US20090228036A1 - Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire - Google Patents
Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire Download PDFInfo
- Publication number
- US20090228036A1 US20090228036A1 US12/423,576 US42357609A US2009228036A1 US 20090228036 A1 US20090228036 A1 US 20090228036A1 US 42357609 A US42357609 A US 42357609A US 2009228036 A1 US2009228036 A1 US 2009228036A1
- Authority
- US
- United States
- Prior art keywords
- guide wire
- wire
- sack
- resilient frame
- mouth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/011—Instruments for their placement or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/013—Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
- A61F2002/015—Stop means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/018—Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0067—Three-dimensional shapes conical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/008—Quadric-shaped paraboloidal
Definitions
- the present invention is directed to capturing objects beyond an operative site in any of a variety of medical procedures employed to treat any number of medical conditions in human and/or animal patients.
- objects are dislodged or otherwise freed by the surgeon during the surgical procedure, and it is useful and/or necessary to capture the dislodged and/or otherwise freed object.
- minimally invasive interventional medical therapies in general, and minimally invasive endovascular therapy in particular, are medical procedures where objects may be dislodged or otherwise freed during the procedure, each has enjoyed unprecedented expansion to treat patients because of the numerous medical benefits associated with not having to enter the body through more invasive surgical techniques. These benefits include, but are not limited to, less trauma and/or scarring for patients, less time to heal, less risk of infection and decreased hospital stays, to name but a few.
- minimally invasive endovascular therapy is often used to treat diseased vessels, e.g., arteries and veins.
- small instruments are inserted into the vessels through a puncture or access opening made in one of the vessels at an entry site and are advanced through the circulatory system to an operative site where the vessel has become diseased, and the instruments are used to repair the diseased or operative site.
- the goal of such therapy is to dilate full or partial blockages of the diseased vessel.
- Such blockages may have developed over time or may have developed quickly, as for example, in response to an injury.
- One common source of such blockage is thromboemboli which has formed in the vessel.
- Thrombus is an aggregation of platelets, fibrin, clotting factors and cellular components of blood that spontaneously form and attach on the interior wall of a vein or artery, and thromboemboli are emboli of thrombus which operate to partially or completely occlude the interior or lumen of the blood or other vessel.
- Techniques to open and/or maintain the dilation of the partially or completely occluded lumen of blood or other vessels include positioning a balloon across an obstruction or partially occluded section of the vessel, inflating the balloon to compress the build up (balloon angioplasty) and/or temporarily or permanently inserting a tube-like support within the vessels to keep the vessel open (stenting).
- Minimally invasive endovascular therapy has the significant advantage that it is less invasive than traditional surgical techniques and causes less trauma to the patient.
- this therapy is complicated by the fact that it can undesirably dislodge or free particles/objects during the procedure as discussed above, and in that the tools or instruments and workspace, e.g., the interior of the vessels of the body, are in some cases extremely small and close, and reaching the operative site with the tools is very difficult in some instances due to the considerable branching of the circulatory system that may occur between the entry site into the blood vessel and the operative site.
- This therapy is further complicated by the fact that the entry site is often far from the operative site, as for example, where the entry site is in the thigh at the femoral artery and the operative site is located in the neck at the carotid artery. Even when the surgeon's instruments have been properly advanced to the operative site, manipulating the tools to perform their respective functions at the operative site is often difficult for the surgeon due to many factors including the close quarters at the operative site and the distance between the entry site and the operative site.
- One method and apparatus commonly used by surgeons to ensure the tools reach the operative site is to first thread a simple guide wire to or beyond the operative site. Thereafter, various tools are threaded over the guide wire by the surgeon to reach the operative site. It is an important aspect of such guide wires that they must be easy to manipulate through the vessels, including in certain cases, through lesions or areas of blockage in the vessel by the surgeon. In addition to exhibiting sufficient resiliency so as to be pushable in the vessel, the guide wire must exhibit sufficient flexibility and maneuverability to enable the surgeon to traverse the many twists and turns of the circulatory (or other) system to reach the operative site.
- the term “torquability” means that as the surgeon rotates the proximal region of the guide wire that extends outside of the patient's body during the advancement of the guide wire through the patient's blood or other vessels to the operative site, the amount of rotation at the proximal region of the guide wire is transmitted to the distal end of the guide wire being inserted and advanced through the patient's blood or other vessels to the operative site.
- a lack of correlation between rotation at the proximal region of the guide wire and rotation at the distal end of the guide wire is referred to as reduced torquability and is undesirable.
- a high degree of correlation is referred to as a high degree of torquability and is desirable.
- the guide wire it is most desirable for the guide wire to have an exact correlation or high torquability between the rotation applied proximally at the proximal region of the guide wire and the rotation developed distally in the guide wire, so that the surgeon can carefully control and direct the medical guide wire.
- embolic event has come to be used to describe complications where thrombus or plaque is shed inadvertently from a lesion to migrate to smaller vessels beyond the operative site to create a full or partial occlusion of the lumen of the vessel or vessels. This is most undesirable and can lead to many complications. Complications depend upon the site in the body where such emboli lodge downstream of the operative site, but may include stroke, myocardial infarction, kidney failure, limb loss or even death. With increasing vigor, surgeons have expressed the need to reduce the likelihood of such complications so that protection against embolic events will become a standard component of endovascular therapy.
- Devices have been made in the art to capture objects, including emboli, downstream of an operative site in medical procedures, including endovascular therapy.
- Such devices generally employ a capture device, such as a bag or filter, which has a collapsed state and an expanded or deployed state.
- the capture device is maintained in its collapsed state within sheathing and is inserted into the blood or other vessel and is threaded beyond the operative site. It is then ejected from the sheathing whereupon it expands to its deployed state to capture the objects dislodged or otherwise freed during the medical procedure.
- particles sought to be trapped in the filter can instead undesirably pass between the filter and the vessel wall and flow downstream in the circulatory system to produce a blockage.
- Another limitation is that the device also presents a large profile during positioning.
- U.S. Pat. No. 4,873,978 to Ginsburg discloses a vascular catheter that includes a strainer device at its distal end.
- the device is inserted into a vessel downstream from the treatment site and advanced to a proximal downstream location.
- the filter is contained in a sheath when closed. When pushed from the sheath, the filter deploys such that its mouth spans the lumen of the vessel. Deployment is by expansion of resilient tines to which the strainer material is attached. Again, however, it appears that the filter does not seal around the interior vessel wall, thus undesirably allowing particles to bypass the filter by passing between the filter and the vessel wall.
- the position of the mouth relative to the sheath is also clinically limiting for the Ginsburg device.
- U.S. Pat. No. 5,695,519 to Summers et al. discloses a removable intravascular filter on a hollow guide wire for entrapping and retaining emboli.
- the filter is deployable by manipulation of an actuating wire that extends from the filter into and through the hollow tube and out the proximal end.
- One limitation with the Summers et al. device appears to be that its filter material is not fully constrained. Therefore, during positioning within a vessel, as the device is positioned through and past a clot, the filter material can snag clot material undesirably creating freely floating emboli.
- the actuating wire can close the filter, and it appears in any event that it will exert a pull force on the rim of the filter that could tear the wire from the rim. Another limitation appears to be that the device application is limited by the diameter of the tube needed to contain the actuating wire.
- U.S. Pat. No. 5,814,064 to Daniel et al. discloses an emboli capture device on a guide wire.
- the filter material is coupled to a distal portion of the guide wire and is expanded across the lumen of a vessel by a fluid activated expandable member in communication with a lumen running the length of the guide wire.
- a fluid activated expandable member in communication with a lumen running the length of the guide wire.
- filter material may interact with the clot so as to undesirably dislodge material and produce emboli. It is further believed that the device may also be difficult to manufacture. Another limitation is that it is difficult to determine the amount of fluid needed to expand the member. A lack of control can rupture and tear the smaller vessels. Thus, the Daniel et al. device would appear to be more compatible with use in the larger vessels only.
- PCT Publication No. WO 98/33443 discloses a removable vascular filter wherein the filter material is fixed to cables or spines mounted to a central guide wire.
- a movable core or fibers inside the guide wire can be utilized to transition the cables or spines from approximately parallel the guide wire to approximately perpendicular the guide wire.
- a limitation of this device appears to be that the filter does not seal around the interior vessel wall. Thus, particles, e.g., emboli-forming materials, can undesirably bypass the filter by passing between the filter and the vessel wall.
- the frame is such that the introduction profile presents a risk of generating emboli as the device is passed through and beyond the clot, occlusion or stenosis.
- U.S. Pat. No. 5,769,816 to Barbut et al. discloses a device for filtering blood within a blood vessel.
- the device is delivered through a cannula and consists generally of a cone-shaped mesh with apex attached to a central support and open edge attached to an inflation seal that can be deflated or inflated.
- the seal is deflated during delivery and when delivery is complete, it is inflated to seal the filter around the lumen of the vessel.
- Limitations of this device include that it is complex to manufacture. Inflation and deflation of the seal adds additional operative steps thus prolonging the operation and introducing the issue again of control, e.g., of how much to inflate to obtain a seal without causing damage to the vessel or other material. While the device may be suitable for large vessels, such as the aorta, is would be most difficult to scale for smaller vessels, such as the carotid or the coronary arteries.
- U.S. Pat. No. 5,549,626 to Miller et al. discloses a coaxial filter device for removing particles from arteries and veins consisting of an outer catheter that can be inserted into a blood vessel and an inner catheter with a filter at its distal end.
- the filter is a radially expandable receptacle made of an elastic mesh structure of spring wires or plastic monofilaments. When pushed from the distal end of the catheter, the filter deploys across the vessel lumen.
- a syringe attached to the proximal end of the inner catheter aspirates particles entrapped in the filter.
- One limitation of this device appears to be that it is possible that some particles will remain in the filter after aspiration such that, when the filter is retracted into the outer catheter, particles not aspirated are undesirably released into the circulatory system.
- U.S. Pat. No. 6,027,520 to Tsugita et al. discloses a method and system for embolic protection consisting of a filter on a guide wire coupled with a separate stent catheter deployed over the guide wire.
- One limitation of the Tsugita et al. device is that the many filter designs summarized in the patent generally lack a controllable, conformable circumferential support in the mouth of the filters to ensure they seal around the inside of a blood vessel. Without such a seal, it is again possible for particulate material to evade the filter by undesirably passing between the filter and the vessel wall, whereupon the particulate material may flow downstream of the operative or other site to produce full or partial blockage of the vessels.
- Tsugita et al. filter expansion devices utilize multiple struts to open the filter. These are not desirable as they increase the profile of the device when crossing a lesion, in turn, reducing the range of clinical cases on which they can be used. Further, such designs add stiffness to the region of the undeployed filter which can impede the surgeon's ability to direct the guide wire through the complex twists and turns of the circulatory system to the operative site, e.g., making it difficult to direct the device into a branching vessel. Also, the Tsugita et al. design is burdened by its use of a long deployment sheath to hold the filter in a collapsed state and direct it to the operative site. The Tsugita et al.
- sheath extends from a hemostatic seal at the site of entry into the blood or other vessel to the operative site (see column 7, lines 56-58. and also column 8, lines 19-30 of the Tsugita et al. patent).
- This long sheath necessary in the Tsugita et al. design, significantly impairs the ability to direct the guide wire through the circulatory system to the operative site.
- a sheath an impairment to directing the guide wire around the twists and turns of the circulatory system, but such a sheath also “loads” the guide wire, which operates to significantly reduce the Tsugita et al. system's torquability, greatly reducing the ability of the surgeon to control the guide wire and guide it through tight lesions.
- Tsugita et al. states that its stent may comprise a tube, sheet, wire, mesh or spring, and goes on to state that such a stent can cover the plaque and substantially permanently trap it between the stent and the wall of the vessel. (see column 9, lines 55-58 of the Tsugita et al. patent) However, this is not accurate, and depending upon the type of stent, not only will it not trap such plaque, but plaque can reform through the interstices of the mesh whereupon the vessel can again become fully or partially occluded.
- the stent is mechanically expandable or self expanding.
- Relative to mechanically expandable stents they are delivered with a stent catheter.
- the catheter has an inflatable balloon at or near the distal end on which the stent is mounted.
- An inflation lumen runs the length of the catheter to the balloon.
- the stent is a tubular mesh sleeve. See U.S. Pat. No. 4,733,665 to Palmaz incorporated herein by reference.
- a self-expanding stent is typically made of Nitinol.
- the presently available capture devices all suffer from the limitation that they are not easily manipulated in the patient's body. They usually include tube-like sheathing material which extends all along the length of the guide wire used to insert the capture device into the vessel, generally extending from the entry site into the body, also known as an access port or access opening to the operative site, which sheathing operates to contain the capture device until its desired deployment in the vessel beyond the operative site. Such sheathing material operates to reduce torquability of the guide wire used to insert the capture device and operates to significantly reduce the flexibility of wire within the circulatory or other system as noted above. Removal without causing excessive movement of the deployed filter is also a problem.
- the surgeon must continually reposition his hand to hold the wire used to insert the capture device, that is, as the sheath is pulled through the access port, the surgeon must release the wire and then re-grasp further down from the access port.
- the capture device may move back and forth, and as it is generally at this point in its expanded state, the constant rubbing of the wall of the blood or other vessel or canal by the capturing device may irritate or injure the wall of the blood or other vessel or canal.
- capture devices include bulky or complex deployment mechanisms, and further, when deployed, fail to fully seal around the interior of the vessel or other wall or fail to prevent unwanted release of captured particles, fragments, objects, emboli, etc., whereupon such particles, fragments, objects, emboli, etc. can undesirably escape and travel beyond the capture device.
- a capture device and methods of constructing and using such device which is easily threaded through the vessels or canals of humans and/or animals to reach an operative site, which exhibits excellent torquability, flexibility and maneuverability, which is easily removable along with its captured objects once the medical procedure has been completed without injuring or irritating the wall of the vessel or canal, and which forms a seal with the wall of the vessel or canal or otherwise prevents the undesirable escape of particles, fragments, objects, emboli, etc. beyond the capture device during surgery.
- a system of associating surgical tools with such a capture device to provide protection downstream of an operative site for the capture of objects dislodged and/or freed during the medical procedure.
- the apparatus includes a coil of wire configured to slidably receive a guide wire and a sack having a mouth and a closed bottom opposite the mouth.
- a resilient frame is connected between the coil of wire and the sack for biasing the mouth of the sack opened around the coil of wire.
- the resilient frame is positionable between a collapsed state where the mouth of the sack is closed against the bias of the resilient frame and a deployed state where the mouth of the sack is biased open by the resilient frame.
- the apparatus can include a containment collar configured to slidably receive the guide wire therethrough and to receive the resilient frame therein.
- a pull wire can be connected to the containment collar so that in response to relative movement between the guide wire and the pull wire, the resilient frame is positionable between the collapsed state inside the containment collar and the deployed state outside the containment collar.
- the guide wire can include a proximal stop and a distal stop in spaced relation on the guide wire.
- the coil of wire can be received on the guide wire between the proximal stop and the distal stop and each stop can be configured to avoid the slidable passage of the coil of wire thereby.
- the closed bottom of the sack is connected to the coil of wire adjacent one end thereof
- the resilient frame is connected to the coil of wire adjacent the end thereof opposite the closed bottom of the sack
- the mouth of the sack is connected to the wire frame between the ends of the coil of wire.
- the apparatus can include a deployment catheter having a lumen configured to slidably receive the guide wire.
- the guide wire can include a distal stop configured to avoid the slidable passage of the coil of wire thereby.
- the deployment catheter can have an end configured to abut an end of the coil of wire when the coil of wire is received on the guide wire between the deployment catheter and the distal stop.
- the apparatus can include a deployment catheter having a lumen configured to slidably receive the guide wire and at least part of the resilient frame therein so that in response to relative movement between the guide wire and the deployment catheter, the resilient frame is positionable between the collapsed state at least partially inside the deployment catheter and the deployed state outside the deployment catheter.
- the coil of wire is a helically wound spring that is firm axially and pliable laterally.
- FIGS. 1A-1D are side views of a device for capturing objects beyond an operative site utilizing a capture device in accordance with the present invention mounted on a guide wire;
- FIG. 2 is a perspective view of a wire frame of the capture device of FIGS. 1A-D , with the wire frame in its deployed state;
- FIG. 3 is a side view of the wire frame in FIG. 2 in its collapsed state
- FIG. 4 is a side view of the collapsed wire frame shown in FIG. 3 received within a containment collar in accordance with the present invention
- FIG. 5 is a side view of the collapsed wire frame and containment collar of FIG. 4 with a filter or sack connected to the wire frame and retracted partially into the containment collar;
- FIG. 6 is a partial cross-sectional side view of a partially deployed wire frame and filter of FIG. 5 with particles captured in the filter;
- FIG. 7A is a side view showing coiling of a pull wire around the guide wire
- FIG. 7B is a partial cross-sectional side view of the present invention showing an alternate embodiment for affixing the pull wire to the containment collar;
- FIG. 8 is a perspective view of another embodiment of the present invention for affixing the pull wire about the guide wire and further illustrating the use of a guide catheter;
- FIGS. 9A and 9B are different side views of another embodiment of the present invention showing a wire frame and filter slidably received on the guide wire;
- FIG. 10A is a side view of a retrieval catheter assembly received on a guide wire in its undeployed state
- FIG. 10B is a side view of the retrieval catheter assembly shown in FIG. 10A in a partially deployed state where a wire frame attached to the guide wire is partially retracted into a sheath of the retrieval catheter assembly;
- FIG. 10C is a section taken along lines XC-XC in FIG. 110A ;
- FIGS. 11A and 11B are perspective and side views, respectively, of another embodiment of a capture device of the present invention.
- the present invention relates generally to a method and apparatus for capturing objects beyond an operative site in any of a variety of medical procedures employed to treat any number of medical conditions in human and/or animal patients.
- the apparatus of the present invention includes in one embodiment, a novel object capture device integrally incorporated as part of a medical guide wire or otherwise mounted on or affixed to a medical guide wire, which medical guide wire is inserted into the human or animal patient and is threaded or otherwise advanced in the body through one or more of the body's canals or vessels to and/or beyond an operative site.
- the novel object capture device includes a frame having a sack or filter attached thereto, and the object capture device operates to capture objects, e.g., emboli, beyond the operative site.
- the present invention includes in yet another embodiment, a system for the endovascular treatment of blood or other vessels which includes the combination of the capture device on a medical guide wire with other devices, e.g., endovascular devices, such as dilation balloon systems, stent deployment systems, mechanical and/or laser thrombectomy devices and combinations thereof, that track over the guide wire, for use in medical procedures to treat humans and/or animals.
- endovascular devices such as dilation balloon systems, stent deployment systems, mechanical and/or laser thrombectomy devices and combinations thereof, that track over the guide wire, for use in medical procedures to treat humans and/or animals.
- the methods of the present invention include methods of constructing the apparatus and system of the present invention, and methods of using the novel object capture device of the present invention to treat medical conditions in human and/or animal patients.
- an “on-the-wire” endovascular device 2 for capturing and removing objects, particles and/or other solid or semi-solid matter in blood or other vessels, organs, canals and/or body cavities of a patient according to the teachings of the present invention is shown.
- the following description of endovascular device 2 will also illustrate one or more embodiments of a method for insertion and removal of the device in a blood or other vessel in the body.
- FIGS. 1A and 1B illustrate endovascular device 2 in its collapsed state or structure where an object capturing filter which includes a resilient frame, preferably a resilient wire frame 8 , and a sack 12 affixed to wire frame 8 , described in more detail below, is contained within a containment collar 32 .
- an object capturing filter which includes a resilient frame, preferably a resilient wire frame 8 , and a sack 12 affixed to wire frame 8 , described in more detail below, is contained within a containment collar 32 .
- endovascular device 2 includes an elongated guide wire 4 received in and through containment collar 32 .
- the length of guide wire 4 is not limiting to the present invention, and may be of any length necessary to extend from an entry site or access opening 41 into a body canal or vessel to the operative site. Break lines 5 shown in FIG. 1A illustrate that the length of endovascular device 2 may be modified as necessary for a given surgical application.
- containment collar 32 can be constructed of an opaque material. However, as shown in FIGS. 1B-1D , containment collar 32 can also be constructed of a transparent material. Suitable materials for the construction of containment collar 32 are described below.
- a pliable tip 22 is preferably connected to or integrally formed as part of the distal end of guide wire 4 .
- Pliable tip 22 is preferably formed from a biocompatible material having a spring memory. Suitable materials for the construction of pliable tip 22 include platinum wire.
- the biocompatible material forming pliable tip 22 is wound into a coil with one end of pliable tip 22 attached to the distal end of guide wire 4 and with the other end of pliable tip 22 extending away from guide wire 4 .
- Pliable tip 22 facilitates the advancement of the distal end of guide wire 4 and containment collar 32 through the various twists and turns of a patient's circulatory or other system.
- wire frame 8 is contained in a collapsed state or structure within containment collar 32 .
- wire frame 8 is illustrated deployed outside of containment collar 32 in an expanded or deployed state or structure.
- wire frame 8 is connected to guide wire 4 via a junction 10 .
- This connection may be made by any means, such as soldering, brazing and the like, but may also include wire frame 8 and guide wire 4 being integrally formed together as one unit.
- FIGS. 1B-1D show one non-limiting embodiment of wire frame 8 that may be employed in the present invention.
- Wire frame 8 may include any known frame configuration which can be in a collapsed state inside containment collar 32 during insertion into the patient and its travel to or beyond the operative site, which can be transitioned into a deployed state within the patient and which can be returned to a fully or partially collapsed state for removal.
- Containment collar 32 is not limited to use with wire frame 8 , but can be used with any deployable device, that transitions from a collapsed state inside containment collar 32 to a deployed state in a body vessel, canal, organ or open area of any kind in a patient.
- containment collar 32 is generally cylindrical.
- containment collar 32 can have any shape, e.g., square, rectangular, elliptical, trapezoidal, that enables wire frame 8 to transition from a collapsed state to a deployed state.
- wire frame 8 must be able to urge a mouth 14 of sack 12 against an inside wall of the body canal or vessel in which sack 12 is positioned in its deployed state so that objects do not pass between mouth 14 of sack 12 and the wall of the patient's body canal or vessel. Mouth 14 of sack 12 is connected to wire frame 8 , such as, for example, by gluing or melting mouth 14 of sack 12 to wire frame 8 .
- sack 12 has its mouth 14 connected to an end of wire frame 8 , and sack 12 has a closed end or bottom 16 opposite mouth 14 .
- Sack 12 has a generally bag-like shape, preferably a conical shape when deployed.
- sack 12 can have any shape capable of ensnaring objects in the vessel or canal of a patient, e.g., a hemispherical shape.
- Guide wire 4 projects through mouth 14 and bottom 16 of sack 12 and terminates at a distal end a distance 18 from bottom 16 of sack 12 .
- guide wire 4 extends through and is connected to an apex 20 of bottom 16 .
- Containment collar 32 has a short generally tubular shape with a lumen 36 of sufficient diameter to enable guide wire 4 to pass therethrough and to contain wire frame 8 and sack 12 in closed configuration within lumen 36 of containment collar 32 .
- the length of containment collar 32 is preferably no greater than needed to contain wire frame 8 and sack 12 therein in a collapsed state during insertion of endovascular device 2 into the patient. Rather, as shown in FIG. 5 , containment collar 32 may be shorter still to leave apex 20 exposed when wire frame 8 and sack 12 are in their closed configuration.
- a pull wire 34 extends from containment collar 32 to a point external of the patient via the access opening 41 after placement of endovascular device 2 at or beyond the operative site.
- Pull wire 34 enables containment collar 32 to be pulled proximally, i.e., in the direction illustrated by an arrow 9 in FIG. 1A , while guide wire 4 remains stationary or conversely to advance guide wire 4 distally, i.e., in the direction of an arrow 3 , while holding pull wire 34 stationary, whereupon containment collar 32 is pulled off of wire frame 8 or, conversely, wire frame 8 is ejected from containment collar 32 thereby deploying wire frame 8 to its deployed state shown in FIG. 1C .
- the precise length of pull wire 34 is not limited, as illustrated by the break lines 7 , provided pull wire 34 extends from containment collar 32 to a point external of the patient.
- pull wire 34 may be attached by any known means, such as gluing, brazing, welding, soldering, integral forming and the like.
- containment collar 32 has a portion or area 33 of reduced internal and external diameter.
- Portion 33 defines a lumen 37 that is continuous with lumen 36 of containment collar 32 .
- Lumens 36 and 37 are of sufficient size to enable guide wire 4 to slide therethrough.
- containment collar 32 is made of a material that shrinks upon application of heat, and portion 33 is formed by applying heat thereto and allowing it to shrink to the extent desired to form portion 33 of reduced diameter.
- heat shrinkable materials are presently available for a wide variety of applications both within and not within the medical arts.
- a tubular component 39 is inserted into portion 33 of containment collar 32 prior to the application of heat to portion 33 described above. Heat is then applied to portion 33 thereby causing portion 33 to shrink about the exterior circumference of tubular component 39 . In this manner, tubular component 39 frictionally engages containment collar 32 , particularly portion 33 .
- Tubular component 39 is associated with pull wire 34 , and tubular component 39 operates to connect pull wire 34 to containment collar 32 via tubular component 39 .
- Pull wire 34 may be connected to tubular component 39 by any various means including, but not limited to, welding, brazing, soldering or integral forming.
- tubular component 39 is formed by coiling pull wire 34 adjacent its distal end, as shown in FIG. 4 .
- tubular component 39 has a lumen 40 which is continuous with lumen 36 of containment collar 32 and is of sufficient diameter to permit guide wire 4 to be slidably received in lumen 40 to permit relative movement between guide wire 4 and containment collar 32 and tubular component 39 .
- portion 33 needs only be sufficient to permit tubular component 39 to be sufficiently grasped by containment collar 32 upon application of heat to portion 33 so as to enable endovascular device 2 to be delivered into and removed from a patient without tubular component 39 separating from containment collar 32 , but it may be longer.
- a length of approximately 12 centimeters for portion 33 ensures that tubular component 39 remains within and does not exit a distal end of a lumen of a guide catheter 42 (shown in FIG. 1 a ) common to endovascular procedures when wire frame 8 and sack 12 are properly positioned past the lesion.
- a length of at least 12 centimeters of portion 33 ensures that tubular component 39 is sufficiently spaced from wire frame 8 and sack 12 that tubular component 39 will remain within the confines of guide catheter 42 , as shown in FIG. 1A .
- tubular component 39 within the confines of guide catheter 42 is desirable, as it is one less item that can contact the vessel walls and operate to undesirably dislodge particles, e.g., emboli. It is to be appreciated, however, that it is not necessary to use endovascular device 2 with guide catheter 42 , and that endovascular device 2 can be positioned in a body canal and/or vessel of a patient without utilizing guide catheter 42 .
- Containment collar 32 is an important element of the present invention. Unlike known continuous sheaths which, without interruption, extend from a point external of the patient through an access opening 41 and all the way to the operative site to contain an object capture device therein, containment collar 32 of the present invention does not, and is only of such length as is necessary to contain wire frame 8 and sack 12 in a collapsed state. Importantly, containment collar 32 of the present invention does not present a significant anti-torque load along the entire length of guide wire 4 from its distal end at the operative site to its point of access from the body, as do presently available continuous sheaths.
- containment collar 32 does not reduce the torquability of endovascular device 2 of the present invention as will occur with a continuous sheath which extends from the distal end of guide wire 4 at the operative site to access opening 41 . This is particularly advantageous during insertion and positioning of endovascular device 2 in a patient.
- pull wire 34 is of sufficient length to extend from a procedural or surgical site in a vessel to and through access opening 41 .
- the length of pull wire 34 is typically at least 100 centimeters long, although any length may be employed as indicated by break lines 7 in FIGS. 1A-1C .
- pull wire 34 may have a handle 38 positioned so as not to interfere with the vascular access site and to aid the surgeon's grasp of pull wire 34 .
- Handle 38 may be permanently or removably affixed to pull wire 34 .
- a pin vice, clamp or similar device that would grasp pull wire 34 and aid the surgeon's grasp of pull wire 34 can be employed.
- guide wire 4 it is standard clinical practice to position guide wire 4 within guide catheter 42 to direct other surgical instruments into the body along guide wire 4 but within guide catheter 42 . More specifically, pliable tip 22 ; containment collar 32 with wire frame 8 and at least part of sack 12 received therein; tubular component 39 with portion 33 heat shrunk to tubular component 39 ; the section of guide wire 4 received in tubular component 39 and containment collar 32 ; the portions of guide wire 4 to either end of containment collar 32 ; and the portion of pull wire 34 connected to tubular component 39 are inserted into a patient via access opening 41 .
- Containment collar 32 is guided through the patient's body canal(s) and/or vessel(s) using pliable tip 22 in order to position containment collar 32 to a desired position at and/or adjacent, typically beyond, the operative site.
- the high degree of torquability resulting from the use of containment collar 32 over any previously available device ensures that the surgeon maintains excellent control over the threading and guiding of endovascular device 2 through the twists and turns of the patient's body canals and/or vessels that are present between access opening 41 and the operative site.
- pull wire 34 When located at the desired position, pull wire 34 is then pulled proximally in the direction of an arrow 11 , illustrated in FIG. 1A , while guide wire 4 is held or otherwise maintained in a stationary position.
- containment collar 32 moves axial along guide wire 4 relative to sack 12 and wire frame 8 , whereupon containment collar 32 is retracted or withdrawn from wire frame 8 and sack 12 .
- This allows wire frame 8 to expand to its deployed state, illustrated in FIG. 1C , whereupon wire frame 8 urges mouth 14 of sack 12 against the blood or other vessel wall, where sack 12 can capture objects dislodged at or near the operative site during the operation.
- Containment collar 32 may be retracted over guide wire 4 , completely removed from the patient's body and withdrawn from guide wire 4 after deployment.
- sack 12 captures the particles dislodged during the procedure.
- a tubular retrieval catheter or recovery sheath 6 is advanced over guide wire 4 into the patient, as shown in FIG. 1D .
- the length of recovery sheath 6 is not limiting to the invention as illustrated by the break lines 52 , but recovery sheath 6 must extend from outside the patient's body, where it may be manually manipulated to where sack 12 and wire frame 8 are positioned at the desired position during the procedure.
- Advancement of recovery sheath 6 in the direction of the arrow 56 causes recovery sheath 6 to advance distally along guide wire 4 over wire frame 8 and, more particularly, each half frame 24 making up wire frame 8 as explained in more detail below, closing mouth 14 of sack 12 , and capturing particles 58 received within sack 12 .
- Sack 12 can be retracted partially or completely into recovery sheath 6 and the assembly comprising recovery sheath 6 , the captured wire frame 8 , and sack 12 are withdrawn from the patient, along with particles 58 captured in sack 12 .
- a prior art support guide wire may be threaded to a location proximal to the desired location; guide catheter 42 introduced over the support guide wire, the support guide wire removed; and endovascular device 2 of the present invention may then be advanced to the desired location through guide catheter 42 , where its wire frame 8 and sack 12 are deployed distally of guide catheter 42 and used to capture objects, particles, etc., in the manner described above.
- Containment collar 32 is preferably made from Teflon tubing, preferably having a wall thickness less than 0.004 inches, however, containment collar 32 can be made from other flexible biocompatible materials, such as polyethylene, nylon or polyimides, that permit relative axial movement between guide wire 4 and containment collar 32 .
- the inside surface of containment collar 32 and/or guide wire 4 can be coated with a tough flexible lubricious coating, such as Teflon or a hydrophilic film.
- the inside surface of containment collar 32 and/or guide wire 4 can receive a biocompatible lubricant, such as silicon.
- wire frame 8 includes a pair of half frames 24 connected in mirror image relation to guide wire 4 via junction 10 .
- Each half frame 24 has a pair of control arms 26 connected at their proximal ends to guide wire 4 via junction 10 .
- control arms 26 may be integrally formed with the respective half frame 24 .
- Junction 10 can include any known means of joinder, such as a crimp of biocompatible material; a solder joint of appropriate biocompatible material; or a weld that connects half frames 24 to guide wire 4 .
- the distal end of each half frame 24 has a partial loop 28 that extends between control arms 26 .
- Half frames 24 are preferably fully or partially constructed of a shape-memory-effect alloy, such as Nitinol, in its super-elastic state, although the present invention is not limited to half frames 24 comprised of Nitinol.
- each half frame 24 to be “trained” or formed so that in a relaxed undeformed state control arms 26 diverge between junction 10 and partial loop 28 , and partial loop 28 extends transverse, preferably perpendicular, to the longitudinal axis of guide wire 4 , with an inside radius of partial loop 28 facing guide wire 4 as illustrated in FIG. 2 .
- Wire frame 8 and, more particularly, half frames 24 and control arms 26 are preferably formed from solid Nitinol, tubular Nitinol or stranded Nitinol.
- each half frame 24 includes an arcuate section connected to the distal end of each control arm 26 .
- the arcuate sections extend from their respective control arms 26 and terminate with their ends touching or in spaced relation forming a gap therebetween.
- the arcuate sections can be formed by separating, as for example, by cutting, each partial loop 28 intermediate control arms 26 .
- the arcuate sections can be configured to form a partial or complete loop.
- wire frame 8 can include a complete loop (not shown) connected to the distal ends of control arms 26 .
- the precise design of wire frame 8 is not limiting to the present invention and any frame design may be employed. Other frame designs, for example, are described in U.S. Pat. Nos. 5,779,716; 5,910,154; 5,911,734; and 6,027,520 which are incorporated herein by reference.
- a wire or thread 30 made from a biocompatible radiopaque material(s) is wrapped around or bonded to one or more partial loops 28 , one or more control arms 26 and/or woven into the rim of mouth 14 of sack 12 .
- stranded Nitinol with a central strand of radiopaque material or Nitinol tubing filled with radiopaque material can be used to form partial loops 28 and/or control arms 26 that can be viewed more clearly under fluoroscopic visualization.
- partial loops 28 and/or control arms 26 are coated with the biocompatible radiopaque material(s) or a coil of radiopaque material can be wound around each partial loop 28 and/or each control arm 26 .
- at least the distal end of pliable tip 22 may be made from or coated with the biocompatible radiopaque material(s).
- biocompatible radiopaque material(s) include gold, tungsten and platinum or combinations thereof.
- control arms 26 and partial loops 28 of half frames 24 are received in containment collar 32 , they are stressed within the elastic limits of the shape-memory-effect alloy to form elongated loops having axes positioned substantially parallel to the longitudinal axis of guide wire 4 .
- the super-elastic property of the shape-memory-effect alloy enables half frames 24 to return to the relaxed undeformed shape, shown in FIG. 2 , when they are deployed from containment collar 32 in the manner described above.
- Sack 12 is formed of a biocompatible material having sufficient strength to withstand forces associated with deployment in body canals or vessels and forces associated with ensnaring/retaining particles, objects, etc., within sack 12 .
- the material may be either non-porous or porous, but is preferably porous.
- Sack 12 made of non-porous material occludes flow in the vessels.
- Sack 12 made of porous material allows flow of a fluid, e.g., blood, in the vessels, and permits particles of smaller diameter than the pores of sack 12 to escape therethrough.
- sack 12 is formed from a polymeric material, such as polyurethane, which is either porous or non-porous.
- Sack 12 can also be made radiopaque through the addition thereto of barium sulfate or bismuth sulfate or threads of radiopaque materials interwoven or otherwise associated with sack 12 .
- Sack 12 can also be made of other biocompatible materials, such as woven polyester fabrics.
- a rim of mouth 14 of sack 12 surrounds and is bonded to half frames 24 to secure sack 12 to wire frame 8 .
- apex 20 of bottom 16 of sack 12 is bonded to the projection of guide wire 4 therethrough to secure sack 12 to guide wire 4 .
- Chemicals and/or heat can be utilized to bond sack 12 to guide wire 4 and wire frame 8 .
- sack 12 is bonded between half frames 24 and guide wire 4 so that no gaps exist between sack 12 and guide wire 4 , and sack 12 and wire frame 8 .
- Sack 12 preferably has a conical shape as illustrated in FIG. 1C .
- sacks having more hemispherical shapes as illustrated in FIGS. 2, 6, 9, 10 and 11 of U.S. Pat. No. 5,779,716 may also be employed.
- Conical-shaped sacks have the advantage that as objects, particles, etc. fill bottom 16 of sack 12 , sack 12 still permits flow of fluid, e.g., blood, into and out of sack 12 proximal of the build up of particles, objects, etc. in sack 12 , as illustrated in FIG. 6 .
- the size of the body canal and/or vessel establishes the dimensions of mouth 14 of sack 12 when wire frame 8 is in its deployed state that can be utilized to capture particles, objects, etc.
- the dimensions of wire frame 8 in its deployed state are selected so that mouth 14 of sack 12 is urged snugly with the intima of the vessel.
- wire frame 8 is configured to be firm and pliable so that interaction between wire frame 8 and the intima of the vessel avoids trauma to the vessel and yet provides a firm or snug opposition between mouth 14 of sack 12 and the intima of the vessel.
- control arms 26 and partial loops 28 of wire frame 8 have diameters between 0.003 to 0.010 inches (0.0076 cm to 0.025 cm), guide wire 4 has a diameter between 0.010 to 0.035 inches (0.025 cm to 0.088 cm), and containment collar 32 has an outside diameter between 0.025 to 0.130 inches (0.064 cm to 0.33 cm).
- the lengths of pull wire 34 and guide wire 4 are selected based on the position of access opening 41 for inserting endovascular device 2 in the lumen of the body canal and/or vessel relative to the position in the lumen of the solid material capable of producing movement of particles, as described above.
- Endovascular device 2 can be used in several ways depending on its exact configuration and the area of the cardiovascular system involved.
- interventional use of endovascular device 2 to capture emboli shed during a procedure, such as angioplasty and stent placement, to treat a stenosis in the carotid artery of a human patient will now be described with reference to FIGS. 1A-1D , 5 and 6 .
- endovascular device 2 is inserted percutaneously into the patient through guide catheter 42 previously inserted in access opening 41 in the patient's femoral artery.
- guide wire 4 is manipulated to advance pliable tip 22 and containment collar 32 through guide catheter 42 in the patient's circulatory system until reaching the carotid artery.
- Guide wire 4 is further advanced beyond guide catheter 42 , guided by pliable tip 22 through the remainder of the carotid artery to, across and beyond a stenosis in the internal carotid artery.
- Containment collar 32 is now positioned at a desired position in the internal carotid artery so that, when deployed, wire frame 8 and sack 12 are downstream of the stenosis in the internal carotid artery to capture and retain any dislodged emboli particles.
- wire frame 8 and sack 12 To deploy wire frame 8 and sack 12 , a portion of guide wire 4 outside the patient's body is held steady and a portion of pull wire 34 , or handle 38 , outside the patient's body is grasped and pulled in the direction of arrow 11 so that containment collar 32 is retracted or withdrawn from over wire frame 8 and sack 12 , thereby enabling wire frame 8 to deploy and to hold mouth 14 of sack 12 snugly against the wall of the internal carotid artery.
- containment collar 32 is pulled in the direction of arrow 11 while guide wire 4 remains stationary until containment collar 32 is removed completely from guide wire 4 and the patient, thereby enabling other over-the-wire or monorail devices or components used during the procedure to be received on guide wire 4 and delivered through guide catheter 42 to the stenosis.
- Other over-the-wire or monorail devices include, but are not limited to, endovascular devices such as dilation balloon systems, stent deployment systems, mechanical and/or laser thrombectomy devices and combinations thereof that track over guide wire 4 and are used to reduce the stenosis.
- the stent may be either a self-expanding stent or a mechanically expandable stent.
- Stents are usually in the form of a tubular mesh sleeve. See, for example, U.S. Pat. No. 4,733,665 to Palmaz, incorporated herein by reference. Either type of stent is typically delivered via a stent catheter.
- the stent catheter includes at or near its distal end an inflatable balloon on which the stent is mounted.
- An inflation lumen runs the length of the stent catheter to the balloon.
- the stent catheter includes a guide lumen which runs the length of the stent catheter and which is configured to receive guide wire 4 therein.
- the proximal end of guide wire 4 is inserted into the guide lumen of the stent catheter.
- the stent catheter is advanced on guide wire 4 until the inflatable balloon on which the stent is mounted is positioned at an appropriate point in the vessel, e.g., wholly or partially across a stenosis.
- the balloon is expanded via the inflation lumen causing the stent, in turn, to expand and in its expanded state to hold itself with a frictional fit against the walls of the vessel into which it has been inserted.
- the self-expanding stent is typically made in whole or part from a shape-memory-effect alloy and is compressed within a delivery catheter until deployment. Pushing the stent from the delivery catheter deploys the stent to an expanded state, much in the same manner as wire frame 8 expands upon release from containment collar 32 .
- stents that are of the tubular mesh design are of the tubular mesh design.
- embolic material is able to disperse through the mesh to the interior of the stent where the flow of blood or other fluid undesirably washes particles of embolic material downstream in the circulatory or other system.
- the open mesh structure tends to permit stenotic material to build up through the mesh that could again occlude the artery.
- the stent preferably includes a sheathing or coating material associated with the open mesh structure of the stent.
- This material may be on the outside of the stent, the inside lumen of the stent, or both.
- the stent may also be embedded within an envelope of such material.
- Such material is biocompatible and operates to prevent stenotic material from advancing from the walls of the vessel through the open mesh structure of the stent and into the circulatory or other system during implantation of the stent.
- suitable materials for encasing all or a portion of the stent include, but are not limited to, Dacron, Gortex and combinations thereof.
- recovery sheath 6 is positioned over guide wire 4 and advanced through guide catheter 42 , if guide catheter 42 has been permitted to remain in the patient up to this point toward, and beyond the operative site to contact wire frame 8 and sack 12 .
- guide catheter 42 has been permitted to remain in the patient up to this point toward, and beyond the operative site to contact wire frame 8 and sack 12 .
- recovery sheath 6 may safely have a larger diameter than containment collar 32 without the danger of dislodging stenotic material. Further, recovery sheath 6 may be more easily advanced through the operative site now that the lumen has been expanded.
- particles 58 captured in sack 12 may permit only partial retraction of sack 12 into recovery sheath 6 .
- particles 58 captured in sack 12 cannot empty or escape into the artery.
- recovery sheath 6 , wire frame 8 and sack 12 , with particles 58 captured in sack 12 are withdrawn from the patient along with guide wire 4 .
- FIGS. 7A and 7B there is illustrated an alternative embodiment of the present invention, illustrating tubular component 39 attached to the external surface of portion 33 of containment collar 32 , and further illustrating pull wire 34 coiled about guide wire 4 to contain its lateral movement in the patient.
- the degree of coiling is preferably within the range of coiling that retains pull wire 34 closely adjacent guide wire 4 , but not so great as to undesirably reduce torquability of the device.
- containment collar 32 has the same portion 33 , and lumen 36 of containment collar 32 remains continuous with lumen 37 of portion 33 to permit containment collar 32 to be slidably advanced over guide wire 4 .
- portion 33 is firmly gripped about its exterior by tubular component 39 as illustrated in FIGS. 7A and 7B , which tubular component 39 is in turn associated with pull wire 34 to connect pull wire 34 to containment collar 32 through tubular component 39 .
- pull wire 34 may be connected to tubular component 39 by any of various means including, but not limited to, welding, brazing, soldering or integral forming, as for example, where tubular component 39 is formed by coiling pull wire 34 as described above.
- lumen 40 of tubular component 39 is of sufficient diameter to accept the external diameter of portion 33 in a preferably frictional fit of sufficient grasp so as to enable endovascular device 2 to be delivered into and removed from a patient without tubular component 39 separating from containment collar 32 .
- portion 33 need only be sufficient to permit tubular component 39 to grasp containment collar 32 sufficiently firmly so as to enable endovascular device 2 to be delivered into and removed from a patient without tubular component 39 separating from containment collar 32 , but it may be longer.
- a length of approximately 12 centimeters of the length of portion 33 ensures that tubular component 39 remains within and does not exit the distal end of the lumen of guide catheter 42 common to most all endovascular procedures when wire frame 8 and sack 12 are properly positioned past the lesion.
- a length of at least 12 centimeters for portion 33 ensures that tubular component 39 is sufficiently distanced from wire frame 8 and sack 12 that tubular component 39 will remain within the confines of guide catheter 42 .
- tubular component 39 within the confines of guide catheter 42 is desirable, as it is one less item that can contact the vessel walls and undesirably dislodge particles.
- pull wire 34 includes one or more coiled sections 60 , illustrated in phantom.
- Each coiled section 60 is preferably displaced at least a distance 61 proximally of tubular component 39 such that when endovascular device 2 is deployed in a body canal or vessel, coiled section 60 remains within the confines of a guide catheter 62 .
- the torquability of endovascular device 2 is not compromised.
- this embodiment ensures that no coiling will be present in distance 61 between guide catheter 62 and the procedure site, which is preferred as such coiling could irritate -vessel walls or undesirably dislodge particles.
- two coiled sections 60 are illustrated in FIG. 8 , additional coiled sections 60 may be positioned along the length of guide wire 4 .
- wire frame 8 and sack 12 are connected to a tightly wound but flexible coil of wire 66 , or spring, which defines a lumen 67 therethrough.
- coil of wire 66 is helically wound in the form of a cylinder.
- the proximal end of control arms 26 are connected to coil of wire 66 at a junction 68 adjacent one end of coil of wire 66
- apex 20 of sack 12 is connected to coil of wire 66 adjacent the other end of coil of wire 66 .
- control arms 26 can be connected to coil of wire 66 via junction 68 in the same manner as control arms 26 are connected to guide wire 4 via junction 10 in FIG. 2 .
- Coil of wire 66 is configured to be firm axially, but pliable laterally. This enables coil of wire 66 to bend and follow the path of guide wire 4 in a body canal or vessel while avoiding axial elongation of coil of wire 66 which may cause tension to be applied to wire frame 8 and/or sack 12 between junction 68 and apex 20 of sack 12 .
- a distal stop 70 and a proximal stop 72 are connected in spaced relation to guide wire 4 . Stops 70 and 72 are each formed from a solder joint of biocompatible material or a weld.
- guide wire 4 is received in lumen 67 and coil of wire 66 is received on guide wire 4 between stops 70 and 72 which prevent coil of wire 66 , and hence, wire frame 8 and sack 12 , from moving on guide wire 4 distally of distal stop 70 and proximally of proximal stop 72 .
- stops 70 and 72 have a diameter larger than the inside diameter of coil of wire 66 thereby preventing slidable movement of coil of wire 66 axially along guide wire 4 , distally of distal stop 70 or proximally of proximal stop 72 .
- pliable tip 22 is inserted percutaneously into the patient through the proximal end of guide catheter 42 previously inserted in access opening 41 .
- Guide wire 4 is manipulated to advance pliable tip 22 , coil of wire 66 , containment collar 32 and pull wire 34 through guide catheter 42 until pliable tip 22 approaches the distal end of guide catheter 42 .
- guide wire 4 is further advanced beyond the distal end of guide catheter 42 , guided by pliable tip 22 , until containment collar 32 is positioned at a desired position in a body canal or vessel. Because coil of wire 66 is flexible laterally, it is able to conform to twists and bends taken by guide wire 4 during manipulation to advance containment collar 32 to the desired position.
- pull wire 34 or handle 38
- a portion of pull wire 34 , or handle 38 outside the patient's body is pulled proximally while, at the same time, a portion of guide wire 4 outside the patient's body is held stationary.
- Pulling pull wire 34 or handle 38 proximally causes containment collar 32 to be retracted or withdrawn from over wire frame 8 and sack 12 whereupon wire frame 8 deploys and holds mouth 14 of sack 12 snugly against the wall of a body canal or vessel.
- pull wire 34 and containment collar 32 are pulled proximally through guide catheter 42 while guide wire 4 remains stationary until containment collar 32 is completely removed from guide wire 4 .
- containment collar 32 is omitted and replaced by a deployment catheter 43 (shown in phantom in FIGS. 9A and 9B ) which has a lumen 44 of sufficient inside diameter to receive guide wire 4 and coil of wire 66 , with wire frame 8 and sack 12 in their collapsed state, therein.
- a deployment catheter 43 shown in phantom in FIGS. 9A and 9B
- wire frame 8 and sack 12 received in their collapsed state in lumen 44 adjacent the distal end of deployment catheter 43 received on guide wire 4
- pliable tip 22 extending from the distal end of the deployment catheter 43
- pliable tip 22 and the distal end of deployment catheter 43 are inserted percutaneously into the patient through guide catheter 42 previously inserted in access opening 41 .
- Deployment catheter 43 and guide wire 4 are manipulated so that the distal end of deployment catheter 43 and pliable tip 22 advance through guide catheter 42 until pliable tip 22 approaches the distal end of guide catheter 42 .
- the distal end of deployment catheter 43 and guide wire 4 are further advanced beyond guide catheter 42 , guided by pliable tip 22 , until coil of wire 66 is positioned at a desired position in a body canal or vessel.
- deployment catheter 43 is pulled proximally while, at the same time, a portion of guide wire 4 outside the patient's body is held stationary. Pulling deployment catheter 43 in this manner causes deployment catheter 43 to be retracted or withdrawn from over wire frame 8 and sack 12 whereupon wire frame 8 deploys and holds mouth 14 of sack 12 snugly against the wall of a body canal or vessel. Thereafter, deployment catheter 43 is pulled proximally through guide catheter 42 , while guide wire 4 remains stationary, until deployment catheter 43 is completely removed from guide wire 4 .
- an over-the-wire or monorail device or component can be received on guide wire 4 and delivered through guide catheter 42 to a position proximal of proximal stop 72 to perform a procedure that the particular over-the-wire or monorail device is configured to perform. Once the procedure has been performed, the over-the-wire or monorail device is withdrawn from guide wire 4 through guide catheter 42 .
- recovery sheath 6 of the type shown in FIG. 1D , is positioned over guide wire 4 and is advanced distally thereon through guide catheter 42 to contact wire frame 8 . Further advancement of recovery sheath 6 distally on guide wire 4 causes all or a portion of wire frame 8 and all or a portion of sack 12 to be retracted into recovery sheath 6 to a desired extent. Thereafter, recovery sheath 6 , wire frame 8 and sack 12 with any particles 58 captured in sack 12 are withdrawn from the patient along with guide wire 4 .
- Guide wire 4 and lumen 67 are configured to enable rotation of guide wire 4 in coil of wire 66 .
- Distal and proximal stops 70 and 72 are spaced so that coil of wire 66 can reside between them. If the spacing between distal and proximal stops 70 and 72 is slightly greater than the length of the coil of wire 66 , guide wire 4 can only rotate in lumen 67 . Such ability to rotate is important to prevent loading of the guide wire 4 to reduce its torquability. If spacing between distal and proximal stops 70 and 72 is greater than the length of coil of wire 66 , coil of wire 66 can rotate in lumen 67 and can move linearly along the guide wire 4 . Thus, when deployed, wire frame 8 does not rub the wall of the body canal or vessel in response to longitudinal movement of guide wire 4 that does not move distal stop 70 or proximal stop 72 into contact with coil of wire 66 .
- proximal stop 72 is omitted, wire frame 8 and sack 12 are connected to coil of wire 66 , wire frame 8 and sack 12 are received in containment collar 32 , guide wire 4 is received in lumen 67 , and coil of wire 66 is received on guide wire 4 between distal stop 70 and the distal end of deployment catheter 43 received on guide wire 4 proximally of distal stop 70 .
- Lumen 44 has a sufficient inside diameter to slidably receive guide wire 4 therein. However, in this embodiment, lumen 44 is sufficiently small whereupon the distal end of deployment catheter 43 abuts an end of coil of wire 66 when deployment catheter 43 and coil of wire 66 are received on guide wire 4 .
- pliable tip 22 and containment collar 32 In use, pliable tip 22 and containment collar 32 , with the distal end of deployment catheter 43 abutting the proximal end of coil of wire 66 having guide wire 4 received in lumen 67 , are inserted percutaneously into the patient through a lumen of guide catheter 42 which has been previously inserted in access opening 41 .
- Guide wire 4 and deployment catheter 43 are manipulated to advance pliable tip 22 , containment collar 32 and coil of wire 66 through guide catheter 42 until pliable tip 22 approaches the distal end of guide catheter 42 .
- guide wire 4 and deployment catheter 43 are urged distally while, at the same time, a portion of guide catheter 42 outside of the patient's body is held stationary whereupon pliable tip 22 , containment collar 32 , coil of wire 66 , deployment catheter 43 and guide wire 4 advance through guide catheter 42 .
- pull wire 34 extends through the lumen of guide catheter 42 and, more particularly, pull wire 34 is disposed between the interior surface of guide catheter 42 and the exterior surface of deployment catheter 43 .
- pliable tip 22 and containment collar 32 are urged beyond the distal end of guide catheter 42 , guided by pliable tip 22 , until coil of wire 66 and containment collar 32 are positioned at a desired position in a body canal or vessel.
- pliable tip 22 of guide wire 4 is first inserted percutaneously into the patient through a lumen of guide catheter 42 which has been previously inserted in access opening 41 .
- Guide wire 4 is manipulated to advance pliable tip 22 to the distal end of the guide catheter 42 .
- Pliable tip 22 is urged beyond the distal end of guide catheter 42 until distal stop 70 is positioned at a desired position in the body canal or vessel.
- deployment catheter 43 and coil of wire 66 with wire frame 8 and sack 12 received in containment collar 32 , are received on guide wire 4 with the proximal end of containment collar 32 enclosing the distal end of deployment catheter 43 as it abuts the proximal end of coil of wire 66 .
- deployment catheter 43 is manipulated through guide catheter 42 along guide wire 4 , while guide wire 4 and guide catheter 42 are held stationary, to advance coil of wire 66 and containment collar 32 over guide wire 4 toward distal stop 70 and to a desired position in the body canal or vessel.
- Pull wire 34 extends through the lumen of guide catheter 42 and, more particularly, pull wire 34 is disposed between the interior surface of guide catheter 42 and the exterior surface of deployment catheter 43 .
- an over-the-wire or monorail device or component can be received on guide wire 4 and delivered through guide catheter 42 to a position proximal of wire frame 8 and sack 12 to perform the procedure the over-the-wire or monorail device or component is configured to perform. Once the procedure has been performed, the over-the-wire or monorail device or component is withdrawn from guide catheter 42 and guide wire 4 .
- recovery sheath 6 is positioned over guide wire 4 and advanced distally thereon through guide catheter 42 to contact wire frame 8 . Further advancement of recovery sheath 6 distally on guide wire 4 causes all or a portion of wire frame 8 and/or all or a portion of sack 12 to be retracted into recovery sheath 6 to a desired extent. Thereafter, recovery sheath 6 , wire frame 8 and sack 12 , and any particles 58 captured in sack 12 , are withdrawn from the patient along with guide wire 4 .
- Recovery sheath 6 in FIG. 1D is shown as having an elongated tubular form.
- a retrieval catheter assembly 100 of the type shown in FIGS. 10A-10C can be utilized to retrieve wire frame 8 and sack 12 .
- Retrieval catheter assembly 100 includes in coaxial arrangement having an inner tube 102 and an outer tube 104 .
- Inner tube 102 includes a lumen 106 configured to slidably receive guide wire 4 therein, while outer tube 104 includes a lumen 108 configured to slidably receive inner tube 102 therein.
- Fitting 110 has a lumen 111 configured to slidably receive inner tube 102 therethrough.
- a Y-connector 112 is slidably received on inner tube 102 and guide wire 4 on a side of fitting 110 opposite wire frame 8 and sack 12 .
- a fitting 114 is coupled to an end of inner tube 102 opposite wire frame 8 and sack 12 .
- Fitting 114 includes a lumen 115 configured to slidably receive guide wire 4 therethrough when fitting 114 is connected to inner tube 102 .
- Fittings 110 and 114 are configured to be mated to opposite ends of Y-connector 112 .
- fittings 110 and 114 include female threads (not shown) configured to be threadably mated with male threads (not shown) formed on opposite ends of Y-connector 112 .
- Y-connector 112 includes a male threaded side port 118 having a female threaded cap 116 threadably mated thereon.
- Y-connector 112 is configured in a manner known in the art to enable guide wire 4 and inner tube 102 to be received therethrough while avoiding the undesired seepage of fluid from a body canal or vessel via lumen 106 of inner tube 102 when wire frame 8 and sack 12 are deployed in a body canal or vessel of a patient.
- Cap 116 can be removed from side port 118 so that a syringe can be received in side port 118 for introducing fluids into the body canal or vessel of the patient via lumen 108 of outer tube 104 when inner tube 102 is loosely received therein.
- inner tube 102 and outer tube 104 fit snugly and slidably together in a manner that avoids the effective passage of fluid in lumen 108 .
- guide wire 4 and inner tube 102 fit snugly and slidably together in a manner that avoids the effective passage of fluid in lumen 106 .
- retrieval catheter assembly 100 is positioned over guide wire 4 and advanced distally thereon, preferably through guide catheter 42 , to contact wire frame 8 .
- the distal end of inner tube 102 extends distally out of lumen 108 a short distance as shown in FIG. 10A .
- inner tube 102 and outer tube 104 accurately track the path of guide wire 4 in the body canal or vessel of the patient in a manner that avoids the distal end of inner tube 102 or the distal end of outer tube 104 from contacting a protrusion or a stent deployed in a body canal or vessel of the patient, or from contacting the intima of the body canal or vessel where guide wire 4 makes relatively sharp turns therein.
- fitting 114 When the distal end of inner tube 102 is contacting or is closely adjacent the connection of wire frame 8 to guide wire 4 , fitting 114 is uncoupled from Y-connector 112 . Thereafter, fitting 114 is pulled proximally whereupon inner tube 102 moves proximally on guide wire 4 and is retracted into lumen 108 of outer tube 104 , and Y-connector 112 is advanced distally on guide wire 4 whereupon the distal end of outer tube 104 advances over wire frame 8 and, if desired, over sack 12 to a desired extent.
- Y-connector 112 is advanced sufficiently distally that all of wire frame 8 and all or a portion of sack 12 are received in the space in lumen 108 between the distal end of inner tube 102 and the distal end of outer tube 104 .
- guide wire 4 can be pulled proximally so that all of wire frame 8 and all or a portion of sack 12 are retracted into lumen 108 in the space between the distal end of inner tube 102 and the distal end of outer tube 104 .
- retrieval catheter assembly 100 and more particularly, inner tube 102 and outer tube 104 with wire frame 8 and sack 12 partially or wholly received in lumen 108 , are withdrawn from the patient along with guide wire 4 .
- FIGS. 11A and 11B a perspective view and a side view, respectively, of another embodiment of a wire frame 134 for use with the object capture device of the present invention is illustrated.
- sack 12 is connected to wire frame 134 which includes an arm 136 connected at one end to a junction 138 and at another end to a loop 140 to which mouth 14 of sack 12 is connected.
- Arm 136 and loop 140 are formed from a shape-memory-effect alloy which can be received in a collapsed state or structure within containment collar 32 , recovery sheath 6 or outer tube 104 of retrieval catheter assembly 100 in the same manner as half frames 24 and control arms 26 of wire frame 8 .
- arm 136 and loop 140 can be deployed outside of containment collar 32 in its expanded or deployed state or structure shown in FIGS. 11A and 11B .
- Arm 136 extends distally from its connection to junction 138 and radially away from guide wire 4 .
- Guide wire 4 extends through mouth 14 , loop 140 and apex 20 of sack 12 .
- Apex 20 and junction 138 can be coupled to guide wire 4 .
- apex 20 and junction 138 can be slidably received on guide wire 4 between a pair of stops, e.g., distal stop 70 and proximal stop 72 , of the type shown in FIGS. 9A and 9B .
- endovascular device 2 of the present invention provides several important advantages over other systems. These include, but are not limited to, the device's ability to enable emboli shed during angioplasty and stenting procedures to be safely captured and removed. Its design facilitates scaling for use in various diameter vessels.
- the shape-memory-effect alloy permits wire frame 8 to closely conform with the intima of a blood vessel while avoiding trauma to the blood vessel.
- Pliable tip 22 and/or the extension of the distal end of guide wire 4 the distance 18 beyond bottom 16 of sack 12 permits manipulation of endovascular device 2 through tortuous vascular configurations, and containment collar 32 permitting such manipulation without the undesirable reduction of torquability associated with presently available systems.
- Guide wire 4 enables delivery of other devices to the lesion site.
- Sack 12 connected to wire frame 8 acts to form a basket that can be manipulated to a position outside containment collar 32 where the mouth of the basket is open and a position inside containment collar 32 where the mouth of the basket is closed, and vice versa.
- the material used to construct sack 12 can be porous or non-porous. When sack 12 is made of a porous material, it acts as a filter that allows blood to flow and captures particles of a size greater than the pores. When sack 12 is made of a non-porous material, it occludes blood flow and movement of solid particles thereby.
- a suction device can be used to remove particles trapped by sack 12 made of non-porous material.
- the present invention may be employed to capture objects in body organs, cavities, canals or other structures within the body, so as to facilitate the entrapment within and/or removal of the object from the body.
- the apparatus of the present invention may be positioned and employed to capture the object using fluoroscopic visualization in general and angiography with dye injection in particular, among other positioning methods and devices.
- the present invention may be utilized in any medical procedure where it is desirable to entrap particles in blood or other vessels, but is particularly advantageous for use with endovascular procedures including, but not limited to, mechanical and laser thrombectomy, angioplasty and stenting operations to dilate occluded vessels and yet minimize embolic events.
- containment collar 32 can be utilized to deploy other configurations of collapsible or resilient frames having a sack, basket or filter attached thereto.
- Non-limiting examples of the types of collapsible or resilient frames and filters that can be deployed using containment collar 32 include those illustrated in U.S. Pat. Nos. 6,129,739 to Khosravi; 6,152,946 to Broome et al.; 6,179,861 to Khosravi et al.; and International.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
An apparatus for removing a solid object from a body canal or vessel includes a coil of wire configured to slidably receive a guide wire and a sack having a mouth and a closed bottom opposite the sack. A resilient frame is connected between the coil of wire and the sack for biasing the mouth of the sack open around the coil of wire. The resilient frame is positionable between a collapsed state where the mouth of the sack is closed against the bias of the resilient frame and a deployed state where the mouth of the sack is biased open by the resilient frame.
Description
- This application claims priority from U.S. Provisional Patent Application Ser. No. 60/247,824, filed Nov. 9, 2000, and U.S. Provisional Patent Application Ser. No. 60/249,534, filed Nov. 17, 2000.
- 1. Field of the Invention
- The present invention is directed to capturing objects beyond an operative site in any of a variety of medical procedures employed to treat any number of medical conditions in human and/or animal patients.
- 2. Description of the Prior Art
- In many medical procedures, objects are dislodged or otherwise freed by the surgeon during the surgical procedure, and it is useful and/or necessary to capture the dislodged and/or otherwise freed object.
- Although minimally invasive interventional medical therapies in general, and minimally invasive endovascular therapy in particular, are medical procedures where objects may be dislodged or otherwise freed during the procedure, each has enjoyed unprecedented expansion to treat patients because of the numerous medical benefits associated with not having to enter the body through more invasive surgical techniques. These benefits include, but are not limited to, less trauma and/or scarring for patients, less time to heal, less risk of infection and decreased hospital stays, to name but a few.
- More particularly, minimally invasive endovascular therapy is often used to treat diseased vessels, e.g., arteries and veins. With such therapy, small instruments are inserted into the vessels through a puncture or access opening made in one of the vessels at an entry site and are advanced through the circulatory system to an operative site where the vessel has become diseased, and the instruments are used to repair the diseased or operative site.
- Typically, the goal of such therapy is to dilate full or partial blockages of the diseased vessel. Such blockages may have developed over time or may have developed quickly, as for example, in response to an injury. One common source of such blockage is thromboemboli which has formed in the vessel. Thrombus is an aggregation of platelets, fibrin, clotting factors and cellular components of blood that spontaneously form and attach on the interior wall of a vein or artery, and thromboemboli are emboli of thrombus which operate to partially or completely occlude the interior or lumen of the blood or other vessel.
- Techniques to open and/or maintain the dilation of the partially or completely occluded lumen of blood or other vessels include positioning a balloon across an obstruction or partially occluded section of the vessel, inflating the balloon to compress the build up (balloon angioplasty) and/or temporarily or permanently inserting a tube-like support within the vessels to keep the vessel open (stenting).
- Minimally invasive endovascular therapy has the significant advantage that it is less invasive than traditional surgical techniques and causes less trauma to the patient. However, this therapy is complicated by the fact that it can undesirably dislodge or free particles/objects during the procedure as discussed above, and in that the tools or instruments and workspace, e.g., the interior of the vessels of the body, are in some cases extremely small and close, and reaching the operative site with the tools is very difficult in some instances due to the considerable branching of the circulatory system that may occur between the entry site into the blood vessel and the operative site. This therapy is further complicated by the fact that the entry site is often far from the operative site, as for example, where the entry site is in the thigh at the femoral artery and the operative site is located in the neck at the carotid artery. Even when the surgeon's instruments have been properly advanced to the operative site, manipulating the tools to perform their respective functions at the operative site is often difficult for the surgeon due to many factors including the close quarters at the operative site and the distance between the entry site and the operative site.
- One method and apparatus commonly used by surgeons to ensure the tools reach the operative site is to first thread a simple guide wire to or beyond the operative site. Thereafter, various tools are threaded over the guide wire by the surgeon to reach the operative site. It is an important aspect of such guide wires that they must be easy to manipulate through the vessels, including in certain cases, through lesions or areas of blockage in the vessel by the surgeon. In addition to exhibiting sufficient resiliency so as to be pushable in the vessel, the guide wire must exhibit sufficient flexibility and maneuverability to enable the surgeon to traverse the many twists and turns of the circulatory (or other) system to reach the operative site.
- An aspect of the ability for a surgeon to manipulate the guide wire through the circulatory or other system is the guide wire's “torquability”. As defined herein, the term “torquability” means that as the surgeon rotates the proximal region of the guide wire that extends outside of the patient's body during the advancement of the guide wire through the patient's blood or other vessels to the operative site, the amount of rotation at the proximal region of the guide wire is transmitted to the distal end of the guide wire being inserted and advanced through the patient's blood or other vessels to the operative site. A lack of correlation between rotation at the proximal region of the guide wire and rotation at the distal end of the guide wire is referred to as reduced torquability and is undesirable. A high degree of correlation is referred to as a high degree of torquability and is desirable. As may be appreciated, it is most desirable for the guide wire to have an exact correlation or high torquability between the rotation applied proximally at the proximal region of the guide wire and the rotation developed distally in the guide wire, so that the surgeon can carefully control and direct the medical guide wire. With known devices, there is considerable difference between the amount of rotation applied at the proximal region of the guide wire and the amount of rotation developed at the distal end of the guide wire, making it very difficult for surgeons to maneuver the distal end of the guide wire.
- Even where the guide wire exhibits the desired torquability characteristics, and the tools have been properly threaded to the operative site and have been properly manipulated to perform their respective functions at the operative site, there remains the problem noted above, namely, that the process of dilating the occlusion and/or inserting the stent may dislodge or free small particles or objects, also known, among other things, as clots, fragments, plaque, emboli, thromboemboli, etc. More particularly, with respect to endovascular therapy, the term “embolic event” has come to be used to describe complications where thrombus or plaque is shed inadvertently from a lesion to migrate to smaller vessels beyond the operative site to create a full or partial occlusion of the lumen of the vessel or vessels. This is most undesirable and can lead to many complications. Complications depend upon the site in the body where such emboli lodge downstream of the operative site, but may include stroke, myocardial infarction, kidney failure, limb loss or even death. With increasing vigor, surgeons have expressed the need to reduce the likelihood of such complications so that protection against embolic events will become a standard component of endovascular therapy.
- Devices have been made in the art to capture objects, including emboli, downstream of an operative site in medical procedures, including endovascular therapy. Such devices generally employ a capture device, such as a bag or filter, which has a collapsed state and an expanded or deployed state. Typically, the capture device is maintained in its collapsed state within sheathing and is inserted into the blood or other vessel and is threaded beyond the operative site. It is then ejected from the sheathing whereupon it expands to its deployed state to capture the objects dislodged or otherwise freed during the medical procedure.
- One device for removing clot or filtering particles from blood is described in U.S. Pat. No. 4,723,549 to Wholey et al., which discloses a device for dilating occluded blood vessels. This device includes a collapsible filter device positioned between a dilating balloon and the distal end of the catheter. The filter comprises a plurality of resilient ribs secured to the catheter that extend axially toward the dilating balloon. Filter material is secured to the ribs. The filter deploys as a balloon is inflated to form a cup-shaped trap. An important limitation of the Wholey et al. device appears to be that the filter does not seal around the interior vessel wall. Thus, particles sought to be trapped in the filter can instead undesirably pass between the filter and the vessel wall and flow downstream in the circulatory system to produce a blockage. Another limitation is that the device also presents a large profile during positioning. Yet another limitation appears to be that the device is difficult to construct.
- U.S. Pat. No. 4,873,978 to Ginsburg discloses a vascular catheter that includes a strainer device at its distal end. The device is inserted into a vessel downstream from the treatment site and advanced to a proximal downstream location. The filter is contained in a sheath when closed. When pushed from the sheath, the filter deploys such that its mouth spans the lumen of the vessel. Deployment is by expansion of resilient tines to which the strainer material is attached. Again, however, it appears that the filter does not seal around the interior vessel wall, thus undesirably allowing particles to bypass the filter by passing between the filter and the vessel wall. The position of the mouth relative to the sheath is also clinically limiting for the Ginsburg device.
- U.S. Pat. No. 5,695,519 to Summers et al. discloses a removable intravascular filter on a hollow guide wire for entrapping and retaining emboli. The filter is deployable by manipulation of an actuating wire that extends from the filter into and through the hollow tube and out the proximal end. One limitation with the Summers et al. device appears to be that its filter material is not fully constrained. Therefore, during positioning within a vessel, as the device is positioned through and past a clot, the filter material can snag clot material undesirably creating freely floating emboli. It is unclear if the actuating wire can close the filter, and it appears in any event that it will exert a pull force on the rim of the filter that could tear the wire from the rim. Another limitation appears to be that the device application is limited by the diameter of the tube needed to contain the actuating wire.
- U.S. Pat. No. 5,814,064 to Daniel et al. discloses an emboli capture device on a guide wire. The filter material is coupled to a distal portion of the guide wire and is expanded across the lumen of a vessel by a fluid activated expandable member in communication with a lumen running the length of the guide wire. One limitation of the device appears to be that during positioning, as the device is passed through and beyond the clot, filter material may interact with the clot so as to undesirably dislodge material and produce emboli. It is further believed that the device may also be difficult to manufacture. Another limitation is that it is difficult to determine the amount of fluid needed to expand the member. A lack of control can rupture and tear the smaller vessels. Thus, the Daniel et al. device would appear to be more compatible with use in the larger vessels only.
- PCT Publication No. WO 98/33443 discloses a removable vascular filter wherein the filter material is fixed to cables or spines mounted to a central guide wire. A movable core or fibers inside the guide wire can be utilized to transition the cables or spines from approximately parallel the guide wire to approximately perpendicular the guide wire. A limitation of this device appears to be that the filter does not seal around the interior vessel wall. Thus, particles, e.g., emboli-forming materials, can undesirably bypass the filter by passing between the filter and the vessel wall. Another limitation appears to be that this umbrella-type device is shallow when deployed so that, as it is being closed for removal, the particles it was able to ensnare could escape. Yet another limitation is that the frame is such that the introduction profile presents a risk of generating emboli as the device is passed through and beyond the clot, occlusion or stenosis.
- U.S. Pat. No. 5,769,816 to Barbut et al. discloses a device for filtering blood within a blood vessel. The device is delivered through a cannula and consists generally of a cone-shaped mesh with apex attached to a central support and open edge attached to an inflation seal that can be deflated or inflated. The seal is deflated during delivery and when delivery is complete, it is inflated to seal the filter around the lumen of the vessel. Limitations of this device include that it is complex to manufacture. Inflation and deflation of the seal adds additional operative steps thus prolonging the operation and introducing the issue again of control, e.g., of how much to inflate to obtain a seal without causing damage to the vessel or other material. While the device may be suitable for large vessels, such as the aorta, is would be most difficult to scale for smaller vessels, such as the carotid or the coronary arteries.
- U.S. Pat. No. 5,549,626 to Miller et al. discloses a coaxial filter device for removing particles from arteries and veins consisting of an outer catheter that can be inserted into a blood vessel and an inner catheter with a filter at its distal end. The filter is a radially expandable receptacle made of an elastic mesh structure of spring wires or plastic monofilaments. When pushed from the distal end of the catheter, the filter deploys across the vessel lumen. A syringe attached to the proximal end of the inner catheter aspirates particles entrapped in the filter. One limitation of this device appears to be that it is possible that some particles will remain in the filter after aspiration such that, when the filter is retracted into the outer catheter, particles not aspirated are undesirably released into the circulatory system.
- U.S. Pat. No. 6,027,520 to Tsugita et al. discloses a method and system for embolic protection consisting of a filter on a guide wire coupled with a separate stent catheter deployed over the guide wire. One limitation of the Tsugita et al. device is that the many filter designs summarized in the patent generally lack a controllable, conformable circumferential support in the mouth of the filters to ensure they seal around the inside of a blood vessel. Without such a seal, it is again possible for particulate material to evade the filter by undesirably passing between the filter and the vessel wall, whereupon the particulate material may flow downstream of the operative or other site to produce full or partial blockage of the vessels. Many of the Tsugita et al. filter expansion devices utilize multiple struts to open the filter. These are not desirable as they increase the profile of the device when crossing a lesion, in turn, reducing the range of clinical cases on which they can be used. Further, such designs add stiffness to the region of the undeployed filter which can impede the surgeon's ability to direct the guide wire through the complex twists and turns of the circulatory system to the operative site, e.g., making it difficult to direct the device into a branching vessel. Also, the Tsugita et al. design is burdened by its use of a long deployment sheath to hold the filter in a collapsed state and direct it to the operative site. The Tsugita et al. sheath extends from a hemostatic seal at the site of entry into the blood or other vessel to the operative site (see
column 7, lines 56-58. and alsocolumn 8, lines 19-30 of the Tsugita et al. patent). This long sheath, necessary in the Tsugita et al. design, significantly impairs the ability to direct the guide wire through the circulatory system to the operative site. Not only is such a sheath an impairment to directing the guide wire around the twists and turns of the circulatory system, but such a sheath also “loads” the guide wire, which operates to significantly reduce the Tsugita et al. system's torquability, greatly reducing the ability of the surgeon to control the guide wire and guide it through tight lesions. - At
column 7, lines 28-32, Tsugita et al. states that its stent may comprise a tube, sheet, wire, mesh or spring, and goes on to state that such a stent can cover the plaque and substantially permanently trap it between the stent and the wall of the vessel. (seecolumn 9, lines 55-58 of the Tsugita et al. patent) However, this is not accurate, and depending upon the type of stent, not only will it not trap such plaque, but plaque can reform through the interstices of the mesh whereupon the vessel can again become fully or partially occluded. - These shortcomings are present whether the stent is mechanically expandable or self expanding. Relative to mechanically expandable stents, they are delivered with a stent catheter. See U.S. Pat. Nos. 5,507,768; 5,158,548 and 5,242,399 to Lau et al. incorporated herein by reference. The catheter has an inflatable balloon at or near the distal end on which the stent is mounted. An inflation lumen runs the length of the catheter to the balloon. Generally, the stent is a tubular mesh sleeve. See U.S. Pat. No. 4,733,665 to Palmaz incorporated herein by reference. A self-expanding stent is typically made of Nitinol. It is compressed within a catheter until deployment. It is pushed from the catheter to deploy it. Both types of stents tend to create embolic particles. Also, both allow stenotic material to build up through the interstices of the wire mesh that could again occlude the artery.
- Permanent filters for the vena cava are well-established clinical devices. These open filters capture large emboli passing from a surgical site to the lungs. U.S. Pat. No. 3,952,747 to Kimmell, Jr. et al. discloses the Kimray-Greenfield filter. It is a permanent filter typically placed in the vena cava and consists of a plurality of convergent legs in a generally conical array Each leg has a hook at its end to impale the interior wall of the vena cava. U.S. Pat. Nos. that are joined at their convergent ends to an apical hub. U.S. Pat. Nos. 4,425,908 to Simon; 4,688,553 to Metals; and 4,727,873 to Mobin-Uddin are also illustrative of such devices.
- U.S. Pat. Nos. 5,669,933 and 5,836,968 to Simon et al. are illustrative of removable blood clot filters suitable for the venous system, specifically the vena cava.
- However, the presently available capture devices all suffer from the limitation that they are not easily manipulated in the patient's body. They usually include tube-like sheathing material which extends all along the length of the guide wire used to insert the capture device into the vessel, generally extending from the entry site into the body, also known as an access port or access opening to the operative site, which sheathing operates to contain the capture device until its desired deployment in the vessel beyond the operative site. Such sheathing material operates to reduce torquability of the guide wire used to insert the capture device and operates to significantly reduce the flexibility of wire within the circulatory or other system as noted above. Removal without causing excessive movement of the deployed filter is also a problem. As the sheath is pulled from the access port during removal, the surgeon must continually reposition his hand to hold the wire used to insert the capture device, that is, as the sheath is pulled through the access port, the surgeon must release the wire and then re-grasp further down from the access port. As the surgeon's hand grasps the wire further from the access port, the more difficult it becomes to steady the guide wire as the sheath is withdrawn. As such, the capture device may move back and forth, and as it is generally at this point in its expanded state, the constant rubbing of the wall of the blood or other vessel or canal by the capturing device may irritate or injure the wall of the blood or other vessel or canal. Another complication is that several capture devices include bulky or complex deployment mechanisms, and further, when deployed, fail to fully seal around the interior of the vessel or other wall or fail to prevent unwanted release of captured particles, fragments, objects, emboli, etc., whereupon such particles, fragments, objects, emboli, etc. can undesirably escape and travel beyond the capture device.
- Thus, there is a need in the art for a capture device and methods of constructing and using such device, which is easily threaded through the vessels or canals of humans and/or animals to reach an operative site, which exhibits excellent torquability, flexibility and maneuverability, which is easily removable along with its captured objects once the medical procedure has been completed without injuring or irritating the wall of the vessel or canal, and which forms a seal with the wall of the vessel or canal or otherwise prevents the undesirable escape of particles, fragments, objects, emboli, etc. beyond the capture device during surgery. There also is a need in the art for a system of associating surgical tools with such a capture device to provide protection downstream of an operative site for the capture of objects dislodged and/or freed during the medical procedure.
- Accordingly, we have invented an apparatus for removing a solid object from a body canal or vessel. The apparatus includes a coil of wire configured to slidably receive a guide wire and a sack having a mouth and a closed bottom opposite the mouth. A resilient frame is connected between the coil of wire and the sack for biasing the mouth of the sack opened around the coil of wire. The resilient frame is positionable between a collapsed state where the mouth of the sack is closed against the bias of the resilient frame and a deployed state where the mouth of the sack is biased open by the resilient frame.
- The apparatus can include a containment collar configured to slidably receive the guide wire therethrough and to receive the resilient frame therein. A pull wire can be connected to the containment collar so that in response to relative movement between the guide wire and the pull wire, the resilient frame is positionable between the collapsed state inside the containment collar and the deployed state outside the containment collar.
- The guide wire can include a proximal stop and a distal stop in spaced relation on the guide wire. The coil of wire can be received on the guide wire between the proximal stop and the distal stop and each stop can be configured to avoid the slidable passage of the coil of wire thereby.
- Preferably, the closed bottom of the sack is connected to the coil of wire adjacent one end thereof, the resilient frame is connected to the coil of wire adjacent the end thereof opposite the closed bottom of the sack, and the mouth of the sack is connected to the wire frame between the ends of the coil of wire.
- The apparatus can include a deployment catheter having a lumen configured to slidably receive the guide wire. The guide wire can include a distal stop configured to avoid the slidable passage of the coil of wire thereby. The deployment catheter can have an end configured to abut an end of the coil of wire when the coil of wire is received on the guide wire between the deployment catheter and the distal stop.
- Alternatively, the apparatus can include a deployment catheter having a lumen configured to slidably receive the guide wire and at least part of the resilient frame therein so that in response to relative movement between the guide wire and the deployment catheter, the resilient frame is positionable between the collapsed state at least partially inside the deployment catheter and the deployed state outside the deployment catheter.
- Preferably the coil of wire is a helically wound spring that is firm axially and pliable laterally.
-
FIGS. 1A-1D are side views of a device for capturing objects beyond an operative site utilizing a capture device in accordance with the present invention mounted on a guide wire; -
FIG. 2 is a perspective view of a wire frame of the capture device ofFIGS. 1A-D , with the wire frame in its deployed state; -
FIG. 3 is a side view of the wire frame inFIG. 2 in its collapsed state; -
FIG. 4 is a side view of the collapsed wire frame shown inFIG. 3 received within a containment collar in accordance with the present invention; -
FIG. 5 is a side view of the collapsed wire frame and containment collar ofFIG. 4 with a filter or sack connected to the wire frame and retracted partially into the containment collar; -
FIG. 6 is a partial cross-sectional side view of a partially deployed wire frame and filter ofFIG. 5 with particles captured in the filter; -
FIG. 7A is a side view showing coiling of a pull wire around the guide wire; -
FIG. 7B is a partial cross-sectional side view of the present invention showing an alternate embodiment for affixing the pull wire to the containment collar; -
FIG. 8 is a perspective view of another embodiment of the present invention for affixing the pull wire about the guide wire and further illustrating the use of a guide catheter; -
FIGS. 9A and 9B are different side views of another embodiment of the present invention showing a wire frame and filter slidably received on the guide wire; -
FIG. 10A is a side view of a retrieval catheter assembly received on a guide wire in its undeployed state; -
FIG. 10B is a side view of the retrieval catheter assembly shown inFIG. 10A in a partially deployed state where a wire frame attached to the guide wire is partially retracted into a sheath of the retrieval catheter assembly; -
FIG. 10C is a section taken along lines XC-XC inFIG. 110A ; and -
FIGS. 11A and 11B are perspective and side views, respectively, of another embodiment of a capture device of the present invention. - The present invention relates generally to a method and apparatus for capturing objects beyond an operative site in any of a variety of medical procedures employed to treat any number of medical conditions in human and/or animal patients.
- More particularly, the apparatus of the present invention includes in one embodiment, a novel object capture device integrally incorporated as part of a medical guide wire or otherwise mounted on or affixed to a medical guide wire, which medical guide wire is inserted into the human or animal patient and is threaded or otherwise advanced in the body through one or more of the body's canals or vessels to and/or beyond an operative site. As disclosed in more detail below, the novel object capture device includes a frame having a sack or filter attached thereto, and the object capture device operates to capture objects, e.g., emboli, beyond the operative site.
- The present invention includes in yet another embodiment, a system for the endovascular treatment of blood or other vessels which includes the combination of the capture device on a medical guide wire with other devices, e.g., endovascular devices, such as dilation balloon systems, stent deployment systems, mechanical and/or laser thrombectomy devices and combinations thereof, that track over the guide wire, for use in medical procedures to treat humans and/or animals.
- The methods of the present invention include methods of constructing the apparatus and system of the present invention, and methods of using the novel object capture device of the present invention to treat medical conditions in human and/or animal patients.
- Referring now to
FIGS. 1A-1D , an “on-the-wire”endovascular device 2 for capturing and removing objects, particles and/or other solid or semi-solid matter in blood or other vessels, organs, canals and/or body cavities of a patient according to the teachings of the present invention is shown. The following description ofendovascular device 2 will also illustrate one or more embodiments of a method for insertion and removal of the device in a blood or other vessel in the body. -
FIGS. 1A and 1B illustrateendovascular device 2 in its collapsed state or structure where an object capturing filter which includes a resilient frame, preferably aresilient wire frame 8, and asack 12 affixed towire frame 8, described in more detail below, is contained within acontainment collar 32. - More particularly, starting at the right side of
endovascular device 2 as viewed from the orientation of an observer viewingFIG. 1A ,endovascular device 2 includes anelongated guide wire 4 received in and throughcontainment collar 32. The length ofguide wire 4 is not limiting to the present invention, and may be of any length necessary to extend from an entry site or access opening 41 into a body canal or vessel to the operative site.Break lines 5 shown inFIG. 1A illustrate that the length ofendovascular device 2 may be modified as necessary for a given surgical application. - As shown in
FIG. 1A ,containment collar 32 can be constructed of an opaque material. However, as shown inFIGS. 1B-1D ,containment collar 32 can also be constructed of a transparent material. Suitable materials for the construction ofcontainment collar 32 are described below. - A
pliable tip 22 is preferably connected to or integrally formed as part of the distal end ofguide wire 4.Pliable tip 22 is preferably formed from a biocompatible material having a spring memory. Suitable materials for the construction ofpliable tip 22 include platinum wire. Preferably, the biocompatible material formingpliable tip 22 is wound into a coil with one end ofpliable tip 22 attached to the distal end ofguide wire 4 and with the other end ofpliable tip 22 extending away fromguide wire 4.Pliable tip 22 facilitates the advancement of the distal end ofguide wire 4 andcontainment collar 32 through the various twists and turns of a patient's circulatory or other system. - In
FIG. 1B ,wire frame 8 is contained in a collapsed state or structure withincontainment collar 32. In contrast, inFIG. 1C ,wire frame 8 is illustrated deployed outside ofcontainment collar 32 in an expanded or deployed state or structure. - Preferably,
wire frame 8 is connected to guidewire 4 via ajunction 10. This connection may be made by any means, such as soldering, brazing and the like, but may also includewire frame 8 and guidewire 4 being integrally formed together as one unit. -
FIGS. 1B-1D show one non-limiting embodiment ofwire frame 8 that may be employed in the present invention.Wire frame 8, however, may include any known frame configuration which can be in a collapsed state insidecontainment collar 32 during insertion into the patient and its travel to or beyond the operative site, which can be transitioned into a deployed state within the patient and which can be returned to a fully or partially collapsed state for removal.Containment collar 32 is not limited to use withwire frame 8, but can be used with any deployable device, that transitions from a collapsed state insidecontainment collar 32 to a deployed state in a body vessel, canal, organ or open area of any kind in a patient. Preferably,containment collar 32 is generally cylindrical. However,containment collar 32 can have any shape, e.g., square, rectangular, elliptical, trapezoidal, that enableswire frame 8 to transition from a collapsed state to a deployed state. - Where
containment collar 32 is used withwire frame 8 havingsack 12 thereon, preferably,wire frame 8 must be able to urge amouth 14 ofsack 12 against an inside wall of the body canal or vessel in which sack 12 is positioned in its deployed state so that objects do not pass betweenmouth 14 ofsack 12 and the wall of the patient's body canal or vessel.Mouth 14 ofsack 12 is connected to wireframe 8, such as, for example, by gluing or meltingmouth 14 ofsack 12 to wireframe 8. - In the embodiment shown in
FIG. 1C , sack 12 has itsmouth 14 connected to an end ofwire frame 8, and sack 12 has a closed end or bottom 16opposite mouth 14.Sack 12 has a generally bag-like shape, preferably a conical shape when deployed. However, sack 12 can have any shape capable of ensnaring objects in the vessel or canal of a patient, e.g., a hemispherical shape. -
Guide wire 4 projects throughmouth 14 and bottom 16 ofsack 12 and terminates at a distal end adistance 18 frombottom 16 ofsack 12. Preferably,guide wire 4 extends through and is connected to an apex 20 ofbottom 16. -
Containment collar 32 has a short generally tubular shape with alumen 36 of sufficient diameter to enableguide wire 4 to pass therethrough and to containwire frame 8 and sack 12 in closed configuration withinlumen 36 ofcontainment collar 32. The length ofcontainment collar 32 is preferably no greater than needed to containwire frame 8 and sack 12 therein in a collapsed state during insertion ofendovascular device 2 into the patient. Rather, as shown inFIG. 5 ,containment collar 32 may be shorter still to leave apex 20 exposed whenwire frame 8 and sack 12 are in their closed configuration. - A
pull wire 34 extends fromcontainment collar 32 to a point external of the patient via the access opening 41 after placement ofendovascular device 2 at or beyond the operative site. Pullwire 34 enablescontainment collar 32 to be pulled proximally, i.e., in the direction illustrated by anarrow 9 inFIG. 1A , whileguide wire 4 remains stationary or conversely to advanceguide wire 4 distally, i.e., in the direction of anarrow 3, while holdingpull wire 34 stationary, whereuponcontainment collar 32 is pulled off ofwire frame 8 or, conversely,wire frame 8 is ejected fromcontainment collar 32 thereby deployingwire frame 8 to its deployed state shown inFIG. 1C . The precise length ofpull wire 34 is not limited, as illustrated by thebreak lines 7, providedpull wire 34 extends fromcontainment collar 32 to a point external of the patient. - With reference to
FIGS. 4 and 5 , and with continuing reference toFIGS. 1A-1D , pullwire 34 may be attached by any known means, such as gluing, brazing, welding, soldering, integral forming and the like. Preferably, however,containment collar 32 has a portion orarea 33 of reduced internal and external diameter.Portion 33 defines alumen 37 that is continuous withlumen 36 ofcontainment collar 32.Lumens guide wire 4 to slide therethrough. Preferably,containment collar 32 is made of a material that shrinks upon application of heat, andportion 33 is formed by applying heat thereto and allowing it to shrink to the extent desired to formportion 33 of reduced diameter. Such heat shrinkable materials are presently available for a wide variety of applications both within and not within the medical arts. - A
tubular component 39 is inserted intoportion 33 ofcontainment collar 32 prior to the application of heat toportion 33 described above. Heat is then applied toportion 33 thereby causingportion 33 to shrink about the exterior circumference oftubular component 39. In this manner,tubular component 39 frictionally engagescontainment collar 32, particularlyportion 33. -
Tubular component 39 is associated withpull wire 34, andtubular component 39 operates to connectpull wire 34 tocontainment collar 32 viatubular component 39. Pullwire 34 may be connected totubular component 39 by any various means including, but not limited to, welding, brazing, soldering or integral forming. Preferably, however,tubular component 39 is formed by coilingpull wire 34 adjacent its distal end, as shown inFIG. 4 . In this embodiment,tubular component 39 has alumen 40 which is continuous withlumen 36 ofcontainment collar 32 and is of sufficient diameter to permitguide wire 4 to be slidably received inlumen 40 to permit relative movement betweenguide wire 4 andcontainment collar 32 andtubular component 39. The axial length ofportion 33 needs only be sufficient to permittubular component 39 to be sufficiently grasped bycontainment collar 32 upon application of heat toportion 33 so as to enableendovascular device 2 to be delivered into and removed from a patient withouttubular component 39 separating fromcontainment collar 32, but it may be longer. - A length of approximately 12 centimeters for
portion 33 ensures thattubular component 39 remains within and does not exit a distal end of a lumen of a guide catheter 42 (shown inFIG. 1 a) common to endovascular procedures whenwire frame 8 and sack 12 are properly positioned past the lesion. In other words, whenwire frame 8 and sack 12 are positioned past a lesion, a length of at least 12 centimeters ofportion 33 ensures thattubular component 39 is sufficiently spaced fromwire frame 8 and sack 12 thattubular component 39 will remain within the confines ofguide catheter 42, as shown inFIG. 1A . Keepingtubular component 39 within the confines ofguide catheter 42 is desirable, as it is one less item that can contact the vessel walls and operate to undesirably dislodge particles, e.g., emboli. It is to be appreciated, however, that it is not necessary to useendovascular device 2 withguide catheter 42, and thatendovascular device 2 can be positioned in a body canal and/or vessel of a patient without utilizingguide catheter 42. -
Containment collar 32 is an important element of the present invention. Unlike known continuous sheaths which, without interruption, extend from a point external of the patient through anaccess opening 41 and all the way to the operative site to contain an object capture device therein,containment collar 32 of the present invention does not, and is only of such length as is necessary to containwire frame 8 and sack 12 in a collapsed state. Importantly,containment collar 32 of the present invention does not present a significant anti-torque load along the entire length ofguide wire 4 from its distal end at the operative site to its point of access from the body, as do presently available continuous sheaths. Therefore, unlike known sheaths,containment collar 32 does not reduce the torquability ofendovascular device 2 of the present invention as will occur with a continuous sheath which extends from the distal end ofguide wire 4 at the operative site to accessopening 41. This is particularly advantageous during insertion and positioning ofendovascular device 2 in a patient. - As noted above, pull
wire 34 is of sufficient length to extend from a procedural or surgical site in a vessel to and through access opening 41. For most applications, the length ofpull wire 34 is typically at least 100 centimeters long, although any length may be employed as indicated bybreak lines 7 inFIGS. 1A-1C . Optionally, pullwire 34 may have ahandle 38 positioned so as not to interfere with the vascular access site and to aid the surgeon's grasp ofpull wire 34.Handle 38 may be permanently or removably affixed to pullwire 34. Alternatively, a pin vice, clamp or similar device that would grasp pullwire 34 and aid the surgeon's grasp ofpull wire 34 can be employed. - It is standard clinical practice to position
guide wire 4 withinguide catheter 42 to direct other surgical instruments into the body alongguide wire 4 but withinguide catheter 42. More specifically,pliable tip 22;containment collar 32 withwire frame 8 and at least part ofsack 12 received therein;tubular component 39 withportion 33 heat shrunk totubular component 39; the section ofguide wire 4 received intubular component 39 andcontainment collar 32; the portions ofguide wire 4 to either end ofcontainment collar 32; and the portion ofpull wire 34 connected totubular component 39 are inserted into a patient viaaccess opening 41. -
Containment collar 32 is guided through the patient's body canal(s) and/or vessel(s) usingpliable tip 22 in order to positioncontainment collar 32 to a desired position at and/or adjacent, typically beyond, the operative site. The high degree of torquability resulting from the use ofcontainment collar 32 over any previously available device ensures that the surgeon maintains excellent control over the threading and guiding ofendovascular device 2 through the twists and turns of the patient's body canals and/or vessels that are present between access opening 41 and the operative site. - When located at the desired position, pull
wire 34 is then pulled proximally in the direction of an arrow 11, illustrated inFIG. 1A , whileguide wire 4 is held or otherwise maintained in a stationary position. Aspull wire 34 moves in the direction of arrow 11,containment collar 32 moves axial alongguide wire 4 relative to sack 12 andwire frame 8, whereuponcontainment collar 32 is retracted or withdrawn fromwire frame 8 and sack 12. This allowswire frame 8 to expand to its deployed state, illustrated inFIG. 1C , whereuponwire frame 8 urgesmouth 14 ofsack 12 against the blood or other vessel wall, wheresack 12 can capture objects dislodged at or near the operative site during the operation.Containment collar 32 may be retracted overguide wire 4, completely removed from the patient's body and withdrawn fromguide wire 4 after deployment. - During a procedure, such as, for example, angioplasty or stenting, other over-the-wire or monorail devices may be introduced over
guide wire 4. In its deployed state, sack 12 captures the particles dislodged during the procedure. - When the procedure is complete, a tubular retrieval catheter or
recovery sheath 6 is advanced overguide wire 4 into the patient, as shown inFIG. 1D . The length ofrecovery sheath 6 is not limiting to the invention as illustrated by the break lines 52, butrecovery sheath 6 must extend from outside the patient's body, where it may be manually manipulated to wheresack 12 andwire frame 8 are positioned at the desired position during the procedure. Advancement ofrecovery sheath 6 in the direction of thearrow 56 causesrecovery sheath 6 to advance distally alongguide wire 4 overwire frame 8 and, more particularly, eachhalf frame 24 making upwire frame 8 as explained in more detail below, closingmouth 14 ofsack 12, and capturingparticles 58 received withinsack 12.Sack 12 can be retracted partially or completely intorecovery sheath 6 and the assembly comprisingrecovery sheath 6, the capturedwire frame 8, and sack 12 are withdrawn from the patient, along withparticles 58 captured insack 12. - In one embodiment of the invention, a prior art support guide wire may be threaded to a location proximal to the desired location; guide
catheter 42 introduced over the support guide wire, the support guide wire removed; andendovascular device 2 of the present invention may then be advanced to the desired location throughguide catheter 42, where itswire frame 8 and sack 12 are deployed distally ofguide catheter 42 and used to capture objects, particles, etc., in the manner described above. -
Containment collar 32 is preferably made from Teflon tubing, preferably having a wall thickness less than 0.004 inches, however,containment collar 32 can be made from other flexible biocompatible materials, such as polyethylene, nylon or polyimides, that permit relative axial movement betweenguide wire 4 andcontainment collar 32. To promote relative axial movement therebetween whencontainment collar 32 is made of a material other than Teflon, the inside surface ofcontainment collar 32 and/or guidewire 4 can be coated with a tough flexible lubricious coating, such as Teflon or a hydrophilic film. Moreover, the inside surface ofcontainment collar 32 and/or guidewire 4 can receive a biocompatible lubricant, such as silicon. - With reference to
FIG. 2 , and with continuing reference toFIGS. 1A-1D , in one embodiment of the present invention,wire frame 8 includes a pair of half frames 24 connected in mirror image relation to guidewire 4 viajunction 10. Eachhalf frame 24 has a pair ofcontrol arms 26 connected at their proximal ends to guidewire 4 viajunction 10. Alternatively, controlarms 26 may be integrally formed with therespective half frame 24. -
Junction 10 can include any known means of joinder, such as a crimp of biocompatible material; a solder joint of appropriate biocompatible material; or a weld that connects half frames 24 to guidewire 4. The distal end of eachhalf frame 24 has apartial loop 28 that extends betweencontrol arms 26. Half frames 24 are preferably fully or partially constructed of a shape-memory-effect alloy, such as Nitinol, in its super-elastic state, although the present invention is not limited tohalf frames 24 comprised of Nitinol. The shape-memory-effect alloy enables eachhalf frame 24 to be “trained” or formed so that in a relaxed undeformedstate control arms 26 diverge betweenjunction 10 andpartial loop 28, andpartial loop 28 extends transverse, preferably perpendicular, to the longitudinal axis ofguide wire 4, with an inside radius ofpartial loop 28 facingguide wire 4 as illustrated inFIG. 2 .Wire frame 8 and, more particularly, half frames 24 and controlarms 26 are preferably formed from solid Nitinol, tubular Nitinol or stranded Nitinol. - In another embodiment (not shown), each
half frame 24 includes an arcuate section connected to the distal end of eachcontrol arm 26. The arcuate sections extend from theirrespective control arms 26 and terminate with their ends touching or in spaced relation forming a gap therebetween. The arcuate sections can be formed by separating, as for example, by cutting, eachpartial loop 28intermediate control arms 26. The arcuate sections can be configured to form a partial or complete loop. In yet another embodiment,wire frame 8 can include a complete loop (not shown) connected to the distal ends ofcontrol arms 26. Again, the precise design ofwire frame 8 is not limiting to the present invention and any frame design may be employed. Other frame designs, for example, are described in U.S. Pat. Nos. 5,779,716; 5,910,154; 5,911,734; and 6,027,520 which are incorporated herein by reference. - To enable
wire frame 8 to be viewed more clearly under fluoroscopic visualization inside a body canal or vessel, a wire orthread 30 made from a biocompatible radiopaque material(s) is wrapped around or bonded to one or morepartial loops 28, one ormore control arms 26 and/or woven into the rim ofmouth 14 ofsack 12. For example, stranded Nitinol with a central strand of radiopaque material or Nitinol tubing filled with radiopaque material can be used to formpartial loops 28 and/or controlarms 26 that can be viewed more clearly under fluoroscopic visualization. Alternatively,partial loops 28 and/or controlarms 26 are coated with the biocompatible radiopaque material(s) or a coil of radiopaque material can be wound around eachpartial loop 28 and/or eachcontrol arm 26. To enablepliable tip 22 to be viewed under fluoroscopic visualization inside a body canal or vessel, at least the distal end ofpliable tip 22 may be made from or coated with the biocompatible radiopaque material(s). Examples of biocompatible radiopaque material(s) include gold, tungsten and platinum or combinations thereof. - During insertion of deployed
wire frame 8 intocontainment collar 32 during manufacture and/or prior to insertion into a patient, pullingguide wire 4 proximally relative tocontainment collar 32 causes controlarms 26 andpartial loops 28 to interact with the inside diameter and distal end ofcontainment collar 32 wherebycontrol arms 26 andpartial loops 28 deform and, more particularly, converge towardguide wire 4 as they are received incontainment collar 32. As shown inFIG. 3 , withoutcontainment collar 32 for illustrative purposes, and inFIG. 4 , withcontainment collar 32 present, and inFIG. 5 , with bothcontainment collar 32 and sack 12 present, When controlarms 26 andpartial loops 28 of half frames 24 are received incontainment collar 32, they are stressed within the elastic limits of the shape-memory-effect alloy to form elongated loops having axes positioned substantially parallel to the longitudinal axis ofguide wire 4. The super-elastic property of the shape-memory-effect alloy enables half frames 24 to return to the relaxed undeformed shape, shown inFIG. 2 , when they are deployed fromcontainment collar 32 in the manner described above. -
Sack 12 is formed of a biocompatible material having sufficient strength to withstand forces associated with deployment in body canals or vessels and forces associated with ensnaring/retaining particles, objects, etc., withinsack 12. The material may be either non-porous or porous, but is preferably porous.Sack 12 made of non-porous material occludes flow in the vessels.Sack 12 made of porous material allows flow of a fluid, e.g., blood, in the vessels, and permits particles of smaller diameter than the pores ofsack 12 to escape therethrough. Preferably, sack 12 is formed from a polymeric material, such as polyurethane, which is either porous or non-porous.Sack 12 can also be made radiopaque through the addition thereto of barium sulfate or bismuth sulfate or threads of radiopaque materials interwoven or otherwise associated withsack 12.Sack 12 can also be made of other biocompatible materials, such as woven polyester fabrics. - A rim of
mouth 14 ofsack 12 surrounds and is bonded to half frames 24 to securesack 12 to wireframe 8. Similarly,apex 20 ofbottom 16 ofsack 12 is bonded to the projection ofguide wire 4 therethrough to securesack 12 to guidewire 4. Chemicals and/or heat can be utilized tobond sack 12 to guidewire 4 andwire frame 8. Preferably, sack 12 is bonded between half frames 24 andguide wire 4 so that no gaps exist betweensack 12 andguide wire 4, and sack 12 andwire frame 8. -
Sack 12 preferably has a conical shape as illustrated inFIG. 1C . However, sacks having more hemispherical shapes, as illustrated in FIGS. 2, 6, 9, 10 and 11 of U.S. Pat. No. 5,779,716 may also be employed. Conical-shaped sacks have the advantage that as objects, particles, etc. fill bottom 16 ofsack 12, sack 12 still permits flow of fluid, e.g., blood, into and out ofsack 12 proximal of the build up of particles, objects, etc. insack 12, as illustrated inFIG. 6 . - The size of the body canal and/or vessel, more particularly, the diameter of the lumen of the vessel in which
endovascular device 2 of the present invention is to be deployed, establishes the dimensions ofmouth 14 ofsack 12 whenwire frame 8 is in its deployed state that can be utilized to capture particles, objects, etc. Specifically, the dimensions ofwire frame 8 in its deployed state are selected so thatmouth 14 ofsack 12 is urged snugly with the intima of the vessel. Preferably,wire frame 8 is configured to be firm and pliable so that interaction betweenwire frame 8 and the intima of the vessel avoids trauma to the vessel and yet provides a firm or snug opposition betweenmouth 14 ofsack 12 and the intima of the vessel. In an exemplary embodiment, controlarms 26 andpartial loops 28 ofwire frame 8 have diameters between 0.003 to 0.010 inches (0.0076 cm to 0.025 cm),guide wire 4 has a diameter between 0.010 to 0.035 inches (0.025 cm to 0.088 cm), andcontainment collar 32 has an outside diameter between 0.025 to 0.130 inches (0.064 cm to 0.33 cm). - The lengths of
pull wire 34 andguide wire 4 are selected based on the position of access opening 41 for insertingendovascular device 2 in the lumen of the body canal and/or vessel relative to the position in the lumen of the solid material capable of producing movement of particles, as described above. -
Endovascular device 2 can be used in several ways depending on its exact configuration and the area of the cardiovascular system involved. By way of a specific non-limiting but illustrative example, interventional use ofendovascular device 2 to capture emboli shed during a procedure, such as angioplasty and stent placement, to treat a stenosis in the carotid artery of a human patient, will now be described with reference toFIGS. 1A-1D , 5 and 6. - Starting with
wire frame 8 and sack 12 received incontainment collar 32 and with at leastpliable tip 22 extending fromcontainment collar 32,endovascular device 2 is inserted percutaneously into the patient throughguide catheter 42 previously inserted in access opening 41 in the patient's femoral artery. Under fluoroscopic visualization,guide wire 4 is manipulated to advancepliable tip 22 andcontainment collar 32 throughguide catheter 42 in the patient's circulatory system until reaching the carotid artery.Guide wire 4 is further advanced beyondguide catheter 42, guided bypliable tip 22 through the remainder of the carotid artery to, across and beyond a stenosis in the internal carotid artery.Containment collar 32 is now positioned at a desired position in the internal carotid artery so that, when deployed,wire frame 8 and sack 12 are downstream of the stenosis in the internal carotid artery to capture and retain any dislodged emboli particles. - To deploy
wire frame 8 and sack 12, a portion ofguide wire 4 outside the patient's body is held steady and a portion ofpull wire 34, or handle 38, outside the patient's body is grasped and pulled in the direction of arrow 11 so thatcontainment collar 32 is retracted or withdrawn from overwire frame 8 and sack 12, thereby enablingwire frame 8 to deploy and to holdmouth 14 ofsack 12 snugly against the wall of the internal carotid artery. - Thereafter,
containment collar 32 is pulled in the direction of arrow 11 whileguide wire 4 remains stationary untilcontainment collar 32 is removed completely fromguide wire 4 and the patient, thereby enabling other over-the-wire or monorail devices or components used during the procedure to be received onguide wire 4 and delivered throughguide catheter 42 to the stenosis. Other over-the-wire or monorail devices include, but are not limited to, endovascular devices such as dilation balloon systems, stent deployment systems, mechanical and/or laser thrombectomy devices and combinations thereof that track overguide wire 4 and are used to reduce the stenosis. - With regard to stent deployment systems, the stent may be either a self-expanding stent or a mechanically expandable stent. Stents are usually in the form of a tubular mesh sleeve. See, for example, U.S. Pat. No. 4,733,665 to Palmaz, incorporated herein by reference. Either type of stent is typically delivered via a stent catheter.
- For the mechanically expandable stent, the stent catheter includes at or near its distal end an inflatable balloon on which the stent is mounted. An inflation lumen runs the length of the stent catheter to the balloon. The stent catheter includes a guide lumen which runs the length of the stent catheter and which is configured to receive
guide wire 4 therein. In use, the proximal end ofguide wire 4 is inserted into the guide lumen of the stent catheter. Thereafter, the stent catheter is advanced onguide wire 4 until the inflatable balloon on which the stent is mounted is positioned at an appropriate point in the vessel, e.g., wholly or partially across a stenosis. Thereafter, the balloon is expanded via the inflation lumen causing the stent, in turn, to expand and in its expanded state to hold itself with a frictional fit against the walls of the vessel into which it has been inserted. - The self-expanding stent is typically made in whole or part from a shape-memory-effect alloy and is compressed within a delivery catheter until deployment. Pushing the stent from the delivery catheter deploys the stent to an expanded state, much in the same manner as
wire frame 8 expands upon release fromcontainment collar 32. - An unfortunate aspect of stents that are of the tubular mesh design is that they tend to create particles, e.g., emboli, due to their open mesh structure. As they expand, embolic material is able to disperse through the mesh to the interior of the stent where the flow of blood or other fluid undesirably washes particles of embolic material downstream in the circulatory or other system. Further, even after successful implantation, the open mesh structure tends to permit stenotic material to build up through the mesh that could again occlude the artery. Therefore, in a preferred embodiment of the present invention, where the system includes
endovascular device 2 of the present invention, and where additional over-the-wire stent deployment systems are used as part of the system, the stent preferably includes a sheathing or coating material associated with the open mesh structure of the stent. This material may be on the outside of the stent, the inside lumen of the stent, or both. The stent may also be embedded within an envelope of such material. Such material is biocompatible and operates to prevent stenotic material from advancing from the walls of the vessel through the open mesh structure of the stent and into the circulatory or other system during implantation of the stent. Examples of suitable materials for encasing all or a portion of the stent include, but are not limited to, Dacron, Gortex and combinations thereof. - After the stenosis has been reduced and the other over-the-wire or monorail components are removed from
guide wire 4,recovery sheath 6 is positioned overguide wire 4 and advanced throughguide catheter 42, ifguide catheter 42 has been permitted to remain in the patient up to this point toward, and beyond the operative site to contactwire frame 8 and sack 12. As the lumen of the carotid artery in this region has now been expanded, in this example, by the stent,recovery sheath 6 may safely have a larger diameter thancontainment collar 32 without the danger of dislodging stenotic material. Further,recovery sheath 6 may be more easily advanced through the operative site now that the lumen has been expanded. Further advancement ofrecovery sheath 6 in the direction ofarrow 56 and/or pulling ofguide wire 4 in the direction of arrow 11, causes all or a portion ofwire frame 8 and all or a portion ofsack 12 to be retracted intorecovery sheath 6 to a desired extent. - As shown in
FIG. 6 ,particles 58 captured insack 12 may permit only partial retraction ofsack 12 intorecovery sheath 6. Preferably, however,particles 58 captured insack 12 cannot empty or escape into the artery. Thereafter,recovery sheath 6,wire frame 8 and sack 12, withparticles 58 captured insack 12, are withdrawn from the patient along withguide wire 4. - Referring now to
FIGS. 7A and 7B , there is illustrated an alternative embodiment of the present invention, illustratingtubular component 39 attached to the external surface ofportion 33 ofcontainment collar 32, and further illustratingpull wire 34 coiled aboutguide wire 4 to contain its lateral movement in the patient. The degree of coiling is preferably within the range of coiling that retains pullwire 34 closelyadjacent guide wire 4, but not so great as to undesirably reduce torquability of the device. In this embodiment,containment collar 32 has thesame portion 33, andlumen 36 ofcontainment collar 32 remains continuous withlumen 37 ofportion 33 to permitcontainment collar 32 to be slidably advanced overguide wire 4. However, in this embodiment,portion 33 is firmly gripped about its exterior bytubular component 39 as illustrated inFIGS. 7A and 7B , whichtubular component 39 is in turn associated withpull wire 34 to connectpull wire 34 tocontainment collar 32 throughtubular component 39. Again, pullwire 34 may be connected totubular component 39 by any of various means including, but not limited to, welding, brazing, soldering or integral forming, as for example, wheretubular component 39 is formed by coilingpull wire 34 as described above. In this embodiment,lumen 40 oftubular component 39 is of sufficient diameter to accept the external diameter ofportion 33 in a preferably frictional fit of sufficient grasp so as to enableendovascular device 2 to be delivered into and removed from a patient withouttubular component 39 separating fromcontainment collar 32. - The axial length of
portion 33 need only be sufficient to permittubular component 39 to graspcontainment collar 32 sufficiently firmly so as to enableendovascular device 2 to be delivered into and removed from a patient withouttubular component 39 separating fromcontainment collar 32, but it may be longer. A length of approximately 12 centimeters of the length ofportion 33 ensures thattubular component 39 remains within and does not exit the distal end of the lumen ofguide catheter 42 common to most all endovascular procedures whenwire frame 8 and sack 12 are properly positioned past the lesion. In other words, whenwire frame 8 and sack 12 are positioned past a lesion, a length of at least 12 centimeters forportion 33 ensures thattubular component 39 is sufficiently distanced fromwire frame 8 and sack 12 thattubular component 39 will remain within the confines ofguide catheter 42. Keepingtubular component 39 within the confines ofguide catheter 42 is desirable, as it is one less item that can contact the vessel walls and undesirably dislodge particles. - Referring now to
FIG. 8 , there is illustrated yet another embodiment of the present invention whereinpull wire 34 includes one or morecoiled sections 60, illustrated in phantom. Each coiledsection 60 is preferably displaced at least adistance 61 proximally oftubular component 39 such that whenendovascular device 2 is deployed in a body canal or vessel, coiledsection 60 remains within the confines of aguide catheter 62. In this embodiment, the torquability ofendovascular device 2 is not compromised. Also, this embodiment ensures that no coiling will be present indistance 61 betweenguide catheter 62 and the procedure site, which is preferred as such coiling could irritate -vessel walls or undesirably dislodge particles. Although twocoiled sections 60 are illustrated inFIG. 8 , additionalcoiled sections 60 may be positioned along the length ofguide wire 4. - Referring now to
FIGS. 9A and 9B , a side view and a rotated side view, respectively, of an object capture device in accordance with another embodiment of the present invention are illustrated. In this embodiment,wire frame 8 and sack 12 are connected to a tightly wound but flexible coil ofwire 66, or spring, which defines alumen 67 therethrough. Preferably, coil ofwire 66 is helically wound in the form of a cylinder. The proximal end ofcontrol arms 26 are connected to coil ofwire 66 at ajunction 68 adjacent one end of coil ofwire 66, andapex 20 ofsack 12 is connected to coil ofwire 66 adjacent the other end of coil ofwire 66. The proximal ends ofcontrol arms 26 can be connected to coil ofwire 66 viajunction 68 in the same manner ascontrol arms 26 are connected to guidewire 4 viajunction 10 inFIG. 2 . Coil ofwire 66 is configured to be firm axially, but pliable laterally. This enables coil ofwire 66 to bend and follow the path ofguide wire 4 in a body canal or vessel while avoiding axial elongation of coil ofwire 66 which may cause tension to be applied towire frame 8 and/or sack 12 betweenjunction 68 andapex 20 ofsack 12. Adistal stop 70 and aproximal stop 72 are connected in spaced relation to guidewire 4.Stops - In use,
guide wire 4 is received inlumen 67 and coil ofwire 66 is received onguide wire 4 betweenstops wire 66, and hence,wire frame 8 and sack 12, from moving onguide wire 4 distally ofdistal stop 70 and proximally ofproximal stop 72. More specifically, stops 70 and 72 have a diameter larger than the inside diameter of coil ofwire 66 thereby preventing slidable movement of coil ofwire 66 axially alongguide wire 4, distally ofdistal stop 70 or proximally ofproximal stop 72. - Starting with
wire frame 8 and sack 12 received incontainment collar 32 and with coil ofwire 66 received onguide wire 4 betweenstops pliable tip 22 is inserted percutaneously into the patient through the proximal end ofguide catheter 42 previously inserted inaccess opening 41.Guide wire 4 is manipulated to advancepliable tip 22, coil ofwire 66,containment collar 32 and pullwire 34 throughguide catheter 42 untilpliable tip 22 approaches the distal end ofguide catheter 42. Next,guide wire 4 is further advanced beyond the distal end ofguide catheter 42, guided bypliable tip 22, untilcontainment collar 32 is positioned at a desired position in a body canal or vessel. Because coil ofwire 66 is flexible laterally, it is able to conform to twists and bends taken byguide wire 4 during manipulation to advancecontainment collar 32 to the desired position. - Once
containment collar 32 is at the desired position, a portion ofpull wire 34, or handle 38, outside the patient's body is pulled proximally while, at the same time, a portion ofguide wire 4 outside the patient's body is held stationary. Pullingpull wire 34 or handle 38 proximally causescontainment collar 32 to be retracted or withdrawn from overwire frame 8 and sack 12 whereuponwire frame 8 deploys and holdsmouth 14 ofsack 12 snugly against the wall of a body canal or vessel. Thereafter, pullwire 34 andcontainment collar 32 are pulled proximally throughguide catheter 42 whileguide wire 4 remains stationary untilcontainment collar 32 is completely removed fromguide wire 4. - Alternatively,
containment collar 32 is omitted and replaced by a deployment catheter 43 (shown in phantom inFIGS. 9A and 9B ) which has alumen 44 of sufficient inside diameter to receiveguide wire 4 and coil ofwire 66, withwire frame 8 and sack 12 in their collapsed state, therein. Starting with coil ofwire 66 received onguide wire 4 betweenstops wire frame 8 and sack 12 received in their collapsed state inlumen 44 adjacent the distal end ofdeployment catheter 43 received onguide wire 4, and withpliable tip 22 extending from the distal end of thedeployment catheter 43,pliable tip 22 and the distal end ofdeployment catheter 43 are inserted percutaneously into the patient throughguide catheter 42 previously inserted inaccess opening 41.Deployment catheter 43 andguide wire 4 are manipulated so that the distal end ofdeployment catheter 43 andpliable tip 22 advance throughguide catheter 42 untilpliable tip 22 approaches the distal end ofguide catheter 42. Next, the distal end ofdeployment catheter 43 andguide wire 4 are further advanced beyondguide catheter 42, guided bypliable tip 22, until coil ofwire 66 is positioned at a desired position in a body canal or vessel. - Once coil of
wire 66 is at the desired position, a portion ofdeployment catheter 43 outside the patient's body is pulled proximally while, at the same time, a portion ofguide wire 4 outside the patient's body is held stationary. Pullingdeployment catheter 43 in this manner causesdeployment catheter 43 to be retracted or withdrawn from overwire frame 8 and sack 12 whereuponwire frame 8 deploys and holdsmouth 14 ofsack 12 snugly against the wall of a body canal or vessel. Thereafter,deployment catheter 43 is pulled proximally throughguide catheter 42, whileguide wire 4 remains stationary, untildeployment catheter 43 is completely removed fromguide wire 4. - Next, an over-the-wire or monorail device or component can be received on
guide wire 4 and delivered throughguide catheter 42 to a position proximal ofproximal stop 72 to perform a procedure that the particular over-the-wire or monorail device is configured to perform. Once the procedure has been performed, the over-the-wire or monorail device is withdrawn fromguide wire 4 throughguide catheter 42. - Thereafter,
recovery sheath 6, of the type shown inFIG. 1D , is positioned overguide wire 4 and is advanced distally thereon throughguide catheter 42 to contactwire frame 8. Further advancement ofrecovery sheath 6 distally onguide wire 4 causes all or a portion ofwire frame 8 and all or a portion ofsack 12 to be retracted intorecovery sheath 6 to a desired extent. Thereafter,recovery sheath 6,wire frame 8 and sack 12 with anyparticles 58 captured insack 12 are withdrawn from the patient along withguide wire 4. -
Guide wire 4 andlumen 67 and are configured to enable rotation ofguide wire 4 in coil ofwire 66. Distal andproximal stops wire 66 can reside between them. If the spacing between distal andproximal stops wire 66,guide wire 4 can only rotate inlumen 67. Such ability to rotate is important to prevent loading of theguide wire 4 to reduce its torquability. If spacing between distal andproximal stops wire 66, coil ofwire 66 can rotate inlumen 67 and can move linearly along theguide wire 4. Thus, when deployed,wire frame 8 does not rub the wall of the body canal or vessel in response to longitudinal movement ofguide wire 4 that does not movedistal stop 70 orproximal stop 72 into contact with coil ofwire 66. - With continuing reference to
FIGS. 9 a and 9 b, in another embodiment,proximal stop 72 is omitted,wire frame 8 and sack 12 are connected to coil ofwire 66,wire frame 8 and sack 12 are received incontainment collar 32,guide wire 4 is received inlumen 67, and coil ofwire 66 is received onguide wire 4 betweendistal stop 70 and the distal end ofdeployment catheter 43 received onguide wire 4 proximally ofdistal stop 70.Lumen 44 has a sufficient inside diameter to slidably receiveguide wire 4 therein. However, in this embodiment,lumen 44 is sufficiently small whereupon the distal end ofdeployment catheter 43 abuts an end of coil ofwire 66 whendeployment catheter 43 and coil ofwire 66 are received onguide wire 4. - In use,
pliable tip 22 andcontainment collar 32, with the distal end ofdeployment catheter 43 abutting the proximal end of coil ofwire 66 havingguide wire 4 received inlumen 67, are inserted percutaneously into the patient through a lumen ofguide catheter 42 which has been previously inserted inaccess opening 41.Guide wire 4 anddeployment catheter 43 are manipulated to advancepliable tip 22,containment collar 32 and coil ofwire 66 throughguide catheter 42 untilpliable tip 22 approaches the distal end ofguide catheter 42. More specifically,guide wire 4 anddeployment catheter 43 are urged distally while, at the same time, a portion ofguide catheter 42 outside of the patient's body is held stationary whereuponpliable tip 22,containment collar 32, coil ofwire 66,deployment catheter 43 andguide wire 4 advance throughguide catheter 42. In this embodiment, pullwire 34 extends through the lumen ofguide catheter 42 and, more particularly, pullwire 34 is disposed between the interior surface ofguide catheter 42 and the exterior surface ofdeployment catheter 43. Next,pliable tip 22 andcontainment collar 32 are urged beyond the distal end ofguide catheter 42, guided bypliable tip 22, until coil ofwire 66 andcontainment collar 32 are positioned at a desired position in a body canal or vessel. - Alternatively,
pliable tip 22 ofguide wire 4 is first inserted percutaneously into the patient through a lumen ofguide catheter 42 which has been previously inserted inaccess opening 41.Guide wire 4 is manipulated to advancepliable tip 22 to the distal end of theguide catheter 42.Pliable tip 22 is urged beyond the distal end ofguide catheter 42 untildistal stop 70 is positioned at a desired position in the body canal or vessel. Thereafter,deployment catheter 43 and coil ofwire 66, withwire frame 8 and sack 12 received incontainment collar 32, are received onguide wire 4 with the proximal end ofcontainment collar 32 enclosing the distal end ofdeployment catheter 43 as it abuts the proximal end of coil ofwire 66. Next,deployment catheter 43 is manipulated throughguide catheter 42 alongguide wire 4, whileguide wire 4 and guidecatheter 42 are held stationary, to advance coil ofwire 66 andcontainment collar 32 overguide wire 4 towarddistal stop 70 and to a desired position in the body canal or vessel. Pullwire 34 extends through the lumen ofguide catheter 42 and, more particularly, pullwire 34 is disposed between the interior surface ofguide catheter 42 and the exterior surface ofdeployment catheter 43. - Once coil of
wire 66 andcontainment collar 32 are at the desired position in the body canal or vessel, a portion ofpull wire 34, or handle 38, outside the patient's body is pulled proximally while, at the same time, portions ofguide catheter 42 anddeployment catheter 43 outside the patient's body are held stationary. In response to pullingpull wire 34 or handle 38 proximally,tubular component 39 andcontainment collar 32 advance proximally overdeployment catheter 43 whereuponwire frame 8 deploys and holdsmouth 14 ofsack 12 snugly against the wall of the body canal or vessel. Proximal advancement oftubular component 39 andcontainment collar 32 overdeployment catheter 43 continues until they are received inguide catheter 42. Thereafter,deployment catheter 43,tubular component 39 andcontainment collar 32 are removed fromguide catheter 42 andguide wire 4. - Next, an over-the-wire or monorail device or component can be received on
guide wire 4 and delivered throughguide catheter 42 to a position proximal ofwire frame 8 and sack 12 to perform the procedure the over-the-wire or monorail device or component is configured to perform. Once the procedure has been performed, the over-the-wire or monorail device or component is withdrawn fromguide catheter 42 andguide wire 4. - Thereafter,
recovery sheath 6 is positioned overguide wire 4 and advanced distally thereon throughguide catheter 42 to contactwire frame 8. Further advancement ofrecovery sheath 6 distally onguide wire 4 causes all or a portion ofwire frame 8 and/or all or a portion ofsack 12 to be retracted intorecovery sheath 6 to a desired extent. Thereafter,recovery sheath 6,wire frame 8 and sack 12, and anyparticles 58 captured insack 12, are withdrawn from the patient along withguide wire 4. -
Recovery sheath 6 inFIG. 1D is shown as having an elongated tubular form. However, aretrieval catheter assembly 100 of the type shown inFIGS. 10A-10C can be utilized to retrievewire frame 8 and sack 12.Retrieval catheter assembly 100 includes in coaxial arrangement having aninner tube 102 and anouter tube 104.Inner tube 102 includes alumen 106 configured to slidably receiveguide wire 4 therein, whileouter tube 104 includes alumen 108 configured to slidably receiveinner tube 102 therein. -
Outer tube 104 is connected at its proximal end to a fitting 110. Fitting 110 has a lumen 111 configured to slidably receiveinner tube 102 therethrough. A Y-connector 112 is slidably received oninner tube 102 and guidewire 4 on a side of fitting 110opposite wire frame 8 and sack 12. A fitting 114 is coupled to an end ofinner tube 102opposite wire frame 8 and sack 12. Fitting 114 includes alumen 115 configured to slidably receiveguide wire 4 therethrough when fitting 114 is connected toinner tube 102.Fittings connector 112. More specifically,fittings connector 112. In one embodiment, Y-connector 112 includes a male threadedside port 118 having a female threadedcap 116 threadably mated thereon. - Y-
connector 112 is configured in a manner known in the art to enableguide wire 4 andinner tube 102 to be received therethrough while avoiding the undesired seepage of fluid from a body canal or vessel vialumen 106 ofinner tube 102 whenwire frame 8 and sack 12 are deployed in a body canal or vessel of a patient.Cap 116 can be removed fromside port 118 so that a syringe can be received inside port 118 for introducing fluids into the body canal or vessel of the patient vialumen 108 ofouter tube 104 wheninner tube 102 is loosely received therein. Preferably, however,inner tube 102 andouter tube 104 fit snugly and slidably together in a manner that avoids the effective passage of fluid inlumen 108. Similarly,guide wire 4 andinner tube 102 fit snugly and slidably together in a manner that avoids the effective passage of fluid inlumen 106. - At an appropriate time, with
fittings connector 112,retrieval catheter assembly 100 is positioned overguide wire 4 and advanced distally thereon, preferably throughguide catheter 42, to contactwire frame 8. Preferably, during advancement ofinner tube 102 onguide wire 4, the distal end ofinner tube 102 extends distally out of lumen 108 a short distance as shown inFIG. 10A . Because of the snug and slidable fit betweenguide wire 4 andinner tube 102 and since the distal end ofinner tube 102 extends distally out oflumen 108 whenretrieval catheter assembly 100 is slidably advanced onguide wire 4,inner tube 102 andouter tube 104 accurately track the path ofguide wire 4 in the body canal or vessel of the patient in a manner that avoids the distal end ofinner tube 102 or the distal end ofouter tube 104 from contacting a protrusion or a stent deployed in a body canal or vessel of the patient, or from contacting the intima of the body canal or vessel whereguide wire 4 makes relatively sharp turns therein. - When the distal end of
inner tube 102 is contacting or is closely adjacent the connection ofwire frame 8 to guidewire 4, fitting 114 is uncoupled from Y-connector 112. Thereafter, fitting 114 is pulled proximally whereuponinner tube 102 moves proximally onguide wire 4 and is retracted intolumen 108 ofouter tube 104, and Y-connector 112 is advanced distally onguide wire 4 whereupon the distal end ofouter tube 104 advances overwire frame 8 and, if desired, oversack 12 to a desired extent. Preferably, Y-connector 112 is advanced sufficiently distally that all ofwire frame 8 and all or a portion ofsack 12 are received in the space inlumen 108 between the distal end ofinner tube 102 and the distal end ofouter tube 104. Alternatively, with Y-connector 112 held stationary,guide wire 4 can be pulled proximally so that all ofwire frame 8 and all or a portion ofsack 12 are retracted intolumen 108 in the space between the distal end ofinner tube 102 and the distal end ofouter tube 104. Thereafter,retrieval catheter assembly 100, and more particularly,inner tube 102 andouter tube 104 withwire frame 8 and sack 12 partially or wholly received inlumen 108, are withdrawn from the patient along withguide wire 4. - Referring now to
FIGS. 11A and 11B , a perspective view and a side view, respectively, of another embodiment of awire frame 134 for use with the object capture device of the present invention is illustrated. In this embodiment, sack 12 is connected to wireframe 134 which includes anarm 136 connected at one end to ajunction 138 and at another end to aloop 140 to whichmouth 14 ofsack 12 is connected.Arm 136 andloop 140 are formed from a shape-memory-effect alloy which can be received in a collapsed state or structure withincontainment collar 32,recovery sheath 6 orouter tube 104 ofretrieval catheter assembly 100 in the same manner as half frames 24 and controlarms 26 ofwire frame 8. In addition,arm 136 andloop 140 can be deployed outside ofcontainment collar 32 in its expanded or deployed state or structure shown inFIGS. 11A and 11B .Arm 136 extends distally from its connection tojunction 138 and radially away fromguide wire 4.Guide wire 4 extends throughmouth 14,loop 140 andapex 20 ofsack 12.Apex 20 andjunction 138 can be coupled to guidewire 4. Alternatively, apex 20 andjunction 138 can be slidably received onguide wire 4 between a pair of stops, e.g.,distal stop 70 andproximal stop 72, of the type shown inFIGS. 9A and 9B . - As can be seen from the foregoing,
endovascular device 2 of the present invention provides several important advantages over other systems. These include, but are not limited to, the device's ability to enable emboli shed during angioplasty and stenting procedures to be safely captured and removed. Its design facilitates scaling for use in various diameter vessels. The shape-memory-effect alloypermits wire frame 8 to closely conform with the intima of a blood vessel while avoiding trauma to the blood vessel.Pliable tip 22 and/or the extension of the distal end ofguide wire 4 thedistance 18 beyondbottom 16 ofsack 12 permits manipulation ofendovascular device 2 through tortuous vascular configurations, andcontainment collar 32 permitting such manipulation without the undesirable reduction of torquability associated with presently available systems.Guide wire 4 enables delivery of other devices to the lesion site.Sack 12 connected to wireframe 8 acts to form a basket that can be manipulated to a position outsidecontainment collar 32 where the mouth of the basket is open and a position insidecontainment collar 32 where the mouth of the basket is closed, and vice versa. The material used to constructsack 12 can be porous or non-porous. Whensack 12 is made of a porous material, it acts as a filter that allows blood to flow and captures particles of a size greater than the pores. Whensack 12 is made of a non-porous material, it occludes blood flow and movement of solid particles thereby. - In an alternative embodiment, a suction device can be used to remove particles trapped by
sack 12 made of non-porous material. - The present invention may be employed to capture objects in body organs, cavities, canals or other structures within the body, so as to facilitate the entrapment within and/or removal of the object from the body. The apparatus of the present invention may be positioned and employed to capture the object using fluoroscopic visualization in general and angiography with dye injection in particular, among other positioning methods and devices. The present invention may be utilized in any medical procedure where it is desirable to entrap particles in blood or other vessels, but is particularly advantageous for use with endovascular procedures including, but not limited to, mechanical and laser thrombectomy, angioplasty and stenting operations to dilate occluded vessels and yet minimize embolic events.
- The invention has been described with reference to the preferred embodiments. Obvious modifications and alterations will occur to others upon reading and understanding the preceding detailed description. For example, while
endovascular device 2 has been described in connection withcontainment collar 32 being utilized withwire frame 8 and sack 12, it is to be appreciated thatcontainment collar 32 can be utilized to deploy other configurations of collapsible or resilient frames having a sack, basket or filter attached thereto. Non-limiting examples of the types of collapsible or resilient frames and filters that can be deployed usingcontainment collar 32 include those illustrated in U.S. Pat. Nos. 6,129,739 to Khosravi; 6,152,946 to Broome et al.; 6,179,861 to Khosravi et al.; and International. Publication Nos. WO 96/01591 and WO 99/23976, the disclosures of which are incorporated herein by reference. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Claims (29)
1-8. (canceled)
9. An apparatus for removing a solid object from a body canal or vessel, the apparatus comprising:
a guide wire;
a resilient frame including a sack having a mouth and a closed bottom opposite the mouth, the resilient frame being positionable between a collapsed state where the mouth of the sack is closed against the bias of the resilient frame and a deployed state where the mouth of the sack is biased open by the resilient frame;
a mounting member configured to slidably receive the guide wire, the resilient frame being attached to the resilient frame;
a containment collar configured to slidably receive the guide wire therethrough and to receive at least part of the resilient frame therein; and
a pull wire connected to the containment collar, wherein in response to relative movement between the guide wire and the pull wire, the resilient frame is positionable between the collapsed state at least partially inside the containment collar and the deployed state outside the containment collar.
10. The apparatus as set forth in claim 9 , wherein the guide wire includes a distal stop configured to avoid the slidable passage of the resilient frame thereby.
11. The apparatus as set forth in claim 10 , further including a deployment catheter having a lumen configured to slidably receive the guide wire, wherein:
the deployment catheter has an end configured to abut an end of the mounting member when the resilient frame is received on the guide wire between the deployment catheter and the distal stop.
12. The apparatus as set forth in claim 9 , further including a deployment catheter having a lumen configured to slidably receive the guide wire and at least part of the resilient frame therein, wherein in response to relative movement between the guide wire and the deployment catheter, the resilient frame is positionable between the collapsed state at least partially inside the deployment catheter and the deployed state outside the deployment catheter.
13. The apparatus as set forth in claim 9 , wherein the mounting member is a coil of wire which includes a lumen for receiving the guide wire.
14. The apparatus as set forth in claim 9 , wherein the containment collar and pull wire are connected together by a tubular member which attaches to each of the containment collar and pull wire.
15. The apparatus as set forth in claim 9 , wherein the resilient frame has a radiopaque thread wrapped around at least a portion of the frame to increase the radiopacity of the frame.
16. The apparatus as set forth in claim 9 , wherein a portion of the pull wire has a coiled section which wraps around the guide wire.
17. The apparatus as set forth in claim 16 , further including a guide catheter through which the apparatus is advanced and wherein the coiled section of the pull wire is disposed on the guide wire a sufficient distance away from the resilient frame to allow the coiled section to remain within the guide catheter when the frame is deployed in the body canal or vessel.
18. The apparatus as set forth in claim 14 , wherein a portion of the pull wire has a coiled section which wraps around the guide wire and the tubular member encapsulates the coiled section of pull wire.
19. The apparatus as set forth in claim 9 , wherein the resilient frame has a single arm having a first end connected to the guide wire and a second end coupled to an expandable loop, the mouth of the sack being attached to the loop.
20. The apparatus as set forth in claim 19 , wherein the sack has a distal end connected to the guide wire and the guide wire extends through the loop and moth of the sack.
21. An apparatus for removing a solid object from a body canal or vessel, the apparatus comprising:
a guide wire including a proximal stop and a distal stop in spaced relation on the guide wire;
a mounting member slidably received on the guide wire and disposed between the proximal and distal stops, each stop being configured to avoid the slidable passage of the mounting member;
a sack having an inlet mouth; and
a resilient frame connected to the mounting member and sack for biasing the mouth of the sack open, the resilient frame being positionable between a collapsed state where the mouth of the sack is closed against the bias of the resilient frame and a deployed state where the mouth of the sack is biased open by the resilient frame,
22. The apparatus as set forth in claim 21 , further including:
a containment collar configured to slidably receive the guide wire therethrough and to receive at least part of the resilient frame therein; and
a pull wire connected to the containment collar, wherein in response to relative movement between the guide wire and the pull wire, the resilient frame is positionable between the collapsed state at least partially inside the containment collar and the deployed state outside the containment collar.
23. The apparatus as set forth in claim 21 , further including a deployment catheter having a lumen configured to slidably receive the guide wire, the deployment catheter having an end configured to abut an end of the mounting member when the coil of wire is received on the guide wire between the deployment catheter and the distal stop.
24. The apparatus as set forth in claim 21 , further including a deployment catheter having a lumen configured to slidably receive the guide wire and at least part of the resilient frame therein, wherein in response to relative movement between the guide wire and the deployment catheter, the resilient frame is positionable between the collapsed state at least partially inside the deployment catheter and the deployed state outside the deployment catheter.
25. The apparatus as set forth in claim 21 , wherein:
the closed bottom of the sack is connected to the mounting member adjacent one end thereof;
the resilient frame is connected to the mounting member adjacent the end thereof opposite the closed bottom of the sack; and
the mouth of the sack is connected to the wire frame between the ends of the mounting member.
26. An apparatus for removing a solid object from a body canal or vessel, the apparatus comprising:
a guide wire; and
a resilient frame including a sack for collecting emboli entrained in the body canal, the resilient frame and sack being disposed on the guide wire, the resilient frame having a single, radially extending arm having a first end connected to the guide wire and a second end coupled to an expandable loop, the sack having a mouth and a closed bottom opposite the mouth, the mouth of the sack being attached to the loop, the resilient frame being positionable between a collapsed state where the mouth of the sack is closed against the bias of the loop of the resilient frame and a deployed state where the mouth of the sack is biased open by the loop of the resilient frame, the single arm positoning the loop within the body canal or vessel.
27. The apparatus as set forth in claim 26 , wherein the closed bottom of the sack is connected to the guide wire and the guide wire extends through the loop and mouth of the sack.
28. The apparatus as set forth in claim 26 , further including:
a containment collar configured to slidably receive the guide wire therethrough and to receive at least part of the resilient frame therein; and
a pull wire connected to the containment collar, wherein in response to relative movement between the guide wire and the pull wire, the resilient frame is positionable between the collapsed state at least partially inside the containment collar and the deployed state outside the containment collar.
29. A method for deploying an apparatus for removing a solid object from a body canal or vessel, the apparatus including a guide wire, a resilient frame including a sack having a mouth and a closed bottom opposite the mouth, the resilient frame being positionable between a collapsed state where the mouth of the sack is closed against the bias of the resilient frame and a deployed state where the mouth of the sack is biased open by the resilient frame; a mounting member configured to slidably receive the guide wire, the resilient frame being attached to the resilient frame; a containment collar configured to slidably receive the guide wire therethrough and to receive at least part of the resilient frame therein; a deployment catheter has an end configured to abut an end of the mounting member; and a pull wire connected to the containment collar, wherein the pull wire has a proximal end which remains outside the body vessel during usage, the method including:
deploying the guide wire in a body vessel of a patient;
sliding the mounting member, resilient frame and containment collar over the guide wire to position the resilient frame into a target area in the body vessel;
advancing the deployment catheter along the guide wire to a position in which the distal end of the deployment catheter abuts an end of the mounting member; and
moving the pull wire proximally to retract the containment collar from the resilient frame.
30. The method of claim 29 , wherein the containment collar extends over the deployment catheter as the pull wire is retracted proximally.
31. The method of claim 29 , wherein the deployment catheter has a proximal end which extends outside of the body vessel during deployment of the apparatus in the body vessel.
32. The method of claim 29 , wherein the mounting member is a coil of wire.
33. The method of claim 29 , wherein the guide wire includes a distal stop.
34. The method of claim 33 , wherein the step of sliding the mounting member, resilient frame and containment collar over the guide wire to position the resilient frame into a target area in the body vessel includes abutting a distal end of the mounting member against the distal stop of the guide wire.
35. The method of claim 29 , wherein the resilient frame is adapted to exert a force against the wall of the body vessel once deployed.
36. The method of claim 29 , wherein a portion of the pull wire has a coiled section which wraps around the guide wire.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/423,576 US20090228036A1 (en) | 2000-11-09 | 2009-04-14 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US12/813,632 US20110046656A1 (en) | 2000-11-09 | 2010-06-11 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24782400P | 2000-11-09 | 2000-11-09 | |
US24953400P | 2000-11-17 | 2000-11-17 | |
US10/000,546 US6893451B2 (en) | 2000-11-09 | 2001-10-24 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US11/128,524 US7537601B2 (en) | 2000-11-09 | 2005-05-13 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US12/423,576 US20090228036A1 (en) | 2000-11-09 | 2009-04-14 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/128,524 Continuation US7537601B2 (en) | 2000-11-09 | 2005-05-13 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/813,632 Division US20110046656A1 (en) | 2000-11-09 | 2010-06-11 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090228036A1 true US20090228036A1 (en) | 2009-09-10 |
Family
ID=21691974
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/000,546 Expired - Lifetime US6893451B2 (en) | 2000-11-09 | 2001-10-24 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US11/128,524 Expired - Fee Related US7537601B2 (en) | 2000-11-09 | 2005-05-13 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US12/423,576 Abandoned US20090228036A1 (en) | 2000-11-09 | 2009-04-14 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US12/813,632 Abandoned US20110046656A1 (en) | 2000-11-09 | 2010-06-11 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/000,546 Expired - Lifetime US6893451B2 (en) | 2000-11-09 | 2001-10-24 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US11/128,524 Expired - Fee Related US7537601B2 (en) | 2000-11-09 | 2005-05-13 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/813,632 Abandoned US20110046656A1 (en) | 2000-11-09 | 2010-06-11 | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Country Status (2)
Country | Link |
---|---|
US (4) | US6893451B2 (en) |
WO (1) | WO2003034942A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120316599A1 (en) * | 2011-06-08 | 2012-12-13 | Ghassan Kassab | Thrombus removal systems and devices and methods of using the same |
US20140236220A1 (en) * | 2011-09-27 | 2014-08-21 | Kanji Inoue | Device for capturing debris in blood vessels |
Families Citing this family (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0934092A4 (en) | 1997-03-06 | 2008-03-26 | Boston Scient Scimed Inc | Distal protection device and method |
EP1028670B1 (en) | 1997-11-07 | 2008-01-02 | Salviac Limited | An embolic protection device |
US7491216B2 (en) | 1997-11-07 | 2009-02-17 | Salviac Limited | Filter element with retractable guidewire tip |
WO2000067666A1 (en) | 1999-05-07 | 2000-11-16 | Salviac Limited | Improved filter element for embolic protection device |
US7014647B2 (en) | 1999-05-07 | 2006-03-21 | Salviac Limited | Support frame for an embolic protection device |
US6918921B2 (en) | 1999-05-07 | 2005-07-19 | Salviac Limited | Support frame for an embolic protection device |
US6964672B2 (en) | 1999-05-07 | 2005-11-15 | Salviac Limited | Support frame for an embolic protection device |
US7320697B2 (en) * | 1999-07-30 | 2008-01-22 | Boston Scientific Scimed, Inc. | One piece loop and coil |
US6575997B1 (en) | 1999-12-23 | 2003-06-10 | Endovascular Technologies, Inc. | Embolic basket |
US6402771B1 (en) | 1999-12-23 | 2002-06-11 | Guidant Endovascular Solutions | Snare |
US6660021B1 (en) | 1999-12-23 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Intravascular device and system |
US7918820B2 (en) | 1999-12-30 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Device for, and method of, blocking emboli in vessels such as blood arteries |
US6695813B1 (en) | 1999-12-30 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
US6540722B1 (en) | 1999-12-30 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
GB2369575A (en) | 2000-04-20 | 2002-06-05 | Salviac Ltd | An embolic protection system |
US6520978B1 (en) * | 2000-05-15 | 2003-02-18 | Intratherapeutics, Inc. | Emboli filter |
US6939362B2 (en) * | 2001-11-27 | 2005-09-06 | Advanced Cardiovascular Systems, Inc. | Offset proximal cage for embolic filtering devices |
US6964670B1 (en) | 2000-07-13 | 2005-11-15 | Advanced Cardiovascular Systems, Inc. | Embolic protection guide wire |
US6740061B1 (en) | 2000-07-28 | 2004-05-25 | Ev3 Inc. | Distal protection device |
US6616681B2 (en) * | 2000-10-05 | 2003-09-09 | Scimed Life Systems, Inc. | Filter delivery and retrieval device |
US6537294B1 (en) | 2000-10-17 | 2003-03-25 | Advanced Cardiovascular Systems, Inc. | Delivery systems for embolic filter devices |
US7727253B2 (en) * | 2000-11-03 | 2010-06-01 | Cook Incorporated | Medical grasping device having embolic protection |
US7713275B2 (en) * | 2000-11-03 | 2010-05-11 | Cook Incorporated | Medical grasping device |
US7753917B2 (en) | 2000-11-03 | 2010-07-13 | Cook Incorporated | Medical grasping device |
US7753918B2 (en) * | 2000-11-03 | 2010-07-13 | William A. Cook Australia Pty. Ltd. | Medical grasping device |
AU2002220027A1 (en) * | 2000-11-03 | 2002-05-15 | Cook Incorporated | Medical grasping device |
US6893451B2 (en) | 2000-11-09 | 2005-05-17 | Advanced Cardiovascular Systems, Inc. | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US6506203B1 (en) * | 2000-12-19 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Low profile sheathless embolic protection system |
US7780693B2 (en) * | 2001-06-27 | 2010-08-24 | Salviac Limited | Catheter |
US7789860B2 (en) | 2001-06-27 | 2010-09-07 | Salviac Limited | Catheter for delivery and/or retrieval of a medical device |
US6599307B1 (en) | 2001-06-29 | 2003-07-29 | Advanced Cardiovascular Systems, Inc. | Filter device for embolic protection systems |
US7338510B2 (en) | 2001-06-29 | 2008-03-04 | Advanced Cardiovascular Systems, Inc. | Variable thickness embolic filtering devices and method of manufacturing the same |
US6638294B1 (en) | 2001-08-30 | 2003-10-28 | Advanced Cardiovascular Systems, Inc. | Self furling umbrella frame for carotid filter |
US6592606B2 (en) | 2001-08-31 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | Hinged short cage for an embolic protection device |
US8262689B2 (en) | 2001-09-28 | 2012-09-11 | Advanced Cardiovascular Systems, Inc. | Embolic filtering devices |
US20030078614A1 (en) * | 2001-10-18 | 2003-04-24 | Amr Salahieh | Vascular embolic filter devices and methods of use therefor |
ATE333923T1 (en) * | 2001-12-03 | 2006-08-15 | Ekos Corp | ULTRASONIC CATHETER FOR SMALL VESSELS |
EP1455681B1 (en) | 2001-12-21 | 2014-09-17 | Salviac Limited | A support frame for an embolic protection device |
US7241304B2 (en) | 2001-12-21 | 2007-07-10 | Advanced Cardiovascular Systems, Inc. | Flexible and conformable embolic filtering devices |
US20040068189A1 (en) * | 2002-02-28 | 2004-04-08 | Wilson Richard R. | Ultrasound catheter with embedded conductors |
ATE378019T1 (en) | 2002-03-05 | 2007-11-15 | Salviac Ltd | EMBOLIC FILTER AND RETRACTION LOOP SYSTEM |
US20030187495A1 (en) | 2002-04-01 | 2003-10-02 | Cully Edward H. | Endoluminal devices, embolic filters, methods of manufacture and use |
US6887258B2 (en) | 2002-06-26 | 2005-05-03 | Advanced Cardiovascular Systems, Inc. | Embolic filtering devices for bifurcated vessels |
US7172614B2 (en) | 2002-06-27 | 2007-02-06 | Advanced Cardiovascular Systems, Inc. | Support structures for embolic filtering devices |
US8425549B2 (en) | 2002-07-23 | 2013-04-23 | Reverse Medical Corporation | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
EP1402826B1 (en) * | 2002-08-20 | 2013-06-12 | Nipro Corporation | Thrombus capture catheter |
US7056328B2 (en) * | 2002-09-18 | 2006-06-06 | Arnott Richard J | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US7252675B2 (en) | 2002-09-30 | 2007-08-07 | Advanced Cardiovascular, Inc. | Embolic filtering devices |
US7331973B2 (en) | 2002-09-30 | 2008-02-19 | Avdanced Cardiovascular Systems, Inc. | Guide wire with embolic filtering attachment |
US20040093012A1 (en) | 2002-10-17 | 2004-05-13 | Cully Edward H. | Embolic filter frame having looped support strut elements |
US20040088000A1 (en) | 2002-10-31 | 2004-05-06 | Muller Paul F. | Single-wire expandable cages for embolic filtering devices |
US7128752B2 (en) * | 2002-12-23 | 2006-10-31 | Syntheon, Llc | Emboli and thrombi filter device and method of using the same |
US7625389B2 (en) * | 2002-12-30 | 2009-12-01 | Boston Scientific Scimed, Inc. | Embolic protection device |
US7323001B2 (en) * | 2003-01-30 | 2008-01-29 | Ev3 Inc. | Embolic filters with controlled pore size |
US7220271B2 (en) | 2003-01-30 | 2007-05-22 | Ev3 Inc. | Embolic filters having multiple layers and controlled pore size |
US20040153119A1 (en) * | 2003-01-30 | 2004-08-05 | Kusleika Richard S. | Embolic filters with a distal loop or no loop |
US8591540B2 (en) | 2003-02-27 | 2013-11-26 | Abbott Cardiovascular Systems Inc. | Embolic filtering devices |
US20040204737A1 (en) * | 2003-04-11 | 2004-10-14 | Scimed Life Systems, Inc. | Embolic filter loop fabricated from composite material |
US7892251B1 (en) | 2003-11-12 | 2011-02-22 | Advanced Cardiovascular Systems, Inc. | Component for delivering and locking a medical device to a guide wire |
US7666202B2 (en) * | 2004-01-07 | 2010-02-23 | Cardiovascular Systems, Inc. | Orbital atherectomy device guide wire design |
US8092483B2 (en) * | 2004-03-06 | 2012-01-10 | Medtronic, Inc. | Steerable device having a corewire within a tube and combination with a functional medical component |
US7678129B1 (en) | 2004-03-19 | 2010-03-16 | Advanced Cardiovascular Systems, Inc. | Locking component for an embolic filter assembly |
US8628564B2 (en) | 2004-05-25 | 2014-01-14 | Covidien Lp | Methods and apparatus for luminal stenting |
ES2607402T3 (en) | 2004-05-25 | 2017-03-31 | Covidien Lp | Flexible vascular occlusion device |
US20060206200A1 (en) | 2004-05-25 | 2006-09-14 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
WO2010120926A1 (en) | 2004-05-25 | 2010-10-21 | Chestnut Medical Technologies, Inc. | Vascular stenting for aneurysms |
US7846171B2 (en) | 2004-05-27 | 2010-12-07 | C.R. Bard, Inc. | Method and apparatus for delivering a prosthetic fabric into a patient |
US20060047286A1 (en) * | 2004-08-31 | 2006-03-02 | Stephen West | Clot retrieval device |
US7955351B2 (en) | 2005-02-18 | 2011-06-07 | Tyco Healthcare Group Lp | Rapid exchange catheters and embolic protection devices |
US9259305B2 (en) | 2005-03-31 | 2016-02-16 | Abbott Cardiovascular Systems Inc. | Guide wire locking mechanism for rapid exchange and other catheter systems |
JP4945714B2 (en) | 2005-05-25 | 2012-06-06 | タイコ ヘルスケア グループ リミテッド パートナーシップ | System and method for supplying and deploying an occlusion device in a conduit |
US8968379B2 (en) * | 2005-09-02 | 2015-03-03 | Medtronic Vascular, Inc. | Stent delivery system with multiple evenly spaced pullwires |
US8361032B2 (en) * | 2006-02-22 | 2013-01-29 | Carefusion 2200 Inc. | Curable material delivery device with a rotatable supply section |
US8152833B2 (en) | 2006-02-22 | 2012-04-10 | Tyco Healthcare Group Lp | Embolic protection systems having radiopaque filter mesh |
WO2007126931A2 (en) | 2006-03-31 | 2007-11-08 | Ev3 Inc. | Embolic protection devices having radiopaque markers |
US20070239198A1 (en) * | 2006-04-03 | 2007-10-11 | Boston Scientific Scimed, Inc. | Filter and wire with distal isolation |
US9844649B2 (en) * | 2006-07-07 | 2017-12-19 | Cook Medical Technologies Llc | Telescopic wire guide |
US9149609B2 (en) * | 2006-10-16 | 2015-10-06 | Embolitech, Llc | Catheter for removal of an organized embolic thrombus |
US20080269774A1 (en) | 2006-10-26 | 2008-10-30 | Chestnut Medical Technologies, Inc. | Intracorporeal Grasping Device |
EP2109415A2 (en) * | 2007-01-11 | 2009-10-21 | EV3, Inc. | Convertible embolic protection devices and methods of use |
US8216209B2 (en) | 2007-05-31 | 2012-07-10 | Abbott Cardiovascular Systems Inc. | Method and apparatus for delivering an agent to a kidney |
US7867273B2 (en) | 2007-06-27 | 2011-01-11 | Abbott Laboratories | Endoprostheses for peripheral arteries and other body vessels |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US8926680B2 (en) | 2007-11-12 | 2015-01-06 | Covidien Lp | Aneurysm neck bridging processes with revascularization systems methods and products thereby |
US9220522B2 (en) | 2007-10-17 | 2015-12-29 | Covidien Lp | Embolus removal systems with baskets |
US8585713B2 (en) | 2007-10-17 | 2013-11-19 | Covidien Lp | Expandable tip assembly for thrombus management |
US8088140B2 (en) | 2008-05-19 | 2012-01-03 | Mindframe, Inc. | Blood flow restorative and embolus removal methods |
US10123803B2 (en) | 2007-10-17 | 2018-11-13 | Covidien Lp | Methods of managing neurovascular obstructions |
US9198687B2 (en) | 2007-10-17 | 2015-12-01 | Covidien Lp | Acute stroke revascularization/recanalization systems processes and products thereby |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
WO2009055782A1 (en) | 2007-10-26 | 2009-04-30 | Possis Medical, Inc. | Intravascular guidewire filter system for pulmonary embolism protection and embolism removal or maceration |
BRPI0908500A8 (en) | 2008-02-22 | 2018-10-23 | Micro Therapeutics Inc | imaging methods of restoration of thrombus-occluded blood vessel blood flow, partial or substantial dissolution and thrombus dislocation, self-expanding thrombus removal equipment and integrated removable thrombus mass |
WO2009123729A1 (en) * | 2008-04-02 | 2009-10-08 | The Trustees Of The University Of Pennsylvania | Dual lumen dialysis catheter with internally bored or externally-grooved small bore |
AU2009234268A1 (en) | 2008-04-11 | 2009-10-15 | Covidien Lp | Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby |
EP2303150A2 (en) * | 2008-06-08 | 2011-04-06 | Lloyd P. Champagne | Body part retriever |
US8070694B2 (en) | 2008-07-14 | 2011-12-06 | Medtronic Vascular, Inc. | Fiber based medical devices and aspiration catheters |
US8052717B2 (en) * | 2008-07-14 | 2011-11-08 | Boston Scientific Scimed, Inc. | Embolic protection device |
US8828042B2 (en) * | 2009-02-04 | 2014-09-09 | Duane D. Blatter | Blood filter retrieval devices and methods |
EP2739217B1 (en) | 2011-08-05 | 2022-07-20 | Route 92 Medical, Inc. | Systems for treatment of acute ischemic stroke |
US10010437B2 (en) | 2011-10-17 | 2018-07-03 | W. L. Gore & Associates, Inc. | Endoluminal device retrieval devices and related systems and methods |
CN102362813A (en) * | 2011-11-09 | 2012-02-29 | 江苏省人民医院 | Foreign body retrieval device for digestive tract |
US9017404B2 (en) | 2012-01-23 | 2015-04-28 | Lloyd P. Champagne | Devices and methods for tendon repair |
US8858569B2 (en) | 2012-02-16 | 2014-10-14 | Shaw P. Wan | Stone retrieval device |
US9820762B2 (en) | 2012-05-18 | 2017-11-21 | The Board Of Regents Of The University Of Texas System | Devices and methods for removal of calculus |
WO2014011933A1 (en) | 2012-07-12 | 2014-01-16 | Exsomed Holding Company Llc | Metacarpal bone stabilization device |
US9204887B2 (en) | 2012-08-14 | 2015-12-08 | W. L. Gore & Associates, Inc. | Devices and systems for thrombus treatment |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US10143545B2 (en) * | 2013-03-15 | 2018-12-04 | W. L. Gore & Associates, Inc. | Vascular filtration device |
WO2015050895A1 (en) | 2013-10-02 | 2015-04-09 | Exsomed Holding Company Llc | Full wrist fusion device |
US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
US9622523B2 (en) | 2014-01-06 | 2017-04-18 | Exsomed International IP, LLC | Ergonomic work gloves |
US9820761B2 (en) | 2014-03-21 | 2017-11-21 | Route 92 Medical, Inc. | Rapid aspiration thrombectomy system and method |
US9974554B2 (en) | 2014-09-05 | 2018-05-22 | The Board Of Regents Of The University Of Texas System | Devices and methods for removal of calculus |
US11065019B1 (en) | 2015-02-04 | 2021-07-20 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
ES2932764T3 (en) | 2015-02-04 | 2023-01-26 | Route 92 Medical Inc | Rapid Aspiration Thrombectomy System |
WO2016186847A1 (en) | 2015-05-19 | 2016-11-24 | Exsomed International IP, LLC | Distal radius plate |
US11103263B2 (en) | 2015-07-24 | 2021-08-31 | Ichor Vascular Inc. | Embolectomy system and methods of making and using same |
WO2017019563A1 (en) | 2015-07-24 | 2017-02-02 | Route 92 Medical, Inc. | Anchoring delivery system and methods |
US10716915B2 (en) | 2015-11-23 | 2020-07-21 | Mivi Neuroscience, Inc. | Catheter systems for applying effective suction in remote vessels and thrombectomy procedures facilitated by catheter systems |
US10245091B2 (en) | 2015-12-30 | 2019-04-02 | Exsomed Holding Company, Llc | Dip fusion spike screw |
US11147604B2 (en) | 2016-01-12 | 2021-10-19 | ExsoMed Corporation | Bone stabilization device |
US10194923B2 (en) | 2016-05-10 | 2019-02-05 | Exsomed International IP, LLC | Tool for percutaneous joint cartilage destruction and preparation for joint fusion |
US11229445B2 (en) | 2016-10-06 | 2022-01-25 | Mivi Neuroscience, Inc. | Hydraulic displacement and removal of thrombus clots, and catheters for performing hydraulic displacement |
EP3568186B1 (en) | 2017-01-10 | 2022-09-14 | Route 92 Medical, Inc. | Aspiration catheter systems |
CN110461401B (en) | 2017-01-20 | 2022-06-07 | 92号医疗公司 | Single operator intracranial medical device delivery system and method of use |
US11234723B2 (en) | 2017-12-20 | 2022-02-01 | Mivi Neuroscience, Inc. | Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries |
US10478535B2 (en) | 2017-05-24 | 2019-11-19 | Mivi Neuroscience, Inc. | Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries |
JP2020532407A (en) | 2017-09-05 | 2020-11-12 | エクソームド コーポレーションExsomed Corporation | Threaded intramedullary nail for radial cortex fixation |
US11191645B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Small bone tapered compression screw |
US11147681B2 (en) | 2017-09-05 | 2021-10-19 | ExsoMed Corporation | Small bone angled compression screw |
CN115920204A (en) | 2018-05-17 | 2023-04-07 | 92号医疗公司 | Aspiration catheter system and method of use |
US11617865B2 (en) | 2020-01-24 | 2023-04-04 | Mivi Neuroscience, Inc. | Suction catheter systems with designs allowing rapid clearing of clots |
WO2022060379A1 (en) * | 2020-09-21 | 2022-03-24 | Imcat, Inc. | Hybrid thrombectomy device and process |
WO2022076893A1 (en) | 2020-10-09 | 2022-04-14 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
CN113303878B (en) * | 2021-05-20 | 2022-06-24 | 山东第一医科大学附属省立医院(山东省立医院) | A kind of digestive endoscope foreign body forceps with protective sleeve |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4494531A (en) * | 1982-12-06 | 1985-01-22 | Cook, Incorporated | Expandable blood clot filter |
US4643184A (en) * | 1982-09-29 | 1987-02-17 | Mobin Uddin Kazi | Embolus trap |
US4723549A (en) * | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US4794928A (en) * | 1987-06-10 | 1989-01-03 | Kletschka Harold D | Angioplasty device and method of using the same |
US4990156A (en) * | 1988-06-21 | 1991-02-05 | Lefebvre Jean Marie | Filter for medical use |
US4998923A (en) * | 1988-08-11 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | Steerable dilatation catheter |
US5025799A (en) * | 1987-05-13 | 1991-06-25 | Wilson Bruce C | Steerable memory alloy guide wires |
US5383887A (en) * | 1992-12-28 | 1995-01-24 | Celsa Lg | Device for selectively forming a temporary blood filter |
US5490859A (en) * | 1992-11-13 | 1996-02-13 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5601595A (en) * | 1994-10-25 | 1997-02-11 | Scimed Life Systems, Inc. | Remobable thrombus filter |
US5720764A (en) * | 1994-06-11 | 1998-02-24 | Naderlinger; Eduard | Vena cava thrombus filter |
US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US6013093A (en) * | 1995-11-28 | 2000-01-11 | Boston Scientific Corporation | Blood clot filtering |
US6022336A (en) * | 1996-05-20 | 2000-02-08 | Percusurge, Inc. | Catheter system for emboli containment |
US6027520A (en) * | 1997-05-08 | 2000-02-22 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6129739A (en) * | 1999-07-30 | 2000-10-10 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6152946A (en) * | 1998-03-05 | 2000-11-28 | Scimed Life Systems, Inc. | Distal protection device and method |
US6168579B1 (en) * | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US6168604B1 (en) * | 1995-10-06 | 2001-01-02 | Metamorphic Surgical Devices, Llc | Guide wire device for removing solid objects from body canals |
US6171328B1 (en) * | 1999-11-09 | 2001-01-09 | Embol-X, Inc. | Intravascular catheter filter with interlocking petal design and methods of use |
US6171327B1 (en) * | 1999-02-24 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular filter and method |
US6174318B1 (en) * | 1998-04-23 | 2001-01-16 | Scimed Life Systems, Inc. | Basket with one or more moveable legs |
US6176849B1 (en) * | 1999-05-21 | 2001-01-23 | Scimed Life Systems, Inc. | Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat |
US6179861B1 (en) * | 1999-07-30 | 2001-01-30 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6179860B1 (en) * | 1998-08-19 | 2001-01-30 | Artemis Medical, Inc. | Target tissue localization device and method |
US6179859B1 (en) * | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
US6187025B1 (en) * | 1999-09-09 | 2001-02-13 | Noble-Met, Ltd. | Vascular filter |
US6245087B1 (en) * | 1999-08-03 | 2001-06-12 | Embol-X, Inc. | Variable expansion frame system for deploying medical devices and methods of use |
US6336934B1 (en) * | 1997-11-07 | 2002-01-08 | Salviac Limited | Embolic protection device |
US6340364B2 (en) * | 1999-10-22 | 2002-01-22 | Nozomu Kanesaka | Vascular filtering device |
US6340465B1 (en) * | 1999-04-12 | 2002-01-22 | Edwards Lifesciences Corp. | Lubricious coatings for medical devices |
US6346116B1 (en) * | 1999-08-03 | 2002-02-12 | Medtronic Ave, Inc. | Distal protection device |
US6348056B1 (en) * | 1999-08-06 | 2002-02-19 | Scimed Life Systems, Inc. | Medical retrieval device with releasable retrieval basket |
US6361559B1 (en) * | 1998-06-10 | 2002-03-26 | Converge Medical, Inc. | Thermal securing anastomosis systems |
US6361546B1 (en) * | 2000-01-13 | 2002-03-26 | Endotex Interventional Systems, Inc. | Deployable recoverable vascular filter and methods for use |
US6371971B1 (en) * | 1999-11-15 | 2002-04-16 | Scimed Life Systems, Inc. | Guidewire filter and methods of use |
US20030004540A1 (en) * | 2001-07-02 | 2003-01-02 | Rubicon Medical, Inc. | Methods, systems, and devices for deploying an embolic protection filter |
US20030004539A1 (en) * | 2001-07-02 | 2003-01-02 | Linder Richard J. | Methods, systems, and devices for providing embolic protection and removing embolic material |
US20030004536A1 (en) * | 2001-06-29 | 2003-01-02 | Boylan John F. | Variable thickness embolic filtering devices and method of manufacturing the same |
US20030004541A1 (en) * | 2001-07-02 | 2003-01-02 | Rubicon Medical, Inc. | Methods, systems, and devices for providing embolic protection |
US20030004537A1 (en) * | 2001-06-29 | 2003-01-02 | Boyle William J. | Delivery and recovery sheaths for medical devices |
US20030009188A1 (en) * | 2001-07-02 | 2003-01-09 | Linder Richard J. | Methods, systems, and devices for deploying a filter from a filter device |
US6506205B2 (en) * | 2001-02-20 | 2003-01-14 | Mark Goldberg | Blood clot filtering system |
US6506203B1 (en) * | 2000-12-19 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Low profile sheathless embolic protection system |
US20030015206A1 (en) * | 2001-07-18 | 2003-01-23 | Roth Noah M. | Integral vascular filter system |
US6511503B1 (en) * | 1999-12-30 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use |
US6511496B1 (en) * | 2000-09-12 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Embolic protection device for use in interventional procedures |
US6511492B1 (en) * | 1998-05-01 | 2003-01-28 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US6511497B1 (en) * | 1999-09-14 | 2003-01-28 | Cormedics Gmbh | Vascular filter system |
US20030023265A1 (en) * | 2001-07-13 | 2003-01-30 | Forber Simon John | Vascular protection system |
US6514273B1 (en) * | 2000-03-22 | 2003-02-04 | Endovascular Technologies, Inc. | Device for removal of thrombus through physiological adhesion |
US6517550B1 (en) * | 2000-02-02 | 2003-02-11 | Board Of Regents, The University Of Texas System | Foreign body retrieval device |
US6517559B1 (en) * | 1999-05-03 | 2003-02-11 | O'connell Paul T. | Blood filter and method for treating vascular disease |
US20030032977A1 (en) * | 1997-11-07 | 2003-02-13 | Salviac Limited | Filter element with retractable guidewire tip |
US20030032941A1 (en) * | 2001-08-13 | 2003-02-13 | Boyle William J. | Convertible delivery systems for medical devices |
US6520978B1 (en) * | 2000-05-15 | 2003-02-18 | Intratherapeutics, Inc. | Emboli filter |
US20030040772A1 (en) * | 1999-02-01 | 2003-02-27 | Hideki Hyodoh | Delivery devices |
US20040002730A1 (en) * | 2002-06-26 | 2004-01-01 | Denison Andy E. | Embolic filtering devices for bifurcated vessels |
US6673090B2 (en) * | 1999-08-04 | 2004-01-06 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
US20040006364A1 (en) * | 1997-06-02 | 2004-01-08 | Ladd William Gregory | Apparatus for trapping emboli |
US20040006365A1 (en) * | 2002-05-13 | 2004-01-08 | Salviac Limited | Embolic protection system |
US20040006361A1 (en) * | 2002-06-27 | 2004-01-08 | Boyle William J. | Support structures for embolic filtering devices |
US20040006368A1 (en) * | 1994-07-08 | 2004-01-08 | Ev3 Inc. | Method and device for filtering body fluid |
US20040006366A1 (en) * | 2001-08-31 | 2004-01-08 | Huter Benjamin C. | Hinged short cage for an embolic protection device |
US20040006367A1 (en) * | 2001-06-12 | 2004-01-08 | Krik Johnson | Emboli extraction catheter and vascular filter system |
US6676666B2 (en) * | 1999-01-11 | 2004-01-13 | Scimed Life Systems, Inc | Medical device delivery system with two sheaths |
US6676682B1 (en) * | 1997-05-08 | 2004-01-13 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6679903B2 (en) * | 1998-12-15 | 2004-01-20 | Micrus Corporation | Intravascular device push wire delivery system |
US6679902B1 (en) * | 2000-07-19 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Reduced profile delivery sheath for use in interventional procedures |
US20040015184A1 (en) * | 2000-12-21 | 2004-01-22 | Boyle William J. | Vessel occlusion device for embolic protection system |
US6682546B2 (en) * | 1994-07-08 | 2004-01-27 | Aga Medical Corporation | Intravascular occlusion devices |
US20040019363A1 (en) * | 2000-10-05 | 2004-01-29 | Scimed Life Systems, Inc. | Filter delivery and retrieval device |
US6689151B2 (en) * | 2001-01-25 | 2004-02-10 | Scimed Life Systems, Inc. | Variable wall thickness for delivery sheath housing |
US6692513B2 (en) * | 2000-06-30 | 2004-02-17 | Viacor, Inc. | Intravascular filter with debris entrapment mechanism |
US6837898B2 (en) * | 2001-11-30 | 2005-01-04 | Advanced Cardiovascular Systems, Inc. | Intraluminal delivery system for an attachable treatment device |
US20050004595A1 (en) * | 2003-02-27 | 2005-01-06 | Boyle William J. | Embolic filtering devices |
US20050004597A1 (en) * | 2003-04-29 | 2005-01-06 | Mcguckin James F. | Distal protection device |
US20050004594A1 (en) * | 2003-07-02 | 2005-01-06 | Jeffrey Nool | Devices and methods for aspirating from filters |
US6840950B2 (en) * | 2001-02-20 | 2005-01-11 | Scimed Life Systems, Inc. | Low profile emboli capture device |
US20050010245A1 (en) * | 2003-07-10 | 2005-01-13 | Lawrence Wasicek | Embolic protection filtering device |
US20050010247A1 (en) * | 2002-03-08 | 2005-01-13 | Ev3 Inc. | Distal protection devices having controllable wire motion |
US6843798B2 (en) * | 1999-08-27 | 2005-01-18 | Ev3 Inc. | Slideable vascular filter |
US6846316B2 (en) * | 1999-12-10 | 2005-01-25 | Scimed Life Systems, Inc. | Systems and methods for detaching a covering from an implantable medical device |
US6846317B1 (en) * | 1999-06-14 | 2005-01-25 | Aln | Kit for removing a blood vessel filter |
US20050021075A1 (en) * | 2002-12-30 | 2005-01-27 | Bonnette Michael J. | Guidewire having deployable sheathless protective filter |
US6893451B2 (en) * | 2000-11-09 | 2005-05-17 | Advanced Cardiovascular Systems, Inc. | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US20060004405A1 (en) * | 2001-10-18 | 2006-01-05 | Amr Salahieh | Vascular embolic filter devices and methods of use therefor |
US20060004403A1 (en) * | 1997-11-07 | 2006-01-05 | Salviac Limited | Embolic protection system |
US6986778B2 (en) * | 1996-05-20 | 2006-01-17 | Medtronic Vascular, Inc. | Exchange method for emboli containment |
US20060015138A1 (en) * | 2004-07-19 | 2006-01-19 | Michael Gertner | Emboli diverting devices created by microfabricated means |
US6989027B2 (en) * | 2003-04-30 | 2006-01-24 | Medtronic Vascular Inc. | Percutaneously delivered temporary valve assembly |
US6989021B2 (en) * | 2002-10-31 | 2006-01-24 | Cordis Corporation | Retrievable medical filter |
US20060020285A1 (en) * | 2004-07-22 | 2006-01-26 | Volker Niermann | Method for filtering blood in a vessel with helical elements |
US20060020286A1 (en) * | 2004-07-22 | 2006-01-26 | Volker Niermann | Device for filtering blood in a vessel with helical elements |
US6991642B2 (en) * | 2001-03-06 | 2006-01-31 | Scimed Life Systems, Inc. | Wire and lock mechanism |
US6991641B2 (en) * | 1999-02-12 | 2006-01-31 | Cordis Corporation | Low profile vascular filter system |
Family Cites Families (424)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3952747A (en) | 1974-03-28 | 1976-04-27 | Kimmell Jr Garman O | Filter and filter insertion instrument |
DE2821048C2 (en) | 1978-05-13 | 1980-07-17 | Willy Ruesch Gmbh & Co Kg, 7053 Kernen | Medical instrument |
US4425908A (en) | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4727873A (en) | 1984-04-17 | 1988-03-01 | Mobin Uddin Kazi | Embolus trap |
DK151404C (en) | 1984-05-23 | 1988-07-18 | Cook Europ Aps William | FULLY FILTER FOR IMPLANTATION IN A PATIENT'S BLOOD |
IT1176442B (en) | 1984-07-20 | 1987-08-18 | Enrico Dormia | INSTRUMENT FOR THE EXTRACTION OF FOREIGN BODIES FROM THE BODY'S PHYSIOLOGICAL CHANNELS |
FR2573646B1 (en) | 1984-11-29 | 1988-11-25 | Celsa Composants Electr Sa | PERFECTED FILTER, PARTICULARLY FOR THE RETENTION OF BLOOD CLOTS |
US4790813A (en) | 1984-12-17 | 1988-12-13 | Intravascular Surgical Instruments, Inc. | Method and apparatus for surgically removing remote deposits |
FR2580504B1 (en) | 1985-04-22 | 1987-07-10 | Pieronne Alain | FILTER FOR THE PARTIAL AND AT LEAST PROVISIONAL INTERRUPTION OF A VEIN AND CATHETER CARRYING THE FILTER |
US4706671A (en) | 1985-05-02 | 1987-11-17 | Weinrib Harry P | Catheter with coiled tip |
US4662885A (en) | 1985-09-03 | 1987-05-05 | Becton, Dickinson And Company | Percutaneously deliverable intravascular filter prosthesis |
US4650466A (en) | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
US4790812A (en) | 1985-11-15 | 1988-12-13 | Hawkins Jr Irvin F | Apparatus and method for removing a target object from a body passsageway |
FR2606641B1 (en) | 1986-11-17 | 1991-07-12 | Promed | FILTERING DEVICE FOR BLOOD CLOTS |
US4873978A (en) | 1987-12-04 | 1989-10-17 | Robert Ginsburg | Device and method for emboli retrieval |
FR2624747A1 (en) | 1987-12-18 | 1989-06-23 | Delsanti Gerard | REMOVABLE ENDO-ARTERIAL DEVICES FOR REPAIRING ARTERIAL WALL DECOLLEMENTS |
US4921478A (en) | 1988-02-23 | 1990-05-01 | C. R. Bard, Inc. | Cerebral balloon angioplasty system |
US4832055A (en) | 1988-07-08 | 1989-05-23 | Palestrant Aubrey M | Mechanically locking blood clot filter |
US4921484A (en) | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
US5152777A (en) | 1989-01-25 | 1992-10-06 | Uresil Corporation | Device and method for providing protection from emboli and preventing occulsion of blood vessels |
US4969891A (en) | 1989-03-06 | 1990-11-13 | Gewertz Bruce L | Removable vascular filter |
DE8910603U1 (en) | 1989-09-06 | 1989-12-07 | Günther, Rolf W., Prof. Dr. | Device for removing blood clots from arteries and veins |
US5100425A (en) | 1989-09-14 | 1992-03-31 | Medintec R&D Limited Partnership | Expandable transluminal atherectomy catheter system and method for the treatment of arterial stenoses |
US4997435A (en) | 1989-09-25 | 1991-03-05 | Methodist Hospital Of Indiana Inc. | Percutaneous catheter with encapsulating receptacle |
USD333182S (en) * | 1989-09-26 | 1993-02-09 | Terumo Kabushiki Kaisha | Catheter guide wire holder |
US5092839A (en) | 1989-09-29 | 1992-03-03 | Kipperman Robert M | Coronary thrombectomy |
AU6376190A (en) | 1989-10-25 | 1991-05-02 | C.R. Bard Inc. | Occluding catheter and methods for treating cerebral arteries |
US5421832A (en) | 1989-12-13 | 1995-06-06 | Lefebvre; Jean-Marie | Filter-catheter and method of manufacturing same |
US5221261A (en) | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5158548A (en) | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
CA2048307C (en) | 1990-08-14 | 1998-08-18 | Rolf Gunther | Method and apparatus for filtering blood in a blood vessel of a patient |
US5160342A (en) | 1990-08-16 | 1992-11-03 | Evi Corp. | Endovascular filter and method for use thereof |
US5108419A (en) | 1990-08-16 | 1992-04-28 | Evi Corporation | Endovascular filter and method for use thereof |
US5100423A (en) | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5064428A (en) | 1990-09-18 | 1991-11-12 | Cook Incorporated | Medical retrieval basket |
US5053008A (en) | 1990-11-21 | 1991-10-01 | Sandeep Bajaj | Intracardiac catheter |
US5695518A (en) | 1990-12-28 | 1997-12-09 | Laerum; Frode | Filtering device for preventing embolism and/or distension of blood vessel walls |
US5350398A (en) | 1991-05-13 | 1994-09-27 | Dusan Pavcnik | Self-expanding filter for percutaneous insertion |
WO1992022254A1 (en) | 1991-06-17 | 1992-12-23 | Wilson-Cook Medical, Inc. | Endoscopic extraction device having composite wire construction |
DE9109006U1 (en) | 1991-07-22 | 1991-10-10 | Schmitz-Rode, Thomas, Dipl.-Ing. Dr.med., 5100 Aachen | Atherectomy angioplasty catheter |
US5192286A (en) | 1991-07-26 | 1993-03-09 | Regents Of The University Of California | Method and device for retrieving materials from body lumens |
US5161534A (en) * | 1991-09-05 | 1992-11-10 | C. R. Bard, Inc. | Tool for manipulating a medical guidewire |
US5325746A (en) * | 1991-09-27 | 1994-07-05 | Cook Incorporated | Wire guide control handle |
US5626605A (en) | 1991-12-30 | 1997-05-06 | Scimed Life Systems, Inc. | Thrombosis filter |
FR2689388B1 (en) | 1992-04-07 | 1999-07-16 | Celsa Lg | PERFECTIONALLY RESORBABLE BLOOD FILTER. |
US5324304A (en) | 1992-06-18 | 1994-06-28 | William Cook Europe A/S | Introduction catheter set for a collapsible self-expandable implant |
US5527338A (en) | 1992-09-02 | 1996-06-18 | Board Of Regents, The University Of Texas System | Intravascular device |
FR2696092B1 (en) | 1992-09-28 | 1994-12-30 | Lefebvre Jean Marie | Kit for medical use composed of a filter and its device for placement in the vessel. |
US5501694A (en) | 1992-11-13 | 1996-03-26 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5836868A (en) | 1992-11-13 | 1998-11-17 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5792157A (en) | 1992-11-13 | 1998-08-11 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5312338A (en) * | 1992-11-30 | 1994-05-17 | Merit Medical Systems, Inc. | Rotation tool for medical guidewire |
WO1994018888A1 (en) | 1993-02-19 | 1994-09-01 | Boston Scientific Corporation | Surgical extractor |
US5897567A (en) | 1993-04-29 | 1999-04-27 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5325868A (en) * | 1993-05-04 | 1994-07-05 | Kimmelstiel Carey D | Self-gripping medical wire torquer |
US5606980A (en) * | 1994-01-31 | 1997-03-04 | Cordis Corporation | Magnetic device for use with medical catheters and method |
US5634942A (en) | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
US5634475A (en) * | 1994-09-01 | 1997-06-03 | Datascope Investment Corp. | Guidewire delivery assist device and system |
US5579780A (en) * | 1994-10-11 | 1996-12-03 | Zadini; Filiberto P. | Manual guidewire placement device |
US5658296A (en) | 1994-11-21 | 1997-08-19 | Boston Scientific Corporation | Method for making surgical retrieval baskets |
US5690671A (en) | 1994-12-13 | 1997-11-25 | Micro Interventional Systems, Inc. | Embolic elements and methods and apparatus for their delivery |
US5549626A (en) | 1994-12-23 | 1996-08-27 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Vena caval filter |
US5795322A (en) | 1995-04-10 | 1998-08-18 | Cordis Corporation | Catheter with filter and thrombus-discharge device |
DE69629865T2 (en) | 1995-04-14 | 2004-07-15 | B. Braun Medical Sas | Intraluminal medical device, especially blood filter |
US5681347A (en) | 1995-05-23 | 1997-10-28 | Boston Scientific Corporation | Vena cava filter delivery system |
US5833650A (en) | 1995-06-05 | 1998-11-10 | Percusurge, Inc. | Catheter apparatus and method for treating occluded vessels |
TW438587B (en) | 1995-06-20 | 2001-06-07 | Takeda Chemical Industries Ltd | A pharmaceutical composition for prophylaxis and treatment of diabetes |
FR2735967B1 (en) | 1995-06-27 | 1998-03-06 | Perouse Implant Lab | VASCULAR SURGERY TOOL AND ITS USE |
FR2737654B1 (en) | 1995-08-10 | 1997-11-21 | Braun Celsa Sa | FILTRATION UNIT FOR THE RETENTION OF BLOOD CLOTS |
US5779716A (en) * | 1995-10-06 | 1998-07-14 | Metamorphic Surgical Devices, Inc. | Device for removing solid objects from body canals, cavities and organs |
US6264663B1 (en) | 1995-10-06 | 2001-07-24 | Metamorphic Surgical Devices, Llc | Device for removing solid objects from body canals, cavities and organs including an invertable basket |
US5989281A (en) | 1995-11-07 | 1999-11-23 | Embol-X, Inc. | Cannula with associated filter and methods of use during cardiac surgery |
US5769816A (en) | 1995-11-07 | 1998-06-23 | Embol-X, Inc. | Cannula with associated filter |
US5695519A (en) | 1995-11-30 | 1997-12-09 | American Biomed, Inc. | Percutaneous filter for carotid angioplasty |
EP0879068A4 (en) | 1996-02-02 | 1999-04-21 | Transvascular Inc | Methods and apparatus for blocking flow through blood vessels |
US5895398A (en) | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
NL1002423C2 (en) | 1996-02-22 | 1997-08-25 | Cordis Europ | Temporary filter catheter. |
US5846251A (en) | 1996-07-22 | 1998-12-08 | Hart; Charles C. | Access device with expandable containment member |
US5935139A (en) | 1996-05-03 | 1999-08-10 | Boston Scientific Corporation | System for immobilizing or manipulating an object in a tract |
US6096053A (en) | 1996-05-03 | 2000-08-01 | Scimed Life Systems, Inc. | Medical retrieval basket |
US6800080B1 (en) | 1996-05-03 | 2004-10-05 | Scimed Life Systems, Inc. | Medical retrieval device |
CA2254831C (en) | 1996-05-14 | 2006-10-17 | Embol-X, Inc. | Aortic occluder with associated filter and methods of use during cardiac surgery |
US6270477B1 (en) | 1996-05-20 | 2001-08-07 | Percusurge, Inc. | Catheter for emboli containment |
US6652480B1 (en) | 1997-03-06 | 2003-11-25 | Medtronic Ave., Inc. | Methods for reducing distal embolization |
EP0906135B1 (en) | 1996-05-20 | 2004-12-29 | Medtronic Percusurge, Inc. | Low profile catheter valve |
US20050245894A1 (en) | 1996-05-20 | 2005-11-03 | Medtronic Vascular, Inc. | Methods and apparatuses for drug delivery to an intravascular occlusion |
NL1003497C2 (en) | 1996-07-03 | 1998-01-07 | Cordis Europ | Catheter with temporary vena-cava filter. |
US5662671A (en) | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5669933A (en) | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US6066158A (en) | 1996-07-25 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot encasing and removal wire |
US6447530B1 (en) | 1996-11-27 | 2002-09-10 | Scimed Life Systems, Inc. | Atraumatic anchoring and disengagement mechanism for permanent implant device |
US5876367A (en) | 1996-12-05 | 1999-03-02 | Embol-X, Inc. | Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries |
US5776162A (en) | 1997-01-03 | 1998-07-07 | Nitinol Medical Technologies, Inc. | Vessel implantable shape memory appliance with superelastic hinged joint |
FR2758078B1 (en) | 1997-01-03 | 1999-07-16 | Braun Celsa Sa | BLOOD FILTER WITH IMPROVED PERMEABILITY |
US6391044B1 (en) | 1997-02-03 | 2002-05-21 | Angioguard, Inc. | Vascular filter system |
DE69830431T2 (en) | 1997-02-03 | 2006-08-03 | Cordis Corp., Miami Lakes | vascular filters |
US6295989B1 (en) | 1997-02-06 | 2001-10-02 | Arteria Medical Science, Inc. | ICA angioplasty with cerebral protection |
US20020169458A1 (en) | 1997-02-06 | 2002-11-14 | Connors John J. | ICA angioplasty with cerebral protection |
US6254633B1 (en) | 1997-02-12 | 2001-07-03 | Corvita Corporation | Delivery device for a medical device having a constricted region |
AU6657098A (en) | 1997-02-12 | 1998-08-26 | Prolifix Medical, Inc. | Apparatus for removal of material from stents |
US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
US5800457A (en) | 1997-03-05 | 1998-09-01 | Gelbfish; Gary A. | Intravascular filter and associated methodology |
US5827324A (en) | 1997-03-06 | 1998-10-27 | Scimed Life Systems, Inc. | Distal protection device |
US6974469B2 (en) | 1997-03-06 | 2005-12-13 | Scimed Life Systems, Inc. | Distal protection device and method |
EP0934092A4 (en) | 1997-03-06 | 2008-03-26 | Boston Scient Scimed Inc | Distal protection device and method |
US7094249B1 (en) | 1997-03-06 | 2006-08-22 | Boston Scientific Scimed, Inc. | Distal protection device and method |
US5814064A (en) | 1997-03-06 | 1998-09-29 | Scimed Life Systems, Inc. | Distal protection device |
US5772674A (en) | 1997-03-31 | 1998-06-30 | Nakhjavan; Fred K. | Catheter for removal of clots in blood vessels |
EP1011532B1 (en) | 1997-04-23 | 2014-05-07 | Ethicon Endo-Surgery, Inc. | Bifurcated stent and distal protection system |
US5846260A (en) | 1997-05-08 | 1998-12-08 | Embol-X, Inc. | Cannula with a modular filter for filtering embolic material |
US6258120B1 (en) | 1997-12-23 | 2001-07-10 | Embol-X, Inc. | Implantable cerebral protection device and methods of use |
US5954745A (en) | 1997-05-16 | 1999-09-21 | Gertler; Jonathan | Catheter-filter set having a compliant seal |
US6059814A (en) | 1997-06-02 | 2000-05-09 | Medtronic Ave., Inc. | Filter for filtering fluid in a bodily passageway |
US5800525A (en) | 1997-06-04 | 1998-09-01 | Vascular Science, Inc. | Blood filter |
US5848964A (en) | 1997-06-06 | 1998-12-15 | Samuels; Shaun Lawrence Wilkie | Temporary inflatable filter device and method of use |
US6245088B1 (en) | 1997-07-07 | 2001-06-12 | Samuel R. Lowery | Retrievable umbrella sieve and method of use |
US5941896A (en) | 1997-09-08 | 1999-08-24 | Montefiore Hospital And Medical Center | Filter and method for trapping emboli during endovascular procedures |
US6361545B1 (en) | 1997-09-26 | 2002-03-26 | Cardeon Corporation | Perfusion filter catheter |
US6395014B1 (en) | 1997-09-26 | 2002-05-28 | John A. Macoviak | Cerebral embolic protection assembly and associated methods |
US6099534A (en) | 1997-10-01 | 2000-08-08 | Scimed Life Systems, Inc. | Releasable basket |
US6183482B1 (en) | 1997-10-01 | 2001-02-06 | Scimed Life Systems, Inc. | Medical retrieval basket with legs shaped to enhance capture and reduce trauma |
US6461370B1 (en) | 1998-11-03 | 2002-10-08 | C. R. Bard, Inc. | Temporary vascular filter guide wire |
WO2000067667A1 (en) | 1999-05-07 | 2000-11-16 | Salviac Limited | A filter element with retractable guidewire tip |
US6238412B1 (en) | 1997-11-12 | 2001-05-29 | William Dubrul | Biological passageway occlusion removal |
US20040260333A1 (en) | 1997-11-12 | 2004-12-23 | Dubrul William R. | Medical device and method |
US6443972B1 (en) | 1997-11-19 | 2002-09-03 | Cordis Europa N.V. | Vascular filter |
US6136015A (en) | 1998-08-25 | 2000-10-24 | Micrus Corporation | Vasoocclusive coil |
US6695864B2 (en) | 1997-12-15 | 2004-02-24 | Cardeon Corporation | Method and apparatus for cerebral embolic protection |
WO2001072205A2 (en) | 1998-01-26 | 2001-10-04 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for capturing objects beyond an operative site in medical procedures |
WO1999039649A1 (en) | 1998-02-10 | 1999-08-12 | Dubrul William R | Occlusion, anchoring, tensioning and flow direction apparatus and methods for use |
JP2002502626A (en) | 1998-02-10 | 2002-01-29 | アーテミス・メディカル・インコーポレイテッド | Supplementary device and method of using the same |
AU2994499A (en) | 1998-03-04 | 1999-09-20 | Bioguide Consulting, Inc. | Guidewire filter device |
US20050131453A1 (en) | 1998-03-13 | 2005-06-16 | Parodi Juan C. | Apparatus and methods for reducing embolization during treatment of carotid artery disease |
US6423032B2 (en) | 1998-03-13 | 2002-07-23 | Arteria Medical Science, Inc. | Apparatus and methods for reducing embolization during treatment of carotid artery disease |
US6206868B1 (en) | 1998-03-13 | 2001-03-27 | Arteria Medical Science, Inc. | Protective device and method against embolization during treatment of carotid artery disease |
CA2323655A1 (en) | 1998-04-02 | 1999-10-14 | Salviac Limited | Delivery catheter |
IE980241A1 (en) | 1998-04-02 | 1999-10-20 | Salviac Ltd | Delivery catheter with split sheath |
US5944728A (en) | 1998-04-23 | 1999-08-31 | Boston Scientific Corporation | Surgical retrieval basket with the ability to capture and release material |
US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6007557A (en) | 1998-04-29 | 1999-12-28 | Embol-X, Inc. | Adjustable blood filtration system |
US6908474B2 (en) | 1998-05-13 | 2005-06-21 | Gore Enterprise Holdings, Inc. | Apparatus and methods for reducing embolization during treatment of carotid artery disease |
CA2334223C (en) | 1998-06-04 | 2008-11-18 | New York University | Endovascular thin film devices and methods for treating and preventing stroke |
IL124958A0 (en) | 1998-06-16 | 1999-01-26 | Yodfat Ofer | Implantable blood filtering device |
US6241746B1 (en) | 1998-06-29 | 2001-06-05 | Cordis Corporation | Vascular filter convertible to a stent and method |
NL1009551C2 (en) | 1998-07-03 | 2000-01-07 | Cordis Europ | Vena cava filter with improvements for controlled ejection. |
US6231588B1 (en) | 1998-08-04 | 2001-05-15 | Percusurge, Inc. | Low profile catheter for angioplasty and occlusion |
US6306163B1 (en) | 1998-08-04 | 2001-10-23 | Advanced Cardiovascular Systems, Inc. | Assembly for collecting emboli and method of use |
US6328755B1 (en) | 1998-09-24 | 2001-12-11 | Scimed Life Systems, Inc. | Filter delivery device |
US6051014A (en) | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US7128073B1 (en) | 1998-11-06 | 2006-10-31 | Ev3 Endovascular, Inc. | Method and device for left atrial appendage occlusion |
US7044134B2 (en) | 1999-11-08 | 2006-05-16 | Ev3 Sunnyvale, Inc | Method of implanting a device in the left atrial appendage |
US6083239A (en) | 1998-11-24 | 2000-07-04 | Embol-X, Inc. | Compliant framework and methods of use |
US6652554B1 (en) | 1999-01-04 | 2003-11-25 | Mark H. Wholey | Instrument for thromboembolic protection |
US6896690B1 (en) | 2000-01-27 | 2005-05-24 | Viacor, Inc. | Cardiac valve procedure methods and devices |
EP1144037B1 (en) | 1999-01-28 | 2009-06-03 | Salviac Limited | Catheter with an expandable end portion |
US20020138094A1 (en) | 1999-02-12 | 2002-09-26 | Thomas Borillo | Vascular filter system |
US6355051B1 (en) | 1999-03-04 | 2002-03-12 | Bioguide Consulting, Inc. | Guidewire filter device |
US20020169474A1 (en) | 1999-03-08 | 2002-11-14 | Microvena Corporation | Minimally invasive medical device deployment and retrieval system |
US6632236B2 (en) | 1999-03-12 | 2003-10-14 | Arteria Medical Science, Inc. | Catheter having radially expandable main body |
US6245012B1 (en) * | 1999-03-19 | 2001-06-12 | Nmt Medical, Inc. | Free standing filter |
US6893450B2 (en) | 1999-03-26 | 2005-05-17 | Cook Urological Incorporated | Minimally-invasive medical retrieval device |
US6743247B1 (en) | 1999-04-01 | 2004-06-01 | Scion Cardio-Vascular, Inc. | Locking frame, filter and deployment system |
US7150756B2 (en) | 1999-04-01 | 2006-12-19 | Scion Cardio-Vascular, Inc | Radiopaque locking frame, filter and flexible end |
US6277139B1 (en) | 1999-04-01 | 2001-08-21 | Scion Cardio-Vascular, Inc. | Vascular protection and embolic material retriever |
US6277138B1 (en) * | 1999-08-17 | 2001-08-21 | Scion Cardio-Vascular, Inc. | Filter for embolic material mounted on expandable frame |
US6537296B2 (en) | 1999-04-01 | 2003-03-25 | Scion Cardio-Vascular, Inc. | Locking frame, filter and deployment system |
US20020058911A1 (en) | 1999-05-07 | 2002-05-16 | Paul Gilson | Support frame for an embolic protection device |
US7014647B2 (en) | 1999-05-07 | 2006-03-21 | Salviac Limited | Support frame for an embolic protection device |
US6964672B2 (en) | 1999-05-07 | 2005-11-15 | Salviac Limited | Support frame for an embolic protection device |
AU3844399A (en) | 1999-05-07 | 2000-11-21 | Salviac Limited | Support frame for embolic protection device |
IL145979A0 (en) | 1999-05-07 | 2002-07-25 | Salviac Ltd | An embolic protection device |
US6918921B2 (en) | 1999-05-07 | 2005-07-19 | Salviac Limited | Support frame for an embolic protection device |
WO2000067666A1 (en) | 1999-05-07 | 2000-11-16 | Salviac Limited | Improved filter element for embolic protection device |
US6585756B1 (en) | 1999-05-14 | 2003-07-01 | Ernst P. Strecker | Implantable lumen prosthesis |
US6458139B1 (en) | 1999-06-21 | 2002-10-01 | Endovascular Technologies, Inc. | Filter/emboli extractor for use in variable sized blood vessels |
US20030150821A1 (en) | 1999-07-16 | 2003-08-14 | Bates Mark C. | Emboli filtration system and methods of use |
US6468291B2 (en) | 1999-07-16 | 2002-10-22 | Baff Llc | Emboli filtration system having integral strut arrangement and methods of use |
US6485507B1 (en) | 1999-07-28 | 2002-11-26 | Scimed Life Systems | Multi-property nitinol by heat treatment |
US7306618B2 (en) | 1999-07-30 | 2007-12-11 | Incept Llc | Vascular device for emboli and thrombi removal and methods of use |
JP2003505215A (en) | 1999-07-30 | 2003-02-12 | インセプト エルエルシー | Vascular filter with joint area and method of use in ascending aorta |
US6589263B1 (en) | 1999-07-30 | 2003-07-08 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6203561B1 (en) | 1999-07-30 | 2001-03-20 | Incept Llc | Integrated vascular device having thrombectomy element and vascular filter and methods of use |
US6620182B1 (en) | 1999-07-30 | 2003-09-16 | Incept Llc | Vascular filter having articulation region and methods of use in the ascending aorta |
US6544279B1 (en) | 2000-08-09 | 2003-04-08 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US7320697B2 (en) | 1999-07-30 | 2008-01-22 | Boston Scientific Scimed, Inc. | One piece loop and coil |
US6214026B1 (en) | 1999-07-30 | 2001-04-10 | Incept Llc | Delivery system for a vascular device with articulation region |
US6616679B1 (en) | 1999-07-30 | 2003-09-09 | Incept, Llc | Rapid exchange vascular device for emboli and thrombus removal and methods of use |
US7229462B2 (en) | 1999-07-30 | 2007-06-12 | Angioguard, Inc. | Vascular filter system for carotid endarterectomy |
US7229463B2 (en) | 1999-07-30 | 2007-06-12 | Angioguard, Inc. | Vascular filter system for cardiopulmonary bypass |
US6371970B1 (en) | 1999-07-30 | 2002-04-16 | Incept Llc | Vascular filter having articulation region and methods of use in the ascending aorta |
US6142987A (en) | 1999-08-03 | 2000-11-07 | Scimed Life Systems, Inc. | Guided filter with support wire and methods of use |
US6273901B1 (en) | 1999-08-10 | 2001-08-14 | Scimed Life Systems, Inc. | Thrombosis filter having a surface treatment |
FR2797390B1 (en) | 1999-08-10 | 2001-12-28 | Braun Celsa Sa | DEVICE FOR TREATING A BODY DUCT THAT HAS AT LEAST ONE PARTIAL OBSTRUCTION |
US6251122B1 (en) | 1999-09-02 | 2001-06-26 | Scimed Life Systems, Inc. | Intravascular filter retrieval device and method |
US6325815B1 (en) | 1999-09-21 | 2001-12-04 | Microvena Corporation | Temporary vascular filter |
US6939361B1 (en) | 1999-09-22 | 2005-09-06 | Nmt Medical, Inc. | Guidewire for a free standing intervascular device having an integral stop mechanism |
US6375670B1 (en) | 1999-10-07 | 2002-04-23 | Prodesco, Inc. | Intraluminal filter |
US6364895B1 (en) | 1999-10-07 | 2002-04-02 | Prodesco, Inc. | Intraluminal filter |
US6264672B1 (en) | 1999-10-25 | 2001-07-24 | Biopsy Sciences, Llc | Emboli capturing device |
US6425909B1 (en) | 1999-11-04 | 2002-07-30 | Concentric Medical, Inc. | Methods and devices for filtering fluid flow through a body structure |
WO2001035858A1 (en) | 1999-11-18 | 2001-05-25 | Advanced Cardiovascular Systems, Inc. | Embolic protection system and method including an emboli-capturing catheter |
US6623450B1 (en) | 1999-12-17 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | System for blocking the passage of emboli through a body vessel |
US6443979B1 (en) | 1999-12-20 | 2002-09-03 | Advanced Cardiovascular Systems, Inc. | Expandable stent delivery sheath and method of use |
US6443971B1 (en) | 1999-12-21 | 2002-09-03 | Advanced Cardiovascular Systems, Inc. | System for, and method of, blocking the passage of emboli through a vessel |
US6402771B1 (en) | 1999-12-23 | 2002-06-11 | Guidant Endovascular Solutions | Snare |
WO2001045592A1 (en) | 1999-12-23 | 2001-06-28 | Percusurge, Inc. | Vascular filters with radiopaque markings |
US6575997B1 (en) | 1999-12-23 | 2003-06-10 | Endovascular Technologies, Inc. | Embolic basket |
US6660021B1 (en) | 1999-12-23 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Intravascular device and system |
US6406471B1 (en) | 1999-12-28 | 2002-06-18 | Embol-X, Inc. | Arterial filter with aspiration and methods of use |
US6290710B1 (en) | 1999-12-29 | 2001-09-18 | Advanced Cardiovascular Systems, Inc. | Embolic protection device |
US6645220B1 (en) | 1999-12-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Embolic protection system and method including and embolic-capturing filter |
US6290656B1 (en) | 1999-12-30 | 2001-09-18 | Advanced Cardiovascular Systems, Inc. | Guide wire with damped force vibration mechanism |
US6540722B1 (en) | 1999-12-30 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
US6695813B1 (en) | 1999-12-30 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
US6702834B1 (en) | 1999-12-30 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
US6383206B1 (en) | 1999-12-30 | 2002-05-07 | Advanced Cardiovascular Systems, Inc. | Embolic protection system and method including filtering elements |
US6443926B1 (en) | 2000-02-01 | 2002-09-03 | Harold D. Kletschka | Embolic protection device having expandable trap |
AU776792B2 (en) | 2000-02-01 | 2004-09-23 | Harold D. Kletschka | Angioplasty device and method of making same |
US6540767B1 (en) | 2000-02-08 | 2003-04-01 | Scimed Life Systems, Inc. | Recoilable thrombosis filtering device and method |
US6540768B1 (en) | 2000-02-09 | 2003-04-01 | Cordis Corporation | Vascular filter system |
US6863696B2 (en) | 2000-02-16 | 2005-03-08 | Viktoria Kantsevitcha | Vascular prosthesis |
US6629953B1 (en) | 2000-02-18 | 2003-10-07 | Fox Hollow Technologies, Inc. | Methods and devices for removing material from a vascular site |
WO2001062184A2 (en) | 2000-02-23 | 2001-08-30 | Boston Scientific Limited | Intravascular filtering devices and methods |
US6485502B2 (en) | 2000-03-10 | 2002-11-26 | T. Anthony Don Michael | Vascular embolism prevention device employing filters |
US6695865B2 (en) | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6485500B1 (en) | 2000-03-21 | 2002-11-26 | Advanced Cardiovascular Systems, Inc. | Emboli protection system |
US6632241B1 (en) | 2000-03-22 | 2003-10-14 | Endovascular Technologies, Inc. | Self-expanding, pseudo-braided intravascular device |
US20040167567A1 (en) | 2001-03-23 | 2004-08-26 | Cano Gerald G. | Method and apparatus for capturing objects beyond an operative site in medical procedures |
US6592616B1 (en) | 2000-04-28 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | System and device for minimizing embolic risk during an interventional procedure |
US6706053B1 (en) | 2000-04-28 | 2004-03-16 | Advanced Cardiovascular Systems, Inc. | Nitinol alloy design for sheath deployable and re-sheathable vascular devices |
US6602271B2 (en) | 2000-05-24 | 2003-08-05 | Medtronic Ave, Inc. | Collapsible blood filter with optimal braid geometry |
US6645221B1 (en) | 2000-05-30 | 2003-11-11 | Zuli, Holdings Ltd. | Active arterial embolization filter |
US6939362B2 (en) | 2001-11-27 | 2005-09-06 | Advanced Cardiovascular Systems, Inc. | Offset proximal cage for embolic filtering devices |
US6565591B2 (en) | 2000-06-23 | 2003-05-20 | Salviac Limited | Medical device |
US6663650B2 (en) | 2000-06-29 | 2003-12-16 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US8298257B2 (en) | 2000-06-29 | 2012-10-30 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US6482222B1 (en) | 2000-07-11 | 2002-11-19 | Rafael Medical Technologies Inc. | Intravascular filter |
US6964670B1 (en) | 2000-07-13 | 2005-11-15 | Advanced Cardiovascular Systems, Inc. | Embolic protection guide wire |
US6656202B2 (en) | 2000-07-14 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Embolic protection systems |
US6575995B1 (en) | 2000-07-14 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Expandable cage embolic material filter system and method |
US6740061B1 (en) | 2000-07-28 | 2004-05-25 | Ev3 Inc. | Distal protection device |
US6527746B1 (en) | 2000-08-03 | 2003-03-04 | Ev3, Inc. | Back-loading catheter |
US7147649B2 (en) | 2000-08-04 | 2006-12-12 | Duke University | Temporary vascular filters |
US6394978B1 (en) | 2000-08-09 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Interventional procedure expandable balloon expansion enabling system and method |
US6485501B1 (en) | 2000-08-11 | 2002-11-26 | Cordis Corporation | Vascular filter system with guidewire and capture mechanism |
AU2001285078A1 (en) | 2000-08-18 | 2002-03-04 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
US6558405B1 (en) | 2000-08-29 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Embolic filter |
FR2813518B1 (en) | 2000-09-04 | 2002-10-31 | Claude Mialhe | VASCULAR OCCLUSION DEVICE, APPARATUS AND METHOD OF USE |
US6723108B1 (en) | 2000-09-18 | 2004-04-20 | Cordis Neurovascular, Inc | Foam matrix embolization device |
US6537294B1 (en) | 2000-10-17 | 2003-03-25 | Advanced Cardiovascular Systems, Inc. | Delivery systems for embolic filter devices |
AU2002213231A1 (en) | 2000-10-18 | 2002-04-29 | Nmt Medical, Inc. | Over-the-wire interlock attachment/detachment mechanism |
US6582447B1 (en) | 2000-10-20 | 2003-06-24 | Angiodynamics, Inc. | Convertible blood clot filter |
US6589265B1 (en) | 2000-10-31 | 2003-07-08 | Endovascular Technologies, Inc. | Intrasaccular embolic device |
US6616680B1 (en) | 2000-11-01 | 2003-09-09 | Joseph M. Thielen | Distal protection and delivery system and method |
US6602272B2 (en) | 2000-11-02 | 2003-08-05 | Advanced Cardiovascular Systems, Inc. | Devices configured from heat shaped, strain hardened nickel-titanium |
US6726703B2 (en) | 2000-11-27 | 2004-04-27 | Scimed Life Systems, Inc. | Distal protection device and method |
US7012108B2 (en) | 2000-12-15 | 2006-03-14 | Agrolinz Melamin Gmbh | Modified inorganic particles |
US7169165B2 (en) | 2001-01-16 | 2007-01-30 | Boston Scientific Scimed, Inc. | Rapid exchange sheath for deployment of medical devices and methods of use |
US6936059B2 (en) | 2001-01-16 | 2005-08-30 | Scimed Life Systems, Inc. | Endovascular guidewire filter and methods of use |
US6663651B2 (en) | 2001-01-16 | 2003-12-16 | Incept Llc | Systems and methods for vascular filter retrieval |
US6610077B1 (en) | 2001-01-23 | 2003-08-26 | Endovascular Technologies, Inc. | Expandable emboli filter and thrombectomy device |
US20020128680A1 (en) | 2001-01-25 | 2002-09-12 | Pavlovic Jennifer L. | Distal protection device with electrospun polymer fiber matrix |
US6901287B2 (en) | 2001-02-09 | 2005-05-31 | Medtronic, Inc. | Implantable therapy delivery element adjustable anchor |
US6979343B2 (en) | 2001-02-14 | 2005-12-27 | Ev3 Inc. | Rolled tip recovery catheter |
US6569184B2 (en) | 2001-02-27 | 2003-05-27 | Advanced Cardiovascular Systems, Inc. | Recovery system for retrieving an embolic protection device |
US6974468B2 (en) | 2001-02-28 | 2005-12-13 | Scimed Life Systems, Inc. | Filter retrieval catheter |
US20020123755A1 (en) | 2001-03-01 | 2002-09-05 | Scimed Life Systems, Inc. | Embolic protection filter delivery sheath |
US7226464B2 (en) | 2001-03-01 | 2007-06-05 | Scimed Life Systems, Inc. | Intravascular filter retrieval device having an actuatable dilator tip |
US6562058B2 (en) | 2001-03-02 | 2003-05-13 | Jacques Seguin | Intravascular filter system |
US20030057156A1 (en) | 2001-03-08 | 2003-03-27 | Dean Peterson | Atrial filter implants |
US20020128679A1 (en) | 2001-03-08 | 2002-09-12 | Embol-X, Inc. | Cerebral protection during carotid endarterectomy and methods of use |
US7214237B2 (en) | 2001-03-12 | 2007-05-08 | Don Michael T Anthony | Vascular filter with improved strength and flexibility |
US8298160B2 (en) | 2001-03-16 | 2012-10-30 | Ev3 Inc. | Wire convertible from over-the-wire length to rapid exchange length |
US6602269B2 (en) | 2001-03-30 | 2003-08-05 | Scimed Life Systems | Embolic devices capable of in-situ reinforcement |
US7101379B2 (en) | 2001-04-02 | 2006-09-05 | Acmi Corporation | Retrieval basket for a surgical device and system and method for manufacturing same |
US6428559B1 (en) | 2001-04-03 | 2002-08-06 | Cordis Corporation | Removable, variable-diameter vascular filter system |
US6706055B2 (en) | 2001-04-03 | 2004-03-16 | Medtronic Ave Inc. | Guidewire apparatus for temporary distal embolic protection |
US6818006B2 (en) | 2001-04-03 | 2004-11-16 | Medtronic Vascular, Inc. | Temporary intraluminal filter guidewire |
US6911036B2 (en) | 2001-04-03 | 2005-06-28 | Medtronic Vascular, Inc. | Guidewire apparatus for temporary distal embolic protection |
US6866677B2 (en) | 2001-04-03 | 2005-03-15 | Medtronic Ave, Inc. | Temporary intraluminal filter guidewire and methods of use |
US7044958B2 (en) | 2001-04-03 | 2006-05-16 | Medtronic Vascular, Inc. | Temporary device for capturing embolic material |
US20020161395A1 (en) | 2001-04-03 | 2002-10-31 | Nareak Douk | Guide wire apparatus for prevention of distal atheroembolization |
US7018372B2 (en) | 2001-04-17 | 2006-03-28 | Salviac Limited | Catheter |
US6436121B1 (en) | 2001-04-30 | 2002-08-20 | Paul H. Blom | Removable blood filter |
US6645223B2 (en) | 2001-04-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Deployment and recovery control systems for embolic protection devices |
US6746469B2 (en) | 2001-04-30 | 2004-06-08 | Advanced Cardiovascular Systems, Inc. | Balloon actuated apparatus having multiple embolic filters, and method of use |
US6814739B2 (en) | 2001-05-18 | 2004-11-09 | U.S. Endoscopy Group, Inc. | Retrieval device |
US6635070B2 (en) | 2001-05-21 | 2003-10-21 | Bacchus Vascular, Inc. | Apparatus and methods for capturing particulate material within blood vessels |
US6929652B1 (en) | 2001-06-01 | 2005-08-16 | Advanced Cardiovascular Systems, Inc. | Delivery and recovery systems having steerability and rapid exchange operating modes for embolic protection systems |
US20020188314A1 (en) | 2001-06-07 | 2002-12-12 | Microvena Corporation | Radiopaque distal embolic protection device |
US6551341B2 (en) | 2001-06-14 | 2003-04-22 | Advanced Cardiovascular Systems, Inc. | Devices configured from strain hardened Ni Ti tubing |
WO2002102436A2 (en) | 2001-06-14 | 2002-12-27 | Cook Incorporated | Endovascular filter |
US6783538B2 (en) | 2001-06-18 | 2004-08-31 | Rex Medical, L.P | Removable vein filter |
US6623506B2 (en) | 2001-06-18 | 2003-09-23 | Rex Medical, L.P | Vein filter |
US6793665B2 (en) | 2001-06-18 | 2004-09-21 | Rex Medical, L.P. | Multiple access vein filter |
IL159572A0 (en) | 2001-06-28 | 2004-06-01 | Lithotech Medical Ltd | Foreign body retrieval device |
US6599307B1 (en) | 2001-06-29 | 2003-07-29 | Advanced Cardiovascular Systems, Inc. | Filter device for embolic protection systems |
US6575996B1 (en) | 2001-06-29 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Filter device for embolic protection system |
JP4567918B2 (en) | 2001-07-02 | 2010-10-27 | テルモ株式会社 | Intravascular foreign matter removal wire and medical device |
US7011671B2 (en) | 2001-07-18 | 2006-03-14 | Atritech, Inc. | Cardiac implant device tether system and method |
US6533800B1 (en) | 2001-07-25 | 2003-03-18 | Coaxia, Inc. | Devices and methods for preventing distal embolization using flow reversal in arteries having collateral blood flow |
US6902540B2 (en) | 2001-08-22 | 2005-06-07 | Gerald Dorros | Apparatus and methods for treating stroke and controlling cerebral flow characteristics |
US6551342B1 (en) | 2001-08-24 | 2003-04-22 | Endovascular Technologies, Inc. | Embolic filter |
US6652557B1 (en) | 2001-08-29 | 2003-11-25 | Macdonald Kenneth A. | Mechanism for capturing debris generated during vascular procedures |
US6638294B1 (en) | 2001-08-30 | 2003-10-28 | Advanced Cardiovascular Systems, Inc. | Self furling umbrella frame for carotid filter |
US6656351B2 (en) | 2001-08-31 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices one way porous membrane |
US7097651B2 (en) | 2001-09-06 | 2006-08-29 | Advanced Cardiovascular Systems, Inc. | Embolic protection basket |
US6616682B2 (en) | 2001-09-19 | 2003-09-09 | Jomed Gmbh | Methods and apparatus for distal protection during a medical procedure |
US6878151B2 (en) | 2001-09-27 | 2005-04-12 | Scimed Life Systems, Inc. | Medical retrieval device |
US20030060843A1 (en) | 2001-09-27 | 2003-03-27 | Don Boucher | Vascular filter system with encapsulated filter |
US8262689B2 (en) | 2001-09-28 | 2012-09-11 | Advanced Cardiovascular Systems, Inc. | Embolic filtering devices |
US6755847B2 (en) | 2001-10-05 | 2004-06-29 | Scimed Life Systems, Inc. | Emboli capturing device and method of manufacture therefor |
US20030069597A1 (en) | 2001-10-10 | 2003-04-10 | Scimed Life Systems, Inc. | Loading tool |
US6887257B2 (en) | 2001-10-19 | 2005-05-03 | Incept Llc | Vascular embolic filter exchange devices and methods of use thereof |
US20030083692A1 (en) | 2001-10-29 | 2003-05-01 | Scimed Life Systems, Inc. | Distal protection device and method of use thereof |
US6790219B1 (en) | 2001-11-06 | 2004-09-14 | Edwards Lifesciences Corporation | Filter with integrated obturator tip and methods of use |
US20030109824A1 (en) | 2001-11-07 | 2003-06-12 | Microvena Corporation | Distal protection device with local drug delivery to maintain patency |
US6890340B2 (en) | 2001-11-29 | 2005-05-10 | Medtronic Vascular, Inc. | Apparatus for temporary intraluminal protection |
EP1461112B1 (en) | 2001-12-05 | 2012-11-21 | Sagax Inc. | Endovascular device for entrapment of particulate matter and method for use |
US7153320B2 (en) | 2001-12-13 | 2006-12-26 | Scimed Life Systems, Inc. | Hydraulic controlled retractable tip filter retrieval catheter |
US6741878B2 (en) | 2001-12-14 | 2004-05-25 | Biosense Webster, Inc. | Basket catheter with improved expansion mechanism |
US6748255B2 (en) | 2001-12-14 | 2004-06-08 | Biosense Webster, Inc. | Basket catheter with multiple location sensors |
US6793666B2 (en) | 2001-12-18 | 2004-09-21 | Scimed Life Systems, Inc. | Distal protection mechanically attached filter cartridge |
EP1455681B1 (en) | 2001-12-21 | 2014-09-17 | Salviac Limited | A support frame for an embolic protection device |
US7241304B2 (en) | 2001-12-21 | 2007-07-10 | Advanced Cardiovascular Systems, Inc. | Flexible and conformable embolic filtering devices |
US6958074B2 (en) | 2002-01-07 | 2005-10-25 | Cordis Corporation | Releasable and retrievable vascular filter system |
US6932830B2 (en) | 2002-01-10 | 2005-08-23 | Scimed Life Systems, Inc. | Disc shaped filter |
US8647359B2 (en) | 2002-01-10 | 2014-02-11 | Boston Scientific Scimed, Inc. | Distal protection filter |
US20030135162A1 (en) | 2002-01-17 | 2003-07-17 | Scimed Life Systems, Inc. | Delivery and retrieval manifold for a distal protection filter |
CN1638703A (en) | 2002-01-25 | 2005-07-13 | 阿特里泰克公司 | Atrial appendage blood filtration systems |
US20030144686A1 (en) | 2002-01-30 | 2003-07-31 | Embol-X, Inc. | Distal filtration devices and methods of use during aortic procedures |
US7344549B2 (en) | 2002-01-31 | 2008-03-18 | Advanced Cardiovascular Systems, Inc. | Expandable cages for embolic filtering devices |
US6953471B1 (en) | 2002-02-07 | 2005-10-11 | Edwards Lifesciences Corporation | Cannula with flexible remote cable filter deployment |
US6997938B2 (en) | 2002-02-12 | 2006-02-14 | Scimed Life Systems, Inc. | Embolic protection device |
US20030158574A1 (en) | 2002-02-15 | 2003-08-21 | Esch Brady D. | Flow-through aortic flow divider for cerebral and coronary embolic protection |
US7004964B2 (en) | 2002-02-22 | 2006-02-28 | Scimed Life Systems, Inc. | Apparatus and method for deployment of an endoluminal device |
US7118539B2 (en) | 2002-02-26 | 2006-10-10 | Scimed Life Systems, Inc. | Articulating guide wire for embolic protection and methods of use |
ATE378019T1 (en) | 2002-03-05 | 2007-11-15 | Salviac Ltd | EMBOLIC FILTER AND RETRACTION LOOP SYSTEM |
US7192434B2 (en) | 2002-03-08 | 2007-03-20 | Ev3 Inc. | Vascular protection devices and methods of use |
US20030176884A1 (en) | 2002-03-12 | 2003-09-18 | Marwane Berrada | Everted filter device |
US20030176886A1 (en) | 2002-03-12 | 2003-09-18 | Wholey Mark H. | Vascular catheter with expanded distal tip for receiving a thromboembolic protection device and method of use |
US7029440B2 (en) | 2002-03-13 | 2006-04-18 | Scimed Life Systems, Inc. | Distal protection filter and method of manufacture |
US20030187495A1 (en) | 2002-04-01 | 2003-10-02 | Cully Edward H. | Endoluminal devices, embolic filters, methods of manufacture and use |
US20030191493A1 (en) | 2002-04-05 | 2003-10-09 | Epstein Gordon H. | Device for clot retrieval and distal protection |
US20030199819A1 (en) | 2002-04-17 | 2003-10-23 | Beck Robert C. | Filter wire system |
US20030204168A1 (en) | 2002-04-30 | 2003-10-30 | Gjalt Bosma | Coated vascular devices |
US8070769B2 (en) | 2002-05-06 | 2011-12-06 | Boston Scientific Scimed, Inc. | Inverted embolic protection filter |
US7060082B2 (en) | 2002-05-06 | 2006-06-13 | Scimed Life Systems, Inc. | Perfusion guidewire in combination with a distal filter |
US20030229374A1 (en) | 2002-05-10 | 2003-12-11 | Salviac Limited | Embolic protection system |
US7585309B2 (en) | 2002-05-16 | 2009-09-08 | Boston Scientific Scimed, Inc. | Aortic filter |
US7001406B2 (en) | 2002-05-23 | 2006-02-21 | Scimed Life Systems Inc. | Cartridge embolic protection filter and methods of use |
US7959584B2 (en) | 2002-05-29 | 2011-06-14 | Boston Scientific Scimed, Inc. | Dedicated distal protection guidewires |
US7326224B2 (en) | 2002-06-11 | 2008-02-05 | Boston Scientific Scimed, Inc. | Shaft and wire lock |
US7717934B2 (en) | 2002-06-14 | 2010-05-18 | Ev3 Inc. | Rapid exchange catheters usable with embolic protection devices |
US6696666B2 (en) | 2002-07-03 | 2004-02-24 | Scimed Life Systems, Inc. | Tubular cutting process and system |
US6969402B2 (en) | 2002-07-26 | 2005-11-29 | Syntheon, Llc | Helical stent having flexible transition zone |
US7303575B2 (en) | 2002-08-01 | 2007-12-04 | Lumen Biomedical, Inc. | Embolism protection devices |
US6969395B2 (en) | 2002-08-07 | 2005-11-29 | Boston Scientific Scimed, Inc. | Electroactive polymer actuated medical devices |
US7115138B2 (en) | 2002-09-04 | 2006-10-03 | Boston Scientific Scimed, Inc. | Sheath tip |
US7174636B2 (en) | 2002-09-04 | 2007-02-13 | Scimed Life Systems, Inc. | Method of making an embolic filter |
US7056328B2 (en) | 2002-09-18 | 2006-06-06 | Arnott Richard J | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US7252675B2 (en) | 2002-09-30 | 2007-08-07 | Advanced Cardiovascular, Inc. | Embolic filtering devices |
US7331973B2 (en) | 2002-09-30 | 2008-02-19 | Avdanced Cardiovascular Systems, Inc. | Guide wire with embolic filtering attachment |
US20040093011A1 (en) | 2002-10-01 | 2004-05-13 | Scimed Life Systems, Inc. | Embolic protection device with lesion length assessment markers |
US7998163B2 (en) | 2002-10-03 | 2011-08-16 | Boston Scientific Scimed, Inc. | Expandable retrieval device |
WO2004032805A1 (en) | 2002-10-11 | 2004-04-22 | Scimed Life Systems, Inc. | Embolic entrapment sheath |
US20040093012A1 (en) | 2002-10-17 | 2004-05-13 | Cully Edward H. | Embolic filter frame having looped support strut elements |
AU2003286740A1 (en) | 2002-10-29 | 2004-05-25 | James C. Peacock Iii | Embolic filter device and related systems and methods |
US20040088000A1 (en) | 2002-10-31 | 2004-05-06 | Muller Paul F. | Single-wire expandable cages for embolic filtering devices |
US20040098022A1 (en) | 2002-11-14 | 2004-05-20 | Barone David D. | Intraluminal catheter with hydraulically collapsible self-expanding protection device |
US20040111111A1 (en) | 2002-12-10 | 2004-06-10 | Scimed Life Systems, Inc. | Intravascular filter membrane with shape memory |
US7128752B2 (en) | 2002-12-23 | 2006-10-31 | Syntheon, Llc | Emboli and thrombi filter device and method of using the same |
US7625389B2 (en) | 2002-12-30 | 2009-12-01 | Boston Scientific Scimed, Inc. | Embolic protection device |
US20040138693A1 (en) | 2003-01-14 | 2004-07-15 | Scimed Life Systems, Inc. | Snare retrievable embolic protection filter with guidewire stopper |
US20040138694A1 (en) | 2003-01-15 | 2004-07-15 | Scimed Life Systems, Inc. | Intravascular filtering membrane and method of making an embolic protection filter device |
US7422595B2 (en) | 2003-01-17 | 2008-09-09 | Scion Cardio-Vascular, Inc. | Proximal actuator for medical device |
US20040147955A1 (en) | 2003-01-28 | 2004-07-29 | Scimed Life Systems, Inc. | Embolic protection filter having an improved filter frame |
US7220271B2 (en) | 2003-01-30 | 2007-05-22 | Ev3 Inc. | Embolic filters having multiple layers and controlled pore size |
US20040153119A1 (en) | 2003-01-30 | 2004-08-05 | Kusleika Richard S. | Embolic filters with a distal loop or no loop |
US7163549B2 (en) | 2003-02-11 | 2007-01-16 | Boston Scientific Scimed Inc. | Filter membrane manufacturing method |
JP2004261235A (en) | 2003-02-20 | 2004-09-24 | Kaneka Medix Corp | Medical wire device |
US7137991B2 (en) | 2003-02-24 | 2006-11-21 | Scimed Life Systems, Inc. | Multi-wire embolic protection filtering device |
US20040167566A1 (en) | 2003-02-24 | 2004-08-26 | Scimed Life Systems, Inc. | Apparatus for anchoring an intravascular device along a guidewire |
US7740644B2 (en) | 2003-02-24 | 2010-06-22 | Boston Scientific Scimed, Inc. | Embolic protection filtering device that can be adapted to be advanced over a guidewire |
US20040172055A1 (en) | 2003-02-27 | 2004-09-02 | Huter Scott J. | Embolic filtering devices |
WO2004082530A2 (en) | 2003-03-19 | 2004-09-30 | Cook Incorporated | Delivery systems for deploying expandable intraluminal medical devices |
US6960370B2 (en) | 2003-03-27 | 2005-11-01 | Scimed Life Systems, Inc. | Methods of forming medical devices |
US20040193208A1 (en) | 2003-03-27 | 2004-09-30 | Scimed Life Systems, Inc. | Radiopaque embolic protection filter membrane |
WO2004087018A2 (en) | 2003-03-28 | 2004-10-14 | Ev3 Inc. | Double ended intravascular medical device |
US20040199199A1 (en) | 2003-04-02 | 2004-10-07 | Scimed Life Systems, Inc. | Filter and method of making a filter |
US6902572B2 (en) | 2003-04-02 | 2005-06-07 | Scimed Life Systems, Inc. | Anchoring mechanisms for intravascular devices |
US20040204737A1 (en) | 2003-04-11 | 2004-10-14 | Scimed Life Systems, Inc. | Embolic filter loop fabricated from composite material |
US7591832B2 (en) | 2003-04-24 | 2009-09-22 | Medtronic, Inc. | Expandable guide sheath and apparatus with distal protection and methods for use |
US7331976B2 (en) | 2003-04-29 | 2008-02-19 | Rex Medical, L.P. | Distal protection device |
US7942892B2 (en) | 2003-05-01 | 2011-05-17 | Abbott Cardiovascular Systems Inc. | Radiopaque nitinol embolic protection frame |
US6969396B2 (en) | 2003-05-07 | 2005-11-29 | Scimed Life Systems, Inc. | Filter membrane with increased surface area |
US20040249409A1 (en) | 2003-06-09 | 2004-12-09 | Scimed Life Systems, Inc. | Reinforced filter membrane |
US7537600B2 (en) | 2003-06-12 | 2009-05-26 | Boston Scientific Scimed, Inc. | Valved embolic protection filter |
US8535344B2 (en) | 2003-09-12 | 2013-09-17 | Rubicon Medical, Inc. | Methods, systems, and devices for providing embolic protection and removing embolic material |
US20050070953A1 (en) | 2003-09-18 | 2005-03-31 | Riley James W. | Medical device with flexible distal end loop and related methods of use |
US7604650B2 (en) | 2003-10-06 | 2009-10-20 | 3F Therapeutics, Inc. | Method and assembly for distal embolic protection |
US6994718B2 (en) | 2003-10-29 | 2006-02-07 | Medtronic Vascular, Inc. | Distal protection device for filtering and occlusion |
US8048103B2 (en) | 2003-11-06 | 2011-11-01 | Boston Scientific Scimed, Inc. | Flattened tip filter wire design |
US6972025B2 (en) | 2003-11-18 | 2005-12-06 | Scimed Life Systems, Inc. | Intravascular filter with bioabsorbable centering element |
US7354445B2 (en) | 2003-12-15 | 2008-04-08 | Medtronic Vascular Inc. | Embolic containment system with asymmetric frictional control |
WO2005058197A1 (en) | 2003-12-16 | 2005-06-30 | Wholey Mark H | Vascular catheter with an expandable section and a distal tip for delivering a thromboembolic protection device and method of use |
US20050159773A1 (en) | 2004-01-20 | 2005-07-21 | Scimed Life Systems, Inc. | Expandable retrieval device with dilator tip |
US20050159772A1 (en) | 2004-01-20 | 2005-07-21 | Scimed Life Systems, Inc. | Sheath for use with an embolic protection filtering device |
US8092483B2 (en) | 2004-03-06 | 2012-01-10 | Medtronic, Inc. | Steerable device having a corewire within a tube and combination with a functional medical component |
US7473265B2 (en) | 2004-03-15 | 2009-01-06 | Boston Scientific Scimed, Inc. | Filter media and methods of manufacture |
US7232462B2 (en) | 2004-03-31 | 2007-06-19 | Cook Incorporated | Self centering delivery catheter |
US8403976B2 (en) | 2004-04-08 | 2013-03-26 | Contego Medical Llc | Percutaneous transluminal angioplasty device with integral embolic filter |
US20050240215A1 (en) | 2004-04-21 | 2005-10-27 | Scimed Life Systems, Inc. | Magnetic embolic protection device and method |
US7918872B2 (en) | 2004-07-30 | 2011-04-05 | Codman & Shurtleff, Inc. | Embolic device delivery system with retractable partially coiled-fiber release |
ATE520369T1 (en) | 2004-09-17 | 2011-09-15 | Nitinol Dev Corp | SHAPE MEMORY THIN FILM EMBOLIC PROTECTION DEVICE |
US8038696B2 (en) | 2004-12-06 | 2011-10-18 | Boston Scientific Scimed, Inc. | Sheath for use with an embolic protection filter |
US20060129181A1 (en) | 2004-12-13 | 2006-06-15 | Callol Joseph R | Retrieval device with retractable dilator tip |
US20060149312A1 (en) | 2004-12-30 | 2006-07-06 | Edward Arguello | Distal protection device with improved wall apposition |
US20060149313A1 (en) | 2004-12-30 | 2006-07-06 | Edward Arguello | Distal protection apparatus with improved wall apposition |
US7527637B2 (en) | 2005-01-07 | 2009-05-05 | Medtronic Vascular Inc. | Distal protection device for filtering and occlusion |
US20060206139A1 (en) | 2005-01-19 | 2006-09-14 | Tekulve Kurt J | Vascular occlusion device |
US20060184194A1 (en) | 2005-02-15 | 2006-08-17 | Cook Incorporated | Embolic protection device |
US7955351B2 (en) | 2005-02-18 | 2011-06-07 | Tyco Healthcare Group Lp | Rapid exchange catheters and embolic protection devices |
-
2001
- 2001-10-24 US US10/000,546 patent/US6893451B2/en not_active Expired - Lifetime
-
2002
- 2002-09-26 WO PCT/US2002/030769 patent/WO2003034942A1/en not_active Application Discontinuation
-
2005
- 2005-05-13 US US11/128,524 patent/US7537601B2/en not_active Expired - Fee Related
-
2009
- 2009-04-14 US US12/423,576 patent/US20090228036A1/en not_active Abandoned
-
2010
- 2010-06-11 US US12/813,632 patent/US20110046656A1/en not_active Abandoned
Patent Citations (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4643184A (en) * | 1982-09-29 | 1987-02-17 | Mobin Uddin Kazi | Embolus trap |
US4494531A (en) * | 1982-12-06 | 1985-01-22 | Cook, Incorporated | Expandable blood clot filter |
US4723549A (en) * | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US5025799A (en) * | 1987-05-13 | 1991-06-25 | Wilson Bruce C | Steerable memory alloy guide wires |
US4794928A (en) * | 1987-06-10 | 1989-01-03 | Kletschka Harold D | Angioplasty device and method of using the same |
US4990156A (en) * | 1988-06-21 | 1991-02-05 | Lefebvre Jean Marie | Filter for medical use |
US4998923A (en) * | 1988-08-11 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | Steerable dilatation catheter |
US5490859A (en) * | 1992-11-13 | 1996-02-13 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5383887A (en) * | 1992-12-28 | 1995-01-24 | Celsa Lg | Device for selectively forming a temporary blood filter |
US5720764A (en) * | 1994-06-11 | 1998-02-24 | Naderlinger; Eduard | Vena cava thrombus filter |
US6682546B2 (en) * | 1994-07-08 | 2004-01-27 | Aga Medical Corporation | Intravascular occlusion devices |
US20050021076A1 (en) * | 1994-07-08 | 2005-01-27 | Ev3 Inc. | Method and device for filtering body fluid |
US20040006368A1 (en) * | 1994-07-08 | 2004-01-08 | Ev3 Inc. | Method and device for filtering body fluid |
US6989019B2 (en) * | 1994-07-08 | 2006-01-24 | Ev3 Inc. | Method and device for filtering body fluid |
US5601595A (en) * | 1994-10-25 | 1997-02-11 | Scimed Life Systems, Inc. | Remobable thrombus filter |
US6168604B1 (en) * | 1995-10-06 | 2001-01-02 | Metamorphic Surgical Devices, Llc | Guide wire device for removing solid objects from body canals |
US6013093A (en) * | 1995-11-28 | 2000-01-11 | Boston Scientific Corporation | Blood clot filtering |
US6022336A (en) * | 1996-05-20 | 2000-02-08 | Percusurge, Inc. | Catheter system for emboli containment |
US6986778B2 (en) * | 1996-05-20 | 2006-01-17 | Medtronic Vascular, Inc. | Exchange method for emboli containment |
US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US6027520A (en) * | 1997-05-08 | 2000-02-22 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6676682B1 (en) * | 1997-05-08 | 2004-01-13 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US20040006364A1 (en) * | 1997-06-02 | 2004-01-08 | Ladd William Gregory | Apparatus for trapping emboli |
US20040039411A1 (en) * | 1997-11-07 | 2004-02-26 | Paul Gilson | Embolic protection device |
US20030009189A1 (en) * | 1997-11-07 | 2003-01-09 | Salviac Limited | Embolic protection device |
US20040034385A1 (en) * | 1997-11-07 | 2004-02-19 | Paul Gilson | Embolic protection device |
US20060004403A1 (en) * | 1997-11-07 | 2006-01-05 | Salviac Limited | Embolic protection system |
US20030032977A1 (en) * | 1997-11-07 | 2003-02-13 | Salviac Limited | Filter element with retractable guidewire tip |
US6336934B1 (en) * | 1997-11-07 | 2002-01-08 | Salviac Limited | Embolic protection device |
US6152946A (en) * | 1998-03-05 | 2000-11-28 | Scimed Life Systems, Inc. | Distal protection device and method |
US6174318B1 (en) * | 1998-04-23 | 2001-01-16 | Scimed Life Systems, Inc. | Basket with one or more moveable legs |
US6511492B1 (en) * | 1998-05-01 | 2003-01-28 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US6685722B1 (en) * | 1998-05-01 | 2004-02-03 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US6361559B1 (en) * | 1998-06-10 | 2002-03-26 | Converge Medical, Inc. | Thermal securing anastomosis systems |
US6179860B1 (en) * | 1998-08-19 | 2001-01-30 | Artemis Medical, Inc. | Target tissue localization device and method |
US6679903B2 (en) * | 1998-12-15 | 2004-01-20 | Micrus Corporation | Intravascular device push wire delivery system |
US6676666B2 (en) * | 1999-01-11 | 2004-01-13 | Scimed Life Systems, Inc | Medical device delivery system with two sheaths |
US20030040772A1 (en) * | 1999-02-01 | 2003-02-27 | Hideki Hyodoh | Delivery devices |
US6991641B2 (en) * | 1999-02-12 | 2006-01-31 | Cordis Corporation | Low profile vascular filter system |
US6171327B1 (en) * | 1999-02-24 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular filter and method |
US6340465B1 (en) * | 1999-04-12 | 2002-01-22 | Edwards Lifesciences Corp. | Lubricious coatings for medical devices |
US6517559B1 (en) * | 1999-05-03 | 2003-02-11 | O'connell Paul T. | Blood filter and method for treating vascular disease |
US6176849B1 (en) * | 1999-05-21 | 2001-01-23 | Scimed Life Systems, Inc. | Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat |
US6846317B1 (en) * | 1999-06-14 | 2005-01-25 | Aln | Kit for removing a blood vessel filter |
US6179859B1 (en) * | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
US6129739A (en) * | 1999-07-30 | 2000-10-10 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6179861B1 (en) * | 1999-07-30 | 2001-01-30 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6245087B1 (en) * | 1999-08-03 | 2001-06-12 | Embol-X, Inc. | Variable expansion frame system for deploying medical devices and methods of use |
US6346116B1 (en) * | 1999-08-03 | 2002-02-12 | Medtronic Ave, Inc. | Distal protection device |
US6168579B1 (en) * | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US6673090B2 (en) * | 1999-08-04 | 2004-01-06 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
US6348056B1 (en) * | 1999-08-06 | 2002-02-19 | Scimed Life Systems, Inc. | Medical retrieval device with releasable retrieval basket |
US6843798B2 (en) * | 1999-08-27 | 2005-01-18 | Ev3 Inc. | Slideable vascular filter |
US6187025B1 (en) * | 1999-09-09 | 2001-02-13 | Noble-Met, Ltd. | Vascular filter |
US6511497B1 (en) * | 1999-09-14 | 2003-01-28 | Cormedics Gmbh | Vascular filter system |
US6340364B2 (en) * | 1999-10-22 | 2002-01-22 | Nozomu Kanesaka | Vascular filtering device |
US6171328B1 (en) * | 1999-11-09 | 2001-01-09 | Embol-X, Inc. | Intravascular catheter filter with interlocking petal design and methods of use |
US6676683B1 (en) * | 1999-11-09 | 2004-01-13 | Edwards Lifescience Corporation | Intravascular catheter filter with interlocking petal design and methods of use |
US20060015139A1 (en) * | 1999-11-15 | 2006-01-19 | Ross Tsugita | Guidewire filter and methods of use |
US6371971B1 (en) * | 1999-11-15 | 2002-04-16 | Scimed Life Systems, Inc. | Guidewire filter and methods of use |
US6846316B2 (en) * | 1999-12-10 | 2005-01-25 | Scimed Life Systems, Inc. | Systems and methods for detaching a covering from an implantable medical device |
US20030028238A1 (en) * | 1999-12-30 | 2003-02-06 | Burkett David H. | Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use |
US6511503B1 (en) * | 1999-12-30 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use |
US6361546B1 (en) * | 2000-01-13 | 2002-03-26 | Endotex Interventional Systems, Inc. | Deployable recoverable vascular filter and methods for use |
US6517550B1 (en) * | 2000-02-02 | 2003-02-11 | Board Of Regents, The University Of Texas System | Foreign body retrieval device |
US6514273B1 (en) * | 2000-03-22 | 2003-02-04 | Endovascular Technologies, Inc. | Device for removal of thrombus through physiological adhesion |
US6520978B1 (en) * | 2000-05-15 | 2003-02-18 | Intratherapeutics, Inc. | Emboli filter |
US6692513B2 (en) * | 2000-06-30 | 2004-02-17 | Viacor, Inc. | Intravascular filter with debris entrapment mechanism |
US20050010246A1 (en) * | 2000-06-30 | 2005-01-13 | Streeter Richard B. | Intravascular filter with debris entrapment mechanism |
US6679902B1 (en) * | 2000-07-19 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Reduced profile delivery sheath for use in interventional procedures |
US6511496B1 (en) * | 2000-09-12 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Embolic protection device for use in interventional procedures |
US20040019363A1 (en) * | 2000-10-05 | 2004-01-29 | Scimed Life Systems, Inc. | Filter delivery and retrieval device |
US6893451B2 (en) * | 2000-11-09 | 2005-05-17 | Advanced Cardiovascular Systems, Inc. | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US7537601B2 (en) * | 2000-11-09 | 2009-05-26 | Advanced Cardiovascular Systems, Inc. | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
US6506203B1 (en) * | 2000-12-19 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Low profile sheathless embolic protection system |
US20040015184A1 (en) * | 2000-12-21 | 2004-01-22 | Boyle William J. | Vessel occlusion device for embolic protection system |
US6689151B2 (en) * | 2001-01-25 | 2004-02-10 | Scimed Life Systems, Inc. | Variable wall thickness for delivery sheath housing |
US6506205B2 (en) * | 2001-02-20 | 2003-01-14 | Mark Goldberg | Blood clot filtering system |
US6840950B2 (en) * | 2001-02-20 | 2005-01-11 | Scimed Life Systems, Inc. | Low profile emboli capture device |
US6991642B2 (en) * | 2001-03-06 | 2006-01-31 | Scimed Life Systems, Inc. | Wire and lock mechanism |
US20040006367A1 (en) * | 2001-06-12 | 2004-01-08 | Krik Johnson | Emboli extraction catheter and vascular filter system |
US20030004536A1 (en) * | 2001-06-29 | 2003-01-02 | Boylan John F. | Variable thickness embolic filtering devices and method of manufacturing the same |
US20030004537A1 (en) * | 2001-06-29 | 2003-01-02 | Boyle William J. | Delivery and recovery sheaths for medical devices |
US20030004540A1 (en) * | 2001-07-02 | 2003-01-02 | Rubicon Medical, Inc. | Methods, systems, and devices for deploying an embolic protection filter |
US20060015141A1 (en) * | 2001-07-02 | 2006-01-19 | Linder Richard J | Methods, systems, and devices for deploying a filter from a filter device |
US20030004539A1 (en) * | 2001-07-02 | 2003-01-02 | Linder Richard J. | Methods, systems, and devices for providing embolic protection and removing embolic material |
US20030004541A1 (en) * | 2001-07-02 | 2003-01-02 | Rubicon Medical, Inc. | Methods, systems, and devices for providing embolic protection |
US20030009188A1 (en) * | 2001-07-02 | 2003-01-09 | Linder Richard J. | Methods, systems, and devices for deploying a filter from a filter device |
US20030023265A1 (en) * | 2001-07-13 | 2003-01-30 | Forber Simon John | Vascular protection system |
US20030018354A1 (en) * | 2001-07-18 | 2003-01-23 | Roth Noah M. | Integral vascular filter system with core wire activation |
US20030015206A1 (en) * | 2001-07-18 | 2003-01-23 | Roth Noah M. | Integral vascular filter system |
US20030032941A1 (en) * | 2001-08-13 | 2003-02-13 | Boyle William J. | Convertible delivery systems for medical devices |
US20040006366A1 (en) * | 2001-08-31 | 2004-01-08 | Huter Benjamin C. | Hinged short cage for an embolic protection device |
US20060004405A1 (en) * | 2001-10-18 | 2006-01-05 | Amr Salahieh | Vascular embolic filter devices and methods of use therefor |
US6837898B2 (en) * | 2001-11-30 | 2005-01-04 | Advanced Cardiovascular Systems, Inc. | Intraluminal delivery system for an attachable treatment device |
US20050010247A1 (en) * | 2002-03-08 | 2005-01-13 | Ev3 Inc. | Distal protection devices having controllable wire motion |
US20040006365A1 (en) * | 2002-05-13 | 2004-01-08 | Salviac Limited | Embolic protection system |
US20040002730A1 (en) * | 2002-06-26 | 2004-01-01 | Denison Andy E. | Embolic filtering devices for bifurcated vessels |
US20040006361A1 (en) * | 2002-06-27 | 2004-01-08 | Boyle William J. | Support structures for embolic filtering devices |
US6989021B2 (en) * | 2002-10-31 | 2006-01-24 | Cordis Corporation | Retrievable medical filter |
US20050021075A1 (en) * | 2002-12-30 | 2005-01-27 | Bonnette Michael J. | Guidewire having deployable sheathless protective filter |
US20050004595A1 (en) * | 2003-02-27 | 2005-01-06 | Boyle William J. | Embolic filtering devices |
US20050004597A1 (en) * | 2003-04-29 | 2005-01-06 | Mcguckin James F. | Distal protection device |
US6989027B2 (en) * | 2003-04-30 | 2006-01-24 | Medtronic Vascular Inc. | Percutaneously delivered temporary valve assembly |
US20050004594A1 (en) * | 2003-07-02 | 2005-01-06 | Jeffrey Nool | Devices and methods for aspirating from filters |
US20050010245A1 (en) * | 2003-07-10 | 2005-01-13 | Lawrence Wasicek | Embolic protection filtering device |
US20060015138A1 (en) * | 2004-07-19 | 2006-01-19 | Michael Gertner | Emboli diverting devices created by microfabricated means |
US20060020285A1 (en) * | 2004-07-22 | 2006-01-26 | Volker Niermann | Method for filtering blood in a vessel with helical elements |
US20060020286A1 (en) * | 2004-07-22 | 2006-01-26 | Volker Niermann | Device for filtering blood in a vessel with helical elements |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120316599A1 (en) * | 2011-06-08 | 2012-12-13 | Ghassan Kassab | Thrombus removal systems and devices and methods of using the same |
US10245049B2 (en) * | 2011-06-08 | 2019-04-02 | Cvdevices, Llc | Thrombus removal systems and devices and methods of using the same |
US20140236220A1 (en) * | 2011-09-27 | 2014-08-21 | Kanji Inoue | Device for capturing debris in blood vessels |
US9492262B2 (en) * | 2011-09-27 | 2016-11-15 | Kanji Inoue | Device for capturing debris in blood vessels |
Also Published As
Publication number | Publication date |
---|---|
US20110046656A1 (en) | 2011-02-24 |
US7537601B2 (en) | 2009-05-26 |
US20020055747A1 (en) | 2002-05-09 |
WO2003034942A1 (en) | 2003-05-01 |
US20050222583A1 (en) | 2005-10-06 |
US6893451B2 (en) | 2005-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190231506A1 (en) | Method and apparatus for capturing objects beyond an operative site in medical procedures | |
US7537601B2 (en) | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire | |
US7056328B2 (en) | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire | |
WO2001072205A2 (en) | Method and apparatus for capturing objects beyond an operative site in medical procedures | |
US6589263B1 (en) | Vascular device having one or more articulation regions and methods of use | |
US6616679B1 (en) | Rapid exchange vascular device for emboli and thrombus removal and methods of use | |
US6168604B1 (en) | Guide wire device for removing solid objects from body canals | |
US6530939B1 (en) | Vascular device having articulation region and methods of use | |
JP4336579B2 (en) | Vessel embolic filter device | |
US8267956B2 (en) | Vascular embolic filter exchange devices and methods of use thereof | |
USRE43882E1 (en) | Vascular device for emboli, thrombus and foreign body removal and methods of use | |
US7604649B2 (en) | Distal protection device | |
US8366737B2 (en) | Expandable emboli filter and thrombectomy device | |
US20090240238A1 (en) | Clot Retrieval Mechanism | |
US20030018354A1 (en) | Integral vascular filter system with core wire activation | |
US20040116960A1 (en) | One piece loop and coil | |
JP2004511272A (en) | Tip protection device | |
JP2002537943A (en) | Minimally invasive medical device placement and retrieval system | |
EP1292356B1 (en) | Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:029033/0374 Effective date: 20070209 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |