferation. Preferred ligand variants of the invention are EGF polypeptide variants capable of selectively inhibiting at least one EGFR-mediated biological activity. Such polypeptide variants, and nucleic acids encoding these polypeptide variants, can be used therapeutically in situations in which inhibition of EGFR biological activity is indicated. The term “polypeptide” is used herein as a generic term to refer to native protein, fragments, homologs or analogs of a relevant polypeptide sequence.
- The present invention results from the unexpected discovery that an EGFR ligand (e.g., EGF) polypeptide variant that has one or more mutations that prevent, banish or abrogate binding of the peptide to Domain III of the EGFR and, optionally, a mutation that binds, preferably tightly, to Domain I of the EGFR can result in good to excellent EGFR antagonists having therapeutic properties. As such, the invention relates to EGFR antagonists having a polypeptide sequence substantially similar to EGF (or other EGFR ligand) characterized by at least one amino acid substitution, deletion or insertion that prevents the antagonist from binding Domain III of EGFR and, optionally at least one amino acid substitution, deletion or insertion that results in antagonist binding to Domain I of EGFR, preferably tight binding. An example of tight binding includes the formation of an ionic, covalent, hydrophobic, electrostatic or hydrogen bonds between one or more amino acids of the antagonist and the receptor. Binding can be considered “tight” if the antagonist is not substantially displaced from EGFR by EGF, e.g., in an in vitro assay such as an assay described herein. The antagonist is not substantially displaced if at least 50%, preferably at least 70%, more preferably at least about 90%, such as 100%, of the antagonist remains bound to EGFR in an assay described herein. The domains of EGFR, and similar receptors, are known and are described in Ogiso et al., Cell, 110:775-787 (2002), which is incorporated herein by reference.
- In one aspect, the present invention features an epidermal growth factor (EGF) polypeptide variant having at least one amino acid substitution at glycine of position 39 (G39 or Gly 39) of the wild-type human EGF (hEGF) and having EGFR antagonist activity and, optionally, at valine of position 35 (V35 or Val 35). Glycine is preferably substituted with leucine (G39L) and/or valine is preferably substituted with glutamic acid (V35E).
- In another aspect, the present invention features an epidermal growth factor (EGF) polypeptide variant having at least one amino acid substitution at glycine of position 18 (G18 or Gly 18) of the wild-type EGF, preferably wild-type human EGF, and having EGFR antagonist and/or inhibitory activity. In an another aspect, the present invention features an epidermal growth factor (EGF) polypeptide variant having at least one amino acid substitution at glycine of position 39 (G39 or Gly 39) of the wild-type human EGF and having EGFR antagonist activity.
- The present invention also features a method of treating a condition characterized by EGFR over-expression in a patient, comprising administering to the patient a therapeutically effective amount of a pharmaceutical composition comprising at least one polypeptide variant of the invention.
-
FIG. 1 is a graph of EGFR binding data for hEGF, the G39L variant and the V35EG39L variant. -
FIG. 2 is a graph of an EGFR kinase assay with hEGF, the G39L variant and the V35EG39L variant, showing inhibition with the G39L mutations. -
FIG. 3 is a graph of stimulation of cell proliferation with hEGF, the G39L variant and the V35EG39L variant. -
FIG. 4 is a graph showing inhibition of hEGF-stimulated cell proliferation by the G39L variant. -
FIG. 5 is a graph showing inhibition of hEGF-stimulated cell proliferation by the V35EG39L variant. -
FIG. 6 illustrates that V35EG39L does not trigger EGFR dimerization. -
FIG. 7 is a graph of an EGFR kinase assay with EFG G18 variants. -
FIG. 8 is a graph of an EGFR kinase assay with EFG G39 variants -
FIG. 9 is a graph of an EGFR kinase competition assay with G18 and G39 variants. -
FIG. 10 is a graph showing the effect of G18E, G18K and G18Q on HER5 cell proliferation (measured as the conversion of WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate), to a yellow-orange, water soluble formazan by the mitochondrial dehydrogenases of viable cells which is followed by changes in the absorbance of light at 450 nm (OD 450)). -
FIG. 11 is a graph showing the effect of G18F and G18L on HER5 cell proliferation (measured as the conversion of WST-1). -
FIG. 12 is a graph showing the effect of G39 series mutants onHER 5 cell proliferation (measured as the conversion of WST-1). -
FIG. 13 is a graph showing the effect of G18 series mutants on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 14 is a graph showing the effect of G39 series mutants on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 15 is a graph showing the effect of hEGF on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 16 is a graph showing the effect of G18K on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 17 is a graph showing the effect of a G18L on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 18 is a graph showing the effect of G39K on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 19 is a graph showing the effect of a G39L on BALB/3T3 cell proliferation (measured as the conversion of WST-1). -
FIG. 20 is a graph showing the effect of G18F on A431 cell proliferation (measured as the conversion of WST-1). - A description of preferred embodiments of the invention follows.
- The present invention features EGFR antagonists. These EGFR antagonists are EGFR-ligand variants. Examples of EGFR ligands include mammalian EGF (e.g. human, pig, cat, dog, mouse, horse and rat). Other examples of EGFR ligands include transforming growth factor-α (TGFα), betacellulin, heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR) and epiregulin. Preferred ligand variants of the invention are human EGF polypeptide variants capable of selectively inhibiting EGFR-mediated biological activity.
- The present invention results from the unexpected discovery that an EGFR ligand (e.g., EGF) polypeptide variant that has one or more mutations that prevent, banish or abrogate binding of the peptide to Domain III of the EGFR and, optionally, a mutation that binds, preferably tightly, to Domain I of the EGFR can result in good to excellent EGF antagonists having therapeutic properties. As such, the invention relates to EGFR antagonists having a polypeptide sequence substantially similar to EGF (or other EGFR ligand) characterized by at least one amino acid substitution, deletion or insertion that prevents the antagonist from binding Domain III of EGFR and, optionally at least one amino acid substitution, deletion or insertion that results in antagonist binding to Domain I of EGFR, preferably tight binding. An example of tight binding includes the formation of an ionic or covalent, hydrophobic, electrostatic, or hydrogen bonds between one or more amino acids of the antagonist and the receptor. Binding can be considered “tight” if the antagonist is not substantially displaced from EGFR by EGF, e.g., in an in vitro assay such as an assay described herein. The antagonist is not substantially displaced if at least 50%, preferably at least 70%, more preferably at least about 90%, such as 100%, of the antagonist remains bound to EGFR in an assay described herein. Binding can also be considered tight if the antagonist substantially displaces EGF from EGFR, e.g., in an in vitro assay such as an assay described herein. The antagonist substantially displaces EGF if at least 50%, preferably at least 70%, more preferably at least about 90%, such as 100%, of the EGF is displaced from EGFR in an assay described herein.
- In one aspect, the present invention features EGF polypeptide variants having substantial amino acid sequence identity to wild-type EGF, preferably wild-type human EGF and more preferably to the 53 amino acid human wild-type EGF, and that function to inhibit EGFR-mediated biological activity. By “EGFR-mediated biological activity” as used herein is meant the intrinsic protein-tyrosine kinase activity of EGFR and its downstream signal transduction cascade which ultimately leads to DNA synthesis and cell proliferation. By “EGFR antagonist” is meant any molecule that inhibits, suppresses or causes the cessation of EGFR-mediated biological activity, e.g. by reducing, interfering with, blocking, or otherwise preventing the interaction or binding of a native or active EFGR ligand to EGFR. The use of the term “antagonist” is used herein in a functional sense and is not intended to limit the invention to compounds having a particular mechanism of action. For example, the term “antagonist” includes, but is not limited to, a molecule that functions as a competitive antagonist. A competitive antagonist binds the EGFR receptor but does not trigger the biological activity of the EGFR receptor and prevents wild-type ligands from binding and activating. The term “antagonist” may also include a molecule that causes down-regulation of the EGFR receptor such that the receptor is no longer present in the cell membrane and therefore cannot associate with its ligand to cause activation of the receptor.
- EGF polypeptide variants of the invention (also referred to herein as “modified EGF polypeptides”) possess a number of useful properties. For example, the polypeptide variants of the present invention can be used to treat diseases wherein overexpression of EGFR is implicated in the pathological process of the disease (e.g. cancer).
- EGF polypeptide variants are provided that have substantial identity with human wild-type EGF in which the amino acid position that corresponds to amino acid Gly 18 (G18) and/or amino acid Gly 39 (G39) and/or amino acid Arg 41 (R41) and/or amino acid Val 35 (V35) of wild type human EGF is substituted with an amino acid, and wherein the polypeptide has (EGFR) antagonist activity. As used herein, the phrase “the amino acid position that corresponds to amino acid G18 and/or amino acid G39 and/or R41 and/or amino acid V35 of wild-type human EGF” means that when the unmodified EGF polypeptides from various mammalian species are aligned with human wild-type EGF for optimal comparison, the glycine, arginine or valine amino acids that appear at or near the positions that correspond to G18, G39, R41 and, optionally, V35 of human wild-type EGF may be substituted with another amino acid.
- In certain preferred embodiments, G18 is replaced by glutamate (G18E), glutamine (G18Q), lysine (G18K), phenylalanine (G18F), or leucine (G18L). In a particularly preferred embodiment, G18 is replaced by phenylalanine (G18F) or leucine (G18L). In yet another preferred embodiment, G18 is replaced by phenylalanine (G 18F).
- Additionally or alternatively, G39 is replaced by glutamate (G39E), glutamine (G39Q), lysine (G39K), aspartic acid (G39D) or isoleucine (G39I), or leucine (G39L). In a particularly preferred embodiment G39 is replaced by phenylalanine (G39F), leucine (G39L), aspartic acid (G39D), or isoleucine (G39I). G39L is preferred.
- Additionally or alternatively, R41 is replaced by aspartate (R41D).
- Modifications to G18, G39 and R41 are believed to be responsible for preventing, banishing or abrogating binding of the variant to EGFR Domain III. In other words, the variant is believed to not bind to Domain III of EGFR.
- Additionally or alternatively, V35 is replaced by glutamate (V35E). It is believed that the modification to V35 is responsible for tight binding of the variant to Domain I of the EGFR. In combination, then, mutations at V35 along with mutations at G18 and additionally or alternatively G39 and additionally or alternatively R41 result in a polypeptide with antagonist properties.
- It is understood, however, that G18, G39 and/or V35 may be substituted with any suitable amino acid such that the EGFR antagonistic activity of the modified EGF polypeptide of the invention remain intact. While substitution of V35 with aspartic acid resulted in a loss of some of the antagonist function of the variant in at least one assay, more research is required.
- Furthermore, other amino acids can be targeted. Reviewing the crystal structure of EGF and EGFR can identify additional amino acids that can be modified to remove, introduce or displace a reactive or functional group on an amino acid side chain to prevent or cause binding to the EGFR, as the case may be. It is known that changes in an adjacent or proximal amino acid can alter the confirmation of another amino acid, changing its binding properties. Thus, the variants exemplified herein are expected to be representative of a broader class of antagonists that possess the desired binding characteristics and resulting therapeutic antagonist properties. The crystal structure of EGF and EGFR is known and described, for example, in Ogiso et al., Cell, 110:775-787 (2002), which is incorporated herein by reference.
- In addition, homologs, analogs and fragments of the preferred human EGF polypeptide variants are within the scope of the present invention. By “homologs” is meant the corresponding polypeptides of EGF from other mammalian species having substantial identity to human wild-type EGF, so long as such homologs retain EGFR antagonist activity. The EGF polypeptide sequences for various mammalian species are as follows:
-
NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR Human (SEQ ID NO: 1) NSYSECPPSHDGYCLHGGVCMYIEAVDSYACNCVFGYVGERCQHRDLKWWELR Pig (SEQ ID NO: 2) NSYQECPPSYDGYCLYNGVCMYIEAVDRYACNCVFGYVGERCQHRDLK-WELR Cat (SEQ ID NO: 3) NGYRECPSSYDGYCLYNGVCMYIEAVDRYACNCVFGYVGERCQHRDLK-WELR Dog (SEQ ID NO: 4) NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR Mouse (SEQ ID NO: 5) NSYQECSQSYDGYCLHGGKCVYLVQVDTHACNCVVGYVGERCQHQDLR----- Horse (SEQ ID NO: 6) NSNTGCPPSYDGYCLNGGVCMYVESVDRYVCNCVIGYIGERCQHRDLRWWKLR Rat; (SEQ ID NO: 7)
“Analogs” is meant to include polypeptide variants which differ by one or more amino acid alterations, e.g., substitutions, additions or deletions of amino acid residues that still maintain the EGFR antagonistic properties of the relevant peptides. - Besides the mutations at positions G18, G39, R41 and V35 of EGF polypeptide variants, additional mutations are possible which will leave the EGFR inhibitory activity or antagonist activity of the EGF polypeptide variant substantially intact. These mutations may take the form of single or multiple substitutions, deletions, or insertions. Amino acid substitutions may take the form of conservative or non-conservative amino acid substitutions at one or more locations on the polypeptide. As used herein the term “conservative amino acid substitution” refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine, and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
- Additionally, it is believed that the N-terminus of EGF does not participate in binding to the EGFR and is thought to move freely, even upon ligand binding. Thus, deletion of the N-terminus of the ligand is envisioned as an example of a further modification that will not detract from the antagonist properties of the variant. Modification of the N-terminus to add one or more binding functionalities that will cause or assist the N-terminus to bind to EGFR can also be made. The C-terminus is believed to be implicated in Domain III binding. Thus, modifications to the C-terminus can also be envisioned to be changed to prevent, banish or abrogate Domain III binding.
- The therapeutic qualities of G18, V35, G39 or R41 EGF peptide variants may also be further improved through amino acid substitutions, deletions and insertions at locations in addition to G18, V35, G39 or R41. These improved therapeutic qualities include, but are not limited to, enhanced affinity, increased half-life, increased solubility, and increased bioavailability.
- EGF polypeptide variants in accordance with the present invention can be designed and tested using any number of methods. Amino acid substitutions, deletions or insertions at positions G18, V35, G39 and/or R41 or at any other suitable positions that contribute to the EGFR antagonistic or EGFR inhibitory activity of an EGF polypeptide variant of the invention can be identified by methods known in the art such as site directed mutagenesis. The resulting mutated EGF polypeptides are then tested for EGFR antagonistic activity using in vitro screening assays such as those described herein or any other suitable screening assay.
- The data described herein indicates that EGF polypeptides having a combination of amino acid substitutions at V35 as well as at G18, G39 and/or R41 can inhibit the activation of the kinase moiety of EGFR in the presence of wild-type recombinant human EGF (MLX hEGF). Polypeptides of the invention were also tested in cell proliferation assays and shown to inhibit the proliferation of cells. Competition kinase activity and cell proliferation assays show that polypeptides of the invention compete with MLX hEGF to inhibit the activation of the kinase moiety of EGFR as well as cell proliferation. The inhibitory or other antagonistic activity of a candidate polypeptide of the invention can be assessed in any assay or method described herein, or in any other suitable assay or other method with EGFR, and compared to the activity in the presence of wild-type human EGF polypeptide.
- As described above, the modified EGF polypeptide variants of the present invention, their homologs and analogs have substantial identity to wild-type EGF, preferably wild-type human EGF. As used herein, “substantial identity” means at least 60% sequence identity, preferably at least 70% identity, preferably at least 80% and more preferably at least 90% sequence identity to the amino acid sequence of wild-type human EGF, while maintaining EGFR inhibitory or other EGFR antagonist activity. In other embodiments, the polypeptide variants of the present invention have at least 91%, at least 92%, at least 93%, at least 94%, at least 95% at least 96%, at least 97%, or at least 98% amino acid identity to the amino acid sequence of wild-type human EGF, while maintaining EGFR inhibitory or other EGFR antagonist activity. The percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The amino acids at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions×100). The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993). Such an algorithm is incorporated into the BLASTN and BLASTX programs (version 2.2) as described in Schaffer et al, Nucleic Acids Res. 29:2994-3005 (2001).
- The EGF polypeptide variants of the invention may be produced by several techniques. In one preferred embodiment, the EGF polypeptide variants of the invention are produced by expression in a suitable host of a gene coding for the relevant polypeptide variant. Such a gene is most readily prepared by site-directed mutagenesis of wild-type human EGF gene as described herein. However, the EGF polypeptide variants of the invention may be produced in whole or in part by chemical synthetic techniques such as by a Merrifield-type synthesis. Chemical synthesis of all or a portion of a modified EGF polypeptide of the invention may be particularly desirable in the case of the use of a non-naturally occurring amino acid substituent in the polypeptide variant.
- The modified EGF polypeptides of the present invention can be designed and tested using any number of methods. Amino acid substitutions at positions G18, V35, G39 or at any other suitable positions that contribute to the EGFR antagonistic or other EGFR inhibitory activity of a modified EGF polypeptide can be generated by methods known in the art, such as site directed mutagenesis. The resulting mutated EGF polypeptides are then tested for EGFR antagonistic activity using an in vitro screening assay such as those described herein or any other suitable screening assay.
- The present invention also provides nucleic acid molecules encoding a polypeptide having substantial identity with an EGFR ligand variant, such as a modified EGF polypeptide of the invention and having EGFR antagonistic activity. The nucleic acid molecules of the present invention can be RNA, for example, mRNA, or DNA. DNA molecules can be double-stranded or single-stranded. The nucleic acid molecule can also be fused to a marker sequence, for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide. Such sequences include, but are not limited to, those that encode a glutathione-S-transferase (GST) fusion protein, those that encode a hemagglutinin A (HA) polypeptide marker from influenza, and sequences encoding a His tag.
- It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed and the level of expression of polypeptide desired. The expression vectors of the invention can be introduced into host cells to thereby produce the modified EGFR ligand or EGF polypeptides of the invention, including fusion polypeptides, encoded by nucleic acid molecules as described herein. Molecular biology techniques for carrying out recombinant production of the modified EGF polypeptides of the invention are well known in the art and are described for example, in, Sambrook, et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab Press); 3rd ed., 2000).
- The present invention also pertains to pharmaceutical compositions comprising the EGF polypeptide variants described herein. For instance, an EGF polypeptide variant of the invention can be formulated with a physiologically acceptable carrier or excipient to prepare a pharmaceutical composition. The carrier and composition can be sterile. The formulation should suit the mode of administration.
- Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), saline, buffered saline, alcohols, glycerol, ethanol, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylase or starch, dextrose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrrolidone, etc., as well as combinations thereof. In addition, carriers such as liposomes and microemulsions may be used. The polypeptide variants of the invention may also be covalently attached to a protein carrier such as albumin, or a polymer, such as polyethylene glycol so as to minimize premature clearing of the polypeptides. The pharmaceutical preparations can, if desired, be mixed with auxiliary agents, e.g. lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like that do not deleteriously react with the active agent in the composition (i.e., a polypeptide and/or nucleic acid molecule of the invention).
- The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrrolidone, sodium saccharine, cellulose, magnesium carbonate, etc.
- Methods of introduction of these compositions include, but are not limited to, transdermal, intramuscular, intraperitoneal, intraocular, intravenous, subcutaneous, topical, oral and intranasal. Other suitable methods of introduction can also include gene therapy (as described below), rechargeable or biodegradable devices, particle acceleration devices (“gene guns”) and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combination therapy with other compounds.
- The EGF polypeptide variants of the present invention can be formulated in accordance with the routine procedures as a pharmaceutical composition adapted for administration to human beings. For example, compositions for intravenous administration typically are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentration in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active compound (polypeptide and/or nucleic acid). Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- The EGF polypeptide variants described herein can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- The EGF polypeptide variants of the invention are administered in a therapeutically effective amount. The amount of polypeptide that will be therapeutically effective in the treatment of a particular disorder or conditions will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the symptoms of the disease or condition, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- The present invention also pertains to methods of treatment (prophylactic, diagnostic, and/or therapeutic) for conditions characterized by EGFR overexpression. A “condition characterized by EGFR overexpression” is a condition in which the presence of an EGF polypeptide variant of the invention is therapeutic. Such conditions include many types of cancer. For example, many tumors of mesodermal and ectodermal origin overexpress the EGF receptor. The EGF receptor has been shown to be overexpressed in many gliomas, squamous cell carcinomas, breast carcinomas, melanomas, invasive bladder carcinomas and esophageal cancers. In addition, studies with primary human mammary tumors have shown a correlation between high EGF receptor expression and the presence of metastases, higher rates of proliferation, and shorter patient survival. Overexpression of EGF receptors has also been implicated in a variety of other disorders such as psoriasis, and fibrosis.
- The term “treatment” as used herein, refers not only to ameliorating symptoms associated with the disease or condition, but also preventing or delaying the onset of the disease, and also lessening the severity or frequency of symptoms of the disease or condition. More than one modified EGF polypeptide of the present invention can be used concurrently as co-therapeutic treatment regimen, if desired. As used herein, a “co-therapeutic treatment regimen” means a treatment regimen wherein two drugs are administered simultaneously, in either separate or combined formulations, or sequentially at different times separated by minutes, hours or days, but in some way act together to provide the desired therapeutic response. The polypeptides of the invention may also be used in conjunction with other drugs that inhibit various aberrant activities of the EGFR receptor. Such additional drugs include but are not limited to EGFR-specific antibodies, small molecule kinase inhibitors, and traditional chemotherapeutic agents.
- The therapeutic compound(s) of the present invention are administered in a therapeutically effective amount (i.e., an amount that is sufficient to treat the disease or condition, such as by ameliorating symptoms associated with the disease or condition, preventing or delaying the onset of the disease or condition, and/or also lessening the severity or frequency of symptoms of the disease or condition). The amount that will be therapeutically effective in the treatment of a particular individual's disease or condition will depend on the symptoms and severity of the disease, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or condition, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- The therapeutic compounds of the present invention can be used either alone or in a pharmaceutical composition as described above. For example, the gene for a modified EGF polypeptide of the present invention, either by itself or included within a vector, can be introduced into cells (either in vitro or in vivo) such that the cells produce the desired polypeptide. If desired, cells that have been transfected with the nucleic acid molecule of the present invention can be introduced (or re-introduced) into an individual affected with the disease.
- Other gene transfer systems, including viral and nonviral transfer systems, can be used. Alternatively, nonviral gene transfer methods, such as calcium phosphate co-precipitation, mechanical techniques (e.g., microinjection); electroporation; membrane fusion-mediated transfer via liposomes; or direct DNA uptake, can also be used to introduce the desired nucleic acid molecule into a cell.
- In another aspect, the invention relates to polypeptide variants of EGFR ligands that possess EGFR antagonistic properties other than the EGF polypeptide variants previously described herein. Polypeptide variants of EGFR ligands such as transforming growth factor-α (TGFα), betacellulin, heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR) and epiregulin may be designed, and assayed for antagonistic properties in accordance with the methods previously described herein and in the accompanying examples, and used as an EGFR antagonist. The EGFR ligands have amino acid sequences that include glycines at positions that corresponds to G18 and/or G39 of human wild-type EGF as well as an arginine that correspond to R41. The residues that correspond to V35 in human wild-type EGF vary in the different EGFR ligands, including a glutamate in betacellulin. As used herein “a position that corresponds to G18 and/or G39 of human wild-type EGF” means that when the EGFR ligand peptides from (TGFα), betacellulin, HB-EGF, AR and epiregulin, are aligned with human EGF for optimal comparison, the amino acids that correspond to G18, V35, G39 and R41 of human EGF may be substituted with another amino acid as previously described herein. The unmodified polypeptide sequences of the above-mentioned EGFR ligands as compared to human EGF are as follows (SEQ ID NOS:1, 8, 9, 10, 11, and 12, respectively):
- The residues that correspond to G18, V35, G39, and R41 in hEGF are given in the following table.
-
TABLE 1 Position Residue Position Position corresponding corresponding corresponding corresponding to G18 in to V35 in to G39 in to R41 in EGFR Ligand hEGF hEGF hEGF hEGF TGFα 19 S36 40 42 Epiregulin 79 V96 100 102 Betacellulin 80 E97 101 103 Amphiregulin 157 Q174 178 180 HB-EGF 119 P136 140 142 - Polypeptide variants of EGFR ligands can be designed and tested for EGFR antagonistic activity as described above for EGF ligands. Additional modifications can be made to these EGFR ligand variants as described above with respect to EGF ligands and as if repeated herein for each EGFR ligand variant. Such EGFR ligand polypeptide variants, their homologs and analogs are useful as pharmaceutical compositions and in methods of treating diseases associated with EGFR overexpression, as discussed above with respect to EGF ligands and as if repeated herein in its entirety for each EGFR ligand.
- The human epidermal growth factor (hEGF) gene was chemically synthesized and ligated into the Pet-9a vector (Novagen, EMD Biosciences, San Diego, Calif.) at the NdeI and BamHI cloning sites. The hEGF gene contained the OmpA leader sequence followed by an N-terminal 6x-his tag and a factor Xa cleavage site. Thus all hEGF and variants produced in this manner are fused at the N-terminus to the following peptide: HHHHHHIEGR (SEQ ID NO: 13). We have observed that hEGF fusion (MLX hEGF) performs in an identical manner in all of our assays compared to commercially available hEGF (Data not shown). This original clone, designated pMLPP1, was used as a basis for creating EGF variants using the QuickChange mutagenesis kit (Stratagene, La Jolla, Calif.). For protein production the EGF plasmids were transformed into E. coli strain BL21 (DE3) pLysS (Novagen). The plasmid containing the EGF variant genes contains the gene for kanamycin resistance as the selectable marker. In addition, the E. coli strain used is chloramphenicol resistant. Competent E. coli cells were transformed with the plasmid by heat shock (42° C. for 45 seconds). Transformed cells were selected by exposure to both kanamycin and chloramphenicol.
- 3 or more colonies were picked from each transformation plate and grown at 37° C. overnight in test tube cultures containing LB+Km25+Cm30. These cultures were used to inoculate shake flask cultures in the same medium and, 0.2 uM IPTG was added to the culture when OD 600>0.25 (2-4 hrs). The cultures were grown overnight, centrifuged, and the supernatants were tested for EGF production via dot blot using the Mouse Western Breeze Chromogenic Immunodetection System (Invitrogen, Carlsbad, Calif., cat#WB7103) with Primary antibody: 1:1000 mouse anti-penta his antibody (Qiagen, Valencia, Calif., cat#34660).
- The highest EGF expression clones were streaked to a fresh plate, and single colonies were inoculated into test tube cultures containing 15 ml LB+Km25+Cm30. After growth overnight, samples of culture were frozen for stocks, and for plasmid preps to confirm the identities of the EGF variant gene inserts. The remaining cultures were used to inoculate production cultures in TB+Km25+Cm30. Again, 0.2 uM IPTG was added when OD600>0.25 (about 2-4 hrs), and the cultures were grown overnight. Culture supernatants were collected after centrifugation and production was confirmed by dot blot with mouse anti-penta his antibody.
- 3 ml of Ni-NTA resin (Qiagen #30230) was used to pack 5 ml columns (Qiagen cat#34964) which were equilibrated with PBS pH 8.0. Culture supernatants were adjusted to pH 7.5-8.0 with 1N HCL before loading on columns. Columns were washed with PBS and PBS+10 mM imidazole; EGF variant proteins were eluted from columns with PBS+250 mM imidazole. Bradford protein assays were used to monitor protein concentrations.
- Column eluents were dialyzed in PBS at 4° C. with one buffer exchange, and then concentrated with 3000MWCO Macrosep centrifuge devices (ISC# OD003c41). The final product was tested for protein concentration by BCA protein assay and for purity by SDS-PAGE.
- To examine the kinase activity of epidermal growth factor receptor (EGFR) in the presence of hEGF and EGF variants, an ELISA was developed. Briefly, an ELISA plate is coated with poly-glu, tyr (4:1) which serves as a substrate for tyrosine phosphorylation by the EGFR. The ELISA plate is then incubated with assay buffer, which includes an ATP generating system, EGFR in the form of A431 cell membrane receptor preparations, and EGF variant. After a 15 minute incubation ATP is added to the reaction to allow the kinase activity to proceed. Anti-phosphotyrosine antibody is added to bind to the phosphorylated tyrosine bound to the plate. Anti-mouse HRP conjugate antibody is added as the detection antibody, which is visualized with the addition of tetramethyl benzidine (TMB).
- The glycine at position 18 was replaced by glutamate (G18E), glutamine (G18Q), lysine (G18K), phenylalanine (G18F), and leucine (G18L). These variants were tested in the kinase assay described above and compared with recombinant wild-type human EGF (MLX hEGF). It can be seen in the figures that the G18Q variant had slight activity at the highest concentrations tested. Other variants were unable to activate the EGFR kinase.
- The following variations in the glycine at position 39 were made: G39E, G39Q, G39K, and G39L. These were also tested in the kinase assay, and the results are shown in the figures. In these assays, G39K and G39E had some slight activity; the others were unable to activate the EGFR kinase, including V35EG39L.
- The EGFR kinase competition assay is basically the same as outlined above in the description of the kinase ELISA. The difference is that in the initial incubation with the EGFR and EGF variant, 50 nM human EGF is added which competes with the EGF variant for binding to the EGFR. Both the variant EGF and the human EGF are added to the assay plate before the addition of the EGFR and assay buffer, making sure neither ligand has an advantage in binding to the EGFR.
- All five variants at G18 and four variants at G39 were tested in kinase competition assays. The results from G18E, G18F, G18L, and G39L are shown in the figures. In the data summarized here and in similar experiments, G18F and G18L show a slight indication of competition at the highest concentrations used, and G39L and V35EG39L demonstrate a marked interference with hEGF-related stimulation of EGFR kinase.
- The HER5 cell line, a murine fibroblast line (derived from the NR-6 line) that has been stably transfected to express the human EGF receptor was provided by Dr. M. C. Hung (MD Anderson Cancer Center). Stock cultures of HER5 were propagated in D-MEM/F12 medium containing 10% fetal bovine serum, 100 units/ml of penicillin and 100 ug/ml of streptomycin in a water-jacketed incubator at 37° C. in a humidified 5% CO2 atmosphere. For HER5 proliferation assays, the cells were changed into DMEM/F12 without serum for 24 hours. Cells were then trypsinized and suspended at 1E5 cells/ml. Serial dilutions of hEGF (PeproTech, Rocky Hill, N.J.), His-tagged hEGF, or test proteins were prepared in serum-free DMEM/F12 at 2-fold the final concentration and plated into the wells of 96-well plates. Fifty microliters of cell suspension (5000 cells) were added to appropriate wells bringing the total volume to 100 ul at the desired concentrations. Plates were incubated for a 48 hour proliferation period. Cell proliferation was determined by addition of 10 ul/well of WST-1 Cell Proliferation Reagent (Roche Applied Sciences, Indianapolis, Ind.) for the last three hours of the proliferation period. WST-1 is a tetrazolium salt that is cleaved to formazan dye by mitochondrial dehydrogenases in viable cells. The amount of formazan was measured at 450 nm using a microplate reader (Dynex Technologies) with MRX Revelation software.
- The murine fibroblast line BALB/3T3 clone A31 (ATCC CCL-163) is cultured in D-MEM (4 mM L-glutamine, 4.5 g/L glucose, 1.5 g/L sodium bicarbonate) supplemented with 10% fetal calf serum at 37° C., 5% CO2 in air. For BALB/3T3 proliferation assays, 3000 cells were plated per well in 96-well plates with 100 ul of complete media and incubated for 20-24 hours. Media was aspirated from the wells, and the cells were washed once with DPBS. Serial dilutions of human EGF, His-tagged hEGF, or test proteins were added in 100 ul. Assay plates were incubated for 48 hours and cell proliferation was determined with WST-1 cell proliferation reagent (10 ul/well, 5 hr incubation). The absorbance at 450 nm was read with a microplate reader.
- It can be seen from the figures that G18K, G18L, and G18F have the least potency of the 5 G18 variants tested in the HER5 proliferation assay. Similarly, G39K and G39L have the least potency in that series. All the G18 and G39 variants except for G18Q and G39Q were inactive in the BALB/3T3 assays.
- The BALB/3T3 proliferation assay was modified to test variants for competition with hEGF in the stimulation of BALB/3T3 cell proliferation. Serial dilutions of the test mutants were tested for proliferation in the presence of 0 nM, 0.5 nM, and 5 nM of the MLX-hEGF. BALB/3T3 cells were suspended at 3E4 cells/ml in complete serum media. 100 ul of cell suspension was plated per well in 96-well plates and incubated for 20-24 hours. Media was then aspirated from the wells, and the cells were washed once with DPBS. His-tagged wild-type hEGF at twice the final concentration was added in 50 ul/well. Serial dilutions of test mutants were prepared at twice the final concentration in serum-free media and 50 ul was added per well, bringing the final volume per well to 100 ml at the target concentrations of wt-hEGF and test mutants. Assay plates were incubated for 48 hours and cell proliferation was determined with WST-1 cell proliferation reagent (10 ul/well, 5 hr incubation). The absorbance at 450 nm was read with a microplate reader.
- For the competition assays in BALB/3T3 cells, two concentrations of hEGF were chosen, 0.5 and 5.0 nM based on the dose response curve shown in the figures. Apparent competition was observed at both hEGF concentrations with G18K and G39K, but was only seen in at 0.5 nM hEGF with G18L and G39L.
- A-431 cells are an epidermoid carcinoma cell line obtained from the American Type Culture Collection. The method for A431 cell proliferation inhibition is as follows. Cells are transferred to serum-free media (SFM) approx 20 hrs prior to use. Serial dilutions of test proteins (and pos. and neg. controls) are prepared to deliver twice the final concentration in 50 ul in SFM. The treatment solutions are added to appropriate wells of 96-well microtiter plates. The cells are then released from their culture plates with Trypsin-EDTA solution, centrifuged, resuspended at 1E5 c/ml in SFM and 50 ul (5000 cells) are added to each well. This brings the concentration in the wells to 1×. The plates are then incubated for 48 hours in the incubator (37 C/5% CO2). 10 ul of WST-1 reagent (Roche) is added to each well for the final three hours of the proliferation period. The OD is then read at 450 nm.
- The results shown in
FIG. 20 indicate that the G18F human EGF polypeptide variant has a dramatic effect on the inhibition of A431 cell proliferation. - The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
- While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Claims (23)
1-4. (canceled)
5. An EGFR ligand polypeptide variant characterized by at least one amino acid substitution, deletion or insertion that prevents the variant from binding Domain III of EGFR and, optionally, at least one amino acid substitution, deletion or insertion that results in the variant binding to Domain I of EGFR, wherein the variant is an EGFR antagonist.
6. The variant of claim 5 characterized by a substitution, deletion or insertion that forms hydrophobic, electrostatic, or hydrogen bonds between one or more amino acids of the antagonist and EGFR.
7. The variant of claim 5 , wherein the variant is not substantially displaced from EGFR by EGF.
8. The variant of claim 5 characterized by an amino acid sequence substantially the same as the wild-type EGFR ligand.
9. The variant of claim 8 , wherein the EGFR ligand is EGF.
10. An epidermal growth factor polypeptide variant in which the amino acid position that corresponds to amino acid Gly 18, amino acid Val 35, amino acid Arg 41 or amino acid Gly 39 of human wild-type epidermal growth factor is substituted with another amino acid, the polypeptide having epidermal growth factor receptor antagonist activity.
11. The epidermal growth factor polypeptide variant of claim 10 , wherein the polypeptide variant is a human EGF polypeptide variant.
12. The epidermal growth factor polypeptide variant of claim 10 , wherein the amino acid substitution at the position that corresponds to Gly 18 or Gly 39 of human wild-type epidermal growth factor is selected from the group consisting of: phenylalanine, leucine, aspartic acid, and isoleucine.
13. The epidermal growth factor polypeptide variant of claim 10 , wherein the amino acid corresponding to Val 35 of human wild-type epidermal growth factor is substituted with glutamate.
14. The epidermal growth factor polypeptide variant of claim 10 , wherein said polypeptide comprises at least one additional amino acid substitution at a position other than Gly 18 or Gly 39, said polypeptide having epidermal growth factor receptor antagonist activity.
15. The epidermal growth factor polypeptide variant of claim 14 , wherein said polypeptide comprises at least one additional amino acid substitution at Val 35 with glutamate.
16. The epidermal growth factor polypeptide variant of claim 14 , wherein said at least one amino acid substitution is a conservative amino acid substitution.
17. The epidermal growth factor polypeptide variant of claim 10 , wherein said polypeptide comprises at least one deletion of an amino acid at a position other than Gly 18 or Gly 39, said polypeptide having epidermal growth factor receptor antagonist activity.
18. The epidermal growth factor polypeptide variant of claim 10 , wherein said polypeptide comprises at least one insertional mutation of an amino acid at a position other than Gly 18 or Gly 39, said polypeptide having epidermal growth factor receptor antagonist activity.
19. An epidermal growth factor polypeptide variant of human EGF in which the amino acid position that corresponds to amino acid Val 35 is substituted with glutamate and the amino acid Gly 39 is substituted with leucine.
20. A pharmaceutical composition comprising the EGFR ligand polypeptide variant of claim 5 and a pharmaceutically acceptable carrier.
21. A method of treating a patient with a disease characterized by overexpression of EGFR comprising, administering to the patient, a therapeutically effective amount of a pharmaceutical composition of claim 20 .
22. The method of claim 21 wherein the disease is cancer.
23. The method of claim 21 wherein the cancer is selected from the group consisting of gliomas, squamous cell carcinomas, breast carcinomas, melanomas, invasive bladder carcinomas, colorectal carcinomas and esophageal cancers.
24. The method of claim 21 wherein the disease is psoriasis.
25. A polypeptide variant of an epidermal growth factor receptor ligand in which the amino acid position that corresponds to amino acid Gly 18 or amino acid Gly 39 of human wild-type epidermal growth factor is substituted with another amino acid, the polypeptide having epidermal growth factor receptor antagonist activity.
26. The polypeptide variant of claim 25 , wherein the epidermal growth factor receptor ligand is selected from the group consisting of: transforming growth factor-α (TGFα), betacellulin, heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR) and epiregulin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/261,233 US20090286729A1 (en) | 2004-06-30 | 2008-10-30 | Epidermal Growth Factor Receptor Antagonists and Methods of Use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58447104P | 2004-06-30 | 2004-06-30 | |
US64308205P | 2005-01-11 | 2005-01-11 | |
US11/172,610 US7470769B2 (en) | 2004-06-30 | 2005-06-30 | Epidermal growth factor receptor antagonists and methods of use |
US12/261,233 US20090286729A1 (en) | 2004-06-30 | 2008-10-30 | Epidermal Growth Factor Receptor Antagonists and Methods of Use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/172,610 Continuation US7470769B2 (en) | 2004-06-30 | 2005-06-30 | Epidermal growth factor receptor antagonists and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090286729A1 true US20090286729A1 (en) | 2009-11-19 |
Family
ID=35784362
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/172,610 Expired - Fee Related US7470769B2 (en) | 2004-06-30 | 2005-06-30 | Epidermal growth factor receptor antagonists and methods of use |
US12/261,233 Abandoned US20090286729A1 (en) | 2004-06-30 | 2008-10-30 | Epidermal Growth Factor Receptor Antagonists and Methods of Use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/172,610 Expired - Fee Related US7470769B2 (en) | 2004-06-30 | 2005-06-30 | Epidermal growth factor receptor antagonists and methods of use |
Country Status (5)
Country | Link |
---|---|
US (2) | US7470769B2 (en) |
EP (1) | EP1773367A4 (en) |
JP (1) | JP2008509888A (en) |
CA (1) | CA2575278A1 (en) |
WO (1) | WO2006007509A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543071A (en) * | 2006-07-06 | 2009-12-03 | モレキュラー ロジックス,インコーポレイテッド | Dominant negative ligand drug discovery system |
CU24181B1 (en) * | 2012-11-09 | 2016-04-25 | Ct De Inmunología Molecular | TGFß DERIVED POLYPEPTIDES |
EP3606548A4 (en) | 2017-04-04 | 2021-03-24 | Loma Linda University | BIOLOGICAL PREPARATION FOR TREATMENT OF CANCER |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5102789A (en) * | 1989-03-15 | 1992-04-07 | The Salk Institute Biotechnology/Industrial Associates, Inc. | Production of epideramal growth factor in pichia pastoris yeast cells |
JPH05178892A (en) * | 1991-04-08 | 1993-07-20 | Wakunaga Pharmaceut Co Ltd | Human epithelial cell growth factor mutant and its production |
US20040248196A1 (en) * | 2001-08-03 | 2004-12-09 | Adams Timothy Edward | Methods of screening based on the egf receptor crystal structure |
WO2003066677A1 (en) * | 2002-02-05 | 2003-08-14 | Japan Science And Technology Agency | Egf/egfr complex |
US7084246B2 (en) * | 2003-04-17 | 2006-08-01 | Molecular Logix, Inc. | Epidermal growth factor agonists |
-
2005
- 2005-06-30 CA CA002575278A patent/CA2575278A1/en not_active Abandoned
- 2005-06-30 EP EP05788840A patent/EP1773367A4/en not_active Withdrawn
- 2005-06-30 WO PCT/US2005/023104 patent/WO2006007509A2/en active Application Filing
- 2005-06-30 US US11/172,610 patent/US7470769B2/en not_active Expired - Fee Related
- 2005-06-30 JP JP2007519392A patent/JP2008509888A/en active Pending
-
2008
- 2008-10-30 US US12/261,233 patent/US20090286729A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2008509888A (en) | 2008-04-03 |
WO2006007509A2 (en) | 2006-01-19 |
EP1773367A4 (en) | 2009-08-19 |
US7470769B2 (en) | 2008-12-30 |
CA2575278A1 (en) | 2006-01-19 |
WO2006007509A3 (en) | 2006-12-07 |
EP1773367A2 (en) | 2007-04-18 |
US20060014690A1 (en) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2325341C (en) | Mutagenized il13-based chimeric molecules | |
JP2020176139A (en) | Activin-actriia antagonists and use thereof for promoting bone growth in cancer patients | |
JP2012529272A (en) | Fusion protein for delivering GDNF and BDNF to the central nervous system | |
KR20030009450A (en) | Thrombopoietin Receptor Modulating Peptide | |
US7115390B1 (en) | Connective tissue growth factor fragments and methods and uses thereof | |
US7557181B2 (en) | Pan-HER antagonists and methods of use | |
US20050272637A1 (en) | Compositions and methods for modulating signaling mediated by IGF-1 receptor and erbB receptors | |
US20090286729A1 (en) | Epidermal Growth Factor Receptor Antagonists and Methods of Use | |
US20090318350A1 (en) | Pan-her antagonists and methods of use | |
Li et al. | Optimized functional and structural design of dual-target LMRAP, a bifunctional fusion protein with a 25-amino-acid antitumor peptide and GnRH Fc fragment | |
US20110092441A1 (en) | Cell-permeable endostatin recombinant protein, a polynucleotide encoding the same, and an anti-cancer preparation containing the same as an active component | |
US20080206231A1 (en) | Compositions and Methods for Treating Disease | |
WO2010066090A1 (en) | Fusion proteins of apoptin-protein transduction domian of carboxyl-terminal end of ec-sod | |
EP4048305A1 (en) | Computational design of alpha(v) beta (6) integrin binding proteins | |
EP4032901A1 (en) | Recombinant human neuregulin derivatives and use thereof | |
US20230085176A1 (en) | Peptide-based inhibitors of growth hormone action and methods of use thereof | |
Lohmeyer et al. | Characterization of chimeric proteins constructed from human epidermal growth factor (EGF) and the Drosophila EGF-receptor antagonist argos | |
WO2008076788A2 (en) | Optimized pan-her ligands | |
CN113018418A (en) | Application of micro RNA31 precursor encoding polypeptide miPEP31 in preparation of hypertension drugs | |
CN112500493A (en) | Recombinant human neuregulin derivative and application thereof | |
EP2922862A1 (en) | Complex-formation-modulating agents and uses therefor | |
JP2007137841A (en) | Decorin-derived peptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |