US20090230109A1 - Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components - Google Patents
Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components Download PDFInfo
- Publication number
- US20090230109A1 US20090230109A1 US12/474,246 US47424609A US2009230109A1 US 20090230109 A1 US20090230109 A1 US 20090230109A1 US 47424609 A US47424609 A US 47424609A US 2009230109 A1 US2009230109 A1 US 2009230109A1
- Authority
- US
- United States
- Prior art keywords
- weld
- head
- attached
- weld head
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
- B23K9/044—Built-up welding on three-dimensional surfaces
- B23K9/046—Built-up welding on three-dimensional surfaces on surfaces of revolution
- B23K9/048—Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
Definitions
- the present invention relates to a system and/or method for overlaying metal piping with a weld overlay. More specifically, a process and/or apparatus for applying a weld overlay to piping, fittings or nozzles utilizing a welding apparatus is disclosed.
- Pipes, fittings, and nozzles are subject to degradation or material failure in a mechanical system.
- weld overlays are often placed over theses areas to either repair damage or to prevent failure of the original boundary materials with pre-emptive reinforcement. Applying a weld overlay to a structural component will protect the integrity of the mechanical system.
- an orbital welding apparatus is adapted to apply an external structural weld to a component, the apparatus comprising a mounting assembly having a plurality of magnetic foot pads, a rod attached at one end to one of the magnetic foot pads, an upper attachment pad at the opposite end of the rod, and a bottom attachment pad attached to at least one other magnetic foot pad; a travel guide, the travel guide attached to the top attachment at one end and the bottom attachment at the other end; and a head assembly attached to the travel guide by a mounting bracket, the head assembly having a track ring assembly having an inner ring and an outer ring, at least two weld heads attached to the inner ring on opposite sides of the inner ring to apply the weld overlay to the component, two wire feed drive mechanisms on the track ring on the opposite side of the track ring, the wire feed mechanisms being movable to permit placing the track ring around the component and a drive mechanism located on the outer ring of the track ring, the drive mechanism including a chain fixed to the inner ring to permit rotation
- Another embodiment of the apparatus of the present invention includes three magnetic foot pads.
- the lower attachment pad is located on the center of a bar attaching the two magnetic pads not attached to the tension support rod. Attaching the attachment pads to the travel guide provides a magnetically attached, cantilevered weld head assembly that remains independent of the component section to receive the weld overlay.
- Another embodiment of the present invention provides a system that further comprises a camera attached to each welding head to enable remote monitoring of weld bead placement and weld puddle dynamics.
- the disclosed apparatus and method permits use of welding equipment to apply a weld overlay on piping systems without the need to attach to the member that is to be welded.
- the process relates to a method of applying an external weld overlay to a component wherein the process comprises attaching an apparatus to an adjacent structure with a mounting assembly having a plurality of magnetic foot pads, the mounting assembly attached to a travel guide; aligning a head assembly having an inner track ring and an outer track ring around a centerline axis of the component to be welded, the inner track ring including as least two weld heads placed on opposite sides of the track ring; initiating the weld torch head located at the lowest point of the weld overlay; engaging a chain drive fixed to the inner track ring and rotating inner track ring and the attached weld heads, the weld head torches rotating about 180 degrees and placing a weld bead on the component; terminating the first weld torch; and initiating the second weld torch at the lowest point of the weld overlay, engaging the chain drive to rotate the inner track ring in the reverse direction to apply a weld bead on the opposite side of
- FIG. 1 illustrates an exemplary embodiment of the equipment system.
- the system is set up for application of a structural weld overlay on a nozzle section of a pressure vessel having a hemispherical head.
- FIG. 2 illustrates a side view of an exemplary embodiment of the equipment system for set up of the weld overlay in FIG. 1 .
- FIG. 3 illustrates the mounting assembly utilized to mount the equipment system to a adjacent structure or tank.
- FIG. 4 illustrates the head assembly for the welding equipment as seen from the bottom view of the head assembly of the apparatus.
- FIG. 5 illustrates the head assembly, particularly the chain drive actuator utilized to rotate the weld heads around the structure being welded.
- FIG. 6 illustrates the sectional cutaway view of the weld overlay placed on a typical complex nozzle and piping spool.
- FIG. 7 is a block flow diagram illustrating the system components for the welding system.
- an apparatus 10 for applying a weld overlay to a nozzle or piping spool of complex configuration comprises a mounting assembly 15 , a travel guide 17 and a head assembly 20 .
- the head assembly 20 includes a plurality of orbital weld heads for applying a weld overlay to a nozzle, piping or fitting.
- the apparatus 10 provides a new assembly and process that allows an easily mountable system that may operate in a smaller area and avoiding interferences and inability to mount the system.
- the welding equipment includes a plurality of different drive mechanisms to allow for application of a weld overlay on a potentially irregular surface.
- the welding apparatus equipment system 10 may be utilized for several other applications.
- the system could be utilized to weld piping joints for similarly complex configurations or in interference constrained piping spools and nozzles.
- FIG. 1 and FIG. 2 An exemplary embodiment of the welding apparatus 10 is depicted in FIG. 1 and FIG. 2 .
- a mounting assembly 15 is attached to a structure utilizing magnetic foot pads 25 .
- the structure illustrated is a pressure vessel with a hemispherical head.
- the structure that the apparatus 10 is attached to may be any metallic structure.
- the magnetic foot pads 25 are aligned to correctly position the head portion of the apparatus 10 to apply the weld overlay to an adjacent piping, nozzle or fitting.
- a tension support bar attached to one of the magnetic foot pads 25 is a tension support bar.
- the tension support bar 60 provides support for the attached head assembly 20 .
- an upper attachment pad 65 At the opposite end of the tension support bar 60 is an upper attachment pad 65 .
- a lower attachment pad 70 is attached to at least one of the other magnetic foot pads 25 .
- the mounting assembly may comprise a 6-axis magnetically mounted robotic arm for attachment to the travel guide and head assembly. Utilization of a robotic arm rather than a fixed axis attachment provides for utilization of the welding apparatus in more confined areas.
- the two attachment pads are attached by a travel guide 17 .
- the travel guide 17 is attached at one end to the upper attachment pad 65 .
- the lower attachment pad 70 is attached at the other end of the travel guide 17 .
- the mounting assembly 15 attached to the travel guide 17 creates a magnetically attached, cantilevered base of attachment and drive for a weld head assembly 20 , all of which remain independent of the component section that is to receive the overlay.
- the mounting assembly 15 may provide for a more versatile apparatus than previous welding systems. For example, instead of hooking onto systems with complex geometries or possible interferences, the magnetic foot pads 25 simply attach to an adjacent structure 5 . As a result this may reduce and/or eliminate the potential of being unable to apply a weld overlay due to short length of piping and the inability to attach travel or guide rings.
- the travel guide 17 includes a drive motor attached to a screw drive shaft 55 .
- a head assembly 20 is attached to the travel guide 17 by a mounting bracket.
- the drive motor 57 precisely turns the screw drive shaft 55 .
- the mounting bracket 45 is moved, putting the head assembly 20 in a new position to apply a subsequent weld bead.
- utilization of a travel guide 17 may provide for a more versatile and useful apparatus.
- the travel or guide rings would typically be attached to the component that is being welded.
- the travel guide 17 since the travel guide 17 may be attached to the mounting assembly 15 located on an adjacent structure 5 , less space may be utilized to provide the travel guide 17 . Accordingly, weld overlays may be applied to areas with a smaller axial envelope than with conventional welding procedures.
- the head assembly 20 includes a track ring 22 having an outer ring and an inner ring.
- the outer ring of the head assembly 20 is attached to the travel guide 17 with a mounting bracket and enable movement of the head assembly 20 to place any subsequent weld beads.
- the head assembly 20 includes a drive mechanism located on the outer track ring 26 that engages a chain drive fixed to the inner track ring 24 .
- At least two weld heads are located on the inner ring.
- the two weld heads are located on opposing sides of the track ring 22 .
- the opposing weld head torches are utilized to apply a weld overlay to a component.
- a weld head torch is initiated and the drive mechanism is activated to rotate the inner ring about the piping or nozzle.
- wire feed drive mechanisms 30 are rotated to expose an opening on the track ring 22 .
- the head assembly 20 may be placed around the section or component to be welded.
- the track ring 22 is positioned and centered around the nozzle or piping section to be overlaid and establishes a virtual center line for the overlay process.
- the head assembly 20 incorporates a radial self-aligning device. This device allows the head assembly to be centered automatically around the component to be welded, increasing the efficiency in utilization of the welding apparatus 10 .
- FIG. 3 illustrates another embodiment of the mounting assembly 15 for the welding equipment.
- the mounting assembly 15 is attached to a metallic structure utilizing a plurality of magnetic foot pads 25 .
- the mounting assembly 15 includes three magnetic foot pads 25 that attach to the structure or pressure vessel. The magnetic foot pads 25 of the mounting assembly 15 of the welding equipment are positioned on an adjacent metallic component or structure 5 .
- each metallic foot pad 25 attached to each metallic foot pad 25 is an actuator 32 .
- the actuator 32 may assist in facilitating a user of the apparatus 10 to place the metallic foot pad in a desired position.
- the actuator 32 may also allow a user of the apparatus to easily reposition on and remove the apparatus 10 from the adjacent structure 5 .
- placement of the magnetic foot pads 25 is completed to maintain the alignment of the head portion of the apparatus 10 and establish the virtual center line for the overlay process.
- utilization of metallic magnetic foot pads 25 may assist in the placement of the apparatus 10 so as to allow for different applications and types of structures.
- complex geometries of piping or other difficulties caused from setting up the apparatus 10 may be reduced and/or eliminated.
- the apparatus 10 may be utilized in different environments and may be utilized in areas that have a short axial length.
- the top of one of the metallic foot pads 25 is a tension support bar 60 .
- At the top of the tension support bar 60 is an upper attachment pad 65 .
- the tension support bar 60 is attached to the magnetic foot pad 25 by a hinge 62 so that the position of the support bar may be changed depending on the necessary location for the travel guide 17 .
- the apparatus 10 since the position of the support bar may be altered, the apparatus 10 may be utilized interchangeably with different locations and types of components that need to be welded.
- a rod extends between and is attached to the two other foot pads 25 on the mounting assembly 15 .
- a second attachment pad adapted to attach to the opposite end of the travel guide 17 .
- the upper attachment pad 65 and lower attachment pad 70 are both utilized to connect to the travel guide 17 resulting in a magnetically attached, cantilevered weld head assembly 20 that remains independent of the component section to receive the weld overlay.
- FIG. 4 is another embodiment and illustrates a bottom view of the head assembly 20 of the apparatus.
- the travel guide 17 is attached to the outer track ring 26 on the head assembly 20 .
- Attached to the inner ring is a plurality of program command modules 80 to control the weld head torches 75 .
- Extending from the command modules 80 is a bracket connecting weld head torches 75 .
- the weld head torches 75 are located on opposite sides of the apparatus.
- each of the weld head torches 75 are attached through command modules 80 to the inner ring track.
- Suitable control modules include command or automatic height control programming so that the torches 75 will adjust to follow the contours of pipe and nozzle transitions to apply an even weld overlay to the component.
- each weld head attached to each weld head is a camera visioning module 85 .
- This camera 85 assists in providing for remote supervision of weld bead placement and weld puddle dynamics. As a result, the placement of the weld may be visually monitored to ensure that the weld overlay is being placed properly on the system.
- the drive mechanism 40 engages the inner track ring 24 to rotate the inner track ring about the component being welded.
- a chain drive actuator 90 rotates and moves a chain drive 95 , and thus the attached inner ring 24 and the attached weld head torches 75 rotate about the component to provide an even weld overlay.
- other types of drives may be used. For example, cable, cords or wires may be utilized in the drive mechanism.
- FIG. 6 illustrates another exemplary component wherein the weld overlay 105 had already been placed utilizing the disclosed apparatus.
- the shape of the nozzle 110 and piping spool 100 is an example of the type of structure that may be welded with the disclosed apparatus.
- the welding apparatus 10 disclosed herein can also apply a weld overlay to various other shapes and types of nozzles, piping and fittings.
- the weld overlay 105 depicted could be placed on this section as a repair or as a pre-emptive reinforcement of the nozzle.
- the disclosed apparatus 10 may be utilized to apply the weld to a variety of different shapes.
- the welding operation begins.
- a weld arc initiation using one torch located at the initial point of the design overlay is initiated.
- the initial point of application is the lowest point on the component.
- the drive mechanism engages the chain drive fixed to inner track ring 24 to rotate the inner track ring and the attached weld heads about the virtual center line of the weld.
- the virtual center line of the weld is normally aligned with the axis of the pipe or nozzle section.
- this initial weld bead application with the initial weld head torch 75 will proceed for about 170-190 degrees around the component. After the first weld head torch 75 reaches this point, a termination command ends the firing of this weld head torch.
- the two weld heads are fixed to be about 180 degrees opposed.
- the opposing weld head, the second torch 75 will receive an initiation command and the motor drive 40 will reverse causing the weld bead to be applied on the opposite side of the first bead, applied from the lowest point and intersecting the first bead after 170-190 degrees of travel.
- the second torch 75 has completed is travel, the first torch 75 is again in its original starting position.
- the attached command module 80 monitors the height of the weld placement and will adjust weld head torch to follow the contours of the pipe and nozzle transitions.
- FIG. 7 illustrates a box diagram illustrating the components of the welding system.
- the welding head apparatus 10 is attached to a welding power 145 supply via an attachment means.
- umbilical cords may attach the different components of the system.
- the welding power supply is utilized for standard operation of the welding apparatus 10 .
- the welding power supply 145 measures voltage and current to monitor application of the weld overlay. Additionally, many other power supplies utilized in the welding industry may also be utilized for the power supply.
- cords attach the welding power supply 145 to a power supply control pendent 130 .
- Command inputs 140 are entered into the power supply control pendant 130 for the proper application of the weld overlay. The command inputs initiate the power welding supply to transmit different commands. Power, gas shielding and coolant management is transmitted 120 from the welding power supply 145 to the welding apparatus 10 . Feedback 140 is returned from the welding power supply 145 to the power supply control pendent 130 to help monitor the system.
- electro-mechanical command inputs 125 are transmitted via an attachment cord from the welding power supply 130 to a command module 80 .
- the command module 80 transfers these inputs 135 to the welding head 10 to initiate the weld torch and apply the weld overlay.
- the welding head apparatus sends a video return 115 to the command module 80 .
- the video return 115 may be monitored remotely to remotely supervise weld bead placement and weld puddle dynamics. If any command inputs need to altered, the inputs can be changed to correctly apply the weld overly.
- the two weld heads may be concurrently managed by alternating control programs.
- the two weld head torches are both initiated at the same time, one applying a weld bead in a vertical up weld bead placement, while the other applies a vertical down weld bead placement.
- command programming initiates an index command causing a motor drive 40 to precisely turn a screw drive shaft 55 engaging bracket 45 and repositioning the complete head assembly 20 so that the subsequent weld bead will be located with a specified overlay of the previous bead.
- An arc-on initiation sequence is then programmed to occur with the first torch 75 placing a bead followed by a reverse rotation of the ring drive while the second torch 75 places a bead.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
- This application is a Continuation of U.S. Utility patent application Ser. No. 11/463,565, filed Aug. 9, 2006, the contents of which are incorporated by reference herein in their entirety.
- 1. Technical Field
- The present invention relates to a system and/or method for overlaying metal piping with a weld overlay. More specifically, a process and/or apparatus for applying a weld overlay to piping, fittings or nozzles utilizing a welding apparatus is disclosed.
- 2. General Background
- Pipes, fittings, and nozzles are subject to degradation or material failure in a mechanical system. To prevent or fix this problem, weld overlays are often placed over theses areas to either repair damage or to prevent failure of the original boundary materials with pre-emptive reinforcement. Applying a weld overlay to a structural component will protect the integrity of the mechanical system.
- Conventional orbital welding equipment systems that rely on either single or double weld heads typically require vertical-up application of a weld overlay that applies a weld bead only on one side of the pipe. After the first weld bead is placed on approximately half (180°) of the piping system. Then, the apparatus would need to be re-positioned, the equipment and cables being re-wrapped to the opposite side of the piping. A second weld bead would then be placed on the opposite side. Many passes on both sides of the pipe would typically be required to cover the length of the pipe section to be reinforced and to build the thickness of the weld overlay.
- In one embodiment of the present disclosure, an orbital welding apparatus is adapted to apply an external structural weld to a component, the apparatus comprising a mounting assembly having a plurality of magnetic foot pads, a rod attached at one end to one of the magnetic foot pads, an upper attachment pad at the opposite end of the rod, and a bottom attachment pad attached to at least one other magnetic foot pad; a travel guide, the travel guide attached to the top attachment at one end and the bottom attachment at the other end; and a head assembly attached to the travel guide by a mounting bracket, the head assembly having a track ring assembly having an inner ring and an outer ring, at least two weld heads attached to the inner ring on opposite sides of the inner ring to apply the weld overlay to the component, two wire feed drive mechanisms on the track ring on the opposite side of the track ring, the wire feed mechanisms being movable to permit placing the track ring around the component and a drive mechanism located on the outer ring of the track ring, the drive mechanism including a chain fixed to the inner ring to permit rotation of the inner ring and the weld heads around the component to be welded.
- Another embodiment of the apparatus of the present invention includes three magnetic foot pads. In this embodiment, the lower attachment pad is located on the center of a bar attaching the two magnetic pads not attached to the tension support rod. Attaching the attachment pads to the travel guide provides a magnetically attached, cantilevered weld head assembly that remains independent of the component section to receive the weld overlay.
- Another embodiment of the present invention is that the weld head torches are attached to a control module that monitors the weld height control programming so that the torches will adjust to follow the contours of the component transitions
- Another embodiment of the present invention provides a system that further comprises a camera attached to each welding head to enable remote monitoring of weld bead placement and weld puddle dynamics.
- In an additional embodiment, the disclosed apparatus and method permits use of welding equipment to apply a weld overlay on piping systems without the need to attach to the member that is to be welded.
- In yet another embodiment of the present invention, the process relates to a method of applying an external weld overlay to a component wherein the process comprises attaching an apparatus to an adjacent structure with a mounting assembly having a plurality of magnetic foot pads, the mounting assembly attached to a travel guide; aligning a head assembly having an inner track ring and an outer track ring around a centerline axis of the component to be welded, the inner track ring including as least two weld heads placed on opposite sides of the track ring; initiating the weld torch head located at the lowest point of the weld overlay; engaging a chain drive fixed to the inner track ring and rotating inner track ring and the attached weld heads, the weld head torches rotating about 180 degrees and placing a weld bead on the component; terminating the first weld torch; and initiating the second weld torch at the lowest point of the weld overlay, engaging the chain drive to rotate the inner track ring in the reverse direction to apply a weld bead on the opposite side of the component.
- The foregoing aspects and advantages of the present disclosure will become more readily apparent and understood with reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 illustrates an exemplary embodiment of the equipment system. In this embodiment, the system is set up for application of a structural weld overlay on a nozzle section of a pressure vessel having a hemispherical head. -
FIG. 2 illustrates a side view of an exemplary embodiment of the equipment system for set up of the weld overlay inFIG. 1 . -
FIG. 3 illustrates the mounting assembly utilized to mount the equipment system to a adjacent structure or tank. -
FIG. 4 illustrates the head assembly for the welding equipment as seen from the bottom view of the head assembly of the apparatus. -
FIG. 5 illustrates the head assembly, particularly the chain drive actuator utilized to rotate the weld heads around the structure being welded. -
FIG. 6 illustrates the sectional cutaway view of the weld overlay placed on a typical complex nozzle and piping spool. -
FIG. 7 is a block flow diagram illustrating the system components for the welding system. - In one embodiment, an
apparatus 10 for applying a weld overlay to a nozzle or piping spool of complex configuration is disclosed. In one example, theapparatus 10 comprises amounting assembly 15, atravel guide 17 and ahead assembly 20. Thehead assembly 20 includes a plurality of orbital weld heads for applying a weld overlay to a nozzle, piping or fitting. In another example, theapparatus 10 provides a new assembly and process that allows an easily mountable system that may operate in a smaller area and avoiding interferences and inability to mount the system. In yet another example, the welding equipment includes a plurality of different drive mechanisms to allow for application of a weld overlay on a potentially irregular surface. - In addition to application of a weld overlay, the welding
apparatus equipment system 10 may be utilized for several other applications. For example, the system could be utilized to weld piping joints for similarly complex configurations or in interference constrained piping spools and nozzles. - An exemplary embodiment of the
welding apparatus 10 is depicted inFIG. 1 andFIG. 2 . Amounting assembly 15 is attached to a structure utilizingmagnetic foot pads 25. In one example, the structure illustrated is a pressure vessel with a hemispherical head. However, the structure that theapparatus 10 is attached to may be any metallic structure. In another example, themagnetic foot pads 25 are aligned to correctly position the head portion of theapparatus 10 to apply the weld overlay to an adjacent piping, nozzle or fitting. - In another embodiment, attached to one of the
magnetic foot pads 25 is a tension support bar. Thetension support bar 60 provides support for the attachedhead assembly 20. At the opposite end of thetension support bar 60 is anupper attachment pad 65. Additionally, alower attachment pad 70 is attached to at least one of the othermagnetic foot pads 25. - In an additional embodiment, the mounting assembly may comprise a 6-axis magnetically mounted robotic arm for attachment to the travel guide and head assembly. Utilization of a robotic arm rather than a fixed axis attachment provides for utilization of the welding apparatus in more confined areas.
- In yet another embodiment, the two attachment pads are attached by a
travel guide 17. Thetravel guide 17 is attached at one end to theupper attachment pad 65. Thelower attachment pad 70 is attached at the other end of thetravel guide 17. Themounting assembly 15 attached to thetravel guide 17 creates a magnetically attached, cantilevered base of attachment and drive for aweld head assembly 20, all of which remain independent of the component section that is to receive the overlay. - In one example, the
mounting assembly 15 may provide for a more versatile apparatus than previous welding systems. For example, instead of hooking onto systems with complex geometries or possible interferences, themagnetic foot pads 25 simply attach to anadjacent structure 5. As a result this may reduce and/or eliminate the potential of being unable to apply a weld overlay due to short length of piping and the inability to attach travel or guide rings. - In yet another embodiment, the
travel guide 17 includes a drive motor attached to ascrew drive shaft 55. Ahead assembly 20 is attached to thetravel guide 17 by a mounting bracket. During application of the weld overlay, thedrive motor 57 precisely turns thescrew drive shaft 55. As thescrew drive shaft 55 is turned, the mountingbracket 45 is moved, putting thehead assembly 20 in a new position to apply a subsequent weld bead. - In one example, utilization of a
travel guide 17 may provide for a more versatile and useful apparatus. For example, in conventional systems, the travel or guide rings would typically be attached to the component that is being welded. In contrast, in one embodiment of the present invention, since thetravel guide 17 may be attached to the mountingassembly 15 located on anadjacent structure 5, less space may be utilized to provide thetravel guide 17. Accordingly, weld overlays may be applied to areas with a smaller axial envelope than with conventional welding procedures. - In yet another embodiment, the
head assembly 20 includes atrack ring 22 having an outer ring and an inner ring. The outer ring of thehead assembly 20 is attached to thetravel guide 17 with a mounting bracket and enable movement of thehead assembly 20 to place any subsequent weld beads. Thehead assembly 20 includes a drive mechanism located on theouter track ring 26 that engages a chain drive fixed to theinner track ring 24. - In a further embodiment, at least two weld heads are located on the inner ring. For example, the two weld heads are located on opposing sides of the
track ring 22. The opposing weld head torches are utilized to apply a weld overlay to a component. To apply a weld bead, a weld head torch is initiated and the drive mechanism is activated to rotate the inner ring about the piping or nozzle. - In another embodiment, to enable placement of the
head assembly 20 in the proper position so as to apply the weld overlay, wirefeed drive mechanisms 30 are rotated to expose an opening on thetrack ring 22. By rotating the wirefeed drive mechanisms 30, thehead assembly 20 may be placed around the section or component to be welded. In one example, thetrack ring 22 is positioned and centered around the nozzle or piping section to be overlaid and establishes a virtual center line for the overlay process. - In a particular embodiment, the
head assembly 20 incorporates a radial self-aligning device. This device allows the head assembly to be centered automatically around the component to be welded, increasing the efficiency in utilization of thewelding apparatus 10. -
FIG. 3 illustrates another embodiment of the mountingassembly 15 for the welding equipment. In one example, the mountingassembly 15 is attached to a metallic structure utilizing a plurality ofmagnetic foot pads 25. In one specific example, the mountingassembly 15 includes threemagnetic foot pads 25 that attach to the structure or pressure vessel. Themagnetic foot pads 25 of the mountingassembly 15 of the welding equipment are positioned on an adjacent metallic component orstructure 5. - In another embodiment, attached to each
metallic foot pad 25 is anactuator 32. Theactuator 32 may assist in facilitating a user of theapparatus 10 to place the metallic foot pad in a desired position. Theactuator 32 may also allow a user of the apparatus to easily reposition on and remove theapparatus 10 from theadjacent structure 5. - In a further embodiment, placement of the
magnetic foot pads 25 is completed to maintain the alignment of the head portion of theapparatus 10 and establish the virtual center line for the overlay process. For example, utilization of metallicmagnetic foot pads 25 may assist in the placement of theapparatus 10 so as to allow for different applications and types of structures. In another example, complex geometries of piping or other difficulties caused from setting up theapparatus 10 may be reduced and/or eliminated. In yet another example, theapparatus 10 may be utilized in different environments and may be utilized in areas that have a short axial length. - In the embodiment depicted in
FIG. 3 , the top of one of themetallic foot pads 25 is atension support bar 60. At the top of thetension support bar 60 is anupper attachment pad 65. Thetension support bar 60 is attached to themagnetic foot pad 25 by a hinge 62 so that the position of the support bar may be changed depending on the necessary location for thetravel guide 17. In one example, since the position of the support bar may be altered, theapparatus 10 may be utilized interchangeably with different locations and types of components that need to be welded. - In this embodiment, a rod extends between and is attached to the two
other foot pads 25 on the mountingassembly 15. In the middle of this rod, is a second attachment pad adapted to attach to the opposite end of thetravel guide 17. - In one example, the
upper attachment pad 65 andlower attachment pad 70 are both utilized to connect to thetravel guide 17 resulting in a magnetically attached, cantileveredweld head assembly 20 that remains independent of the component section to receive the weld overlay. -
FIG. 4 is another embodiment and illustrates a bottom view of thehead assembly 20 of the apparatus. Thetravel guide 17 is attached to theouter track ring 26 on thehead assembly 20. Attached to the inner ring is a plurality of program command modules 80 to control the weld head torches 75. Extending from the command modules 80 is a bracket connecting weld head torches 75. The weld head torches 75 are located on opposite sides of the apparatus. - In another example, each of the weld head torches 75 are attached through command modules 80 to the inner ring track. Suitable control modules include command or automatic height control programming so that the
torches 75 will adjust to follow the contours of pipe and nozzle transitions to apply an even weld overlay to the component. - In one embodiment, attached to each weld head is a
camera visioning module 85. Thiscamera 85 assists in providing for remote supervision of weld bead placement and weld puddle dynamics. As a result, the placement of the weld may be visually monitored to ensure that the weld overlay is being placed properly on the system. - As illustrated in
FIG. 5 , thedrive mechanism 40 engages theinner track ring 24 to rotate the inner track ring about the component being welded. For example, when thedrive mechanism 40 is activated, achain drive actuator 90 rotates and moves achain drive 95, and thus the attachedinner ring 24 and the attached weld head torches 75 rotate about the component to provide an even weld overlay. In other embodiments, in addition to a chain drive, other types of drives may be used. For example, cable, cords or wires may be utilized in the drive mechanism. -
FIG. 6 illustrates another exemplary component wherein theweld overlay 105 had already been placed utilizing the disclosed apparatus. The shape of thenozzle 110 andpiping spool 100 is an example of the type of structure that may be welded with the disclosed apparatus. In other examples, thewelding apparatus 10 disclosed herein can also apply a weld overlay to various other shapes and types of nozzles, piping and fittings. For example, theweld overlay 105 depicted could be placed on this section as a repair or as a pre-emptive reinforcement of the nozzle. - It is understood that the disclosed
apparatus 10 may be utilized to apply the weld to a variety of different shapes. After theapparatus 10 has been properly aligned on the piping or fitting, the welding operation begins. In an exemplary embodiment, a weld arc initiation using one torch located at the initial point of the design overlay is initiated. In specific examples, the initial point of application is the lowest point on the component. The drive mechanism engages the chain drive fixed toinner track ring 24 to rotate the inner track ring and the attached weld heads about the virtual center line of the weld. The virtual center line of the weld is normally aligned with the axis of the pipe or nozzle section. - For example, this initial weld bead application with the initial
weld head torch 75 will proceed for about 170-190 degrees around the component. After the firstweld head torch 75 reaches this point, a termination command ends the firing of this weld head torch. - In yet another embodiment, the two weld heads are fixed to be about 180 degrees opposed. After the first
weld head torch 75 is terminated, the opposing weld head, thesecond torch 75, will receive an initiation command and themotor drive 40 will reverse causing the weld bead to be applied on the opposite side of the first bead, applied from the lowest point and intersecting the first bead after 170-190 degrees of travel. When thesecond torch 75 has completed is travel, thefirst torch 75 is again in its original starting position. - The attached command module 80 monitors the height of the weld placement and will adjust weld head torch to follow the contours of the pipe and nozzle transitions.
- In another exemplary embodiment,
FIG. 7 illustrates a box diagram illustrating the components of the welding system. Thewelding head apparatus 10 is attached to awelding power 145 supply via an attachment means. For example, umbilical cords may attach the different components of the system. In one specific example, the welding power supply is utilized for standard operation of thewelding apparatus 10. Thewelding power supply 145 measures voltage and current to monitor application of the weld overlay. Additionally, many other power supplies utilized in the welding industry may also be utilized for the power supply. - In another embodiment, cords attach the
welding power supply 145 to a powersupply control pendent 130.Command inputs 140 are entered into the powersupply control pendant 130 for the proper application of the weld overlay. The command inputs initiate the power welding supply to transmit different commands. Power, gas shielding and coolant management is transmitted 120 from thewelding power supply 145 to thewelding apparatus 10.Feedback 140 is returned from thewelding power supply 145 to the power supply control pendent 130 to help monitor the system. - In another example, electro-
mechanical command inputs 125 are transmitted via an attachment cord from thewelding power supply 130 to a command module 80. The command module 80 transfers theseinputs 135 to thewelding head 10 to initiate the weld torch and apply the weld overlay. - In another embodiment, the welding head apparatus sends a
video return 115 to the command module 80. Thevideo return 115 may be monitored remotely to remotely supervise weld bead placement and weld puddle dynamics. If any command inputs need to altered, the inputs can be changed to correctly apply the weld overly. - Conventional systems require a re-wrap of the attached cords to apply the weld overlay on opposing sides of the component to be welded. Since one embodiment of this apparatus may provide a plurality of weld torches fixed on the track ring about 180 degrees opposed, the re-wrap of cables in conventional systems is reduced and/or eliminated.
- In another embodiment, the two weld heads may be concurrently managed by alternating control programs. In this embodiment, the two weld head torches are both initiated at the same time, one applying a weld bead in a vertical up weld bead placement, while the other applies a vertical down weld bead placement.
- In yet another embodiment, to facilitate placement of a subsequent weld bead onto the component, command programming initiates an index command causing a
motor drive 40 to precisely turn ascrew drive shaft 55 engagingbracket 45 and repositioning thecomplete head assembly 20 so that the subsequent weld bead will be located with a specified overlay of the previous bead. An arc-on initiation sequence is then programmed to occur with thefirst torch 75 placing a bead followed by a reverse rotation of the ring drive while thesecond torch 75 places a bead. - While the above description contains many particulars, these should not be considered limitations on the scope of the disclosure, but rather a demonstration of embodiments thereof. For example, the
welding apparatus 10 and process disclosed herein may include any combination of the different species or embodiments disclosed. Accordingly, it is not intended that the scope of the disclosure be limited in any way by the above description. The various elements of the claims and claims themselves may be combined in any combination, in accordance with the teachings of the present disclosure, which includes the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/474,246 US20090230109A1 (en) | 2006-08-09 | 2009-05-28 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/463,565 US7560662B2 (en) | 2006-08-09 | 2006-08-09 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
US12/474,246 US20090230109A1 (en) | 2006-08-09 | 2009-05-28 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/463,565 Continuation US7560662B2 (en) | 2006-08-09 | 2006-08-09 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090230109A1 true US20090230109A1 (en) | 2009-09-17 |
Family
ID=39049635
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/463,565 Active 2027-03-28 US7560662B2 (en) | 2006-08-09 | 2006-08-09 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
US12/474,246 Abandoned US20090230109A1 (en) | 2006-08-09 | 2009-05-28 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/463,565 Active 2027-03-28 US7560662B2 (en) | 2006-08-09 | 2006-08-09 | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Country Status (7)
Country | Link |
---|---|
US (2) | US7560662B2 (en) |
EP (1) | EP2054188B1 (en) |
DK (1) | DK2054188T3 (en) |
ES (1) | ES2396225T3 (en) |
PL (1) | PL2054188T3 (en) |
PT (1) | PT2054188E (en) |
WO (1) | WO2008021882A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070181643A1 (en) * | 2001-04-12 | 2007-08-09 | Edward Craig | Method and system for weld bead sequencing to reduce distortion and stress |
US20130015171A1 (en) * | 2011-07-11 | 2013-01-17 | General Electric Company | Dual-torch welding system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7930825B2 (en) * | 2005-06-16 | 2011-04-26 | Continental Automotive Systems Us, Inc. | Blowout resistant weld method for laser welds for press-fit parts |
US7560662B2 (en) * | 2006-08-09 | 2009-07-14 | Welding Services, Inc. | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
US20100051586A1 (en) * | 2008-05-06 | 2010-03-04 | Apparent Technologies, Inc. | Orbital welding system and methods of operations |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3008037A (en) * | 1959-04-01 | 1961-11-07 | Ladish Co | Butt-welding clamp |
US3207881A (en) * | 1963-03-19 | 1965-09-21 | American Mach & Foundry | Arc welding apparatus and method |
US3461264A (en) * | 1967-01-12 | 1969-08-12 | Crc Crose Int Inc | Method and apparatus for welding girth joints in pipe lines |
US3515844A (en) * | 1969-01-22 | 1970-06-02 | Joanne Elizabeth Willis | Portable welding apparatus |
US3598347A (en) * | 1969-10-07 | 1971-08-10 | Caterpillar Tractor Co | Apparatus for supporting and positioning pipe welders |
US4144992A (en) * | 1976-09-03 | 1979-03-20 | Hitachi, Ltd. | Method for controlling an automatic pipe welder |
US4179059A (en) * | 1977-04-06 | 1979-12-18 | Santa Fe International Corporation | Automatic pipe welding apparatus and method |
US4260870A (en) * | 1976-08-16 | 1981-04-07 | Kobe Steel, Limited | Automatic welding apparatus for upward welding of curved joint |
US4346808A (en) * | 1979-03-30 | 1982-08-31 | Total Transportation Systems (International) A/S | Device for use in welding reinforcement members to panel plates |
US4373125A (en) * | 1977-07-22 | 1983-02-08 | Astro-Arc Company | Apparatus for welding pipes |
US4429497A (en) * | 1981-04-10 | 1984-02-07 | Dibernardi Peter A | Pipe support system |
US5465946A (en) * | 1990-12-27 | 1995-11-14 | Smith; Dresden G. | Positioning fixture for welding operations having a lockable ball joint |
US6492618B1 (en) * | 2000-11-02 | 2002-12-10 | Tri Tool Inc. | Automatic weld head alignment and guidance system and method |
US20060081740A1 (en) * | 2004-10-15 | 2006-04-20 | Bob Bellavance | Collapsible portable welding stand |
US20080035620A1 (en) * | 2006-08-09 | 2008-02-14 | Welding Services Inc. | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5516743A (en) * | 1978-07-21 | 1980-02-05 | Mitsubishi Electric Corp | Automatic circumferential welder for fixed pipe |
-
2006
- 2006-08-09 US US11/463,565 patent/US7560662B2/en active Active
-
2007
- 2007-08-08 PL PL07813895T patent/PL2054188T3/en unknown
- 2007-08-08 WO PCT/US2007/075482 patent/WO2008021882A2/en active Application Filing
- 2007-08-08 ES ES07813895T patent/ES2396225T3/en active Active
- 2007-08-08 DK DK07813895.5T patent/DK2054188T3/en active
- 2007-08-08 EP EP07813895A patent/EP2054188B1/en active Active
- 2007-08-08 PT PT78138955T patent/PT2054188E/en unknown
-
2009
- 2009-05-28 US US12/474,246 patent/US20090230109A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3008037A (en) * | 1959-04-01 | 1961-11-07 | Ladish Co | Butt-welding clamp |
US3207881A (en) * | 1963-03-19 | 1965-09-21 | American Mach & Foundry | Arc welding apparatus and method |
US3461264A (en) * | 1967-01-12 | 1969-08-12 | Crc Crose Int Inc | Method and apparatus for welding girth joints in pipe lines |
US3515844A (en) * | 1969-01-22 | 1970-06-02 | Joanne Elizabeth Willis | Portable welding apparatus |
US3598347A (en) * | 1969-10-07 | 1971-08-10 | Caterpillar Tractor Co | Apparatus for supporting and positioning pipe welders |
US4260870A (en) * | 1976-08-16 | 1981-04-07 | Kobe Steel, Limited | Automatic welding apparatus for upward welding of curved joint |
US4144992A (en) * | 1976-09-03 | 1979-03-20 | Hitachi, Ltd. | Method for controlling an automatic pipe welder |
US4179059A (en) * | 1977-04-06 | 1979-12-18 | Santa Fe International Corporation | Automatic pipe welding apparatus and method |
US4373125A (en) * | 1977-07-22 | 1983-02-08 | Astro-Arc Company | Apparatus for welding pipes |
US4346808A (en) * | 1979-03-30 | 1982-08-31 | Total Transportation Systems (International) A/S | Device for use in welding reinforcement members to panel plates |
US4429497A (en) * | 1981-04-10 | 1984-02-07 | Dibernardi Peter A | Pipe support system |
US5465946A (en) * | 1990-12-27 | 1995-11-14 | Smith; Dresden G. | Positioning fixture for welding operations having a lockable ball joint |
US6492618B1 (en) * | 2000-11-02 | 2002-12-10 | Tri Tool Inc. | Automatic weld head alignment and guidance system and method |
US20060081740A1 (en) * | 2004-10-15 | 2006-04-20 | Bob Bellavance | Collapsible portable welding stand |
US20080035620A1 (en) * | 2006-08-09 | 2008-02-14 | Welding Services Inc. | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
US7560662B2 (en) * | 2006-08-09 | 2009-07-14 | Welding Services, Inc. | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070181643A1 (en) * | 2001-04-12 | 2007-08-09 | Edward Craig | Method and system for weld bead sequencing to reduce distortion and stress |
US7703660B2 (en) | 2001-04-12 | 2010-04-27 | Aquilex Corp. | Method and system for weld bead sequencing to reduce distortion and stress |
US20130015171A1 (en) * | 2011-07-11 | 2013-01-17 | General Electric Company | Dual-torch welding system |
US10259065B2 (en) * | 2011-07-11 | 2019-04-16 | General Electric Company | Dual-torch welding system |
Also Published As
Publication number | Publication date |
---|---|
EP2054188A4 (en) | 2011-05-11 |
WO2008021882A2 (en) | 2008-02-21 |
US20080035620A1 (en) | 2008-02-14 |
ES2396225T3 (en) | 2013-02-20 |
US7560662B2 (en) | 2009-07-14 |
PL2054188T3 (en) | 2013-04-30 |
EP2054188A2 (en) | 2009-05-06 |
DK2054188T3 (en) | 2013-01-07 |
EP2054188B1 (en) | 2012-11-21 |
PT2054188E (en) | 2012-12-24 |
WO2008021882A3 (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2054188B1 (en) | Equipment and process for applying an external structural weld to piping and similarly shaped pressure boundary components | |
US6953909B2 (en) | External pipe welding apparatus | |
US20110186556A1 (en) | Hybrid automated welding system | |
US20110042355A1 (en) | Feeding system for a welding wire for a submerged welding process | |
KR100243084B1 (en) | Welding robot control method and control device | |
JPH0349664B2 (en) | ||
JP3098862B2 (en) | Robot welding equipment suitable for nuclear reactors | |
US6448531B1 (en) | Automated welding device for the buildup of material | |
KR20110039983A (en) | Automatic welding device for steel pipe exterior using intelligent robot device and automatic welding method using the same | |
KR20110020699A (en) | Pipe welding robot and pipe welding method using the same | |
EP3962694B1 (en) | Device and method for welding cylindrical sections of a casing | |
KR101284061B1 (en) | Appratus of automatic welding for curved area | |
KR101240275B1 (en) | Auto-welding machine for repairing penetration nozzle in primary system of nuclear power plant | |
EP3297787B1 (en) | System and method for reducing weld root concavity | |
KR101412595B1 (en) | Auto-welding apparatus | |
US5061433A (en) | Process for the replacement of a heating rod of a pressurizer of a pressurized-water nuclear reactor | |
KR20070090659A (en) | Inconel Welding Robot System for Cylinder Cover of Marine Diesel Engine | |
CN110560845A (en) | remote visual pipeline all-position automatic argon arc welding device | |
JP2002103086A (en) | Automatic welding apparatus | |
JPH0675775B2 (en) | Underwater welding equipment | |
US20080048010A1 (en) | Clading complex piping geometry | |
JP2003285167A (en) | Power supply mechanism for welding robot | |
JP3600365B2 (en) | Continuous automatic overlay welding equipment | |
JPH04253569A (en) | Automatic welding device for valve seat of sluice valve, check valve or the like | |
KR100278454B1 (en) | A method welding of robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WELDING SERVICES, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMADOR, PEDRO;SCULLEY, JAMES;MADILL, JEFFREY;AND OTHERS;REEL/FRAME:022750/0525 Effective date: 20070111 |
|
AS | Assignment |
Owner name: AQUILEX WSI, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:WELDING SERVICES INC.;REEL/FRAME:024931/0621 Effective date: 20091207 |
|
AS | Assignment |
Owner name: AQUILEX WSI, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:WELDING SERVICES INC.;REEL/FRAME:025080/0905 Effective date: 20091207 |
|
AS | Assignment |
Owner name: ROYAL BANK OF CANADA, CANADA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT SUPPLEMENT;ASSIGNORS:AQUILEX CORPORATION;AQUILEX HYDROCHECM, INC.;AQUILEX WSI, INC.;REEL/FRAME:025104/0712 Effective date: 20100928 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, CONNECTICUT Free format text: SECURITY AGREEMENT;ASSIGNOR:AQUILEX HOLDINGS LLC;REEL/FRAME:027241/0531 Effective date: 20111115 |
|
AS | Assignment |
Owner name: AQUILEX WSI LLC, GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:AQUILEX WSI, INC.;REEL/FRAME:027651/0252 Effective date: 20120202 Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, IL Free format text: SECURITY AGREEMENT;ASSIGNORS:AQUILEX LLC;AQUILEX INTERMEDIATE HOLDINGS LLC;AQUILEX HYDROCHEM LLC;AND OTHERS;REEL/FRAME:027648/0515 Effective date: 20120203 |
|
AS | Assignment |
Owner name: AQUILEX HOLDINGS LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:027659/0273 Effective date: 20120203 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: AQUILEX SMS LLC, GEORGIA Free format text: PARTIAL RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS GRANTEE;REEL/FRAME:030128/0109 Effective date: 20130329 Owner name: AQUILEX SPECIALTY REPAIR AND OVERHAULD LLC, GEORGI Free format text: PARTIAL RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS GRANTEE;REEL/FRAME:030128/0109 Effective date: 20130329 Owner name: AQUILEX WSI LLC, GEORGIA Free format text: PARTIAL RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS GRANTEE;REEL/FRAME:030128/0109 Effective date: 20130329 |
|
AS | Assignment |
Owner name: AQUILEX HYDROCHEM LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY AS PREVIOUSLY RECORDED AT REEL 025104 FRAME 0712;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:030147/0688 Effective date: 20130329 Owner name: AQUILEX WSI LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY AS PREVIOUSLY RECORDED AT REEL 025104 FRAME 0712;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:030147/0688 Effective date: 20130329 Owner name: AQUILEX LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY AS PREVIOUSLY RECORDED AT REEL 025104 FRAME 0712;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:030147/0688 Effective date: 20130329 |