US20090252964A1 - Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder - Google Patents
Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder Download PDFInfo
- Publication number
- US20090252964A1 US20090252964A1 US12/476,853 US47685309A US2009252964A1 US 20090252964 A1 US20090252964 A1 US 20090252964A1 US 47685309 A US47685309 A US 47685309A US 2009252964 A1 US2009252964 A1 US 2009252964A1
- Authority
- US
- United States
- Prior art keywords
- aluminum hydroxide
- vessel
- aqueous sodium
- aggregated particles
- sodium aluminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title claims abstract description 93
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title abstract description 29
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 title description 29
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002002 slurry Substances 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 238000003825 pressing Methods 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 6
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 abstract description 65
- 229910001388 sodium aluminate Inorganic materials 0.000 abstract description 65
- 238000003756 stirring Methods 0.000 abstract description 17
- 238000007599 discharging Methods 0.000 abstract description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 229910052593 corundum Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 239000002928 artificial marble Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 241001417527 Pempheridae Species 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011796 hollow space material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920006337 unsaturated polyester resin Polymers 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- -1 aluminum sulfate Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/006—Baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/09—Stirrers characterised by the mounting of the stirrers with respect to the receptacle
- B01F27/091—Stirrers characterised by the mounting of the stirrers with respect to the receptacle with elements co-operating with receptacle wall or bottom, e.g. for scraping the receptacle wall
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/19—Stirrers with two or more mixing elements mounted in sequence on the same axis
- B01F27/192—Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/86—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/91—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/50—Mixing receptacles
- B01F35/511—Mixing receptacles provided with liners, e.g. wear resistant or flexible liners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/0066—Stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1812—Tubular reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/14—Aluminium oxide or hydroxide from alkali metal aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/14—Aluminium oxide or hydroxide from alkali metal aluminates
- C01F7/144—Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by precipitation due to cooling, e.g. as part of the Bayer process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/14—Aluminium oxide or hydroxide from alkali metal aluminates
- C01F7/144—Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by precipitation due to cooling, e.g. as part of the Bayer process
- C01F7/147—Apparatus for precipitation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/40—Compounds of aluminium
- C09C1/407—Aluminium oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/044—Numerical composition values of components or mixtures, e.g. percentage of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0472—Numerical temperature values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0477—Numerical time values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00761—Details of the reactor
- B01J2219/00763—Baffles
- B01J2219/00765—Baffles attached to the reactor wall
- B01J2219/00768—Baffles attached to the reactor wall vertical
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- This invention relates to a process for producing aluminum hydroxide powder which makes it possible to obtain a filler-containing resin composition having an improved transparency, aluminum hydroxide aggregated particles which are the material therefor, a process for producing the same, and a vessel used therefor.
- Aluminum hydroxide powder is often used as a filler for resins, such as unsaturated polyester resin, in producing artificial marble and the like.
- resins such as unsaturated polyester resin
- the powder is required to be excellent in filling property for resins and, at the same time, not to impair the transparency of resulting resin compositions.
- JP 63-23131 B discloses a process which comprises connecting plural vessels in series, feeding a supersaturated aqueous sodium aluminate solution continuously to the first vessel, hydrolyzing the supersaturated aqueous sodium aluminate solution in the presence of seeds, and allowing hydrolysis to proceed while sending the solution successively to the second vessel and the third vessel, to obtain aluminum hydroxide.
- the object of this invention is to provide aluminum hydroxide aggregated particles which can be suitably used for producing aluminum hydroxide powder which can give a resin composition that shows a high transparency when filled in resins or the like, a process for producing the aggregated particles, a vessel used therefor, and a process for producing aluminum hydroxide powder which uses the aggregated particles.
- FIG. 1 is a schematic sectional view showing one embodiment of a vessel according to this invention.
- FIG. 2 is a schematic transverse sectional view of the vessel shown in FIG. 1 .
- aluminum hydroxide aggregated particles which have an average particle diameter of not less than 40 ⁇ m, an average particle diameter as determined after pressing at: 1,000 kg/cm 2 of not more than 35 ⁇ m, and an L value of slurry obtained by mixing 20 ml of glycerol and 10 g of the aluminum hydroxide aggregated particles of not more than 69.
- a vessel used for the above-mentioned process for producing aluminum hydroxide aggregated particles that is, a vessel having a hollow space defined by a surrounding wall and a bottom part, wherein the vessel has:
- baffle plates mounted on an inner surface of the wall so that the baffle plates protrude toward the hollow space and extend in vertical direction along the inner surface of the wall from immediately above the bottom part to a prescribed height from the bottom part
- a stirring blade located within the hollow space and within a space below the prescribed height of the baffle plates.
- the aluminum hydroxide aggregated particles (hereinafter referred to as “aggregated particles”) of this invention have an average particle diameter of 40 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more, and has an average particle diameter, as determined after pressed at 1,000 kg/cm 2 , of not more than 35 ⁇ m.
- the aggregated particles are each an assembly of at least 2, preferably 8 or more primary particles.
- the average particle diameter determined after pressing is smaller than the average particle diameter before pressing, and the difference of average particle diameter before and after pressing is usually not less than 5 ⁇ m. The fact that the average particle diameter determined after pressing is smaller indicates that the cohesive force of the aggregated particle is weak and the particle is easily disintegrated to yield primary particles.
- the average particle diameter mentioned above can be determined with a laser scattering type particle distribution measuring apparatus.
- a slurry obtained by mixing 20 ml of glycerol and 10 g of aggregated particles shows an L value of not more than 69 in the Lab indication system specified by Commission International de l'Eclairage.
- the L value of aggregated particles is the smaller the better, and is, for example, preferably not more than 65, more preferably not more than 63.
- the aggregated particles of this invention having characteristic properties shown above can be obtained, for example, by a process which comprises the steps of (a) feeding a supersaturated aqueous sodium aluminate solution to a vessel, (b) adding aluminum hydroxide seeds (hereinafter abbreviated as “seeds”) to the supersaturated aqueous sodium aluminate solution to form a seed-added solution in the vessel, (c) stirring the seed-added solution in the vessel while continuously feeding an additional supersaturated aqueous sodium aluminate solution into the vessel, to hydrolyze the supersaturated aqueous sodium aluminate solution to obtain aggregated particles, (d) separating the aggregated particles from the aqueous sodium aluminate solution, and (e) continuously discharging the aqueous sodium aluminate solution out of the vessel.
- seeds aluminum hydroxide seeds
- the supersaturated aqueous sodium aluminate solution fed into the vessel preferably has an effective Na 2 O (caustic Na 2 O) concentration of about 120-180 g/l, an Al 2 O 3 concentration of about 120-180 g/l and a molar ratio (Na 2 O/Al 2 O 3 ) of about 1.2-1.8.
- effective Na 2 O refers to a value obtained by subtracting Na 2 CO 3 content (in terms of Na 2 O) from the total Na 2 O content in the aqueous sodium aluminate solution.
- the supersaturated aqueous sodium aluminate solution can be prepared, for example, by a method which comprises mixing bauxite with an aqueous sodium hydroxide solution, heating the resulting mixture at 120° C. or above to extract the alumina component in the bauxite, then subjecting the mixture to separation for example with a thickener, filtering the aqueous sodium aluminate solution thus obtained, and cooling the filtrate, or a method which comprises mixing aluminum hydroxide with sodium hydroxide, heating the mixture at 120° C. or above to dissolve aluminum hydroxide, subjecting the mixture to separation, e.g., filtration, and cooling the aqueous sodium aluminate solution thus obtained.
- the supersaturated aqueous sodium aluminate solution can also be prepared by a method which comprises mixing aluminum hydroxide with a saturated aqueous sodium aluminate solution after hydrolysis or an unsaturated aqueous sodium aluminate solution heating the mixture at 120° C. or above to dissolve aluminum hydroxide, followed by filtration, and cooling the aqueous sodium aluminate solution thus obtained.
- the seeds added in step (b) preferably have an average particle diameter of about 1-2 ⁇ m.
- the seeds prepared by a method which comprises, without resorting to grinding, adding an acid aluminum salt, such as aluminum sulfate, to an aqueous sodium aluminate solution to cause hydrolysis are more preferable than those obtained by grinding coarse aluminum hydroxide. Addition of seeds can shorten the induction period which elapses till aluminum hydroxide is formed by hydrolysis of the supersaturated aqueous sodium aluminate, as well as control the particle diameter of aluminum hydroxide powder ultimately obtained.
- the amount of seeds can be appropriately determined according to the particle diameter of the intended aluminum hydroxide powder.
- the stirring in step (c) is conducted, for example, by using a mechanical stirrer.
- the peripheral velocity of the stirring blade is preferably 0.1 m/s or more.
- the peripheral velocity is preferably not more than 5 m/s.
- the separation in step (d) can be conducted, for example, by a method which utilizes specific gravity difference between the aggregated particles and the aqueous sodium aluminate solution.
- the aggregated particles move toward the lower part of the vessel and the aqueous sodium aluminate solution moves toward the upper part of the vessel, so that the aggregated particles sediment at the lower part of the vessel to give a slurry having a high solid concentration.
- the slurry has a concentration of solid (aggregated particles) of preferably 600 g/l or more, more preferably 700 g/l or more, and preferably not more than 1000 g/l, more preferably not more than 900 g/l.
- the aqueous sodium aluminate solution discharged out of the vessel preferably has an effective Na 2 O (caustic Na 2 O) concentration of about 120-180 g/l, an Al 2 O 3 concentration of about 60-80 g/l and a molar ratio (Na 2 O/Al 2 O 3 ) about 2-3.5.
- the above-mentioned steps (a), (b), (c), (d) and (e) are preferably conducted in a single vessel.
- the vessel 3 has at its lower part a supply port (not shown in the Figure) and baffle plates 4 .
- the baffle plates 4 protrude from the inner circumferential surface of the wall of vessel 3 and are provided in plurality (e.g., 2-10) at predetermined intervals in the peripheral direction of vessel 3 .
- Each of the baffle plates 4 extrudes from immediately above the bottom part of vessel 3 long along the vertical direction (the direction of the rotating shaft) of vessel 3 .
- baffle plates 4 thus provided, stirring efficiency is improved and, at the time of stirring, an ascending current is formed along the inner surface of the wall of vessel 3 , whereby the slurry in the concentrating region 1 specified by the height of baffle plates 4 can be brought to a substantially complete mixings state.
- the reachable height of the ascending current is influenced by the height of baffle plates 4 . The more the height of baffle plates 4 is increased, the higher point the ascending current reaches, and the concentrating region 1 increases in size.
- baffle plates 4 and the upper end of the concentrating region 1 are approximately at the same level.
- the height of baffle plates 4 is, relative to the total height of the vessel 3 , preferably 50% or more, more preferably 70% or more, most preferably 75% or more, and preferably not more than 90%, and more preferably not more than 80%.
- Vessel 3 has a stirrer 7 which consists of a stirring blade 5 and a rotating shaft 6 which drives blade 5 .
- Stirring blade 5 is, for example, a stirring vane and is provided in concentrating region 1 .
- Rotating shaft 6 is usually provided at the center of the section, perpendicular to the longitudinal direction, of vessel 3 . By the rotation of stirring blade 5 , the slurry of concentrating region 1 is stirred.
- a sweeper 8 is provided at the lower end part of rotating shaft 6 . With the aid of sweeper 8 , sedimentation of aggregated particles to the bottom part of vessel 3 can be prevented.
- vessel 3 When the aggregated particles are produced by using vessel 3 , in vessel 3 are formed a concentrating region 1 and, above concentrating region 1 , a clarifying region 2 . With vessel 3 alone, in addition to the hydrolysis of the supersaturated aqueous sodium aluminate solution and the separation of the aggregated particles from the aqueous sodium aluminate solution, concentration of the aggregated particles can also be conducted.
- the internal circumferential surface of the wall of vessel 3 below the height not higher than baffle plates 4 and the inner surface of the bottom part of the vessel are preferably lined with an anticorrosive material 10 .
- the anticorrosive material used can be, for example, metallic materials, such as stainless steel, nickel, nickel alloy and titanium; inorganic materials, such as ceramics; and organic materials, such as fluororesins.
- the lining can be conducted, for example, by a method of flame-coating or baking the above-mentioned metallic materials or inorganic materials; by a method of welding or adhering a plate-formed metallic material having a thickness of 1 mm or more, preferably 2 mm or more, and not more than 10 mm, preferably not more than 3 mm; or by a method of adhering an organic material.
- anticorrosive material 10 being thus lined, the corrosion of the internal surface of the wall of vessel 3 which is in contact with concentrating region 1 can be prevented and the coloring of aluminum hydroxide powder ultimately obtained can be decreased.
- the resulting slurry shows a b value of not more than 3, preferably not more than 2, in the Lab indication system specified by Commission International de l'Eclairage.
- the smaller b value indicates the lower coloring.
- a plurality e.g., 2-8) of straightening vanes 11 .
- These straightening vanes 11 play the role of promoting the separation of the aqueous sodium aluminate solution and the aggregated particles, formed by hydrolysis, from each other in concentrating region 1 and improving the clarity of the aqueous sodium aluminate solution.
- the number and the size of the straightening vane 11 are not particularly limited so long as the clarifying effect for the liquid is not impaired. Since the aggregated particles are substantially not present in clarifying region 2 , the inner surface of vessel 3 contacting with clarifying region 2 needs not be lined with anticorrosive material 10 .
- the aqueous sodium aluminate solution in clarifying region 2 is discharged from the discharge port (not shown in the Figure) provided at the upper part of vessel 3 to the outside of vessel 3 .
- a supersaturated aqueous sodium aluminate solution is fed into vessel 3 so that the content of the vessel can be stirred. Seeds are added to vessel 3 , stirrer 7 is driven, then a supersaturated aqueous sodium aluminate solution is continuously fed to vessel 3 and, while the content is being stirred, the supersaturated aqueous sodium aluminate solution is hydrolyzed.
- an operation which comprises feeding a supersaturated aqueous sodium aluminate solution from the lower part of vessel 3 and discharging the same amount of an aqueous sodium aluminate solution is conducted continuously.
- the solid concentration in concentrating region 1 increases according to the amount of supersaturated aqueous sodium aluminate solution fed continuously.
- the temperature of vessel 3 is kept at 45° C. or above, preferably at 50° C. or above, and at 80° C. or below, preferably at 60° C. or below.
- the feeding of supersaturated aqueous sodium aluminate solution is discontinued, and the reaction mixture is kept for a predetermined time with stirring.
- the solid concentration of concentrating region 1 is preferably 600 g/l or more, more preferably 700 g/l or more, and preferably not more than 1,000 g/l, more preferably not more than 900 g/l.
- the time during which the supersaturated aqueous sodium aluminate solution is fed, though it varies depending on the intended particle diameter, is preferably not less than 500 hours and preferably not more than 1,000 hours.
- the aggregated particles in concentrating region 1 is taken out of offtake port 9 provided at the bottom of vessel 3 , separated from liquid by centrifugation, filtration, or the like, and then washed according to necessity.
- the aggregated particles are disintegrated to yield aluminum hydroxide powder.
- the disintegration is preferably conducted by a method which can break the bond between a primary particle and another primary particle without substantially destroying the primary particle themselves which constitute an aggregated particle, and preferably conducted, for example, with a kneader, blender, extruder, or the like.
- the aluminum hydroxide powder can be subjected, according to necessity, to drying or surface treatment.
- the aluminum hydroxide powder thus obtained has an average particle diameter of preferably not less than 10 ⁇ m and preferably not more than 35 ⁇ m, and can be suitably used as a filler for resins, such as unsaturated polyester resin, acrylic resin and epoxy resin.
- a supersaturated aqueous sodium aluminate solution having a temperature of 58° C., a Na 2 O concentration of 125 g/l, an Al 2 O 3 concentration of 125 g/l and a molar ratio of 1.65 was fed at a flow rate of 100 parts by weight/hour to vessel 3 having a structure shown in FIG. 1 .
- the inner wall of the vessel 3 is provided with baffle plates 4 each having a height corresponding to 75% of the total height of vessel 3 .
- the discharged aqueous sodium aluminate solution had an Na 2 O concentration of 125 g/l, an Al 2 O 3 concentration of 65 g/l and a molar ratio of 3.2.
- the average particle diameter of aggregated particles in concentrating region 1 reached 80 ⁇ m, feeding of the supersaturated aqueous sodium aluminate solution was discontinued, and the reaction system was kept as it was.
- the solid concentration in concentrating region 1 at the time of discontinuing the feed was 800 g/l.
- the content was withdrawn from offtake port 9 of vessel 3 , subjected to solid-liquid separation using a centrifugal separator, and the resulting solid was washed to obtain the aggregated particles.
- the L value of a slurry obtained by mixing 10 g of the aggregated particles obtained above and 20 ml of glycerol was determined with a color-difference meter (Type A-300, a trade name, mfd. by Nippon Denshoku Kogyo K.K.). The result obtained is shown in Table 1. Separately, 5 g of the above-mentioned aggregated particles were placed in a cylindrical die 20 mm in diameter and pressed under a pressure of 1,000 kg/cm 2 for 1 minute, the resulting pellets were pulverized with hands and a roller rod, and then the average particle diameter of the resulting powder was determined. The result obtained is shown in Table 2. The term “rate of change” in Table 2 indicates the decrease of average particle diameter observed after pressing relative to the average particle diameter before pressing.
- the aggregated particles obtained above were disintegrated by using a blender and then dried to obtain aluminum hydroxide powder. Filling the aluminum hydroxide powder in an unsaturated polyester resin gave an artificial marble excellent in transparency.
- aqueous sodium aluminate solution having a temperature of 58° C., an Na 2 O concentration of 125 g/l, an Al 2 O 3 concentration of 121 g/l and a molar ratio of 1.7 at a flow rate of 100 parts by weight/hour.
- part of aqueous sodium aluminate solution was hydrolyzed to obtain (aluminum hydroxide) aggregated particles.
- the aqueous sodium aluminate solution containing aggregated particles was transferred to the second vessel to allow hydrolysis to continue.
- the aqueous sodium aluminate solution was hydrolyzed at the third to eighth vessel, to obtain aggregated particles.
- the aqueous sodium aluminate solution discharged from the eighth vessel had a molar ratio of 3.3.
- the aggregated particles obtained were evaluated under the same conditions as in “evaluation of aggregated particles” described in Example 1. The results thus obtained are shown in Tables 1 and 2.
- the aggregated particles obtained above were treated in the same manner as in “preparation and evaluation of aluminum hydroxide powder” described in Example 1.
- the artificial marble thus obtained did not have a sufficient transparency.
- Aluminum hydroxide powder was obtained by repeating the same procedures as in Example 1 except that there was used a vessel lined as an anticorrosive material with a SUS 304 stainless steel sheet 2 mm in thickness welded to the inner surface of the vessel ranging from the bottom of the vessel to the upper end of the baffle plate, and that feeding of supersaturated aqueous sodium aluminate solution was discontinued at the time when the average particle diameter of aggregated particles in concentrating region 1 reached 40 ⁇ m.
- Aluminum hydroxide powder was obtained by repeating the same procedures as in “preparation of aluminum hydroxide powder” described in Example 2 except that no stainless steel sheet lining was applied to the vessel.
- the aluminum hydroxide powder thus obtained was evaluated under the same conditions as in “evaluation of aluminum hydroxide powder” described in Example 2. The results obtained are shown in Table 3.
- aluminum hydroxide aggregated particles are obtained which are the material for producing aluminum hydroxide powder which in turn can provide, when filled in a resin, a resin composition having a high transparency.
- the process for producing aluminum hydroxide powder according to this invention is a process which uses the above-mentioned aluminum hydroxide aggregated particles, and according to the process, the aluminum hydroxide powder can be easily obtained. Further, the use of the vessel according to this invention makes it possible to produce the aluminum hydroxide aggregated particles in a simple and easy manner.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Aluminum hydroxide aggregated particles which have an average particle diameter of not less than 40 μm, an average particle diameter as determined after pressing at 1,000 kg/cm2 of not more than 35 μm, and an L value of slurry obtained by mixing 20 ml of glycerol and 10 g of the aluminum hydroxide aggregated particles of not more than 69, are obtained by a process comprising the steps of:
- (a) feeding a supersaturated aqueous sodium aluminate solution to a vessel,
- (b) adding aluminum hydroxide seeds to the supersaturated aqueous sodium aluminate solution,
- (c) stirring the seed-added solution in the vessel while continuously feeding an additional supersaturated aqueous sodium aluminate solution into the vessel to hydrolyze the supersaturated aqueous sodium aluminate solution,
- (d) separating the aluminum hydroxide aggregated particles from the aqueous sodium aluminate solution, and
- (e) continuously discharging the aqueous sodium aluminate solution out of the vessel.
Description
- This application is a Continuation of co-pending application Ser. No. 11/748,396, filed on May 14, 2007. Application Ser. No. 11/748,396 is a Divisional of application Ser. No. 10/289,429, filed on Nov. 7, 2002, the entire contents of which are hereby incorporated by reference and for which priority is claimed under 35 U.S.C. § 120.
- This invention relates to a process for producing aluminum hydroxide powder which makes it possible to obtain a filler-containing resin composition having an improved transparency, aluminum hydroxide aggregated particles which are the material therefor, a process for producing the same, and a vessel used therefor.
- Aluminum hydroxide powder is often used as a filler for resins, such as unsaturated polyester resin, in producing artificial marble and the like. When aluminum hydroxide powder is used as a filler for artificial marble and the like, the powder is required to be excellent in filling property for resins and, at the same time, not to impair the transparency of resulting resin compositions.
- As to an industrial process for producing aluminum hydroxide, there has hitherto been known a process which comprises hydrolyzing a supersaturated aqueous sodium aluminate solution in the presence of seeds. For example, JP 63-23131 B discloses a process which comprises connecting plural vessels in series, feeding a supersaturated aqueous sodium aluminate solution continuously to the first vessel, hydrolyzing the supersaturated aqueous sodium aluminate solution in the presence of seeds, and allowing hydrolysis to proceed while sending the solution successively to the second vessel and the third vessel, to obtain aluminum hydroxide.
- However, even when the aluminum hydroxide obtained by the above-mentioned process is filled in resins, it has been impossible to obtain a resin composition having a sufficient transparency.
- The object of this invention is to provide aluminum hydroxide aggregated particles which can be suitably used for producing aluminum hydroxide powder which can give a resin composition that shows a high transparency when filled in resins or the like, a process for producing the aggregated particles, a vessel used therefor, and a process for producing aluminum hydroxide powder which uses the aggregated particles.
-
FIG. 1 is a schematic sectional view showing one embodiment of a vessel according to this invention. -
FIG. 2 is a schematic transverse sectional view of the vessel shown inFIG. 1 . - The reference numerals in the Figures signify the following.
- 1 concentrating region, 2 clarifying region, 3 vessel, 4 baffle plate, 5 stirring blades, 6 rotating shaft, 7 stirrer, 8 sweeper, 9 offtake port, 10 anticorrosive material, 11 straightening vane
- The present inventors have made extensive study to solve the above-mentioned problems, and resultantly completed this invention.
- Thus, according to this invention, there are provided aluminum hydroxide aggregated particles, which have an average particle diameter of not less than 40 μm, an average particle diameter as determined after pressing at: 1,000 kg/cm2 of not more than 35 μm, and an L value of slurry obtained by mixing 20 ml of glycerol and 10 g of the aluminum hydroxide aggregated particles of not more than 69.
- According to this invention, there is further provided a process for producing aluminum hydroxide aggregated particles comprising the steps of:
- (a) feeding a supersaturated aqueous sodium aluminate solution to a vessel,
(b) adding aluminum hydroxide seeds to the supersaturated aqueous sodium aluminate solution to form a seed-added solution in the vessel,
(c) stirring the seed-added solution in the vessel while continuously feeding an additional supersaturated aqueous sodium aluminate solution into the vessel to hydrolyze the supersaturated aqueous sodium aluminate solution to obtain aluminum hydroxide aggregated particles and an aqueous sodium aluminate solution,
(d) separating the aluminum hydroxide aggregated particles from the aqueous sodium aluminate solution, and
(e) continuously discharging the aqueous sodium aluminate solution out of the vessel. - According to this invention, there is further provided a process for producing aluminum hydroxide powder which comprises disintegrating the aluminum hydroxide aggregated particles obtained as above.
- According to this invention, there is further provided a vessel used for the above-mentioned process for producing aluminum hydroxide aggregated particles, that is, a vessel having a hollow space defined by a surrounding wall and a bottom part, wherein the vessel has:
- a supply port at a lower portion of the wall,
- two or more baffle plates mounted on an inner surface of the wall so that the baffle plates protrude toward the hollow space and extend in vertical direction along the inner surface of the wall from immediately above the bottom part to a prescribed height from the bottom part, and
- a stirring blade located within the hollow space and within a space below the prescribed height of the baffle plates.
- The aluminum hydroxide aggregated particles (hereinafter referred to as “aggregated particles”) of this invention have an average particle diameter of 40 μm or more, preferably 50 μm or more, more preferably 60 μm or more, and has an average particle diameter, as determined after pressed at 1,000 kg/cm2, of not more than 35 μm. The aggregated particles are each an assembly of at least 2, preferably 8 or more primary particles. For the aggregated particles, the average particle diameter determined after pressing is smaller than the average particle diameter before pressing, and the difference of average particle diameter before and after pressing is usually not less than 5 μm. The fact that the average particle diameter determined after pressing is smaller indicates that the cohesive force of the aggregated particle is weak and the particle is easily disintegrated to yield primary particles. The average particle diameter mentioned above can be determined with a laser scattering type particle distribution measuring apparatus.
- In the aggregated particles of this invention, a slurry obtained by mixing 20 ml of glycerol and 10 g of aggregated particles shows an L value of not more than 69 in the Lab indication system specified by Commission International de l'Eclairage. Aggregated particles showing an L value higher than 69, even when they are disintegrated and filled in resins, cannot give a resin composition having a high transparency. The L value of aggregated particles is the smaller the better, and is, for example, preferably not more than 65, more preferably not more than 63.
- The aggregated particles of this invention having characteristic properties shown above can be obtained, for example, by a process which comprises the steps of (a) feeding a supersaturated aqueous sodium aluminate solution to a vessel, (b) adding aluminum hydroxide seeds (hereinafter abbreviated as “seeds”) to the supersaturated aqueous sodium aluminate solution to form a seed-added solution in the vessel, (c) stirring the seed-added solution in the vessel while continuously feeding an additional supersaturated aqueous sodium aluminate solution into the vessel, to hydrolyze the supersaturated aqueous sodium aluminate solution to obtain aggregated particles, (d) separating the aggregated particles from the aqueous sodium aluminate solution, and (e) continuously discharging the aqueous sodium aluminate solution out of the vessel.
- In step (a), the supersaturated aqueous sodium aluminate solution fed into the vessel preferably has an effective Na2O (caustic Na2O) concentration of about 120-180 g/l, an Al2O3 concentration of about 120-180 g/l and a molar ratio (Na2O/Al2O3) of about 1.2-1.8. The term “effective Na2O” refers to a value obtained by subtracting Na2CO3 content (in terms of Na2O) from the total Na2O content in the aqueous sodium aluminate solution. The supersaturated aqueous sodium aluminate solution can be prepared, for example, by a method which comprises mixing bauxite with an aqueous sodium hydroxide solution, heating the resulting mixture at 120° C. or above to extract the alumina component in the bauxite, then subjecting the mixture to separation for example with a thickener, filtering the aqueous sodium aluminate solution thus obtained, and cooling the filtrate, or a method which comprises mixing aluminum hydroxide with sodium hydroxide, heating the mixture at 120° C. or above to dissolve aluminum hydroxide, subjecting the mixture to separation, e.g., filtration, and cooling the aqueous sodium aluminate solution thus obtained. The supersaturated aqueous sodium aluminate solution can also be prepared by a method which comprises mixing aluminum hydroxide with a saturated aqueous sodium aluminate solution after hydrolysis or an unsaturated aqueous sodium aluminate solution heating the mixture at 120° C. or above to dissolve aluminum hydroxide, followed by filtration, and cooling the aqueous sodium aluminate solution thus obtained.
- The seeds added in step (b) preferably have an average particle diameter of about 1-2 μm. The seeds prepared by a method which comprises, without resorting to grinding, adding an acid aluminum salt, such as aluminum sulfate, to an aqueous sodium aluminate solution to cause hydrolysis are more preferable than those obtained by grinding coarse aluminum hydroxide. Addition of seeds can shorten the induction period which elapses till aluminum hydroxide is formed by hydrolysis of the supersaturated aqueous sodium aluminate, as well as control the particle diameter of aluminum hydroxide powder ultimately obtained. The amount of seeds can be appropriately determined according to the particle diameter of the intended aluminum hydroxide powder.
- The stirring in step (c) is conducted, for example, by using a mechanical stirrer. The peripheral velocity of the stirring blade is preferably 0.1 m/s or more. The peripheral velocity is preferably not more than 5 m/s.
- The separation in step (d) can be conducted, for example, by a method which utilizes specific gravity difference between the aggregated particles and the aqueous sodium aluminate solution. Through the separation, usually the aggregated particles move toward the lower part of the vessel and the aqueous sodium aluminate solution moves toward the upper part of the vessel, so that the aggregated particles sediment at the lower part of the vessel to give a slurry having a high solid concentration. The slurry has a concentration of solid (aggregated particles) of preferably 600 g/l or more, more preferably 700 g/l or more, and preferably not more than 1000 g/l, more preferably not more than 900 g/l.
- In step (e), the aqueous sodium aluminate solution discharged out of the vessel preferably has an effective Na2O (caustic Na2O) concentration of about 120-180 g/l, an Al2O3 concentration of about 60-80 g/l and a molar ratio (Na2O/Al2O3) about 2-3.5.
- The above-mentioned steps (a), (b), (c), (d) and (e) are preferably conducted in a single vessel. One example of the vessel used herein is shown in
FIG. 1 . Thevessel 3 has at its lower part a supply port (not shown in the Figure) andbaffle plates 4. Thebaffle plates 4, as shown inFIG. 2 , protrude from the inner circumferential surface of the wall ofvessel 3 and are provided in plurality (e.g., 2-10) at predetermined intervals in the peripheral direction ofvessel 3. Each of thebaffle plates 4 extrudes from immediately above the bottom part ofvessel 3 long along the vertical direction (the direction of the rotating shaft) ofvessel 3. Bybaffle plates 4 thus provided, stirring efficiency is improved and, at the time of stirring, an ascending current is formed along the inner surface of the wall ofvessel 3, whereby the slurry in the concentrating region 1 specified by the height ofbaffle plates 4 can be brought to a substantially complete mixings state. As the result of the aqueous sodium aluminate solution being hydrolyzed in the concentrating region 1 at the complete mixing state, aggregated particles which have only a weak cohesive force and are easily disintegrated can be obtained. The reachable height of the ascending current is influenced by the height ofbaffle plates 4. The more the height ofbaffle plates 4 is increased, the higher point the ascending current reaches, and the concentrating region 1 increases in size. Usually the upper end ofbaffle plates 4 and the upper end of the concentrating region 1 are approximately at the same level. The height ofbaffle plates 4 is, relative to the total height of thevessel 3, preferably 50% or more, more preferably 70% or more, most preferably 75% or more, and preferably not more than 90%, and more preferably not more than 80%.Vessel 3 has astirrer 7 which consists of a stirring blade 5 and arotating shaft 6 which drives blade 5. Stirring blade 5 is, for example, a stirring vane and is provided in concentrating region 1.Rotating shaft 6 is usually provided at the center of the section, perpendicular to the longitudinal direction, ofvessel 3. By the rotation of stirring blade 5, the slurry of concentrating region 1 is stirred. At the lower end part ofrotating shaft 6, asweeper 8 is provided. With the aid ofsweeper 8, sedimentation of aggregated particles to the bottom part ofvessel 3 can be prevented. - When the aggregated particles are produced by using
vessel 3, invessel 3 are formed a concentrating region 1 and, above concentrating region 1, a clarifyingregion 2. Withvessel 3 alone, in addition to the hydrolysis of the supersaturated aqueous sodium aluminate solution and the separation of the aggregated particles from the aqueous sodium aluminate solution, concentration of the aggregated particles can also be conducted. - The internal circumferential surface of the wall of
vessel 3 below the height not higher thanbaffle plates 4 and the inner surface of the bottom part of the vessel are preferably lined with ananticorrosive material 10. The anticorrosive material used can be, for example, metallic materials, such as stainless steel, nickel, nickel alloy and titanium; inorganic materials, such as ceramics; and organic materials, such as fluororesins. The lining can be conducted, for example, by a method of flame-coating or baking the above-mentioned metallic materials or inorganic materials; by a method of welding or adhering a plate-formed metallic material having a thickness of 1 mm or more, preferably 2 mm or more, and not more than 10 mm, preferably not more than 3 mm; or by a method of adhering an organic material. Withanticorrosive material 10 being thus lined, the corrosion of the internal surface of the wall ofvessel 3 which is in contact with concentrating region 1 can be prevented and the coloring of aluminum hydroxide powder ultimately obtained can be decreased. For example, when 10 g of methyl methacrylate and 18 g of the aluminum hydroxide powder obtained are mixed, the resulting slurry shows a b value of not more than 3, preferably not more than 2, in the Lab indication system specified by Commission International de l'Eclairage. The smaller b value indicates the lower coloring. - On the inner circumferential surface of the wall of
vessel 3 contacting with clarifyingregion 2 are provided in protrusion a plurality (e.g., 2-8) of straighteningvanes 11. These straighteningvanes 11 play the role of promoting the separation of the aqueous sodium aluminate solution and the aggregated particles, formed by hydrolysis, from each other in concentrating region 1 and improving the clarity of the aqueous sodium aluminate solution. The number and the size of the straighteningvane 11 are not particularly limited so long as the clarifying effect for the liquid is not impaired. Since the aggregated particles are substantially not present in clarifyingregion 2, the inner surface ofvessel 3 contacting with clarifyingregion 2 needs not be lined withanticorrosive material 10. The aqueous sodium aluminate solution in clarifyingregion 2 is discharged from the discharge port (not shown in the Figure) provided at the upper part ofvessel 3 to the outside ofvessel 3. - In producing aluminum hydroxide powder by using the above-mentioned vessel, first a predetermined amount of a supersaturated aqueous sodium aluminate solution is fed into
vessel 3 so that the content of the vessel can be stirred. Seeds are added tovessel 3,stirrer 7 is driven, then a supersaturated aqueous sodium aluminate solution is continuously fed tovessel 3 and, while the content is being stirred, the supersaturated aqueous sodium aluminate solution is hydrolyzed. When the feeding of the supersaturated aqueous sodium aluminate solution tovessel 3 is continued, the liquid level rises and reaches the upper end ofbaffle plate 4 and, when the feeding is further continued, reaches the discharge port provided at the upper part of thevessel 3. Invessel 3, as the result of separation, aggregated particles and an aqueous sodium aluminate solution are obtained. The solid (aggregated particles) concentration in concentrating region 1 increases gradually. On the other hand, the aqueous sodium aluminate solution is discharged from the discharge port provided at the upper part ofvessel 3 to the outside ofvessel 3. Thereafter, an operation which comprises feeding a supersaturated aqueous sodium aluminate solution from the lower part ofvessel 3 and discharging the same amount of an aqueous sodium aluminate solution is conducted continuously. By this operation, the solid concentration in concentrating region 1 increases according to the amount of supersaturated aqueous sodium aluminate solution fed continuously. Through the above-mentioned series of operation, the temperature ofvessel 3 is kept at 45° C. or above, preferably at 50° C. or above, and at 80° C. or below, preferably at 60° C. or below. At the time when the average particle diameter of aggregated particles has reached a predetermined value (for example 80 μm), the feeding of supersaturated aqueous sodium aluminate solution is discontinued, and the reaction mixture is kept for a predetermined time with stirring. At this time, the solid concentration of concentrating region 1 is preferably 600 g/l or more, more preferably 700 g/l or more, and preferably not more than 1,000 g/l, more preferably not more than 900 g/l. The time during which the supersaturated aqueous sodium aluminate solution is fed, though it varies depending on the intended particle diameter, is preferably not less than 500 hours and preferably not more than 1,000 hours. The aggregated particles in concentrating region 1 is taken out ofofftake port 9 provided at the bottom ofvessel 3, separated from liquid by centrifugation, filtration, or the like, and then washed according to necessity. - Then the aggregated particles are disintegrated to yield aluminum hydroxide powder. The disintegration is preferably conducted by a method which can break the bond between a primary particle and another primary particle without substantially destroying the primary particle themselves which constitute an aggregated particle, and preferably conducted, for example, with a kneader, blender, extruder, or the like. The aluminum hydroxide powder can be subjected, according to necessity, to drying or surface treatment. The aluminum hydroxide powder thus obtained has an average particle diameter of preferably not less than 10 μm and preferably not more than 35 μm, and can be suitably used as a filler for resins, such as unsaturated polyester resin, acrylic resin and epoxy resin.
- A supersaturated aqueous sodium aluminate solution having a temperature of 58° C., a Na2O concentration of 125 g/l, an Al2O3 concentration of 125 g/l and a molar ratio of 1.65 was fed at a flow rate of 100 parts by weight/hour to
vessel 3 having a structure shown inFIG. 1 . The inner wall of thevessel 3 is provided withbaffle plates 4 each having a height corresponding to 75% of the total height ofvessel 3. When the liquid level of the supersaturated aqueous sodium aluminate solution reached the lower end of the upper stirring blade of blades 5 having two upper and lower stirring blades, rotation ofstirrer 7 was started, and 150 parts by weight of seeds having an average particle diameter of 1.1 μm were added. Whilerotating stirrer 7 so that the peripheral velocity of stirring blades 5 might be 0.5 m/s, feeding of the supersaturated aqueous sodium aluminate solution to concentrating region 1 ofvessel 3 was continued to allow hydrolysis to proceed in the concentrating region, and the aqueous sodium aluminate solution was discharged from the upper end ofvessel 3. The discharged aqueous sodium aluminate solution had an Na2O concentration of 125 g/l, an Al2O3 concentration of 65 g/l and a molar ratio of 3.2. When the average particle diameter of aggregated particles in concentrating region 1 reached 80 μm, feeding of the supersaturated aqueous sodium aluminate solution was discontinued, and the reaction system was kept as it was. The solid concentration in concentrating region 1 at the time of discontinuing the feed was 800 g/l. After being kept, the content was withdrawn fromofftake port 9 ofvessel 3, subjected to solid-liquid separation using a centrifugal separator, and the resulting solid was washed to obtain the aggregated particles. - The L value of a slurry obtained by mixing 10 g of the aggregated particles obtained above and 20 ml of glycerol was determined with a color-difference meter (Type A-300, a trade name, mfd. by Nippon Denshoku Kogyo K.K.). The result obtained is shown in Table 1. Separately, 5 g of the above-mentioned aggregated particles were placed in a cylindrical die 20 mm in diameter and pressed under a pressure of 1,000 kg/cm2 for 1 minute, the resulting pellets were pulverized with hands and a roller rod, and then the average particle diameter of the resulting powder was determined. The result obtained is shown in Table 2. The term “rate of change” in Table 2 indicates the decrease of average particle diameter observed after pressing relative to the average particle diameter before pressing.
- The aggregated particles obtained above were disintegrated by using a blender and then dried to obtain aluminum hydroxide powder. Filling the aluminum hydroxide powder in an unsaturated polyester resin gave an artificial marble excellent in transparency.
- To the first vessel of an apparatus comprising 8 vessels, each equipped with a stirrer, connected in series was fed continuously a supersaturated aqueous sodium aluminate solution having a temperature of 58° C., an Na2O concentration of 125 g/l, an Al2O3 concentration of 121 g/l and a molar ratio of 1.7 at a flow rate of 100 parts by weight/hour. In the vessel, part of aqueous sodium aluminate solution was hydrolyzed to obtain (aluminum hydroxide) aggregated particles. The aqueous sodium aluminate solution containing aggregated particles was transferred to the second vessel to allow hydrolysis to continue. Succeedingly, the aqueous sodium aluminate solution was hydrolyzed at the third to eighth vessel, to obtain aggregated particles. The aqueous sodium aluminate solution discharged from the eighth vessel had a molar ratio of 3.3. The aggregated particles obtained were evaluated under the same conditions as in “evaluation of aggregated particles” described in Example 1. The results thus obtained are shown in Tables 1 and 2.
-
TABLE 1 L value Example 1 63 Comparative Example 1 70 -
TABLE 2 Average particle diameter (μm) Before After Rate of pressing pressing change (%) Example 1 68 30 55.9 Comparative 56 44 21.4 Example 1 - The aggregated particles obtained above were treated in the same manner as in “preparation and evaluation of aluminum hydroxide powder” described in Example 1. The artificial marble thus obtained did not have a sufficient transparency.
- Aluminum hydroxide powder was obtained by repeating the same procedures as in Example 1 except that there was used a vessel lined as an anticorrosive material with a SUS 304
stainless steel sheet 2 mm in thickness welded to the inner surface of the vessel ranging from the bottom of the vessel to the upper end of the baffle plate, and that feeding of supersaturated aqueous sodium aluminate solution was discontinued at the time when the average particle diameter of aggregated particles in concentrating region 1 reached 40 μm. - The b value of a slurry obtained by mixing 18 g of the powder obtained above and 10 g of methyl methacrylate was determined with a color-difference meter (Z-1001 DP, a trade name, mfd. by Nippon Denshoku Kogyo K.K.). The results thus obtained are shown in Table 3.
- Aluminum hydroxide powder was obtained by repeating the same procedures as in “preparation of aluminum hydroxide powder” described in Example 2 except that no stainless steel sheet lining was applied to the vessel. The aluminum hydroxide powder thus obtained was evaluated under the same conditions as in “evaluation of aluminum hydroxide powder” described in Example 2. The results obtained are shown in Table 3.
-
TABLE 3 Average particle diameter (μm) b value Example 2 29 1.5 Example 3 27 3.3 - According to the aluminum hydroxide aggregated particles and the process for producing the same according to this invention, aluminum hydroxide aggregated particles are obtained which are the material for producing aluminum hydroxide powder which in turn can provide, when filled in a resin, a resin composition having a high transparency. The process for producing aluminum hydroxide powder according to this invention is a process which uses the above-mentioned aluminum hydroxide aggregated particles, and according to the process, the aluminum hydroxide powder can be easily obtained. Further, the use of the vessel according to this invention makes it possible to produce the aluminum hydroxide aggregated particles in a simple and easy manner.
Claims (2)
1. A filler for resins comprising aluminum hydroxide aggregated particles, which have an average particle diameter of not less than 40 μm, an average particle diameter as determined after pressing at 1,000 of not more than 35 μm, and an L value of slurry obtained by mixing 20 ml of glycerol and 10 g of the aluminum hydroxide aggregated particles of not more than 69.
2. The filler for resins according to claim 1 , wherein the L value of slurry is not more than 65.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/476,853 US20090252964A1 (en) | 2001-11-07 | 2009-06-02 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-342358 | 2001-11-07 | ||
JP2001342358A JP4097418B2 (en) | 2001-11-07 | 2001-11-07 | Method for producing aluminum hydroxide aggregate, method for producing aluminum hydroxide powder using the same, and precipitation tank |
JP2001342359A JP2003146654A (en) | 2001-11-07 | 2001-11-07 | Aluminum hydroxide precipitation tank and method for producing aluminum hydroxide powder using the same |
JP2001-342359 | 2001-11-07 | ||
US10/289,429 US7704465B2 (en) | 2001-11-07 | 2002-11-07 | Aluminum hydroxide aggregated particles producing vessel |
US11/748,396 US20070237709A1 (en) | 2001-11-07 | 2007-05-14 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
US12/476,853 US20090252964A1 (en) | 2001-11-07 | 2009-06-02 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/748,396 Continuation US20070237709A1 (en) | 2001-11-07 | 2007-05-14 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090252964A1 true US20090252964A1 (en) | 2009-10-08 |
Family
ID=26624398
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/289,429 Expired - Fee Related US7704465B2 (en) | 2001-11-07 | 2002-11-07 | Aluminum hydroxide aggregated particles producing vessel |
US11/748,398 Expired - Fee Related US7811546B2 (en) | 2001-11-07 | 2007-05-14 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
US11/748,396 Abandoned US20070237709A1 (en) | 2001-11-07 | 2007-05-14 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
US12/476,853 Abandoned US20090252964A1 (en) | 2001-11-07 | 2009-06-02 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/289,429 Expired - Fee Related US7704465B2 (en) | 2001-11-07 | 2002-11-07 | Aluminum hydroxide aggregated particles producing vessel |
US11/748,398 Expired - Fee Related US7811546B2 (en) | 2001-11-07 | 2007-05-14 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
US11/748,396 Abandoned US20070237709A1 (en) | 2001-11-07 | 2007-05-14 | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
Country Status (6)
Country | Link |
---|---|
US (4) | US7704465B2 (en) |
EP (1) | EP1310457A3 (en) |
KR (1) | KR100930847B1 (en) |
CN (1) | CN1301907C (en) |
AU (1) | AU2002301811B2 (en) |
CA (1) | CA2411161A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002301811B2 (en) * | 2001-11-07 | 2007-08-23 | Sumitomo Chemical Company, Limited | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
ITMI20051861A1 (en) | 2005-10-04 | 2007-04-05 | Tycon Technoglass S R L | MIXING CONTAINER FOR LIQUID OR SIMILAR SUBSTANCES |
KR101002216B1 (en) * | 2008-10-21 | 2010-12-20 | 경상대학교산학협력단 | Stirring vessel using baffle and stirrer with improved stirring ability including the same |
DE102010014694B4 (en) * | 2010-04-12 | 2014-11-06 | Thaletec Gmbh | Reaction arrangement with stirrer and at least one baffle |
US8398298B2 (en) | 2010-12-14 | 2013-03-19 | William H. Swader | Automatic pot stirrer |
KR101048230B1 (en) | 2011-01-13 | 2011-07-08 | 조민성 | Aluminum hydroxide manufacturing method using aluminum dross |
CN102989379B (en) * | 2011-09-09 | 2014-07-23 | 曲靖师范学院 | Gas-solid phase reactor |
CN102583474B (en) * | 2012-01-20 | 2014-08-27 | 贵州省新材料研究开发基地 | Process method for producing aluminum hydroxide by seed decomposition of supersaturated sodium aluminate solution |
KR101204168B1 (en) * | 2012-04-27 | 2012-11-22 | 이원근 | The Manufacturing Method for High-yield Aluminum Hydroxide from Supersaturation Dissolution |
US11305243B2 (en) | 2016-06-14 | 2022-04-19 | Sumitomo Metal Mining Co., Ltd. | Chemical reaction device and particle production method using chemical reaction device |
US11973184B2 (en) * | 2018-08-03 | 2024-04-30 | Kaneka Corporation | Garnet-type composite metal oxide and method for producing same |
CN111099645B (en) * | 2019-12-23 | 2022-10-18 | 山东泰星新材料股份有限公司 | Preparation method of flower-shaped aluminum hydroxide for pouring sealant |
CN113813827A (en) * | 2021-10-22 | 2021-12-21 | 王海龙 | Preparation method of oil control shampoo |
CN114029023A (en) * | 2021-12-08 | 2022-02-11 | 上海市安装工程集团有限公司 | Styrene-butadiene latex reactor |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049773A (en) * | 1975-04-16 | 1977-09-20 | Norsk Hydro A.S. | Process for precipitation of aluminum hydroxide from aluminate solution |
US4238159A (en) * | 1975-07-15 | 1980-12-09 | Ekato-Werk Erich Karl Todtenhaupt | Apparatus for extracting alumina from bauxite |
US4243636A (en) * | 1978-02-15 | 1981-01-06 | Mitsui Petrochemical Industries Ltd. | Apparatus for the continuous liquid-phase catalytic oxidation of alkyl-substituted aromatic compounds |
US4364919A (en) * | 1981-02-20 | 1982-12-21 | Sumitomo Aluminium Smelting Company, Limited | Process for producing coarse grains of aluminum hydroxide |
US4483624A (en) * | 1982-08-25 | 1984-11-20 | Freeport Kaolin Company | High intensity conditioning mill and method |
US4829103A (en) * | 1987-02-12 | 1989-05-09 | Showa Denko Kabushiki Kaisha | Unsaturated polyester resin composition having less coloration and excellent transparency |
US5098669A (en) * | 1989-01-13 | 1992-03-24 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Stirring reactor for viscous materials |
US5130113A (en) * | 1989-01-26 | 1992-07-14 | Showa Denko K.K. | Aluminum hydroxide, process for preparation thereof and composition |
US6028127A (en) * | 1994-10-14 | 2000-02-22 | Mitsubishi Rayon Co., Ltd. | Artificial marble and method for preparing it |
US6056803A (en) * | 1997-12-24 | 2000-05-02 | Alcan International Limited | Injector for gas treatment of molten metals |
US6217622B1 (en) * | 1998-10-22 | 2001-04-17 | Alcan International Limited | Method and apparatus for precipitating and classifying solids in high concentrations |
US6508583B1 (en) * | 2000-11-28 | 2003-01-21 | E. I. Du Pont De Nemours And Company | Agitated vessel for producing a suspension of solids |
US20040136262A1 (en) * | 2001-05-14 | 2004-07-15 | Wilson Stephen Wilfred | Apparatus and method for wetting powder |
US20050007874A1 (en) * | 2003-07-08 | 2005-01-13 | Janusz Roszczenko | Low shear impeller |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5327718B2 (en) * | 1972-10-12 | 1978-08-10 | ||
JPS61192331A (en) | 1984-07-02 | 1986-08-26 | Hitachi Ltd | Stirring device for underwater granulation |
JPH01275422A (en) * | 1987-12-21 | 1989-11-06 | Showa Denko Kk | Aluminum hydroxide for artificial marble and its production |
US5102630A (en) | 1988-03-17 | 1992-04-07 | Amoco Corporation | Apparatus for increasing yield and product quality while reducing power costs in oxidation of an aromatic alkyl to an aromatic carboxylic acid |
US5972661A (en) * | 1998-09-28 | 1999-10-26 | Penn State Research Foundation | Mixing systems |
DE10009369A1 (en) * | 2000-02-29 | 2001-08-30 | Vaw Ver Aluminium Werke Ag | Production of aluminum hydroxide gel, used e.g. as mordant, filler and pigment or in antihidrotic, toothpaste, paper, ceramics or abrasive, involves precipitation from diluted alkaline aluminate liquor, filtration, washing and drying |
KR100926916B1 (en) * | 2000-03-08 | 2009-11-17 | 스미또모 가가꾸 가부시끼가이샤 | Method of producing aluminum hydroxide powder |
AU2002301811B2 (en) * | 2001-11-07 | 2007-08-23 | Sumitomo Chemical Company, Limited | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder |
-
2002
- 2002-11-01 AU AU2002301811A patent/AU2002301811B2/en not_active Ceased
- 2002-11-04 KR KR1020020067923A patent/KR100930847B1/en active IP Right Grant
- 2002-11-05 CA CA002411161A patent/CA2411161A1/en not_active Abandoned
- 2002-11-06 EP EP02024932A patent/EP1310457A3/en not_active Withdrawn
- 2002-11-07 US US10/289,429 patent/US7704465B2/en not_active Expired - Fee Related
- 2002-11-07 CN CNB021498407A patent/CN1301907C/en not_active Expired - Lifetime
-
2007
- 2007-05-14 US US11/748,398 patent/US7811546B2/en not_active Expired - Fee Related
- 2007-05-14 US US11/748,396 patent/US20070237709A1/en not_active Abandoned
-
2009
- 2009-06-02 US US12/476,853 patent/US20090252964A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049773A (en) * | 1975-04-16 | 1977-09-20 | Norsk Hydro A.S. | Process for precipitation of aluminum hydroxide from aluminate solution |
US4238159A (en) * | 1975-07-15 | 1980-12-09 | Ekato-Werk Erich Karl Todtenhaupt | Apparatus for extracting alumina from bauxite |
US4243636A (en) * | 1978-02-15 | 1981-01-06 | Mitsui Petrochemical Industries Ltd. | Apparatus for the continuous liquid-phase catalytic oxidation of alkyl-substituted aromatic compounds |
US4364919A (en) * | 1981-02-20 | 1982-12-21 | Sumitomo Aluminium Smelting Company, Limited | Process for producing coarse grains of aluminum hydroxide |
US4483624A (en) * | 1982-08-25 | 1984-11-20 | Freeport Kaolin Company | High intensity conditioning mill and method |
US4829103A (en) * | 1987-02-12 | 1989-05-09 | Showa Denko Kabushiki Kaisha | Unsaturated polyester resin composition having less coloration and excellent transparency |
US5098669A (en) * | 1989-01-13 | 1992-03-24 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Stirring reactor for viscous materials |
US5130113A (en) * | 1989-01-26 | 1992-07-14 | Showa Denko K.K. | Aluminum hydroxide, process for preparation thereof and composition |
US6028127A (en) * | 1994-10-14 | 2000-02-22 | Mitsubishi Rayon Co., Ltd. | Artificial marble and method for preparing it |
US6056803A (en) * | 1997-12-24 | 2000-05-02 | Alcan International Limited | Injector for gas treatment of molten metals |
US6217622B1 (en) * | 1998-10-22 | 2001-04-17 | Alcan International Limited | Method and apparatus for precipitating and classifying solids in high concentrations |
US6508583B1 (en) * | 2000-11-28 | 2003-01-21 | E. I. Du Pont De Nemours And Company | Agitated vessel for producing a suspension of solids |
US20040136262A1 (en) * | 2001-05-14 | 2004-07-15 | Wilson Stephen Wilfred | Apparatus and method for wetting powder |
US20050007874A1 (en) * | 2003-07-08 | 2005-01-13 | Janusz Roszczenko | Low shear impeller |
Also Published As
Publication number | Publication date |
---|---|
EP1310457A2 (en) | 2003-05-14 |
AU2002301811B2 (en) | 2007-08-23 |
US7704465B2 (en) | 2010-04-27 |
KR100930847B1 (en) | 2009-12-10 |
EP1310457A3 (en) | 2004-03-10 |
CN1417125A (en) | 2003-05-14 |
US20070237709A1 (en) | 2007-10-11 |
CN1301907C (en) | 2007-02-28 |
KR20030038417A (en) | 2003-05-16 |
US20070217977A1 (en) | 2007-09-20 |
CA2411161A1 (en) | 2003-05-07 |
US20030091501A1 (en) | 2003-05-15 |
US7811546B2 (en) | 2010-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7811546B2 (en) | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder | |
CN1106347C (en) | Niobium and tantalum pentoxide compounds | |
EP2393911A2 (en) | Method of preparing a liquid extract of cereal grain and apparatus suitable for use in such method | |
EP0510675B1 (en) | Method of producing aqueous solution of slaked lime and apparatus therefor | |
CN100999622A (en) | Aluminum hydroxide aggregate | |
AU2007203595B2 (en) | Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder | |
GB2166748A (en) | Method for the single-step production of vinyl polymers and the reactor for performing the method | |
CN212578876U (en) | Aerated concrete pouring agitating unit | |
CN211303055U (en) | Special forced turbulence double-acting reactor for molybdenum disulfide production | |
US5899566A (en) | Reactor for corrosive reaction mixtures | |
JP3043132B2 (en) | Method for producing polyvinyl acetal resin | |
JP2666206B2 (en) | Slaked lime aqueous solution production equipment | |
CN208975791U (en) | A kind of Production of Light Calcium Carbonate Special agitating disk | |
CN211612676U (en) | Reation kettle that production liquid is fertile | |
CN208302772U (en) | A kind of agitating shaft in reaction kettle | |
CN221452254U (en) | Prevent interior precipitation formula mixer | |
JP2003146654A (en) | Aluminum hydroxide precipitation tank and method for producing aluminum hydroxide powder using the same | |
CN210934972U (en) | Carbonation reation kettle for calcium carbonate preparation | |
CN218636661U (en) | A environment-friendly stainless steel crystallization kettle for polyaluminium chloride production | |
CN221182789U (en) | Device that photosensitive polyimide resin polymerization cauldron stirring efficiency promoted | |
CN114988725B (en) | Calcium hydroxide suspension and efficient preparation method thereof | |
CN213824782U (en) | Polypropylene reaction kettle | |
CN206382006U (en) | A kind of separation of solid and liquid reaction unit | |
CN116617983A (en) | Reaction kettle for decomposing monazite rare earth ore by alkaline method | |
CN114377641A (en) | Continuous lithium-precipitating reaction kettle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |