US20090275461A1 - Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell - Google Patents
Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell Download PDFInfo
- Publication number
- US20090275461A1 US20090275461A1 US12/457,173 US45717309A US2009275461A1 US 20090275461 A1 US20090275461 A1 US 20090275461A1 US 45717309 A US45717309 A US 45717309A US 2009275461 A1 US2009275461 A1 US 2009275461A1
- Authority
- US
- United States
- Prior art keywords
- dye
- solar cell
- sensitized solar
- glass
- glass composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011521 glass Substances 0.000 title claims abstract description 136
- 239000000203 mixture Substances 0.000 title claims abstract description 57
- 239000000463 material Substances 0.000 title claims abstract description 48
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 56
- 239000011630 iodine Substances 0.000 claims abstract description 56
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 55
- 239000000843 powder Substances 0.000 claims description 34
- 239000000945 filler Substances 0.000 claims description 21
- 238000007789 sealing Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 abstract description 10
- 230000007774 longterm Effects 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 description 57
- 229940021013 electrolyte solution Drugs 0.000 description 53
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 238000005192 partition Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000005355 lead glass Substances 0.000 description 7
- 239000003566 sealing material Substances 0.000 description 7
- 238000004031 devitrification Methods 0.000 description 6
- 238000004455 differential thermal analysis Methods 0.000 description 6
- 230000003628 erosive effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 3
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 3
- 229940088601 alpha-terpineol Drugs 0.000 description 3
- -1 and the like Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- ISHFYECQSXFODS-UHFFFAOYSA-M 1,2-dimethyl-3-propylimidazol-1-ium;iodide Chemical compound [I-].CCCN1C=C[N+](C)=C1C ISHFYECQSXFODS-UHFFFAOYSA-M 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229910011255 B2O3 Inorganic materials 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002497 iodine compounds Chemical class 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- CUVLMZNMSPJDON-UHFFFAOYSA-N 1-(1-butoxypropan-2-yloxy)propan-2-ol Chemical compound CCCCOCC(C)OCC(C)O CUVLMZNMSPJDON-UHFFFAOYSA-N 0.000 description 1
- RBGGMTQEVZWWLW-UHFFFAOYSA-N 1-methoxybenzimidazole Chemical compound C1=CC=C2N(OC)C=NC2=C1 RBGGMTQEVZWWLW-UHFFFAOYSA-N 0.000 description 1
- JBOIAZWJIACNJF-UHFFFAOYSA-N 1h-imidazole;hydroiodide Chemical compound [I-].[NH2+]1C=CN=C1 JBOIAZWJIACNJF-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910003781 PbTiO3 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910003069 TeO2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000003660 carbonate based solvent Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- OJLGWNFZMTVNCX-UHFFFAOYSA-N dioxido(dioxo)tungsten;zirconium(4+) Chemical compound [Zr+4].[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O OJLGWNFZMTVNCX-UHFFFAOYSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 229910000174 eucryptite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000006066 glass batch Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052844 willemite Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
- 229910052644 β-spodumene Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/08—Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/02—Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
- C03C17/04—Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
- H01M14/005—Photoelectrochemical storage cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/191—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/198—Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell, and more specifically to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell which are suitable for sealing a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, forming a partition wall for dividing cells, and overcoating a collector electrode.
- the dye-sensitized solar cell which was developed by Gratzel et al. is low in cost compared with solar cells each using a silicon semiconductor, and there are abundant raw materials needed for the production of the dye-sensitized solar cell, and hence, the dye-sensitized solar cell is expected as a next-generation solar cell.
- the dye-sensitized solar cell includes: a transparent electrode substrate having a transparent conductive film; a porous oxide semiconductor electrode including a porous oxide semiconductor layer (mainly a TiO 2 layer), which is formed on the transparent electrode substrate; a dye such as a Ru-dye, which is adsorbed to the porous oxide semiconductor electrode; an iodine electrolyte solution containing iodine; a counter electrode substrate on which a catalyst film and a transparent conductive film are formed; and the like.
- the transparent electrode substrate There are used a glass substrate, a plastic substrate, and the like for the transparent electrode substrate and the counter electrode substrate.
- the plastic substrate is used for the transparent electrode substrate, the resistivity of a transparent electrode film becomes large and the photoelectric conversion efficiency of the dye-sensitized solar cell lowers.
- the glass substrate is used for the transparent electrode substrate, the resistivity of the transparent electrode film hardly increases, and hence, the photoelectric conversion efficiency of the dye-sensitized solar cell can be maintained. Therefore, in recent years, the glass substrate has been used as the transparent electrode substrate.
- the iodine electrolyte solution is filled between the transparent electrode substrate and the counter electrode substrate.
- the peripheries of the transparent electrode substrate and the counter electrode substrate need to be sealed.
- a collector electrode e.g., Ag or the like is used therefor
- a partition wall may be formed between the transparent electrode substrate and the counter electrode substrate.
- Patent Document 1 JP 1-220380 A
- Patent Document 2 JP 2002-75472 A
- Patent Document 3 JP 2004-292247 A
- the resin is eroded by the iodine electrolyte solution, and hence, the iodine electrolyte solution is leaked from the solar cell, whereby cell performances remarkably deteriorate.
- the resin is also eroded by the iodine electrolyte solution, and hence, there occurs deterioration of the collector electrode, tearing of the partition wall, or the like.
- Patent Document 1 it is described that the peripheries of a transparent electrode substrate and a counter electrode substrate are sealed using glass. Further, in each of Patent Documents 2 and 3, it is described that the peripheries of a transparent electrode substrate and a counter electrode substrate are sealed using a lead glass.
- the lead glass is used for the sealing material, a component of the lead glass is eluted into an iodine electrolyte solution due to long-term use, because the lead glass is easily eroded by the iodine electrolyte solution. As a result, the iodine electrolyte solution is degraded, and the cell performances deteriorate. Further, even in the case where the lead glass is used for overcoating a collector electrode or for forming a partition wall, there occurs deterioration of the collector electrode or tearing of the partition wall due to long-term use. Those phenomena are also caused by the erosion of the lead glass by the iodine electrolyte solution.
- the sealing material (glass to be used for the sealing material) have a low-melting point property, e.g., a softening point of preferably 550° C. or lower or more preferably 500° C. or lower.
- the present invention has a technical object to provide a dye-sensitized solar cell having high long-term reliability, by inventing a glass composition, which is hardly eroded by an iodine electrolyte solution and has a low-melting point property, and a material using the glass composition.
- a glass composition for a dye-sensitized solar cell of the present invention is characterized by including as a glass composition, in terms of mass %, 20 to 70% of V 2 O 5 and 10 to 50% of P 2 O 5 . It should be noted that the mechanism in which it becomes less likely that a glass is eroded by the iodine electrolyte solution when V 2 O 5 and P 2 O 5 are introduced into the glass composition is not clear at the present time, and is currently under intensive investigation.
- V 2 O 5 When the content of V 2 O 5 is regulated to 20 to 70%, it becomes less likely that the glass is eroded by the iodine electrolyte solution while the thermal stability of the glass is improved, and in addition, the melting point of the glass can be lowered.
- the glass composition for a dye-sensitized solar cell of the present invention is characterized by further including as a glass composition, in terms of mass %, 10 to 55% of ZnO+SrO+BaO+CuO (a total amount of ZnO, SrO, BaO, and/or CuO).
- the glass composition for a dye-sensitized solar cell of the present invention is characterized by including as a glass composition, in terms of mass %, 0 to 30% of ZnO, 0 to 20% of SrO, 0 to 45% of BaO, and 0 to 15% of CuO.
- the glass composition for a dye-sensitized solar cell of the present invention is characterized by having a mass reduction of 0.1 mg/cm 2 or less after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks.
- an iodine electrolyte solution used for calculating the mass reduction there is used a solution in which 0.1 M lithium iodide, 0.05 M iodine, 0.5 M tert-butylpyridine, and 0.6 M 1,2-dimethyl-3-propyl imidazolium iodide are dissolved in acetonitrile.
- “mass reduction” is calculated by: immersing a glass substrate on which glass powder formed of the glass composition is densely baked (glass substrate having a baked film) in the iodine electrolyte solution inside a closed container; and dividing a value obtained by subtracting a mass after the elapse of 2 weeks from a mass before the immersion by an area of the baked film which is in contact with the iodine electrolyte solution. It should be noted that a glass substrate which is not eroded by the iodine electrolyte solution is used as the glass substrate.
- the iodine electrolyte solution refers to a solution in which iodine compounds such as iodine, an alkali metal iodide, an imidazolium iodide, or a quaternary ammonium salt is dissolved in an organic solvent, but also refers to a solution in which compounds other than the iodine compound are also dissolved, such as tert-butylpyridine and 1-methoxybenzoimidazole.
- the solvent there is used a nitrile-based solvent such as acetonitrile, methoxyacetonitrile, or propionitrile; a carbonate-based solvent such as ethylene carbonate or propylene carbonate; a lactone-based solvent; or the like.
- a nitrile-based solvent such as acetonitrile, methoxyacetonitrile, or propionitrile
- a carbonate-based solvent such as ethylene carbonate or propylene carbonate
- a lactone-based solvent or the like.
- the glass composition for a dye-sensitized solar cell of the present invention have a mass reduction of 0.1 mg/cm 2 or less after being immersed in any one of those iodine electrolyte solutions at 25° C. for 2 weeks.
- the glass composition for a dye-sensitized solar cell of the present invention is characterized by having a thermal expansion coefficient of 65 to 120 ⁇ 10 ⁇ 7 /° C.
- the “thermal expansion coefficient” refers to a value measured by a push-rod type thermal expansion coefficient measuring apparatus (TMA) in a temperature range of 30 to 300° C.
- a material for a dye-sensitized solar cell of the present invention is characterized by including 50 to 100 vol % of a glass powder formed of the glass composition for a dye-sensitized solar cell and 0 to 50 vol % of a refractory filler powder. It should be noted that the material for a dye-sensitized solar cell of the present invention includes an aspect in which the material is formed only of the glass powder formed of the glass composition.
- the content of the refractory filler powder is, from the viewpoint of fluidity, preferably 10 vol % or less or 5 vol % or less, and particularly preferably 1 vol % or less, and it is more preferred that the material be substantially free of the refractory filler powder (to be specific, the content of the refractory filler powder is 0.5 vol % or less).
- the gap between the transparent electrode substrate and the counter electrode substrate can be easily made small and uniform when the content of the refractory filler powder is reduced.
- the material for a dye-sensitized solar cell of the present invention is characterized by having a softening point of 550° C. or lower.
- the “softening point” refers to a value measured by a macro-type differential thermal analysis (DTA) apparatus. DTA initiates measurement from room temperature and has a rate of temperature rise of 10° C./min. It should be noted that the softening point measured by the macro-type DTA apparatus is represented by a temperature (Ts) at the fourth inflection point illustrated in FIG. 1 .
- Ts temperature
- the material for a dye-sensitized solar cell of the present invention is characterized by being used for sealing.
- the sealing includes sealing of a glass tube or the like in addition to sealing of the transparent electrode substrate and the counter electrode substrate.
- a liquid containing a pigment or the like is circulated inside the dye-sensitized solar cell via the glass tubes, whereby the pigment is adsorbed to a porous oxide semiconductor. In this case, it becomes less likely that the leakage of the liquid or the like, etc. occur when the glass tubes are sealed using the material for a dye-sensitized solar cell of the present invention.
- the material for a dye-sensitized solar cell of the present invention is characterized by being used for sealing by a laser beam.
- the material for a dye-sensitized solar cell of the present invention is characterized by being used for overcoating a collector electrode.
- the erosion by the iodine electrolyte solution hardly occurs, and the mass reduction of the glass composition for a dye-sensitized solar cell after being immersed in the iodine electrolyte solution at 25° C. for 2 weeks can be set to 0.1 mg/cm 2 or less.
- a sealed part, a partition wall, and a overcoated part are hardly eroded by the iodine electrolyte solution, and the degradation of the iodine electrolyte solution or the cell performances can be prevented for a long period of time.
- V 2 O 5 is, as well as being a glass-forming oxide, a component which makes it less likely that the erosion by the iodine electrolyte solution occurs, and is also a component which lowers the melting point of glass.
- the content thereof is 20 to 70%, more preferably 30 to 60%, and still more preferably 45 to 55%.
- the content of V 2 O 5 is less than 20%, the viscosity of the glass becomes high and the baking temperature becomes high. Further, when the content of V 2 O 5 is set to 45% or more, the fluidity of the glass improves, and a high airtightness can be obtained.
- the content of V 2 O 5 is more than 70%, the glass composition may be vitrified, but the devitrification resistance of the glass is easily lowered. Further, when the content of V 2 O 5 is more than 70%, the glass becomes easily foamed at the time of baking. Further, when the content of V 2 O 5 is 55% or less, the devitrification resistance can be improved and the thermal stability of the glass improves.
- P 2 O 5 is, as well as being a glass-forming oxide, a component which makes it less likely that the erosion by the iodine electrolyte solution occurs, and is also a component which lowers the melting point of the glass.
- the content thereof is 10 to 50%, more preferably 15 to 35%, and still more preferably 20 to 30%.
- the content of P 2 O 5 is less than 10%, the thermal stability of the glass is easily lowered.
- the content of P 2 O 5 is more than 60%, the moisture resistance of the glass is easily deteriorated.
- the glass composition for a dye-sensitized solar cell of the present invention can contain, apart from the above components, the following components in a glass composition.
- ZnO+SrO+BaO+CuO is a network-modifier oxide which stabilizes the glass.
- the content thereof is 10 to 55% and more preferably 14 to 30%.
- the content of ZnO+SrO+BaO+CuO is less than 10%, the effect of stabilizing the glass is poor, and when the content of ZnO+SrO+BaO+CuO is more than 55%, the balance between the components of the glass composition is disturbed, and the other way around, the glass becomes unstable and is easily devitrified at the time of forming a molten glass into the glass.
- ZnO is a component which stabilizes the glass.
- ZnO has a tendency of promoting the erosion of the glass by the iodine electrolyte solution. Therefore, the content thereof is 0 to 30%, more preferably 0 to 20%, still more preferably 0 to 15%, and particularly preferably 0 to 10%. When the content of ZnO is more than 30%, the devitrification resistance of the glass is easily lowered.
- SrO is, as well as being a component which improves the thermal stability of the glass and suppresses the devitrification of the glass, a component which lowers the viscosity of the glass.
- the content thereof is 0 to 20% and preferably 0 to 15%. When the content of SrO is more than 20%, the balance between the components of the glass composition is disturbed, and the other way around, the thermal stability of the glass is easily lowered.
- BaO is, as well as being a component which improves the thermal stability of the glass and suppresses the devitrification of the glass, a component which lowers the viscosity of the glass.
- the content thereof is 0 to 45% and more preferably 3 to 22%. When the content of BaO is more than 45%, the balance between the components of the glass composition is disturbed, and the other way around, the thermal stability of the glass is easily lowered.
- CuO is, as well as being a component which improves the thermal stability of the glass and suppresses the devitrification of the glass, a component which improves the weatherability of the glass.
- the content thereof is 0 to 15% and preferably 0 to 10%. When the content of CuO is more than 15%, the viscosity of the glass becomes too high, and the sealing temperature is easily increased.
- the glass composition for a dye-sensitized solar cell of the present invention there can be introduced into a glass composition, in addition to the above components, up to 20% of CaO, MgO, TeO 2 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 , SiO 2 , and the like. It should be noted that, from the environmental viewpoint and the viewpoint of preventing the erosion by an iodine electrolyte solution, it is preferred that the glass composition for a dye-sensitized solar cell of the present invention be substantially free of PbO.
- the phrase “be substantially free of PbO” refers to the case where the content of PbO in the glass composition is 1,000 ppm or less.
- the mass reduction after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks is 0.1 mg/cm 2 or less and preferably 0.05 mg/cm 2 or less, and it is still more preferred that there be substantially no mass reduction.
- the mass reduction is 0.1 mg/cm 2 or less, the degradation of the iodine electrolyte solution or the cell performances can be prevented for a long period of time.
- “be substantially no mass reduction” refers to the case where the mass reduction is 0.01 mg/cm 2 or less.
- the thermal expansion coefficient is preferably 65 to 120 ⁇ 10 ⁇ 7 /° C. and more preferably 80 to 110 ⁇ 10 ⁇ 7 /° C.
- a glass substrate e.g., soda glass substrate
- the thermal expansion coefficient of a glass substrate e.g., soda glass substrate
- a refractory filler powder is added thereto, undue stress on the glass substrate, a sealed part, or the like after baking, and hence, it becomes more likely that a crack is generated on the glass substrate, the sealed part, or the like, or peeling occurs at the sealed part.
- the material for a dye-sensitized solar cell of the present invention is preferably formed only of a glass powder formed of the glass composition for a dye-sensitized solar cell. In such a manner, the cell gap of the solar cell can be easily made small and uniform, and also, a mixing process or the like of the refractory filler powder, etc. becomes unnecessary. Therefore, the production cost of the material for a dye-sensitized solar cell can be reduced.
- the material for a dye-sensitized solar cell of the present invention may contain a refractory filler powder in order to improve the mechanical strength or to decrease the thermal expansion coefficient.
- a refractory filler powder in order to improve the mechanical strength or to decrease the thermal expansion coefficient.
- the addition amount of the refractory filler powder is decreased, the fluidity, or in particular, the sealing property, of the material for a dye-sensitized solar cell can be enhanced.
- the mixing ratio is 50 to 100 vol % of the glass powder to 0 to 50 vol % of the refractory filler powder, preferably 65 to 100 vol % of the glass powder to 0 to 35 vol % of the refractory filler powder, and more preferably 95 to 100 vol % of the glass powder to 0 to 5 vol % of the refractory filler powder, and it is desired that, from the reasons stated above, the material be substantially free of the refractory filler powder.
- the content of the refractory filler powder is more than 50 vol %, the ratio of the glass powder relatively becomes too low, and hence, it becomes difficult to obtain the desired fluidity.
- the cell gap of the dye-sensitized solar cell is 50 ⁇ m or less, which is extremely small. Therefore, when the particle size of the refractory filler powder is too large, a protrusion is generated locally at the sealed part, and hence, it becomes difficult to make the cell gap uniform.
- the maximum particle size of the refractory filler powder is preferably 25 ⁇ m or less and more preferably 15 ⁇ m or less.
- the “maximum particle size” refers to the particle size of a particle in which, in a cumulative particle size distribution curve on a volumetric basis when measured by a laser diffraction method, the integrated quantity thereof is 99% when accumulated in the order starting from the particle having the smallest particle size.
- the material of the refractory filler powder is not particularly limited, and is preferably a material which hardly reacts with the glass powder formed of the glass composition for a dye-sensitized solar cell of the present invention and the iodine electrolyte solution.
- the refractory filler powder there can be used zircon, zirconia, tin oxide, aluminum titanate, quartz, ⁇ -spodumene, mullite, titania, quartz glass, ⁇ -eucryptite, ⁇ -quartz, zirconium phosphate, zirconium phosphotungstate, zirconium tungstate, willemite, a compound having [AB 2 (MO 4 ) 3 ] as a basic structure where A represents Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn, or the like, B represents Zr, Ti, Sn, Nb, Al, Sc, Y, or the like, and M represents P, Si, W, Mo, or the like, and a solid solution thereof.
- the softening point is preferably 550° C. or lower and more preferably 500° C. or lower.
- the softening point is higher than 500° C., the viscosity of the glass becomes too high and the sealing temperature is unduly increased, and hence, the glass substrate is easily deformed.
- the fusion of oxide semiconductor particles may proceed too much when the sealing temperature is too high. In such a case, the surface area of the porous oxide semiconductor layer decreases, which makes it less likely that a pigment is adsorbed thereto.
- the mass reduction after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks is 0.1 mg/cm 2 or less and preferably 0.05 mg/cm 2 or less, and it is desired that there be substantially no mass reduction.
- the mass reduction is 0.1 mg/cm 2 or less, the deterioration of the iodine electrolyte solution or the cell performances can be prevented for a long period of time.
- the material for a dye-sensitized solar cell of the present invention in a powder form may be used as it is, and when the material is kneaded homogeneously with a vehicle and processed into a paste, it becomes easier to handle.
- the vehicle is mainly composed of a solvent and a resin, and the resin is added thereto for adjusting the viscosity of the paste. Further, a surfactant, a thickener, or the like may also be added thereto, if required.
- the produced paste is subjected to coating by using a coating machine such as a dispenser or a screen printing machine.
- an acrylate (acrylic resin), ethylcellulose, a polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, a methacrylate, and the like.
- an acrylate and nitrocellulose are preferred because of having good thermolytic property.
- N,N′-dimethyl formamide there can be used ⁇ -terpineol, a higher alcohol, ⁇ -butyrolactone ( ⁇ -BL), tetralin, butylcarbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycolmonoethyl ether, diethylene glycolmonoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycolmonomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone, and the like.
- ⁇ -terpineol is preferred because of having high visco
- the material for a dye-sensitized solar cell of the present invention is preferably used for a sealing purpose, and particularly preferably used for sealing a transparent electrode substrate and a counter electrode substrate.
- the material for a dye-sensitized solar cell of the present invention has low-melting point property and is hardly eroded by the iodine electrolyte solution, and hence, the iodine electrolyte solution hardly leaks during long-term use and the prolonged lifetime of the solar cell can be expected.
- a spacer such as a glass bead may be added to the material for a dye-sensitized solar cell of the present invention in order to make the cell gap of the solar cell uniform.
- the material for a dye-sensitized solar cell of the present invention contains 20% or more of V 2 O 5 in a glass composition, and hence, the material can be subjected to a sealing treatment by a laser beam.
- the material for a dye-sensitized solar cell can be locally heated. Therefore, the transparent electrode substrate and the counter electrode substrate can be sealed while preventing the heat deterioration of a constituent member such as the iodine electrolyte solution.
- the material for a dye-sensitized solar cell of the present invention contains preferably 30% or more or 40% or more, or particularly preferably 45% or more of V 2 O 5 in a glass composition.
- the laser beam can be effectively converted into heat energy, in other words, the laser beam can be absorbed to the glass accurately, and hence, only the parts to be sealed can be locally heated accurately.
- the content of V 2 O 5 is regulated to 70% or less, and particularly to 60% or less, a situation that the glass is devitrified at the time of irradiating the laser beam can be prevented.
- various laser beams can be used as the laser beam, and in particular, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are suitable, because they are easy to handle.
- the laser beam preferably has an emission center wavelength of 500 to 1,600 nm and preferably 750 to 1,300 nm.
- the material for a dye-sensitized solar cell of the present invention is preferably used for overcoating a collector electrode.
- a collector electrode In general, there is used Ag for the collector electrode, but Ag is easily eroded by the iodine electrolyte solution. Accordingly, in the case where Ag is used for the collector electrode, the collector electrode needs to be protected.
- the material for a dye-sensitized solar cell of the present invention has low-melting point property, and hence, a dense coating layer can be formed at low temperature. In addition, the material is hardly eroded by the iodine electrolyte solution, and hence can protect the collector electrode for a long period of time.
- the material for a dye-sensitized solar cell of the present invention can be used for forming a partition wall.
- the partition wall in the case where the partition wall is formed in the dye-sensitized solar cell, inside the cell is filled with the iodine electrolyte solution.
- the material for a dye-sensitized solar cell of the present invention has low-melting point property, and hence, a dense partition wall can be formed at low temperature.
- the material is hardly eroded by the iodine electrolyte solution, and hence can prevent tearing of the partition wall for a long period of time.
- Example Nos. 1 to 5 show Examples (Sample Nos. 1 to 5) and Comparative Examples (Sample No. 6) of the present invention.
- Each of the samples described in the table was prepared as follows. First, a glass batch in which raw materials such as various oxides and carbonates were mixed so as to have a glass composition shown in the table was prepared, and was then loaded into a platinum crucible and melted at 1,000 to 1,200° C. for 1 to hours. Next, a part of the molten glass, which serves as a sample for measuring a thermal expansion coefficient, was poured into a die made of stainless steel, and the remaining molten glass was formed into a flaky shape by a water cooled roller. The sample for measuring a thermal expansion coefficient was subjected to a predetermined annealing treatment.
- Sample No. 6 is a sample which is obtained by adding the refractory filler powder (lead titanate, average particle size of 10 ⁇ m) shown in the table to the glass composition at the ratio shown in the table and mixing the resultant.
- each glass powder (mixed powder in the case of Sample No. 6) and a vehicle (which was obtained by dissolving ethylcellulose in ⁇ -terpineol) were kneaded into a paste.
- the paste was screen printed on a soda glass substrate (thermal expansion coefficient: 100 ⁇ 10 ⁇ 7 /° C.) so as to have a diameter of 40 mm and a thickness of 40 to 80 ⁇ m, followed by drying at 120° C. for 10 minutes and then baking at 500° C. for 30 minutes in an electric furnace, whereby a sample for evaluating mass reduction was obtained.
- the thermal expansion coefficient was measured by a TMA measuring apparatus.
- the thermal expansion coefficient was measured at a temperature range of 30 to 300° C. It should be noted that Sample No. 6 was processed to have a predetermined shape by densely sintering the mixed powder, and then was used as a measurement sample.
- the softening point was determined by a DTA apparatus. The measurement was performed in air and the rate of temperature rise was set to 10° C./min.
- the mass reduction was calculated as follows. First, the mass of the sample for evaluating mass reduction and the surface area of the baked film which is in contact with the iodine electrolyte solution were measured. Next, the sample was immersed in the iodine electrolyte solution inside a closed container made of glass, and then the closed container made of glass was left standing still in a thermostat at 25° C. The mass reduction was calculated by dividing a value obtained by subtracting the mass of the sample after the elapse of 2 weeks from the mass of the sample before the immersion by the surface area of the baked film.
- iodine electrolyte solution used for the evaluation of the mass reduction there was used a solution in which 0.1 M lithium iodide, 0.05 M iodine, 0.5 M tert-butylpyridine, and 0.6 M 1,2-dimethyl-3-propyl imidazolium iodide were added to acetonitrile.
- Sample Nos. 1 to 5 each had a thermal expansion coefficient of 86 to 99 ⁇ 10 ⁇ 7 /° C. and a softening point of 420 to 449° C. Further, in each sample for measuring mass reduction, the baked film satisfactorily adhered to the glass substrate without causing peeling. In addition, the mass reduction could not be confirmed in each of Sample Nos. 1 to 5, so Sample Nos. 1 to 5 were hardly eroded by the iodine electrolyte solution. On the other hand, Sample No. 6 had a mass reduction of 0.32 mg/cm 2 , because Sample No. 6 used lead glass, so Sample No. 6 was eroded by the iodine electrolyte solution.
- the glass composition for a dye-sensitized solar cell and the material for a dye-sensitized solar cell of the present invention are suitable for sealing the transparent electrode substrate and the counter electrode substrate of a dye-sensitized solar cell, forming the partition wall for dividing cells, and overcoating the collector electrode.
- FIG. 1 is a schematic diagram illustrating a softening point of glass measured by a macro-type DTA apparatus.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Glass Compositions (AREA)
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
Abstract
A dye-sensitized solar cell having high long-term reliability is provided by inventing a glass composition, which is hardly eroded by an iodine electrolyte solution and has a low-melting point property, and a material using the glass composition. The glass composition for a dye-sensitized solar cell of the present invention is characterized by including as a glass composition, in terms of mass %, to 70% of V2O5 and 10 to 50% of P2O5.
Description
- This is a continuation application of international application PCT/JP2009/057519 filed Apr. 14, 2009, and claiming the priority of Japanese application 2008-108766 filed Apr. 18, 2008.
- The present invention relates to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell, and more specifically to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell which are suitable for sealing a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, forming a partition wall for dividing cells, and overcoating a collector electrode.
- 1. Background Art
- The dye-sensitized solar cell which was developed by Gratzel et al. is low in cost compared with solar cells each using a silicon semiconductor, and there are abundant raw materials needed for the production of the dye-sensitized solar cell, and hence, the dye-sensitized solar cell is expected as a next-generation solar cell.
- The dye-sensitized solar cell includes: a transparent electrode substrate having a transparent conductive film; a porous oxide semiconductor electrode including a porous oxide semiconductor layer (mainly a TiO2 layer), which is formed on the transparent electrode substrate; a dye such as a Ru-dye, which is adsorbed to the porous oxide semiconductor electrode; an iodine electrolyte solution containing iodine; a counter electrode substrate on which a catalyst film and a transparent conductive film are formed; and the like.
- There are used a glass substrate, a plastic substrate, and the like for the transparent electrode substrate and the counter electrode substrate. When the plastic substrate is used for the transparent electrode substrate, the resistivity of a transparent electrode film becomes large and the photoelectric conversion efficiency of the dye-sensitized solar cell lowers. On the other hand, when the glass substrate is used for the transparent electrode substrate, the resistivity of the transparent electrode film hardly increases, and hence, the photoelectric conversion efficiency of the dye-sensitized solar cell can be maintained. Therefore, in recent years, the glass substrate has been used as the transparent electrode substrate.
- In the dye-sensitized solar cell, the iodine electrolyte solution is filled between the transparent electrode substrate and the counter electrode substrate. In order to prevent the leakage of the iodine electrolyte solution from the dye-sensitized solar cell, the peripheries of the transparent electrode substrate and the counter electrode substrate need to be sealed. Further, in order to effectively extract the generated electrons, a collector electrode (e.g., Ag or the like is used therefor) may be formed on the transparent electrode substrate. In this case, there is a need to overcoat the collector electrode and prevent a situation that the collector electrode is eroded by the iodine electrolyte solution. In addition, in the case of forming a cell circuit on one sheet of glass substrate, a partition wall may be formed between the transparent electrode substrate and the counter electrode substrate.
- 2. Prior Art Documents
- Patent Document 1: JP 1-220380 A
- Patent Document 2: JP 2002-75472 A
- Patent Document 3: JP 2004-292247 A
- In a dye-sensitized solar cell, it is the improvement in long-term durability that is an object for practical application. One of the reasons for which the long-term durability is impaired is, for example, as follows. Solar cell members (sealing material, collector electrode, and the like) react with an iodine electrolyte solution, and the solar cell members and the iodine electrolyte solution are degraded. In particular, the tendency is remarkable when a resin is used for the sealing material and an organic solvent such as acetonitrile is used for the iodine electrolyte solution. In this case, the resin is eroded by the iodine electrolyte solution, and hence, the iodine electrolyte solution is leaked from the solar cell, whereby cell performances remarkably deteriorate. In the case where a resin is used for forming a partition wall or for coating a collector electrode in the similar way, the resin is also eroded by the iodine electrolyte solution, and hence, there occurs deterioration of the collector electrode, tearing of the partition wall, or the like.
- In view of the above circumstances, there are proposed methods in which a resin is not used for a sealing material. For example, in Patent Document 1, it is described that the peripheries of a transparent electrode substrate and a counter electrode substrate are sealed using glass. Further, in each of Patent Documents 2 and 3, it is described that the peripheries of a transparent electrode substrate and a counter electrode substrate are sealed using a lead glass.
- However, even in the case where the lead glass is used for the sealing material, a component of the lead glass is eluted into an iodine electrolyte solution due to long-term use, because the lead glass is easily eroded by the iodine electrolyte solution. As a result, the iodine electrolyte solution is degraded, and the cell performances deteriorate. Further, even in the case where the lead glass is used for overcoating a collector electrode or for forming a partition wall, there occurs deterioration of the collector electrode or tearing of the partition wall due to long-term use. Those phenomena are also caused by the erosion of the lead glass by the iodine electrolyte solution.
- Further, when the softening point of the sealing material is higher than the strain point of a glass substrate, the glass substrate is deformed during a sealing process. Therefore, it is required that the sealing material (glass to be used for the sealing material) have a low-melting point property, e.g., a softening point of preferably 550° C. or lower or more preferably 500° C. or lower.
- Accordingly, the present invention has a technical object to provide a dye-sensitized solar cell having high long-term reliability, by inventing a glass composition, which is hardly eroded by an iodine electrolyte solution and has a low-melting point property, and a material using the glass composition.
- The inventors of the present invention have conducted various studies and as a result, they have found that the above technical object can be solved by introducing V2O5 and P2O5 as essential components into a glass composition, and have proposed the finding as the present invention. That is, a glass composition for a dye-sensitized solar cell of the present invention is characterized by including as a glass composition, in terms of mass %, 20 to 70% of V2O5 and 10 to 50% of P2O5. It should be noted that the mechanism in which it becomes less likely that a glass is eroded by the iodine electrolyte solution when V2O5 and P2O5 are introduced into the glass composition is not clear at the present time, and is currently under intensive investigation.
- When the content of V2O5 is regulated to 20 to 70%, it becomes less likely that the glass is eroded by the iodine electrolyte solution while the thermal stability of the glass is improved, and in addition, the melting point of the glass can be lowered.
- When the content of P2O5 is regulated to 10 to 50%, it becomes less likely that the glass is eroded by the iodine electrolyte solution while the thermal stability of the glass is improved, and in addition, the melting point of the glass can be lowered.
- Second, the glass composition for a dye-sensitized solar cell of the present invention is characterized by further including as a glass composition, in terms of mass %, 10 to 55% of ZnO+SrO+BaO+CuO (a total amount of ZnO, SrO, BaO, and/or CuO).
- Third, the glass composition for a dye-sensitized solar cell of the present invention is characterized by including as a glass composition, in terms of mass %, 0 to 30% of ZnO, 0 to 20% of SrO, 0 to 45% of BaO, and 0 to 15% of CuO.
- Fourth, the glass composition for a dye-sensitized solar cell of the present invention is characterized by having a mass reduction of 0.1 mg/cm2 or less after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks. Here, as the iodine electrolyte solution used for calculating the mass reduction, there is used a solution in which 0.1 M lithium iodide, 0.05 M iodine, 0.5 M tert-butylpyridine, and 0.6 M 1,2-dimethyl-3-propyl imidazolium iodide are dissolved in acetonitrile. Further, “mass reduction” is calculated by: immersing a glass substrate on which glass powder formed of the glass composition is densely baked (glass substrate having a baked film) in the iodine electrolyte solution inside a closed container; and dividing a value obtained by subtracting a mass after the elapse of 2 weeks from a mass before the immersion by an area of the baked film which is in contact with the iodine electrolyte solution. It should be noted that a glass substrate which is not eroded by the iodine electrolyte solution is used as the glass substrate.
- In general, the iodine electrolyte solution refers to a solution in which iodine compounds such as iodine, an alkali metal iodide, an imidazolium iodide, or a quaternary ammonium salt is dissolved in an organic solvent, but also refers to a solution in which compounds other than the iodine compound are also dissolved, such as tert-butylpyridine and 1-methoxybenzoimidazole. As the solvent, there is used a nitrile-based solvent such as acetonitrile, methoxyacetonitrile, or propionitrile; a carbonate-based solvent such as ethylene carbonate or propylene carbonate; a lactone-based solvent; or the like. Regarding the iodine electrolyte solutions composed of those compounds and solvents, however, the above-mentioned problem that the glass is eroded by the iodine electrolyte solution may occur. Therefore, it is preferred that the glass composition for a dye-sensitized solar cell of the present invention have a mass reduction of 0.1 mg/cm2 or less after being immersed in any one of those iodine electrolyte solutions at 25° C. for 2 weeks.
- Fifth, the glass composition for a dye-sensitized solar cell of the present invention is characterized by having a thermal expansion coefficient of 65 to 120×10−7/° C. Here, the “thermal expansion coefficient” refers to a value measured by a push-rod type thermal expansion coefficient measuring apparatus (TMA) in a temperature range of 30 to 300° C.
- Sixth, a material for a dye-sensitized solar cell of the present invention is characterized by including 50 to 100 vol % of a glass powder formed of the glass composition for a dye-sensitized solar cell and 0 to 50 vol % of a refractory filler powder. It should be noted that the material for a dye-sensitized solar cell of the present invention includes an aspect in which the material is formed only of the glass powder formed of the glass composition. Further, in the material for a dye-sensitized solar cell of the present invention, the content of the refractory filler powder is, from the viewpoint of fluidity, preferably 10 vol % or less or 5 vol % or less, and particularly preferably 1 vol % or less, and it is more preferred that the material be substantially free of the refractory filler powder (to be specific, the content of the refractory filler powder is 0.5 vol % or less). Particularly in the case where the material is used for the sealing, the gap between the transparent electrode substrate and the counter electrode substrate can be easily made small and uniform when the content of the refractory filler powder is reduced.
- Seventh, the material for a dye-sensitized solar cell of the present invention is characterized by having a softening point of 550° C. or lower. Here, the “softening point” refers to a value measured by a macro-type differential thermal analysis (DTA) apparatus. DTA initiates measurement from room temperature and has a rate of temperature rise of 10° C./min. It should be noted that the softening point measured by the macro-type DTA apparatus is represented by a temperature (Ts) at the fourth inflection point illustrated in
FIG. 1 . - Eighth, the material for a dye-sensitized solar cell of the present invention is characterized by being used for sealing. Here, the sealing includes sealing of a glass tube or the like in addition to sealing of the transparent electrode substrate and the counter electrode substrate. It should be noted that there is a case where multiple openings are provided on the transparent electrode substrate, the counter electrode substrate, and the like, and glass tubes are sealed to the respective multiple openings, and after that, a liquid containing a pigment or the like is circulated inside the dye-sensitized solar cell via the glass tubes, whereby the pigment is adsorbed to a porous oxide semiconductor. In this case, it becomes less likely that the leakage of the liquid or the like, etc. occur when the glass tubes are sealed using the material for a dye-sensitized solar cell of the present invention.
- Ninth, the material for a dye-sensitized solar cell of the present invention is characterized by being used for sealing by a laser beam.
- Tenth, the material for a dye-sensitized solar cell of the present invention is characterized by being used for overcoating a collector electrode.
- In the glass composition for a dye-sensitized solar cell of the present invention, when V2O5 and P2O5 are introduced as essential components into a glass composition, the erosion by the iodine electrolyte solution hardly occurs, and the mass reduction of the glass composition for a dye-sensitized solar cell after being immersed in the iodine electrolyte solution at 25° C. for 2 weeks can be set to 0.1 mg/cm2 or less. As a result, a sealed part, a partition wall, and a overcoated part are hardly eroded by the iodine electrolyte solution, and the degradation of the iodine electrolyte solution or the cell performances can be prevented for a long period of time.
- In a glass composition for a dye-sensitized solar cell of the present invention, the reason for limiting the range of a glass composition to the above range is described below. It should be noted that, unless otherwise mentioned, “%” used below means “mass %”.
- V2O5 is, as well as being a glass-forming oxide, a component which makes it less likely that the erosion by the iodine electrolyte solution occurs, and is also a component which lowers the melting point of glass. The content thereof is 20 to 70%, more preferably 30 to 60%, and still more preferably 45 to 55%. When the content of V2O5 is less than 20%, the viscosity of the glass becomes high and the baking temperature becomes high. Further, when the content of V2O5 is set to 45% or more, the fluidity of the glass improves, and a high airtightness can be obtained. On the other hand, when the content of V2O5 is more than 70%, the glass composition may be vitrified, but the devitrification resistance of the glass is easily lowered. Further, when the content of V2O5 is more than 70%, the glass becomes easily foamed at the time of baking. Further, when the content of V2O5 is 55% or less, the devitrification resistance can be improved and the thermal stability of the glass improves.
- P2O5 is, as well as being a glass-forming oxide, a component which makes it less likely that the erosion by the iodine electrolyte solution occurs, and is also a component which lowers the melting point of the glass. The content thereof is 10 to 50%, more preferably 15 to 35%, and still more preferably 20 to 30%. When the content of P2O5 is less than 10%, the thermal stability of the glass is easily lowered. On the other hand, when the content of P2O5 is more than 60%, the moisture resistance of the glass is easily deteriorated.
- The glass composition for a dye-sensitized solar cell of the present invention can contain, apart from the above components, the following components in a glass composition.
- ZnO+SrO+BaO+CuO is a network-modifier oxide which stabilizes the glass. The content thereof is 10 to 55% and more preferably 14 to 30%. When the content of ZnO+SrO+BaO+CuO is less than 10%, the effect of stabilizing the glass is poor, and when the content of ZnO+SrO+BaO+CuO is more than 55%, the balance between the components of the glass composition is disturbed, and the other way around, the glass becomes unstable and is easily devitrified at the time of forming a molten glass into the glass.
- ZnO is a component which stabilizes the glass. On the other hand, ZnO has a tendency of promoting the erosion of the glass by the iodine electrolyte solution. Therefore, the content thereof is 0 to 30%, more preferably 0 to 20%, still more preferably 0 to 15%, and particularly preferably 0 to 10%. When the content of ZnO is more than 30%, the devitrification resistance of the glass is easily lowered.
- SrO is, as well as being a component which improves the thermal stability of the glass and suppresses the devitrification of the glass, a component which lowers the viscosity of the glass. The content thereof is 0 to 20% and preferably 0 to 15%. When the content of SrO is more than 20%, the balance between the components of the glass composition is disturbed, and the other way around, the thermal stability of the glass is easily lowered.
- BaO is, as well as being a component which improves the thermal stability of the glass and suppresses the devitrification of the glass, a component which lowers the viscosity of the glass. The content thereof is 0 to 45% and more preferably 3 to 22%. When the content of BaO is more than 45%, the balance between the components of the glass composition is disturbed, and the other way around, the thermal stability of the glass is easily lowered.
- CuO is, as well as being a component which improves the thermal stability of the glass and suppresses the devitrification of the glass, a component which improves the weatherability of the glass. The content thereof is 0 to 15% and preferably 0 to 10%. When the content of CuO is more than 15%, the viscosity of the glass becomes too high, and the sealing temperature is easily increased.
- Further, in the glass composition for a dye-sensitized solar cell of the present invention, there can be introduced into a glass composition, in addition to the above components, up to 20% of CaO, MgO, TeO2, B2O3, Fe2O3, Al2O3, SiO2, and the like. It should be noted that, from the environmental viewpoint and the viewpoint of preventing the erosion by an iodine electrolyte solution, it is preferred that the glass composition for a dye-sensitized solar cell of the present invention be substantially free of PbO. Here, the phrase “be substantially free of PbO” refers to the case where the content of PbO in the glass composition is 1,000 ppm or less.
- In the glass composition for a dye-sensitized solar cell of the present invention, the mass reduction after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks is 0.1 mg/cm2 or less and preferably 0.05 mg/cm2 or less, and it is still more preferred that there be substantially no mass reduction. When the mass reduction is 0.1 mg/cm2 or less, the degradation of the iodine electrolyte solution or the cell performances can be prevented for a long period of time. Here, “be substantially no mass reduction” refers to the case where the mass reduction is 0.01 mg/cm2 or less.
- In the glass composition for a dye-sensitized solar cell of the present invention, the thermal expansion coefficient is preferably 65 to 120×10−7/° C. and more preferably 80 to 110×10−7/° C. When the difference between the thermal expansion coefficient of the glass composition for a dye-sensitized solar cell of the present invention and the thermal expansion coefficient of a glass substrate (e.g., soda glass substrate) used for the transparent electrode substrate or the like is too large, there remains, unless a refractory filler powder is added thereto, undue stress on the glass substrate, a sealed part, or the like after baking, and hence, it becomes more likely that a crack is generated on the glass substrate, the sealed part, or the like, or peeling occurs at the sealed part.
- The material for a dye-sensitized solar cell of the present invention is preferably formed only of a glass powder formed of the glass composition for a dye-sensitized solar cell. In such a manner, the cell gap of the solar cell can be easily made small and uniform, and also, a mixing process or the like of the refractory filler powder, etc. becomes unnecessary. Therefore, the production cost of the material for a dye-sensitized solar cell can be reduced.
- The material for a dye-sensitized solar cell of the present invention may contain a refractory filler powder in order to improve the mechanical strength or to decrease the thermal expansion coefficient. On the other hand, if the addition amount of the refractory filler powder is decreased, the fluidity, or in particular, the sealing property, of the material for a dye-sensitized solar cell can be enhanced. Accordingly, the mixing ratio is 50 to 100 vol % of the glass powder to 0 to 50 vol % of the refractory filler powder, preferably 65 to 100 vol % of the glass powder to 0 to 35 vol % of the refractory filler powder, and more preferably 95 to 100 vol % of the glass powder to 0 to 5 vol % of the refractory filler powder, and it is desired that, from the reasons stated above, the material be substantially free of the refractory filler powder. When the content of the refractory filler powder is more than 50 vol %, the ratio of the glass powder relatively becomes too low, and hence, it becomes difficult to obtain the desired fluidity.
- In general, the cell gap of the dye-sensitized solar cell is 50 μm or less, which is extremely small. Therefore, when the particle size of the refractory filler powder is too large, a protrusion is generated locally at the sealed part, and hence, it becomes difficult to make the cell gap uniform. In order to prevent such situation, the maximum particle size of the refractory filler powder is preferably 25 μm or less and more preferably 15 μm or less. Here, the “maximum particle size” refers to the particle size of a particle in which, in a cumulative particle size distribution curve on a volumetric basis when measured by a laser diffraction method, the integrated quantity thereof is 99% when accumulated in the order starting from the particle having the smallest particle size.
- The material of the refractory filler powder is not particularly limited, and is preferably a material which hardly reacts with the glass powder formed of the glass composition for a dye-sensitized solar cell of the present invention and the iodine electrolyte solution. Specifically, as the refractory filler powder, there can be used zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, zirconium phosphate, zirconium phosphotungstate, zirconium tungstate, willemite, a compound having [AB2(MO4)3] as a basic structure where A represents Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn, or the like, B represents Zr, Ti, Sn, Nb, Al, Sc, Y, or the like, and M represents P, Si, W, Mo, or the like, and a solid solution thereof.
- In the material for a dye-sensitized solar cell of the present invention, the softening point is preferably 550° C. or lower and more preferably 500° C. or lower. When the softening point is higher than 500° C., the viscosity of the glass becomes too high and the sealing temperature is unduly increased, and hence, the glass substrate is easily deformed. Further, in the case where the material for a dye-sensitized solar cell and a porous oxide semiconductor layer are baked simultaneously, the fusion of oxide semiconductor particles may proceed too much when the sealing temperature is too high. In such a case, the surface area of the porous oxide semiconductor layer decreases, which makes it less likely that a pigment is adsorbed thereto.
- In the material for a dye-sensitized solar cell of the present invention, the mass reduction after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks is 0.1 mg/cm2 or less and preferably 0.05 mg/cm2 or less, and it is desired that there be substantially no mass reduction. When the mass reduction is 0.1 mg/cm2 or less, the deterioration of the iodine electrolyte solution or the cell performances can be prevented for a long period of time.
- The material for a dye-sensitized solar cell of the present invention in a powder form may be used as it is, and when the material is kneaded homogeneously with a vehicle and processed into a paste, it becomes easier to handle. The vehicle is mainly composed of a solvent and a resin, and the resin is added thereto for adjusting the viscosity of the paste. Further, a surfactant, a thickener, or the like may also be added thereto, if required. The produced paste is subjected to coating by using a coating machine such as a dispenser or a screen printing machine.
- As the resin, there can be used an acrylate (acrylic resin), ethylcellulose, a polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, a methacrylate, and the like. In particular, an acrylate and nitrocellulose are preferred because of having good thermolytic property.
- As the solvent, N,N′-dimethyl formamide (DMF), there can be used α-terpineol, a higher alcohol, γ-butyrolactone (γ-BL), tetralin, butylcarbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycolmonoethyl ether, diethylene glycolmonoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycolmonomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone, and the like. In particular, α-terpineol is preferred because of having high viscosity and good solubility of a resin and the like.
- The material for a dye-sensitized solar cell of the present invention is preferably used for a sealing purpose, and particularly preferably used for sealing a transparent electrode substrate and a counter electrode substrate. The material for a dye-sensitized solar cell of the present invention has low-melting point property and is hardly eroded by the iodine electrolyte solution, and hence, the iodine electrolyte solution hardly leaks during long-term use and the prolonged lifetime of the solar cell can be expected. Further, in the case where the material is used for sealing the transparent electrode substrate and the counter electrode substrate, a spacer such as a glass bead may be added to the material for a dye-sensitized solar cell of the present invention in order to make the cell gap of the solar cell uniform.
- The material for a dye-sensitized solar cell of the present invention contains 20% or more of V2O5 in a glass composition, and hence, the material can be subjected to a sealing treatment by a laser beam. When the laser beam is used, the material for a dye-sensitized solar cell can be locally heated. Therefore, the transparent electrode substrate and the counter electrode substrate can be sealed while preventing the heat deterioration of a constituent member such as the iodine electrolyte solution. In the case where the transparent electrode substrate and the counter electrode substrate are sealed by using the laser beam, the material for a dye-sensitized solar cell of the present invention contains preferably 30% or more or 40% or more, or particularly preferably 45% or more of V2O5 in a glass composition. When the content of V2O5 is thus regulated, light energy of the laser beam can be effectively converted into heat energy, in other words, the laser beam can be absorbed to the glass accurately, and hence, only the parts to be sealed can be locally heated accurately. On the other hand, when the content of V2O5 is regulated to 70% or less, and particularly to 60% or less, a situation that the glass is devitrified at the time of irradiating the laser beam can be prevented. Here, various laser beams can be used as the laser beam, and in particular, a semiconductor laser, a YAG laser, a CO2 laser, an excimer laser, an infrared laser, and the like are suitable, because they are easy to handle. Further, in order to allow the glass to absorb the laser beam accurately, the laser beam preferably has an emission center wavelength of 500 to 1,600 nm and preferably 750 to 1,300 nm.
- The material for a dye-sensitized solar cell of the present invention is preferably used for overcoating a collector electrode. In general, there is used Ag for the collector electrode, but Ag is easily eroded by the iodine electrolyte solution. Accordingly, in the case where Ag is used for the collector electrode, the collector electrode needs to be protected. The material for a dye-sensitized solar cell of the present invention has low-melting point property, and hence, a dense coating layer can be formed at low temperature. In addition, the material is hardly eroded by the iodine electrolyte solution, and hence can protect the collector electrode for a long period of time.
- The material for a dye-sensitized solar cell of the present invention can be used for forming a partition wall. In general, in the case where the partition wall is formed in the dye-sensitized solar cell, inside the cell is filled with the iodine electrolyte solution. The material for a dye-sensitized solar cell of the present invention has low-melting point property, and hence, a dense partition wall can be formed at low temperature. In addition, the material is hardly eroded by the iodine electrolyte solution, and hence can prevent tearing of the partition wall for a long period of time.
- The present invention is described in detail based on examples. Table 1 shows Examples (Sample Nos. 1 to 5) and Comparative Examples (Sample No. 6) of the present invention.
-
TABLE 1 Comparative Example Example 1 2 3 4 5 6 Glass V2O5 50.0 46.0 47.5 55.0 50.0 — composition P2O5 25.0 29.0 25.0 28.0 25.0 — (mass %) ZnO 7.5 12.5 — 2.0 7.5 — BaO 14.0 12.5 20.0 14.0 3.0 — SrO 3.5 — — 1.0 14.5 — CuO — — 7.5 — — — PbO — — — — — 85.3 B2O3 — — — — — 12.7 SiO2 — — — — — 1.0 Al2O3 — — — — — 1.0 Refractory filler Absent Absent Absent Absent Absent PbTiO3 powder (vol %) 37 Thermal expansion 93 86 98 99 94 73 coefficient (10−7/° C.) Softening point (° C.) 420 437 449 438 431 390 Mass reduction 0.00 0.00 0.00 0.00 0.00 0.32 (mg/cm2) - Each of the samples described in the table was prepared as follows. First, a glass batch in which raw materials such as various oxides and carbonates were mixed so as to have a glass composition shown in the table was prepared, and was then loaded into a platinum crucible and melted at 1,000 to 1,200° C. for 1 to hours. Next, a part of the molten glass, which serves as a sample for measuring a thermal expansion coefficient, was poured into a die made of stainless steel, and the remaining molten glass was formed into a flaky shape by a water cooled roller. The sample for measuring a thermal expansion coefficient was subjected to a predetermined annealing treatment. Finally, the flaky glass was pulverized by a ball mill and then allowed to pass through a sieve having a mesh of 75 μm, whereby each glass powder having an average particle size of about 10 μm was obtained. It should be noted that Sample No. 6 is a sample which is obtained by adding the refractory filler powder (lead titanate, average particle size of 10 μm) shown in the table to the glass composition at the ratio shown in the table and mixing the resultant.
- Next, each glass powder (mixed powder in the case of Sample No. 6) and a vehicle (which was obtained by dissolving ethylcellulose in α-terpineol) were kneaded into a paste. The paste was screen printed on a soda glass substrate (thermal expansion coefficient: 100×10−7/° C.) so as to have a diameter of 40 mm and a thickness of 40 to 80 μm, followed by drying at 120° C. for 10 minutes and then baking at 500° C. for 30 minutes in an electric furnace, whereby a sample for evaluating mass reduction was obtained.
- The above samples were used, and the thermal expansion coefficient, the softening point, and the mass reduction with respect to an iodine electrolyte solution were evaluated. The results are shown in Table 1.
- The thermal expansion coefficient was measured by a TMA measuring apparatus. The thermal expansion coefficient was measured at a temperature range of 30 to 300° C. It should be noted that Sample No. 6 was processed to have a predetermined shape by densely sintering the mixed powder, and then was used as a measurement sample.
- The softening point was determined by a DTA apparatus. The measurement was performed in air and the rate of temperature rise was set to 10° C./min.
- The mass reduction was calculated as follows. First, the mass of the sample for evaluating mass reduction and the surface area of the baked film which is in contact with the iodine electrolyte solution were measured. Next, the sample was immersed in the iodine electrolyte solution inside a closed container made of glass, and then the closed container made of glass was left standing still in a thermostat at 25° C. The mass reduction was calculated by dividing a value obtained by subtracting the mass of the sample after the elapse of 2 weeks from the mass of the sample before the immersion by the surface area of the baked film. As the iodine electrolyte solution used for the evaluation of the mass reduction, there was used a solution in which 0.1 M lithium iodide, 0.05 M iodine, 0.5 M tert-butylpyridine, and 0.6 M 1,2-dimethyl-3-propyl imidazolium iodide were added to acetonitrile.
- As is clear from Table 1, Sample Nos. 1 to 5 each had a thermal expansion coefficient of 86 to 99×10−7/° C. and a softening point of 420 to 449° C. Further, in each sample for measuring mass reduction, the baked film satisfactorily adhered to the glass substrate without causing peeling. In addition, the mass reduction could not be confirmed in each of Sample Nos. 1 to 5, so Sample Nos. 1 to 5 were hardly eroded by the iodine electrolyte solution. On the other hand, Sample No. 6 had a mass reduction of 0.32 mg/cm2, because Sample No. 6 used lead glass, so Sample No. 6 was eroded by the iodine electrolyte solution.
- The glass composition for a dye-sensitized solar cell and the material for a dye-sensitized solar cell of the present invention are suitable for sealing the transparent electrode substrate and the counter electrode substrate of a dye-sensitized solar cell, forming the partition wall for dividing cells, and overcoating the collector electrode.
-
FIG. 1 is a schematic diagram illustrating a softening point of glass measured by a macro-type DTA apparatus.
Claims (10)
1. A glass composition for a dye-sensitized solar cell, comprising as a glass composition, in terms of mass %, 20 to 70% of V2O5 and 10 to 50% of P2O5.
2. A glass composition for a dye-sensitized solar cell according to claim 1 , further comprising as a glass composition, in terms of mass %, 10 to 55% of ZnO+SrO+BaO+CuO.
3. A glass composition for a dye-sensitized solar cell according to claim 2 , comprising, in terms of mass %, 0 to 30% of ZnO, 0 to 20% of SrO, 0 to 45% of BaO, and 0 to 15% of CuO.
4. A glass composition for a dye-sensitized solar cell according to claim 1 , which has a mass reduction of 0.1 mg/cm2 or less after being immersed in an iodine electrolyte solution at 25° C. for 2 weeks.
5. A glass composition for a dye-sensitized solar cell according to claim 1 , which has a thermal expansion coefficient of 65 to 120×10−7/° C.
6. A material for a dye-sensitized solar cell, comprising:
50 to 100 vol % of a glass powder formed of the glass composition for a dye-sensitized solar cell according to any one of claims 1 to 5; and
to 50 vol % of a refractory filler powder.
7. A material for a dye-sensitized solar cell according to claim 6 , which has a softening point of 550° C. or lower.
8. A material for a dye-sensitized solar cell according to claim 6 , which is used for sealing.
9. A material for a dye-sensitized solar cell according to claim 8 , which is used for sealing by a laser beam.
10. A material for a dye-sensitized solar cell according to claim 6 , which is used for overcoating a collector electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/981,808 US8106294B2 (en) | 2008-04-18 | 2010-12-30 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008108766 | 2008-04-18 | ||
JP2008-108766 | 2008-04-18 | ||
PCT/JP2009/057519 WO2009128451A1 (en) | 2008-04-18 | 2009-04-14 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057519 Continuation WO2009128451A1 (en) | 2008-04-18 | 2009-04-14 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/981,808 Division US8106294B2 (en) | 2008-04-18 | 2010-12-30 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090275461A1 true US20090275461A1 (en) | 2009-11-05 |
Family
ID=41199140
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/457,173 Abandoned US20090275461A1 (en) | 2008-04-18 | 2009-06-03 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
US12/981,808 Expired - Fee Related US8106294B2 (en) | 2008-04-18 | 2010-12-30 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/981,808 Expired - Fee Related US8106294B2 (en) | 2008-04-18 | 2010-12-30 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
Country Status (4)
Country | Link |
---|---|
US (2) | US20090275461A1 (en) |
EP (1) | EP2295384A4 (en) |
JP (1) | JP5489054B2 (en) |
WO (1) | WO2009128451A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110094584A1 (en) * | 2008-06-17 | 2011-04-28 | Nippon Electric Glass Co., Ltd. | Solar cell substrate and oxide semiconductor electrode for dye-sensitized solar cell |
US20120063076A1 (en) * | 2009-03-27 | 2012-03-15 | Kei Yoshimura | Glass composition and covering and sealing members using same |
WO2012058454A1 (en) * | 2010-10-29 | 2012-05-03 | First Solar, Inc. | Photovoltaic module substrate |
CN102709062A (en) * | 2012-06-05 | 2012-10-03 | 南昌航空大学 | Sealing method of dye-sensitized solar cell |
TWI462916B (en) * | 2011-05-16 | 2014-12-01 | Univ Nat Chiao Tung | Ruthenium complex-based photosensitizer dyes for dye-sensitized solar cells |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2295384A4 (en) | 2008-04-18 | 2013-12-18 | Nippon Electric Glass Co | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
JP2011044426A (en) | 2009-07-24 | 2011-03-03 | Nippon Electric Glass Co Ltd | Glass substrate with conductive film for solar cell |
JP5401712B2 (en) * | 2010-06-23 | 2014-01-29 | ペクセル・テクノロジーズ株式会社 | Photoelectric conversion element and dye-sensitized solar cell using the same |
JP2013155059A (en) * | 2012-01-27 | 2013-08-15 | Nippon Electric Glass Co Ltd | Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell |
MX351108B (en) | 2012-04-19 | 2017-10-02 | Univ Florida | Dual action lethal containers and compositions for killing adult mosquitos and larvae. |
EP2967020B1 (en) | 2013-03-12 | 2021-06-30 | University of Florida Research Foundation, Inc. | Mosquito control devices using durable coating-embedded pesticides |
US9775335B2 (en) | 2013-03-12 | 2017-10-03 | University Of Florida Research Foundation, Inc. | Durable coating-embedded pesticides with peel and stick mosquito treatment of containers |
WO2016110986A1 (en) * | 2015-01-08 | 2016-07-14 | ヤマト電子株式会社 | Crystallized glass and binding method, and method for producing molded product |
KR101989364B1 (en) * | 2016-07-29 | 2019-06-14 | 공주대학교 산학협력단 | Glass materials for large scale dye-sensitized solar cell sealing and pastes comprising the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4342943A (en) * | 1979-10-17 | 1982-08-03 | Owens-Illinois, Inc. | P2 O5 -V2 O5 -PbO glass which reduces arcing in funnel portion of CRT |
US4741849A (en) * | 1984-11-02 | 1988-05-03 | Hitachi, Ltd. | Ceramic body glass composition for bonding and filling ceramic parts thereof |
US4927721A (en) * | 1988-02-12 | 1990-05-22 | Michael Gratzel | Photo-electrochemical cell |
US5076876A (en) * | 1989-06-21 | 1991-12-31 | Diemat, Inc. | Method of attaching an electronic device to a substrate |
US6103648A (en) * | 1998-05-28 | 2000-08-15 | Circon Corporation | Bulk conducting glass compositions and fibers |
US20060003883A1 (en) * | 2003-06-27 | 2006-01-05 | Masahiro Yoshida | Lead-free glass material for use in sealing and, sealed article and method for sealing using the same |
US20070286973A1 (en) * | 2006-06-02 | 2007-12-13 | Yuichi Sawai | Display Apparatus |
US20090064717A1 (en) * | 2007-09-10 | 2009-03-12 | Dongjin Semichem Co., Ltd. | Glass Frit And Sealing Method For Element Using The Same |
US20090136766A1 (en) * | 2007-11-26 | 2009-05-28 | Dongjin Semichem Co., Ltd. | Low melting point frit paste composition and sealing method for electric element using the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU774443B2 (en) * | 1999-06-30 | 2004-06-24 | Jgc Catalysts And Chemicals Ltd. | Photoelectric cell |
JP4574816B2 (en) | 2000-08-25 | 2010-11-04 | シャープ株式会社 | Color solar cell and manufacturing method thereof |
JP2004292247A (en) | 2003-03-27 | 2004-10-21 | Fujikura Ltd | Joining method of glass substrate |
US6998776B2 (en) * | 2003-04-16 | 2006-02-14 | Corning Incorporated | Glass package that is hermetically sealed with a frit and method of fabrication |
AU2004306318C1 (en) * | 2003-10-06 | 2008-10-09 | Ngk Spark Plug Co., Ltd. | Dye-sensitized solar cell |
US20070006917A1 (en) * | 2003-10-06 | 2007-01-11 | Ichiro Gonda | Dye-sensitized solar cell |
JP5041323B2 (en) * | 2005-05-09 | 2012-10-03 | 日本電気硝子株式会社 | Powder material and paste material |
US8093491B2 (en) * | 2005-06-03 | 2012-01-10 | Ferro Corporation | Lead free solar cell contacts |
JP4800849B2 (en) * | 2006-06-02 | 2011-10-26 | 株式会社日立製作所 | Glass sealing material, frame glass for flat panel display, and flat panel display |
JP2008147154A (en) * | 2006-11-17 | 2008-06-26 | Sumitomo Chemical Co Ltd | Photoelectrochemical cell |
EP2295384A4 (en) | 2008-04-18 | 2013-12-18 | Nippon Electric Glass Co | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
-
2009
- 2009-04-14 EP EP09700058.2A patent/EP2295384A4/en not_active Withdrawn
- 2009-04-14 WO PCT/JP2009/057519 patent/WO2009128451A1/en active Application Filing
- 2009-04-16 JP JP2009099729A patent/JP5489054B2/en not_active Expired - Fee Related
- 2009-06-03 US US12/457,173 patent/US20090275461A1/en not_active Abandoned
-
2010
- 2010-12-30 US US12/981,808 patent/US8106294B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4342943A (en) * | 1979-10-17 | 1982-08-03 | Owens-Illinois, Inc. | P2 O5 -V2 O5 -PbO glass which reduces arcing in funnel portion of CRT |
US4741849A (en) * | 1984-11-02 | 1988-05-03 | Hitachi, Ltd. | Ceramic body glass composition for bonding and filling ceramic parts thereof |
US4927721A (en) * | 1988-02-12 | 1990-05-22 | Michael Gratzel | Photo-electrochemical cell |
US5084365A (en) * | 1988-02-12 | 1992-01-28 | Michael Gratzel | Photo-electrochemical cell and process of making same |
US5076876A (en) * | 1989-06-21 | 1991-12-31 | Diemat, Inc. | Method of attaching an electronic device to a substrate |
US6103648A (en) * | 1998-05-28 | 2000-08-15 | Circon Corporation | Bulk conducting glass compositions and fibers |
US20060003883A1 (en) * | 2003-06-27 | 2006-01-05 | Masahiro Yoshida | Lead-free glass material for use in sealing and, sealed article and method for sealing using the same |
US20070286973A1 (en) * | 2006-06-02 | 2007-12-13 | Yuichi Sawai | Display Apparatus |
US20090064717A1 (en) * | 2007-09-10 | 2009-03-12 | Dongjin Semichem Co., Ltd. | Glass Frit And Sealing Method For Element Using The Same |
US20090136766A1 (en) * | 2007-11-26 | 2009-05-28 | Dongjin Semichem Co., Ltd. | Low melting point frit paste composition and sealing method for electric element using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110094584A1 (en) * | 2008-06-17 | 2011-04-28 | Nippon Electric Glass Co., Ltd. | Solar cell substrate and oxide semiconductor electrode for dye-sensitized solar cell |
US20120063076A1 (en) * | 2009-03-27 | 2012-03-15 | Kei Yoshimura | Glass composition and covering and sealing members using same |
US9048056B2 (en) * | 2009-03-27 | 2015-06-02 | Hitachi Powdered Metals Co., Ltd. | Glass composition and covering and sealing members using same |
WO2012058454A1 (en) * | 2010-10-29 | 2012-05-03 | First Solar, Inc. | Photovoltaic module substrate |
TWI462916B (en) * | 2011-05-16 | 2014-12-01 | Univ Nat Chiao Tung | Ruthenium complex-based photosensitizer dyes for dye-sensitized solar cells |
CN102709062A (en) * | 2012-06-05 | 2012-10-03 | 南昌航空大学 | Sealing method of dye-sensitized solar cell |
Also Published As
Publication number | Publication date |
---|---|
US8106294B2 (en) | 2012-01-31 |
EP2295384A1 (en) | 2011-03-16 |
US20110094581A1 (en) | 2011-04-28 |
EP2295384A4 (en) | 2013-12-18 |
JP2009274948A (en) | 2009-11-26 |
WO2009128451A1 (en) | 2009-10-22 |
JP5489054B2 (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8106294B2 (en) | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell | |
US20090272294A1 (en) | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell | |
JP5713422B2 (en) | Dye-sensitized solar cell glass composition and dye-sensitized solar cell material | |
JP6455801B2 (en) | Sealing material | |
JP5413373B2 (en) | Laser sealing glass material, glass member with sealing material layer, and electronic device and manufacturing method thereof | |
JP5418594B2 (en) | Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof | |
KR20110087265A (en) | Glass member with sealing material layer, electronic device using same and manufacturing method thereof | |
US20150037594A1 (en) | Glass composition, sealing material, and sealed package | |
US20130284266A1 (en) | Electronic device and manufacturing method thereof | |
JP6075715B2 (en) | Bismuth glass and sealing material using the same | |
JP2011126722A (en) | Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell | |
JP2010280554A (en) | Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell | |
JP5713189B2 (en) | Dye-sensitized solar cell glass and dye-sensitized solar cell material | |
JP2013155059A (en) | Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell | |
WO2014010553A1 (en) | Sealing material for dye-sensitized solar cells | |
JP5534553B2 (en) | Dye-sensitized solar cell glass composition and dye-sensitized solar cell material | |
JP2022003682A (en) | Seal-and-bonding package and organic electroluminescent device | |
JP5354447B2 (en) | Dye-sensitized solar cell glass composition and dye-sensitized solar cell material | |
JP2013119501A (en) | Methods for producing glass member added with sealing material layer, and hermetic member | |
JP2011051811A (en) | Method for manufacturing glass member with sealing material layer and method for manufacturing electronic device | |
JP2015020914A (en) | Manufacturing method of glass package | |
JP2021066647A (en) | Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package and organic electroluminescence element | |
JP2014037334A (en) | Lead-free glass for laser sealing and glass ceramic composition using the same | |
JP6840982B2 (en) | Bismuth glass and sealing materials using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON ELECTRIC GLASS CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAWADA, MASAHIRO;HAYASHI, MASAAKI;AMANO, KOUJI;AND OTHERS;REEL/FRAME:022984/0807;SIGNING DATES FROM 20090602 TO 20090603 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |