US20090282710A1 - Multi-Function Material Moving Assembly and Method - Google Patents
Multi-Function Material Moving Assembly and Method Download PDFInfo
- Publication number
- US20090282710A1 US20090282710A1 US11/381,087 US38108707A US2009282710A1 US 20090282710 A1 US20090282710 A1 US 20090282710A1 US 38108707 A US38108707 A US 38108707A US 2009282710 A1 US2009282710 A1 US 2009282710A1
- Authority
- US
- United States
- Prior art keywords
- section
- bucket
- assembly
- fluid
- operating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/40—Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
- E02F3/402—Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors
- E02F3/404—Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors comprising two parts movable relative to each other, e.g. for gripping
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/3604—Devices to connect tools to arms, booms or the like
- E02F3/3677—Devices to connect tools to arms, booms or the like allowing movement, e.g. rotation or translation, of the tool around or along another axis as the movement implied by the boom or arms, e.g. for tilting buckets
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/3604—Devices to connect tools to arms, booms or the like
- E02F3/3677—Devices to connect tools to arms, booms or the like allowing movement, e.g. rotation or translation, of the tool around or along another axis as the movement implied by the boom or arms, e.g. for tilting buckets
- E02F3/3681—Rotators
Definitions
- the present invention relates to an assembly which can provide a variety of functions, including the excavating any movement of dirt, gravel and other material, and also of the movement of various objects and positioning them in various orientations.
- material is to be interpreted more broadly to include various items which can be moved, lifted, aligned in various positions and orientations, etc.
- the bucket is mounted to an elongate boom/support arm assembly, and it rotates about a horizontal axis that is transverse to a lengthwise axis of the arm member to which it is mounted.
- This assembly often comprises a mobile machine, which travels either on tracks or wheels, and which comprises a cab to which the boom/support arm assembly is mounted, with the cab rotatably mounted for rotation about a vertical axis.
- the prior art shows a bucket assembly where there is a bucket mounted to a boom assembly or other base member, and the bucket is rotatable about two or more axes.
- a clamping member that is pivotally mounted to the bucket so that it can move toward and away from the bucket and clamp various articles between the bucket and the clamping member.
- This clamping member is often referred to as a “thumb”; the reason for this likely being that the bucket plus the clamping member could be equated to a person's hand where the fingers would comprise the bucket and the clamping member would comprise the thumb, when the hand is grasping an article, such as an elongate pole.
- FIG. 1 is a side elevational view of an embodiment of the multi-function assembly of the present invention
- FIG. 2 is a view similar to FIG. 1 , but only showing a front portion of a bucket assembly and a front portion of a primary arm member to which the bucket assembly is mounted;
- FIG. 3 is a view similar to FIG. 2 , showing a side elevational view of the bucket assembly and the forward part of the arm, and showing the bucket section having been rotated about 90 degrees from the position of FIGS. 1 and 2 , with an elliptical arrow 36 illustrating the rotational path of travel of the bucket section;
- FIG. 4 is a view similar to FIG. 2 , but showing a bucket in a somewhat different angular position
- FIG. 5 is a view similar to FIG. 2 , but showing the clamping member of the bucket section having been rotated to a more open position;
- FIG. 6 is an isometric view of the bucket section taken from a location to the rear and slightly above the bucket section;
- FIG. 7 is a sectional view taken along the line 7 - 7 of FIG. 6 ;
- FIG. 8 is a sectional view taken along the line 8 - 8 of FIG. 6 ;
- FIG. 8A is a view taken along the same section as in FIG. 8 , but showing only a fluid supply/distribution section;
- FIG. 8B is a partial sectional view taken along the line 8 B of FIG. 8 showing a worm drive gear drive section of the bucket assembly;
- FIG. 8C is a partial sectional view which is taken along a line 8 C of FIG. 8B ;
- FIG. 9 is a sectional view taken along 9 - 9 of FIG. 6 and showing the rotary mounting of a base structure of a clamping section;
- FIG. 10 is a side elevational view of the bucket gripping a cylindrical object such as a log or a pole;
- FIG. 11 is a top elevational view of the assembly of this embodiment of the present invention, showing the bucket section gripping the pole or log and lifting it;
- FIG. 12 is a view similar to FIG. 11 , but showing the bucket section having been rotated 90 degrees so that the pole or log is more longitudinally aligned;
- FIG. 13 follows FIGS. 11 and 12 and is a side elevational view of the assembly showing the bucket having been rotated 90 degrees about the axis of rotation of the bucket section about a forward to rear axis of the bucket section and also having been rotated 90 degrees so that the bucket holds the log or pole in a vertical orientation;
- FIG. 14 is a top plan view of the assembly in a position where the bucket is being moved rearwardly as shown by an arrow as the bucket section is moved along a path toward the mobile vehicle;
- FIG. 15 is a view similar to FIG. 14 , but showing the bucket section having been rotated 90 degrees from the position of FIG. 14 so that the open face of the bucket is facing laterally, and showing in phantom lines the mobile vehicle having been rotated about its vertical center axis to the dotted line position of FIG. 15 so that the bucket section is traveling in a circular path;
- FIGS. 16 and 17 are views showing the bucket section in a laterally facing direction and thus scraping along an earth surface to collect some of the surface material
- FIGS. 18 , 19 and 20 are side elevational views of the bucket section with the clamping member in different positions to perform dirt moving and also surface finishing operations;
- FIG. 21 is a side elevational view, partly in section, illustrating a second embodiment of the present invention.
- FIG. 22 a is a schematic view a hydraulic drive system of the first embodiment.
- FIG. 22 b is a schematic drawing similar to FIG. 22 a, showing a hydraulic drive system of the second embodiment.
- the multi-function assembly 10 of this embodiment of the present invention comprises a mobile machine 12 which has an operating support section 13 which in this embodiment comprises a boom 14 pivotally mounted to the machine 12 , and a primary arm member 16 (sometimes called a “stick”) having a pivot connection to the boom 14 .
- the primary arm member 16 and the boom could each be considered to be an operating member.
- the boom 14 , the primary arm member 16 and the bucket assembly 18 are all aligned in a longitudinally and vertically aligned reference plane 17 which is indicated in FIG. 11 .
- This bucket assembly 18 has longitudinal axis 19 and comprises a bucket section 20 which in turn comprises a bucket 22 and a clamping member 24 .
- the bucket assembly 18 also comprises an intermediate connecting section 26 by which bucket section 20 is connected to the front end of the primary arm member 16 .
- the bucket assembly 18 also has a transverse axis 27 and a vertical axis 28 perpendicular to the longitudinal axis 19 and the transverse axis 27 .
- pivot axes about which several of these components move, first there is a rear horizontally aligned pivot axis 30 which is at the rear base end of the boom 14 , and the boom 14 rotates pivotally back and forth about this axis 30 .
- the boom also has a forward pivot axis 32 at which the boom connects to a rear end portion of the primary arm member and this same pivot axis 32 is the rear pivot axis for pivotal movement of the primary arm member 16 .
- pivot axis 34 At the forward end of the primary arm member 16 there is a forward primary arm member pivot axis 34 , and this same pivot axis 34 is the rear pivot axis for the bucket assembly 18 .
- the pivot axes 30 , 32 and 34 are all horizontally aligned, and perpendicular to the reference plane 19 and the back and forth movement of the boom 14 about the pivot axis 30 , the back and forth movement of the primary arm member 16 and also the back and forth movement of the bucket assembly 18 are all located in the longitudinally and vertically aligned forward to rear reference plane 19 .
- the bucket assembly 18 comprises the bucket section 20 comprising both the bucket 22 and the clamping member 24 and the intermediate connecting section 26 . These two sections 18 and 26 are arranged so that the bucket section 20 rotates relative to certain portions of the intermediate connecting section 26 about a bucket axis of rotation 35 that extends in a forward to rear direction relative to the bucket section 20 and generally is at right angles to the rear bucket assembly pivot axis 34 .
- the bucket section 20 is able to rotate in a circular path relative to this bucket axis of rotation 35 , as indicated by the arrow 36 .
- the bucket axis of rotation 35 is coincident with the longitudinal axis 19 of the bucket assembly 18 .
- clamping member pivot axis 37 (See FIGS. 9 , 2 and 3 ) about which the clamping member 24 rotates relative to the bucket 22 .
- This pivot axis 37 is generally perpendicular to the longitudinal axis 19 of the bucket assembly 12 . This movement can be observed by examining FIGS. 4 and 5 .
- the boom 14 has a boom alignment axis 38 which extends from its boom rear pivot axis 30 to the boom forward pivot axis 32 .
- the primary arm member 16 also has an alignment axis 40 which extends from the pivot axis 32 to the forward primary arm member pivot axis 34 .
- the bucket assembly has a bucket assembly alignment axis 19 in this embodiment which is coincidental with the bucket axis of rotation 35 and a transverse bucket axis 41 (see FIG. 3 ) and a vertical bucket axis 42 (see FIG. 2 ).
- the mobile machine 12 can be seen to have the overall configuration of a track hoe.
- the machine 12 comprises a cab 44 which is mounted to a base section 45 shown schematically in FIG. 1 which in turn is carried by a locomotion section 46 which in this embodiment comprises a ground engaging locomotion section in the form of a track section 43 which comprises two laterally spaced tracks 47 (only one which is shown only in outline in FIG. 1 ).
- the ground engaging locomotion section 46 could compress forward and rear sets of wheels.
- the cab 44 is mounted so that it could rotate about a vertical center axis of rotation indicated at 48 . As will be described later in this text, the ability of the cab 44 to rotate about the vertical center axis 48 enables the overall assembly 10 to perform certain functions which would otherwise be accomplished less easily.
- forward shall denote a direction which, as shown in FIG. 1 , is from the cab 44 toward the primary arm member 16 .
- rearward shall denote the opposite direction.
- relative locations will be described by the terms “front”, “rear”, “forward”, or “rearward” in accordance with the forward and rear directions.
- forward and rearward shall apply relative to a reference location in a configuration where the primary arm member 16 is extending horizontally from the mobile machine 12 , and the bucket assembly 18 is in alignment with the primary arm member 16 as shown in FIGS. 1 and 2 .
- the boom 14 is rotated about the pivot axis 30 by means of an actuator 50 .
- This actuator 50 has a base connecting location in (or adjacent to) the cab structure and an upper forward pivot connection at 52 on the boom 14 .
- the primary support arm comprises a bucket assembly actuator 60 which has a rear end connection 62 at an upper rear portion of the primary arm member 16 and a forward end connection 64 that in turn connects to a pair of links 66 and 68 .
- These links 66 and 68 in turn connect pivotally to, respectively, a forward location 67 on the primary arm member 16 and to a rear mounting connection 69 of the bucket assembly 18 .
- the bucket section 20 comprises the bucket 22 and the clamping member 24 .
- this intermediate connecting section 26 performs some other functions.
- this section 26 comprises a fluid supply/distribution section 130 to supply fluid to the hydraulic actuating section 113 and a structural/drive section 132 .
- the structural/drive section 132 in turn comprises:
- the fluid supply/distribution section 130 is shown in FIG. 8 and will now be described with reference to primarily FIG. 8A which shows this section 130 in a larger scale. It comprises a fluid carrying section 139 which in this embodiment comprises a center fluid distribution member 140 which has a longitudinal center axis which is coincident with the aforementioned bucket axis of rotation 35 . The rear end portion of the center fluid distribution member 140 is connected to a cylindrical mounting member 141 which is part of the fluid carrying section 139 and as shown herein is aligned on the same axis 35 . Neither the center fluid distribution member nor the mounting member 41 rotate with the bucket section 20 .
- the center fluid distribution member 140 has two longitudinally aligned supply passages 142 which extend through the mounting support member 141 to a rear location where these are in turn connected to hydraulic feed tubes 143 through which the hydraulic fluid is moved to and from a hydraulic drive source from the primary arm member 16 or from some other location.
- This connection 144 comprises two circumferentially aligned longitudinally spaced distribution grooves 145 . and also three seals 146 (O-ring seals) to seal off each of the two distribution grooves 145 .
- seals 146 O-ring seals
- outer cylindrical member 148 which is positioned concentrically around the center member 140 and which is fixed relative the bucket structure, and this is part of the fluid rotary connection 144 .
- This outer cylindrical member 148 has two inlet/outlet ports 150 which are located at the same longitudinal location as the distribution grooves 145 .
- There are two connecting tubes 152 which extend from the inlet/outlet ports 150 and are directed to the two hydraulic actuators 114 to extend and retract these hydraulic cylinders 114 to in turn open and close the clamping member 24 .
- the grooves 145 being formed in the outer member 148 and the groove outlet openings 147 being located at those grooves 147 .
- the center liquid distribution member 140 there is a snap ring 154 to help position the center liquid distribution member within the outer cylindrical member 148 , with a low friction washer 156 being provided between the snap ring and the cylindrical member 148 .
- the mounting support member 141 that connects to the center liquid distribution member 140 has a diameter moderately larger than the diameter of the main part of the center liquid distribution member 140 to create a forwarding facing cylindrical shoulder 160 .
- the center liquid distribution member 140 of the fluid supply/distribution section 130 remains stationary while the outer cylindrical member 148 is revolving with the bucket section 20 around the stationary center member 140 .
- the inlet/outlet ports 150 of the cylindrical member 148 remain in constant contact with the grooves 145 so that the hydraulic fluid can be directed into the two hydraulic actuators 114 to either extend or retract them.
- the movement of the clamping member 24 is accomplished by means of the two hydraulic actuators 114 .
- the fluid supply distribution section 130 is arranged so that the hydraulic lines 143 are connected to the rear end of the two internal passages 142 of the center member 140 , and these passageways 142 connect through the openings 147 into the two circumferential grooves 144 that in turn connect to the ports 150 to the two tubes 152 that connect to opposite ends of the actuators 114 .
- the center liquid distribution member is non-rotatable in that it does not rotate with the bucket section 20 when it rotates about its axis 35 .
- the outer cylindrical member 148 and the tubes 152 that are attached therefore rotate with the bucket section 20 .
- the bucket section 20 could be rotated continuously in one direction around the axis of rotation 35 , which would not possible if it were necessary to have electric wires or fluid supply lines connected between the primary arm member 16 and the rotating bucket section 20 .
- the multi-function material moving assembly 10 of this embodiment will simply be called “the machine 10 ”. To describe the operations and versatility of the machine 10 , several different situations will be considered.
- FIG. 10 shows the manner in which the bucket 22 and the clamping member 24 grip a log 220 .
- the log or tree has been dropped down and is laying on the forest floor with some of the limbs having been removed.
- the tree is to be moved out from among the trees and then to a vehicle or to stack it into a pile.
- the machine 10 could engage and then lift the log while the bucket section 20 is aligned as in FIG. 12 , and then it can be moved out of the surrounding trees by backing up the machine 10 , carrying the log out in the direction of travel. Then the position of the tree could be moved to be in alignment with the bed of the truck into which it is to be placed or stacked on a pile.
- the machine 10 could be used to dig a hole in the ground, and several stabilizing cables or lines could be secured to what is to be the top end of the pole. Then with the hole having been dug, the machine could move the pole to a vertical position with the bottom end positioned in a stationary location in the hole. The cables could be made taut to keep the pole vertical, and the machine could release its grip on the tree and fill the hold to further stabilize the pole.
- this shows the machine 10 in a conventional position where it can simply dig a ditch in the dirt by operating the bucket section in the normal manner that is expected of a backhoe.
- FIGS. 15 through 17 Now we will look a fifth situation, with reference to FIGS. 15 through 17 , and this is where some clearing has taken place and it is now desired to smooth out the surface.
- the machine can be placed in the position of FIG. 15 (as shown in full lines), and the open chamber of the bucket 22 is facing laterally. Then the entire cab section 44 can be rotated about its vertical axis to swing the boom 14 in a sweep over the surface, with the lower front edge of the bucket 22 scraping the ground. The manner in which this could be done is illustrated in FIG. 16 .
- FIG. 17 illustrates a situation where the machine 10 itself is placed on a ground surface where it is at a slant, and it is desired to have an area to be either dug out or smoothed out. Therefore, the boom 14 could be placed in a position shown in FIG. 17 , and the boom 14 , the arm member 16 and the slant of the bucket as well as its vertical position could be controlled to obtain a level ground surface.
- FIGS. 18 , 19 and 20 illustrate a sixth situation.
- FIG. 18 illustrates the bucket 22 lifting a large amount of material in its usual operation.
- FIG. 19 illustrates the manner in which the clamping member 24 could be used to control the discharge of the earth in the bucket.
- FIG. 20 illustrates a situation where the bucket is being used to make a quite smooth surface (as in FIGS. 16 and 17 ), and it is desired to remove most all of a small pile of remaining dirt.
- the clamping member 24 can be used to come down and push that last amount of earth into the bucket.
- This second embodiment will now be described with reference to FIG. 21 .
- Components of this second embodiment which are similar to components of the first embodiment will be given like numerical designations, with an “a” suffix distinguishing those of the second embodiment.
- This second embodiment is particularly adapted to be used in a situation where work is to be done near or along a railroad track or a railroad right-of-way and other situations.
- the multi-purpose assembly 10 a it is possible for the multi-purpose assembly 10 a to travel over a ground surface, and also to be able to be positioned on (and travel along) the two rails of a railroad track.
- the assembly 10 a will be referred to as the “machine 10 a ” or as the “second embodiment”.
- components of this second embodiment are in large part identical to (or substantially the same as) most all of the components which are shown in FIG. 1 , with the exceptions being the base section 45 , the locomotion section 46 , and the overall manner in which the locomotion section 46 functions. Aside from that, the remaining components that are shown in FIGS. 1 through 20 are, or may be, also present in this second embodiment in the same/or similar configuration.
- FIG. 21 It can be seen in FIG. 21 that only the lowermost portion of the cab 44 a is shown. This is done with the understanding that the full cab 44 a is the same as, or similar to, what is shown in FIG. 1 , including its vertically aligned axis of rotation 48 a. Further, it is to be understood that the following components that appear in FIG. 1 are also to be present in this assembly 10 a, FIG. 21 , these components including: the boom 14 , the primary arm member 16 , and the entire bucket assembly 18 . Further, all of the other components associated with these, such as the actuators 54 and 60 , etc., are also part of the second embodiment of FIG. 21 .
- the cab 44 a mounted to the base 45 a.
- the base 45 a is (or can be) basically the same as in the first embodiment, except for “add-on” features for the base section 45 a.
- the locomotion system 46 a which is substantially the as in the first embodiment with respect to the two ground engaging tracks 47 a, and these are (or may be) the same (or similar to) the tracks 47 of the first embodiment.
- the locomotion system 46 a differs in that it also comprises a railroad track engaging section to be described later herein.
- the base section 45 a comprises top, bottom, front and back frame portions 224 a, 225 a, 226 a and 227 a, respectively.
- Each ground engaging track 230 a comprises a lower track run 231 a, and upper track run 232 a, a front 90 degree track curved portion 234 a, which is driven by a sprocket 236 a, and a rear track portion 238 a which (as shown in this embodiment) has an idler sprocket 240 a.
- the rear sprocket 232 a could also be a drive sprocket.
- the operating assembly 10 a of this first embodiment comprises a combined locomotion system 46 a which comprises:
- this section 250 a comprises a wheel section 252 a which in turn comprises forward and rear wheel sets 254 a, each of which comprises two laterally spaced wheels 256 a.
- a rear wheel mounting section 258 a which in turn comprises front and rear mounting subsections 260 a.
- Each mounting subsection 260 a in turn comprises a base mounting section 262 a which in turn comprises front and a rear base connecting mounting structures 264 a.
- these base mounting structures 264 a are fixedly connected by a base connecting portion 265 a to the base 45 a.
- Each base mounting structure 264 a has at its outer end portion two connecting pivot locations 266 a and 268 a.
- Each rail wheel mounting subsection 260 a further comprises a wheel support member 270 a which is in the form of an elongate arm, having a base pivot connections 272 a at the lower pivot connecting locations 266 a.
- the opposite end of each wheel support member 270 is fixedly connected to a wheel support structure portion 274 a, in which the related wheel 256 a is rotatably mounted.
- each set 254 a of wheels 256 a a wheel positioning member which is in the form of a hydraulic actuator 276 a which is shown only schematically by a broken line indicated at 276 a.
- This actuator 276 a has a base connecting portion 278 a that connects pivotally to the pivot location 268 a of the base mounting structure 264 a, and a second pivot connection at 280 a to the wheel support structure portion 274 a.
- FIG. 51 the forward set of wheels 254 at the left in FIG. 1 and its mounting structure 264 a are shown in the raised position where the hydraulic actuator 276 a has been retracted, and it can be seen that the forward set of wheels 254 a is raised to an upper location. Then on the rear part of the rail engaging locomotion system 250 a, the rear wheel set 254 a is in its lower rail engaging position, this being accomplished by extending the rear hydraulic actuator or actuators 276 a.
- the hydraulic actuators 276 a are retracted to move the front and rear set of wheels 254 a to the raised position. Then when the multi-purpose assembly 10 a is to be located over the rails of the rail track system, the two hydraulic actuators 276 a are extended to move the front and rear wheel sets 254 a downwardly to engage the rails and raise the assembly 10 a so that the ground engaging locomotion section 43 a is raised above the level of the rails of the railroad track.
- FIGS. 22A and 22B show, respectively, the hydraulic drive system of the locomotion section of the first embodiment 10 and then the hydraulic drive section of the second embodiment.
- the hydraulic drive system 280 of the ground engage locomotion of the first embodiment comprises a hydraulic power supply 282 of the first embodiment.
- This power supply 282 in turn comprises a pump 284 and a reservoir 286 .
- This drive system 280 comprises left and right power sections 288 and 290 , with the left power section 288 driving the left sprocket 236 that in turn connects to the left ground engaging track 230 , and the right power section 290 doing the same for the right sprocket 236 and the right ground engaging track 230 .
- Each of the left and right power sections 288 and 290 comprises a four-way fluid distribution valve section 292 which in turn selectively transmits the hydraulic fluid to its related hydraulic motor 294 that connects to its related sprocket 236 .
- the distribution valve 292 has three operating positions. There is a first operating position where the valve 292 directs the fluid into the motor supply line 298 , with the hydraulic fluid being discharged form the motor and into the other supply lines 300 which directs the fluid back to the distribution valve 292 . The distribution valve 292 then directs the liquid through a return line 302 to the reservoir 286 .
- the fluid flow is reversed, in that the hydraulic fluid is directed from the hydraulic power supply 282 through the distribution valve 292 and into the supply line 300 which in turn directs the fluid to the motor to turn the motor 294 in the opposite direction to cause the drive sprockets 236 to reverse its direction so as to drive the track 230 in the opposite direction.
- the right power supply section 290 operates in the same manner as described above with regard to the left power section 290 .
- left and right control levers 304 and 306 there are shown in FIG. 21A left and right control levers 304 and 306 . If these two levers 304 and 306 are pushed forward, they cause both left and right distribution valves 292 to move to the first position where both sprockets 236 are driven in a forward traveling direction. Then when the two levers 304 and 306 are moved rearwardly, these cause the distribution valve section 292 to move to the second position to cause both of the drive sprockets 236 a to rotate in the reserve direction.
- the right control lever 306 is moved to a forward location, and the left control lever 304 is moved forward to a lower power setting so that the left sprocket 236 rotates more slowly, or to a non-turning position where the machine executes the turn at substantially the same location.
- a right turn can be made in a similar manner. Also, by manipulating the lever arms 304 and 306 , the machine 10 can back up in a straight line path or a curved path where the curve is one way or the other.
- this hydraulic drive system 280 a of the second embodiment is an adaptation from the hydraulic drive system 280 of the first embodiment, so that many of the components in the hydraulic drive system shown in 280 A will be the same as, or similar to, those of first embodiment. Also, as is done earlier in this text, components of this second embodiment which are the same as, or similar to, components of the first embodiment will be given like numerical designations, with an “a” suffix distinguishing those of the second embodiment.
- FIG. 22B there is the hydraulic power supply 282 a, comprising the pump 284 a and the reservoir 286 a, and the left and right power sections 288 a and 290 a. Also, there are the two distribution valve sections 292 a and each of these receive hydraulic fluid from the line 296 a and also connect to the return line 302 a. Further, there are the two drive sprockets wheels 236 a, and these have their two drive motors 294 a along with their connecting lines 298 a and 300 a.
- each mode selecting valve 316 a is connected through the lines 312 a and 314 a to the motors 310 a for the rail wheels 256 a.
- each mode selecting valve 320 a is a six port valve which has two operating positions. In a first operating position, the two transfer valves 320 a have a through connection from the distributor valve 292 a through the lines 298 a and 300 a to the motors 294 a for drive sprockets 236 a.
- each mode selecting valve 316 makes a through connection from the lines 318 a and 320 a to the rail motor supply lines 312 a and 314 a to drive the two rail motors 310 a.
- the two mode selecting valves 316 a are positioned in their ground operating mode position. In this position, the fluid flow paths through the distribution valves 292 a connect with the two sets of lines 318 a and 320 a which connect the selecting valves 316 a and to connect with the related motors 294 a for the track drive sprockets 236 a.
- the mode selecting valve 316 a when the mode selecting valve 316 a is moved to its rail engaging mode, the flow paths through the same distribution valve sections 292 and then through the mode selecting valves 316 a. However, the flow is through a different set of ports in the mode selecting valves 316 a so that the liquid flow is to and from the motors 310 a to drive the rail wheels 256 a.
- the mode selecting valves 316 a would be in its ground engaging mode, so that the flow from the lines 318 a would pass through the mode selecting valves 316 a and through the lines 298 a and into the motors at 294 a to drive the sprockets 236 a in the forward traveling direction of rotation. Then the flow from each motor 294 a would be on a return path through the line 300 a then through the mode selecting valve 316 a to the ground engaging return line 320 a and through the selector valve 292 a to flow through the return line 302 a back to the reservoir 286 a.
- each motor 294 a would be through the line 296 a, through the distribution valve 292 a through the line 320 a, then through the mode selecting valve 316 a, and through the line 300 a to enter into the motor 294 a to drive the sprocket 236 a in the opposite direction, and then follow a return path through lines 300 a, 320 a and 302 a to return to the reservoir 286 a.
- the operator would move the mode selecting valves 316 a to the rail engaging position. This could be done either by manually moving each of the valves 316 a or operating a valve control mechanism in the operating position of the cab 44 a. Then the operator would set the aforementioned clamp 330 a in its lever engaging position so that the two levers 304 a and 306 a are locked into each so that they will move together to the various operating positions. Then the procedures would follow as described above. Then the operator of the machine 10 a would have the same “feel” of the operation of levers 304 a and 306 a.
- the power drive section 280 a is dedicated totally toward the locomotion of the machine 10 either in its rail engaging mode of operation or its ground engaging mode of operation.
- the hydraulic power that is needed for moving the various actuators, rotating the cab 44 a, etc. could be derived from another hydraulic system. Alternatively, there could be a common power source which would serve all of the functions of the machine.
- the motors 310 a on each side would be connected in series in the hydraulic drive system. The same could be done with the sprockets 236 a.
- the bucket 20 a could be rotated ninety degrees from its front facing position so that the open face of the bucket is facing horizontally toward the path of travel. Also the boom 14 a and arm member 16 a could be used to locate the bucket assembly 18 a to be in proximity to the slope to be graded. Then the bucket could be rotated about the bucket axis of rotation 35 a so that the front edge of the bucket could be placed at the appropriate angular orientation.
- the cab 44 a would have been rotated about its axis 42 a so that the vertical plane within which the primary support member 16 and the boom 14 move could be slanted either forwardly or rearwardly, thus changing the directional orientation of the open face of the bucket 22 a. This would allow various slants of grading to be accomplished along side surfaces. Thus, these multiple functions could be accomplished by one machine 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Shovels (AREA)
Abstract
A multi-function apparatus and method for material moving, including excavation and movement of dirt, gravel and other material, as well as other functions. The apparatus is mobile, and comprises a bucket assembly which also has a clamping device, with the bucket being able to rotate about a transverse axis and also have continued rotation about a longitudinally forward to rear axis of rotation. In one embodiment the apparatus travels on ground engaging tracks, and in another embodiment the apparatus is able to travel either over the ground or on rail track engaging wheels, with the same apparatus being able to operate in either mode.
Description
- a) Field of the Invention
- The present invention relates to an assembly which can provide a variety of functions, including the excavating any movement of dirt, gravel and other material, and also of the movement of various objects and positioning them in various orientations. Thus, the term “material” is to be interpreted more broadly to include various items which can be moved, lifted, aligned in various positions and orientations, etc.
- b) Background Art
- For a number of decades there have existed in the prior art machines which operate an excavating bucket to excavate material from the earth, and also to move this material that has been excavated. Quite commonly the bucket is mounted to an elongate boom/support arm assembly, and it rotates about a horizontal axis that is transverse to a lengthwise axis of the arm member to which it is mounted. This assembly often comprises a mobile machine, which travels either on tracks or wheels, and which comprises a cab to which the boom/support arm assembly is mounted, with the cab rotatably mounted for rotation about a vertical axis. Also the prior art shows a bucket assembly where there is a bucket mounted to a boom assembly or other base member, and the bucket is rotatable about two or more axes.
- In some designs, there is also provided a clamping member that is pivotally mounted to the bucket so that it can move toward and away from the bucket and clamp various articles between the bucket and the clamping member. This clamping member is often referred to as a “thumb”; the reason for this likely being that the bucket plus the clamping member could be equated to a person's hand where the fingers would comprise the bucket and the clamping member would comprise the thumb, when the hand is grasping an article, such as an elongate pole.
- A search of the prior art has developed a number of U.S. patents, and these are as follows:
-
- U.S. Pat. No. 4,032,025 (ROSS) discloses a back hoe having a main boom, 14. At the forward end of the
boom 14 there is located ajib boom 12 which is pivotally mounted at 18 to theboom 14 and is shown extended downwardly. Thejib boom 12 has an axis of rotation extending down through center line of thejib boom 12. The lower end of thejib boom 12 there is a hinge mountedbucket 10. There are three axes of rotation, namely theupper axis rotation 18, thelower axis rotation 42, and also the vertically aligned axis of rotation extending down the center of the length of the jib boom. - U.S. Pat. No. 5,515,626 (HOLSCHER) discloses what is called a “coupling device”, that is positioned between an operating arm of an excavator and an implement, such as an excavating bucket. With reference to FIG. 1, there is shown a “stick 2” which is accompanied by an actuator 3 comprising a hydraulic actuator that is not shown, and the stick 2 has at it's lower end a shaft 4 which provides an axis of rotation for a coupling device which comprises an
upper support part 7. Thus, thispart 7 is able to rotate upwardly and downwardly about a transverse horizontal axis defined by the shaft 4. There is an upper quick coupling 11 by which theupper support part 7 is attached to both the stick 2 and to the actuator 3. - The
support part 7 provides a second generally horizontal axis or rotation indicated at 10 in FIG. 1. Theupper support part 7 has two oppositely positionedelements 32 and 33, and thesesupport rings 30 connect to downwardly extending bearing elements 28 and 29. The bearing element 29 can be seen more clearly in FIG. 2 where it is tilted between left hand position shown in full lines and a right hand position shown in broken lines, thus showing that this could go from side to side about the axis ofrotation 10. - There is a worm gear drive mechanism by which this
entire support section 8 carrying thebucket 1 can be moved from one side to the other, and this worm gear drive is best shown in FIG. 3. Thus, thebucket 1 can be rotated up and down about the first axis of rotation provided by the shaft 4, and also can be moved from side to side at different tilts about the second axis ofrotation 10. - There is a third axis of rotation which is not indicated on the drawings, but is described in column 3, beginning on line 31 where it is stated that there is a coupling device provided by a
rotation device 26 mounted between theplates 24 and 25 in a cylindrical housing. It also states that it is driven by a worm gear (not shown), and there is a reversible hydraulic motor 27 which is shown in FIG. 3. - U.S. Pat. No. 4,283,866 (OGAWA) relates to a convertible bucket attachment. The boom 11 has an axis rotation at the end of the
member 12, and the bucket would appear to have an axis of rotation at 5″. - U.S. Pat. No. 4,779,364 (HOLMDAHL) discloses a “device for a load carrying unit”. With reference to FIG. 1, there is a
device 14 which carries theload carrying unit 12 which is shown in broken lines in FIG. 1, and it is attached by amember 16 to asupport member 10. There is ashaft 20 which provides an axis of rotation and twoplates 22 are rotatably mounted to theshaft 20 to rock back and fourth about a transverse horizontal access. There is amember 34 which is rotatably mounted about a vertical axis and is supported by a surroundingmember 38. FIG. 4 illustrates themember 34 in cross section, and there are bearingmembers member 34. There is apiston 26, which presumably would move theplates 22 to desired angular positions, and the attachment means would be rotatable with themember 34 and would attach to theload carrying unit 12. - U.S. Pat. No. 5,140,760 (MANNBRO) discloses an “arrangement for rotator units”. In FIG. 1, there is shown an
excavator arm 1 which has an attachment pivotally mounted to the end of thearm 1, and there is a piston 4 acting through linkage 3 to rotate the device of member 2. Thebucket 9 is rotatable mounted about a vertical axis to ashaft coupling 8. - U.S. Pat. No. 5,398,430 (SCOTT et al) discloses an “earth moving and compacting rig”. This device is directed toward back filling trenches and compacting the filling material. In FIG. 1, there shown a back hoe having an end bucket 23, that is mounted to boom 21. There is a
vibrator 22, to which the bucket 23 is attached, and these are attached to the lower end of boom 21 about a transverse axis of rotation. Also, with reference to FIGS. 5 and 6 it can be seen that the bucket 23 is attached by means of two swivel plates 28 and 29 that can be rotatably positioned at different rotational angular position relative to an axis of rotation which is generally perpendicular to the first access of rotation. - U.S. Pat. No. 5,596,824 (SCOTT et al) shows substantially the same type of device as shown in there earlier patent (U.S. Pat. No. 5,398,430), with some added features.
- U.S. Pat. No. 5, 649,377 (TANADA) Discloses “a multi-purpose bucket structure” which is adapted to perform various tasks such as pulling down a building, digging in the ground, carrying ready mix concrete, etc. There is a bucket having two bucket portions hinged to each other and arranged so that a gap is formed between the peripheral edges when the bucket members are close to one another, and the gap is closed by a cover removably attached to at least one of the bucket members. In FIGS. 6 and 7, the bucket is shown mounted to an arm which extends from a tracked vehicle.
- U.S. Pat. No. 6,269,561 (CUMMINGS) discloses a “tilt-able implement for excavator machines and alike”. This patent discloses an excavating machine which could be a bulldozer or possibly a bucket attached to the end of a
boom 12 which is called a “handle 12” in the text of the patent. There is a device where the bucket is mounted about a front to rear horizontal axis rotation and is positioned by twocylinders
- U.S. Pat. No. 4,032,025 (ROSS) discloses a back hoe having a main boom, 14. At the forward end of the
- While many of these machines are able to perform various tasks relative to excavation and movement of material and moving and manipulating objects, there are various situations where there is a need for certain functions to be performed which may be beyond the capabilities of the machines presently known to the applicant to accomplish these effectively. An example of this would be where excavating and material movement is needed, and also the function of clamping different objects so that these could not only be moved, but also oriented in various positions and be deposited either on a vehicle for a movement or to some collecting location or possibly to accomplish other tasks. This is given by way of example, and there are obviously other situations where there are other requirements in addition to these. It is toward these issues and yet other issues that the embodiments of the present invention are directed.
-
FIG. 1 is a side elevational view of an embodiment of the multi-function assembly of the present invention; -
FIG. 2 is a view similar toFIG. 1 , but only showing a front portion of a bucket assembly and a front portion of a primary arm member to which the bucket assembly is mounted; -
FIG. 3 is a view similar toFIG. 2 , showing a side elevational view of the bucket assembly and the forward part of the arm, and showing the bucket section having been rotated about 90 degrees from the position ofFIGS. 1 and 2 , with anelliptical arrow 36 illustrating the rotational path of travel of the bucket section; -
FIG. 4 is a view similar toFIG. 2 , but showing a bucket in a somewhat different angular position; -
FIG. 5 is a view similar toFIG. 2 , but showing the clamping member of the bucket section having been rotated to a more open position; -
FIG. 6 is an isometric view of the bucket section taken from a location to the rear and slightly above the bucket section; -
FIG. 7 is a sectional view taken along the line 7-7 ofFIG. 6 ; -
FIG. 8 is a sectional view taken along the line 8-8 ofFIG. 6 ; -
FIG. 8A is a view taken along the same section as inFIG. 8 , but showing only a fluid supply/distribution section; -
FIG. 8B is a partial sectional view taken along the line 8B ofFIG. 8 showing a worm drive gear drive section of the bucket assembly; -
FIG. 8C is a partial sectional view which is taken along a line 8C ofFIG. 8B ; -
FIG. 9 is a sectional view taken along 9-9 ofFIG. 6 and showing the rotary mounting of a base structure of a clamping section; -
FIG. 10 is a side elevational view of the bucket gripping a cylindrical object such as a log or a pole; -
FIG. 11 is a top elevational view of the assembly of this embodiment of the present invention, showing the bucket section gripping the pole or log and lifting it; -
FIG. 12 is a view similar toFIG. 11 , but showing the bucket section having been rotated 90 degrees so that the pole or log is more longitudinally aligned; -
FIG. 13 followsFIGS. 11 and 12 and is a side elevational view of the assembly showing the bucket having been rotated 90 degrees about the axis of rotation of the bucket section about a forward to rear axis of the bucket section and also having been rotated 90 degrees so that the bucket holds the log or pole in a vertical orientation; -
FIG. 14 is a top plan view of the assembly in a position where the bucket is being moved rearwardly as shown by an arrow as the bucket section is moved along a path toward the mobile vehicle; -
FIG. 15 is a view similar toFIG. 14 , but showing the bucket section having been rotated 90 degrees from the position ofFIG. 14 so that the open face of the bucket is facing laterally, and showing in phantom lines the mobile vehicle having been rotated about its vertical center axis to the dotted line position ofFIG. 15 so that the bucket section is traveling in a circular path; -
FIGS. 16 and 17 are views showing the bucket section in a laterally facing direction and thus scraping along an earth surface to collect some of the surface material; -
FIGS. 18 , 19 and 20 are side elevational views of the bucket section with the clamping member in different positions to perform dirt moving and also surface finishing operations; -
FIG. 21 is a side elevational view, partly in section, illustrating a second embodiment of the present invention; -
FIG. 22 a is a schematic view a hydraulic drive system of the first embodiment; and -
FIG. 22 b is a schematic drawing similar toFIG. 22 a, showing a hydraulic drive system of the second embodiment. - It is believed that a better understanding of this embodiment of the present invention will be achieved by first identifying the basic components of the multi-function material moving assembly and then describing the various pivot axes and alignment axes that dictate the movement of these components. This will be followed by a brief description of the actuating members and the basic movements of the components. After this there will be a more detailed presentation of this embodiment.
- The
multi-function assembly 10 of this embodiment of the present invention comprises amobile machine 12 which has anoperating support section 13 which in this embodiment comprises aboom 14 pivotally mounted to themachine 12, and a primary arm member 16 (sometimes called a “stick”) having a pivot connection to theboom 14. Theprimary arm member 16 and the boom could each be considered to be an operating member. There is abucket assembly 18 which has a forward end portion and also a rear end portion by which it is mounted to the forward end of theprimary arm member 16. Theboom 14, theprimary arm member 16 and thebucket assembly 18 are all aligned in a longitudinally and vertically alignedreference plane 17 which is indicated inFIG. 11 . Thisbucket assembly 18 haslongitudinal axis 19 and comprises abucket section 20 which in turn comprises abucket 22 and a clampingmember 24. Thebucket assembly 18 also comprises an intermediate connectingsection 26 by whichbucket section 20 is connected to the front end of theprimary arm member 16. Thebucket assembly 18 also has a transverse axis 27 and a vertical axis 28 perpendicular to thelongitudinal axis 19 and the transverse axis 27. - To describe briefly the pivot axes about which several of these components move, first there is a rear horizontally aligned
pivot axis 30 which is at the rear base end of theboom 14, and theboom 14 rotates pivotally back and forth about thisaxis 30. The boom also has aforward pivot axis 32 at which the boom connects to a rear end portion of the primary arm member and thissame pivot axis 32 is the rear pivot axis for pivotal movement of theprimary arm member 16. - At the forward end of the
primary arm member 16 there is a forward primary armmember pivot axis 34, and thissame pivot axis 34 is the rear pivot axis for thebucket assembly 18. The pivot axes 30, 32 and 34 are all horizontally aligned, and perpendicular to thereference plane 19 and the back and forth movement of theboom 14 about thepivot axis 30, the back and forth movement of theprimary arm member 16 and also the back and forth movement of thebucket assembly 18 are all located in the longitudinally and vertically aligned forward torear reference plane 19. - To describe axes of rotation reference will now be made to
FIGS. 2 and 3 . As indicated above, thebucket assembly 18 comprises thebucket section 20 comprising both thebucket 22 and the clampingmember 24 and the intermediate connectingsection 26. These twosections bucket section 20 rotates relative to certain portions of the intermediate connectingsection 26 about a bucket axis ofrotation 35 that extends in a forward to rear direction relative to thebucket section 20 and generally is at right angles to the rear bucketassembly pivot axis 34. Thus, as shown inFIG. 3 , thebucket section 20 is able to rotate in a circular path relative to this bucket axis ofrotation 35, as indicated by thearrow 36. In this embodiment the bucket axis ofrotation 35 is coincident with thelongitudinal axis 19 of thebucket assembly 18. - There is yet another pivot of axis, and this is the clamping member pivot axis 37 (See
FIGS. 9 , 2 and 3) about which the clampingmember 24 rotates relative to thebucket 22. Thispivot axis 37 is generally perpendicular to thelongitudinal axis 19 of thebucket assembly 12. This movement can be observed by examiningFIGS. 4 and 5 . - The
boom 14 has aboom alignment axis 38 which extends from its boomrear pivot axis 30 to the boom forward pivotaxis 32. Theprimary arm member 16 also has analignment axis 40 which extends from thepivot axis 32 to the forward primary armmember pivot axis 34. The bucket assembly has a bucketassembly alignment axis 19 in this embodiment which is coincidental with the bucket axis ofrotation 35 and a transverse bucket axis 41 (seeFIG. 3 ) and a vertical bucket axis 42 (seeFIG. 2 ). - We will now turn our attention to some of the other operating components of this
assembly 10. With reference toFIG. 1 , in this particular embodiment of the invention, themobile machine 12 can be seen to have the overall configuration of a track hoe. Thus, themachine 12 comprises acab 44 which is mounted to a base section 45 shown schematically inFIG. 1 which in turn is carried by alocomotion section 46 which in this embodiment comprises a ground engaging locomotion section in the form of a track section 43 which comprises two laterally spaced tracks 47 (only one which is shown only in outline inFIG. 1 ). Alternatively the ground engaginglocomotion section 46 could compress forward and rear sets of wheels. Thecab 44 is mounted so that it could rotate about a vertical center axis of rotation indicated at 48. As will be described later in this text, the ability of thecab 44 to rotate about thevertical center axis 48 enables theoverall assembly 10 to perform certain functions which would otherwise be accomplished less easily. - To facilitate the further descriptive (and as is probably evident from the descriptive text which has been presented thus far), the term “forward” shall denote a direction which, as shown in
FIG. 1 , is from thecab 44 toward theprimary arm member 16. The term “rearward” shall denote the opposite direction. Also, relative locations will be described by the terms “front”, “rear”, “forward”, or “rearward” in accordance with the forward and rear directions. With regard to relative locations on theprimary arm member 16 and thebucket assembly 18, the terms “forward” and “rearward” shall apply relative to a reference location in a configuration where theprimary arm member 16 is extending horizontally from themobile machine 12, and thebucket assembly 18 is in alignment with theprimary arm member 16 as shown inFIGS. 1 and 2 . - The terms “upward” or “downward” and also the terms “up” and “down” will in the overall description of the
assembly 10 refer to the relative positions with theassembly 10 in its position ofFIG. 1 , except that theprimary arm member 16 would be rotated upwardly about fifty degrees to a horizontal position so that theprimary arm member 16 and thebucket assembly 18 in a position where these are all extending forwardly from thecab 44 and are horizontally aligned. - However, in the following description an exception will be made for the description specifically of the
bucket assembly 18. There are two reasons for this. First, when a person hears the term “bucket”, the person immediately has the concept of some liquid or loose material being held in the bucket which is in an upright position so that this material will not spill out. The second reason is that inFIGS. 6 , 7, 8, 8B and 8C, thebucket assembly 18 is shown (and described at length) with an open surface region of the bucket facing upwardly in the position where the bucket would be carrying a load of dirt, gravel, etc. If someone were to begin reading this text without having read the earlier portion of the text, that person would possibly be confused if the “bottom wall 76” of the bucket were called the “top wall”. Further, it also to be understood that when the terms “upward” or “downward” are used in connection with theprimary arm member 16 and thebucket assembly 18, these are located in a different angular orientation so that these terms do not denote their actual location as seen in any particular drawing. - The
boom 14 is rotated about thepivot axis 30 by means of anactuator 50. Thisactuator 50 has a base connecting location in (or adjacent to) the cab structure and an upper forward pivot connection at 52 on theboom 14. There is also a primary arm member actuator 54 which has arear connection 56 at a more rearward part of theboom 14 and a forward connection at 58 at the forward end of theprimary arm member 16. - Also the primary support arm comprises a
bucket assembly actuator 60 which has arear end connection 62 at an upper rear portion of theprimary arm member 16 and aforward end connection 64 that in turn connects to a pair oflinks links forward location 67 on theprimary arm member 16 and to arear mounting connection 69 of thebucket assembly 18. - With the foregoing description being completed, we will now proceed with more detailed descriptions of the components of the
assembly 10 and there will now be a description of thebucket section 20. After that description is completed, there will then be a detailed description of theintermediate connection 26, and then a discussion of some of the operating modes of this embodiment of the invention. - As indicated earlier in this text, the
bucket section 20 comprises thebucket 22 and the clampingmember 24. - i) The
Bucket 22. -
- The
bucket 22 in turn comprises abucket structure 70. Thisbucket structure 70 comprises twoside walls 72, and also front, bottom andback wall portions FIG. 7 .) These threewall parts bucket structure 80 is made in upper andlower sections seam 86 by suitable means, such as welding. Also, the bucket structure has upper front, rear and side edges 88, 90 and 92.
- The
- ii) The Clamping
Member 24. -
- The clamping
member 24 comprises a clampingmember structure 98 that comprises twoside arms front cross member 104. Therear end portions 106 of the twoside arm members cylindrical pivot tube 108. Thetube 108 is in turn rotatably mounted about the clampingarm pivot axis 37 by means of oppositely positioned bushings 110 (SeeFIG. 9 ) mounted to twoears 112 which are bolted removably to the bucket structure 70 (SeeFIGS. 5 and 6 ). Thus by removing theears 112, thepivot tube 10 which the clampingmember structure 98 can be removed and replaced. - To rotate the clamping
member 24 about itspivot axis 37 at the center of thepivot tube 108, there is ahydraulic actuating section 113 which in this embodiment is provided as two laterally spacedhydraulic actuators 114. Eachactuator 114 has anupper connection 116 to thepivot tube 108, and alower end connection 118 to one of a pair of inner and outer mountingplates bucket structure 70. Also, as can be seen inFIGS. 6 and 8 , the rear part of thebucket structure 70 has a reinforcingstructure 124 with two connected angled reinforcingplate portions 126. - As can be seen in
FIG. 6 , theside arms member 24 are located so that in a closed position, theside arm members side edge portions bucket 22. The lower edge portion of thefront cross member 104 comes into engagement with theupper edge portion 88 of the front edge of thefront wall 74 of thebucket structure 70. - As indicated earlier in this text, the
bucket assembly 18 further comprises an intermediate connectingsection 26. This intermediate connectingsection 26 connects thebucket section 20 to the forward end of theprimary arm member 16 and provides a number of functions for thebucket assembly 18.
- The clamping
- It should be understood that most of the components beginning with the
numerical designation 130 and extending on through to the numerical designation 214 appear primarily inFIGS. 8 , 8A, 8B, 8C and 9, and these are in large part absent inFIGS. 1 through 7 and 10 through 20. Thus, many of these components are only indicated schematically in theFIGS. 1 through 7 and 10 through 20. With that explanation being given, we will now proceed to the more detailed description of the intermediate connectingsection 26. - In addition to having the connecting function, this intermediate connecting
section 26 performs some other functions. For purposes of description, thissection 26 comprises a fluid supply/distribution section 130 to supply fluid to thehydraulic actuating section 113 and a structural/drive section 132. - The structural/drive section 132 in turn comprises:
-
- i. a bucket connected support section 134;
- ii. a primary arm connected
support section 136; - iii. a rotary drive connection 138.
- There will first be a description of the fluid supply/
distribution section 130.
- The fluid supply/
distribution section 130 is shown inFIG. 8 and will now be described with reference to primarilyFIG. 8A which shows thissection 130 in a larger scale. It comprises afluid carrying section 139 which in this embodiment comprises a centerfluid distribution member 140 which has a longitudinal center axis which is coincident with the aforementioned bucket axis ofrotation 35. The rear end portion of the centerfluid distribution member 140 is connected to a cylindrical mountingmember 141 which is part of thefluid carrying section 139 and as shown herein is aligned on thesame axis 35. Neither the center fluid distribution member nor the mountingmember 41 rotate with thebucket section 20. - The center
fluid distribution member 140 has two longitudinally alignedsupply passages 142 which extend through the mountingsupport member 141 to a rear location where these are in turn connected tohydraulic feed tubes 143 through which the hydraulic fluid is moved to and from a hydraulic drive source from theprimary arm member 16 or from some other location. - At the forward end of the
center member 140 there is arotary fluid connection 144. Thisconnection 144 comprises two circumferentially aligned longitudinally spaceddistribution grooves 145. and also three seals 146 (O-ring seals) to seal off each of the twodistribution grooves 145. There are two groove inlet/outlet openings 147, each of which leads from one of thepassageways 142 into a related one of two distribution chambers defined by the threeseals 146. - There is an outer
cylindrical member 148 which is positioned concentrically around thecenter member 140 and which is fixed relative the bucket structure, and this is part of thefluid rotary connection 144. This outercylindrical member 148 has two inlet/outlet ports 150 which are located at the same longitudinal location as thedistribution grooves 145. There are two connecting tubes 152 which extend from the inlet/outlet ports 150 and are directed to the twohydraulic actuators 114 to extend and retract thesehydraulic cylinders 114 to in turn open and close the clampingmember 24. Obviously there could be a reversal of parts with thegrooves 145 being formed in theouter member 148 and thegroove outlet openings 147 being located at thosegrooves 147. - At the front end of the center
liquid distribution member 140 there is asnap ring 154 to help position the center liquid distribution member within the outercylindrical member 148, with alow friction washer 156 being provided between the snap ring and thecylindrical member 148. The mountingsupport member 141 that connects to the centerliquid distribution member 140 has a diameter moderately larger than the diameter of the main part of the centerliquid distribution member 140 to create a forwarding facingcylindrical shoulder 160. There is a second low friction washer (not shown), positioned at alocation 162 between that shoulder and the rear circumferential edge surface of the outercylindrical member 148. - In the actual operation of the
assembly 10, as thebucket section 20 rotates about its axis ofrotation 36, the outercylindrical member 148 rotates relative to the centerliquid distribution member 140 which does not rotate. - Therefore, in the operation of the
assembly 10, when thebucket section 20 rotates about its axis ofrotation 35, the centerliquid distribution member 140 of the fluid supply/distribution section 130 remains stationary while the outercylindrical member 148 is revolving with thebucket section 20 around thestationary center member 140. During this time the inlet/outlet ports 150 of thecylindrical member 148 remain in constant contact with thegrooves 145 so that the hydraulic fluid can be directed into the twohydraulic actuators 114 to either extend or retract them. - Thus, to summarize the operation of moving the clamping
member 24, the movement of the clampingmember 24 is accomplished by means of the twohydraulic actuators 114. The fluidsupply distribution section 130 is arranged so that thehydraulic lines 143 are connected to the rear end of the twointernal passages 142 of thecenter member 140, and thesepassageways 142 connect through theopenings 147 into the twocircumferential grooves 144 that in turn connect to theports 150 to the two tubes 152 that connect to opposite ends of theactuators 114. Thus, the center liquid distribution member is non-rotatable in that it does not rotate with thebucket section 20 when it rotates about itsaxis 35. On the other hand, the outercylindrical member 148 and the tubes 152 that are attached therefore rotate with thebucket section 20. - Thus, the
bucket section 20 could be rotated continuously in one direction around the axis ofrotation 35, which would not possible if it were necessary to have electric wires or fluid supply lines connected between theprimary arm member 16 and therotating bucket section 20. - As indicated above, there are three components of this section, and these will now be described in order, with reference to primarily being made to
FIGS. 6 and 8 . - i) The Bucket Connected Support Section 134.
-
- This section 134 comprises in part a generally planar mounting
plate 166 which is aligned perpendicular to the axis ofrotation 35 of thebucket section 20. Theplate 166 has a center throughopening 168 to accommodate the fluidsupply distribution section 130. This mountingplate 166 is supported by a connecting structure to 170 to the forward part of thebucket 22, and thisstructure 170 comprises the earlier mentioned mountingplates 120. - These
plates 120 also provide support for the lower connectingportions 118 of thehydraulic actuators 114 for theclamping section 24. Theplate 166 is connected bybolts 172 to anouter race 174 of arotary bearing 176 which also has aninner race 177. The intermediate roller bearing support section in the form ofball bearing members 173 are between the outer andinner races rotation 35 and located at the location of the intermediate roller bearing support section. The load bearing function of thisroller bearing section 177 will be discussed more completely later herein.
- This section 134 comprises in part a generally planar mounting
- ii) The Primary Arm Member
Connected Support Section 136. -
- This
section 136 comprises a mountingplate 178 which also is perpendicular to the axis ofrotation 35 of thebucket assembly 20. There is aspacing structure 180 which is positioned against the forward surface of the mountingplate 178, and the front surface of thespacing structure 180 bears directly against theinner bearing race 177 of the aforementionedrotary bearing 176.Several bolts 184 connect theplate 178, thestructure 180 and the inner bearing race together. - There is also provided a
small retaining plate 186 which is positioned at the center of the mountingplate 178 and keeps the centerliquid distribution member 140 of the fluid supply/distribution section 130 in its operating position. Theplate 178, thestructure 180 and theinner bearing race 177 all have aligned center through openings to accommodate the centerliquid distribution member 140 insupport member 141 of the fluid supply/distribution section 130. - The
aforementioned spacing structure 180 has at its rear end portion a radially outwardly extending plate member ordisc 187 and at the outer circumference of this disc likeplate member 187, there is a forwardly extendingcylindrical skirt 188 which functions as a protective cover surrounding thebearing 176 and also the drive mechanism which is to be described below. Further, thisskirt structure 188 attaches to the housing for the rotary drive section 138 which will be described immediately below. - The mounting
plate 178 has at its back surface a pair of laterally spaced connecting lugs orears 190 which can be best seen inFIG. 4 . The forward ends oflugs 190 are fixedly connected (e.g. by welding) to theplate 178. At the rear portion of each of theselugs 190 there is anopening 192 which in a connected position is located at thepivot location 34. A pin, a rod, or other connecting structure is inserted through theseopenings 192 of thelugs 190 and also through matching openings in the lower-most end of theprimary arm member 16 so that thebucket assembly 18 can rotate about the pivot axis at 34. - The
aforementioned mounting plate 178 extends upwardly beyond its connectingspacing structure 180 so that it is in a position for the connecting location to engage theaforementioned actuating link 68 that is part of theprimary arm member 16. Thus, as theactuator 60 is extended and retracts, this causes the rotational movement of the mountingplate 178 cause thebucket section 20 upwardly and downwardly about thepivot axis 34, and all the loads from the rear mounting plate are transmitted by thelugs 190 and the connectinglocation 69 into theprimary arm member 16.
- This
- iii) The Rotary Drive Section 138.
-
- This section 138 will be described with reference to
FIGS. 8 , 8B and 8C. With reference first to 8B and 8C, there is adrive section 200 which comprises aring gear 202 having evenly spacedexterior teeth 204. Thering gear 202 is fixedly connected to the outer surface of theouter race 174 of therotary bearing 176. - There is a
worm gear 206 which is contained in acylindrical housing 208. Thehelical threads 210 of theworm gear 206 engage the teeth of the 204 of thering gear 202 to drive thering gear 202 in a rotary motion and thus cause the rotation of theouter race 174 of therotary bearing 176. There is anelectric motor 212 which extends laterally from theworm drive 206 and has a rotary power outlet to drive theworm gear 206. Alternatively, a hydraulic motor could be used. - It was indicated previously in this text that there is a
skirt 188 which extends around the drive member (i.e., the ring gear 202), and also provide support for the entire rotary drive section 138. For ease of illustration, this is not been shown inFIGS. 8B and 8C . However, it is to be understood that thiscylindrical skirt 187 does extend entirely around the ring gear 202 (except for the location of the worm gear housing 212) and also connects to thehousing 208 to provide support. Also, as indicated previously, thiscylindrical skirt 188 is part of the non-rotating structure, so that theworm drive 206 remains at a stationary location, and thering gear 202 rotates with thebucket section 20.
- This section 138 will be described with reference to
- iv) Transmitting the Loads Between the
Bucket Section 20 and thePrimary Arm Member 16. -
- The bucket structure has at its forward end the two mounting
members 120 that in turn connect rigidly to the mounting plate 134 which is in turn rigidly connected to theouter race 174 of therotary bearing 176. All of the loads that are imposed on thebucket 20 are thus transmitted through the bucket connected support section 134 acting structurally as a unitary structure into theouter bearing race 174. - The
rotary bearing 176 comprises the outer andinner races ball bearing members 173 are positioned between the outer andinner races bucket section 20 to theouter bearing race 174 are thus transmitted through theball bearing members 173 into theinner bearing race 177. Theinner bearing race 177 is fixedly connected to the spacingstructural member 180 which is rigidly connected to the mountingplate 178. The mounting plate 138 reacts these loads into two locations. First, the loads are transmitted into the twolugs 190 which connect rotatably at thepivot locations 34 so that thebucket section 20 is constrained to its rotary motion about thepivot axis 34. Second, the loads are transmitted from the connectinglocation 69 into thelink 68 and into theactuator 60 of theprimary arm member 16 and into the primary arm member structure. - The location of the
bucket section 20 in its privot motion about thepivot axis 35 is in turn dictated by thelink 68 that is in turn connected to theactuator 60 of theprimary arm member 16. Theactuator 60 is in turn connected at its front end by thelink 66 to theprimary arm member 16, and also to its pivot connection at 62. - Next, we look at the rotational movement of the
bucket section 20 about its axis ofrotation 35. Thebucket section 20 is (as indicated previously) fixedly connected to theouter race 174, and thisouter race 174 is in turn connected to thering gear 202 of thedrive section 200. Thering gear 202 is in turn driven by theworm gear 206 which is in turn driven by themotor 212. The rotational force exerted by theworm gear 206 is thus is transmitted into themotor 212 into thecylindrical housing 208 and from there into thecylindrical skirt 188 which in turn transmits the load into the disc-like plate 187 that is in turn transmitted into the mountingplate 178. - The fluid
supply distribution section 130 is substantially (if not almost entirely) isolated from these loads. Thecenter member 140 is positioned within the outer cylindrical 148 which is in turn connected to the bucket load carrying structure. Thiscenter member 140 essentially “floats” within this outercylindrical member 148, and it has at opposite ends the low friction washers by which any forward and rear movement is restricted. Then there are the three O-rings 146 that serve not only a fluid sealing function, but also provide a somewhat “soft” positioning support for thecenter member 140.
- The bucket structure has at its forward end the two mounting
- For convenience, in this section of this text, the multi-function
material moving assembly 10 of this embodiment will simply be called “themachine 10”. To describe the operations and versatility of themachine 10, several different situations will be considered. - To consider a first situation, let us assume that the task that is to be accomplished is the clearing of a forested site at which construction of some sort will take place or possibly preparation for some other function such as an athletic field. We'll begin by looking at the task of safely moving and/or removing some logs safely, and reference is made first to
FIG. 10 which shows the manner in which thebucket 22 and the clampingmember 24 grip alog 220. - Let us assume that the
log 220 has been gripped and lifted and it is now desired to load it into a truck. However, the truck happens to be in an awkward position so that it first be necessary to rotate the log from the position ofFIG. 11 to be in alignment with the truck bed. This is accomplished by rotating the bucket in a horizontal plane from the position ofFIG. 11 to some other position, such as the position ofFIG. 12 . - Now let us take another instance where the log or tree has been dropped down and is laying on the forest floor with some of the limbs having been removed. The tree is to be moved out from among the trees and then to a vehicle or to stack it into a pile. In this instance, the
machine 10 could engage and then lift the log while thebucket section 20 is aligned as inFIG. 12 , and then it can be moved out of the surrounding trees by backing up themachine 10, carrying the log out in the direction of travel. Then the position of the tree could be moved to be in alignment with the bed of the truck into which it is to be placed or stacked on a pile. - Let us now consider a second situation where a standing tree is to be cut down, and it may be difficult to cause the tree to fall in the exact location desired. In this instance the machine could go to the position of
FIG. 13 and grasp the the truck of the tree in thebucket section 20. The woodsman would then make the cuts at the lower end of the trunk of the tree and then the tree could be held vertically by themachine 10 until it could be moved to another location and then down to a more level location to cut off the limbs, etc. - Let us take yet a third situation where it is necessary to bring in a temporary power line for the project and it is desired to place a pole in vertical alignment and secure it in that alignment. The
machine 10 could be used to dig a hole in the ground, and several stabilizing cables or lines could be secured to what is to be the top end of the pole. Then with the hole having been dug, the machine could move the pole to a vertical position with the bottom end positioned in a stationary location in the hole. The cables could be made taut to keep the pole vertical, and the machine could release its grip on the tree and fill the hold to further stabilize the pole. - To turn our attention now to a fourth situation with reference to
FIG. 14 , this shows themachine 10 in a conventional position where it can simply dig a ditch in the dirt by operating the bucket section in the normal manner that is expected of a backhoe. - Now we will look a fifth situation, with reference to
FIGS. 15 through 17 , and this is where some clearing has taken place and it is now desired to smooth out the surface. The machine can be placed in the position ofFIG. 15 (as shown in full lines), and the open chamber of thebucket 22 is facing laterally. Then theentire cab section 44 can be rotated about its vertical axis to swing theboom 14 in a sweep over the surface, with the lower front edge of thebucket 22 scraping the ground. The manner in which this could be done is illustrated inFIG. 16 . -
FIG. 17 illustrates a situation where themachine 10 itself is placed on a ground surface where it is at a slant, and it is desired to have an area to be either dug out or smoothed out. Therefore, theboom 14 could be placed in a position shown inFIG. 17 , and theboom 14, thearm member 16 and the slant of the bucket as well as its vertical position could be controlled to obtain a level ground surface. - Now our attention is directed to
FIGS. 18 , 19 and 20 to describe a sixth situation.FIG. 18 illustrates thebucket 22 lifting a large amount of material in its usual operation.FIG. 19 illustrates the manner in which the clampingmember 24 could be used to control the discharge of the earth in the bucket. - Then
FIG. 20 illustrates a situation where the bucket is being used to make a quite smooth surface (as inFIGS. 16 and 17 ), and it is desired to remove most all of a small pile of remaining dirt. When there is that final small amount of dirt remaining, it is often difficult to collect it in the bucket by itself, However, the clampingmember 24 can be used to come down and push that last amount of earth into the bucket. - This second embodiment will now be described with reference to
FIG. 21 . Components of this second embodiment which are similar to components of the first embodiment will be given like numerical designations, with an “a” suffix distinguishing those of the second embodiment. This second embodiment is particularly adapted to be used in a situation where work is to be done near or along a railroad track or a railroad right-of-way and other situations. In this second embodiment, it is possible for the multi-purpose assembly 10 a to travel over a ground surface, and also to be able to be positioned on (and travel along) the two rails of a railroad track. In the following text, for convenience, the assembly 10 a will be referred to as the “machine 10 a” or as the “second embodiment”. - By way of introduction, components of this second embodiment are in large part identical to (or substantially the same as) most all of the components which are shown in
FIG. 1 , with the exceptions being the base section 45, thelocomotion section 46, and the overall manner in which thelocomotion section 46 functions. Aside from that, the remaining components that are shown inFIGS. 1 through 20 are, or may be, also present in this second embodiment in the same/or similar configuration. - It can be seen in
FIG. 21 that only the lowermost portion of thecab 44 a is shown. This is done with the understanding that thefull cab 44 a is the same as, or similar to, what is shown inFIG. 1 , including its vertically aligned axis ofrotation 48 a. Further, it is to be understood that the following components that appear inFIG. 1 are also to be present in this assembly 10 a,FIG. 21 , these components including: theboom 14, theprimary arm member 16, and theentire bucket assembly 18. Further, all of the other components associated with these, such as theactuators FIG. 21 . - There will first be a description of the components of the second embodiment of
FIG. 21 that are also present in the first embodiment, in some modified form. First, there is thecab 44 a mounted to the base 45 a. The base 45 a is (or can be) basically the same as in the first embodiment, except for “add-on” features for thebase section 45 a. Then there is thelocomotion system 46 a which is substantially the as in the first embodiment with respect to the twoground engaging tracks 47 a, and these are (or may be) the same (or similar to) the tracks 47 of the first embodiment. However, thelocomotion system 46 a differs in that it also comprises a railroad track engaging section to be described later herein. - To describe now the
base section 45 a in more detail, reference will now be made toFIG. 21 . Thebase section 45 a comprises top, bottom, front andback frame portions ground engaging track 230 a comprises a lower track run 231 a, andupper track run 232 a, a front 90 degree track curvedportion 234 a, which is driven by asprocket 236 a, and arear track portion 238 a which (as shown in this embodiment) has anidler sprocket 240 a. Also, there are intermediate guide rollers or sprockets 242 a. In an alternative configuration therear sprocket 232 a could also be a drive sprocket. - These components which have been described so far (i.e., 223 a through 242 a) already are present in the first embodiment. Now we shall proceed to describe the components which are new in this second embodiment.
- To proceed further now with a description of this second embodiment, the operating assembly 10 a of this first embodiment comprises a combined
locomotion system 46 a which comprises: -
- i) the aforementioned ground engaging track locomotion section 43 a, and
- ii) a rail engaging
wheel locomotion section 250 a (mentioned briefly earlier in this text).
- It is believed that the ground engaging track locomotion section 43 a is described above sufficiently, so there will be no further description of this section 43 a at this time.
- To describe now the rail engaging
locomotion section 250 a, thissection 250 a comprises awheel section 252 a which in turn comprises forward and rear wheel sets 254 a, each of which comprises two laterally spacedwheels 256 a. There is a rearwheel mounting section 258 a which in turn comprises front and rear mountingsubsections 260 a. Each mountingsubsection 260 a in turn comprises abase mounting section 262 a which in turn comprises front and a rear base connecting mountingstructures 264 a. As their name implies, thesebase mounting structures 264 a are fixedly connected by a base connecting portion 265 a to the base 45 a. Eachbase mounting structure 264 a has at its outer end portion two connectingpivot locations - Each rail
wheel mounting subsection 260 a further comprises awheel support member 270 a which is in the form of an elongate arm, having abase pivot connections 272 a at the lowerpivot connecting locations 266 a. The opposite end of each wheel support member 270 is fixedly connected to a wheelsupport structure portion 274 a, in which therelated wheel 256 a is rotatably mounted. - Then there is for each set 254 a of
wheels 256 a a wheel positioning member which is in the form of ahydraulic actuator 276 a which is shown only schematically by a broken line indicated at 276 a. This actuator 276 a has abase connecting portion 278 a that connects pivotally to thepivot location 268 a of thebase mounting structure 264 a, and a second pivot connection at 280 a to the wheelsupport structure portion 274 a. - In
FIG. 51 , the forward set of wheels 254 at the left inFIG. 1 and its mountingstructure 264 a are shown in the raised position where thehydraulic actuator 276 a has been retracted, and it can be seen that the forward set ofwheels 254 a is raised to an upper location. Then on the rear part of the rail engaginglocomotion system 250 a, the rear wheel set 254 a is in its lower rail engaging position, this being accomplished by extending the rear hydraulic actuator oractuators 276 a. - Therefore, when it is desired to operate the multi-purpose assembly 10 a in its ground engaging mode of operation, the
hydraulic actuators 276 a are retracted to move the front and rear set ofwheels 254 a to the raised position. Then when the multi-purpose assembly 10 a is to be located over the rails of the rail track system, the twohydraulic actuators 276 a are extended to move the front and rear wheel sets 254 a downwardly to engage the rails and raise the assembly 10 a so that the ground engaging locomotion section 43 a is raised above the level of the rails of the railroad track. - There will now be a description of the hydraulic drive section of the
locomotion section 46 a of the second embodiment. This will be done by first describing the hydraulic drive system of the first embodiment and the hydraulic system of the second embodiment. In doing so, reference is made toFIGS. 22A and 22B which show, respectively, the hydraulic drive system of the locomotion section of thefirst embodiment 10 and then the hydraulic drive section of the second embodiment. - The reason for this is that the hydraulic drive system of the second embodiment is a derivation of the first embodiment, and it is believed that a clearer understanding of the hydraulic drive section of the second embodiment will be obtained by first examining the schematic diagram of
FIG. 22A which shows the hydraulic drive system of the first embodiment and then moving on theFIG. 22B and the description of the hydraulic drive section of the second embodiment. - To again turn our attention to
FIG. 22A , there is shown thehydraulic drive system 280 of the ground engage locomotion of the first embodiment, and this comprises ahydraulic power supply 282 of the first embodiment. Thispower supply 282 in turn comprises apump 284 and areservoir 286. - This
drive system 280 comprises left andright power sections left power section 288 driving theleft sprocket 236 that in turn connects to the left ground engaging track 230, and theright power section 290 doing the same for theright sprocket 236 and the right ground engaging track 230. - Each of the left and
right power sections distribution valve section 292 which in turn selectively transmits the hydraulic fluid to its relatedhydraulic motor 294 that connects to itsrelated sprocket 236. To accomplish this, there is aprimary supply line 296 that delivers hydraulic fluid to itsdistribution valve 292, and there are two distributionhydraulic lines distribution valve 282 and themotor 294. - The
distribution valve 292 has three operating positions. There is a first operating position where thevalve 292 directs the fluid into themotor supply line 298, with the hydraulic fluid being discharged form the motor and into theother supply lines 300 which directs the fluid back to thedistribution valve 292. Thedistribution valve 292 then directs the liquid through areturn line 302 to thereservoir 286. - In the second position of the
distribution valve 292, the fluid flow is reversed, in that the hydraulic fluid is directed from thehydraulic power supply 282 through thedistribution valve 292 and into thesupply line 300 which in turn directs the fluid to the motor to turn themotor 294 in the opposite direction to cause thedrive sprockets 236 to reverse its direction so as to drive the track 230 in the opposite direction. - Then there is a third position for the
distribution valve section 292 where the hydraulic fluid from thehydraulic power supply 282 passes into and through thedistribution valve section 292 and is returned directly back to thereturn line 302 to thereservoir 286. In many systems, when thevalve 292 is in the third position themotor 294 goes to a locking position to prevent rotation of thesprocket 236. - The right
power supply section 290 operates in the same manner as described above with regard to theleft power section 290. - Also, there are shown in
FIG. 21A left and right control levers 304 and 306. If these twolevers right distribution valves 292 to move to the first position where bothsprockets 236 are driven in a forward traveling direction. Then when the twolevers distribution valve section 292 to move to the second position to cause both of thedrive sprockets 236 a to rotate in the reserve direction. - Then when it is desired to execute a left hand turn, the
right control lever 306 is moved to a forward location, and theleft control lever 304 is moved forward to a lower power setting so that theleft sprocket 236 rotates more slowly, or to a non-turning position where the machine executes the turn at substantially the same location. Obviously, a right turn can be made in a similar manner. Also, by manipulating thelever arms machine 10 can back up in a straight line path or a curved path where the curve is one way or the other. - With the foregoing description of the
hydraulic drive system 280 of the first embodiment having been described, let us now turn our attention toFIG. 22B which discloses thehydraulic drive system 250 a of the second embodiment. As indicated above, thishydraulic drive system 280 a of the second embodiment is an adaptation from thehydraulic drive system 280 of the first embodiment, so that many of the components in the hydraulic drive system shown in 280A will be the same as, or similar to, those of first embodiment. Also, as is done earlier in this text, components of this second embodiment which are the same as, or similar to, components of the first embodiment will be given like numerical designations, with an “a” suffix distinguishing those of the second embodiment. - Thus, in this second embodiment as shown in
FIG. 22B there is the hydraulic power supply 282 a, comprising the pump 284 a and thereservoir 286 a, and the left and right power sections 288 a and 290 a. Also, there are the twodistribution valve sections 292 a and each of these receive hydraulic fluid from theline 296 a and also connect to thereturn line 302 a. Further, there are the twodrive sprockets wheels 236 a, and these have their twodrive motors 294 a along with their connectinglines - Now to discuss the components which are added to comprise this second embodiment, first there are the two
rail wheels 256 a, each driven by ahydraulic motor 310 a, each having two railmotor supply lines mode selecting valves 316 a, each of which has three sets of connections. First eachmode selecting valve 316 a is connected through thelines motors 310 a for therail wheels 256 a. Second, there are also connections to the twolines motors 294 a to thedrive sprockets 236 a. Third, there are connections through the twolines distribution valve sections 292 a. - To turn our attention back now to the
mode selecting valves 316 a in this embodiment, eachmode selecting valve 320 a is a six port valve which has two operating positions. In a first operating position, the twotransfer valves 320 a have a through connection from thedistributor valve 292 a through thelines motors 294 a fordrive sprockets 236 a. - In a second operating position, each mode selecting valve 316 makes a through connection from the
lines motor supply lines rail motors 310 a. - Now we turn our attention to the two
control levers clamp member 330 a (shown schematically inFIG. 22B ) so that the twolevers clamp 330 a is put in place to connect to the twolevers rail wheels 256 a are raised so that theground engaging tracks 47 a are in ground engagement, with therail wheels 256 a out of engagement with the rails, the clampingmember 330 a is removed so that the machine can move over the ground making turns, etc., as described previously herein. - To summarize the steps which the operator would take in operating the machine 10 a in its two different modes, let us assume that the machine 10 a is in its ground engaging mode of operation where the
rail wheels 256 a are raised and theground engaging tracks 47 a are thus in their ground engaging position. In this instance, as indicated above, the two operatinglevers - In this ground engaging position, the two
mode selecting valves 316 a are positioned in their ground operating mode position. In this position, the fluid flow paths through thedistribution valves 292 a connect with the two sets oflines valves 316 a and to connect with therelated motors 294 a for thetrack drive sprockets 236 a. - Then, when the
mode selecting valve 316 a is moved to its rail engaging mode, the flow paths through the samedistribution valve sections 292 and then through themode selecting valves 316 a. However, the flow is through a different set of ports in themode selecting valves 316 a so that the liquid flow is to and from themotors 310 a to drive therail wheels 256 a. - To discuss now the overall flow pattern of the
drive section 280 a, let us assume that the machine 10 a is in its ground engaging position so that theground engaging tracks 47 a are in engagement with the ground, and that themachine 10 is to move in a forward direction. The twolevers distribution valves 292 a to their forward traveling position so that the fluid flow from the pump 284 a is through thelines 296 a to pass through thedistribution valves 292 a to themode selecting valves 316 a. At that time themode selecting valves 316 a would be in its ground engaging mode, so that the flow from thelines 318 a would pass through themode selecting valves 316 a and through thelines 298 a and into the motors at 294 a to drive thesprockets 236 a in the forward traveling direction of rotation. Then the flow from eachmotor 294 a would be on a return path through theline 300 a then through themode selecting valve 316 a to the ground engagingreturn line 320 a and through theselector valve 292 a to flow through thereturn line 302 a back to thereservoir 286 a. - If the operator is to place the machine 10 a in reverse so as to move backwards, then the two
levers motor 294 a would be through theline 296 a, through thedistribution valve 292 a through theline 320 a, then through themode selecting valve 316 a, and through theline 300 a to enter into themotor 294 a to drive thesprocket 236 a in the opposite direction, and then follow a return path throughlines reservoir 286 a. - Let us now consider the situation where the machine 10 a is to be in neutral. Then, as in the operation of the
first embodiment 10, thelevers lines 296 a to thedistribution valves 292 and then through the lines 203 to thereservoir 286 a. - Now let us assume that the operator has moved the machine to a location over the railroad tracks where it is going to be in its rail engaging mode of operation. The two sets of rail wheels 256 would be moved downwardly to the rail engaging position to lift the
ground engaging tracks 47 a to a higher level. Then the procedure would be substantially the same as the procedure followed in the ground engaging mode except that therail wheels 256 a are being driven instead of thesprockets 236 a. - To return to the steps taken by the operator of the machine 10 a, if it desired to transition now from the ground engaging mode to the rail engaging mode of operation, the operator would move the
mode selecting valves 316 a to the rail engaging position. This could be done either by manually moving each of thevalves 316 a or operating a valve control mechanism in the operating position of thecab 44 a. Then the operator would set theaforementioned clamp 330 a in its lever engaging position so that the twolevers levers - In this particular embodiment, the
power drive section 280 a is dedicated totally toward the locomotion of themachine 10 either in its rail engaging mode of operation or its ground engaging mode of operation. The hydraulic power that is needed for moving the various actuators, rotating thecab 44 a, etc., could be derived from another hydraulic system. Alternatively, there could be a common power source which would serve all of the functions of the machine. - Also, if it is desired to drive all four
rail wheels 256 a, themotors 310 a on each side would be connected in series in the hydraulic drive system. The same could be done with thesprockets 236 a. - Now to discuss the operational features of this second embodiment, let us consider the situation where the assembly 10 a of the second embodiment could be effectively used. Let us assume there is some work to be done in the vicinity of a railroad track where certain repair work must be done on the rail track or possibly new rails are being installed. There could be a wide variety of chores to be accomplished. First, there is a requirement for the removal and/or adding and/or repositioning of various material such as dirt, gravel or other fill, etc. The movement of various ground material may be more conveniently accomplished with the ground engaging locomotion system in its operating position with the rail which sets 254 a raised.
- Also, there needs to be the placement of railroad ties, or possibly installation of some lengths of the rails themselves. With the machine 10 a being able to lift elongate pieces and orient them at different locations, it would be a simple task for this to be accomplished by the
machine 10. To consider a rather effective way of accomplishing this, themachine 10, instead of operating on its ground engaging section 43 a, could be moved to a position over the rails and then lower its rail wheels to the rail engaging position. - Let us assume, for example, that there are two continuous steel rails which extend over a relatively long distance, and the rear portion of these rails have been laid in their final location along the railroad right-of-way. The portions of the rails that are forward of the location of the machine 10 a would slant from the rail path off to the side in a very moderate curve leading away from the center to a side location. With the machine 10 a being mounted on the rail portions already in place, the machine 10 a could progress down the track, stopping at spaced locations, and gripping each rail and realigning that portion of the rail to its end alignment position. When this is accomplished with two adjacent portions of the rail, then the
machine 10 could move a distance further on the track and accomplish the same task and do this repeatedly. - With regard to excavating or depositing material on the track location itself, this would not be a difficult task in the rail mounted location. However, in addition to this, it sometimes happens that it is necessary to grade the ground that is off to one side of the track. The ground adjacent to the track may be slanting downwardly and away from the track. On the other hand, if one side of the track is on or next to a hillside, then it may be necessary to do some grading on one or both of these slopes.
- The bucket 20 a could be rotated ninety degrees from its front facing position so that the open face of the bucket is facing horizontally toward the path of travel. Also the boom 14 a and arm member 16 a could be used to locate the bucket assembly 18 a to be in proximity to the slope to be graded. Then the bucket could be rotated about the bucket axis of rotation 35 a so that the front edge of the bucket could be placed at the appropriate angular orientation. The
cab 44 a would have been rotated about its axis 42 a so that the vertical plane within which theprimary support member 16 and theboom 14 move could be slanted either forwardly or rearwardly, thus changing the directional orientation of the open face of the bucket 22 a. This would allow various slants of grading to be accomplished along side surfaces. Thus, these multiple functions could be accomplished by onemachine 10. - It is evident that various modifications could be made to the present invention without departing from the basic teachings thereof.
Claims (20)
1. A bucket assembly adapted to be mounted to an operating support member at a connecting location of the operating support member for movement about a bucket pivot axis and for rotational movement for different bucket orientations, said apparatus comprising:
a) a bucket section having a longitudinal bucket axis, a transverse bucket axis, and a vertical bucket axis generally perpendicular to the longitudinal and transverse bucket axes, said bucket section comprising:
i) a bucket comprising a bucket structure which in turn comprises front, rear, side and bottom wall portions defining a containing area and having an upwardly facing open region;
ii) a clamping section which is mounted to said bucket and which comprises a hydraulic actuating section which is mounted in the bucket assembly and which moves the clamping section between an open position and a closed position;
b) an intermediate connecting section comprising:
i) a structural support section which comprises a bucket connected support section and an operating support member connected support section connected to, or adapted to be connected to, said operating support member, said two support sections being rotatably connected to one another in load bearing relationship and for rotation relative to one another about a generally longitudinally aligned bucket axis of rotation, said bucket connected support section being connected to said bucket section so as to be rotatable therewith, and said operating support member connected section not being rotatably connected to said bucket section;
ii) a fluid supply and distribution section arranged to deliver hydraulic fluid to and from said hydraulic actuating section of said clamping section, said fluid supply and distribution section comprising a first fluid carrying section which comprises a bucket related fluid carrying section having a first rotary fluid connecting section which is located in alignment with the bucket axis of rotation, is associated with the bucket assembly so as to be rotatable therewith, and which has fluid connections between the bucket rotary fluid connecting portion and the hydraulic actuating section of the clamping section; and a second fluid carrying section which is an operating support member connected support section related fluid carrying section which has a second rotary fluid connecting section that is also in alignment with the bucket axis of rotation, and that is not rotatably associated with said bucket assembly, said first and second rotary fluid connecting sections being in operative engagement with one another so that the first and second rotary fluid connecting portions are able to rotate about the bucket axis of rotation relative to one another as said bucket assembly is rotated to various orientations and fluid is able to pass to and from said first and second fluid carrying sections;
c) a drive section to rotate said bucket section and said bucket connected support section relative to said operating support member connected support section about said bucket axis of rotation.
2. The bucket assembly as recited in claim 1 , wherein, said bucket structure has an upper edge portion defining at least in part said upwardly facing region, and said clamping section comprises two side members and a front member having a closed position adjacent to upper edges of said bucket structure.
3. The assembly as recited in claim 2 , wherein said clamping section is mounted to said bucket section for rotation about a generally transverse pivot axis and said hydraulic actuating section is positioned rearwardly of said bucket structure.
4. The assembly as recited in claim 1 , wherein said bucket axis of rotation is coincident with the longitudinal axis of said bucket section.
5. The assembly as recited in claim 1 , wherein said structural support section comprises a rotary bearing section having inner and outer bearing races, one of said bearing races being connected to the bucket connected support section, and the other of said bearing races being connected to the operating support member connected support section.
6. The assembly as recited in claim 5 , wherein said outer race bucket section is connected to said bucket support section.
7. The assembly as recited in claim 5 , wherein said rotary bearing section has a load bearing plane which is substantially perpendicular to said bucket axis of rotation and is located at a region of load bearing contact of an intermediate bearing member portion located between the outer and inner bearing races, and loads transmitted between said bucket connected support section and the operating support member connected support section are substantially isolated from said fluid supply and distribution section.
8. The assembly as recited as claim 7 , wherein said drive section comprises a rotary drive section operatively connected between said bucket connected support section and said operating support member connected support section, and said rotary drive section comprises a circumferential drive gear which is connected to the bucket connected support section and a worm drive which is connected to the primary arm member connected support section.
9. The assembly as recited in claim 1 , wherein said bucket connected support section and said operating support member connected support section have aligned openings substantially coincident with the bucket axis of rotation and at least a part of said fluid carrying section is located in at least some of said openings.
10. The assembly as recited in claim 1 , wherein said fluid carrying section comprises a fluid distribution member which has at least two longitudinally aligned supply passages which extend through the fluid distribution member and are adapted to be connected to a hydraulic drive source, a forward portion of said fluid distribution member comprising a rotary fluid connection by which fluid is directed to and from said fluid distribution member and to and from said hydraulic actuating section.
11. The assembly as recited in claim 1 , wherein at least a portion of one of said rotary fluid connecting sections surrounds at least a portion of the other of said rotary fluid connecting sections, and a fluid connection comprises at least a pair of circumferential spaced distribution grooves connecting to fluid ports.
12. The assembly as recited in claim 1 , wherein said structural support section comprises a rotary bearing section having inner and outer bearing races and a bearing portion positioned between said inner and outer races, one of said bearing races being connected to the bucket connected support section, and the other of said bearing races being connected to the operating support member connected support section, and there is a rotary drive section which comprises a drive gear that is connected to the bearing race which is connected to the bucket connected support section, and a worm gear drive that is connected to the operating support member connected support section.
13. The assembly as recited in claim 12 , wherein said operating support member connected support section comprises at least two operating support member connecting locations which are spaced from one another and adapted to be connected to said operating support member to enable said bucket assembly to be moved angularly about said bucket pivot axis to various operating positions, and to enable a force to be applied from said operating support member to enable said rotation about said bucket pivot axis.
14. The assembly as recited in claim 1 , wherein said operating support member connected support section comprises at least two operating support member connecting locations which are spaced from one another and adapted to be connected to said operating support member to enable said bucket assembly to be moved angularly about said bucket pivot axis to various operating positions, and to enable a force to be applied from said operating support member to enable said rotation about said bucket pivot axis.
15. The assembly as recited in claim 13 , wherein said bucket connected support section comprises a substantial unitary rigid bucket structure and said operating member connected support section comprises a substantially rigid structure, said structural support section being arranged so that loads from the bucket section are transmitted primarily through the bucket connected support section to a rotary load bearing structural connection, and into the operating support member connected support section which is able to transmit these loads directly into load bearing members of an operating support member.
16. The assembly as recited in claim 1 , wherein said bucket connected support section comprises a substantial unitary rigid bucket structure and said operating member connected support section comprises a substantially rigid structure, said structural support section being arranged so that loads from the bucket section are transmitted primarily through the bucket connected support section to a rotary load bearing structural connection, and into the operating support member connected support section which is able to transmit these loads directly into load bearing members of an operating support member.
17. A method of providing and using a multi function bucket assembly, said method comprising:
a) providing a bucket section having a longitudinal bucket axis, a transverse bucket axis, and a vertical bucket axis generally perpendicular to the longitudinal and transverse bucket axes, where said bucket section comprises:
i) a bucket comprising a bucket structure which in turn comprises front, rear, side and bottom wall portions defining a containing area and having an upwardly facing open region;
ii) a clamping section which is mounted to said bucket and which comprises a hydraulic actuating section which is mounted in the bucket assembly and which moves the bucket between an open position and a closed position;
b) providing a structural support section which comprises a bucket connected support section and an operating support member connected support section and connecting said two support sections rotatably to one another in load bearing relationship and for rotation relative to one another about a generally longitudinally aligned bucket axis of rotation;
c) connecting bucket assembly connected support section being said bucket section so as to be rotatable therewith;
d) connecting said operating support member connected section to an operating support member at a connecting location of the operating support member for movement about a bucket pivot axis;
e) providing a fluid supply and distribution section to deliver hydraulic fluid to said hydraulic actuating section, where said fluid supply distribution section comprises a fluid carrying section positioned in said structural support section, with at least a portion of said fluid carrying section being centered on said axis of rotation in the bucket assembly connected support section and not being rotatable therewith;
f) providing a rotary fluid connection with a fluid connection portion of the hydraulic actuating section of the clamping section so that there are hydraulic fluid flow paths between the operating support member connected section and the hydraulic actuating section of the bucket connected support section;
g) providing a drive section to rotate said bucket section relative to said operating arm member connected support section and operating said drive connection to cause movement of said bucket assembly about said bucket pivot axis; and
h) providing a hydraulic fluid supply source and selectively directing hydraulic fluid through said fluid supply and distribution section to the hydraulic operating system to operate the clamping member.
18. A mobile material moving machine comprising:
a) a base structure having a longitudinal, transverse and vertical axis;
b) a cab mounted to said base structure for rotation about a vertical cab axis of rotation;
c) an operating support section mounted to said cab;
d) a bucket assembly mounted to, or capable of being mounted to, said operating support section;
e) a locomotion section connected to said base section and comprising;
i) a ground engaging track locomotion section;
ii) a rail engaging wheel locomotion section;
iii) a height adjustment section which adjusts relative height locations of the two locomotion sections so that one or the other of the locomotion section is positioned in an operative ground or rail engaging position whereby said machine is capable of performing mobile operations from either a ground or a rail location.
19. The machine as recited in claim 18 , further comprising a locomotion hydraulic drive system, said system comprising:
a) left and right track drive members, each of which is driven in forward and reverse by left and right track drive motors respectively;
b) left and right rail wheels, each of which is driven in forward and reverse by left and right wheel motors respectively;
c) left and right track drive power supply sections to provide hydraulic power to the left and right track drive motors, respectively, either in a forward drive mode or a reverse drive mode; and
d) left and right rail wheel power supply sections to provide hydraulic power to the left and right rail wheel drive motors, respectively, in either a forward drive mode or a reverse drive mode.
20. The machine as recited in claim 19 , further comprising a locomotion power control and distribution system, said system comprising:
a) an operator control section comprising left and right control members, each having forward, reverse and neutral positions;
b) left and right distribution valve sections, each of which is responsive to said operator control section to direct hydraulic fluid either in a forward flow direction, reverse flow direction or bypass flow; and
c) left and right mode selecting valve sections for selection of either a ground engaging track locomotion mode or a rail engaging wheel locomotion mode, each of which is arranged to direct flow from the left and right distribution valve sections, respectively, to either the rail wheel motors or the track drive motors,
whereby the same locomotion power control and distribution system with a common operating control section can be utilized for the operation of the machine in either its ground engaging track locomotion mode or its rail engaging wheel locomotion mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/381,087 US20090282710A1 (en) | 2007-08-08 | 2007-08-08 | Multi-Function Material Moving Assembly and Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/381,087 US20090282710A1 (en) | 2007-08-08 | 2007-08-08 | Multi-Function Material Moving Assembly and Method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090282710A1 true US20090282710A1 (en) | 2009-11-19 |
Family
ID=41314771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/381,087 Abandoned US20090282710A1 (en) | 2007-08-08 | 2007-08-08 | Multi-Function Material Moving Assembly and Method |
Country Status (1)
Country | Link |
---|---|
US (1) | US20090282710A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110100882A1 (en) * | 2009-10-30 | 2011-05-05 | Beam Roger D | Portable solids screening bucket |
US8083073B1 (en) * | 2010-11-29 | 2011-12-27 | Paul Brown | Loader bucket sieve apparatus |
US20150197916A1 (en) * | 2014-01-16 | 2015-07-16 | Michael A. Honermann | Skid loader attachment including a rotatable and extendable claw |
US20150259875A1 (en) * | 2014-03-14 | 2015-09-17 | Caterpillar Inc. | Machine bucket |
US20180171577A1 (en) * | 2016-05-26 | 2018-06-21 | Bertha Manufacturing, LLC | Debris gripper and extractor for hydraulic equipment |
WO2018192850A1 (en) * | 2017-04-19 | 2018-10-25 | Rototilt Group Ab | Control systems for an excavator and methods for controlling an excavator with a movable excavator thumb and an auxiliary tool hold by a tiltrotator |
US10273124B2 (en) * | 2016-12-15 | 2019-04-30 | Caterpillar Inc. | Rotation control system for material handling machines |
US20190127947A1 (en) * | 2017-11-01 | 2019-05-02 | Clark Equipment Company | Clamp implement for excavator |
US20200089235A1 (en) * | 2014-09-26 | 2020-03-19 | Ecovacs Robotics Co., Ltd. | Self-moving robot movement boundary determining method |
KR20200117471A (en) * | 2019-04-04 | 2020-10-14 | 정경래 | Disassembling and assembling type tilt rotator device for excavator |
US20210262190A1 (en) * | 2018-11-14 | 2021-08-26 | Sumitomo Heavy Industries, Ltd. | Shovel and control device for shovel |
KR20210125497A (en) * | 2019-02-15 | 2021-10-18 | 스미도모쥬기가이고교 가부시키가이샤 | shovel |
US20210355651A1 (en) * | 2019-02-04 | 2021-11-18 | Sumitomo Heavy Industries, Ltd. | Shovel |
KR20220001571U (en) * | 2020-12-24 | 2022-07-01 | 강승구 | Tong attachment for excavator |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4032025A (en) * | 1975-06-20 | 1977-06-28 | Audie B. Tomlinson | Backhoe bucket tilt |
US4283866A (en) * | 1979-02-17 | 1981-08-18 | Junji Ogawa | Convertible bucket attachment capable of excavation and clasping |
US4779364A (en) * | 1985-11-04 | 1988-10-25 | Holmdal Ulf G | Device for a load carrying unit |
US4921732A (en) * | 1988-05-31 | 1990-05-01 | Herzog Contracting Corporation | Railroad tie service vehicle and method for spray application of a preservative |
US5140760A (en) * | 1988-09-16 | 1992-08-25 | Rolf Mannbro | Arrangement for rotator units |
US5398430A (en) * | 1991-05-20 | 1995-03-21 | Scott; Thomas M. | Earth moving and compacting rig |
US5515626A (en) * | 1992-04-01 | 1996-05-14 | Smp Parts Ab | Coupling device |
US5649377A (en) * | 1993-05-05 | 1997-07-22 | Tanada; Katsunori | Multipurpose bucket structure |
US6269561B1 (en) * | 1999-11-09 | 2001-08-07 | Rockland Inc. | Tiltable implement for excavator machines and the like |
US7201106B2 (en) * | 2002-03-18 | 2007-04-10 | Whiston Joseph L | Hydrostatic hi-rail system |
-
2007
- 2007-08-08 US US11/381,087 patent/US20090282710A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4032025A (en) * | 1975-06-20 | 1977-06-28 | Audie B. Tomlinson | Backhoe bucket tilt |
US4283866A (en) * | 1979-02-17 | 1981-08-18 | Junji Ogawa | Convertible bucket attachment capable of excavation and clasping |
US4779364A (en) * | 1985-11-04 | 1988-10-25 | Holmdal Ulf G | Device for a load carrying unit |
US4921732A (en) * | 1988-05-31 | 1990-05-01 | Herzog Contracting Corporation | Railroad tie service vehicle and method for spray application of a preservative |
US5140760A (en) * | 1988-09-16 | 1992-08-25 | Rolf Mannbro | Arrangement for rotator units |
US5596824A (en) * | 1989-06-21 | 1997-01-28 | Scott; Thomas M. | Single shovel earth moving and compacting rig |
US5398430A (en) * | 1991-05-20 | 1995-03-21 | Scott; Thomas M. | Earth moving and compacting rig |
US5515626A (en) * | 1992-04-01 | 1996-05-14 | Smp Parts Ab | Coupling device |
US5649377A (en) * | 1993-05-05 | 1997-07-22 | Tanada; Katsunori | Multipurpose bucket structure |
US6269561B1 (en) * | 1999-11-09 | 2001-08-07 | Rockland Inc. | Tiltable implement for excavator machines and the like |
US7201106B2 (en) * | 2002-03-18 | 2007-04-10 | Whiston Joseph L | Hydrostatic hi-rail system |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110100882A1 (en) * | 2009-10-30 | 2011-05-05 | Beam Roger D | Portable solids screening bucket |
US8083073B1 (en) * | 2010-11-29 | 2011-12-27 | Paul Brown | Loader bucket sieve apparatus |
US20190119881A1 (en) * | 2014-01-16 | 2019-04-25 | Michael A. Honermann | Skid loader attachment including a rotatable and extendable claw |
US20150197916A1 (en) * | 2014-01-16 | 2015-07-16 | Michael A. Honermann | Skid loader attachment including a rotatable and extendable claw |
US9976280B2 (en) * | 2014-01-16 | 2018-05-22 | Michael A. Honermann | Skid loader attachment including a rotatable and extendable claw |
US20150259875A1 (en) * | 2014-03-14 | 2015-09-17 | Caterpillar Inc. | Machine bucket |
US9447561B2 (en) * | 2014-03-14 | 2016-09-20 | Caterpillar Inc. | Machine bucket |
US20200089235A1 (en) * | 2014-09-26 | 2020-03-19 | Ecovacs Robotics Co., Ltd. | Self-moving robot movement boundary determining method |
US20180171577A1 (en) * | 2016-05-26 | 2018-06-21 | Bertha Manufacturing, LLC | Debris gripper and extractor for hydraulic equipment |
US10273124B2 (en) * | 2016-12-15 | 2019-04-30 | Caterpillar Inc. | Rotation control system for material handling machines |
US11905678B2 (en) * | 2017-04-19 | 2024-02-20 | Rototilt Group Ab | Control systems for an excavator and methods for controlling an excavator with a movable excavator thumb and an auxiliary tool hold by an tiltrotator |
WO2018192850A1 (en) * | 2017-04-19 | 2018-10-25 | Rototilt Group Ab | Control systems for an excavator and methods for controlling an excavator with a movable excavator thumb and an auxiliary tool hold by a tiltrotator |
US20210095441A1 (en) * | 2017-04-19 | 2021-04-01 | Rototilt Group Ab | Control systems for an excavator and methods for controlling an excavator with a movable excavator thumb and an auxiliary tool hold by an tiltrotator |
US10711431B2 (en) * | 2017-11-01 | 2020-07-14 | Clark Equipment Company | Clamp implement for excavator |
US20190127947A1 (en) * | 2017-11-01 | 2019-05-02 | Clark Equipment Company | Clamp implement for excavator |
US12157985B2 (en) * | 2018-11-14 | 2024-12-03 | Sumitomo Heavy Industries, Ltd. | Shovel and control device for shovel |
US20210262190A1 (en) * | 2018-11-14 | 2021-08-26 | Sumitomo Heavy Industries, Ltd. | Shovel and control device for shovel |
US12071741B2 (en) * | 2019-02-04 | 2024-08-27 | Sumitomo Heavy Industries, Ltd. | Shovel |
US20210355651A1 (en) * | 2019-02-04 | 2021-11-18 | Sumitomo Heavy Industries, Ltd. | Shovel |
KR20210125497A (en) * | 2019-02-15 | 2021-10-18 | 스미도모쥬기가이고교 가부시키가이샤 | shovel |
US20210372079A1 (en) * | 2019-02-15 | 2021-12-02 | Sumitomo Heavy Industries, Ltd. | Shovel and system |
KR102708666B1 (en) | 2019-02-15 | 2024-09-20 | 스미도모쥬기가이고교 가부시키가이샤 | Shovel |
US12098516B2 (en) * | 2019-02-15 | 2024-09-24 | Sumitomo Heavy Industries, Ltd. | Shovel and system |
KR102215697B1 (en) * | 2019-04-04 | 2021-02-15 | 정경래 | Disassembling and assembling type tilt rotator device for excavator |
KR20200117471A (en) * | 2019-04-04 | 2020-10-14 | 정경래 | Disassembling and assembling type tilt rotator device for excavator |
KR20220001571U (en) * | 2020-12-24 | 2022-07-01 | 강승구 | Tong attachment for excavator |
KR200495997Y1 (en) | 2020-12-24 | 2022-10-07 | 강승구 | Tong attachment for excavator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090282710A1 (en) | Multi-Function Material Moving Assembly and Method | |
US4199033A (en) | Augering accessory for backhoe or the like | |
US4845867A (en) | Triple-purpose attachment | |
US4542940A (en) | Method and apparatus for cutting a trench through rock-like material | |
US4475604A (en) | Mobile machine for subterranean installation of piping and the like | |
US2969844A (en) | Earth boring implement | |
US8157477B2 (en) | Trenching and drain installation system and method | |
CA2105961A1 (en) | Tractor-loader-backhoe | |
CA2037202C (en) | Universal excavator with auxiliary tool supply means and bucket scraper | |
CA2536125C (en) | Off-track railroad track undercutter apparatus | |
CN101421464B (en) | Auger for use with trenching assembly | |
WO2010051673A1 (en) | A multi-functional underground dinting machine | |
US6658768B1 (en) | Trencher | |
US20210222393A1 (en) | Material handling bucket apparatus and method for handling application material with a loader | |
US4913581A (en) | Narrow trench tamper | |
CN106211904A (en) | A kind of Chinese yam harvester | |
US4852277A (en) | Backhoe scraper apparatus | |
CN101824984B (en) | Loader of dredging bucket for roadways of mine | |
US7032692B2 (en) | Drilling device for earth drill | |
JP3254129B2 (en) | Underwater work equipment for underground space | |
US2894341A (en) | Digging machine | |
HU220551B1 (en) | Machine for digging under pipes and caterpillar traction device | |
AU8156287A (en) | Cleansing apparatus for excavators | |
CA2484710C (en) | Trencher | |
KR200418704Y1 (en) | Excavator Bucket with Cover |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |