US20090227261A1 - Radio resource allocation mechanism - Google Patents
Radio resource allocation mechanism Download PDFInfo
- Publication number
- US20090227261A1 US20090227261A1 US12/307,746 US30774607A US2009227261A1 US 20090227261 A1 US20090227261 A1 US 20090227261A1 US 30774607 A US30774607 A US 30774607A US 2009227261 A1 US2009227261 A1 US 2009227261A1
- Authority
- US
- United States
- Prior art keywords
- radio resource
- user equipment
- cells
- cell
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000013468 resource allocation Methods 0.000 title claims abstract description 25
- 230000007246 mechanism Effects 0.000 title description 4
- 230000010267 cellular communication Effects 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims description 72
- 230000005540 biological transmission Effects 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 45
- 230000007480 spreading Effects 0.000 claims description 32
- 230000001413 cellular effect Effects 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 abstract description 6
- 238000012545 processing Methods 0.000 description 22
- 238000010295 mobile communication Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000010363 phase shift Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101710171187 30S ribosomal protein S10 Proteins 0.000 description 1
- 101710171221 30S ribosomal protein S11 Proteins 0.000 description 1
- 101710171220 30S ribosomal protein S12 Proteins 0.000 description 1
- 101710171219 30S ribosomal protein S13 Proteins 0.000 description 1
- 108050001922 30S ribosomal protein S17 Proteins 0.000 description 1
- 101710171225 30S ribosomal protein S18 Proteins 0.000 description 1
- 101710171175 30S ribosomal protein S19 Proteins 0.000 description 1
- 101710171204 30S ribosomal protein S20 Proteins 0.000 description 1
- 101710192523 30S ribosomal protein S9 Proteins 0.000 description 1
- 101000812304 Bacillus subtilis (strain 168) 30S ribosomal protein S16 Proteins 0.000 description 1
- 101000722833 Geobacillus stearothermophilus 30S ribosomal protein S16 Proteins 0.000 description 1
- 101000675258 Geobacillus stearothermophilus 30S ribosomal protein S19 Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/241—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR or Eb/lo
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
Definitions
- inter-cell-interference co-ordination/avoidance The approaches considered in inter-cell interference mitigation comprise inter-cell-interference co-ordination/avoidance.
- the common theme of inter-cell-interference co-ordination/avoidance is to apply restrictions to the resource management (configuration for the common channels and scheduling for the non common channels) in a coordinated way between cells. Such restrictions in a cell will provide the possibility for improvement in (Signal-to-Interference Ratio) SIR, and cell-edge data-rates/coverage, on the corresponding time/frequency resources in a neighbor cell.
- the exemplary frequency groups 32 , 33 , 34 , 35 , 36 of FIG. 3 are shown as comprised of one or more adjacent radio frequency carriers. It is clear that the radio resource groups according to the invention may comprise any logical combination of a number of related radio resource units that for a purpose can be dealt with as an entity.
- a radio resource group can consist of a number of (for example 2-4) physical radio resource units that may, or may not reside next to each other in the frequency domain.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A cellular communication system comprising a plurality of user equipment and a network infrastructure. Radio resource of the plurality of cells is divided into more than one radio resource groups. A network infrastructure element detects a requirement of radio resource allocation for a user equipment and determines effective interference to be generated by the required radio resource to a defined group of neighbouring cells. User equipment is allocated a radio resource from one of the radio resource groups on the basis of the determined effective interference to be generated to the defined group of neighbouring cells. Inter-cell interference decreases and the throughput of the cellular system increases, but the exchange of physical layer information is not increased.
Description
- The present invention relates to telecommunications and more particularly to radio resource allocation in cellular communication systems.
- A cellular network is a radio network made up of a number of radio cells each served by a transceiver, known as a cell site or base station. Cellular networks are inherently asymmetric such that a set of fixed transceivers serve a cell and a set of distributed mobile transceivers provide services to the users.
- A cellular network is able to provide more transmission capacity than a single transmitter network because a radio frequency of a cell can be reused in another cell for different transmission. Frequency reuse, however, causes interference between cells that use the same and nearby frequencies.
- This inter-cell interference has conventionally been solved by co-ordination/planning based methods. An example of such methods is frequency reuse where different groups of radio channels may be assigned to adjacent cells, and the same groups are assigned to cells separated by a certain distance (reuse distance) to reduce co-channel interference. The method is relatively effective and straightforward, but wastes channel resource.
- Another alternative is provided by co-ordination/planning based methods that comprise use of dynamic channels temporarily assigned for use in cells for the duration of the call, returned and kept in a central pool after the call is over. In some other dynamic solutions the total number of channels is divided into two groups, one of which is used for fixed allocation to the cells, while the other is kept as a central poor to be shared by all users. The reuse factor of these methods still remains low, actually in heavy traffic load they may perform worse than the above disclosed fixed channel assignment method.
- In the new emerging systems, for example in the upcoming evolution of 3rd Generation Partnership Project (3GPP) systems (also called as Long Term Evolution (LTE) systems), the requirements, according to the working assumptions, are challenging. The planned frequency reuse factor is 1, and at the same time significantly improved system performance, in terms or average throughput and cell throughput is targeted. In order to meet these challenges, mitigation of inter-cell interference is now extensively studied.
- The approaches considered in inter-cell interference mitigation comprise inter-cell-interference co-ordination/avoidance. The common theme of inter-cell-interference co-ordination/avoidance is to apply restrictions to the resource management (configuration for the common channels and scheduling for the non common channels) in a coordinated way between cells. Such restrictions in a cell will provide the possibility for improvement in (Signal-to-Interference Ratio) SIR, and cell-edge data-rates/coverage, on the corresponding time/frequency resources in a neighbor cell.
- The available inter-cell interference co-ordination methods require certain inter-communication between different network nodes in order to set and reconfigure the above mentioned restrictions. However, links between cells are expensive and typically cause delays. Thus, for the time being it seems that reconfiguration of the restrictions will be done on a time scale corresponding to days, and the inter-node communication is going to be very limited, basically with a rate of in the order of days. In such scenarios mechanisms that do not rely on inter-cell co-ordination are critically needed.
- An object of the present invention to provide a solution that enables mitigation of inter-cell interference in a cellular communication system where capacity and system performance requirements are high, and inter-communication of physical layer information between different network nodes is limited. The objects of the invention are achieved by a radio resource allocation method, a cellular communication system, user equipment, a control unit, a network infrastructure element, a computer program product and a computer program distribution medium, which are characterized by what is stated in the independent claims. The preferred embodiments of the invention are disclosed in the dependent claims.
- The invention is based on the idea that radio resource of cells in the communication system are divided into more than one radio resource groups. User equipment are then allocated a radio resource from one of the radio resource groups on the basis of the determined interference to be generated to the defined group of neighbouring cells.
- An advantage of the invention is that the inter-cell interference decreases and the throughput of the cellular system increases, but the exchange of physical layer information is not increased.
- In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which:
-
FIG. 1 illustrates a simplified example of a mobile communications system; -
FIG. 2 illustrates the central elements of the embodiment ofFIG. 1 ; -
FIG. 3 illustrates the radio resource of a cell in the embodiment ofFIG. 2 ; -
FIG. 4 illustrates the steps of the improved radio resource allocation method; -
FIG. 5 illustrates the step of determining the interference from the point of view of the user equipment; -
FIG. 6 illustrates the step of determining the interference in the embodied radio resource allocation method from the point of view of the network infrastructure element; -
FIGS. 7A and 7B show a basic timeslot structure for uplink data transmission; -
FIG. 8 illustrates a schematic representation of a network configuration in a cellular communication system; -
FIG. 9 illustrates the steps of another embodied radio resource allocation method; -
FIG. 10 illustrates a procedure for implementing a step in the embodied radio resource allocation method ofFIG. 9 ; and -
FIG. 11 illustrates astep 93 determining the interference in the embodied radio resource allocation method. - The following embodiments are exemplary implementations of the present invention. Although the specification may refer to “an”, “one”, or “some” embodiment(s), reference is not necessarily made to and/or a described feature does not apply to only one particular embodiment only. Single features of different embodiments of this specification may be combined to provide further embodiments that are thus considered to belong to the scope of protection.
-
FIG. 1 illustrates a simplified example of a cellular communications system to which the present solution may be applied. The system ofFIG. 1 is a mobile communication system that comprises a number of wireless access points through which users may connect to the network and thus utilize the communication services of the system. In the following, the invention is described with base station cells of a mobile communications system, where the access point may change when users are moving within the service area of the systems. It should be noted, however, that the solution may be applied in interference control of any access point, notwithstanding whether part of the same or different system as the potentially interfering access points. - A mobile network infrastructure may be logically divided into core network (CN) 10 and radio access network (RAN) 11 infrastructures. The
core network 10 is a combination of exchanges and basic transmission equipment, which together provide the basis for network services. Theradio access network 11 provides mobile access to a number of core networks of both mobile and fixed origin. - Based on the cellular concept, in RAN a large area is divided into a number of sub-areas called cells. Each cell has its
own base station 12, which is able to provide a radio link for a number of simultaneous users by emitting a controlled low-level transmitted signal. In present mobile communications systems RAN typically comprises a separate controllingnetwork element 13, which manages the use and integrity of the radio resources of a group of one or more base stations. However, the scope covers also systems without such separate physical element, for example systems where at least part of the radio network control functions are implemented in the individual base stations. - A user accesses the services of the mobile communication system with
user equipment 14 that provides required functionality to communicate over a radio interface defined for theradio access network 11. -
FIG. 2 illustrates in more detail the central elements used in implementing the embodiment ofFIG. 1 . As described above, a base station is in control of defined (static or dynamic) radio resources, and users communicate with the network infrastructure using a particular radio resource of at least one base station, typically the base station in the coverage area of which the users presently resides. - A mobile communication system utilizes a predefined channel structure, according to the offered communication services. A typical example of a channel structure is a three-tier channel organization where topmost logical channels relate to the type of information to be transmitted, transport channels relate to the way the logical channels are to be transmitted, and the physical channels provide the transmission media through which the information is actually transferred. In this context the role of a base station is to implement radio access physical channels and transfer information from transport channels to the physical channels according to predefined radio network control functions.
- Part of the physical channel resource of a cell is typically reserved for some particular use, for example for transport channels that are common for all user equipment in the cell, and those used for initial access. Part of the physical channel resource of a cell may, on the other hand, be allocated dynamically for traffic.
FIG. 2 shows elementary configurations for the system elements involved in allocating physical channels for user equipment. -
User equipment 14 of the mobile communications system can be a simplified terminal for speech only or a terminal for diverse services. In the latter case the terminal acts as a service platform and supports loading and execution of various functions related to the services. User equipment typically comprises mobile equipment and a subscriber identity module. The subscriber identity module is typically a smart card, often a detachably connected identification card, that holds the subscriber identity, performs authentication algorithms, and stores authentication and encryption keys and other subscription information that is needed at the mobile station. The mobile equipment may be any equipment capable of communicating in a mobile communication system or a combination of several pieces of equipment, for instance a multimedia computer to which a card phone has been connected to provide a mobile connection. In this context, the user equipment thus refers to an entity formed by the subscriber identity module and the actual mobile equipment. - A
network infrastructure element 216 ofFIG. 2 is any entity comprising the functions that control use of radio resources of at least one cell in the mobile communication system. In the context of the embodiment ofFIG. 1 , thenetwork infrastructure element 212 may be a base station, or a separate base station control element. - The
network infrastructure element 216 comprises processingunit 218, an element that comprises an arithmetic logic unit, a number of special registers and control circuits. Connected to the processing unit is amemory unit 220, a data medium where computer-readable data or programs or user data can be stored. The memory unit typically comprises memory units that allow both reading and writing (RAM), and memory units whose contents can only be read (ROM). The network infrastructure element also comprises aninterface unit 222 withinput unit 224 for inputting data from other network infrastructure elements, for internal processing in the network infrastructure element, andoutput unit 226 for outputting data from the internal processes of the network infrastructure element to the other network infrastructure elements. Examples of elements of said input unit comprise network interfaces, generally known to a person skilled in the art. - The network infrastructure unit also comprises a
transceiver unit 228 configured with receivingunit 230 for receiving information from the air interface and for inputting the received information to the processing means 218, as well as with transmittingunit 232 for receiving information from the processing means 218, and processing it for sending via the air interface. The implementation of such a transceiver unit is generally known to a person skilled in the art. Theprocessing unit 218,memory unit 220, theinterface unit 222, and thetransceiver unit 228 of the network infrastructure element are electrically interconnected for performing systematic execution of operations on the received and/or stored data according to predefined, essentially programmed processes of the unit. In systematic execution of the operations theprocessing unit 218 acts a control unit that may be implemented as a single integrated circuit, or a combination or two or more functionally combined integrated circuits. In a solution according to the invention, the operations comprise the functionality of the network infrastructure element as described withFIGS. 4 and 6 . - User equipment of
FIG. 2 comprises aprocessing unit 200, and amemory unit 202. The user equipment also comprises auser interface unit 204 withinput unit 206 for inputting data by the user for internal processing in the unit, andoutput unit 208 for outputting user data from the internal processes of the unit. Examples of said input unit comprise a keypad, or a touch screen, a microphone, or the like. Examples of said output unit comprise a screen, a touch screen, a loudspeaker, or the like. - The user equipment also comprises a radio communication unit 210 configured with a
receiver 212 for receiving information from theradio access network 11 over the air interface and processing it for inputting to theprocessing unit 200, as well as atransmitter 214 for receiving information from theprocessing unit 200, for further processing and transmitting the information via the air interface to theradio access network 11. Theprocessing unit 200, thememory unit 202, theuser interface unit 204, and the radio communication unit 210 are electrically interconnected for performing systematic execution of operations on the received and/or stored data according to predefined, essentially programmed processes of the user equipment. In a solution according to the invention, the operations comprise the functionality of the user equipment as described withFIGS. 4 and 5 . - In the embodiment of
FIG. 2 , the radio resource of each cell exists in the form of frequency band, and is divided into radio resource units in form of physical channels. Aphysical channel 234 is typically defined by its carrier frequency, and one or more parameters according to the selected multiple access scheme. For example, a physical channel of wideband code division multiple access (WCDMA) scheme is defined by its carrier frequency, channelisation code (CDMA) and relative phase for the uplink connection. In time division multiple access (TDMA) a radio frequency is divided into time slots and a physical channel corresponds to one or more time slots. In frequency division multiple access (FDMA) technique in which each user receives a radio channel of its own on a common frequency band. In the emerging systems, these basic forms of multiple access schemes are combined into more and more sophisticated schemes to meet the key performance and capability targets for rational long-term evolution. For example, in the upcoming evolution of 3rd Generation Partnership Project (3GPP) LTE systems, a potential candidate for uplink is single carrier FDMA (SC-FDMA). During channel allocation a dedicated channel in form of unique combination of transmission parameters defining a radio resource is agreed between the network infrastructure element and the user equipment so that information streams to and from the user equipment can be differentiated in the air interface. - For mobility management purposes, when the user moves within the coverage area of the system,
user equipment 14 continuously receives and transmits signals using the undedicated physical channels arranged into the system. When there is user data to be transmitted to or from the user equipment, a dedicated radio resource, as described above, needs to be allocated to the task. Allocation is typically performed through a predefined signaling procedure, which takes place between theuser equipment 14, and thenetwork infrastructure element 216 that controls the radio resource from which the allocation is to be made. Basic channel allocation procedures are widely documented, and well known to a person skilled in the art, and therefore not described in more detail herein. As a result of the channel allocation, a unique radio resource is allocated to the user equipment, and the network infrastructure and the user equipment begin to transmit and receive using the transmission parameters that define the allocated radio resource. -
FIG. 3 illustrates the radio resource of a cell in an embodiment ofFIG. 2 . The radio resource corresponds to a continuous set of frequencies F lying between two specified limiting frequencies fmin and fmax. The set of frequencies F forms afrequency band 30. The carrier frequency of the frequency unit increases towards the limiting frequency fmax. According to the invention, thefrequency band 30 is divided into more than onefrequency groups radio resource units 31. As described above, aradio resource unit 31 may correspond to a carrier frequency, timeslot, spread spectrum code, or any other combination of transmission parameters that may be separately allocated to users, depending on the selected multiple access scheme. For simple graphical illustration, theexemplary frequency groups FIG. 3 are shown as comprised of one or more adjacent radio frequency carriers. It is clear that the radio resource groups according to the invention may comprise any logical combination of a number of related radio resource units that for a purpose can be dealt with as an entity. For example, a radio resource group can consist of a number of (for example 2-4) physical radio resource units that may, or may not reside next to each other in the frequency domain. - As will be described in the following, user equipment requiring dedicated transmission capacity will be allocated a radio resource from the radio resource group in the serving cell, and the radio resource group will be selected on the basis of interference to be generated by the user equipment to the surrounding cells.
-
FIG. 4 illustrates the steps of the embodied radio resource allocation method according to the invention, applied to the embodied system described inFIGS. 1 , 2, and 3. As discussed above, the radio resource of a plurality of cells is first divided (step 41) into more than one radio resource groups. - Radio resource allocation begins when the
network infrastructure element 216 detects (step 42) a need for dedicated or shared radio resource of thecell 12 for theuser equipment 14. Such may happen, for example, when the user ofuser equipment 14 initiates a call or a session, at handover procedures, where the user equipment moves from one cell to another, and at setup of user equipment terminated call or session. In the following, the case of radio resource request by the user equipment is described as an example. - The radio resource request inherently or explicitly specifies transmission characteristics of the required radio resource. Advanced cellular communications systems may employ several data modulation schemes (e.g. quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM)) to transfer data with variable data rates. Additionally, several coding schemes may also be implemented with different effective code rates (ECR). In the radio resource request, the user equipment specifies the required data modulation schemes and code rates it uses. These transmission characteristics of the requested radio resource are typically specific to the user equipment and vary, for example, according to the supported data modulation and coding scheme supported by the user equipment. However, if the user equipment can support more than one data modulation and coding schemes, the transmission characteristics of the requested radio resource may even vary according to the communication instance, and the data modulation and coding scheme combination chosen for the instance.
- When a radio resource request reaches the network infrastructure element, the network infrastructure element analyses from the request the relevant transmission characteristics, and if possible allocates a radio resource that corresponds to the transmission characteristics, rejects the request, or initiates a signalling procedure to re-negotiate with the user equipment new, achievable characteristics.
- According to the invention, channel allocation is adjusted to take into consideration the interference to be generated by the requested radio resource to a defined group of neighbouring cells. The interference is determined (step 43) in the network infrastructure element on the basis of information on the transmission paths to the defined group of neighbouring cells, provided by the user equipment.
-
FIG. 5 illustrates thestep 43 of determining the interference in the embodied radio resource allocation method from the point of view of theuser equipment 14. In general terms, the user equipment acquires the required information on the transmission paths to the defined group of neighbouring cells, and provides this information to the network infrastructure to be used in channel allocation decisions. More specifically, for handover purposes the user equipment continuously collects measurement data mk, k=1, . . . , K, that provides basis for computing the properties of the transmission paths to a selected group of neighbouring cells (step 51). Here m denotes measurement data element, k denotes the identity of a cell, and K the number of cells in the selected group of cells. - Within the scope of protection, the selection of the group can be implemented in various ways. For example, the handover procedures utilize groups to which cells are classified according to the pilot signal of the radio link. As an example, an active set comprises cells that form a soft handover connection to the mobile station, a candidate set comprises cells that are not presently used in the soft handover connection, but whose pilot signals are strong enough to be added to the active set, and a neighbour set or monitored set is the list of cells that the user equipment continuously measures, but whose pilot signals are not strong enough to be added to the active set. The selection of the group can thus be a dynamic decision based on signal levels, for example, as in any of the above groups, or a static definition based on some other criteria, for example, geometric locations of the user equipment, etc.
- The conventional measurement types comprise, for example, intra-frequency measurements, inter-frequency measurements, inter-system-measurements, traffic volume measurements, quality measurements and internal measurements of the user equipment transmission power and user equipment received signal level. In the emerging systems, some new measurement types may also be applied. The measurement events may be triggered based on several criteria, for example at change of best cell, change in defined pilot channel signal level, changes in the signal-to-noise (SIR) level, periodically, etc. Through these measurement procedures, the user equipment has a substantial basis for estimating the characteristics of the transmission paths to the selected group of surrounding cells.
- According to the invention, the user equipment generates (step 52) from the measurement data mk a plurality of measurement indications Mk that represent properties of the transmission paths to the k=1, . . . , K cells of the selected group, and thus serve as a basis for estimating interference to be generated to the selected group of cells by a particular radio resource of a user equipment. Depending on the complexity of the computations, and the processing capacity of the user equipment, the measurement indications Mk may be simple measurement data to be forwarded to the network side for further processing, or more or less computed values directly applicable for further analysis. In the embodied solution, the measurement indication Mk by the user equipment comprises advantageously values of measured path loss to the cells in the active group.
- The user equipment sends (step 53) the measurement indications Mk of all the cells in the selected group of K cells to the controlling network infrastructure element such that they are available in the network infrastructure element at least at the time of the radio resource allocation. Transfer of measurement indication events can be triggered in line with some other measurement events, or be based on a separate scheme, for example take place periodically or at the time of connection setup.
- Correspondingly,
FIG. 6 illustrates thestep 43 of determining the interference in the embodied radio resource allocation method from the point of view of thenetwork infrastructure element 216. In general terms, the network infrastructure element receives the information on the transmission paths to the defined group of neighbouring cells from the user equipment, and uses this information to select an appropriate radio resource group for the user equipment. More specifically, the network infrastructure element NIEj receives (61) measurement indication values Mk from the user equipment. On the basis of the measurement indication values Mk, the network infrastructure element computes (step 62) one or more interference values Ij,k that represent the effective interference to be incurred by the requested radio resource to the selected group of neighbouring cells. Effective interference relates herein to the interference that is considered relevant for the radio resource allocation and is associated with a particular computing method. Several different measurement indications are applicable. In the presently embodied example, the network infrastructure element NIEj receives from the user equipment the computed path loss values pk for the transmission path between the user equipment and the cells in its active group, and computes effective interference Ij, K as total interference to the active group by the equation -
- where j is the index of the own cell, pk is the measured path loss to the kth cell, and K is the number of cells in the active set. Other computing methods, for example, weighted averages or the like are possible within the scope of protection.
- In another embodiment of the invention, the network infrastructure element NIEj computes the effective interference Ij, K on the basis of the Channel Quality Indicator (CQI) values, received from the user equipment. The CQI reporting concept is basically a concept for the downlink, and the user equipment is configured to measure CQI to be able to provide to the base station a metric, which indicates the current experienced channel quality. User equipment may, for example, suggest a radio resource transmission configuration that it needs to support while observing a certain block error probability. Different receiver implementations typically offer a different mapping between SINR and sustained throughput. A good downlink channel indicated by the CQI measurements of the user equipment means lower path loss and transmission power, and accordingly corresponds with lower interference to the selected group of neighboring cells. The user equipment generates measurement indications Mk in form of CQI measurements, which in this embodiment serve as a basis for estimating interference to be generated to the selected group of cells by a particular radio resource of user equipment. The effective interference Ij, K to be incurred by the radio resource associated with the user equipment to the selected group of neighbouring cells can be determined on the basis of the CQI values of the user equipment directly or through simple correlation.
- According to the invention, the users are arranged into different radio resource groups by allocating their radio resources according to a computed value that represent interference to be generated to defined neighbouring cells. Users whose requested radio resource is estimated to generate a similar interference to the surrounding cells, will be allocated to the same radio resource groups. Accordingly, based on the computed total interference Ij, K the embodied network infrastructure element selects (step 44) a radio resource group fK from which the radio resource is to be allocated. In the embodied case, each of the
frequency groups frequency band 30 correspond to a defined range of total interference values. The computation of the total interference provides a value Ij, K, for the interference. A corresponding frequency group may determined by comparing the value Ij, K, to the ranges, and choosing the frequency group in the range of which the value exits. The channel allocation may then be made from the determined frequency group. Channel allocation within a frequency group may be made using a selected multiple access scheme, for example, FDMA, CDMA, TDMA, etc., and the channel may utilize one or more radio resource units of the frequency group. - Through the invented mechanism, a plurality of user equipment that cause similar interference to relevant neighbouring cells becomes automatically arranged to the same frequency group. The power control of the user equipment classified to frequency groups as described above can then managed separately, which gives rise to several advantages.
- Cellular systems typically comprise a mechanism by which a network infrastructure element, like a base station, can command user equipment to increase or decrease the uplink transmission power. The comparison involving the received power is based on a predefined measurement parameter, for example, signal-to-interference ratio (SIR), signal-to-noise ratio, signal strength, Frame Error Ratio (FER) and Bit Error Ratio (BER). The base station receives the user equipment signal, estimates a pre-defined parameter, for example, signal-to-noise-power ratio and/or signal-to-interference-power ratio, compares the estimated value with a pre-defined threshold value and, when necessary, sends a transmission power command to the user equipment to increase or decrease its signal power.
- When physical layer information of several cells is available to a controlling network element, the network infrastructure element is able to co-ordinate the allowed power levels of the cells and target SIRs to be used by the base stations. When exchange of physical layer information between base stations is limited, only methods that apply pre-defined control procedures and levels are practically possible. In addition, the size of cells in mobile communications systems varies considerably, which means that also the dynamic range for transmission path measurements, for example path loss measurements varies accordingly. With large and moderate cell sizes the dynamic range is adequate, and measurements of the transmission path within the own cell, and arranging users in frequency groups accordingly would already be enough to provide the increased performance. However, with smaller size cells the dynamic range for, for example, path loss measurements becomes correspondingly smaller, and the granularity of the path loss measurements within the own cell may in some cases be deficient. The full effect of the information received from the user equipment is achieved by utilizing information on the plurality of transmission paths to the neighbouring cells.
- In a typical environment, signals transmitted from user terminals located close to a base station are expected to induce a smaller interference to the neighbouring cells and signals transmitted from user terminals distant to a base station (i.e. located at the edge of a cell) a more significant interference. User terminals located at the edge of the cell are likely to be allocated to the same subgroup and the user terminals located close to the base station to the same subgroup, which means that the negative effect of “near-far” problem is reduced.
- In addition, the classification is based, not only on the path loss in the own cell, but on information or estimates on a comprehensive amount of radio links to the surrounding cells and is therefore more accurate and thus effective, even with smaller cell sizes. The reduced interference results in increased overall performance and system capacity.
- In the embodied example, the base station receives the user equipment signal, estimates a pre-defined parameter, for example, signal-to-noise-power ratio and/or signal-to-interference-power ratio, compares the estimated value with a pre-defined threshold value and, when necessary, sends a transmission power command to the user equipment to increase or decrease its signal power. According to the invention, the system may set (step 45) a different target value for each radio resource group such that high signal-to-noise-power ratio and/or signal-to-interference-power ratio can be used in radio resource groups where user equipment generate only moderate interference to the other cells. Correspondingly, in the radio resource groups where interference to the other cells is considerable, lower signal-to-noise-power ratio and/or signal-to-interference-power ratio needs to be used. When the power is adjusted (step 46) according to the improved method, the user equipment that generates moderate interference may be commanded to use higher transmission power and thus achieve higher throughput, while the transmission power of the more interfering user equipment can be effectively controlled at the same time. Use of similar classification criteria in all the cells results in increased throughput rates and higher overall performance of the system.
- In another exemplary embodiment, the radio resource unit separately allocatable to a user corresponds to a resource block in time and frequency domain, further divisioned by means of block-level spreading codes. As an example of such code divisional multiple (CDM) access scheme, block-wise spreading using Hadamard codes is discussed in more detail.
- The basic uplink transmission scheme of SC-FDMA is single-carrier transmission with cyclic prefix to achieve uplink inter-user orthogonality and to enable efficient frequency-domain equalization at the receiver side. Frequency-domain generation of the signal, sometimes known as DFT-spread OFDM (Discrete Fourier Transform-spread Orthogonal Frequency Division Multiplexing), is assumed.
FIGS. 7A and 7B show a basic timeslot structure for uplink data transmission. -
FIG. 7A illustrates a basic structure of atimeslot 70 in the time and frequency domain in the SC-FDMA basic transmission scheme. The channel-coded, interleaved, and data-modulated information is mapped onto SC-FDMA time/frequency symbols. The overall SC-FDMA time/frequency resource symbols can be organized into a number of resource units (RU). Each RU consists of a number of consecutive or non-consecutive sub-carriers within one timeslot. Thetimeslot 70 corresponds to a cyclic time interval that can be recognized and defined uniquely. -
FIG. 7B illustrates the concept of block-wise spreading, applied on top of the SC-FDMA basic transmission scheme. In the example ofFIG. 7B , the basic timeslot comprises seven separate blocks for control and/or data transmission. At least one of the blocks is used as a reference signal. Three blocks (LB# 1 andLB# 4 and LB#7) are used for pilot transmission. This is due to the fact that when spreading is applied, the operation point in terms of SNR decreases. The arrangement aims to increase pilot energy and that way optimize link performance in spreading. In addition, with increased amount of pilot symbols it is possible to generate more orthogonal pilot signals. It should be noted that the data transmission may include either or both of scheduled data transmission and contention based data transmission. - In block-wise spreading, the overall SC-FDMA time/frequency symbols are organized into a number of radio resource units. Each radio resource unit basically corresponds to a number of symbols during a block LB# within one timeslot. In the present embodiment, as shown in
FIG. 7B , before entering the basic DFT-s-OFDM transmission 72, the coded symbol sequences S1, S2, . . . , SN undergo a block-wise spreading 71 using Hadamard codes of length four. - Thus, for example, an allocation of a single physical resource block provides four orthogonal resources in 180 kHz frequency band, each with a symbol rate of 24 ks/s. Each radio resource unit is capable to convey 24 information bits assuming quadrature phase shift keying (QPSK) with effective coding rate of ½ and Transmission Time Interval (TTI) of 1 ms.
- In TDM/FDM/CDM radio a resource unit is thus separable unit in time and frequency domain, divisioned by a channelization code that comprises one or more spreading codes of one or more type. Separable in this context refers to the fact that two radio resource units with different positions in the code domain are different, even if other factors identifying the radio resource units are the same. A position of a radio resource block in the time or frequency domain does not need to be singular, for example a radio resource unit may comprise a number of consecutive long blocks or consecutive or non-consecutive subcarriers. In the present embodiment a radio resource unit corresponds to a physical resource block in a defined time and frequency divisioned by means of Hadamard spreading code. The channelization code in this context thus comprises a Hadamard spreading code applied block-wise to the coded sequence of symbols.
- In interference considerations, maintaining orthogonality of the code channels is of importance. However, user equipment that apply the same code channels in different cells are inherently non-orthogonal. In order to control interference for the transmissions, allocations of radio resource units need to be implemented in a coordinated manner such that the effective interference due to the user equipment in any of the neighboring cells is minimized. Furthermore, as discussed above, there should be an opportunity to enable this without relying on additional signaling, or only on limited amount of additional signaling between the base stations.
- According to the invention, such coordination may be implemented by means of grouping available radio resource units of cells, associating each group with a spreading code and an interference criterion, mapping the interference state of the transmission path reported by user equipment to the interference criterion, and allocating a radio resource unit from a group associated with the interference criterion. As an example of such arrangement, allocations of radio resource units whose configuration was illustrated in
FIG. 7 are described in more detail. - As an exemplary embodiment,
FIG. 8 illustrates a schematic representation of a network configuration in a cellular communication system. The system comprises 57 cells formed by base station sectors BSn, n=1, . . . 57 in 19 base station sites Sm, m=1, . . . , 19. Each base station site comprises three base station sectors, the transceivers of each of the base station sectors co-locating in the central cross-point of the cellular coverage areas. Base station sites Sm, m=1, . . . , 19 are divided into three classes of Type A, Type B, Type C in a following way: -
Sites, type A S1 BS1 BS2 BS3 S8 BS15 BS30 BS31 S10 BS17 BS34 BS35 S12 BS20 BS37 BS38 S14 BS22 BS41 BS42 S16 BS25 BS44 BS45 S18 BS27 BS28 BS48 Sites, type B S2 BS4 BS13 BS14 S4 BS7 BS9 BS19 S6 BS10 BS23 BS24 S9 BS32 BS33 BS51 S13 BS39 BS40 BS54 S17 BS46 BS47 BS57 Sites, type C S3 BS5 BS6 BS16 S5 BS8 BS9 BS21 S7 BS11 BS12 BS26 S11 BS36 BS52 BS53 S15 BS43 BS55 BS56 S19 BS29 BS49 BS50 - According to the invention, each of the cells provides a radio resource comprised of a number of separately allocatable radio resource units. In the present embodiment, such radio resource units correspond to a physical resource block allocation divisioned by means of Hadamard spreading codes. In the example of
FIG. 8 , order four Hadamard codes are used, such that each row of matrix W corresponds with a spreading code Ci. -
- In any of the cells BSn, n=1, . . . 57, radio resource units with the same spreading code form a radio resource group. In the embodiment of
FIG. 8 , three different radio resource groups G1, G2, G3 are used. This means that three spreading codes, for example, -
- C1:[1 1 1 1]
- C2:[1-1 1-1]
- C3:[1 1-1-1]
from matrix W are utilized, and each of the group corresponds with one radio resource group. For example in site S1 of type A, base station sector BS1 is configured with three radio resource groups G1, G2, G3 and the radio resource groups correspond with spreading codes as follows: - C1:=:G1
- C2:=:G2
- C3:=:G3.
- Each of the groups of base station sector BS1 is also associated with a range of measurement indication values as follows
-
- G1:=:{range1}
- G2:=:{range2}
- G3:=:{range3}.
- In operation the transceiver of the base station sector BS1 receives measurement indication from user equipment UE1 80 located in the edge of cell of base station sector BS1. BS1 checks to which of the ranges {range1}, {range2}, {range3} the measurement indication value falls, and selects the radio resource unit for allocation from the corresponding group G1, G2, G3.
- The measurement indication in this embodiment provides information from the transmission path between the user equipment that generated the measurement indication and the transceiver of the current base station sector. Exemplary parameters applicable for use as the measurement indication in this embodiment comprise path loss, channel quality indicator (CQI), signal-to-noise ratio (SNR), and signal-to-interference ratio (SINR). Other similar parameters may naturally be applied without deviating from the scope of protection.
- Considering the current example utilizing path loss determination, the base station derives from the received measurement indication, either directly or through calculation, a path loss value that corresponds with one of the ranges {range 1} applied in the base station sector BS1. BS1 allocates radio resource units to the user equipment according to this path loss classification, which results in that user equipment in sectors of equal distance from the transceiver of the base station site have the same spreading code allocated.
- According to the invention, in the current embodiment all base station sectors BS1, BS2, BS3 within one base station site S1 apply the same set of codes, ranges and groups, and the correspondence between groups and codes and between groups and ranges is the same. The effective interference to be generated to the neighbouring cells is determined by considering the orthogonality between transmissions of the user equipment for which the radio resource allocation is to be made and of user equipment locating in any of the neighboring cells. The defined group of neighboring cells used as a basis for interference considerations in this embodiment may comprise all cells neighboring the cell that is currently allocating the radio resource unit.
- The orthogonality between user equipment that apply the same block-level spreading code is improved by a coordinated allocation scheme that aims to maximize the spatial distance between such user equipment. In the present embodiment this is achieved by configuring the cells such that in Type A sites S1, S8, S10, S12, S14, S16, S18, in
Type B sites FIG. 8 by different sizes of circles over the cells. The relative distance of user equipment using the same spreading code is illustrated by the size of the circle. It may be seen that by changing the mapping between the groups and ranges or between the groups and spreading codes, the spatial distance between user equipment that use the same spreading code in neighboring cells may be maximized. This provides favorable interference conditions, which is especially critical to the user equipment located at the cell edges. - It is also appreciated that as far as timing of different code channels is within cyclic prefix duration, different code channels are substantially orthogonal. The orthogonality starts to degrade gradually as the timing difference between the code channels increases. Considering user equipment UE1 located in the edge of cell of base station sector BS1, the dominant interferers are also located at the cell edge and have similar propagation loss values in respect of BS1 as user equipment UE1. While the grouping in this embodiment is related to the propagation distance, in a synchronized system the uplink timing is relatively similar for user equipment UE1 and its dominant interferers. Also the physical distance between user equipment UE1 and its dominant interferers is relatively small. This means that timing differences between the user equipment UE1 and its dominant interferers in relation to the base station sector transceiver BS1 are typically within the cyclic prefix duration and the code channels thus remain adequately orthogonal.
- For a person skilled in the art it is clear that the above example may be varied in several ways without deviating from the scope of protection. For example, the mapping between the ranges, groups and codes may be arranged and changed in several ways. As an example, any of the codes, the groups, and the ranges may be arranged into a predefined order and mapped to the other counterparts in that order, for example, by rotating the order to begin from a different point for each of the base station site classes. Furthermore, the principle may be implemented also when the base station sites are not sectored; in such case the application of same sets of ranges and groups is naturally inherent.
-
FIG. 9 illustrates the steps of the presently embodied radio resource allocation method according to the invention, applied to the embodied system as described inFIGS. 1 , 2, and 7. As discussed above, the radio resource units in a cell is first divided (step 91) into more than one radio resource groups G1, G2, G3. - Radio resource allocation begins when the network infrastructure element controlling the radio resource of the cell detects (step 92) a need for dedicated or shared radio resource of the cell for user equipment. When a request RRreq for radio resource reaches the network infrastructure element, the network infrastructure element analyses relevant transmission characteristics in the transmission path TPUE between the user equipment and the transceiver of the cell. The transmission characteristics may be determined, for example, from measurement indications in the request or on the basis of earlier measurement indications received from the user equipment. If possible the network infrastructure element allocates a radio resource unit rrui (step 94) according to a predefined allocation scheme, rejects the request, or initiates a signalling procedure to re-negotiate with the user equipment new, achievable characteristics. In this embodiment the predefined allocation scheme is adjusted to take into consideration the interference between user equipment using the same channel code in neighbouring cells. Thus in
step 94, the radio resource unit rrui is allocated from group Gi that is selected on the basis of the determined relevant transmission characteristics in the transmission path TPUE between the user equipment and the transceiver of the cell, as discussed in the context ofFIG. 8 . -
FIG. 10 illustrates in more detail a procedure for implementingstep 93 in the embodied radio resource allocation method ofFIG. 9 from the point of view of the user equipment. In general terms, the user equipment acquires the required information on the transmission path in the current cell, and provides this information to the network infrastructure to be used in channel allocation decisions. More specifically, for handover purposes the user equipment continuously collects measurement data sk, that provides basis for computing the properties of the transmission path in the current cell (step 101). According to the invention, the user equipment generates (step 102) from the measurement data sk a measurement indication Sk that indicates properties of the transmission paths to the current cell. Depending on the complexity of the computations, and the processing capacity of the user equipment, the measurement indication Sk may be simple measurement data to be forwarded to the network side for further processing, or more or less computed values directly applicable for further analysis. In the embodied solution, the measurement indication Sk by the user equipment comprises advantageously values of measured path loss to the current cell. - The user equipment sends (step 103) the measurement indications Sk to the controlling network infrastructure element such that it is available in the network infrastructure element at least at the time of the radio resource allocation. Transfer of measurement indication events can be triggered in line with some other measurement events, or be based on a separate scheme, for example take place periodically or at the time of connection setup.
- Correspondingly,
FIG. 11 illustrates thestep 93 of determining the interference in the embodied radio resource allocation method from the point of view of the network infrastructure element. In general terms, the network infrastructure element receives the information on the transmission path to current cell, and uses this information to select an appropriate radio resource group for the user equipment. More specifically, the network infrastructure element NIEj receives (111) a measurement indication value Sk from the user equipment. On the basis of the measurement indication value Sk, the network infrastructure element reads, derives or computes (step 112) a comparison value CVk that represents the propagation distance of the transmission path. The network infrastructure element compares (step 113) the comparison value CVk to a group of predefined ranges {range1}, {range2}, {range3} and checks within which range the comparison value falls. On the basis of the range, the network infrastructure element determines (step 114) the group G1, G2, G3 and allocates (step 115) a radio resource unit for the transmissions from the user equipment from that particular group. - In the above example, Hadarmard codes have been used to illustrate the use of spreading codes and implementation of block-level spreading. However, for a person skilled in the art it is clear that also other types of the spreading codes may be applied. For example, Hadamard codes may be used only when the required length of the code is power of two. For other code lengths, for example code length of three, for example complex-valued GCL (Generalized Chirp Like) codes may be used.
- Alternatively, a scheme using modulated Constant Amplitude Zero AutoCorrelation (CAZAC) sequences enables multiplexing different user equipment into a given time and frequency resource. This is achieved by allocating different cyclic shifts of CAZAC sequence for different user equipment. In sequence modulator a CAZAC sequence is modulated using binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or 8 phase shift keying (8PSK). Each sequence carries 1 bit, 2 bits, or 3 bits, depending on the applied modulation scheme. Here allocation of a physical resource block provides at maximum 12 orthogonal resources in 180 kHz frequency band each having a symbol rate of 12 ks/s. This assumes that 12 cyclic shifts of CAZAC codes are used by different user equipment. The requirement for orthogonality between user equipment is that the delay spread of the radio channel does not exceed the length of the cyclic shifts.
- It is cleat that other code types and related orthogonality requirements may be applied without deviating from the scope of protection.
- An embodiment of the invention may be implemented as a computer program comprising instructions for executing a computer process for radio resource allocation of a cellular telecommunication system. The computer program may be executed in the
processing unit 218 of thenetwork infrastructure element 216. Thenetwork infrastructure element 216 represents herein a logical element the processes of which can be performed in the processing unit of one network entity, or as a combination of processes performed in the processing units of a base station, radio network controller, or even some other elements (for example, servers, router units, switches, etc) of the telecommunication unit. - The computer program may be stored on a computer program distribution medium readable by a computer or a processor. The computer program medium may be, for example but not limited to, an electric, magnetic, optical, infrared or semiconductor system, device or transmission medium. The medium may be a computer readable medium, a program storage medium, a record medium, a computer readable memory, a random access memory, an erasable programmable read-only memory, a computer readable software distribution package, a computer readable signal, a computer readable telecommunications signal, and a computer readable compressed software package.
- Even though the invention has been described above with reference to examples in conjunction with the accompanying drawings, it is clear that the invention is not restricted thereto but it can be modified in several ways within the scope of the appended claims.
Claims (20)
1. A radio resource allocation method, comprising:
dividing radio resource of a plurality of cells into more than one radio resource groups,
detecting in a cell a requirement of radio resource allocation for a user equipment;
determining effective interference to be generated by the required radio resource to a defined group of neighbouring cells; and
allocating to a user equipment a radio resource from one of the radio resource groups on the basis of the determined effective interference to be generated to the defined group of neighbouring cells.
2. A method as claimed in claim 1 , where in the radio resource is a frequency band and the step of dividing comprises dividing the frequency band into more than one frequency sub-bands, each frequency sub-band comprising one or more frequency units.
3. A method as claimed in claim 1 , where
the step of determining comprises:
receiving in the user equipment information indicating properties of one or more transmission paths to one or more neighbouring cells;
generating in the user equipment from the received information corresponding one or more measurement indication;
sending from the user equipment the measurement indication to a network infrastructure element responsible for allocating the radio resource; and
computing in the network infrastructure element responsible for allocating the radio resource the effective interference on the basis of the measurement indications received from the user equipment;
generating measurement indications indicating path loss to a defined group of cells; and the step of computing comprises computing the effective interference as total path loss to the defined group of cells; and
wherein the defined group of cells is the active group of the user equipment.
4-26. (canceled)
27. A method as claimed in claim 1 , comprising:
utilizing in a cell a radio resource formed from a plurality of radio resource units, a radio resource unit corresponding to a separable unit in time and frequency domain, further divisioned by a channelization code, the channelization code comprising a predefined spreading code;
dividing the radio resource units of the cell into two or more radio resource groups, the channelization code of radio resource units in a radio resource group comprising a same predefined spreading code, and radio resource units in different radio resource groups comprising different predefined spreading codes;
determining said effective interference on the basis of the predefined spreading codes.
28. A method as claimed in claim 1 , comprising:
generating in a user equipment a measurement indication indicating a property of a transmission path between the user equipment and a transceiver in the cell;
sending from the user equipment the measurement indication to a network infrastructure element responsible for allocating the radio resource units of the cell;
allocating to the user equipment a radio resource unit from one of the radio resource groups on the basis of the measurement indication.
29. A method as claimed in claim 1 comprising:
arranging radio resource groups to correspond with defined ranges of the measurement indication values;
allocating to the user equipment a radio resource unit from the radio resource group that corresponds to a range within which a measurement indication received from the user equipment falls.
30. User equipment for a cellular communication system, configured to receive information indicating properties of one or more transmission paths to one or more cells;
generate from the received information corresponding one or more measurement indication;
send the measurement indication to a network infrastructure element responsible for allocating the radio resource.
31. User equipment as claimed in claim 30 , wherein the user equipment is configured to receive information indicating properties of one or more transmission paths to one or more neighbouring cells; and wherein the defined group of neighbouring cells is the active group of the user equipment.
32. User equipment as claimed in claim 30 , wherein the user equipment is configured to generate one or more measurement indications indicating a property of a transmission path between the user equipment and the cell.
33. A control unit for network infrastructure element controlling a defined radio resource of a cell, the control unit being configured to
divide the radio resource of the cell into more than one radio resource groups;
detect a requirement of radio resource allocation for a user equipment;
determine effective interference to be generated by the required radio resource to a defined group of neighbouring cells; and
allocate to the user equipment a radio resource from one of the radio resource groups on the basis of the determined effective interference to be generated to the defined group of neighbouring cells.
34. A control unit as claimed in claim 33 , where the radio resource is a frequency band and the frequency band is divided into more than one frequency sub-bands, each frequency sub-band comprising one or more frequency units.
35. A control unit as claimed in claim 33 , where the control unit is configured to
receive from the user equipment one or more measurement indications corresponding to properties of one or more transmission paths to one or more neighbouring cells; and
compute the effective interference on the basis of the one or more measurement indications received from the user equipment.
36. A control unit as claimed in claim 35 , where the one or more measurement indications indicate path loss to a defined group of cells; and the network infrastructure element is configured to compute the effective interference as total path loss to the defined group of cells.
37. A control unit as claimed in claim 36 , wherein the defined group of cells is the active group of the user equipment.
38. A control unit as claimed in claim 37 , wherein the one or more measurement indications provide channel quality indications (CQI); and the network infrastructure element is configured to compute the effective interference from the received channel quality indications.
39. A control unit as claimed in claim 33 , wherein the control unit is configured to manage a radio resource of a cell formed from a plurality of radio resource units, a radio resource unit corresponding to a separable unit in time and frequency domain, further divisioned by a channelization code, the channelization code comprising a predefined spreading code;
divide the radio resource units of the cell into two or more radio resource groups, the channelization code of radio resource units in a radio resource group comprising a same predefined spreading code, and radio resource units in different radio resource groups comprising different predefined spreading codes;
determine said effective interference on the basis of the predefined spreading codes.
40. A control unit as claimed in claim 33 , wherein the control unit is configured to
receive from a user equipment a measurement indication indicating a property of a transmission path between the user equipment and a transceiver of the cell;
allocate to the user equipment a radio resource unit from one of the radio resource groups on the basis of the measurement indication.
41. A control unit as claimed in claim 33 , wherein the control unit is configured with radio resource groups that correspond with defined ranges of measurement indication values; and is arranged to allocate to the user equipment a radio resource unit from the radio resource group that corresponds to a range within which a measurement indication received from the user equipment falls.
42. A control unit as claimed in claim 33 , wherein the control unit is implemented as an integrated circuit.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FI2006/050324 WO2008003815A1 (en) | 2006-07-07 | 2006-07-07 | Improved radio resource allocation mechanism |
FIPCT/FI2006/050324 | 2006-07-07 | ||
PCT/FI2007/050010 WO2008003821A1 (en) | 2006-07-07 | 2007-01-10 | Improved radio resource allocation mechanism |
FIPCT/FI2007/050010 | 2007-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090227261A1 true US20090227261A1 (en) | 2009-09-10 |
Family
ID=38894233
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/307,746 Abandoned US20090227261A1 (en) | 2006-07-07 | 2006-07-07 | Radio resource allocation mechanism |
US13/891,778 Active US9155100B2 (en) | 2006-07-07 | 2013-05-10 | Radio resource allocation mechanism |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/891,778 Active US9155100B2 (en) | 2006-07-07 | 2013-05-10 | Radio resource allocation mechanism |
Country Status (6)
Country | Link |
---|---|
US (2) | US20090227261A1 (en) |
EP (1) | EP2044787B1 (en) |
KR (1) | KR101039334B1 (en) |
CN (2) | CN102395132B (en) |
RU (1) | RU2415516C2 (en) |
WO (2) | WO2008003815A1 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080075195A1 (en) * | 2006-09-26 | 2008-03-27 | Nokia Corporation | Apparatus, method and computer program product providing sequence modulation for uplink control signaling |
US20080123616A1 (en) * | 2006-05-01 | 2008-05-29 | Jung Ah Lee | Method of assigning uplink reference signals, and transmitter and receiver thereof |
US20080166976A1 (en) * | 2007-01-09 | 2008-07-10 | Rao Anil M | Reverse link power control |
US20090135791A1 (en) * | 2005-08-23 | 2009-05-28 | Ntt Docomo, Inc. | Base station and communication system |
US20090323530A1 (en) * | 2008-06-26 | 2009-12-31 | Reverb Networks | Dynamic load balancing |
US20100069063A1 (en) * | 2006-11-13 | 2010-03-18 | Jacob Osterling | Wireless Telecommunications Systems |
US20100099450A1 (en) * | 2008-10-21 | 2010-04-22 | Fujitsu Limited | Inter-Cell Interference Mitigation Signalling Methods And Apparatus |
US20100159936A1 (en) * | 2008-12-23 | 2010-06-24 | At&T Mobility Ii Llc | Using mobile communication devices to facilitate coordinating use of resources |
US20110019636A1 (en) * | 2008-03-25 | 2011-01-27 | Panasonic Corporation | Wireless communication base station device and wireless communication method |
US20110090820A1 (en) * | 2009-10-16 | 2011-04-21 | Osama Hussein | Self-optimizing wireless network |
US20110136478A1 (en) * | 2009-12-09 | 2011-06-09 | Hafedh Trigui | Self-optimizing networks for fixed wireless access |
US20110164532A1 (en) * | 2008-03-28 | 2011-07-07 | Ntt Docomo, Inc. | User apparatus, base station apparatus, and communication control method |
US20110165870A1 (en) * | 2008-06-23 | 2011-07-07 | Huawei Technologies Co., Ltd. | Method, Apparatus and System for Key Derivation |
US20110195735A1 (en) * | 2008-08-27 | 2011-08-11 | Ralf Irmer | Multiple Power Control Parameter Sets for Wireless Uplink Data Transmission |
US8144570B2 (en) | 2006-09-26 | 2012-03-27 | Nokia Corporation | Apparatus, method and computer program product providing multiplexing for data-non-associated control channel |
US20120218950A1 (en) * | 2009-08-14 | 2012-08-30 | Zte Corporation | Signal Resource Determination Method |
US20120294175A1 (en) * | 2009-12-16 | 2012-11-22 | Ntt Docomo, Inc. | Control device and mobile communication method |
US20120300749A1 (en) * | 2010-01-25 | 2012-11-29 | Nec Corporation | Mobile station apparatus, base station apparatus, radio communication system, control method for mobile station, and control method for base station |
US8345546B2 (en) * | 2010-07-13 | 2013-01-01 | Verizon Patent And Licensing Inc. | Dynamic machine-to-machine communications and scheduling |
JP2013138440A (en) * | 2013-01-18 | 2013-07-11 | Telefon Ab L M Ericsson | Wireless communication system |
US8509762B2 (en) | 2011-05-20 | 2013-08-13 | ReVerb Networks, Inc. | Methods and apparatus for underperforming cell detection and recovery in a wireless network |
US20130260777A1 (en) * | 2012-04-03 | 2013-10-03 | Eden Rock Communications, Llc | Wireless multi-site capacity coordination |
US8576823B2 (en) | 2006-10-03 | 2013-11-05 | Nokia Corporation | Generating pilot sequence for reference signal |
US20140086194A1 (en) * | 2011-05-19 | 2014-03-27 | Nec Corporation | Spectrum control system, spectrum control method, wireless communication system, and computer readable medium |
KR101397755B1 (en) | 2010-08-04 | 2014-05-20 | 인텔 모바일 커뮤니케이션스 게엠베하 | Communication devices, method for data communication, and computer program product |
US20140140307A1 (en) * | 2006-10-31 | 2014-05-22 | Kddi Corporation | Wireless Terminal Apparatus and Wireless Base Station Apparatus |
US20140376495A1 (en) * | 2006-09-26 | 2014-12-25 | Lg Electronics Inc. | Random access method and signalling method for the same |
US9008722B2 (en) | 2012-02-17 | 2015-04-14 | ReVerb Networks, Inc. | Methods and apparatus for coordination in multi-mode networks |
US9113353B1 (en) | 2015-02-27 | 2015-08-18 | ReVerb Networks, Inc. | Methods and apparatus for improving coverage and capacity in a wireless network |
US9258719B2 (en) | 2011-11-08 | 2016-02-09 | Viavi Solutions Inc. | Methods and apparatus for partitioning wireless network cells into time-based clusters |
US9277454B2 (en) | 2012-12-20 | 2016-03-01 | Industrial Technology Research Institute | Transmitting method, receiving method, transmitter, and receiver |
US20160112992A1 (en) * | 2014-10-16 | 2016-04-21 | Qualcomm Incorporated | Wireless communication utilizing a unified air interface |
US9369886B2 (en) | 2011-09-09 | 2016-06-14 | Viavi Solutions Inc. | Methods and apparatus for implementing a self optimizing-organizing network manager |
US20160174235A1 (en) * | 2010-02-12 | 2016-06-16 | Blackberry Limited | Reference signal for a coordinated multi-point network implementation |
US20160270096A1 (en) * | 2014-01-22 | 2016-09-15 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US9826416B2 (en) | 2009-10-16 | 2017-11-21 | Viavi Solutions, Inc. | Self-optimizing wireless network |
KR20180050302A (en) * | 2015-08-06 | 2018-05-14 | 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 | Data transmission methods and devices |
US20200260458A1 (en) * | 2019-02-07 | 2020-08-13 | Raytheon Company | Apparatus and method for communications in congested radio frequency environments via dynamic usage exchange |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008003815A1 (en) | 2006-07-07 | 2008-01-10 | Nokia Corporation | Improved radio resource allocation mechanism |
DE602008000890D1 (en) * | 2008-03-20 | 2010-05-12 | Ntt Docomo Inc | A transceiver and method for transmitting and receiving data packets in a mobile communication network |
KR100999959B1 (en) | 2009-01-23 | 2010-12-09 | 서울대학교산학협력단 | Resource Allocation Control Method and Wireless Communication System Considering Inter-cell Interference in Multi-Cell Environment |
US9319886B2 (en) | 2010-04-01 | 2016-04-19 | Lg Electronics Inc. | Method for efficient channel use |
CN102238553B (en) * | 2010-04-28 | 2014-01-29 | 大唐移动通信设备有限公司 | Method for sending user equipment (UE) location information and method and device for allocating UE resources |
US9173206B2 (en) | 2010-09-03 | 2015-10-27 | Lg Electronics Inc. | Method of making a coexistence decision on hybrid topology |
CN102469463B (en) * | 2010-11-04 | 2014-06-11 | 中兴通讯股份有限公司 | Method, device, system and equipment for allocating marginal frequency resource |
CA2832929C (en) | 2011-01-21 | 2017-06-20 | Research In Motion Limited | Providing mobile-guided downlink interference management |
EP2501165B1 (en) * | 2011-03-14 | 2018-08-22 | Mitsubishi Electric R&D Centre Europe B.V. | Method and an apparatus for enabling at least one mobile terminal to transfer and/or receive data through multiple frequency bands |
CN102143521B (en) * | 2011-03-24 | 2016-07-13 | 电信科学技术研究院 | A kind of carry out method, system and the equipment that mutual interference in equipment is coordinated |
CN102916732B (en) * | 2011-08-02 | 2017-10-03 | 南京中兴软件有限责任公司 | A kind of method, system and control station for realizing super cell data transfer |
CN102355292A (en) * | 2011-08-05 | 2012-02-15 | 中兴通讯股份有限公司 | Method and apparatus for parameter transmission, and method and apparatus for parameter generation |
CN103918325A (en) * | 2011-10-19 | 2014-07-09 | 瑞典爱立信有限公司 | Determination of ue location in a cell |
WO2013075284A1 (en) * | 2011-11-22 | 2013-05-30 | 华为技术有限公司 | Method and device for implementing lte baseband resource pool |
US9143984B2 (en) | 2012-04-13 | 2015-09-22 | Intel Corporation | Mapping of enhanced physical downlink control channels in a wireless communication network |
CN103428860B (en) * | 2012-05-18 | 2019-07-09 | 索尼公司 | Communication means and equipment in wireless communication system |
CN103458511B (en) * | 2012-05-31 | 2017-08-01 | 中兴通讯股份有限公司 | A kind of method and device of division of cells edge band |
US9271282B2 (en) | 2012-09-24 | 2016-02-23 | Nec Corporation | Method of control signaling transmission and reception for user equipment in a LTE communication system |
JP5771177B2 (en) * | 2012-09-28 | 2015-08-26 | 株式会社Nttドコモ | Wireless base station, user terminal, wireless communication system, and wireless communication method |
WO2014161592A1 (en) * | 2013-04-05 | 2014-10-09 | Huawei Technologies Co.,Ltd. | Method for inter-cell interference coordination |
CN106851744B (en) * | 2015-12-03 | 2023-04-28 | 华为技术有限公司 | Method and apparatus for wireless communication |
CN110463320B (en) * | 2017-03-27 | 2024-03-22 | 瑞典爱立信有限公司 | Assigning radio resources to one or more radios in an industrial application |
US9949277B1 (en) * | 2017-07-27 | 2018-04-17 | Saankhya Labs Pvt. Ltd. | System and method for mitigating co-channel interference in white space modems using interference aware techniques |
CN107770874B (en) * | 2017-10-25 | 2021-06-15 | 河南理工大学 | Clustering and Subchannel Allocation in Ultra-Dense Networks |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5293640A (en) * | 1989-03-03 | 1994-03-08 | Televerket | Method for planning radio cells |
US5448754A (en) * | 1993-05-07 | 1995-09-05 | Corporate Technology Partners | Radio frequency sharing personal communications system |
US5491837A (en) * | 1994-03-07 | 1996-02-13 | Ericsson Inc. | Method and system for channel allocation using power control and mobile-assisted handover measurements |
US5513246A (en) * | 1990-12-07 | 1996-04-30 | Telefonaktiebolaget Lm Ericsson | Radiotelephone locating and handoff using alternative criteria |
US5710974A (en) * | 1995-05-17 | 1998-01-20 | Nokia Mobile Phones Ltd. | Method for improving the reliability of a handover and call establishment, and a cellular radio system |
US5915221A (en) * | 1995-08-08 | 1999-06-22 | Telefonaktiebolaget Lm Ericsson | Neighbor cell list creation and verification in a telecommunications system |
US6028851A (en) * | 1997-09-26 | 2000-02-22 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for mobile assisted admission control |
US6246877B1 (en) * | 1997-08-15 | 2001-06-12 | Telefonaktiebolaget Lm Ericsson | Method and system in a mobile radio system |
US6272348B1 (en) * | 1997-04-25 | 2001-08-07 | Nokia Telecommunications Oy | Method for channel allocation |
US20010053695A1 (en) * | 1998-03-06 | 2001-12-20 | Bo Stefan Pontus Wallentin | Telecommunications interexchange measurement transfer |
US6498934B1 (en) * | 1999-03-24 | 2002-12-24 | Telefonaktiebologet Lm Ericsson (Publ) | Channel allocation using enhanced pathloss estimates |
US20030013451A1 (en) * | 2001-05-03 | 2003-01-16 | Walton Jay R. | Method and apparatus for controlling uplink transmissions of a wireless communication system |
US20030096618A1 (en) * | 2001-11-09 | 2003-05-22 | Torgny Palenius | Estimation of interference in a radio communication network |
US20030123425A1 (en) * | 2000-03-30 | 2003-07-03 | Walton Jay R. | Method and apparatus for controlling transmissions of a communications system |
US20030128658A1 (en) * | 2002-01-08 | 2003-07-10 | Walton Jay Rod | Resource allocation for MIMO-OFDM communication systems |
US6636736B1 (en) * | 1997-09-12 | 2003-10-21 | Nortel Networks Limited | Device for allocating resources in a radiocommunication network |
US6671516B1 (en) * | 1999-03-24 | 2003-12-30 | Sanyo Electric Co., Ltd. | Transmission channel allocation method and radio apparatus using the same |
US20040062193A1 (en) * | 2002-10-01 | 2004-04-01 | Nortel Networks Limited | Channel mapping for OFDM |
US20040100897A1 (en) * | 1998-02-12 | 2004-05-27 | Shattil Steve J. | Carrier interferometry coding with aplications to cellular and local area networks |
US20040106410A1 (en) * | 2002-12-02 | 2004-06-03 | Yong-Seouk Choi | Apparatus and method for estimating cell coverage using interference model |
US6813479B2 (en) * | 2000-04-19 | 2004-11-02 | Mitsubishi Denki Kabushiki Kaisha | Method of controlling power in a telecommunication system |
US20050002369A1 (en) * | 2003-07-04 | 2005-01-06 | Samsung Electronics Co., Ltd. | Apparatus and method for cell search in mobile communication system using a multiple access scheme |
US20050009532A1 (en) * | 2003-07-09 | 2005-01-13 | Interdigital Technology Corporation | Resource allocation in wireless communication systems |
US20050025040A1 (en) * | 2003-07-29 | 2005-02-03 | Nokia Corporation | Method and apparatus providing adaptive learning in an orthogonal frequency division multiplex communication system |
US20050025039A1 (en) * | 2003-07-30 | 2005-02-03 | Samsung Electronics Co., Ltd. | Apparatus and method for assigning subchannel in a mobile communication system using orthogonal frequency division multiple access scheme |
US20050031047A1 (en) * | 2003-08-08 | 2005-02-10 | Maltsev Alexander A. | Adaptive multicarrier wireless communication system, apparatus and associated methods |
US20050096061A1 (en) * | 2003-10-30 | 2005-05-05 | Qualcomm Incorporated | Layered reuse for a wireless communication system |
US20050099937A1 (en) * | 2003-11-12 | 2005-05-12 | Samsung Electronics Co., Ltd. | Apparatus and method for sub-carrier allocation in a multiple-input and multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system |
US20050157639A1 (en) * | 2003-11-19 | 2005-07-21 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system |
US20060019701A1 (en) * | 2004-07-23 | 2006-01-26 | Qualcomm Incorporated | Restrictive reuse set management |
US6993342B2 (en) * | 2003-05-07 | 2006-01-31 | Motorola, Inc. | Buffer occupancy used in uplink scheduling for a communication device |
US20060153060A1 (en) * | 2003-02-11 | 2006-07-13 | Myeon-Gyun Cho | Method of reducing feedback channel state information within adaptive ofdma system and adaptive ofdma system using the same |
US20060205412A1 (en) * | 2005-03-09 | 2006-09-14 | Samsung Electronics Co., Ltd. | System and method for controlling resource allocation in a multicell communication system |
US20060211426A1 (en) * | 2003-08-19 | 2006-09-21 | Elena Costa | Method for allocating radio communication resources and network unit associated with a multi-carrier radio communication system |
US20060251041A1 (en) * | 2005-05-06 | 2006-11-09 | Kari Pajukoski | Radio resource allocation in telecommunication system |
US7184773B2 (en) * | 2002-02-28 | 2007-02-27 | Sanyo Electric Co., Ltd. | Spatial path control in radio communication system |
US20070171809A1 (en) * | 2005-05-06 | 2007-07-26 | Nokia Corporation | Radio resource control in FDMA system |
US20070297323A1 (en) * | 2005-03-02 | 2007-12-27 | Hiroyuki Seki | OFDM communication system and OFDM communication method |
US20080039129A1 (en) * | 2004-06-30 | 2008-02-14 | Xiaodong Li | Methods and Apparatus for Power Control in Multi-carier Wireless Systems |
US7366507B2 (en) * | 2003-08-21 | 2008-04-29 | France Telecom | Method and system for evaluating uplink inter-cell interference |
US20080132242A1 (en) * | 2006-11-06 | 2008-06-05 | Nokia Corporation | Radio resource allocation and radio system |
US7636334B2 (en) * | 2004-05-04 | 2009-12-22 | Alcatel | Method for inter-cell interference coordination with power planning for OFDM mobile communication system |
US7680457B2 (en) * | 2005-10-18 | 2010-03-16 | Cisco Technology, Inc. | Method and system for collaborated beamforming for reducing interference |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6018528A (en) | 1994-04-28 | 2000-01-25 | At&T Corp | System and method for optimizing spectral efficiency using time-frequency-code slicing |
ES2212066T3 (en) * | 1996-10-25 | 2004-07-16 | Nokia Corporation | METHOD FOR RADIO RESOURCES CONTROL. |
US6161015A (en) | 1998-05-28 | 2000-12-12 | Motorola, Inc. | Method for improving communication coverage in multi-cell communication systems using location information |
FR2779605B1 (en) * | 1998-06-04 | 2000-07-13 | Alsthom Cge Alcatel | RADIO RESOURCE ALLOCATION SYSTEM IN A CELLULAR MULTI-SERVICE RADIOCOMMUNICATION SYSTEM |
GB9828373D0 (en) | 1998-12-22 | 1999-02-17 | Northern Telecom Ltd | A power line communication system and method of operation thereof |
US6947748B2 (en) | 2000-12-15 | 2005-09-20 | Adaptix, Inc. | OFDMA with adaptive subcarrier-cluster configuration and selective loading |
GB0104281D0 (en) | 2001-02-21 | 2001-04-11 | Nokia Networks Oy | A communication system |
US6957175B2 (en) * | 2002-11-08 | 2005-10-18 | Interdigital Technology Corporation | Method and apparatus for determining signal-to-interference ratio with reduced bias effect |
WO2004057900A1 (en) * | 2002-12-20 | 2004-07-08 | Nokia Corporation | Method and system for allocating channels in a cellular communication network |
US7433310B2 (en) * | 2003-03-12 | 2008-10-07 | Interdigital Technology Corporation | Estimation of interference variation caused by the addition or deletion of a connection |
DE60315301T2 (en) | 2003-10-21 | 2009-04-09 | Alcatel Lucent | Method for assigning the subcarriers and for selecting the modulation scheme in a wireless multicarrier transmission system |
KR20050053907A (en) | 2003-12-03 | 2005-06-10 | 삼성전자주식회사 | Method for assigning sub-carrier in a mobile communication system using orthogonal frequency division multiple access scheme |
EP1566918A1 (en) | 2004-02-18 | 2005-08-24 | Siemens Aktiengesellschaft | Method for allocating subbands of a frequency band |
EP1589776A1 (en) | 2004-04-19 | 2005-10-26 | Telefonaktiebolaget LM Ericsson (publ) | Dynamic allocation of radio resources |
FI20045142A0 (en) * | 2004-04-21 | 2004-04-21 | Nokia Corp | Allocation procedure and controller |
JP2005328525A (en) * | 2004-05-04 | 2005-11-24 | Samsung Electronics Co Ltd | Method and apparatus for selecting optimal scheduling cells for soft handover terminal in uplink packet transmission system |
EP1603356B1 (en) * | 2004-05-31 | 2011-09-28 | Samsung Electronics Co., Ltd. | Resource allocation method for a cellular communication system |
KR100651569B1 (en) * | 2004-06-01 | 2006-11-29 | 삼성전자주식회사 | Resource allocation schedulling method for cellular communication system |
CN100388860C (en) * | 2004-09-24 | 2008-05-14 | 中兴通讯股份有限公司 | Implementing method of relay switchover judging process |
KR20060038131A (en) | 2004-10-29 | 2006-05-03 | 삼성전자주식회사 | Uplink Scheduling Method in a Communication System Using a FH-OPEM Method |
KR100957314B1 (en) * | 2005-02-16 | 2010-05-12 | 삼성전자주식회사 | System and method for reverse traffic load control in cellular wireless mobile communication system |
US8848574B2 (en) * | 2005-03-15 | 2014-09-30 | Qualcomm Incorporated | Interference control in a wireless communication system |
EP1838116A1 (en) | 2006-03-22 | 2007-09-26 | Matsushita Electric Industrial Co., Ltd. | Neigboring cell interference management in a SC-FDMA system |
WO2008003815A1 (en) | 2006-07-07 | 2008-01-10 | Nokia Corporation | Improved radio resource allocation mechanism |
-
2006
- 2006-07-07 WO PCT/FI2006/050324 patent/WO2008003815A1/en active Application Filing
- 2006-07-07 US US12/307,746 patent/US20090227261A1/en not_active Abandoned
-
2007
- 2007-01-10 KR KR1020097002431A patent/KR101039334B1/en active Active
- 2007-01-10 EP EP07700275.6A patent/EP2044787B1/en active Active
- 2007-01-10 WO PCT/FI2007/050010 patent/WO2008003821A1/en active Application Filing
- 2007-01-10 CN CN201110319038.1A patent/CN102395132B/en active Active
- 2007-01-10 CN CN2007800309704A patent/CN101507312B/en active Active
- 2007-01-10 RU RU2009103985/09A patent/RU2415516C2/en active
-
2013
- 2013-05-10 US US13/891,778 patent/US9155100B2/en active Active
Patent Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5293640A (en) * | 1989-03-03 | 1994-03-08 | Televerket | Method for planning radio cells |
US5513246A (en) * | 1990-12-07 | 1996-04-30 | Telefonaktiebolaget Lm Ericsson | Radiotelephone locating and handoff using alternative criteria |
US5448754A (en) * | 1993-05-07 | 1995-09-05 | Corporate Technology Partners | Radio frequency sharing personal communications system |
US5491837A (en) * | 1994-03-07 | 1996-02-13 | Ericsson Inc. | Method and system for channel allocation using power control and mobile-assisted handover measurements |
US5710974A (en) * | 1995-05-17 | 1998-01-20 | Nokia Mobile Phones Ltd. | Method for improving the reliability of a handover and call establishment, and a cellular radio system |
US5915221A (en) * | 1995-08-08 | 1999-06-22 | Telefonaktiebolaget Lm Ericsson | Neighbor cell list creation and verification in a telecommunications system |
US6272348B1 (en) * | 1997-04-25 | 2001-08-07 | Nokia Telecommunications Oy | Method for channel allocation |
US6246877B1 (en) * | 1997-08-15 | 2001-06-12 | Telefonaktiebolaget Lm Ericsson | Method and system in a mobile radio system |
US6636736B1 (en) * | 1997-09-12 | 2003-10-21 | Nortel Networks Limited | Device for allocating resources in a radiocommunication network |
US6028851A (en) * | 1997-09-26 | 2000-02-22 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for mobile assisted admission control |
US20040100897A1 (en) * | 1998-02-12 | 2004-05-27 | Shattil Steve J. | Carrier interferometry coding with aplications to cellular and local area networks |
US20010053695A1 (en) * | 1998-03-06 | 2001-12-20 | Bo Stefan Pontus Wallentin | Telecommunications interexchange measurement transfer |
US6498934B1 (en) * | 1999-03-24 | 2002-12-24 | Telefonaktiebologet Lm Ericsson (Publ) | Channel allocation using enhanced pathloss estimates |
US6671516B1 (en) * | 1999-03-24 | 2003-12-30 | Sanyo Electric Co., Ltd. | Transmission channel allocation method and radio apparatus using the same |
US20030123425A1 (en) * | 2000-03-30 | 2003-07-03 | Walton Jay R. | Method and apparatus for controlling transmissions of a communications system |
US6813479B2 (en) * | 2000-04-19 | 2004-11-02 | Mitsubishi Denki Kabushiki Kaisha | Method of controlling power in a telecommunication system |
US20030013451A1 (en) * | 2001-05-03 | 2003-01-16 | Walton Jay R. | Method and apparatus for controlling uplink transmissions of a wireless communication system |
US20030096618A1 (en) * | 2001-11-09 | 2003-05-22 | Torgny Palenius | Estimation of interference in a radio communication network |
US20030128658A1 (en) * | 2002-01-08 | 2003-07-10 | Walton Jay Rod | Resource allocation for MIMO-OFDM communication systems |
US7184773B2 (en) * | 2002-02-28 | 2007-02-27 | Sanyo Electric Co., Ltd. | Spatial path control in radio communication system |
US20040062193A1 (en) * | 2002-10-01 | 2004-04-01 | Nortel Networks Limited | Channel mapping for OFDM |
US20040106410A1 (en) * | 2002-12-02 | 2004-06-03 | Yong-Seouk Choi | Apparatus and method for estimating cell coverage using interference model |
US20060153060A1 (en) * | 2003-02-11 | 2006-07-13 | Myeon-Gyun Cho | Method of reducing feedback channel state information within adaptive ofdma system and adaptive ofdma system using the same |
US6993342B2 (en) * | 2003-05-07 | 2006-01-31 | Motorola, Inc. | Buffer occupancy used in uplink scheduling for a communication device |
US20050002369A1 (en) * | 2003-07-04 | 2005-01-06 | Samsung Electronics Co., Ltd. | Apparatus and method for cell search in mobile communication system using a multiple access scheme |
US20050009532A1 (en) * | 2003-07-09 | 2005-01-13 | Interdigital Technology Corporation | Resource allocation in wireless communication systems |
US20050025040A1 (en) * | 2003-07-29 | 2005-02-03 | Nokia Corporation | Method and apparatus providing adaptive learning in an orthogonal frequency division multiplex communication system |
US20050025039A1 (en) * | 2003-07-30 | 2005-02-03 | Samsung Electronics Co., Ltd. | Apparatus and method for assigning subchannel in a mobile communication system using orthogonal frequency division multiple access scheme |
US20050031047A1 (en) * | 2003-08-08 | 2005-02-10 | Maltsev Alexander A. | Adaptive multicarrier wireless communication system, apparatus and associated methods |
US20060211426A1 (en) * | 2003-08-19 | 2006-09-21 | Elena Costa | Method for allocating radio communication resources and network unit associated with a multi-carrier radio communication system |
US7366507B2 (en) * | 2003-08-21 | 2008-04-29 | France Telecom | Method and system for evaluating uplink inter-cell interference |
US20050096061A1 (en) * | 2003-10-30 | 2005-05-05 | Qualcomm Incorporated | Layered reuse for a wireless communication system |
US20050099937A1 (en) * | 2003-11-12 | 2005-05-12 | Samsung Electronics Co., Ltd. | Apparatus and method for sub-carrier allocation in a multiple-input and multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system |
US20050157639A1 (en) * | 2003-11-19 | 2005-07-21 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system |
US7636334B2 (en) * | 2004-05-04 | 2009-12-22 | Alcatel | Method for inter-cell interference coordination with power planning for OFDM mobile communication system |
US20080039129A1 (en) * | 2004-06-30 | 2008-02-14 | Xiaodong Li | Methods and Apparatus for Power Control in Multi-carier Wireless Systems |
US20060019701A1 (en) * | 2004-07-23 | 2006-01-26 | Qualcomm Incorporated | Restrictive reuse set management |
US20070297323A1 (en) * | 2005-03-02 | 2007-12-27 | Hiroyuki Seki | OFDM communication system and OFDM communication method |
US20060205412A1 (en) * | 2005-03-09 | 2006-09-14 | Samsung Electronics Co., Ltd. | System and method for controlling resource allocation in a multicell communication system |
US20060251041A1 (en) * | 2005-05-06 | 2006-11-09 | Kari Pajukoski | Radio resource allocation in telecommunication system |
US20070171809A1 (en) * | 2005-05-06 | 2007-07-26 | Nokia Corporation | Radio resource control in FDMA system |
US7680457B2 (en) * | 2005-10-18 | 2010-03-16 | Cisco Technology, Inc. | Method and system for collaborated beamforming for reducing interference |
US20080132242A1 (en) * | 2006-11-06 | 2008-06-05 | Nokia Corporation | Radio resource allocation and radio system |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090135791A1 (en) * | 2005-08-23 | 2009-05-28 | Ntt Docomo, Inc. | Base station and communication system |
US7912030B2 (en) * | 2005-08-23 | 2011-03-22 | Ntt Docomo, Inc. | Base station and communication system |
US20080123616A1 (en) * | 2006-05-01 | 2008-05-29 | Jung Ah Lee | Method of assigning uplink reference signals, and transmitter and receiver thereof |
US7701919B2 (en) * | 2006-05-01 | 2010-04-20 | Alcatel-Lucent Usa Inc. | Method of assigning uplink reference signals, and transmitter and receiver thereof |
US20140376495A1 (en) * | 2006-09-26 | 2014-12-25 | Lg Electronics Inc. | Random access method and signalling method for the same |
US9363831B2 (en) | 2006-09-26 | 2016-06-07 | Lg Electronics Inc. | Random access method and signaling method for the same |
US9088993B2 (en) * | 2006-09-26 | 2015-07-21 | Lg Electronics Inc. | Random access method and signalling method for the same |
US9655143B2 (en) | 2006-09-26 | 2017-05-16 | Lg Electronics Inc. | Random access method and signaling method for the same |
US20080075195A1 (en) * | 2006-09-26 | 2008-03-27 | Nokia Corporation | Apparatus, method and computer program product providing sequence modulation for uplink control signaling |
US8599940B2 (en) * | 2006-09-26 | 2013-12-03 | Nokia Corporation | Apparatus, method and computer program product providing sequence modulation for uplink control signaling |
US8144570B2 (en) | 2006-09-26 | 2012-03-27 | Nokia Corporation | Apparatus, method and computer program product providing multiplexing for data-non-associated control channel |
US8576823B2 (en) | 2006-10-03 | 2013-11-05 | Nokia Corporation | Generating pilot sequence for reference signal |
US20140140308A1 (en) * | 2006-10-31 | 2014-05-22 | Kddi Corporation | Wireless Terminal Apparatus and Wireless Base Station Apparatus |
US20140140190A1 (en) * | 2006-10-31 | 2014-05-22 | Kddi Corporation | Wireless Terminal Apparatus and Wireless Base Station Apparatus |
US9219564B2 (en) * | 2006-10-31 | 2015-12-22 | Kddi Corporation | Wireless terminal apparatus and wireless base station apparatus |
US20140140191A1 (en) * | 2006-10-31 | 2014-05-22 | Kddi Corporation | Wireless Terminal Apparatus and Wireless Base Station Apparatus |
US20140140307A1 (en) * | 2006-10-31 | 2014-05-22 | Kddi Corporation | Wireless Terminal Apparatus and Wireless Base Station Apparatus |
US9143258B2 (en) * | 2006-10-31 | 2015-09-22 | Kddi Corporation | Wireless terminal apparatus and wireless base station apparatus |
US9148245B2 (en) * | 2006-10-31 | 2015-09-29 | Kddi Corporation | Wireless terminal apparatus and wireless base station apparatus |
US9357550B2 (en) | 2006-10-31 | 2016-05-31 | Kddi Corporation | Wireless terminal apparatus and wireless base station apparatus |
US9160476B2 (en) * | 2006-10-31 | 2015-10-13 | Kddi Corporation | Wireless terminal apparatus and wireless base station apparatus |
US20140140280A1 (en) * | 2006-10-31 | 2014-05-22 | Kddi Corporation | Wireless Terminal Apparatus and Wireless Base Station Apparatus |
US9270402B2 (en) * | 2006-10-31 | 2016-02-23 | Kddi Corporation | Wireless terminal apparatus and wireless base station apparatus |
US20100069063A1 (en) * | 2006-11-13 | 2010-03-18 | Jacob Osterling | Wireless Telecommunications Systems |
US20080166976A1 (en) * | 2007-01-09 | 2008-07-10 | Rao Anil M | Reverse link power control |
US7917164B2 (en) * | 2007-01-09 | 2011-03-29 | Alcatel-Lucent Usa Inc. | Reverse link power control |
US20110019636A1 (en) * | 2008-03-25 | 2011-01-27 | Panasonic Corporation | Wireless communication base station device and wireless communication method |
US8559297B2 (en) * | 2008-03-28 | 2013-10-15 | Ntt Docomo, Inc. | User apparatus, base station apparatus, and communication control method for controlling coverage area and data rate according to environments |
US20110164532A1 (en) * | 2008-03-28 | 2011-07-07 | Ntt Docomo, Inc. | User apparatus, base station apparatus, and communication control method |
US10334492B2 (en) * | 2008-06-23 | 2019-06-25 | Huawei Technologies Co., Ltd. | Method, apparatus and system for key derivation |
US20110165870A1 (en) * | 2008-06-23 | 2011-07-07 | Huawei Technologies Co., Ltd. | Method, Apparatus and System for Key Derivation |
US20180007599A1 (en) * | 2008-06-23 | 2018-01-04 | Huawei Technologies Co., Ltd. | Method, Apparatus and System for Key Derivation |
US20130079014A1 (en) * | 2008-06-23 | 2013-03-28 | Huawei Technologies Co., Ltd. | Method, Apparatus and System for Key Derivation |
US20150350981A1 (en) * | 2008-06-23 | 2015-12-03 | Huawei Technologies Co., Ltd. | Method, Apparatus and System for Key Derivation |
US9125116B2 (en) * | 2008-06-23 | 2015-09-01 | Huawei Technologies Co., Ltd. | Method, apparatus and system for key derivation |
US8320568B2 (en) * | 2008-06-23 | 2012-11-27 | Huawei Technologies Co., Ltd. | Method, apparatus and system for key derivation |
US9661539B2 (en) * | 2008-06-23 | 2017-05-23 | Huawei Technologies Co., Ltd. | Method, apparatus and system for key derivation |
US8019083B2 (en) * | 2008-06-23 | 2011-09-13 | Huawei Technologies Co., Ltd. | Method, apparatus and system for key derivation |
US20110287773A1 (en) * | 2008-06-23 | 2011-11-24 | Huawei Technologies Co., Ltd. | Method, Apparatus and System for Key Derivation |
US8498207B2 (en) | 2008-06-26 | 2013-07-30 | Reverb Networks | Dynamic load balancing |
US20090323530A1 (en) * | 2008-06-26 | 2009-12-31 | Reverb Networks | Dynamic load balancing |
US20110195735A1 (en) * | 2008-08-27 | 2011-08-11 | Ralf Irmer | Multiple Power Control Parameter Sets for Wireless Uplink Data Transmission |
US8320834B2 (en) * | 2008-10-21 | 2012-11-27 | Fujitsu Limited | Inter-cell interference mitigation signalling methods and apparatus |
US20100099450A1 (en) * | 2008-10-21 | 2010-04-22 | Fujitsu Limited | Inter-Cell Interference Mitigation Signalling Methods And Apparatus |
US8213951B2 (en) * | 2008-12-23 | 2012-07-03 | At & T Mobility Ii Llc | Using mobile communication devices to facilitate coordinating use of resources |
US8442542B2 (en) | 2008-12-23 | 2013-05-14 | At&T Mobility Ii Llc | Using mobile communication devices to facilitate coordinating use of resources |
US20100159936A1 (en) * | 2008-12-23 | 2010-06-24 | At&T Mobility Ii Llc | Using mobile communication devices to facilitate coordinating use of resources |
US8913546B2 (en) | 2008-12-23 | 2014-12-16 | AT&T Mobility II LC | Using mobile communication devices to facilitate coordinating use of resources |
US20120218950A1 (en) * | 2009-08-14 | 2012-08-30 | Zte Corporation | Signal Resource Determination Method |
US8547922B2 (en) * | 2009-08-14 | 2013-10-01 | Zte Corporation | Signal resource determination method |
US9826420B2 (en) | 2009-10-16 | 2017-11-21 | Viavi Solutions Inc. | Self-optimizing wireless network |
US20110090820A1 (en) * | 2009-10-16 | 2011-04-21 | Osama Hussein | Self-optimizing wireless network |
US8665835B2 (en) | 2009-10-16 | 2014-03-04 | Reverb Networks | Self-optimizing wireless network |
US9826416B2 (en) | 2009-10-16 | 2017-11-21 | Viavi Solutions, Inc. | Self-optimizing wireless network |
US9226178B2 (en) | 2009-10-16 | 2015-12-29 | Reverb Networks | Self-optimizing wireless network |
US8385900B2 (en) | 2009-12-09 | 2013-02-26 | Reverb Networks | Self-optimizing networks for fixed wireless access |
US20110136478A1 (en) * | 2009-12-09 | 2011-06-09 | Hafedh Trigui | Self-optimizing networks for fixed wireless access |
US20120294175A1 (en) * | 2009-12-16 | 2012-11-22 | Ntt Docomo, Inc. | Control device and mobile communication method |
US8817731B2 (en) * | 2010-01-25 | 2014-08-26 | Nec Corporation | Mobile station apparatus, base station apparatus, radio communication system, control method for mobile station, and control method for base station |
US20120300749A1 (en) * | 2010-01-25 | 2012-11-29 | Nec Corporation | Mobile station apparatus, base station apparatus, radio communication system, control method for mobile station, and control method for base station |
US9888484B2 (en) * | 2010-02-12 | 2018-02-06 | Blackberry Limited | Reference signal for a coordinated multi-point network implementation |
US20160174235A1 (en) * | 2010-02-12 | 2016-06-16 | Blackberry Limited | Reference signal for a coordinated multi-point network implementation |
US8345546B2 (en) * | 2010-07-13 | 2013-01-01 | Verizon Patent And Licensing Inc. | Dynamic machine-to-machine communications and scheduling |
KR101397755B1 (en) | 2010-08-04 | 2014-05-20 | 인텔 모바일 커뮤니케이션스 게엠베하 | Communication devices, method for data communication, and computer program product |
US20140086194A1 (en) * | 2011-05-19 | 2014-03-27 | Nec Corporation | Spectrum control system, spectrum control method, wireless communication system, and computer readable medium |
US9425945B2 (en) * | 2011-05-19 | 2016-08-23 | Nec Corporation | Spectrum control system, spectrum control method, wireless communication system, and computer readable medium |
US8509762B2 (en) | 2011-05-20 | 2013-08-13 | ReVerb Networks, Inc. | Methods and apparatus for underperforming cell detection and recovery in a wireless network |
US9369886B2 (en) | 2011-09-09 | 2016-06-14 | Viavi Solutions Inc. | Methods and apparatus for implementing a self optimizing-organizing network manager |
US9258719B2 (en) | 2011-11-08 | 2016-02-09 | Viavi Solutions Inc. | Methods and apparatus for partitioning wireless network cells into time-based clusters |
US10003981B2 (en) | 2011-11-08 | 2018-06-19 | Viavi Solutions Inc. | Methods and apparatus for partitioning wireless network cells into time-based clusters |
US9008722B2 (en) | 2012-02-17 | 2015-04-14 | ReVerb Networks, Inc. | Methods and apparatus for coordination in multi-mode networks |
US9313792B2 (en) * | 2012-04-03 | 2016-04-12 | Nokia Solutions And Networks Oy | Wireless multi-site capacity coordination |
US20130260777A1 (en) * | 2012-04-03 | 2013-10-03 | Eden Rock Communications, Llc | Wireless multi-site capacity coordination |
US9277454B2 (en) | 2012-12-20 | 2016-03-01 | Industrial Technology Research Institute | Transmitting method, receiving method, transmitter, and receiver |
JP2013138440A (en) * | 2013-01-18 | 2013-07-11 | Telefon Ab L M Ericsson | Wireless communication system |
US20160270096A1 (en) * | 2014-01-22 | 2016-09-15 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US11917673B1 (en) | 2014-01-22 | 2024-02-27 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US11696321B2 (en) | 2014-01-22 | 2023-07-04 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US10057909B2 (en) * | 2014-01-22 | 2018-08-21 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US11265886B2 (en) | 2014-01-22 | 2022-03-01 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US10750516B2 (en) | 2014-01-22 | 2020-08-18 | Panasonic Intellectual Property Corporation Of America | Terminal, base station, transmission method, and reception method |
US10728215B2 (en) | 2014-10-16 | 2020-07-28 | Qualcomm Incorporated | Wireless communication utilizing a unified air interface |
TWI696408B (en) * | 2014-10-16 | 2020-06-11 | 美商高通公司 | Wireless communication utilizing a unified air interface |
US10594653B2 (en) | 2014-10-16 | 2020-03-17 | Qualcomm Incorporated | Wireless communication utilizing a unified air interface |
US10594652B2 (en) * | 2014-10-16 | 2020-03-17 | Qualcomm Incorporated | Wireless communication utilizing a unified air interface |
US20160112992A1 (en) * | 2014-10-16 | 2016-04-21 | Qualcomm Incorporated | Wireless communication utilizing a unified air interface |
US9113353B1 (en) | 2015-02-27 | 2015-08-18 | ReVerb Networks, Inc. | Methods and apparatus for improving coverage and capacity in a wireless network |
KR102108662B1 (en) * | 2015-08-06 | 2020-05-07 | 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 | Data transmission method and device |
KR20180050302A (en) * | 2015-08-06 | 2018-05-14 | 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 | Data transmission methods and devices |
US20200260458A1 (en) * | 2019-02-07 | 2020-08-13 | Raytheon Company | Apparatus and method for communications in congested radio frequency environments via dynamic usage exchange |
US11284404B2 (en) * | 2019-02-07 | 2022-03-22 | Raytheon Company | Apparatus and method for communications in congested radio frequency environments via dynamic usage exchange |
Also Published As
Publication number | Publication date |
---|---|
US20130337823A1 (en) | 2013-12-19 |
WO2008003821A1 (en) | 2008-01-10 |
RU2415516C2 (en) | 2011-03-27 |
EP2044787A4 (en) | 2012-12-26 |
KR20090031445A (en) | 2009-03-25 |
US9155100B2 (en) | 2015-10-06 |
CN102395132A (en) | 2012-03-28 |
CN101507312A (en) | 2009-08-12 |
EP2044787B1 (en) | 2016-09-28 |
KR101039334B1 (en) | 2011-06-08 |
EP2044787A1 (en) | 2009-04-08 |
RU2009103985A (en) | 2010-08-20 |
WO2008003815A1 (en) | 2008-01-10 |
CN102395132B (en) | 2016-01-20 |
CN101507312B (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9155100B2 (en) | Radio resource allocation mechanism | |
DK1997334T3 (en) | Measuring supported dynamic frequency re-use in mobile telecommunications networks | |
EP1741307B1 (en) | Attribution dynamique de ressources radio | |
JP4834326B2 (en) | Inter-cell interference coordination method using power planning for OFDM mobile communication system | |
RU2330386C2 (en) | Levelling of mutual interference in wireless communication systems | |
KR101257066B1 (en) | Method for Resource Partition, Assignment, Transmission and Reception for Inter-Cell Interference Migration in Downlink of OFDM Cellular Systems | |
KR20060093003A (en) | Apparatus and method for providing dynamic hybrid multiple access in communication system | |
KR20080012342A (en) | Radio Resource Allocation in Telecommunication Systems | |
EP2087759B1 (en) | Method, apparatus and computer program product for resource allocation in a radio system | |
Fraimis et al. | A decentralized subchannel allocation scheme with inter-cell interference coordination (ICIC) for multi-cell OFDMA systems | |
US20060252436A1 (en) | Interference control method, network element, device, computer program product and computer program distribution medium | |
Hernández et al. | Radio resource allocation for interference management in mobile broadband OFDMA based networks | |
Lee et al. | Dynamic channel allocation using the interference range in multi-cell downlink systems | |
KR100661435B1 (en) | Subcarrier Dynamic Allocation Method in Orthogonal Frequency Division Multiplexing | |
KR20060056212A (en) | Orthogonal Frequency Multiple Access Wireless Communication Method and System | |
Meghwani | On Erlang Capacity of IEEE 802.16 e Networks | |
KR20060056141A (en) | Resource Allocation Method and System in Wireless Communication System of Orthogonal Frequency Multiple Access |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOKIA CORPORATION, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TIIROLA, ESA;PAJUKOSKI, KARI;HORNEMAN, KARI;AND OTHERS;SIGNING DATES FROM 20101220 TO 20101221;REEL/FRAME:025541/0951 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |
|
AS | Assignment |
Owner name: NOKIA TECHNOLOGIES OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA CORPORATION;REEL/FRAME:035581/0654 Effective date: 20150116 |