US20090233959A1 - Beloxepin and analogs for the treatment of pain - Google Patents
Beloxepin and analogs for the treatment of pain Download PDFInfo
- Publication number
- US20090233959A1 US20090233959A1 US12/388,982 US38898209A US2009233959A1 US 20090233959 A1 US20090233959 A1 US 20090233959A1 US 38898209 A US38898209 A US 38898209A US 2009233959 A1 US2009233959 A1 US 2009233959A1
- Authority
- US
- United States
- Prior art keywords
- beloxepin
- pain
- acid
- rats
- analogs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RPMDQAYGQBREBS-LPHOPBHVSA-N beloxepin Chemical compound O1C2=CC=CC=C2[C@@]2(O)CCN(C)C[C@H]2C2=CC=CC(C)=C21 RPMDQAYGQBREBS-LPHOPBHVSA-N 0.000 title claims abstract description 218
- 229950003852 beloxepin Drugs 0.000 title claims abstract description 200
- 208000002193 Pain Diseases 0.000 title claims abstract description 100
- 230000036407 pain Effects 0.000 title claims abstract description 85
- 238000011282 treatment Methods 0.000 title description 27
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims description 63
- 230000003040 nociceptive effect Effects 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 19
- 230000001154 acute effect Effects 0.000 claims description 13
- 206010065390 Inflammatory pain Diseases 0.000 claims description 12
- 208000004296 neuralgia Diseases 0.000 claims description 12
- 208000021722 neuropathic pain Diseases 0.000 claims description 12
- 208000000094 Chronic Pain Diseases 0.000 claims description 10
- 241000124008 Mammalia Species 0.000 claims description 10
- 208000009935 visceral pain Diseases 0.000 claims description 8
- 208000005298 acute pain Diseases 0.000 claims description 7
- 206010058019 Cancer Pain Diseases 0.000 claims description 3
- 241000700159 Rattus Species 0.000 description 58
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 39
- 150000001875 compounds Chemical class 0.000 description 34
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 33
- 230000003574 anti-allodynic effect Effects 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 101000896576 Homo sapiens Putative cytochrome P450 2D7 Proteins 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 239000003814 drug Substances 0.000 description 23
- 102100021702 Putative cytochrome P450 2D7 Human genes 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 229940079593 drug Drugs 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 230000005764 inhibitory process Effects 0.000 description 18
- 241001465754 Metazoa Species 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 17
- -1 reboxetine) Chemical class 0.000 description 17
- 239000003981 vehicle Substances 0.000 description 17
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 238000001356 surgical procedure Methods 0.000 description 16
- 239000002253 acid Substances 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 208000004454 Hyperalgesia Diseases 0.000 description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 210000000548 hind-foot Anatomy 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 210000002683 foot Anatomy 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 238000005160 1H NMR spectroscopy Methods 0.000 description 10
- 208000001294 Nociceptive Pain Diseases 0.000 description 10
- 238000002648 combination therapy Methods 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 10
- 238000011808 rodent model Methods 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 102000019208 Serotonin Plasma Membrane Transport Proteins Human genes 0.000 description 9
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 9
- 229930003827 cannabinoid Natural products 0.000 description 9
- 239000003557 cannabinoid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 8
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 8
- 229960001985 dextromethorphan Drugs 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 8
- 208000011580 syndromic disease Diseases 0.000 description 8
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 102100033928 Sodium-dependent dopamine transporter Human genes 0.000 description 7
- 238000010171 animal model Methods 0.000 description 7
- 239000000935 antidepressant agent Substances 0.000 description 7
- 229940005513 antidepressants Drugs 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 229960002866 duloxetine Drugs 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- 239000012848 Dextrorphan Substances 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- JAQUASYNZVUNQP-PVAVHDDUSA-N dextrorphan Chemical compound C1C2=CC=C(O)C=C2[C@@]23CCN(C)[C@@H]1[C@H]2CCCC3 JAQUASYNZVUNQP-PVAVHDDUSA-N 0.000 description 6
- 229950006878 dextrorphan Drugs 0.000 description 6
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 6
- 230000010807 negative regulation of binding Effects 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 5
- 108010044266 Dopamine Plasma Membrane Transport Proteins Proteins 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000003070 anti-hyperalgesia Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 229960005181 morphine Drugs 0.000 description 5
- 230000036470 plasma concentration Effects 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- CBQGYUDMJHNJBX-RTBURBONSA-N reboxetine Chemical compound CCOC1=CC=CC=C1O[C@H](C=1C=CC=CC=1)[C@@H]1OCCNC1 CBQGYUDMJHNJBX-RTBURBONSA-N 0.000 description 5
- 229960003770 reboxetine Drugs 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- 108010078791 Carrier Proteins Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 4
- 229960000836 amitriptyline Drugs 0.000 description 4
- 230000003502 anti-nociceptive effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229960004126 codeine Drugs 0.000 description 4
- 238000010520 demethylation reaction Methods 0.000 description 4
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 208000002551 irritable bowel syndrome Diseases 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 210000001589 microsome Anatomy 0.000 description 4
- 201000001119 neuropathy Diseases 0.000 description 4
- 230000007823 neuropathy Effects 0.000 description 4
- 208000033808 peripheral neuropathy Diseases 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 229940076279 serotonin Drugs 0.000 description 4
- 230000007958 sleep Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000008227 sterile water for injection Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 210000003568 synaptosome Anatomy 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 229960004380 tramadol Drugs 0.000 description 4
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 4
- CBQGYUDMJHNJBX-OALUTQOASA-N (2S)-2-[(S)-(2-ethoxyphenoxy)-phenylmethyl]morpholine Chemical compound CCOC1=CC=CC=C1O[C@@H](C=1C=CC=CC=1)[C@H]1OCCNC1 CBQGYUDMJHNJBX-OALUTQOASA-N 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- RGSVXQJPSWZXOP-UHFFFAOYSA-N 1-[1-(1-benzothiophen-2-yl)cyclohexyl]piperidine Chemical compound C1CCCCN1C1(C=2SC3=CC=CC=C3C=2)CCCCC1 RGSVXQJPSWZXOP-UHFFFAOYSA-N 0.000 description 3
- JTWMBPZRYBLNNG-UHFFFAOYSA-N 4-(aminomethyl)-7-methoxychromen-2-one Chemical compound NCC1=CC(=O)OC2=CC(OC)=CC=C21 JTWMBPZRYBLNNG-UHFFFAOYSA-N 0.000 description 3
- 208000007220 Cytochrome P-450 CYP2D6 Inhibitors Diseases 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 208000001640 Fibromyalgia Diseases 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 208000035154 Hyperesthesia Diseases 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 101150053185 P450 gene Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 206010039897 Sedation Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 230000000202 analgesic effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 230000001430 anti-depressive effect Effects 0.000 description 3
- 229940121363 anti-inflammatory agent Drugs 0.000 description 3
- 239000002260 anti-inflammatory agent Substances 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 229950008247 esreboxetine Drugs 0.000 description 3
- 230000002440 hepatic effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000002981 neuropathic effect Effects 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 230000036280 sedation Effects 0.000 description 3
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 3
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 2
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 2
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- XGLVDUUYFKXKPL-UHFFFAOYSA-N 2-(2-methoxyethoxy)-n,n-bis[2-(2-methoxyethoxy)ethyl]ethanamine Chemical compound COCCOCCN(CCOCCOC)CCOCCOC XGLVDUUYFKXKPL-UHFFFAOYSA-N 0.000 description 2
- LVYLCBNXHHHPSB-UHFFFAOYSA-N 2-hydroxyethyl salicylate Chemical compound OCCOC(=O)C1=CC=CC=C1O LVYLCBNXHHHPSB-UHFFFAOYSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- PFFSORYZJHFBQK-KBXBZICCSA-N B.C.C.CC(C)(C)OC(=O)CBr.CC1=C(O)C=CC=C1.CC1=CC=CC2=C1OC1=CC=CC=C1C(CC(=O)O)C2=O.CC1=CC=CC2=C1OC1=CC=CC=C1C(CC(=O)OC(C)(C)C)C2=O.CC1=CC=CC2=C1OC1=CC=CC=C1CC2=O.CC1=CC=CC=C1OC1=CC=CC=C1CC(=O)O.COCCOCCN(CCOCCOC)CCOCCOC.O=C(O)CC1=CC=CC=C1Br.[2HH] Chemical compound B.C.C.CC(C)(C)OC(=O)CBr.CC1=C(O)C=CC=C1.CC1=CC=CC2=C1OC1=CC=CC=C1C(CC(=O)O)C2=O.CC1=CC=CC2=C1OC1=CC=CC=C1C(CC(=O)OC(C)(C)C)C2=O.CC1=CC=CC2=C1OC1=CC=CC=C1CC2=O.CC1=CC=CC=C1OC1=CC=CC=C1CC(=O)O.COCCOCCN(CCOCCOC)CCOCCOC.O=C(O)CC1=CC=CC=C1Br.[2HH] PFFSORYZJHFBQK-KBXBZICCSA-N 0.000 description 2
- HNHNKZNUTYRCTQ-UHFFFAOYSA-N B.C.C.CC1=CC=CC2=C1OC1=CC=CC=C1C(CCN(C)C(=O)OC(C)(C)C)=C2.CC1=CC=CC2=C1OC1=CC=CC=C1C(CCN(C)C(=O)OC(C)(C)C)C2O.CNC(=O)CC1C(=O)C2=C(OC3=CC=CC=C31)C(C)=CC=C2.CNC(=O)CC1C2=CC=CC=C2OC2=C(C=CC=C2C)C1O.CNCCC1C2=CC=CC=C2OC2=C(C=CC=C2C)C1O.F.I.[HH].[NaH] Chemical compound B.C.C.CC1=CC=CC2=C1OC1=CC=CC=C1C(CCN(C)C(=O)OC(C)(C)C)=C2.CC1=CC=CC2=C1OC1=CC=CC=C1C(CCN(C)C(=O)OC(C)(C)C)C2O.CNC(=O)CC1C(=O)C2=C(OC3=CC=CC=C31)C(C)=CC=C2.CNC(=O)CC1C2=CC=CC=C2OC2=C(C=CC=C2C)C1O.CNCCC1C2=CC=CC=C2OC2=C(C=CC=C2C)C1O.F.I.[HH].[NaH] HNHNKZNUTYRCTQ-UHFFFAOYSA-N 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- 239000002083 C09CA01 - Losartan Substances 0.000 description 2
- VCJIQXXJBOETEQ-UHFFFAOYSA-N CNCCC1=CC2=C(OC3=CC=CC=C13)C(C)=CC=C2.[H]C12CN(C)CCC1(O)C1=C(C=CC=C1)OC1=C2C=CC=C1C.[KH] Chemical compound CNCCC1=CC2=C(OC3=CC=CC=C13)C(C)=CC=C2.[H]C12CN(C)CCC1(O)C1=C(C=CC=C1)OC1=C2C=CC=C1C.[KH] VCJIQXXJBOETEQ-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical group OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- OGDVEMNWJVYAJL-LEPYJNQMSA-N Ethyl morphine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OCC OGDVEMNWJVYAJL-LEPYJNQMSA-N 0.000 description 2
- OGDVEMNWJVYAJL-UHFFFAOYSA-N Ethylmorphine Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OCC OGDVEMNWJVYAJL-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- FWKQNCXZGNBPFD-UHFFFAOYSA-N Guaiazulene Chemical compound CC(C)C1=CC=C(C)C2=CC=C(C)C2=C1 FWKQNCXZGNBPFD-UHFFFAOYSA-N 0.000 description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 2
- 206010022031 Inherited neuropathies Diseases 0.000 description 2
- 208000005615 Interstitial Cystitis Diseases 0.000 description 2
- 108010044467 Isoenzymes Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- DEXMFYZAHXMZNM-UHFFFAOYSA-N Narceine Chemical compound OC(=O)C1=C(OC)C(OC)=CC=C1C(=O)CC1=C(CCN(C)C)C=C(OCO2)C2=C1OC DEXMFYZAHXMZNM-UHFFFAOYSA-N 0.000 description 2
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 2
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 2
- 208000010886 Peripheral nerve injury Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 101710114615 Sodium-dependent dopamine transporter Proteins 0.000 description 2
- 206010072005 Spinal pain Diseases 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012317 TBTU Substances 0.000 description 2
- RPMDQAYGQBREBS-UHFFFAOYSA-N [H]C12CN(C)CCC1(O)C1=C(C=CC=C1)OC1=C2C=CC=C1C Chemical compound [H]C12CN(C)CCC1(O)C1=C(C=CC=C1)OC1=C2C=CC=C1C RPMDQAYGQBREBS-UHFFFAOYSA-N 0.000 description 2
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 229940065144 cannabinoids Drugs 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229960004193 dextropropoxyphene Drugs 0.000 description 2
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 2
- 229960001259 diclofenac Drugs 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- RBOXVHNMENFORY-DNJOTXNNSA-N dihydrocodeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC RBOXVHNMENFORY-DNJOTXNNSA-N 0.000 description 2
- 229960000920 dihydrocodeine Drugs 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000036267 drug metabolism Effects 0.000 description 2
- 229960004578 ethylmorphine Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229960002428 fentanyl Drugs 0.000 description 2
- PJMPHNIQZUBGLI-UHFFFAOYSA-N fentanyl Chemical compound C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 PJMPHNIQZUBGLI-UHFFFAOYSA-N 0.000 description 2
- 238000009093 first-line therapy Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 2
- 229960000240 hydrocodone Drugs 0.000 description 2
- 229960004801 imipramine Drugs 0.000 description 2
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- KJJZZJSZUJXYEA-UHFFFAOYSA-N losartan Chemical compound CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C=2[N]N=NN=2)C=C1 KJJZZJSZUJXYEA-UHFFFAOYSA-N 0.000 description 2
- 229960004773 losartan Drugs 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229960004090 maprotiline Drugs 0.000 description 2
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical group OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 2
- 238000002552 multiple reaction monitoring Methods 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229940005483 opioid analgesics Drugs 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 229960002085 oxycodone Drugs 0.000 description 2
- 229960005489 paracetamol Drugs 0.000 description 2
- 229960002296 paroxetine Drugs 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229960000482 pethidine Drugs 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical group OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 235000019615 sensations Nutrition 0.000 description 2
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 208000020431 spinal cord injury Diseases 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 2
- 206010044652 trigeminal neuralgia Diseases 0.000 description 2
- 230000009278 visceral effect Effects 0.000 description 2
- YQYVFVRQLZMJKJ-JBBXEZCESA-N (+)-cyclazocine Chemical compound C([C@@]1(C)C2=CC(O)=CC=C2C[C@@H]2[C@@H]1C)CN2CC1CC1 YQYVFVRQLZMJKJ-JBBXEZCESA-N 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- UVITTYOJFDLOGI-UHFFFAOYSA-N (1,2,5-trimethyl-4-phenylpiperidin-4-yl) propanoate Chemical compound C=1C=CC=CC=1C1(OC(=O)CC)CC(C)N(C)CC1C UVITTYOJFDLOGI-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- OQANPHBRHBJGNZ-FYJGNVAPSA-N (3e)-6-oxo-3-[[4-(pyridin-2-ylsulfamoyl)phenyl]hydrazinylidene]cyclohexa-1,4-diene-1-carboxylic acid Chemical compound C1=CC(=O)C(C(=O)O)=C\C1=N\NC1=CC=C(S(=O)(=O)NC=2N=CC=CC=2)C=C1 OQANPHBRHBJGNZ-FYJGNVAPSA-N 0.000 description 1
- LGFMXOTUSSVQJV-NEYUFSEYSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;(4r,4ar,7s,7ar,12bs)-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7,9-diol;1-[(3,4-dimethoxyphenyl)methyl]-6 Chemical compound Cl.Cl.Cl.O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC.C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 LGFMXOTUSSVQJV-NEYUFSEYSA-N 0.000 description 1
- SSNHGLKFJISNTR-FWUPRJFYSA-N (6ar,10ar)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol;2-[(6r)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]-5-pentylbenzene-1,3-diol Chemical compound OC1=CC(CCCCC)=CC(O)=C1C1[C@H](C(C)=C)CCC(C)=C1.C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 SSNHGLKFJISNTR-FWUPRJFYSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- PJVWKTKQMONHTI-HNNXBMFYSA-N (S)-warfarin Chemical compound C1([C@H](CC(=O)C)C=2C(OC3=CC=CC=C3C=2O)=O)=CC=CC=C1 PJVWKTKQMONHTI-HNNXBMFYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- PFSJPEJTINFXOM-UHFFFAOYSA-N 1-methyl-6-[2-(methylamino)ethyl]-5,6-dihydrobenzo[b][1]benzoxepin-5-ol Chemical compound CNCCC1C(O)C2=CC=CC(C)=C2OC2=CC=CC=C12 PFSJPEJTINFXOM-UHFFFAOYSA-N 0.000 description 1
- GKHIHRYGKFTENO-UHFFFAOYSA-N 1-methyl-6h-benzo[b][1]benzoxepin-5-one Chemical compound O1C2=CC=CC=C2CC(=O)C2=C1C(C)=CC=C2 GKHIHRYGKFTENO-UHFFFAOYSA-N 0.000 description 1
- AMMPLVWPWSYRDR-UHFFFAOYSA-N 1-methylbicyclo[2.2.2]oct-2-ene-4-carboxylic acid Chemical compound C1CC2(C(O)=O)CCC1(C)C=C2 AMMPLVWPWSYRDR-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QYYXPCGARNHEPT-UHFFFAOYSA-N 2-(1-methyl-5-oxo-6h-benzo[b][1]benzoxepin-6-yl)acetic acid Chemical compound O1C2=CC=CC=C2C(CC(O)=O)C(=O)C2=C1C(C)=CC=C2 QYYXPCGARNHEPT-UHFFFAOYSA-N 0.000 description 1
- NBFRIHVYHYXLGT-UHFFFAOYSA-N 2-(5-hydroxy-1-methyl-5,6-dihydrobenzo[b][1]benzoxepin-6-yl)-n-methylacetamide Chemical compound CNC(=O)CC1C(O)C2=CC=CC(C)=C2OC2=CC=CC=C12 NBFRIHVYHYXLGT-UHFFFAOYSA-N 0.000 description 1
- XLVXAUNDHWERBM-IVGWJTKZSA-N 2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]-n-[(2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-1-oxohexan-2-yl]acetamide Chemical compound CC1=C(CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 XLVXAUNDHWERBM-IVGWJTKZSA-N 0.000 description 1
- POVNAACPWRUALM-UHFFFAOYSA-N 2-[2-(2-methylphenoxy)phenyl]acetic acid Chemical compound CC1=CC=CC=C1OC1=CC=CC=C1CC(O)=O POVNAACPWRUALM-UHFFFAOYSA-N 0.000 description 1
- APBSKHYXXKHJFK-UHFFFAOYSA-N 2-[2-(4-chlorophenyl)-1,3-thiazol-4-yl]acetic acid Chemical compound OC(=O)CC1=CSC(C=2C=CC(Cl)=CC=2)=N1 APBSKHYXXKHJFK-UHFFFAOYSA-N 0.000 description 1
- XILVEPYQJIOVNB-UHFFFAOYSA-N 2-[3-(trifluoromethyl)anilino]benzoic acid 2-(2-hydroxyethoxy)ethyl ester Chemical compound OCCOCCOC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 XILVEPYQJIOVNB-UHFFFAOYSA-N 0.000 description 1
- JIEKMACRVQTPRC-UHFFFAOYSA-N 2-[4-(4-chlorophenyl)-2-phenyl-5-thiazolyl]acetic acid Chemical compound OC(=O)CC=1SC(C=2C=CC=CC=2)=NC=1C1=CC=C(Cl)C=C1 JIEKMACRVQTPRC-UHFFFAOYSA-N 0.000 description 1
- XUDSQIDNHJMBBW-FOWTUZBSSA-N 2-[4-[(e)-n-hydroxy-c-methylcarbonimidoyl]phenoxy]-1-piperidin-1-ylethanone Chemical compound C1=CC(C(=N/O)/C)=CC=C1OCC(=O)N1CCCCC1 XUDSQIDNHJMBBW-FOWTUZBSSA-N 0.000 description 1
- GXEUNRBWEAIPCN-UHFFFAOYSA-N 2-chloro-2-(3-chloro-4-cyclohexylphenyl)acetic acid Chemical compound ClC1=CC(C(Cl)C(=O)O)=CC=C1C1CCCCC1 GXEUNRBWEAIPCN-UHFFFAOYSA-N 0.000 description 1
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical group C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 1
- ITJNARMNRKSWTA-RLXJOQACSA-N 3-(2-methoxyphenoxy)-3-phenyl-n-(tritritiomethyl)propan-1-amine Chemical compound C=1C=CC=CC=1C(CCNC([3H])([3H])[3H])OC1=CC=CC=C1OC ITJNARMNRKSWTA-RLXJOQACSA-N 0.000 description 1
- XLZYKTYMLBOINK-UHFFFAOYSA-N 3-(4-hydroxybenzoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C(=O)C=2C=CC(O)=CC=2)=C1 XLZYKTYMLBOINK-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- IYNWSQDZXMGGGI-NUEKZKHPSA-N 3-hydroxymorphinan Chemical compound C1CCC[C@H]2[C@H]3CC4=CC=C(O)C=C4[C@]21CCN3 IYNWSQDZXMGGGI-NUEKZKHPSA-N 0.000 description 1
- HVMBPUABKRKNPU-UHFFFAOYSA-N 4-(aminomethyl)-7-hydroxychromen-2-one Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2CN HVMBPUABKRKNPU-UHFFFAOYSA-N 0.000 description 1
- WOVTUUKKGNHVFZ-UHFFFAOYSA-N 4-(fluoren-9-ylidenemethyl)benzenecarboximidamide Chemical compound C1=CC(C(=N)N)=CC=C1C=C1C2=CC=CC=C2C2=CC=CC=C21 WOVTUUKKGNHVFZ-UHFFFAOYSA-N 0.000 description 1
- SFLSHLFXELFNJZ-CMIMLBRMSA-N 4-[(1r)-2-amino-1-hydroxy-1-tritioethyl]benzene-1,2-diol Chemical compound NC[C@@](O)([3H])C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-CMIMLBRMSA-N 0.000 description 1
- KNKRHSVKIORZQB-UHFFFAOYSA-N 4-bromo-2-(hydroxymethyl)phenol Chemical compound OCC1=CC(Br)=CC=C1O KNKRHSVKIORZQB-UHFFFAOYSA-N 0.000 description 1
- IMKNHLPRDSWAHW-UHFFFAOYSA-N 4-butyl-1,2-diphenylpyrazolidine-3,5-dione;4,5-dihydro-1,3-thiazol-2-amine Chemical compound NC1=NCCS1.O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 IMKNHLPRDSWAHW-UHFFFAOYSA-N 0.000 description 1
- RJWBTWIBUIGANW-UHFFFAOYSA-N 4-chlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Cl)C=C1 RJWBTWIBUIGANW-UHFFFAOYSA-N 0.000 description 1
- DVEQCIBLXRSYPH-UHFFFAOYSA-N 5-butyl-1-cyclohexylbarbituric acid Chemical compound O=C1C(CCCC)C(=O)NC(=O)N1C1CCCCC1 DVEQCIBLXRSYPH-UHFFFAOYSA-N 0.000 description 1
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010087765 Antipain Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 206010006784 Burning sensation Diseases 0.000 description 1
- 229930008564 C01BA04 - Sparteine Natural products 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 206010048610 Cardiotoxicity Diseases 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- OIRAEJWYWSAQNG-UHFFFAOYSA-N Clidanac Chemical compound ClC=1C=C2C(C(=O)O)CCC2=CC=1C1CCCCC1 OIRAEJWYWSAQNG-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 102000003849 Cytochrome P450 Human genes 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Chemical group OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- IJVCSMSMFSCRME-KBQPJGBKSA-N Dihydromorphine Chemical compound O([C@H]1[C@H](CC[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O IJVCSMSMFSCRME-KBQPJGBKSA-N 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 108010065372 Dynorphins Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- RHAXSHUQNIEUEY-UHFFFAOYSA-N Epirizole Chemical compound COC1=CC(C)=NN1C1=NC(C)=CC(OC)=N1 RHAXSHUQNIEUEY-UHFFFAOYSA-N 0.000 description 1
- RBBWCVQDXDFISW-UHFFFAOYSA-N Feprazone Chemical compound O=C1C(CC=C(C)C)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 RBBWCVQDXDFISW-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Chemical group OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- 101100329196 Homo sapiens CYP2D6 gene Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 1
- ALFGKMXHOUSVAD-UHFFFAOYSA-N Ketobemidone Chemical compound C=1C=CC(O)=CC=1C1(C(=O)CC)CCN(C)CC1 ALFGKMXHOUSVAD-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical group OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- OZYUPQUCAUTOBP-QXAKKESOSA-N Levallorphan Chemical compound C([C@H]12)CCC[C@@]11CCN(CC=C)[C@@H]2CC2=CC=C(O)C=C21 OZYUPQUCAUTOBP-QXAKKESOSA-N 0.000 description 1
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- TXXHDPDFNKHHGW-CCAGOZQPSA-N Muconic acid Chemical group OC(=O)\C=C/C=C\C(O)=O TXXHDPDFNKHHGW-CCAGOZQPSA-N 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- IDBPHNDTYPBSNI-UHFFFAOYSA-N N-(1-(2-(4-Ethyl-5-oxo-2-tetrazolin-1-yl)ethyl)-4-(methoxymethyl)-4-piperidyl)propionanilide Chemical compound C1CN(CCN2C(N(CC)N=N2)=O)CCC1(COC)N(C(=O)CC)C1=CC=CC=C1 IDBPHNDTYPBSNI-UHFFFAOYSA-N 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- UIQMVEYFGZJHCZ-SSTWWWIQSA-N Nalorphine Chemical compound C([C@@H](N(CC1)CC=C)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 UIQMVEYFGZJHCZ-SSTWWWIQSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- JZFPYUNJRRFVQU-UHFFFAOYSA-N Niflumic acid Chemical compound OC(=O)C1=CC=CN=C1NC1=CC=CC(C(F)(F)F)=C1 JZFPYUNJRRFVQU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ONBWJWYUHXVEJS-ZTYRTETDSA-N Normorphine Chemical compound C([C@@H](NCC1)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 ONBWJWYUHXVEJS-ZTYRTETDSA-N 0.000 description 1
- 239000008896 Opium Substances 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- UQCNKQCJZOAFTQ-ISWURRPUSA-N Oxymorphone Chemical compound O([C@H]1C(CC[C@]23O)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O UQCNKQCJZOAFTQ-ISWURRPUSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 206010033647 Pancreatitis acute Diseases 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 description 1
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- TVQZAMVBTVNYLA-UHFFFAOYSA-N Pranoprofen Chemical compound C1=CC=C2CC3=CC(C(C(O)=O)C)=CC=C3OC2=N1 TVQZAMVBTVNYLA-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100024622 Proenkephalin-B Human genes 0.000 description 1
- VSQMKHNDXWGCDB-UHFFFAOYSA-N Protizinic acid Chemical compound OC(=O)C(C)C1=CC=C2SC3=CC(OC)=CC=C3N(C)C2=C1 VSQMKHNDXWGCDB-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 102100028874 Sodium-dependent serotonin transporter Human genes 0.000 description 1
- 208000010040 Sprains and Strains Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 1
- 0 [1*]C.[2*]C.[3*]C12CCN([5*])CC1([4*])C1=C(C=CC=C1)CC1=C2C=CC=C1 Chemical compound [1*]C.[2*]C.[3*]C12CCN([5*])CC1([4*])C1=C(C=CC=C1)CC1=C2C=CC=C1 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 229960004892 acemetacin Drugs 0.000 description 1
- FSQKKOOTNAMONP-UHFFFAOYSA-N acemetacin Chemical compound CC1=C(CC(=O)OCC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 FSQKKOOTNAMONP-UHFFFAOYSA-N 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 201000003229 acute pancreatitis Diseases 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- 229960001391 alfentanil Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 206010053552 allodynia Diseases 0.000 description 1
- KGYFOSCXVAXULR-UHFFFAOYSA-N allylprodine Chemical compound C=1C=CC=CC=1C1(OC(=O)CC)CCN(C)CC1CC=C KGYFOSCXVAXULR-UHFFFAOYSA-N 0.000 description 1
- 229950004361 allylprodine Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- SLRCCWJSBJZJBV-UHFFFAOYSA-N alpha-isosparteine Natural products C1N2CCCCC2C2CN3CCCCC3C1C2 SLRCCWJSBJZJBV-UHFFFAOYSA-N 0.000 description 1
- 229960001349 alphaprodine Drugs 0.000 description 1
- UVAZQQHAVMNMHE-XJKSGUPXSA-N alphaprodine Chemical compound C=1C=CC=CC=1[C@@]1(OC(=O)CC)CCN(C)C[C@@H]1C UVAZQQHAVMNMHE-XJKSGUPXSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229950008930 amfenac Drugs 0.000 description 1
- SOYCMDCMZDHQFP-UHFFFAOYSA-N amfenac Chemical compound NC1=C(CC(O)=O)C=CC=C1C(=O)C1=CC=CC=C1 SOYCMDCMZDHQFP-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- ISRODTBNJUAWEJ-UHFFFAOYSA-N amixetrine Chemical compound C=1C=CC=CC=1C(OCCC(C)C)CN1CCCC1 ISRODTBNJUAWEJ-UHFFFAOYSA-N 0.000 description 1
- 229950001993 amixetrine Drugs 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- LKYQLAWMNBFNJT-UHFFFAOYSA-N anileridine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC1=CC=C(N)C=C1 LKYQLAWMNBFNJT-UHFFFAOYSA-N 0.000 description 1
- 229960002512 anileridine Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- SDNYTAYICBFYFH-TUFLPTIASA-N antipain Chemical compound NC(N)=NCCC[C@@H](C=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 SDNYTAYICBFYFH-TUFLPTIASA-N 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229960005149 bendazac Drugs 0.000 description 1
- BYFMCKSPFYVMOU-UHFFFAOYSA-N bendazac Chemical compound C12=CC=CC=C2C(OCC(=O)O)=NN1CC1=CC=CC=C1 BYFMCKSPFYVMOU-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- RDJGWRFTDZZXSM-RNWLQCGYSA-N benzylmorphine Chemical compound O([C@@H]1[C@]23CCN([C@H](C4)[C@@H]3C=C[C@@H]1O)C)C1=C2C4=CC=C1OCC1=CC=CC=C1 RDJGWRFTDZZXSM-RNWLQCGYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- FLKWNFFCSSJANB-UHFFFAOYSA-N bezitramide Chemical compound O=C1N(C(=O)CC)C2=CC=CC=C2N1C(CC1)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 FLKWNFFCSSJANB-UHFFFAOYSA-N 0.000 description 1
- 229960004611 bezitramide Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 229950005608 bucloxic acid Drugs 0.000 description 1
- IJTPQQVCKPZIMV-UHFFFAOYSA-N bucloxic acid Chemical compound ClC1=CC(C(=O)CCC(=O)O)=CC=C1C1CCCCC1 IJTPQQVCKPZIMV-UHFFFAOYSA-N 0.000 description 1
- 229950003872 bucolome Drugs 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229960002973 butibufen Drugs 0.000 description 1
- UULSXYSSHHRCQK-UHFFFAOYSA-N butibufen Chemical compound CCC(C(O)=O)C1=CC=C(CC(C)C)C=C1 UULSXYSSHHRCQK-UHFFFAOYSA-N 0.000 description 1
- IFKLAQQSCNILHL-QHAWAJNXSA-N butorphanol Chemical compound N1([C@@H]2CC3=CC=C(C=C3[C@@]3([C@]2(CCCC3)O)CC1)O)CC1CCC1 IFKLAQQSCNILHL-QHAWAJNXSA-N 0.000 description 1
- 229960001113 butorphanol Drugs 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 1
- 229950011318 cannabidiol Drugs 0.000 description 1
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 1
- 231100000259 cardiotoxicity Toxicity 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 1
- 229960003291 chlorphenamine Drugs 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- NKPPORKKCMYYTO-DHZHZOJOSA-N cinmetacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)\C=C\C1=CC=CC=C1 NKPPORKKCMYYTO-DHZHZOJOSA-N 0.000 description 1
- 229950011171 cinmetacin Drugs 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229950010886 clidanac Drugs 0.000 description 1
- 229960003140 clofezone Drugs 0.000 description 1
- GPZLDQAEBHTMPG-UHFFFAOYSA-N clonitazene Chemical compound N=1C2=CC([N+]([O-])=O)=CC=C2N(CCN(CC)CC)C=1CC1=CC=C(Cl)C=C1 GPZLDQAEBHTMPG-UHFFFAOYSA-N 0.000 description 1
- 229950001604 clonitazene Drugs 0.000 description 1
- SJCRQMUYEQHNTC-UHFFFAOYSA-N clopirac Chemical compound CC1=CC(CC(O)=O)=C(C)N1C1=CC=C(Cl)C=C1 SJCRQMUYEQHNTC-UHFFFAOYSA-N 0.000 description 1
- 229950009185 clopirac Drugs 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 229950002213 cyclazocine Drugs 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- JWPGJSVJDAJRLW-UHFFFAOYSA-N debrisoquin Chemical compound C1=CC=C2CN(C(=N)N)CCC2=C1 JWPGJSVJDAJRLW-UHFFFAOYSA-N 0.000 description 1
- 229960004096 debrisoquine Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 229950003851 desomorphine Drugs 0.000 description 1
- LNNWVNGFPYWNQE-GMIGKAJZSA-N desomorphine Chemical compound C1C2=CC=C(O)C3=C2[C@]24CCN(C)[C@H]1[C@@H]2CCC[C@@H]4O3 LNNWVNGFPYWNQE-GMIGKAJZSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- WDEFBBTXULIOBB-WBVHZDCISA-N dextilidine Chemical compound C=1C=CC=CC=1[C@@]1(C(=O)OCC)CCC=C[C@H]1N(C)C WDEFBBTXULIOBB-WBVHZDCISA-N 0.000 description 1
- 229960003701 dextromoramide Drugs 0.000 description 1
- INUNXTSAACVKJS-OAQYLSRUSA-N dextromoramide Chemical compound C([C@@H](C)C(C(=O)N1CCCC1)(C=1C=CC=CC=1)C=1C=CC=CC=1)N1CCOCC1 INUNXTSAACVKJS-OAQYLSRUSA-N 0.000 description 1
- 229960003461 dezocine Drugs 0.000 description 1
- VTMVHDZWSFQSQP-VBNZEHGJSA-N dezocine Chemical compound C1CCCC[C@H]2CC3=CC=C(O)C=C3[C@]1(C)[C@H]2N VTMVHDZWSFQSQP-VBNZEHGJSA-N 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- RXTHKWVSXOIHJS-UHFFFAOYSA-N diampromide Chemical compound C=1C=CC=CC=1N(C(=O)CC)CC(C)N(C)CCC1=CC=CC=C1 RXTHKWVSXOIHJS-UHFFFAOYSA-N 0.000 description 1
- 229950001059 diampromide Drugs 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 229960001536 difenpiramide Drugs 0.000 description 1
- PWHROYKAGRUWDQ-UHFFFAOYSA-N difenpiramide Chemical compound C=1C=CC=NC=1NC(=O)CC(C=C1)=CC=C1C1=CC=CC=C1 PWHROYKAGRUWDQ-UHFFFAOYSA-N 0.000 description 1
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- RHUWRJWFHUKVED-UHFFFAOYSA-N dimenoxadol Chemical compound C=1C=CC=CC=1C(C(=O)OCCN(C)C)(OCC)C1=CC=CC=C1 RHUWRJWFHUKVED-UHFFFAOYSA-N 0.000 description 1
- 229950011187 dimenoxadol Drugs 0.000 description 1
- QIRAYNIFEOXSPW-UHFFFAOYSA-N dimepheptanol Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(O)CC)C1=CC=CC=C1 QIRAYNIFEOXSPW-UHFFFAOYSA-N 0.000 description 1
- 229950004655 dimepheptanol Drugs 0.000 description 1
- CANBGVXYBPOLRR-UHFFFAOYSA-N dimethylthiambutene Chemical compound C=1C=CSC=1C(=CC(C)N(C)C)C1=CC=CS1 CANBGVXYBPOLRR-UHFFFAOYSA-N 0.000 description 1
- 229950005563 dimethylthiambutene Drugs 0.000 description 1
- SVDHSZFEQYXRDC-UHFFFAOYSA-N dipipanone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)CC)CC(C)N1CCCCC1 SVDHSZFEQYXRDC-UHFFFAOYSA-N 0.000 description 1
- 229960002500 dipipanone Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229960005067 ditazole Drugs 0.000 description 1
- UUCMDZWCRNZCOY-UHFFFAOYSA-N ditazole Chemical compound O1C(N(CCO)CCO)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 UUCMDZWCRNZCOY-UHFFFAOYSA-N 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical group CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229960001850 droxicam Drugs 0.000 description 1
- OEHFRZLKGRKFAS-UHFFFAOYSA-N droxicam Chemical compound C12=CC=CC=C2S(=O)(=O)N(C)C(C2=O)=C1OC(=O)N2C1=CC=CC=N1 OEHFRZLKGRKFAS-UHFFFAOYSA-N 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000008406 drug-drug interaction Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229950003801 epirizole Drugs 0.000 description 1
- ZOWQTJXNFTWSCS-IAQYHMDHSA-N eptazocine Chemical compound C1N(C)CC[C@@]2(C)C3=CC(O)=CC=C3C[C@@H]1C2 ZOWQTJXNFTWSCS-IAQYHMDHSA-N 0.000 description 1
- 229950010920 eptazocine Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- WGJHHMKQBWSQIY-UHFFFAOYSA-N ethoheptazine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCCN(C)CC1 WGJHHMKQBWSQIY-UHFFFAOYSA-N 0.000 description 1
- 229960000569 ethoheptazine Drugs 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- MORSAEFGQPDBKM-UHFFFAOYSA-N ethylmethylthiambutene Chemical compound C=1C=CSC=1C(=CC(C)N(C)CC)C1=CC=CS1 MORSAEFGQPDBKM-UHFFFAOYSA-N 0.000 description 1
- 229950006111 ethylmethylthiambutene Drugs 0.000 description 1
- 229960001493 etofenamate Drugs 0.000 description 1
- PXDBZSCGSQSKST-UHFFFAOYSA-N etonitazene Chemical compound C1=CC(OCC)=CC=C1CC1=NC2=CC([N+]([O-])=O)=CC=C2N1CCN(CC)CC PXDBZSCGSQSKST-UHFFFAOYSA-N 0.000 description 1
- 229950004538 etonitazene Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229960001395 fenbufen Drugs 0.000 description 1
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 1
- IDKAXRLETRCXKS-UHFFFAOYSA-N fenclofenac Chemical compound OC(=O)CC1=CC=CC=C1OC1=CC=C(Cl)C=C1Cl IDKAXRLETRCXKS-UHFFFAOYSA-N 0.000 description 1
- 229950006236 fenclofenac Drugs 0.000 description 1
- 229950003537 fenclorac Drugs 0.000 description 1
- 229950011481 fenclozic acid Drugs 0.000 description 1
- HAWWPSYXSLJRBO-UHFFFAOYSA-N fendosal Chemical compound C1=C(O)C(C(=O)O)=CC(N2C(=CC=3C4=CC=CC=C4CCC=32)C=2C=CC=CC=2)=C1 HAWWPSYXSLJRBO-UHFFFAOYSA-N 0.000 description 1
- 229950005416 fendosal Drugs 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 229960002679 fentiazac Drugs 0.000 description 1
- 229960000489 feprazone Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960001321 flunoxaprofen Drugs 0.000 description 1
- ARPYQKTVRGFPIS-VIFPVBQESA-N flunoxaprofen Chemical compound N=1C2=CC([C@@H](C(O)=O)C)=CC=C2OC=1C1=CC=C(F)C=C1 ARPYQKTVRGFPIS-VIFPVBQESA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960004410 glucametacin Drugs 0.000 description 1
- 239000000174 gluconic acid Chemical group 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Chemical group 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229960002389 glycol salicylate Drugs 0.000 description 1
- 229960002350 guaiazulen Drugs 0.000 description 1
- 229960002146 guaifenesin Drugs 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 230000000742 histaminergic effect Effects 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 1
- 229960001410 hydromorphone Drugs 0.000 description 1
- WTJBNMUWRKPFRS-UHFFFAOYSA-N hydroxypethidine Chemical compound C=1C=CC(O)=CC=1C1(C(=O)OCC)CCN(C)CC1 WTJBNMUWRKPFRS-UHFFFAOYSA-N 0.000 description 1
- 229950008496 hydroxypethidine Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960002595 ibuproxam Drugs 0.000 description 1
- BYPIURIATSUHDW-UHFFFAOYSA-N ibuproxam Chemical compound CC(C)CC1=CC=C(C(C)C(=O)NO)C=C1 BYPIURIATSUHDW-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- IFKPLJWIEQBPGG-UHFFFAOYSA-N isomethadone Chemical compound C=1C=CC=CC=1C(C(C)CN(C)C)(C(=O)CC)C1=CC=CC=C1 IFKPLJWIEQBPGG-UHFFFAOYSA-N 0.000 description 1
- 229950009272 isomethadone Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229950002252 isoxicam Drugs 0.000 description 1
- YYUAYBYLJSNDCX-UHFFFAOYSA-N isoxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC=1C=C(C)ON=1 YYUAYBYLJSNDCX-UHFFFAOYSA-N 0.000 description 1
- 229960003029 ketobemidone Drugs 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960000263 levallorphan Drugs 0.000 description 1
- RCYBMSQOSGJZLO-BGWNEDDSSA-N levophenacylmorphan Chemical compound C([C@]12CCCC[C@H]1[C@H]1CC3=CC=C(C=C32)O)CN1CC(=O)C1=CC=CC=C1 RCYBMSQOSGJZLO-BGWNEDDSSA-N 0.000 description 1
- 229950007939 levophenacylmorphan Drugs 0.000 description 1
- 229960003406 levorphanol Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 210000001853 liver microsome Anatomy 0.000 description 1
- 229950010274 lofentanil Drugs 0.000 description 1
- IMYHGORQCPYVBZ-NLFFAJNJSA-N lofentanil Chemical compound CCC(=O)N([C@@]1([C@@H](CN(CCC=2C=CC=CC=2)CC1)C)C(=O)OC)C1=CC=CC=C1 IMYHGORQCPYVBZ-NLFFAJNJSA-N 0.000 description 1
- 229960003768 lonazolac Drugs 0.000 description 1
- XVUQHFRQHBLHQD-UHFFFAOYSA-N lonazolac Chemical compound OC(=O)CC1=CN(C=2C=CC=CC=2)N=C1C1=CC=C(Cl)C=C1 XVUQHFRQHBLHQD-UHFFFAOYSA-N 0.000 description 1
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 1
- 229960001571 loperamide Drugs 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 208000024714 major depressive disease Diseases 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 229960000365 meptazinol Drugs 0.000 description 1
- JLICHNCFTLFZJN-HNNXBMFYSA-N meptazinol Chemical compound C=1C=CC(O)=CC=1[C@@]1(CC)CCCCN(C)C1 JLICHNCFTLFZJN-HNNXBMFYSA-N 0.000 description 1
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 1
- 229960004963 mesalazine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229950009131 metazocine Drugs 0.000 description 1
- YGSVZRIZCHZUHB-COLVAYQJSA-N metazocine Chemical compound C1C2=CC=C(O)C=C2[C@]2(C)CCN(C)[C@@]1([H])[C@@H]2C YGSVZRIZCHZUHB-COLVAYQJSA-N 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 229950005798 metiazinic acid Drugs 0.000 description 1
- LMINNBXUMGNKMM-UHFFFAOYSA-N metiazinic acid Chemical compound C1=C(CC(O)=O)C=C2N(C)C3=CC=CC=C3SC2=C1 LMINNBXUMGNKMM-UHFFFAOYSA-N 0.000 description 1
- 229950006080 metopon Drugs 0.000 description 1
- NPZXCTIHHUUEEJ-CMKMFDCUSA-N metopon Chemical compound O([C@@]1(C)C(=O)CC[C@@H]23)C4=C5[C@@]13CCN(C)[C@@H]2CC5=CC=C4O NPZXCTIHHUUEEJ-CMKMFDCUSA-N 0.000 description 1
- 229960003955 mianserin Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229960005285 mofebutazone Drugs 0.000 description 1
- REOJLIXKJWXUGB-UHFFFAOYSA-N mofebutazone Chemical compound O=C1C(CCCC)C(=O)NN1C1=CC=CC=C1 REOJLIXKJWXUGB-UHFFFAOYSA-N 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 229950007471 myrophine Drugs 0.000 description 1
- GODGZZGKTZQSAL-VXFFQEMOSA-N myrophine Chemical compound C([C@@H]1[C@@H]2C=C[C@@H]([C@@H]3OC4=C5[C@]23CCN1C)OC(=O)CCCCCCCCCCCCC)C5=CC=C4OCC1=CC=CC=C1 GODGZZGKTZQSAL-VXFFQEMOSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- XBXVHXJYNHZOKZ-UHFFFAOYSA-N n-methyl-2-(1-methyl-5-oxo-6h-benzo[b][1]benzoxepin-6-yl)acetamide Chemical compound O=C1C(CC(=O)NC)C2=CC=CC=C2OC2=C(C)C=CC=C21 XBXVHXJYNHZOKZ-UHFFFAOYSA-N 0.000 description 1
- ZQQPAHDEARAWCQ-UHFFFAOYSA-N n-methyl-2-(1-methylbenzo[b][1]benzoxepin-6-yl)ethanamine Chemical compound CNCCC1=CC2=CC=CC(C)=C2OC2=CC=CC=C12 ZQQPAHDEARAWCQ-UHFFFAOYSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960000805 nalbuphine Drugs 0.000 description 1
- NETZHAKZCGBWSS-CEDHKZHLSA-N nalbuphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@@H]3O)CN2CC1CCC1 NETZHAKZCGBWSS-CEDHKZHLSA-N 0.000 description 1
- 229960000938 nalorphine Drugs 0.000 description 1
- CVRCFLFEGNKMEC-UHFFFAOYSA-N naphthalen-1-yl 2-hydroxybenzoate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC2=CC=CC=C12 CVRCFLFEGNKMEC-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 210000001577 neostriatum Anatomy 0.000 description 1
- 229960004300 nicomorphine Drugs 0.000 description 1
- HNDXBGYRMHRUFN-CIVUWBIHSA-N nicomorphine Chemical compound O([C@H]1C=C[C@H]2[C@H]3CC=4C5=C(C(=CC=4)OC(=O)C=4C=NC=CC=4)O[C@@H]1[C@]52CCN3C)C(=O)C1=CC=CN=C1 HNDXBGYRMHRUFN-CIVUWBIHSA-N 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229960000916 niflumic acid Drugs 0.000 description 1
- 229960000965 nimesulide Drugs 0.000 description 1
- HYWYRSMBCFDLJT-UHFFFAOYSA-N nimesulide Chemical compound CS(=O)(=O)NC1=CC=C([N+]([O-])=O)C=C1OC1=CC=CC=C1 HYWYRSMBCFDLJT-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
- 229940121367 non-opioid analgesics Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002767 noradrenalin uptake inhibitor Substances 0.000 description 1
- 230000002474 noradrenergic effect Effects 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 230000000966 norepinephrine reuptake Effects 0.000 description 1
- 229950011519 norlevorphanol Drugs 0.000 description 1
- 229960004013 normethadone Drugs 0.000 description 1
- WCJFBSYALHQBSK-UHFFFAOYSA-N normethadone Chemical compound C=1C=CC=CC=1C(CCN(C)C)(C(=O)CC)C1=CC=CC=C1 WCJFBSYALHQBSK-UHFFFAOYSA-N 0.000 description 1
- 229950006134 normorphine Drugs 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- QQBDLJCYGRGAKP-FOCLMDBBSA-N olsalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=C(C(O)=CC=2)C(O)=O)=C1 QQBDLJCYGRGAKP-FOCLMDBBSA-N 0.000 description 1
- 229960004110 olsalazine Drugs 0.000 description 1
- 229960000381 omeprazole Drugs 0.000 description 1
- 229960001027 opium Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229960004534 orgotein Drugs 0.000 description 1
- 108010070915 orgotein Proteins 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229960005113 oxaceprol Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- AJRNYCDWNITGHF-UHFFFAOYSA-N oxametacin Chemical compound CC1=C(CC(=O)NO)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 AJRNYCDWNITGHF-UHFFFAOYSA-N 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229960005118 oxymorphone Drugs 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Chemical group OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960003294 papaveretum Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 1
- 229960005301 pentazocine Drugs 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- CYXKNKQEMFBLER-UHFFFAOYSA-N perhexiline Chemical compound C1CCCNC1CC(C1CCCCC1)C1CCCCC1 CYXKNKQEMFBLER-UHFFFAOYSA-N 0.000 description 1
- 229960000989 perhexiline Drugs 0.000 description 1
- 229960000762 perphenazine Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000009522 phase III clinical trial Methods 0.000 description 1
- LOXCOAXRHYDLOW-UHFFFAOYSA-N phenadoxone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)CC)CC(C)N1CCOCC1 LOXCOAXRHYDLOW-UHFFFAOYSA-N 0.000 description 1
- 229950004540 phenadoxone Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- CFBQYWXPZVQQTN-QPTUXGOLSA-N phenomorphan Chemical compound C([C@]12CCCC[C@H]1[C@H]1CC3=CC=C(C=C32)O)CN1CCC1=CC=CC=C1 CFBQYWXPZVQQTN-QPTUXGOLSA-N 0.000 description 1
- 229950011496 phenomorphan Drugs 0.000 description 1
- 229960004315 phenoperidine Drugs 0.000 description 1
- IPOPQVVNCFQFRK-UHFFFAOYSA-N phenoperidine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC(O)C1=CC=CC=C1 IPOPQVVNCFQFRK-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 description 1
- 229960000395 phenylpropanolamine Drugs 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- 229950006452 pifoxime Drugs 0.000 description 1
- 229960001503 piketoprofen Drugs 0.000 description 1
- ASFKKFRSMGBFRO-UHFFFAOYSA-N piketoprofen Chemical compound C=1C=CC(C(=O)C=2C=CC=CC=2)=CC=1C(C)C(=O)NC1=CC(C)=CC=N1 ASFKKFRSMGBFRO-UHFFFAOYSA-N 0.000 description 1
- 229950006445 piminodine Drugs 0.000 description 1
- PXXKIYPSXYFATG-UHFFFAOYSA-N piminodine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCCNC1=CC=CC=C1 PXXKIYPSXYFATG-UHFFFAOYSA-N 0.000 description 1
- 229960001286 piritramide Drugs 0.000 description 1
- IHEHEFLXQFOQJO-UHFFFAOYSA-N piritramide Chemical compound C1CC(C(=O)N)(N2CCCCC2)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 IHEHEFLXQFOQJO-UHFFFAOYSA-N 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229960000851 pirprofen Drugs 0.000 description 1
- PIDSZXPFGCURGN-UHFFFAOYSA-N pirprofen Chemical compound ClC1=CC(C(C(O)=O)C)=CC=C1N1CC=CC1 PIDSZXPFGCURGN-UHFFFAOYSA-N 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960003101 pranoprofen Drugs 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960000825 proglumetacin Drugs 0.000 description 1
- PTXGHCGBYMQQIG-UHFFFAOYSA-N proglumetacin Chemical compound C=1C=CC=CC=1C(=O)NC(C(=O)N(CCC)CCC)CCC(=O)OCCCN(CC1)CCN1CCOC(=O)CC(C1=CC(OC)=CC=C11)=C(C)N1C(=O)C1=CC=C(Cl)C=C1 PTXGHCGBYMQQIG-UHFFFAOYSA-N 0.000 description 1
- SSOLNOMRVKKSON-UHFFFAOYSA-N proguanil Chemical compound CC(C)\N=C(/N)N=C(N)NC1=CC=C(Cl)C=C1 SSOLNOMRVKKSON-UHFFFAOYSA-N 0.000 description 1
- 229960005385 proguanil Drugs 0.000 description 1
- ZXWAUWBYASJEOE-UHFFFAOYSA-N proheptazine Chemical compound C=1C=CC=CC=1C1(OC(=O)CC)CCCN(C)CC1C ZXWAUWBYASJEOE-UHFFFAOYSA-N 0.000 description 1
- 229950004345 properidine Drugs 0.000 description 1
- XJKQCILVUHXVIQ-UHFFFAOYSA-N properidine Chemical compound C=1C=CC=CC=1C1(C(=O)OC(C)C)CCN(C)CC1 XJKQCILVUHXVIQ-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229950003779 propiram Drugs 0.000 description 1
- ZBAFFZBKCMWUHM-UHFFFAOYSA-N propiram Chemical compound C=1C=CC=NC=1N(C(=O)CC)C(C)CN1CCCCC1 ZBAFFZBKCMWUHM-UHFFFAOYSA-N 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002466 proquazone Drugs 0.000 description 1
- JTIGKVIOEQASGT-UHFFFAOYSA-N proquazone Chemical compound N=1C(=O)N(C(C)C)C2=CC(C)=CC=C2C=1C1=CC=CC=C1 JTIGKVIOEQASGT-UHFFFAOYSA-N 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 229950001856 protizinic acid Drugs 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229960001404 quinidine Drugs 0.000 description 1
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 description 1
- 230000036385 rapid eye movement (rem) sleep Effects 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229940058287 salicylic acid derivative anticestodals Drugs 0.000 description 1
- 150000003872 salicylic acid derivatives Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000020341 sensory perception of pain Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- SLRCCWJSBJZJBV-AJNGGQMLSA-N sparteine Chemical compound C1N2CCCC[C@H]2[C@@H]2CN3CCCC[C@H]3[C@H]1C2 SLRCCWJSBJZJBV-AJNGGQMLSA-N 0.000 description 1
- 229960001945 sparteine Drugs 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Chemical group 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960004739 sufentanil Drugs 0.000 description 1
- GGCSSNBKKAUURC-UHFFFAOYSA-N sufentanil Chemical compound C1CN(CCC=2SC=CC=2)CCC1(COC)N(C(=O)CC)C1=CC=CC=C1 GGCSSNBKKAUURC-UHFFFAOYSA-N 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229960003755 suxibuzone Drugs 0.000 description 1
- ONWXNHPOAGOMTG-UHFFFAOYSA-N suxibuzone Chemical compound O=C1C(CCCC)(COC(=O)CCC(O)=O)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 ONWXNHPOAGOMTG-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960003676 tenidap Drugs 0.000 description 1
- LXIKEPCNDFVJKC-QXMHVHEDSA-N tenidap Chemical compound C12=CC(Cl)=CC=C2N(C(=O)N)C(=O)\C1=C(/O)C1=CC=CS1 LXIKEPCNDFVJKC-QXMHVHEDSA-N 0.000 description 1
- SGWGCYVAQYMMDM-UHFFFAOYSA-N tert-butyl 2-(1-methyl-5-oxo-6h-benzo[b][1]benzoxepin-6-yl)acetate Chemical compound O1C2=CC=CC=C2C(CC(=O)OC(C)(C)C)C(=O)C2=C1C(C)=CC=C2 SGWGCYVAQYMMDM-UHFFFAOYSA-N 0.000 description 1
- ZRRODDZEVACBQQ-UHFFFAOYSA-N tert-butyl n-[2-(5-hydroxy-1-methyl-5,6-dihydrobenzo[b][1]benzoxepin-6-yl)ethyl]-n-methylcarbamate Chemical compound CC(C)(C)OC(=O)N(C)CCC1C(O)C2=CC=CC(C)=C2OC2=CC=CC=C12 ZRRODDZEVACBQQ-UHFFFAOYSA-N 0.000 description 1
- TUGDLVFMIQZYPA-UHFFFAOYSA-N tetracopper;tetrazinc Chemical compound [Cu+2].[Cu+2].[Cu+2].[Cu+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2] TUGDLVFMIQZYPA-UHFFFAOYSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229950010302 tiaramide Drugs 0.000 description 1
- HTJXMOGUGMSZOG-UHFFFAOYSA-N tiaramide Chemical compound C1CN(CCO)CCN1C(=O)CN1C(=O)SC2=CC=C(Cl)C=C21 HTJXMOGUGMSZOG-UHFFFAOYSA-N 0.000 description 1
- 229960001402 tilidine Drugs 0.000 description 1
- 229950010298 tinoridine Drugs 0.000 description 1
- PFENFDGYVLAFBR-UHFFFAOYSA-N tinoridine Chemical compound C1CC=2C(C(=O)OCC)=C(N)SC=2CN1CC1=CC=CC=C1 PFENFDGYVLAFBR-UHFFFAOYSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- OOGJQPCLVADCPB-HXUWFJFHSA-N tolterodine Chemical compound C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(C)C=2)O)=CC=CC=C1 OOGJQPCLVADCPB-HXUWFJFHSA-N 0.000 description 1
- 229960004045 tolterodine Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- FYZXEMANQYHCFX-UHFFFAOYSA-K tripotassium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [K+].[K+].[K+].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O FYZXEMANQYHCFX-UHFFFAOYSA-K 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- BDIAUFOIMFAIPU-UHFFFAOYSA-N valepotriate Natural products CC(C)CC(=O)OC1C=C(C(=COC2OC(=O)CC(C)C)COC(C)=O)C2C11CO1 BDIAUFOIMFAIPU-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- WFPIAZLQTJBIFN-DVZOWYKESA-N zuclopenthixol Chemical compound C1CN(CCO)CCN1CC\C=C\1C2=CC(Cl)=CC=C2SC2=CC=CC=C2/1 WFPIAZLQTJBIFN-DVZOWYKESA-N 0.000 description 1
- 229960004141 zuclopenthixol Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
Definitions
- Acute and chronic pain of both nociceptive and non-nociceptive origin are disabling conditions that affect significant numbers of individuals. Pain is frequently characterized by increased sensitivity to normally non-noxious stimuli (allodynia) and/or painful stimuli (hyperalgesia).
- antidepressants such as norepinephrine and serotonin (5HT) reuptake inhibitors have been used as a first-line therapy for treating certain types of pain, for example, pain associated with diabetic neuropathy, postherpetic neuralgia, fibromyalgia, irritable bowel syndrome and interstitial cystitis, none of these therapies has proven to be universally effective.
- Beloxepin also known as “Org-4428” and “cis-1,2,3,4,4a,13b-hexahydro-2,10-dimethyldiben-[2,3:6,7]oxepino[4,5c]pyridine-4a-ol],” is a tetracyclic compound that underwent clinical evaluation as a potential antidepressant in the late 1990s.
- beloxepin is a highly specific inhibitor of noradrenaline reuptake in synaptosomes from rat and primate brain in in vitro assays, having greater than 100-fold less affinity for other monoamine carriers (i.e., serotonin and dopamine transporters), and no or very weak affinity for noradrenergic, histaminergic and cholinergic receptors (Sperling & Demling, 1997, Drugs of Today 33(2):95-102). It is also reported to have modest affinity for the 5HT 2C receptor (Claghorn & Lesem, 1996, Progress Drug Res 46:243-262).
- beloxepin In preclinical studies with animal models of depression, beloxepin was noted to exhibit antidepressant properties by offsetting acquired immobility behavior, reserpine-induced hypothermia, and conditioned avoidance behavior. In these tests, beloxepin did not cause sedation, motor impairment or other untoward side effects. Its profile on EEG-defined sleep/wake behavior is compatible with that of a nonsedative antidepressant with sleep-improving properties (Sperling & Demling, 1997, supra).
- beloxepin displayed linear kinetics over a broad range, with a dose-independent t max of one to four hours and t 1/2 of 11 to 15 hr following doses of 10 to 500 mg.
- phase IIA study in patients hospitalized for depression, 2 ⁇ 3 of patients had a moderate to good response, based on HAMD score reduction (Claghorn & Lesem, 1996, supra).
- antidepressants including those that inhibit reuptake of NE (NRIs) and/or 5HT (SRIs) have been used as a first-line therapy for treating both acute and chronic pain that is either nociceptive or non-nociceptive in origin, for example, neuropathy, post-herpetic neuralgia (PHN), pain associated with fibromyalgia, pain associated with irritable bowel syndrome and interstitial cystitis (Sindrup and Jensen, 1999, Pain 83(3):389-400; Collins et al., 2000, J. Pain & Symptom Management 20(6):449-458; Crowell et al., 2004, Current Opin. Invest. Drugs 5(7):736-742).
- beloxepin would not be expected to be effective in treating pain.
- the present inventors have discovered that not only is beloxepin extremely effective in rodent models of various different pain syndromes, its antiallodynic activity is superior to that of known NRI compounds (e.g., reboxetine), dual NRI/SRI compounds (e.g., duloxetine) and tricyclic antidepressants (e.g., amitriptyline) currently used to treat pain when dosed at the same concentrations via IP administration.
- NRI compounds e.g., reboxetine
- dual NRI/SRI compounds e.g., duloxetine
- tricyclic antidepressants e.g., amitriptyline
- beloxepin produced an observed mean threshold of approximately 15 g—nearly 5 times greater—under the same experimental conditions than reboxetine.
- beloxepin produced a tactile antiallodynic effect that was 852% greater than that observed with vehicle-treated controls, and nearly 100% of that observed with sham-operated animals.
- Beloxepin also exhibited extremely robust activity in rodent models of acute nociceptive pain ( FIGS. 6A and 6B ), inflammatory pain ( FIG. 7 and FIG. 9 ), neuropathic pain ( FIG. 10 and Example 12), post-operative incisional pain ( FIG. 12 , FIG. 13 , FIG. 14 , and Example 13), and visceral pain ( FIG. 8 ).
- beloxepin exhibited anti-nociceptive activity almost equivalent to that of 3 mg/kg morphine.
- beloxepin exhibited nearly complete reversal of hyperalgesia in rats treated with Freund's Complete Adjuvant (FCA), and with reference to FIG. 8 , beloxepin inhibited acetic acid-induced writhing in mice a dose-dependent fashion.
- Analogs of beloxepin are known in the art. For example, analogs of beloxepin are described in U.S. Pat. No. 4,977,158, the disclosure of which is incorporated herein by reference. These analogs are expected to exhibit anti-pain activities similar to beloxepin.
- the present disclosure provide a method of treating pain in a mammal comprising administering to a mammal suffering from pain, including a human, an amount of beloxepin and/or a beloxepin analog effective to treat the pain.
- the beloxepin or beloxepin analog can be administered as the compound per se, or in the form of a composition.
- the beloxepin or beloxepin analog can be included in the composition as the free base, or in the form of a salt.
- the beloxepin and/or beloxepin analog is included in the composition in the form of a pharmaceutically acceptable salt.
- composition can be formulated for administration to animals in veterinary contexts, or for administration to humans, via virtually any route or mode of administration, including, but not limited to, oral, topical, ocular, buccal, systemic, nasal, injection, transdermal, rectal, vaginal, inhalation or insufflation.
- the composition is formulated for oral administration, for example, to humans.
- the methods can be used to treat numerous different types of pain syndromes, including acute or chronic pain that is either nociceptive (for example somatic or visceral) or non-nociceptive (for example neuropathic or sympathetic) in origin.
- the pain is nociceptive pain including, but not limited to, surgical pain, inflammatory pain such as that associated with inflammatory bowel syndrome (“IBS”) or rheumatoid arthritis, pain associated with cancer, and pain associated with osteoarthritis.
- IBS inflammatory bowel syndrome
- osteoarthritis pain associated with osteoarthritis.
- the pain is non-nociceptive pain including, but not limited to, neuropathic pain such as post-herpetic neuralgia (“PHN”), trigeminal neuralgia, focal peripheral nerve injury, anesthesia clolorosa, central pain (for example, post-stroke pain, pain due to spinal cord injury or pain associated with multiple sclerosis), and peripheral neuropathy (for example, diabetic neuropathy, inherited neuropathy or other acquired neuropathies).
- PPN post-herpetic neuralgia
- trigeminal neuralgia focal peripheral nerve injury
- anesthesia clolorosa anesthesia clolorosa
- central pain for example, post-stroke pain, pain due to spinal cord injury or pain associated with multiple sclerosis
- peripheral neuropathy for example, diabetic neuropathy, inherited neuropathy or other acquired neuropathies.
- beloxepin and/or beloxepin analog can be administered alone, or it can be administered in combination with, or adjunctively to, one or more other drugs useful for treating pain and/or other indications.
- drugs that can be used in combination with, or adjunctively to, the beloxepin and/or beloxepin analogs in a pain treatment or management regimen are provided in a later section.
- beloxepin is administered in combination with, or adjunctively to, one or more beloxepin analogs.
- FIG. 1 provides a graph demonstrating the antiallodynic effect of beloxepin (30 mg/kg IP) in L5 SNL rats 14 days post surgery;
- FIG. 2 provides a graph demonstrating the antiallodynic effect of beloxepin (3, 10 and 30 mg/kg IP) in L5 SNL rats 16 days post surgery;
- FIG. 3 provides a graph illustrating the superior antiallodynic effect of beloxepin (30 mg/kg IP) as compared to reboxetine, a selective norepinephrine reuptake inhibitor (30 mg/kg IP), in L5 SNL rats;
- FIG. 4 provides a graph demonstrating the antiallodynic effect of orally administered beloxepin (60 mg/kg PO) in L5 SNL rats 8 days post surgery;
- FIG. 5 provides a graph comparing the antiallodynic effects produced by beloxepin, duloxetine, amitriptyline, and reboxetine (each at a concentration of 30 mg/kg IP) in L5 SNL rats;
- FIGS. 6A and 6B provide graphs demonstrating the robust anti-nociceptive activity of beloxepin in a rodent model of acute nociception
- FIG. 7 provides a graph illustrating the robust antihyperalgesia activity of beloxepin in an animal model of inflammatory pain (rats treated with Freund's Complete Adjuvent);
- FIG. 8 provides a graph illustrating the robust activity of beloxepin in a rodent model of visceral pain (mice treated with acetic acid);
- FIG. 9 provides a graph comparing the mechanical antihyperalgesic effects of (30 mg/Kg IP) ( ⁇ )-beloxepin and a reconstituted equimolar (racemic) mixture (30 mg/Kg IP) of (+)-beloxepin and ( ⁇ )-beloxepin, in FCA-treated rats, 24 hours after FCA injection;
- FIG. 10 provides a graph demonstrating the antiallodynic effect of orally administered beloxepin (60 mg/kg PO) in L5 SNL rats 7 days post surgery;
- FIG. 11 provides a graph comparing the antiallodynic effects of beloxepin, duloxetine, and esreboxetine (each compound dosed at 30 mg/kg IP) in L5 SNL rats;
- FIG. 12 provides a graph demonstrating the antiallodynic effect of beloxepin (30 mg/kg IP) in the rat hindpaw incisional model 24 hours post surgery;
- FIG. 13 provides a graph demonstrating the antiallodynic effect of orally-administered beloxepin (60 mg/kg IP) in the rat hindpaw incisional model 24 hours post surgery;
- FIG. 14 provides a graph demonstrating the antiallodynic effect of intravenously-administered beloxepin (3 mg/kg IV) in the rat hindpaw incisional model 24 hours post surgery.
- FIG. 15 provides a graph illustrating the inhibition of CYP2D6 (dextromethorphan O-demethylation) by beloxepin and quinidine.
- the present disclosure concerns the use of beloxepin and/or its analogs to treat pain.
- the disclosure is based, in part, on the surprising discovery that beloxepin, which is a weak selective inhibitor of NE reuptake, nonetheless produces significant and robust activity across a broad spectrum of rodent models of various types of pain syndromes, including rodent models of acute nociceptive pain, inflammatory pain, visceral pain and neuropathic pain.
- inhibition of NE reuptake correlates with efficacy in the treatment of pain (see, Max et al., 1992, supra; Collins et al., 2000, supra; Atkinson et al., 1999, supra; Levental et al., 2007, supra).
- beloxepin Based on its weak activity at the NET, beloxepin would not be expected to be useful in treating pain. Yet, it produces robust activity in numerous animal models of pain, and in the case of tactile anitallodynia, activity of magnitude greater than that observed with numerous compounds known to be effective in treating pain.
- Beloxepin also known as “Org-4428” and “cis-1,2,3,4,4a,13b-hexahydro-2,10-dimethyldiben-[2,3:6,7]oxepino[4,5c]pyridine-4a-ol],” is illustrated below:
- Beloxepin analogs according to structural formula (I) are referred to herein as “beloxepin analogs,” or other grammatical equivalents.
- beloxepin analogs can be used in the various compositions and methods described herein and the various illustrative embodiments described for beloxepin apply also to the beloxepin analogs as if such embodiments were specifically described.
- Beloxepin and/or its analogs can be used in the various methods described herein as the compound per se, or can be included in a composition formulated for, among other things, a specific mode of administration.
- the beloxepin or beloxepin analog can be present in the composition as the free base, or in the form of a salt, for example, an acid additional salt. In some embodiments, such salts are pharmaceutically acceptable salts.
- “pharmaceutically acceptable salts” are those salts that retain substantially one or more of the desired pharmacological activities of the parent compound and which are suitable for administration to humans.
- Pharmaceutically acceptable salts include, but are not limited to, acid addition salts formed with inorganic or organic acids.
- Inorganic acids suitable for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, hydrohalide acids (e.g., hydrochloric acid, hydrobromic acid, hydriodic, etc.), sulfuric acid, nitric acid, phosphoric acid and the like.
- Organic acids suitable for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, acetic acid, trifluoroacetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, oxalic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, palmitic acid, benzoic acid, 3-(4-hydroxybenzoyl)benzic acid, cinnamic acid, mandelic acid, alkylsulfonic acids (e.g., methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, etc.), arylsulfonic acids (e.g., benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesul
- Beloxepin and beloxepin analogs can be synthesized or prepared using methods described in the literature, for example, as described in U.S. Pat. No. 4,977,158, the disclosure of which is incorporated herein by reference.
- Pain is generally understood to refer to the perception or condition of unpleasant sensory or emotional experience, which may or may not be associated with actual damage to tissues. It is generally understood to include two broad categories: acute and chronic (see, e.g., Analgesics , Buschmann et al., Wiley-VCH, Verlag GMbH & Co. KgaA, Weinheim, 2002; Jain, 2000, Emerging Drugs 5(2):241-257) that is either of nociceptive origin (for example somatic or visceral) or non-nociceptive origin (for example neuropathic or sympathetic).
- nociceptive origin for example somatic or visceral
- non-nociceptive origin for example neuropathic or sympathetic
- Acute pain generally includes nociceptive pain arising from strains/sprains, burns, myocardial infarction, acute pancreatitis, surgery, trauma and cancer.
- Chronic pain generally includes nociceptive pain, including, but not limited to, inflammatory pain such as that associated with IBS or rheumatoid arthritis, pain associated with cancer and pain associated with osteoarthritis; and non-nociceptive pain, including, but not limited to, neuropathic pain such as post-herpetic neuralgia, trigeminal neuralgia, focal peripheral nerve injury, anesthesia clolorosa, central pain (for example, post-stroke pain, pain due to spinal cord injury or pain associated with multiple sclerosis), and peripheral neuropathy (for example, diabetic neuropathy, inherited neuropathy or other acquired neuropathies).
- beloxepin is surprisingly effective at treating pain in rodent models of neuropathic, acute nociceptive, inflammatory and visceral pain. Based upon this animal data, it is expected that beloxepin and beloxepin analogs will be useful in treating various different pain syndromes including, but not limited to, acute pain of nociceptive origin, such as, for example, surgical pain, chronic pain of nociceptive origin, such as, for example, inflammatory pain or cancer pain, and chronic pain of non-nociceptive origin, such as, for example, neuropathic pain.
- acute pain of nociceptive origin such as, for example, surgical pain
- chronic pain of nociceptive origin such as, for example, inflammatory pain or cancer pain
- chronic pain of non-nociceptive origin such as, for example, neuropathic pain.
- a “therapeutically effective” amount of a compound or composition is an amount that eradicates or ameliorates the underlying disease or indication being treated and/or that eradicates or ameliorates one or more of the symptoms associated with the underlying disorder such that the patient reports an improvement in feeling or condition, not withstanding that the patient may still be afflicted with the underlying disease or indication.
- Therapeutic benefits also includes halting or slowing the progression of the disease or indication, regardless of whether improvement is realized.
- a therapeutically effective amount is an amount of compound or composition that eradicates or ameliorates the pain or the symptoms thereof, including, but not limited to, shooting sensations, burning sensations, electrical sensations, aching, discomfort, soreness, tightness, stiffness, sleeplessness, numbness, and weakness.
- the therapy can be applied following the onset of pain and/or one or more of its symptoms, or prophylactically to avoid or delay its onset.
- Beloxepin and/or its analogs can be used alone, or in combination with, or adjunctively to, other therapeutic agents to treat pain.
- beloxepin and/or its analogs can be combined with other analgesics, including but not limited to, cannabinoids and opioids.
- cannabinoids include cannabinoids and opioids.
- cannabinoids are available that may be suitable for use in combination therapy, including, but not limited to, a cannabinoid that is selected from a ⁇ 9 -tetrahydrocannabinol and cannabidiol, and mixtures thereof.
- beloxepin and/or its analogs may be used in combination with at least one opioid.
- opioids are available that may be suitable for use in combination therapy to treat pain.
- the combination therapy may involve an opioid that is selected from, but not limited to, alfentanil, allylprodine, alphaprodine, anileridine, benzyl-morphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioaphetylbutyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene
- the opioid component of the combination therapy may further include one or more other active ingredients that may be conventionally employed in analgesic and/or cough-cold-antitussive combination products.
- active ingredients include, for example, aspirin, acetaminophen, phenylpropanolamine, phenylephrine, chlorpheniramine, caffeine, and/or guaifenesin.
- Typical or conventional ingredients that may be included in the opioid component are described, for example, in the Physicians' Desk Reference, 1999, the disclosure of which is hereby incorporated herein by reference, in its entirety.
- the opioid component may further include one or more compounds that may be designed to enhance the analgesic potency of the opioid and/or to reduce analgesic tolerance development.
- Such compounds include, for example, dextromethorphan or other NMDA antagonists (Mao et al., 1996, Pain 67:361), L-364,718 and other CCK antagonists (Dourish et al., 1988, Eur. J. Pharmacol 147:469), NOS inhibitors (Bhargava et al., 1996, Neuropeptides 30:2), PKC inhibitors (Bilsky et al., 1996, J. Pharmacol. Exp. Ther.
- beloxepin and/or its analogs may be used with at least one non opioid analgesic, such as for example, diclofenac, a COX2 inhibitor, aspirin, acetaminophen, ibuprophen, naproxen, and the like, and mixtures thereof.
- non opioid analgesic such as for example, diclofenac, a COX2 inhibitor, aspirin, acetaminophen, ibuprophen, naproxen, and the like, and mixtures thereof.
- anti-inflammatories include, but are not limited to, corticosteroids, aminoarylcarboxylic acid derivatives such as, but not limited to, etofenamate, meclofenamic acid, mefanamic acid, niflumic acid; arylacetic acid derivatives such as, but not limited to, acemetacin, amfenac cinmetacin, clopirac, diclofenac, fenclofenac, fenclorac, fenclozic acid, fentiazac, glucametacin, isozepac, lonazolac, metiazinic acid, oxametacine, proglumetacin, sulindac, tiaramide and tolmetin; arylbutyric acid derivatives such as, but not limited to, butibufen and fenbuf
- Beloxepin and its analogs can also be used in combination with each other.
- the combination therapy involves administration of two or more beloxepin analogs, or beloxepin and one or more beloxepin analogs.
- CYP2D6 inhibitors would likely reduce the efficacy of such CYP2D6-activated drugs.
- clinical evidence suggest that CYP2D6-activated prodrugs such as codeine and tramadol are less effective in patients who are genetically deficient in CYP2D6 or in patients receiving potent CYP2D6 inhibitors.
- Cytochrome P4502D6 (CYP2D6) is a polymorphic member of the P450 superfamily, which is absent in 5-9% of the Caucasian population, resulting in a deficiency in drug oxidation known as debrisoquine/sparteine polymorphism. Metabolism by polymorphic isoenzymes such as CYP2D6 can be problematic in drug development because of the wide variation in the pharmacokinetics of the patient population. CYP2D6 metabolises many currently used drugs, which include ⁇ -blockers, antidepressants, and neuroleptics (Bertz and Granneman, 1997, Clin. Pharmokinet. 32(3):210-58).
- dosages may need to be adjusted when beloxepin and/or its analogs are administered in combination with, or adjunctively to, drugs that are either metabolized by or activated by, CYP2D6.
- Beloxepin and/or its analogs may be combined with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice as described, for example, in Remington's Pharmaceutical Sciences, 2005, the disclosure of which is hereby incorporated herein by reference, in its entirety.
- the relative proportions of active ingredient and carrier may be determined, for example, by the solubility and chemical nature of the compounds, chosen route of administration and standard pharmaceutical practice.
- compositions may be formulated for oral administration, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet.
- the active compound may be incorporated with excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- the amount of active compound(s) in such therapeutically useful compositions is preferably such that a suitable dosage will be obtained.
- Preferred compositions or preparations may be prepared so that an oral dosage unit form contains from about 0.1 to about 1000 mg of each beloxepin enantiomer (and all combinations and subcombinations of ranges and specific concentrations therein).
- the tablets, troches, pills, capsules and the like may also contain one or more of the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; an excipient, such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; or a flavoring agent such as peppermint, oil of wintergreen or cherry flavoring.
- a binder such as gum tragacanth, acacia, corn starch or gelatin
- an excipient such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid and the like
- a lubricant such as magnesium stearate
- a sweetening agent such as sucrose, lactose or saccharin
- a flavoring agent such as peppermint
- any material used in preparing any dosage unit form is preferably pharmaceutically pure and substantially non toxic in the amounts employed.
- compositions may also be formulated for parenteral or intraperitoneal administration.
- Solutions of the beloxepin enantiomers as free bases or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- a dispersion can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.
- compositions suitable for administration by injection typically include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form is preferably sterile and fluid to provide easy syringability. It is preferably stable under the conditions of manufacture and storage and is preferably preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of a dispersion, and by the use of surfactants.
- a coating such as lecithin
- surfactants for example, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium stearate, sodium stearate, and gelatin.
- Sterile injectable solutions may be prepared by incorporating the active compounds in the required amounts, in the appropriate solvent, with various of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions may be prepared by incorporating the sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation may include vacuum drying and the freeze drying technique that yields a powder of the active ingredient, plus any additional desired ingredient from the previously sterile filtered solution thereof.
- Beloxepin and/or beloxepin analogs will generally be administered in a therapeutically effective amount, as described herein.
- the quantity of beloxepin and/or beloxepin analog compounds will depend upon a variety of factors, including, for example, the particular pain indication or syndrome being treated, the mode of administration, whether the desired benefit is prophylactic or therapeutic, the severity of the pain indication or syndrome being treated, the age and weight of the patient, and the bioavailability of beloxepin and/or beloxepin analog(s) administered. Determination of an effective dosage is well within the capabilities of those skilled in the art.
- Dosage amounts will typically be in the range of from about 0.0001 or 0.001 or 0.01 mg/kg/day total active compound(s) to about 0.1 or 1.0 or 2.0 or 2.5 or 5.0 or 10.0 or 20.0 or 25.0 or 50.0 or 75.0 or 100 mg/kg/day total active compound(s), with an expected dose of about 5 mg/kg/day to about 1500 mg/kg/day total active compound(s), but may be higher or lower, depending upon, among other factors, the factors mentioned above.
- Dosage amount and interval may be adjusted individually to provide plasma levels of active compound(s), which are sufficient to maintain therapeutic or prophylactic effect.
- the compositions may be administered once per day or multiple times per day, depending upon, among other things, the mode of administration, the specific indication being treated and the judgment of the prescribing physician.
- the effective local concentration of active compounds and/or compositions may not be related to plasma concentration. Skilled artisans will be able to optimize effective local dosages without undue experimentation.
- an effective dosage of beloxepin for the treatment of pain in humans may be obtained by administering a dose of beloxepin sufficient to achieve a plasma concentration similar to that achieved following the administration of 30 mg/kg, i.p. to rats, or 60 mg/kg PO to rats.
- the effective dose of beloxepin for the treatment of pain is the dosage required to achieve the plasma concentration achieved when 30 mg/kg beloxepin is administered i.p. to rats, or when 60 mg/kg beloxepin is administered orally to rats.
- oral doses of beloxepin of between about 10 mg/day to about 20 or 25 or 30 or 35 or 40 or 45 or 50 or 60 or 70 or 80 or 90 or 95 or 100 or 200 or 500 or 750 or 1000 or 1500 mg/day will be effective in treating pain. Accordingly, some embodiments involve the administration of an oral dosage of beloxepin that ranges from about 10 mg/day to about 500 mg per dose, one or more times per day. It is expected that similar dosage ranges of beloxepin analogs will be effective.
- the proper dosage of the combined agents will be readily ascertainable by a skilled artisan based on long established criteria.
- the dosage will typically range from about 0.01 to about 100 mg/kg/day of the cannabinoid, opioid and/or other active compound and about 0.001 to about 100 mg/kg/day of beloxepin.
- the dosage may be about 0.1 to about 10 mg/kg/day of the cannabinoid, opioid and/or other active compound and about 0.01 to about 10 mg/kg/day of beloxepin, and in other embodiments, the daily dosage may be about 1.0 mg of the cannabinoid, opioid and/or other active compound and about 0.1 mg of beloxepin.
- the dosage may generally range from about 15 to about 200 mg of the cannabinoid, opioid and/or other agent, and about 0.1 to about 4 mg of beloxepin. It is expected that similar dosage ranges will be effective for combination therapies with beloxepin analogs.
- a cannabinoid compound e.g., ⁇ 9 -tetrahydrocannabinol or cannabidiol
- an opioid compound e.g., morphine
- the dosage may generally range from about 15 to about 200 mg of the cannabinoid, opioid and/or other agent, and about 0.1 to about 4 mg of beloxepin. It is expected that similar dosage ranges will be effective for combination therapies with beloxepin analogs.
- Beloxepin and/or beloxepin analogs may be assembled in the form of kits.
- the kit provides the compounds(s) and reagents to prepare a composition for administration.
- the composition may be in a dry or lyophilized from, or in a solution, particularly a sterile solution.
- the reagent may comprise a pharmaceutically acceptable diluent for preparing a liquid formulation.
- the kit may contain a device for administration or for dispensing the compositions, including, but not limited to, syringe, pipette, transdermal patch or inhalant.
- kits may include other therapeutic agents for use in conjunction with the compositions described herein.
- the therapeutic agents may be provided in a separate form, or mixed with the compositions described herein.
- Kits can include appropriate instructions for preparation and administration of the composition, side effects of the compositions, and any other relevant information.
- the instructions may be in any suitable format; including, but not limited to, printed matter, videotape, computer readable disk, or optical disk.
- beloxepin was synthesized as follows.
- the reaction was degassed by bubbling nitrogen through the stirring mixture for 10 minutes. The mixture was then heated at 80° C. for 2 days under nitrogen. The reaction was cooled to room temperature and diluted with 1:1 diethyl ether/hexanes. While stirring, the mixture was carefully acidified with 6M HCl, then diluted with water and the layers were separated. The aqueous layer was washed with 1:1 diethyl ether/hexanes and all organics were combined and washed with 0.5M sodium carbonate. The basic aqueous layers were combined, acidified with 6M HCl and the product was extracted with diethyl ether.
- the reaction mixture was diluted with 0.5 M HCl and the layers were separated. The organics were concentrated and dried to give 28 g of a crude light yellow oil.
- the mesylate was dissolved in toluene (200 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (42.6 mL, 285 mmol, 5.0 eq) was added. The mixture was heated at 115° C. for 1 hour and diluted with water. The layers were separated and the organics were concentrated and purified by a silica gel plug eluting with 5-15% ethyl acetate/hexanes to give 14.76 g of a light yellow oil.
- Beloxepin is an Inhibitor of NE Reuptake
- the binding affinities of beloxepin for the NE, serotonin and dopamine transporters were determined in competitive binding assays with radiolabeled ligands. The ability of beloxepin to inhibit reuptake of NE was also determined. It was observed that beloxepin had only marginal affinity for the serotonin transporter (27% inhibition of binding at 10 ⁇ M in a competition assay) and dopamine transporter (16% inhibition of binding at 10 ⁇ M in a competition assay). Other results observed are provided below.
- the IC 50 of NE reuptake inhibition was determined by measuring the degree to which various concentrations of beloxepin inhibited incorporation of [ 3 H]norepinephrine into rat hypothalamus synaptosomes (measurements carried out for 20 minutes at 37° C.).
- [ 3 H]imipramine (2.0 nM) was incubated in the presence of various concentrations of beloxepin for 1 hour at 22° C. with membranes prepared from CHO cells heterologously expressing the human serotonin transporter (hSERT). Bound radioactivity was determined by scintillation spectroscopy. Non-specific binding was defined as the amount of binding that occurred in the presence of 10 ⁇ M imipramine. The K i was determined using standard methods.
- the IC 50 of 5HT reuptake inhibition was determined by measuring the degree to which various concentrations of beloxepin inhibited incorporation of [ 3 H]-5HT into rat brain synaptosomes (measurements carried out for 15 min at 37° C.
- the IC 50 of DA reuptake inhibition was determined by measuring the degree to which various concentration of beloxepin inhibited incorporation of [ 3 H]-DA into rat striatum synaptosomes (measurements carried out for 15 min at 37° C.).
- Beloxepin was incubated with human liver microsomes at concentrations of 0, 0.1, 0.3, 1, 3, 10, 30 and 100 ⁇ M Beloxepin. The 200 ⁇ L incubations were conducted in duplicate in 0.1 M potassium phosphate buffer (pH 7.4) with 0.02 mg of microsomal protein, 3 mM MgCl 2 , 1 mM EDTA and 7.5 ⁇ M of the probe substrate dextromethorphan in a 96-well polypropylene plate maintained at 37° C.
- Dexthorphan concentrations were determined by high performance liquid chromatography with tandem mass spectrometric detection (LC/MS/MS) after protein precipitation with acidified acetonitrile containing internal standard. Separations were performed with a Flux Rheos 2000 quaternary pump (Leap Technologies, Inc., Carrboro, N.C.) using an XTerra® MS C 18 , 3.5 ⁇ m, 4.6 ⁇ 50 mm column (Waters Corporation, Milford, Mass.). Dextrorphan and the internal standard were eluted with 10 mM ammonium formate with 0.1% formic acid: 0.1% formic acid in acetonitrile (80:20, v/v) run under gradient conditions at 1.0 mL/min.
- a MDS Sciex API4000 (Applied Biosystems, Foster City, Calif.) triple quadrupole mass spectrometer equipped with a Turbo Ionspray ionization source was used as the detector.
- the instrument was operated in positive ion mode using multiple reaction monitoring (MRM) with specific precursor-product ion pairs for dextrorphan and the internal standard.
- MRM multiple reaction monitoring
- the mass transitions were m/z 280.2>262.2 for the internal standard and m/z 258.2>157.0 for dextrorphan.
- Dextrorphan and the internal standard had retention times of approximately 1.54 and 2.00 minutes, respectively.
- beloxepin formulations for injection were prepared using acidified sterile water for injection (SWIJ) as a diluent. To start, a few drops (never more than 400 ⁇ l for a final volume of approximately 14 ml) of 1 M HCl was added to neat beloxepin. Glass beads were added and the solution vortexed vigorously for 2-3 minutes, followed by sonication in a water bath for 3-5 minutes to break up larger particles. The SWIJ was then added to QS to final total volume, the formulation vortexed for 2-3 minutes and then sonicated in warm water for approximately 30-60 minutes. Beloxepin was formulated as a 10 mg/ml solution.
- control vehicle was prepared using the same volumes of 1 M HCl and SWIJ diluent as the test beloxepin formulation.
- FIG. 1 The antiallodynic effects produced by beloxepin (30 mg/kg IP) in L5 SNL rats 14 days post surgery are illustrated in FIG. 1 .
- rats were treated with vehicle or beloxepin (30 mg/kg IP) and tested for tactile allodynia at 30, 60, 120 and 240 min post treatment.
- Vehicle-treated rats were tested at 30 min post treatment.
- beloxepin produced significant antiallodynia effects at the 30, 60 and 120 min time points, with a maximal effect at 30 min post treatment (829% of the threshold of vehicle-treated rats).
- the magnitude of tactile allodynia observed at the 30 min time point was amongst the highest the inventors have observed in this model. No side effects were observed following treatment.
- a dose response experiment was performed in L5 SNL rats at 16 days post surgery (3, 10 and 30 mg/kg IP beloxepin). In the experiment, animals were tested for tactile allodynia at 30 min post treatment.
- the sham-operated control group which were operated on but not subject to nerve ligation, contained 4 animals.
- the treatment group contained at least six animals.
- the results of the dose-response experiment are illustrated in FIG. 2 .
- the 30 mg/kg dose produced a robust antiallodynic effect (852% of the threshold for vehicle-treated rats, and almost equal to that of the sham-operated animals).
- the results observed replicated the significant antiallodynic effect observed in the time-course experiments of Example 4.
- Beloxepin is Superior to NE Reuptake Inhibitors, Mixed Serotonin/NE Reuptake Inhibitors and Tricyclic Antidepressants in Treatment of Neuropathic Pain
- FIG. 3 The results of a direct comparison of beloxepin with reboxetine, are illustrated in FIG. 3 , and demonstrate that beloxepin is approximately 4-fold more effective.
- FIG. 5 depicts the results of a direct comparison of the antiallodynic effects produced by beloxepin, duloxetine, amitriptyline, and beloxepin in the rat L5 Spinal Nerve Ligation Model (30 mg/kg IP; *p ⁇ 0.05 compared to vehicle-treated L5 SNL rats; rats were tested at 30 minutes or, for amitriptyline, 60 minutes post-drug administration). The data indicate that beloxepin was the most effective of the compounds tested.
- Baseline paw lick latencies were determined prior to drug treatments in an identical manner to the acclimation test. Following drug treatments, the rats were placed on the hot plate apparatus at the appropriate time and treatment paw lick latencies were determined. All test groups contained at least six animals.
- FIGS. 6A and 6B show the results of the experiment.
- FIG. 6A shows the latency (in seconds) between placement on the hot plate and paw lick response.
- IP beloxepin
- FIG. 6B shows the percentage of maximal effect achieved (% MPE) in the same experiment.
- the paw lick latency was used to determine % MPE for each rat based on the following formula:
- % ⁇ ⁇ MPE [ Treatment ⁇ ⁇ Latency ⁇ ( sec ) - Baseline ⁇ ⁇ Latency ⁇ ( sec ) 60 ⁇ ⁇ sec - Baseline ⁇ ⁇ Latency ⁇ ( sec ) ] ⁇ 100
- FCA Freund's Complete Adjuvant
- paw pressure thresholds were determined before and at specified times after drug treatment. All test groups contained at least six animals.
- All test groups contained at least six animals.
- Beloxepin produced significant antiallodynic effects at all four time points, as illustrated in FIG. 10 .
- racemic beloxepin (30 mg/kg IP) was comparable in efficacy to duloxetine (30 mg/kg IP), and the peak antiallodynic effect of racemic beloxepin was greater than that measured in rats treated with esreboxetine (30 mg/kg IP).
- racemic beloxepin produced a significant antiallodynic effect at all four time points (maximum hindpaw withdrawal threshold 29 grams or 544% of the threshold value for vehicle treated rats at the 30 minute time point).
- the antiallodynic effect produced by racemic beloxepin in this assay is considered very robust.
- racemic beloxepin produced a significant antiallodynic effect at all four time points (maximum hindpaw withdrawal threshold 24 grams at the 30 and 60 minute time points).
- the antiallodynic effect produced by beloxepin in this assay is considered very robust and is comparable to the effect that was observed after IP administration.
- racemic beloxepin produced a significant antiallodynic effect at the 30 and 120 minute time points (maximum hindpaw withdrawal threshold 21 grams at the 30 minute time point).
- the antiallodynic effect produced by beloxepin in this assay at the 30 minute time point is considered very robust and comparable to the antiallodynic effect observed with a dose of 60 mg/kg PO of racemic beloxepin at the 30 minute time point.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This present disclosure provides methods of treating pain with beloxepin and/or beloxepin analogs.
Description
- This application claims priority under 35 U.S.C. § 1.119(e) to provisional application No. 61/029,916 filed Feb. 19, 2008, and provisional application No. 61/050,921 filed May 6, 2008, the disclosures of which are incorporated herein by reference in their entireties.
- None.
- None.
- None.
- Acute and chronic pain of both nociceptive and non-nociceptive origin are disabling conditions that affect significant numbers of individuals. Pain is frequently characterized by increased sensitivity to normally non-noxious stimuli (allodynia) and/or painful stimuli (hyperalgesia). Although antidepressants such as norepinephrine and serotonin (5HT) reuptake inhibitors have been used as a first-line therapy for treating certain types of pain, for example, pain associated with diabetic neuropathy, postherpetic neuralgia, fibromyalgia, irritable bowel syndrome and interstitial cystitis, none of these therapies has proven to be universally effective. Despite the number of therapies available, significant numbers of individuals still suffer debilitating pain on a daily basis. Accordingly, there is a need in the art for additional compounds and regimens useful for treating pain, whether acute or chronic, or due to nociceptive or non-nociceptive origin.
- Beloxepin, also known as “Org-4428” and “cis-1,2,3,4,4a,13b-hexahydro-2,10-dimethyldiben-[2,3:6,7]oxepino[4,5c]pyridine-4a-ol],” is a tetracyclic compound that underwent clinical evaluation as a potential antidepressant in the late 1990s. According to published reports, beloxepin is a highly specific inhibitor of noradrenaline reuptake in synaptosomes from rat and primate brain in in vitro assays, having greater than 100-fold less affinity for other monoamine carriers (i.e., serotonin and dopamine transporters), and no or very weak affinity for noradrenergic, histaminergic and cholinergic receptors (Sperling & Demling, 1997, Drugs of Today 33(2):95-102). It is also reported to have modest affinity for the 5HT2C receptor (Claghorn & Lesem, 1996, Progress Drug Res 46:243-262).
- In preclinical studies with animal models of depression, beloxepin was noted to exhibit antidepressant properties by offsetting acquired immobility behavior, reserpine-induced hypothermia, and conditioned avoidance behavior. In these tests, beloxepin did not cause sedation, motor impairment or other untoward side effects. Its profile on EEG-defined sleep/wake behavior is compatible with that of a nonsedative antidepressant with sleep-improving properties (Sperling & Demling, 1997, supra). Results of sleep studies in human volunteers have shown that beloxepin (25-400 mg) dose-dependently prolonged REM latency, both acutely and sub-chronically, and decreased total duration of nocturnal REM sleep as recorded by EEG (Van Bemmel et al., 1999, Neuropsychobiology 40(2):107-114). No sedation or other side effects were observed. Based on these studies, it was concluded that beloxepin may reduce sleep continuity in depressed patients and may improve the depth of sleep.
- In a single-dose safety study, beloxepin displayed linear kinetics over a broad range, with a dose-independent tmax of one to four hours and t1/2 of 11 to 15 hr following doses of 10 to 500 mg. Steady-state pharmacokinetic parameters obtained in healthy normal subjects, who participated in a multiple rising-dose safety and tolerance study, showed that at doses of 50 to 800 mg, tmax was 1.17 hr and t1/2 varied from 12 to 14 hr. No important adverse effects were observed in healthy volunteers who received up to 800 mg/day of beloxepin. In a phase IIA study in patients hospitalized for depression, ⅔ of patients had a moderate to good response, based on HAMD score reduction (Claghorn & Lesem, 1996, supra).
- In subsequent clinical trials, beloxepin exhibited insufficient efficacy for the treatment of major depression. Consequently further development of beloxepin was stopped (Paanakker et al., 1998, J. Pharm. Biomed. Anal. 16(6):981-989).
- Affinity testing with over 125 receptors, channels and transporters indicates that beloxepin binds with only modest affinity to the NET (Ki=700 nM) and has only marginal affinity for the serotonin transporter (27% inhibition of binding at 10 μM in a competition assay) and dopamine transporter (16% inhibition of binding at 10 μM in a competition assay). In a functional assay, beloxepin exhibited weak inhibition of norepinepherine reuptake (IC50=130 nM).
- Historically, antidepressants including those that inhibit reuptake of NE (NRIs) and/or 5HT (SRIs) have been used as a first-line therapy for treating both acute and chronic pain that is either nociceptive or non-nociceptive in origin, for example, neuropathy, post-herpetic neuralgia (PHN), pain associated with fibromyalgia, pain associated with irritable bowel syndrome and interstitial cystitis (Sindrup and Jensen, 1999, Pain 83(3):389-400; Collins et al., 2000, J. Pain & Symptom Management 20(6):449-458; Crowell et al., 2004, Current Opin. Invest. Drugs 5(7):736-742). A recent study systematically evaluated the relative activity at the NE and/or 5HT transporter required for maximal efficacy in rodent models of pain (Leventhal et al., 2007, J. Pharmacol. Exper. Ther. 320(3):1178-1185). The effects observed replicate those observed clinically for treating neuropathic pain conditions. Namely, compounds with greater affinity for the NE transporter are more effective at treating pain, and compounds with greater affinity for the 5HT transporters have limited efficacy (see, e.g., Max et al., 1992; N. Engl. J. Med. 326(19):1250-1256; Collins et al., 2000, supra). Indeed, in a double-blind, placebo-controlled head-to-head study comparing the tetracyclic NRI maprotiline and the SRI paroxetine, reduction in pain intensity was significantly greater for study completers randomized to maprotiline (45%) as compared to paroxetine (26%) or placebo (27%) (Atkinson et al., 1999, Pain 83(2):137-145).
- Given its weak affinity for the NET and its weak, albeit selective, inhibition of NE reuptake, beloxepin would not be expected to be effective in treating pain. Surprisingly, the present inventors have discovered that not only is beloxepin extremely effective in rodent models of various different pain syndromes, its antiallodynic activity is superior to that of known NRI compounds (e.g., reboxetine), dual NRI/SRI compounds (e.g., duloxetine) and tricyclic antidepressants (e.g., amitriptyline) currently used to treat pain when dosed at the same concentrations via IP administration.
- Indeed, the magnitude of tactile allodynia observed for beloxepin in the L5 SNL rodent model of pain at 30 min post treatment is amongst the highest observed by the inventors in this model for drugs administered IP. Also see
FIG. 11 and Example 10, presenting a comparison of the antiallodynic effects observed upon administration beloxepin, duloxetine, and esreboxitine using the rat L5 SNL model system. - As demonstrated in
FIG. 3 , beloxepin produced an observed mean threshold of approximately 15 g—nearly 5 times greater—under the same experimental conditions than reboxetine. With reference toFIG. 2 , beloxepin produced a tactile antiallodynic effect that was 852% greater than that observed with vehicle-treated controls, and nearly 100% of that observed with sham-operated animals. - Beloxepin also exhibited extremely robust activity in rodent models of acute nociceptive pain (
FIGS. 6A and 6B ), inflammatory pain (FIG. 7 andFIG. 9 ), neuropathic pain (FIG. 10 and Example 12), post-operative incisional pain (FIG. 12 ,FIG. 13 ,FIG. 14 , and Example 13), and visceral pain (FIG. 8 ). For example, with reference toFIGS. 6A and 6B , beloxepin exhibited anti-nociceptive activity almost equivalent to that of 3 mg/kg morphine. With reference toFIG. 7 , beloxepin exhibited nearly complete reversal of hyperalgesia in rats treated with Freund's Complete Adjuvant (FCA), and with reference toFIG. 8 , beloxepin inhibited acetic acid-induced writhing in mice a dose-dependent fashion. - The chemical structure of beloxepin is illustrated below:
- The OH and H substituents attached to the carbon atoms marked with asterisks are in the cis configuration with respect to one another. These carbon atoms are chiral. As a consequence, beloxepin is a racemic mixture of two cis enantiomers, a (+) enantiomer and a (−) enantiomer. The absolute configurations about the chiral carbons of the (+) and (−) enantiomers are unknown.
- Analogs of beloxepin are known in the art. For example, analogs of beloxepin are described in U.S. Pat. No. 4,977,158, the disclosure of which is incorporated herein by reference. These analogs are expected to exhibit anti-pain activities similar to beloxepin.
- Accordingly in one aspect, the present disclosure provide a method of treating pain in a mammal comprising administering to a mammal suffering from pain, including a human, an amount of beloxepin and/or a beloxepin analog effective to treat the pain.
- The beloxepin or beloxepin analog can be administered as the compound per se, or in the form of a composition. The beloxepin or beloxepin analog can be included in the composition as the free base, or in the form of a salt. In some embodiments the beloxepin and/or beloxepin analog is included in the composition in the form of a pharmaceutically acceptable salt.
- The composition can be formulated for administration to animals in veterinary contexts, or for administration to humans, via virtually any route or mode of administration, including, but not limited to, oral, topical, ocular, buccal, systemic, nasal, injection, transdermal, rectal, vaginal, inhalation or insufflation. In some embodiments, the composition is formulated for oral administration, for example, to humans.
- The methods can be used to treat numerous different types of pain syndromes, including acute or chronic pain that is either nociceptive (for example somatic or visceral) or non-nociceptive (for example neuropathic or sympathetic) in origin. In some embodiments, the pain is nociceptive pain including, but not limited to, surgical pain, inflammatory pain such as that associated with inflammatory bowel syndrome (“IBS”) or rheumatoid arthritis, pain associated with cancer, and pain associated with osteoarthritis. In some embodiments, the pain is non-nociceptive pain including, but not limited to, neuropathic pain such as post-herpetic neuralgia (“PHN”), trigeminal neuralgia, focal peripheral nerve injury, anesthesia clolorosa, central pain (for example, post-stroke pain, pain due to spinal cord injury or pain associated with multiple sclerosis), and peripheral neuropathy (for example, diabetic neuropathy, inherited neuropathy or other acquired neuropathies).
- The beloxepin and/or beloxepin analog can be administered alone, or it can be administered in combination with, or adjunctively to, one or more other drugs useful for treating pain and/or other indications. Specific non-limiting examples of drugs that can be used in combination with, or adjunctively to, the beloxepin and/or beloxepin analogs in a pain treatment or management regimen are provided in a later section. In one specific embodiment, beloxepin is administered in combination with, or adjunctively to, one or more beloxepin analogs.
-
FIG. 1 provides a graph demonstrating the antiallodynic effect of beloxepin (30 mg/kg IP) inL5 SNL rats 14 days post surgery; -
FIG. 2 provides a graph demonstrating the antiallodynic effect of beloxepin (3, 10 and 30 mg/kg IP) inL5 SNL rats 16 days post surgery; -
FIG. 3 provides a graph illustrating the superior antiallodynic effect of beloxepin (30 mg/kg IP) as compared to reboxetine, a selective norepinephrine reuptake inhibitor (30 mg/kg IP), in L5 SNL rats; -
FIG. 4 provides a graph demonstrating the antiallodynic effect of orally administered beloxepin (60 mg/kg PO) inL5 SNL rats 8 days post surgery; -
FIG. 5 provides a graph comparing the antiallodynic effects produced by beloxepin, duloxetine, amitriptyline, and reboxetine (each at a concentration of 30 mg/kg IP) in L5 SNL rats; -
FIGS. 6A and 6B provide graphs demonstrating the robust anti-nociceptive activity of beloxepin in a rodent model of acute nociception; -
FIG. 7 provides a graph illustrating the robust antihyperalgesia activity of beloxepin in an animal model of inflammatory pain (rats treated with Freund's Complete Adjuvent); -
FIG. 8 provides a graph illustrating the robust activity of beloxepin in a rodent model of visceral pain (mice treated with acetic acid); -
FIG. 9 provides a graph comparing the mechanical antihyperalgesic effects of (30 mg/Kg IP) (±)-beloxepin and a reconstituted equimolar (racemic) mixture (30 mg/Kg IP) of (+)-beloxepin and (−)-beloxepin, in FCA-treated rats, 24 hours after FCA injection; -
FIG. 10 provides a graph demonstrating the antiallodynic effect of orally administered beloxepin (60 mg/kg PO) inL5 SNL rats 7 days post surgery; -
FIG. 11 provides a graph comparing the antiallodynic effects of beloxepin, duloxetine, and esreboxetine (each compound dosed at 30 mg/kg IP) in L5 SNL rats; -
FIG. 12 provides a graph demonstrating the antiallodynic effect of beloxepin (30 mg/kg IP) in the rat hindpawincisional model 24 hours post surgery; -
FIG. 13 provides a graph demonstrating the antiallodynic effect of orally-administered beloxepin (60 mg/kg IP) in the rat hindpawincisional model 24 hours post surgery; and -
FIG. 14 provides a graph demonstrating the antiallodynic effect of intravenously-administered beloxepin (3 mg/kg IV) in the rat hindpawincisional model 24 hours post surgery. -
FIG. 15 provides a graph illustrating the inhibition of CYP2D6 (dextromethorphan O-demethylation) by beloxepin and quinidine. - The present disclosure concerns the use of beloxepin and/or its analogs to treat pain. The disclosure is based, in part, on the surprising discovery that beloxepin, which is a weak selective inhibitor of NE reuptake, nonetheless produces significant and robust activity across a broad spectrum of rodent models of various types of pain syndromes, including rodent models of acute nociceptive pain, inflammatory pain, visceral pain and neuropathic pain. As discussed in the Summary, inhibition of NE reuptake correlates with efficacy in the treatment of pain (see, Max et al., 1992, supra; Collins et al., 2000, supra; Atkinson et al., 1999, supra; Levental et al., 2007, supra). Based on its weak activity at the NET, beloxepin would not be expected to be useful in treating pain. Yet, it produces robust activity in numerous animal models of pain, and in the case of tactile anitallodynia, activity of magnitude greater than that observed with numerous compounds known to be effective in treating pain.
- 8.1 Beloxepin Compounds and Compositions
- Beloxepin, also known as “Org-4428” and “cis-1,2,3,4,4a,13b-hexahydro-2,10-dimethyldiben-[2,3:6,7]oxepino[4,5c]pyridine-4a-ol],” is illustrated below:
- The OH and H substituents attached to the carbon atoms marked with asterisks are in the cis configuration with respect to one another. Since these carbons are chiral, this cis geometric isomer is a racemic mixture of two enantiomers, a (+) enantiomer and a (−) enantiomer. The absolute configurations about the chiral carbons of these (+) and (−) enantiomers are not presently known.
- Analogs of beloxepin have been reported in the art. For example, U.S. Pat. No. 4,977,158, the disclosure of which is incorporated herein by reference, discloses beloxepin analogs according to structural formula (I):
- wherein:
-
- n is 0 or 1;
- X is O or S;
- R1 represents one or two identical or different substituents selected from H, OH, halogen, C1-C4 alkyl and C1-C4 alkoxy;
- R2 represents one or two identical or different substituents selected from H, OH, halogen, C1-C4 alkyl and C1-C4 alkoxy;
- R3 and R4 are two substituents which are in the cis configuration, where R3 is OH and R4 is H; and
- R5 is H or C1-C4 alkyl.
- These analogs are expected to have biological and pharmacological properties similar to beloxepin, and are therefore also expected to be effective in treating and managing various pain syndromes as described herein. Beloxepin analogs according to structural formula (I) are referred to herein as “beloxepin analogs,” or other grammatical equivalents. Thus, the beloxepin analogs can be used in the various compositions and methods described herein and the various illustrative embodiments described for beloxepin apply also to the beloxepin analogs as if such embodiments were specifically described.
- Beloxepin and/or its analogs can be used in the various methods described herein as the compound per se, or can be included in a composition formulated for, among other things, a specific mode of administration. The beloxepin or beloxepin analog can be present in the composition as the free base, or in the form of a salt, for example, an acid additional salt. In some embodiments, such salts are pharmaceutically acceptable salts.
- Generally, “pharmaceutically acceptable salts” are those salts that retain substantially one or more of the desired pharmacological activities of the parent compound and which are suitable for administration to humans. Pharmaceutically acceptable salts include, but are not limited to, acid addition salts formed with inorganic or organic acids. Inorganic acids suitable for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, hydrohalide acids (e.g., hydrochloric acid, hydrobromic acid, hydriodic, etc.), sulfuric acid, nitric acid, phosphoric acid and the like. Organic acids suitable for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, acetic acid, trifluoroacetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, oxalic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, palmitic acid, benzoic acid, 3-(4-hydroxybenzoyl)benzic acid, cinnamic acid, mandelic acid, alkylsulfonic acids (e.g., methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, etc.), arylsulfonic acids (e.g., benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-tuluenesulfonic acid, camphorsulfonic acid, etc.), 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like.
- 8.2 Methods of Synthesis
- Beloxepin and beloxepin analogs can be synthesized or prepared using methods described in the literature, for example, as described in U.S. Pat. No. 4,977,158, the disclosure of which is incorporated herein by reference. A specific method for synthesizing beloxepin that can be routinely adapted to synthesize beloxepin analogs, the details of which are discussed in the Examples section, is illustrated in Scheme 1, below:
- 8.3 Uses of Beloxepin and its Analogs
- Pain is generally understood to refer to the perception or condition of unpleasant sensory or emotional experience, which may or may not be associated with actual damage to tissues. It is generally understood to include two broad categories: acute and chronic (see, e.g., Analgesics, Buschmann et al., Wiley-VCH, Verlag GMbH & Co. KgaA, Weinheim, 2002; Jain, 2000, Emerging Drugs 5(2):241-257) that is either of nociceptive origin (for example somatic or visceral) or non-nociceptive origin (for example neuropathic or sympathetic). Acute pain generally includes nociceptive pain arising from strains/sprains, burns, myocardial infarction, acute pancreatitis, surgery, trauma and cancer. Chronic pain generally includes nociceptive pain, including, but not limited to, inflammatory pain such as that associated with IBS or rheumatoid arthritis, pain associated with cancer and pain associated with osteoarthritis; and non-nociceptive pain, including, but not limited to, neuropathic pain such as post-herpetic neuralgia, trigeminal neuralgia, focal peripheral nerve injury, anesthesia clolorosa, central pain (for example, post-stroke pain, pain due to spinal cord injury or pain associated with multiple sclerosis), and peripheral neuropathy (for example, diabetic neuropathy, inherited neuropathy or other acquired neuropathies).
- Data presented in the Examples section confirm that beloxepin is surprisingly effective at treating pain in rodent models of neuropathic, acute nociceptive, inflammatory and visceral pain. Based upon this animal data, it is expected that beloxepin and beloxepin analogs will be useful in treating various different pain syndromes including, but not limited to, acute pain of nociceptive origin, such as, for example, surgical pain, chronic pain of nociceptive origin, such as, for example, inflammatory pain or cancer pain, and chronic pain of non-nociceptive origin, such as, for example, neuropathic pain.
- In general, a “therapeutically effective” amount of a compound or composition is an amount that eradicates or ameliorates the underlying disease or indication being treated and/or that eradicates or ameliorates one or more of the symptoms associated with the underlying disorder such that the patient reports an improvement in feeling or condition, not withstanding that the patient may still be afflicted with the underlying disease or indication. Therapeutic benefits also includes halting or slowing the progression of the disease or indication, regardless of whether improvement is realized.
- In the context of pain, a therapeutically effective amount is an amount of compound or composition that eradicates or ameliorates the pain or the symptoms thereof, including, but not limited to, shooting sensations, burning sensations, electrical sensations, aching, discomfort, soreness, tightness, stiffness, sleeplessness, numbness, and weakness.
- The therapy can be applied following the onset of pain and/or one or more of its symptoms, or prophylactically to avoid or delay its onset.
- 8.4 Combination Therapies
- Beloxepin and/or its analogs can be used alone, or in combination with, or adjunctively to, other therapeutic agents to treat pain.
- Accordingly, beloxepin and/or its analogs can be combined with other analgesics, including but not limited to, cannabinoids and opioids. A number of cannabinoids are available that may be suitable for use in combination therapy, including, but not limited to, a cannabinoid that is selected from a Δ9-tetrahydrocannabinol and cannabidiol, and mixtures thereof.
- Alternatively, beloxepin and/or its analogs may be used in combination with at least one opioid. A wide variety of opioids are available that may be suitable for use in combination therapy to treat pain. As such, the combination therapy may involve an opioid that is selected from, but not limited to, alfentanil, allylprodine, alphaprodine, anileridine, benzyl-morphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioaphetylbutyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levorphanol, levophenacylmorphan, lofentanil, loperamide, meperidine (pethidine), meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpinanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, phenomorphan, phanazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, properidine, propiram, propoxyphene, sulfentanil, tilidine, tramadol, diastereoisomers thereof, pharmaceutically acceptable salts thereof, complexes thereof, and mixtures thereof. In some embodiments, the opioid is selected from morphine, codeine, oxycodone, hydrocodone, dihydrocodeine, propoxyphene, fentanyl, tramadol, and mixtures thereof.
- The opioid component of the combination therapy may further include one or more other active ingredients that may be conventionally employed in analgesic and/or cough-cold-antitussive combination products. Such conventional ingredients include, for example, aspirin, acetaminophen, phenylpropanolamine, phenylephrine, chlorpheniramine, caffeine, and/or guaifenesin. Typical or conventional ingredients that may be included in the opioid component are described, for example, in the Physicians' Desk Reference, 1999, the disclosure of which is hereby incorporated herein by reference, in its entirety.
- The opioid component may further include one or more compounds that may be designed to enhance the analgesic potency of the opioid and/or to reduce analgesic tolerance development. Such compounds include, for example, dextromethorphan or other NMDA antagonists (Mao et al., 1996, Pain 67:361), L-364,718 and other CCK antagonists (Dourish et al., 1988, Eur. J. Pharmacol 147:469), NOS inhibitors (Bhargava et al., 1996, Neuropeptides 30:2), PKC inhibitors (Bilsky et al., 1996, J. Pharmacol. Exp. Ther. 277:484), and dynorphin antagonists or antisera (Nichols et al., 1997, Pain 69:317). The disclosures of each of the foregoing documents are hereby incorporated herein by reference, in their entireties.
- Alternatively, beloxepin and/or its analogs may be used with at least one non opioid analgesic, such as for example, diclofenac, a COX2 inhibitor, aspirin, acetaminophen, ibuprophen, naproxen, and the like, and mixtures thereof.
- Other agents that may be used in combination with the beloxepin and/or its analogs include anti-inflammatories. Specific examples of suitable anti-inflammatories include, but are not limited to, corticosteroids, aminoarylcarboxylic acid derivatives such as, but not limited to, etofenamate, meclofenamic acid, mefanamic acid, niflumic acid; arylacetic acid derivatives such as, but not limited to, acemetacin, amfenac cinmetacin, clopirac, diclofenac, fenclofenac, fenclorac, fenclozic acid, fentiazac, glucametacin, isozepac, lonazolac, metiazinic acid, oxametacine, proglumetacin, sulindac, tiaramide and tolmetin; arylbutyric acid derivatives such as, but not limited to, butibufen and fenbufen; arylcarboxylic acids such as, but not limited to, clidanac, ketorolac and tinoridine; arylpropionic acid derivatives such as, but not limited to, bucloxic acid, carprofen, fenoprofen, flunoxaprofen, ibuprofen, ibuproxam, oxaprozin, piketoprofen, pirprofen, pranoprofen, protizinic acid and tiaprofenic add; pyrazoles such as, but not limited to, mepirizole; pyrazolones such as, but not limited to, clofezone, feprazone, mofebutazone, oxyphenbutazone, phenylbutazone, phenyl pyrazolidininones, suxibuzone and thiazolinobutazone; salicylic acid derivatives such as, but not limited to, bromosaligenin, fendosal, glycol salicylate, mesalamine, 1-naphthyl salicylate, olsalazine and sulfasalazine; thiazinecarboxamides such as, but not limited to, droxicam, isoxicam and piroxicam; and other anti-inflammatory agents such as, but not limited to, e-acetamidocaproic acid, s-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, bucolome, carbazones, difenpiramide, ditazol, guaiazulene, heterocyclic aminoalkyl esters of mycophenolic acid and derivatives, nabumetone, nimesulide, orgotein, oxaceprol, oxazole derivatives, paranyline, pifoxime, 2-substituted-4,6-di-tertiary-butyl-s-hydroxy-1,3-pyrimidines, proquazone and tenidap.
- Beloxepin and its analogs can also be used in combination with each other. Thus, in some embodiments, the combination therapy involves administration of two or more beloxepin analogs, or beloxepin and one or more beloxepin analogs.
- 8.5 Additional Properties of Beloxepin
- As indicated in Example 3, an initial, screening study suggested that beloxepin inhibits the polymorphic cytochrome P450 isoenzyme CYP2D6 (IC50=536 nM). A subsequent, more definitive analysis in which CYP2D6 inhibition by beloxepin was measured human hepatic microsomes using dextromethorphan as the model. There, beloxepin caused direct inhibition of CYP2D6 with an IC50 value of only 31.7 μM (
FIG. 15 ), indicating that, CYP inhibition would therefore be negligible for beloxepin. Cytochrome P450 enzymes play important roles in drug metabolism. For example, many tricyclic antidepressants used off-label to treat pain are metabolized by CYP2D6. Use of inhibitors of this enzyme in combination therapy regimens can therefore dramatically increase their levels. Co-administration of CYP2D6 inhibitors with substrates of CYP2D6 can also prolong the QT interval, leading to arrythmias. - Certain prodrugs are acted upon by CYP2D6 to release the active drug. CYP2D6 inhibitors would likely reduce the efficacy of such CYP2D6-activated drugs. As a specific example, clinical evidence suggest that CYP2D6-activated prodrugs such as codeine and tramadol are less effective in patients who are genetically deficient in CYP2D6 or in patients receiving potent CYP2D6 inhibitors.
- Cytochrome P4502D6 (CYP2D6) is a polymorphic member of the P450 superfamily, which is absent in 5-9% of the Caucasian population, resulting in a deficiency in drug oxidation known as debrisoquine/sparteine polymorphism. Metabolism by polymorphic isoenzymes such as CYP2D6 can be problematic in drug development because of the wide variation in the pharmacokinetics of the patient population. CYP2D6 metabolises many currently used drugs, which include β-blockers, antidepressants, and neuroleptics (Bertz and Granneman, 1997, Clin. Pharmokinet. 32(3):210-58). Polymorphisms of 2D6 have been associated with a reduced capacity to dispose important drugs; this leads to undesirable clinical consequences (Ingelman-Sundberg et al., 1999, Trends. Pharmacol. Sci. 20(8):342-349). The impact of human P450 polymorphisms on drug treatment in poor metabolizers is indicated in Table 1 below (Ingelman-Sundberg et al., 1999, Trends. Pharmacol. Sci. 20(8):342-349).
-
TABLE 2 Impact of human P450 polymorphisms on drug treatment in poor metabolizers Polymorphic Reduced prodrug enzyme Decreased clearance Adverse effects activation CYP 2C9 S-Warfarin Bleeding Losartan PHenytoin Ataxia Losartan Tolbutamide Hypoglycaemia NSAIDs GI bleeding CYP 2C19 Omeprazole Proguanil Diazepam Sedation CP2D6 Tricyclic Cardiotoxicity Tramadol antidepressants Codeine Haloperidol Parkinsonism Ethylmorphine Anti-arrhythmic drugs Arrhythmias Perphenazine Perhexiline Neuropathy SSRIs Nausea Zuclopenthixol S-Mianserin Tolterodine Abbreviations: NSAIDs, nonsteroidal anti-inflammatory drugs; SSRIs, selective serotonin reuptake inhibitors - Thus, in view of the above and the data of Example 3, skilled artisans will appreciate that in the various combination therapies discussed herein, dosages may need to be adjusted when beloxepin and/or its analogs are administered in combination with, or adjunctively to, drugs that are either metabolized by or activated by, CYP2D6.
- As indicated above, preliminary screening assays for inhibition of cDNA-expressed human CYP450 isozymes by beloxepin at 10 μM, suggested extensive inhibition of CYP2D6 (97%). The potential inhibition of CYP2D6 was re-evaluated using dextromethorphan as the model substrate, and measuring inhibition of CYP2D6 by beloxepin in human hepatic microsomes. In these definitive studies, beloxepin caused direct inhibition of CYP2D6 with an IC50 value of 31.7 μM (
FIG. 15 ). At anticipated therapeutic plasma concentrations, CYP inhibition would therefore be negligible for beloxepin. This suggests that beloxepin has little potential for drug-drug interactions. - 8.6 Formulations and Administration
- Beloxepin and/or its analogs (or salts thereof) may be combined with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice as described, for example, in Remington's Pharmaceutical Sciences, 2005, the disclosure of which is hereby incorporated herein by reference, in its entirety. The relative proportions of active ingredient and carrier may be determined, for example, by the solubility and chemical nature of the compounds, chosen route of administration and standard pharmaceutical practice.
- The compositions may be formulated for oral administration, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. The amount of active compound(s) in such therapeutically useful compositions is preferably such that a suitable dosage will be obtained. Preferred compositions or preparations may be prepared so that an oral dosage unit form contains from about 0.1 to about 1000 mg of each beloxepin enantiomer (and all combinations and subcombinations of ranges and specific concentrations therein).
- The tablets, troches, pills, capsules and the like may also contain one or more of the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; an excipient, such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; or a flavoring agent such as peppermint, oil of wintergreen or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coating, for instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring, such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form is preferably pharmaceutically pure and substantially non toxic in the amounts employed.
- The compositions may also be formulated for parenteral or intraperitoneal administration. Solutions of the beloxepin enantiomers as free bases or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. A dispersion can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.
- Compositions suitable for administration by injection typically include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form is preferably sterile and fluid to provide easy syringability. It is preferably stable under the conditions of manufacture and storage and is preferably preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of a dispersion, and by the use of surfactants. The prevention of the action of microorganisms may be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions may be achieved by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions may be prepared by incorporating the active compounds in the required amounts, in the appropriate solvent, with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions may be prepared by incorporating the sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation may include vacuum drying and the freeze drying technique that yields a powder of the active ingredient, plus any additional desired ingredient from the previously sterile filtered solution thereof.
- 8.7 Effective Dosages
- Beloxepin and/or beloxepin analogs will generally be administered in a therapeutically effective amount, as described herein. The quantity of beloxepin and/or beloxepin analog compounds will depend upon a variety of factors, including, for example, the particular pain indication or syndrome being treated, the mode of administration, whether the desired benefit is prophylactic or therapeutic, the severity of the pain indication or syndrome being treated, the age and weight of the patient, and the bioavailability of beloxepin and/or beloxepin analog(s) administered. Determination of an effective dosage is well within the capabilities of those skilled in the art.
- Dosage amounts will typically be in the range of from about 0.0001 or 0.001 or 0.01 mg/kg/day total active compound(s) to about 0.1 or 1.0 or 2.0 or 2.5 or 5.0 or 10.0 or 20.0 or 25.0 or 50.0 or 75.0 or 100 mg/kg/day total active compound(s), with an expected dose of about 5 mg/kg/day to about 1500 mg/kg/day total active compound(s), but may be higher or lower, depending upon, among other factors, the factors mentioned above.
- Dosage amount and interval may be adjusted individually to provide plasma levels of active compound(s), which are sufficient to maintain therapeutic or prophylactic effect. As non-limiting examples, the compositions may be administered once per day or multiple times per day, depending upon, among other things, the mode of administration, the specific indication being treated and the judgment of the prescribing physician. In cases of local administration or selective uptake, such as local topical administration, the effective local concentration of active compounds and/or compositions may not be related to plasma concentration. Skilled artisans will be able to optimize effective local dosages without undue experimentation.
- Based on the animal data described in the Examples section, it is expected that an effective dosage of beloxepin for the treatment of pain in humans may be obtained by administering a dose of beloxepin sufficient to achieve a plasma concentration similar to that achieved following the administration of 30 mg/kg, i.p. to rats, or 60 mg/kg PO to rats. As such, in some embodiments the effective dose of beloxepin for the treatment of pain is the dosage required to achieve the plasma concentration achieved when 30 mg/kg beloxepin is administered i.p. to rats, or when 60 mg/kg beloxepin is administered orally to rats.
- Based on these animal data, it is expected that oral doses of beloxepin of between about 10 mg/day to about 20 or 25 or 30 or 35 or 40 or 45 or 50 or 60 or 70 or 80 or 90 or 95 or 100 or 200 or 500 or 750 or 1000 or 1500 mg/day will be effective in treating pain. Accordingly, some embodiments involve the administration of an oral dosage of beloxepin that ranges from about 10 mg/day to about 500 mg per dose, one or more times per day. It is expected that similar dosage ranges of beloxepin analogs will be effective.
- In the context of combination therapy, the proper dosage of the combined agents will be readily ascertainable by a skilled artisan based on long established criteria. By way of general guidance, where a cannabinoid, opioid and/or other agent is used in combination with beloxepin, the dosage will typically range from about 0.01 to about 100 mg/kg/day of the cannabinoid, opioid and/or other active compound and about 0.001 to about 100 mg/kg/day of beloxepin. In certain embodiments, the dosage may be about 0.1 to about 10 mg/kg/day of the cannabinoid, opioid and/or other active compound and about 0.01 to about 10 mg/kg/day of beloxepin, and in other embodiments, the daily dosage may be about 1.0 mg of the cannabinoid, opioid and/or other active compound and about 0.1 mg of beloxepin. Alternatively, when beloxepin is combined with a cannabinoid compound (e.g., Δ9-tetrahydrocannabinol or cannabidiol), an opioid compound (e.g., morphine) and/or an other agent and the combination is administered orally, the dosage may generally range from about 15 to about 200 mg of the cannabinoid, opioid and/or other agent, and about 0.1 to about 4 mg of beloxepin. It is expected that similar dosage ranges will be effective for combination therapies with beloxepin analogs.
- 8.8 Kits
- Beloxepin and/or beloxepin analogs may be assembled in the form of kits. In some embodiments, the kit provides the compounds(s) and reagents to prepare a composition for administration. The composition may be in a dry or lyophilized from, or in a solution, particularly a sterile solution. When the composition is in a dry form, the reagent may comprise a pharmaceutically acceptable diluent for preparing a liquid formulation. The kit may contain a device for administration or for dispensing the compositions, including, but not limited to, syringe, pipette, transdermal patch or inhalant.
- The kits may include other therapeutic agents for use in conjunction with the compositions described herein. In some embodiments, the therapeutic agents may be provided in a separate form, or mixed with the compositions described herein.
- Kits can include appropriate instructions for preparation and administration of the composition, side effects of the compositions, and any other relevant information. The instructions may be in any suitable format; including, but not limited to, printed matter, videotape, computer readable disk, or optical disk.
- The following working examples, which are intended to be illustrative and not limiting, highlight various features of beloxepin and certain uses described herein.
- With reference to Scheme 1, reproduced below, beloxepin was synthesized as follows.
- Preparation of 2-(2-(o-tolyloxy)phenyl)acetic acid (B): To a solution of A (50.0 g, 232 mmol, 1.00 eq) in N,N-dimethylformamide (500 mL) under nitrogen and with mechanical stirring was added cesium carbonate (189 g, 581 mmol, 2.50 eq), o-cresol (28.8 mL, 279 mmol, 1.20 eq), copper(I) chloride (12 g, 120 mmol, 0.5 eq) and tris(3,6-dioxaheptyl)amine (TDA) (37 mL, 120 mmol, 0.5 eq). The reaction was degassed by bubbling nitrogen through the stirring mixture for 10 minutes. The mixture was then heated at 80° C. for 2 days under nitrogen. The reaction was cooled to room temperature and diluted with 1:1 diethyl ether/hexanes. While stirring, the mixture was carefully acidified with 6M HCl, then diluted with water and the layers were separated. The aqueous layer was washed with 1:1 diethyl ether/hexanes and all organics were combined and washed with 0.5M sodium carbonate. The basic aqueous layers were combined, acidified with 6M HCl and the product was extracted with diethyl ether. The organics were concentrated and purified by a silica gel plug using 2-5% isopropanol/hexane gradient to give 31.48 g yellow/green oil (51% yield, based on 1H NMR purity of 92%). 1H NMR (400 MHz, CDCl3) 7.29 (dd, 1H), 7.23-7.10 (m, 3H), 7.05 (m, 2H), 6.83 (dd, 1H), 6.63 (dd, 1H), 3.77 (s, 2H), 2.20 (s, 3H); MS: (M−H)−=241.1.
- Preparation of 6-methyldibenzo[b,f]oxepin-10(11H)-one (C): A mixture of B (60.7 g, 213 mmol, 1.00 eq, 85% purity), polyphosphoric acid (93 g, 852 mmol, 4.00 eq) and sulfolane (200 mL) was immersed in an oil bath at 120° C. and heated for 90 minutes. Ice water was added and the product was extracted with diethyl ether. The organic layer was washed with 0.5 M sodium carbonate, concentrated and purified by a silica gel plug using a 1-4% ethyl acetate/hexanes gradient to give 41.4 g orange oil (80%**). **Yield based on 85% purity of starting material B and 92% purity of product C. 1H NMR (400 MHz, CDCl3) 7.91 (m, 1H), 7.44 (m, 1H), 7.32 (m, 1H), 7.25 (m, 2H), 7.19 (m, 1H), 7.07 (m, 1H), 4.10 (s, 2H), 2.57 (s, 3H)
- Preparation of (4-Methyl-11-oxo-10,11-dihydro-dibenzo[b,f]oxepin-10-yl)-acetic acid tert-butyl ester (D): To a mixture of 60% sodium hydride in mineral oil (8.16 g, 204 mmol, 1.2 eq) in tetrahydrofuran (400 mL) cooled in a brine/water bath was added dropwise a solution of the ketone C (41.4 g, 170 mmol, 1.0 eq, 92% purity) in tetrahydrofuran (200 mL). The mixture was stirred for an additional 10 minutes. The bromide was added dropwise over a 10 minutes period and the reaction was stirred cooled for 40 minutes. The reaction was quenched with water and concentrated. The crude product was partitioned between water and diethyl ether, layers were separated and the organics were washed with brine. The organics were concentrated and the resulting solid was triturated in hexanes, filtered and dried to give 44.1 g of an off-white solid. The filtrate was concentrated and there were crystals after 3 days. Crystals were filtered and dried to give 1.5 g pale orange crystalline solid. Total yield=78%. 1H NMR (400 MHz, CDCl3) 7.86 (dd, 1H), 7.43 (m, 1H), 7.25-7.20 (m, 4H), 7.06 (t, 1H), 4.83 (m, 1H), 3.37 (m, 1H), 2.87 (dd, 1H), 2.57 (s, 3H), 1.42 (s, 9H); MS: M+=338.4
- Preparation of (4-Methyl-11-oxo-10,11-dihydro-dibenzo[b,f]oxepin-10-yl)-acetic acid (E): The ester D (44.0 g, 128 mmol, 1.0 eq) was dissolved in dichloromethane (500 mL) and trifluoroacetic acid (34.5 mL, 448 mmol, 3.5 eq) was added. The reaction was stirred at room temperature over 48 h. The reaction was diluted with water and the layers were separated. The organics were concentrated, triturated in 1:1 diethyl ether/hexanes (250 mL), filtered and dried to give 34.6 g of a pale yellow solid (94%). 1H NMR (400 MHz, DMSO) 12.40 (brs, 1H), 7.72 (dd, 1H), 7.61 (m, 1H), 7.44 (m, 1H), 7.36-7.30 (m, 3H), 7.18 (t, 1H), 4.73 (m, 1H), 3.33 (m, 1H), 2.92 (dd, 1H), 2.57 (s, 3H); MS: (M−H)−=281.2
- Preparation of N-Methyl-2-(4-methyl-11-oxo-10,11-dihydro-dibenzo[b,f]oxepin-10-yl)acetamide (F): The acid E (34.5 g, 120 mmol, 1.0 eq) was suspended in tetrahydrofuran (200 mL) under nitrogen. To the mixture was added N,N-diisopropylethylamine (31.3 mL, 180 mmol, 1.5 eq), methyl amine (120 mL, 240 mmol, 2.0 eq) and TBTU (46.2 g, 144 mmol, 1.2 eq). The reaction was stirred at room temperature for 2 hours. Between 30 and 60 minutes, a thick precipitate forms and the reaction turns light green. Another 100 mL of tetrahydrofuran was added and slow stirring resumed. N,N-dimethylformamide (100 mL) was added followed by additional amount of TBTU (15 g). The reaction mixture was concentrated to near dryness and the product was partitioned between diethyl ether and a 50% aqueous solution of sodium bicarbonate. The aqueous was washed with diethyl ether and all organics were combined and concentrated. The resulting solid was triturated in 300 mL 1:1 diethyl ether/hexanes, filtered and dried to give 33.3 g off-white solid (93%). 1H NMR (400 MHz, CDCl3) 7.84 (dd, 1H), 7.43 (m, 1H), 7.25-7.20 (m, 3H), 7.16 (m, 1H), 7.06 (t, 1H), 4.96 (dd, 1H), 3.33 (m, 1H), 2.82 (d, 3H), 2.75 (dd, 1H), 2.57 (s, 3H); MS: (M+H)+=296.0
- Preparation of 2-(11-Hydroxy-4-methyl-10,11-dihydro-dibenzo[b,f]oxepin-10-yl)-N-methyl-acetamide (G): The ketone F (33.2 g, 112 mmol, 1.0 eq) was partially dissolved in methanol/tetrahydrofuran (200 mL/200 mL) under nitrogen and cooled in an ice/water bath. Sodium borohydride (10.6 g, 281 mmol, 2.5 eq) was added in 2 g portions over a 15 minutes period. The ice bath was removed and the mixture was stirred at room temperature for 1 hour. The reaction was quenched with water and concentrated to near dryness. The crude product was suspended in dichloromethane, water was added and the layers were separated. The aqueous layer was washed again with dichloromethane and the organics were combined and concentrated. To the resulting foam was added 250 mL of 1:1 diethyl ether/hexanes with vigorous stirring. A white precipitate immediately formed and it was filtered and dried to give 32 g of a white powder (97%); MS: (M+H)+=298.0
- Preparation of 6-Methyl-11-(2-methylamino-ethyl)-10,11-dihydro-dibenzo[b,f]oxepin-10-ol (H): The amide G (31.9 g, 107 mmol, 1.0 eq) was dissolved in tetrahydrofuran (200 mL) under nitrogen and the borane-dimethyl sulfide complex (2.0 M in tetrahydrofuran, 161 mL, 322 mmol, 3.0 eq) was added dropwise over 15 minutes. The reaction was then heated at 80° C. for 24 hours. The reaction was cooled in an ice/water bath and methanol (50 mL) was added in 10 mL portions over 30 minutes. The mixture was stirred for 30 minutes at room temperature. A solution of 4M HCl in dioxane (130 mL, 5 eq) was added dropwise over 15 minutes. The mixture was stirred at room temperature for 30 minutes. The mixture was concentrated to near dryness and water and 10% ethyl acetate/diethyl ether were added. Layers were separated and the aqueous phase was washed with 10% ethyl acetate/diethyl ether. The aqueous layer was basified with a saturated sodium bicarbonate solution and the product was extracted with 10% methanol/dichloromethane. The organics were combined, dried over sodium sulfate, concentrated and dried to give 25.8 g of a yellow oil (82%). MS: (M+H)+=284.0
- Preparation of [2-(11-hydroxy-4-methyl-10,11-dihydro-dibenzo[b,f]oxepin-10-yl)-ethyl]-methyl-carbamic acid tert-butyl ester (I): To a solution of the amine H (25.0 g, 86 mmol, 1.0 eq, 96.9% pure) and triethylamine (14.3 mL, 102 mmol, 1.2 eq) in dichloromethane (300 mL) was added di-tert-butyldicarbonate (19.6 g, 90 mmol, 1.05 eq) portion wise. The reaction was stirred at room temperature for 15 minutes. The reaction was diluted with 0.5 M HCl and the layers were separated. The organics were washed with 0.5 M HCl, dried over sodium sulfate, concentrated and dried to give 35 g of a yellow oil (100% yield based on 93% purity). MS: (M+H)+=384.0
- Preparation of methyl-[2-(4-methyl-dibenzo[b,f]-10-yl)-ethyl]-carbamic acid tert-butyl ester (J): The alcohol I (23.5 g, 57 mmol, 1.0 eq, 93% purity) was dissolved in dichloromethane (300 mL) and triethylamine (20.6 mL, 148 mmol, 2.6 eq) was added. The mixture was cooled in an ice bath and methanesulfonyl chloride (5.73 mL, 74 mmol, 1.3 eq) was added. The reaction mixture was stirred cooled for 15 minutes. The reaction mixture was diluted with 0.5 M HCl and the layers were separated. The organics were concentrated and dried to give 28 g of a crude light yellow oil. The mesylate was dissolved in toluene (200 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (42.6 mL, 285 mmol, 5.0 eq) was added. The mixture was heated at 115° C. for 1 hour and diluted with water. The layers were separated and the organics were concentrated and purified by a silica gel plug eluting with 5-15% ethyl acetate/hexanes to give 14.76 g of a light yellow oil. This total amount was collected in two batches (8.44 g, 81% pure by LC/MS) and (6.32 g, 77% pure by LC/MS). 1H NMR (400 MHz, CDCl3) 7.40 (brm, 1H), 7.28 (m, 1H), 7.22-7.10 (m, 3H), 6.98 (m, 2H), 6.70 (brs, 1H), 3.39 (brm, 2H), 2.91-2.82 (brm, 5H), 2.53 (s, 3H), 1.46 (s, 9H); MS: (M+H)=366.0
- Preparation of methyl-[2-(4-methyl-dibenzo[b,f]oxepin-10-yl)-ethyl]-amine (K): The olefin J (14.8 g, 32 mmol, 1.0 eq, 79% pure) was dissolved in dichloromethane (150 mL) and a solution of HCl in diethyl ether (2.0M, 75 mL, 160 mmol, 5 eq) was added. The mixture was stirred overnight at room temperature. The reaction was diluted with a solution of saturated sodium bicarbonate and layers were separated. The aqueous layer was washed with 10% methanol/dichloromethane and all organics were combined, concentrated and purified by a flash silica gel column using a 2-10% methanol/dichloromethane gradient (plus 1% NH4OH) to give 8.0 g of a yellow oil in 91% yield and 96% purity. 1H NMR (400 MHz, CDCl3) 7.38 (m, 1H), 7.30 (m, 2H), 7.15 (m, 2H), 6.99 (m, 2H), 6.74 (s, 1H), 2.93 (t, 2H), 2.78 (t, 2H), 2.52 (s, 3H), 2.44 (s, 3H); MS: (M+H)+=266.0
- Preparation of Beloxepin (L): To the amine K (7.0 g, 25 mmol, 1.0 eq) under nitrogen was added ethanol (23 mL), an aqueous solution of HCl (2.0 M, 226 mL, 19 eq) and an aqueous solution of formaldehyde (37%, 100 mL, 52 eq). The reaction mixture was heated at 50° C. for 64 hours. The reaction mixture was cooled in an ice bath and it was basified with 2M NaOH to pH ˜8. The product was extracted with 10% methanol/dichloromethane. The organics were combined, concentrated and purified by a flash silica gel column using a 4-9% methanol/dichloromethane gradient (plus 1% NH4OH) to give 4.9 g white solid in 66% yield and 100% purity. 1H NMR (400 MHz, CDCl3) 7.62 (d, 1H), 7.27 (m, 3H), 7.14 (m, 1H), 7.08 (m, 1H), 7.00 (m, 1H), 3.28 (brs, 1H), 3.10 (brt, 1H), 3.00 (brm, 1H), 2.82 (brm, 1H), 2.46 (brs, 1H), 2.42 (s, 3H), 2.29 (s, 3H), 2.18 (m, 1H), 2.03 (s, 1H), 1.80 (brm, 1H); MS: (M+H)+=296.0. CHN Theory (1 mol H2O): % C, 72.82; % H, 7.40; % N, 4.47. CHN Actual (1 mol H2O): % C, 72.69; % H, 7.29; % N, 4.48.
- Preparation of reconstituted racemic mixture of beloxepin (see
FIG. 9 ): 300 mg of (+)-Beloxepin and 300 mg of (−)-Beloxepin were combined and dissolved in 10 mL of hexanes/methanol (30:70). The solution was concentrated on a rotovap at 37° C. to give an off-white foam (Beloxepin lot 9). 1H NMR (400 MHz, CDCl3) consistent for product. LC/MS: ESI+M+=295.6; purity=100% RT=0.64; CHN Theory: % C, 77.26; % H, 7.17; % N, 4.74. CHN Found: % C, 77.04; 77.10; % H, 7.17; 7.20; % N, 4.77; 4.79. - The binding affinities of beloxepin for the NE, serotonin and dopamine transporters were determined in competitive binding assays with radiolabeled ligands. The ability of beloxepin to inhibit reuptake of NE was also determined. It was observed that beloxepin had only marginal affinity for the serotonin transporter (27% inhibition of binding at 10 μM in a competition assay) and dopamine transporter (16% inhibition of binding at 10 μM in a competition assay). Other results observed are provided below.
- Protocols. For the NE transporter binding assay, [3H]nisoxetine (1.0 nM) was incubated with various concentrations of beloxepin for 2 hours at 4° C. with membranes prepared from Chinese hamster ovary cells (CHO) cells heterologously expressing the cloned human NE transporter (hNET). Bound radioactivity was determined by scintillation spectroscopy. Non-specific binding was defined as the amount of binding that occurred in the presence of 1.0 μM desipramine. The Ki was determined using standard methods.
- The IC50 of NE reuptake inhibition was determined by measuring the degree to which various concentrations of beloxepin inhibited incorporation of [3H]norepinephrine into rat hypothalamus synaptosomes (measurements carried out for 20 minutes at 37° C.).
- For the 5HT transporter binding assay, [3H]imipramine (2.0 nM) was incubated in the presence of various concentrations of beloxepin for 1 hour at 22° C. with membranes prepared from CHO cells heterologously expressing the human serotonin transporter (hSERT). Bound radioactivity was determined by scintillation spectroscopy. Non-specific binding was defined as the amount of binding that occurred in the presence of 10 μM imipramine. The Ki was determined using standard methods.
- The IC50 of 5HT reuptake inhibition was determined by measuring the degree to which various concentrations of beloxepin inhibited incorporation of [3H]-5HT into rat brain synaptosomes (measurements carried out for 15 min at 37° C.
- For the DA transporter binding assay, [3H]N-[1-(2-benzo[b]thiophenyl)cyclohexyl]-piperidine ([3H]BTCP) (4.0 nM) was incubated in the presence of various concentrations of beloxepin for 2 hr at 4° C. with membranes prepared from Chinese hamster ovary (CHO) cells heterologously expressing the cloned human dopamine transporter (hDAT). Bound radioactivity was determined by scintillation spectroscopy. Non-specific binding was defined as binding that occurred in the presence of 10 μM BTCP. The Ki was determined using standard methods
- The IC50 of DA reuptake inhibition was determined by measuring the degree to which various concentration of beloxepin inhibited incorporation of [3H]-DA into rat striatum synaptosomes (measurements carried out for 15 min at 37° C.).
- Results. The Kis and IC50s of beloxepin for the NE, 5HT and DA transporters are provided below, showing that beloxepin is a weak, albeit selective, inhibitor of NE reuptake.
-
- Ki NET=700 nM
- IC50 NE=130 nM
- Ki SERT=27% inhibition of binding at 10 μM in a competition assay
- Ki DAT=16% inhibition of binding at 10 μM in a competition assay
- Protocol. The inhibitory activity of beloxepin on cytochrome P450 function was tested using the methods of Chauret (Chauret et al., 2001, Drug Metabolism and Disposition, 29(9), 1196-1200) using 7-methoxy-4-(aminomethyl)-coumarin (MAMC) (Venhorst et al., 2000, European Journal of Pharmaceutical Sciences 12(2): 151-158) as substrate. The source of the enzyme was microsomes containing human recombinant CYP2D6 obtained from BD Bioscience. Conversion of MAMC to 7-hydroxy-4-(aminomethyl)coumarin was measured using a PerkinElmer Fusion with a 390 nm excitation filter and a 460 nm emission filter.
- Results. Beloxepin was found to inhibit CYP2D6 activity with an IC50=536 nM.
- Evaluation of Beloxepin as a Direct Inhibitor of Human CYP2D6 (Dextromethorphan O-Demethylation): Microsomal Incubations for IC50 Estimation
- Protocol: The ability of Beloxepin to inhibit dextromethorphan O-demethylation (CYP2D6) was investigated using pooled male human hepatic microsomes. Beloxepin was incubated with human liver microsomes at concentrations of 0, 0.1, 0.3, 1, 3, 10, 30 and 100 μM Beloxepin. The 200 μL incubations were conducted in duplicate in 0.1 M potassium phosphate buffer (pH 7.4) with 0.02 mg of microsomal protein, 3 mM MgCl2, 1 mM EDTA and 7.5 μM of the probe substrate dextromethorphan in a 96-well polypropylene plate maintained at 37° C. After a 3-minute pre-incubation, the reaction was initiated with the addition of 2 mM NADPH. Upon completion of the 10-minute incubation period, aliquots of 100 μL were removed and added to a new plate containing 100 μL of internal standard in acidified acetonitrile to stop the reaction. The quenched samples were vortexed and the precipitated protein was removed by centrifugation. Supernatant aliquots of 100 μL were transferred to LC vials and 5 μL were injected onto the HPLC system for LC/MS/MS analysis of the metabolite dextrorphan. Standards and quality control samples were similarly prepared using authentic dextrorphan standards.
- Analytical Method
- Dexthorphan concentrations were determined by high performance liquid chromatography with tandem mass spectrometric detection (LC/MS/MS) after protein precipitation with acidified acetonitrile containing internal standard. Separations were performed with a Flux Rheos 2000 quaternary pump (Leap Technologies, Inc., Carrboro, N.C.) using an XTerra® MS C18, 3.5 μm, 4.6×50 mm column (Waters Corporation, Milford, Mass.). Dextrorphan and the internal standard were eluted with 10 mM ammonium formate with 0.1% formic acid: 0.1% formic acid in acetonitrile (80:20, v/v) run under gradient conditions at 1.0 mL/min. A MDS Sciex API4000 (Applied Biosystems, Foster City, Calif.) triple quadrupole mass spectrometer equipped with a Turbo Ionspray ionization source was used as the detector. The instrument was operated in positive ion mode using multiple reaction monitoring (MRM) with specific precursor-product ion pairs for dextrorphan and the internal standard. The mass transitions were m/z 280.2>262.2 for the internal standard and m/z 258.2>157.0 for dextrorphan. Dextrorphan and the internal standard had retention times of approximately 1.54 and 2.00 minutes, respectively.
- Results. In this assay (dextromethorphan O-demethylation) Beloxepin was found to inhibit CYP2D6 activity with an IC50=31.7 μM (
FIG. 15 ). - Preparation of vehicle and beloxepin formulations. For this Example and all that Follow, unless indicated otherwise, beloxepin formulations for injection were prepared using acidified sterile water for injection (SWIJ) as a diluent. To start, a few drops (never more than 400 μl for a final volume of approximately 14 ml) of 1 M HCl was added to neat beloxepin. Glass beads were added and the solution vortexed vigorously for 2-3 minutes, followed by sonication in a water bath for 3-5 minutes to break up larger particles. The SWIJ was then added to QS to final total volume, the formulation vortexed for 2-3 minutes and then sonicated in warm water for approximately 30-60 minutes. Beloxepin was formulated as a 10 mg/ml solution.
- For this Example and all that follow, unless indicated otherwise, control vehicle was prepared using the same volumes of 1 M HCl and SWIJ diluent as the test beloxepin formulation.
- Protocol. The antiallodynic activity of beloxepin was tested in vivo using the L5-Single Nerve Ligation (“SNL”) model of non-nociceptive neuropathic pain as described in LaBuda & Little, 2005, J. Neurosci. Methods 144:175-181. The test animals were placed in a Plexiglas chamber (10 cm×20 cm×25 cm) and habituated for 15 minutes. The chamber was positioned on top of a mesh screen so that von Frey monofilaments could be presented to the plantar surface of both hindpaws. Measurement of tactile sensitivity for each hind paw were obtained using the up/down method (Dixon, 1980, Annu. Rev. Pharmacol. Toxicol. 20:441-462) with seven Frey monofilaments (0.4, 1, 2, 4, 6, 8 and 15 grams). Each trial started with a von Frey force of 2 grams delivered to the right hind paw for approximately 1-2 seconds and then the left hind paw. If there was no withdrawal response, the next higher force was delivered. If there was a response, the next lower force was delivered. This procedure was performed until no response was made at the highest force (15 grams) or until four stimuli were administered following the initial response. The 50% paw withdrawal threshold for each paw was calculated using the following formula: [Xth] log=[vFr] log+ky, where [vFr] is the force of the last von Frey used, k=0.2249 which is the average interval (in log units) between the von Frey monofilaments, and y is a value that depends upon the pattern of withdrawal responses (Dixon, 1980, supra). If an animal did not respond to the highest von Frey monofilament (15 grams), then the paw was assigned a value of 18.23 grams. Testing for tactile sensitivity was performed twice and the mean 50% withdrawal value assigned as the tactile sensitivity for the right and left paws for each animal. All test groups contained at least six animals.
- Results. The antiallodynic effects produced by beloxepin (30 mg/kg IP) in
L5 SNL rats 14 days post surgery are illustrated inFIG. 1 . In this experiment, at 14 days post surgery, rats were treated with vehicle or beloxepin (30 mg/kg IP) and tested for tactile allodynia at 30, 60, 120 and 240 min post treatment. Vehicle-treated rats were tested at 30 min post treatment. As illustrated inFIG. 1 , beloxepin produced significant antiallodynia effects at the 30, 60 and 120 min time points, with a maximal effect at 30 min post treatment (829% of the threshold of vehicle-treated rats). The magnitude of tactile allodynia observed at the 30 min time point was amongst the highest the inventors have observed in this model. No side effects were observed following treatment. - Protocol. A dose response experiment was performed in L5 SNL rats at 16 days post surgery (3, 10 and 30 mg/kg IP beloxepin). In the experiment, animals were tested for tactile allodynia at 30 min post treatment. The sham-operated control group, which were operated on but not subject to nerve ligation, contained 4 animals. The treatment group contained at least six animals.
- The results of the dose-response experiment are illustrated in
FIG. 2 . The 30 mg/kg dose produced a robust antiallodynic effect (852% of the threshold for vehicle-treated rats, and almost equal to that of the sham-operated animals). The results observed replicated the significant antiallodynic effect observed in the time-course experiments of Example 4. - The results of a direct comparison of beloxepin with reboxetine, are illustrated in
FIG. 3 , and demonstrate that beloxepin is approximately 4-fold more effective. Similarly,FIG. 5 depicts the results of a direct comparison of the antiallodynic effects produced by beloxepin, duloxetine, amitriptyline, and beloxepin in the rat L5 Spinal Nerve Ligation Model (30 mg/kg IP; *p<0.05 compared to vehicle-treated L5 SNL rats; rats were tested at 30 minutes or, for amitriptyline, 60 minutes post-drug administration). The data indicate that beloxepin was the most effective of the compounds tested. - Protocol. A time course experiment was performed with beloxepin (60 mg/kg PO) in L5 SNL rats at 8-days post surgery. Rats were tested at 30, 60, 120 and 240 min post beloxepin. All test groups contained at least six animals.
- Results. The results are provided in
FIG. 4 . Oral beloxepin produced significant and robust antiallodynic effects at the 30 and 60 min time points. - Protocol. The ability of beloxepin to treat acute nociceptive pain was demonstrated in the rat hot plate model utilizing Male Sprague-Dawley rats (150-250 g). For the experiment, rats were acclimated to a 50° C. hot plate apparatus by gently placing them on the hot plate with all four paws on the surface. A timer was started and the latency (in seconds) until the rat licked any of its paws was measured. A 60 second cut-off to elicit a response was set to prevent tissue damage to the paws. After the rats elicited the paw lick response, they were removed from the apparatus and returned to their home cages for at least 30 minutes. Baseline paw lick latencies were determined prior to drug treatments in an identical manner to the acclimation test. Following drug treatments, the rats were placed on the hot plate apparatus at the appropriate time and treatment paw lick latencies were determined. All test groups contained at least six animals.
- Results. The results of the experiment are illustrated in
FIGS. 6A and 6B .FIG. 6A shows the latency (in seconds) between placement on the hot plate and paw lick response. 30 and 60 mg/kg beloxepin (IP) exhibited a statistically significant robust anti-nociceptive effects, with both dosages producing anti-nociceptive activity nearly as effective as 3 mg/kg morphine.FIG. 6B shows the percentage of maximal effect achieved (% MPE) in the same experiment. The paw lick latency was used to determine % MPE for each rat based on the following formula: -
- Thus, any rats that reach the cut-off have obtained 100% MPE.
- Protocol. The ability of beloxepin to treat inflammatory pain was tested using Freund's Complete Adjuvant (FCA)-induced mechanical hyperalgesia in rats. For the assay, the methods of DeHaven-Hudkins et al., 1999, J. Pharmacol. Exp. Ther. 289:494-502 were used to determine mechanical hyperalgesia in
rats 24 hours after intraplantar administration of 150 μL Freund's Complete Adjuvant (FCA). To determine paw pressure thresholds, the rats were lightly restrained in a gauze wrap and pressure was applied to the dorsal surface of the inflamed and uninflamed paw with a conical piston using a pressure analgesia apparatus (Stoelting Instruments, Wood Dale, Ill.). The paw pressure threshold was defined as the amount of force (in grams) required to elicit an escape response using a cutoff value of 250 grams. Paw pressure thresholds were determined before and at specified times after drug treatment. All test groups contained at least six animals. - Results. The results are illustrated in
FIG. 7 . 30 mg/kg beloxepin nearly completely reversed hyperalgesia induced by the FCA. - Protocol. The ability of beloxepin to treat visceral pain was demonstrated in a rodent model of acetic acid-induced writhing For the assay, male ICR mice (20-25 g) were treated with vehicle or test compound orally 25 min prior to the intraperitoneal administration of 0.6% of acetic acid. Five minutes after treatment with acetic acid, the number of writhes was counted for 10 min. A writhe is defined as the extension of both front and hind limbs with a concave stretch of the abdomen. The mean number of writhes was determined for each treatment group and the percent inhibition of the vehicle response was calculated using the following formula:
-
- All test groups contained at least six animals.
- Results. The results are illustrated in
FIG. 8 . Beloxepin inhibited acetidc acid-induced writhing in a dose-dependent fashion, with an ED50 of 13.3 mg/kg (oral). - Protocol. A sample of (±)-beloxepin was prepared by milling the isolated (+)-beloxepin and (−)-beloxepin enantiomers together, bringing them up in solvent, and then removing the solvent (“
Lot 9”). In this experiment, 30 mg/kg of (±)-beloxepin (“Lot 7”) or 30 mg/kg of the reconstituted racemic mixture (Lot 9) was administered in rats treated with FCA for 24 hours. Thirty minutes after treatment with vehicle, (±)-beloxepin, or reconstituted racemic mixture, paw pressure thresholds were determined. Thirty minutes is the time of peak mechanical antihyperalgesia of (±)-beloxepin. - Results. As illustrated in
FIG. 9 , similar mechanical antihyperalgesic (96±16% vs. 77±11%) efficacy was observed in rats treated with (±)-beloxepin or the reconstituted racemic mixture. Thus, a chemical entity that produces significant mechanical antihyperalgesia can be provided as the mixture of its two component enantiomers. - Protocol. A time course experiment was performed with beloxepin (60 mg/kg PO in L5 SNL rats at 7 days post-surgery. Rats were tested at 30, 60, 120, and 240 minutes post-drug.
- Results. Beloxepin produced significant antiallodynic effects at all four time points, as illustrated in
FIG. 10 . - Protocol. In a further experiment with this animal model of pain, a comparison of the time courses for mechanical antiallodynia in the rat L5 SNL model for beloxepin, duloxetine (a drug approved for the treatment of diabetic neuropathy), and esreboxetine (a compound in Phase III clinical trials for the treatment of fibromyalgia and diabetic neuropathy). The data obtained are depicted in
FIG. 11 . - Results. As demonstrated in
FIG. 11 , racemic beloxepin (30 mg/kg IP) was comparable in efficacy to duloxetine (30 mg/kg IP), and the peak antiallodynic effect of racemic beloxepin was greater than that measured in rats treated with esreboxetine (30 mg/kg IP). - Protocol. A time course experiment was performed with beloxepin in the hindpaw incision model. At 24 hours post surgery, rats received vehicle or beloxepin (30 mg/kg IP). Rats were tested for tactile allodynia at 30, 60, 120 and 240 minutes after administration of beloxepin.
- Results. As illustrated in
FIG. 12 , racemic beloxepin produced a significant antiallodynic effect at all four time points (maximum hindpaw withdrawal threshold 29 grams or 544% of the threshold value for vehicle treated rats at the 30 minute time point). The antiallodynic effect produced by racemic beloxepin in this assay is considered very robust. - Protocol. A second time course experiment was performed with racemic beloxepin in the hindpaw incision model after oral (PO) administration. At 24 hours post-surgery, rats received vehicle or racemic beloxepin (60 mg/kg PO). Rats were tested for tactile allodynia at 30, 60, 120 and 240 minutes after administration of beloxepin.
- Results. As illustrated in
FIG. 13 , racemic beloxepin produced a significant antiallodynic effect at all four time points (maximumhindpaw withdrawal threshold 24 grams at the 30 and 60 minute time points). The antiallodynic effect produced by beloxepin in this assay is considered very robust and is comparable to the effect that was observed after IP administration. - Protocol. A third time course experiment was performed with racemic beloxepin in the hindpaw incision model after intravenous (IV) administration. At 24 hours post-surgery, rats received vehicle or beloxepin (3 mg/kg IV). The 3 mg/kg IV dose is a dose that is 10-fold lower than a dose that produced a significant respiratory or cardiovascular side effect. Rats were tested for tactile allodynia at 30, 60, 120 and 240 minutes after administration of beloxepin.
- Results. As illustrated in
FIG. 14 , racemic beloxepin produced a significant antiallodynic effect at the 30 and 120 minute time points (maximum hindpaw withdrawal threshold 21 grams at the 30 minute time point). The antiallodynic effect produced by beloxepin in this assay at the 30 minute time point is considered very robust and comparable to the antiallodynic effect observed with a dose of 60 mg/kg PO of racemic beloxepin at the 30 minute time point. - While various specific embodiments have been illustrated and described, it will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s).
- All publications, patents, patent applications and other documents cited in this application are hereby incorporated by reference in their entireties for all purposes to the same extent as if each individual publication, patent, patent application or other document were individually indicated to be incorporated by reference for all purposes.
Claims (22)
1. A method of treating pain in a mammal, comprising administering to a mammal suffering from pain an amount of beloxepin, or a salt thereof, effective to treat the pain.
2. The method of claim 1 in which the beloxepin is administered parenterally.
3. The method of claim 1 in which the beloxepin is administered orally.
4. The method of claim 1 in which the pain is acute or chronic pain of nociceptive origin.
5. The method of claim 4 in which the pain is inflammatory pain.
6. The method of claim 4 in which the pain is cancer pain.
7. The method of claim 1 in which the pain is chronic pain of non-nociceptive origin.
8. The method of claim 7 in which the pain is neuropathic pain.
9. The method of claim 1 in which the pain is visceral pain.
10. The method of any one of claims 1 -9 in which the mammal is a human.
11. A method of treating pain in a mammal, comprising administering to a mammal suffering from pain an amount of beloxepin and/or a beloxepin analog, or a salt thereof, effective to treat the pain.
12. The method of claim 11 in which the pain is acute or chronic pain of nociceptive origin.
13. The method of claim 12 in which the pain is inflammatory pain.
14. The method of claim 12 in which the pain is cancer pain.
15. The method of claim 11 in which the pain is chronic pain of non-nociceptive origin.
16. The method of claim 15 in which the pain is neuropathic pain.
17. The method of claim 11 in which the pain is visceral pain.
18. The method of any one of claims 11 -17 in which the beloxepin, beloxepin analog and/or a salt thereof, is administered to the mammal in the form of a composition.
19. The method of claim 18 in which the beloxepin and/or beloxepin analog is included in the composition as a salt.
20. The method of claim 18 in which the mammal is a human.
21. The method of claim 18 in which the composition is formulated for oral administration
22. The method of claim 21 in which the mammal is a human.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/388,982 US20090233959A1 (en) | 2008-02-19 | 2009-02-19 | Beloxepin and analogs for the treatment of pain |
US12/750,558 US7829576B2 (en) | 2008-02-19 | 2010-03-30 | Beloxepin and analogs for the treatment of pain |
US12/941,371 US20110105552A1 (en) | 2008-02-19 | 2010-11-08 | Beloxepin and analogs for the treatment of pain |
US13/252,982 US20120108623A1 (en) | 2008-02-19 | 2011-10-04 | Beloxepin and analogs for the treatment of pain |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2991608P | 2008-02-19 | 2008-02-19 | |
US5092108P | 2008-05-06 | 2008-05-06 | |
US12/388,982 US20090233959A1 (en) | 2008-02-19 | 2009-02-19 | Beloxepin and analogs for the treatment of pain |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/750,558 Continuation US7829576B2 (en) | 2008-02-19 | 2010-03-30 | Beloxepin and analogs for the treatment of pain |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090233959A1 true US20090233959A1 (en) | 2009-09-17 |
Family
ID=41063734
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/388,982 Abandoned US20090233959A1 (en) | 2008-02-19 | 2009-02-19 | Beloxepin and analogs for the treatment of pain |
US12/750,558 Expired - Fee Related US7829576B2 (en) | 2008-02-19 | 2010-03-30 | Beloxepin and analogs for the treatment of pain |
US12/941,371 Abandoned US20110105552A1 (en) | 2008-02-19 | 2010-11-08 | Beloxepin and analogs for the treatment of pain |
US13/252,982 Abandoned US20120108623A1 (en) | 2008-02-19 | 2011-10-04 | Beloxepin and analogs for the treatment of pain |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/750,558 Expired - Fee Related US7829576B2 (en) | 2008-02-19 | 2010-03-30 | Beloxepin and analogs for the treatment of pain |
US12/941,371 Abandoned US20110105552A1 (en) | 2008-02-19 | 2010-11-08 | Beloxepin and analogs for the treatment of pain |
US13/252,982 Abandoned US20120108623A1 (en) | 2008-02-19 | 2011-10-04 | Beloxepin and analogs for the treatment of pain |
Country Status (1)
Country | Link |
---|---|
US (4) | US20090233959A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4977158A (en) * | 1988-08-26 | 1990-12-11 | Akzo N.V. | Dibenzoxepinon and dibenzothiepino-pyridinol or - pyrrotol derivatives with anti-depressant action |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60022916T2 (en) * | 1999-07-01 | 2006-07-06 | Pharmacia & Upjohn Co. Llc, Kalamazoo | Reboxetine for the treatment of peripheral neuropathies |
GB0004003D0 (en) | 2000-02-22 | 2000-04-12 | Knoll Ag | Therapeutic agents |
KR20070029740A (en) | 2004-06-09 | 2007-03-14 | 화이자 인코포레이티드 | Use of Reboxetine to Treat Pain |
TW200804325A (en) | 2005-09-29 | 2008-01-16 | Wyeth Corp | Benzothiadiazolylphenylalkylamine derivatives and methods of their use |
US7905852B2 (en) * | 2006-05-16 | 2011-03-15 | Barbara Jennings-Spring | Skin-contacting-adhesive free dressing |
CN101720186A (en) * | 2007-04-30 | 2010-06-02 | 阿得罗公司 | Compositions of (-)-e-10-oh-nt and methods for their synthesis and use |
US20090233958A1 (en) * | 2008-02-19 | 2009-09-17 | Adolor Corporation | (+)-beloxepin and methods for its synthesis and use |
JP2011512414A (en) | 2008-02-19 | 2011-04-21 | アドロー コーポレイション | Beroxepin, its enantiomers and analogs for treating pain |
US20090233957A1 (en) * | 2008-02-19 | 2009-09-17 | Adolor Corporation | (-)-beloxepin and methods for its synthesis and use |
-
2009
- 2009-02-19 US US12/388,982 patent/US20090233959A1/en not_active Abandoned
-
2010
- 2010-03-30 US US12/750,558 patent/US7829576B2/en not_active Expired - Fee Related
- 2010-11-08 US US12/941,371 patent/US20110105552A1/en not_active Abandoned
-
2011
- 2011-10-04 US US13/252,982 patent/US20120108623A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4977158A (en) * | 1988-08-26 | 1990-12-11 | Akzo N.V. | Dibenzoxepinon and dibenzothiepino-pyridinol or - pyrrotol derivatives with anti-depressant action |
Also Published As
Publication number | Publication date |
---|---|
US20110105552A1 (en) | 2011-05-05 |
US20100173927A1 (en) | 2010-07-08 |
US20120108623A1 (en) | 2012-05-03 |
US7829576B2 (en) | 2010-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6451806B2 (en) | Methods and compositions involving opioids and antagonists thereof | |
US9447108B2 (en) | Deuterated morphine derivatives | |
US20120178815A1 (en) | Compositions of (-)-E-10-OH-NT and Methods for Their Synthesis and Use | |
US20150196502A1 (en) | Formulations, salts and polymorphs of transnorsertraline and uses thereof | |
WO2009105507A2 (en) | Beloxepin, its enantiomers, and analogs thereof for the treatment of pain | |
US8084497B2 (en) | C-(2-phenyl-cyclohexyl)-methylamine compounds for therapy of fibromyalgia | |
AU2003263179B2 (en) | 1-phenyl-2-dimethylaminomethyl cyclohexane compounds used for the therapy of depressive symptoms, pain, and incontinence | |
US7829576B2 (en) | Beloxepin and analogs for the treatment of pain | |
JP2011512414A5 (en) | ||
US20090233957A1 (en) | (-)-beloxepin and methods for its synthesis and use | |
US20090233958A1 (en) | (+)-beloxepin and methods for its synthesis and use | |
TW201817725A (en) | Compounds, compositions and methods | |
Le Bourdonnec et al. | BELOXEPIN AND METHODS FOR ITS SYNTHESIS AND USE | |
US20050182131A1 (en) | 1-Phenyl-2-dimethylaminomethyl cyclohexane compounds and therapies for depressive symptoms, pain and incontinence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADOLOR CORPORATION, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE BOURDONNEC, BERTRAND;DOLLE, ROLAND E.;REEL/FRAME:022779/0143 Effective date: 20090602 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |