+

US20090223957A1 - Welded full contact floating roof and method - Google Patents

Welded full contact floating roof and method Download PDF

Info

Publication number
US20090223957A1
US20090223957A1 US12/075,229 US7522908A US2009223957A1 US 20090223957 A1 US20090223957 A1 US 20090223957A1 US 7522908 A US7522908 A US 7522908A US 2009223957 A1 US2009223957 A1 US 2009223957A1
Authority
US
United States
Prior art keywords
roof
frame segments
automatic welder
roof panels
panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/075,229
Inventor
Michael J. Doxey
Richard King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HMT Inc
Original Assignee
HMT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HMT Inc filed Critical HMT Inc
Priority to US12/075,229 priority Critical patent/US20090223957A1/en
Assigned to HMT, INC. reassignment HMT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOXEY, MICHAEL J., KING, RICHARD
Publication of US20090223957A1 publication Critical patent/US20090223957A1/en
Priority to US13/929,191 priority patent/US8973771B2/en
Priority to US14/642,270 priority patent/US9868590B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/34Large containers having floating covers, e.g. floating roofs or blankets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49629Panel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49936Surface interlocking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49966Assembling or joining by applying separate fastener with supplemental joining
    • Y10T29/49968Metal fusion joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49993Filling of opening

Definitions

  • the invention pertains to sealed floating roofs for storage tanks.
  • Above ground storage tanks are frequently used to store hydrocarbon fluids. Because the stored fluid is volatile, the storage tank is often equipped with a floating roof under the fixed roof. The floating roof which floats above the stored fluid and moves up and down with the fluid level. Floating roofs greatly reduce fluid evaporation, preventing loss of the stored fluid and reducing pollution due to hydrocarbon evaporation into the atmosphere.
  • floating roofs that are full-contact roofs, allowing the roof structure to be in direct contact with the fluid surface.
  • Such roofs do not allow an air gap between the bottom of the roof surface and contained fluid. When air gaps exist, they allow an evaporation zone over the top of the fluid that increases the risk of leakage around the floating roof structure.
  • full contact floating roofs must be tightly sealed to prevent direct vapor leakage or evaporation through small gaps in the roof structure. Such leakage or evaporative losses can create unwanted pollution as well as the economic loss of stored product.
  • the structure typically comprises a framework of segments that are assembled to form and open lattice, and a plurality of roofpanels or sheets that are then attached to the framework to form the upper surface of the roof. Roof panels or sheets are typically attached by bolting them in place, and sometimes sealed with sealants that are generally known in the industry.
  • the invention comprises a floating roof comprising frame segments and roof panel top and bottom sheets that are shop welded to the frame segments to form fully sealed roof panels. These roofpanels are then assembled and welded together in the storage tank to form a fully welded, full contact floating roof.
  • the frame segments are aluminum extrusions, which allow strong, yet relatively light-weight construction and high resistance to corrosion over time.
  • Individual, fully welded roof panels may be constructed and pre-tested at a factory location, then shipped to the job site for final assembly. It is generally desirable to assemble the roof panels into a staggered rectangular grid. In this manner, standard-sized rectangular roof panels may be used to complete almost the entire roof, with differently shaped panels only required to form the outer, circular circumference of the roof.
  • a typical rectangular panel of a preferred embodiment of the invention would be framed using four lengths of an extruded aluminum frame segment, with top and bottom sheets edge-welded around their entire perimeters to the frame segments, forming a fully sealed roof panel.
  • These roof panels can then be tested at the factory for seal and weld integrity, and modified as desired for a particular installation. For example, sniffers or other test equipment may be inserted into a panel through its top sheet, allowing a customer to operate real-time test equipment once the roof is placed in operation. The completed roof panels may then be shipped to the job site for assembly.
  • the roof panels may be supported on legs or temporary supports, and frame segments of adjacent panels riveted together, preferably using a self-piercing rivet gun such as Model #ESN50.
  • a self-piercing rivet gun such as Model #ESN50.
  • a self-propelled automatic welder such as Model #BUGHDT1010 by HMT, Inc., using components manufactured by Bug-O Systems and Lincoln Welding Equipment may be used.
  • a self-propelled automatic welder such as Model #BUGHDT1010 by HMT, Inc., using components manufactured by Bug-O Systems and Lincoln Welding Equipment may be used.
  • it is necessary to properly guide the welder so that the track of the weld is correctly positioned along the contact seam between the adjacent roof panels. Accordingly, it is desirable to provide a guide to correctly position the automatic welder.
  • the frame segments are preferably extruded with a formed depression in an upper edge of the frame segment. Due to the nature of the construction, a single form of frame segment may be used, leaving a flat side turned outward from the roof panels. When the roof panels are riveted together, these flat sides form the outer wall of the roof panel, and are riveted to the flat sides of the adjacent roof panels' frame segments, with two such frame segments mechanically coupled “back-to-back.” When correctly positioned, the depressions in the upper edges of two such joined segments will be adjacent, and will formed a walled trough in the upper surface of the beam.
  • each walled trough between roof panels acts as a directional guide for the automatic welder, and an automatic welder thus controlled will maintain an appropriate path. It is therefore desirable to modify the aforementioned stock automatic welder by attaching a guide wheel to its carriage to insure that it follows the guide track in the upper surface of the framework.
  • guide wheels are attached to both the front and rear of the automatic welder's carriage, to insure that one end does not skew during transit.
  • Completion of the floating roof can thus be accomplished by positioning the automatic welder to transit along the walled troughs, using the walls for guidance and forming a continuous welding bead in the trough.
  • guidance of the automatic welder may be accomplished by a variety of alternate methods, such as providing multiple parallel troughs for guide wheels, radio or light frequency remote controls, direct linkage remote controls, or computer driven programmable controls integrated into the welder itself. While functional, such alternatives may increase the complexity of the assembly operation.
  • FIG. 1A is a cross section of a frame segment extrusion of one embodiment of the present invention.
  • FIG. 1B is a cross section of two adjacent roof panels of one embodiment of the present invention.
  • FIG. 2A is a top view of a roof panel of one embodiment of the present invention.
  • FIG. 2B is a bottom view of a roof panel of one embodiment of the present invention.
  • FIG. 3 is a side schematic view of an automatic welder operating to weld roof panels together in an assembled roof.
  • FIG. 4 is a schematic view of an assembled full contact floating roof of one embodiment of the present invention.
  • FIG. 1A an extruded frame segment 10 of a preferred embodiment of the present invention is seen in cross-section.
  • FIG. 1B a cross-section of two adjacent assembled roof panels 12 , 14 employing multiple frame segments 10 is shown.
  • Frame segments 10 of FIGS. 1A , 1 B comprises an upper lip 16 which supports upper roof sheet 18 and which is placed into sealing contact with upper roof sheet 18 by welding along the perimeter 20 of upper roof sheet 18 .
  • frame segment 10 comprises a lower lip 22 that is placed into sealing contact with lower roof sheet 24 by welding along the perimeter 26 of lower roof sheet 24 .
  • frame segments 10 and upper and lower roof sheets 18 , 24 form a sealed cavity 28 that forms a component of a full contact floating roof.
  • Roof panels 12 , 14 are preferably constructed and initially tested at a factory before being shipped to a job site for assembly into a full contact floating roof. (Such as depicted in FIG. 4 ) When placed adjacent to each other for assembly into a roof, roof panels 12 , 14 are first leveled and properly aligned, then mechanically joined together, as by use of stainless steel rivets 30 .
  • Frame segment 10 additionally preferably comprises a first top depression 32 and a second top depression 34 .
  • first top depressions 32 of two frame segments 10 combine to form a walled trough 36 .
  • second top depressions 34 combine to form a weld seam 38 .
  • FIGS. 2A and 2B top and bottom views of assembled roof panels 212 are shown respectively.
  • Frame segments 210 are angle-cut at the corners to provide squared-off corners 215 .
  • Upper roof sheet 218 is fully welded to frame segments 210 along its perimeter 220
  • lower roof sheet 224 is fully welded to frame segments 224 along its perimeter 226 .
  • Frame segments 210 are also welded at corners 214 to provide a completely sealed roof panel.
  • roof panels 212 are preferably rectangular in shape, those of skill in the art will recognize that this shape is a matter of engineering preference, and that panels with curved edges will be required to form the perimeter of a circular floating roof as shown in FIG. 4 .
  • one or more portals 228 may be opened in the upper roof sheet 218 , to provide access to the interior of the roof panel 212 for the insertion of leak sniffers or other instrumentation.
  • FIG. 3 a schematic view of an automatic welder 310 for use in completion of the floating roof is shown.
  • the automatic welder 310 comprises a carriage 312 mounted on wheels 314 , allowing it to roll across the upper surface 316 of the floating roof.
  • a weld head 320 is held in position by control arm 318 , allowing weld head 320 to be positioned to form a weld along weld seam 38 of FIG. 1B .
  • Guide wheels 322 , 324 are attached to the automatic welder 310 , and are fitted into walled trough 36 of FIG. 1B , controlling the line of motion of the automatic welder 310 , and allowing the automatic welder 310 to track each weld seam in the floating roof under assembly to completely seal the roof.
  • Floating roof 410 preferably comprises a plurality of rectangular roof panels 412 and perimeter curved roof panels 414 .
  • panels 412 and 414 are constructed in the same fashion, with curved panels 414 requiring curved frame segments along one side. Further, if the floating roof is of square or rectangular configuration, curved roof panels will be unnecessary.
  • One or more panels may be provided with man-way access, to allow personnel to access the lower portion of the roof if needed.
  • Each of the seams 418 between adjacent roof panels 412 , 414 is welded by use of the automatic welder as discussed above, providing a full contact floating roof that is fully sealed against evaporation by welds.
  • the floating roof of this invention may be fitted with a sliding edge seal (not shown) around its perimeter as known in the art.
  • the roof may be equipped to be held at a particular height, for example, for maintenance operations, by providing it with non-penetrating cable attach points (non-shown) on its upper surface, or by providing non-penetrating leg supports (not shown) on its lower surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

A sealed floating roof for a storage tank, comprising a frame and roof panels, in which the frame provides a guide for directing an automatic welder along said structure to allow for automated welding of the roof panels to the frame, and a method of forming such a roof.

Description

    FIELD OF THE INVENTION
  • The invention pertains to sealed floating roofs for storage tanks.
  • BACKGROUND OF THE INVENTION
  • Above ground storage tanks are frequently used to store hydrocarbon fluids. Because the stored fluid is volatile, the storage tank is often equipped with a floating roof under the fixed roof. The floating roof which floats above the stored fluid and moves up and down with the fluid level. Floating roofs greatly reduce fluid evaporation, preventing loss of the stored fluid and reducing pollution due to hydrocarbon evaporation into the atmosphere.
  • Additionally, it is desirable to provide floating roofs that are full-contact roofs, allowing the roof structure to be in direct contact with the fluid surface. Such roofs do not allow an air gap between the bottom of the roof surface and contained fluid. When air gaps exist, they allow an evaporation zone over the top of the fluid that increases the risk of leakage around the floating roof structure. However, full contact floating roofs must be tightly sealed to prevent direct vapor leakage or evaporation through small gaps in the roof structure. Such leakage or evaporative losses can create unwanted pollution as well as the economic loss of stored product.
  • However, typical floating roofs are large and must be assembled on site. The structure typically comprises a framework of segments that are assembled to form and open lattice, and a plurality of roofpanels or sheets that are then attached to the framework to form the upper surface of the roof. Roof panels or sheets are typically attached by bolting them in place, and sometimes sealed with sealants that are generally known in the industry.
  • Such construction can prevent the desired sealing effectiveness of the roof from being achieved. Sealants can degrade over time due to environmental conditions, and may be attacked by contact with the stored fluid or by vapors. Bolted connections are not vapor tight. Effecting repairs can require draining the storage tank, resulting in lost revenue, and may require workers to operate in a hazardous environment. Accordingly it is desirable to provide a seal between the roof panels and the framework that is highly resistant to degradation over time, and that will provide a strong, durable roof over its life expectancy.
  • One possible approach is to weld the edges of the roof panels to the framework, so that every seam between the roofpanels and the framework is permanently sealed. However, if welding were to be done by hand, the large size of the typical floating roof would require a large expenditure of man hours, and the work would often have to be done in an extremely uncomfortable environment.
  • Accordingly, it is desirable to provide a floating roof, especially one intended for full contact, with welded construction so that the roof panels are welded to the framework. It is further desirable to accomplish this welding with an automatic welder.
  • SUMMARY OF THE INVENTION
  • The invention comprises a floating roof comprising frame segments and roof panel top and bottom sheets that are shop welded to the frame segments to form fully sealed roof panels. These roofpanels are then assembled and welded together in the storage tank to form a fully welded, full contact floating roof. In a preferred embodiment, the frame segments are aluminum extrusions, which allow strong, yet relatively light-weight construction and high resistance to corrosion over time. Individual, fully welded roof panels may be constructed and pre-tested at a factory location, then shipped to the job site for final assembly. It is generally desirable to assemble the roof panels into a staggered rectangular grid. In this manner, standard-sized rectangular roof panels may be used to complete almost the entire roof, with differently shaped panels only required to form the outer, circular circumference of the roof.
  • For example, a typical rectangular panel of a preferred embodiment of the invention would be framed using four lengths of an extruded aluminum frame segment, with top and bottom sheets edge-welded around their entire perimeters to the frame segments, forming a fully sealed roof panel. These roof panels can then be tested at the factory for seal and weld integrity, and modified as desired for a particular installation. For example, sniffers or other test equipment may be inserted into a panel through its top sheet, allowing a customer to operate real-time test equipment once the roof is placed in operation. The completed roof panels may then be shipped to the job site for assembly.
  • Once at the job site, the roof panels may be supported on legs or temporary supports, and frame segments of adjacent panels riveted together, preferably using a self-piercing rivet gun such as Model #ESN50. Those of skill in the art will recognize that, during this assembly process, the roof panels must be supported in a way that insures that they are properly leveled with respect to each other. Once the roof panels have been riveted together to form the overall roof structure, the roof structure is completed by welding the roof panels together.
  • To weld the roof panels together, a self-propelled automatic welder, such as Model #BUGHDT1010 by HMT, Inc., using components manufactured by Bug-O Systems and Lincoln Welding Equipment may be used. However, it is necessary to properly guide the welder so that the track of the weld is correctly positioned along the contact seam between the adjacent roof panels. Accordingly, it is desirable to provide a guide to correctly position the automatic welder.
  • To accomplish this goal, the frame segments are preferably extruded with a formed depression in an upper edge of the frame segment. Due to the nature of the construction, a single form of frame segment may be used, leaving a flat side turned outward from the roof panels. When the roof panels are riveted together, these flat sides form the outer wall of the roof panel, and are riveted to the flat sides of the adjacent roof panels' frame segments, with two such frame segments mechanically coupled “back-to-back.” When correctly positioned, the depressions in the upper edges of two such joined segments will be adjacent, and will formed a walled trough in the upper surface of the beam.
  • As those of skill in the art will recognize, many alternatives to such construction may exist. For example, an entire beam could be extruded as a single piece, with a depression formed in its upper surface, without departing from the spirit of the invention. However, such an extrusion would be heavier and harder to position and control during assembly of the roof. Further, such a construction method would essentially require top and bottom sheets of the roof panels to be welded into place at the job site, increasing the complexity of the on-site construction, and making testing of individual cells in the roof much more difficult.
  • With a roof thus assembled, each walled trough between roof panels acts as a directional guide for the automatic welder, and an automatic welder thus controlled will maintain an appropriate path. It is therefore desirable to modify the aforementioned stock automatic welder by attaching a guide wheel to its carriage to insure that it follows the guide track in the upper surface of the framework. In a preferred embodiment, guide wheels are attached to both the front and rear of the automatic welder's carriage, to insure that one end does not skew during transit.
  • Completion of the floating roof can thus be accomplished by positioning the automatic welder to transit along the walled troughs, using the walls for guidance and forming a continuous welding bead in the trough. Those of skill in the art will recognize that, without departing from the spirit of the invention, guidance of the automatic welder may be accomplished by a variety of alternate methods, such as providing multiple parallel troughs for guide wheels, radio or light frequency remote controls, direct linkage remote controls, or computer driven programmable controls integrated into the welder itself. While functional, such alternatives may increase the complexity of the assembly operation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a cross section of a frame segment extrusion of one embodiment of the present invention.
  • FIG. 1B is a cross section of two adjacent roof panels of one embodiment of the present invention.
  • FIG. 2A is a top view of a roof panel of one embodiment of the present invention.
  • FIG. 2B is a bottom view of a roof panel of one embodiment of the present invention.
  • FIG. 3 is a side schematic view of an automatic welder operating to weld roof panels together in an assembled roof.
  • FIG. 4 is a schematic view of an assembled full contact floating roof of one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1A, an extruded frame segment 10 of a preferred embodiment of the present invention is seen in cross-section. Referring also to FIG. 1B, a cross-section of two adjacent assembled roof panels 12, 14 employing multiple frame segments 10 is shown. Frame segments 10 of FIGS. 1A, 1B comprises an upper lip 16 which supports upper roof sheet 18 and which is placed into sealing contact with upper roof sheet 18 by welding along the perimeter 20 of upper roof sheet 18. Similarly, frame segment 10 comprises a lower lip 22 that is placed into sealing contact with lower roof sheet 24 by welding along the perimeter 26 of lower roof sheet 24. When so assembled, frame segments 10 and upper and lower roof sheets 18, 24 form a sealed cavity 28 that forms a component of a full contact floating roof.
  • Roof panels 12, 14 are preferably constructed and initially tested at a factory before being shipped to a job site for assembly into a full contact floating roof. (Such as depicted in FIG. 4) When placed adjacent to each other for assembly into a roof, roof panels 12, 14 are first leveled and properly aligned, then mechanically joined together, as by use of stainless steel rivets 30.
  • Frame segment 10 additionally preferably comprises a first top depression 32 and a second top depression 34. When joined in complementary orientation, as shown in FIG. 1B, the first top depressions 32 of two frame segments 10 combine to form a walled trough 36. Similarly, the second top depressions 34 combine to form a weld seam 38.
  • Referring now to FIGS. 2A and 2B, top and bottom views of assembled roof panels 212 are shown respectively. Frame segments 210 are angle-cut at the corners to provide squared-off corners 215. Upper roof sheet 218 is fully welded to frame segments 210 along its perimeter 220, and lower roof sheet 224 is fully welded to frame segments 224 along its perimeter 226. Frame segments 210 are also welded at corners 214 to provide a completely sealed roof panel. Although roof panels 212 are preferably rectangular in shape, those of skill in the art will recognize that this shape is a matter of engineering preference, and that panels with curved edges will be required to form the perimeter of a circular floating roof as shown in FIG. 4. If desired, one or more portals 228 may be opened in the upper roof sheet 218, to provide access to the interior of the roof panel 212 for the insertion of leak sniffers or other instrumentation.
  • Referring now to FIG. 3, a schematic view of an automatic welder 310 for use in completion of the floating roof is shown. The automatic welder 310 comprises a carriage 312 mounted on wheels 314, allowing it to roll across the upper surface 316 of the floating roof. A weld head 320 is held in position by control arm 318, allowing weld head 320 to be positioned to form a weld along weld seam 38 of FIG. 1B. Guide wheels 322, 324 are attached to the automatic welder 310, and are fitted into walled trough 36 of FIG. 1B, controlling the line of motion of the automatic welder 310, and allowing the automatic welder 310 to track each weld seam in the floating roof under assembly to completely seal the roof.
  • Those of skill in the art will recognize that other means of guiding the automatic welder, such as (without limitation) radio frequency controls, directly connected steering controls, or alternate guide lines formed in the roof under construction could be used without departing from the spirit of the invention. Additionally, guidance could be accomplished without using multiple guide wheels.
  • Referring now to FIG. 4, a schematic top view of a welded, full contact floating roof of the present invention is shown. Floating roof 410 preferably comprises a plurality of rectangular roof panels 412 and perimeter curved roof panels 414. Those of skill in the art will recognize that panels 412 and 414 are constructed in the same fashion, with curved panels 414 requiring curved frame segments along one side. Further, if the floating roof is of square or rectangular configuration, curved roof panels will be unnecessary.
  • One or more panels, for example 416, may be provided with man-way access, to allow personnel to access the lower portion of the roof if needed. Each of the seams 418 between adjacent roof panels 412, 414 is welded by use of the automatic welder as discussed above, providing a full contact floating roof that is fully sealed against evaporation by welds.
  • Those of skill in the art will also recognize that the floating roof of this invention may be fitted with a sliding edge seal (not shown) around its perimeter as known in the art. Additionally, the roof may be equipped to be held at a particular height, for example, for maintenance operations, by providing it with non-penetrating cable attach points (non-shown) on its upper surface, or by providing non-penetrating leg supports (not shown) on its lower surface. Thus, these attachments can be made without penetrating the roof, preserving its sealing integrity.
  • The above examples are included for demonstration purposes only and not as limitations on the scope of the invention. Other variations in the construction of the invention may be made without departing from the spirit of the invention, and those of skill in the art will recognize that these descriptions are provide by way of example only.

Claims (12)

1. A method of forming a sealed floating roof for a storage tank, comprising the steps of
forming roof panels,
forming a roof by interconnecting said roof panels,
guiding an automatic welder essentially parallel to the interconnections of said roof panels, and
welding said roof panels together with said automatic welder.
2. The method of claim 1, wherein the step of providing roofpanels additionally comprises the steps of extruding formed frame segments, and assembling said roof panels using said frame segments.
3. The method of claim 2, wherein the step of extruding formed frame segments additionally comprises the step of forming a depression in an upper surface of said frame segments.
4. The method of claim 2, wherein the step of guiding an automatic welder essentially parallel to the edges of the roof panels additionally comprises the step of guiding said automatic welder by tracking said automatic welder in said depression.
5. The method of claim 3, wherein the step of forming a depression in an upper surface of at least some of said frame segments additionally comprises the step of forming said depression along an upper edge of said frame segments.
6. The method of claim 5, wherein the step of interconnecting said roof panels additionally comprises the step of forming a walled trough along an upper surface of said roof by joining said frame segments with said depressions adjacent.
7. The method of claim 6, wherein the step of guiding a automatic welder essentially parallel to the edges of the roof panels additionally comprises the step of guiding said automatic welder by tracking said automatic welder in said trough.
8. A sealed floating roof for a storage tank, comprising
a plurality of coupled frame segments comprising an upper surface, and
a plurality of roof sheets welded to said frame segments to form a sealed surface,
wherein said frame segments comprise a guide for controlling the movement of a automatic welder.
9. The sealed floating roof for a storage tank of claim 8, wherein said frame segments are extrusions.
10. The sealed floating roof for a storage tank of claim 8, wherein said frame segments are aluminum extrusions.
11. The sealed floating roof for a storage tank of claim 8, wherein at least some of said frame segments comprise a depression in said upper surface.
12. The sealed floating roof for a storage tank of claim 11, wherein at least some of said frame segments are shaped so that coupling of adjacent frame segments forms a walled trough in said upper surface.
US12/075,229 2008-03-06 2008-03-06 Welded full contact floating roof and method Abandoned US20090223957A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/075,229 US20090223957A1 (en) 2008-03-06 2008-03-06 Welded full contact floating roof and method
US13/929,191 US8973771B2 (en) 2008-03-06 2013-06-27 Welded full contact floating roof
US14/642,270 US9868590B2 (en) 2008-03-06 2015-03-09 Method of forming a welded full contact floating roof for a storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/075,229 US20090223957A1 (en) 2008-03-06 2008-03-06 Welded full contact floating roof and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/929,191 Continuation US8973771B2 (en) 2008-03-06 2013-06-27 Welded full contact floating roof

Publications (1)

Publication Number Publication Date
US20090223957A1 true US20090223957A1 (en) 2009-09-10

Family

ID=41052536

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/075,229 Abandoned US20090223957A1 (en) 2008-03-06 2008-03-06 Welded full contact floating roof and method
US13/929,191 Expired - Fee Related US8973771B2 (en) 2008-03-06 2013-06-27 Welded full contact floating roof
US14/642,270 Expired - Fee Related US9868590B2 (en) 2008-03-06 2015-03-09 Method of forming a welded full contact floating roof for a storage tank

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/929,191 Expired - Fee Related US8973771B2 (en) 2008-03-06 2013-06-27 Welded full contact floating roof
US14/642,270 Expired - Fee Related US9868590B2 (en) 2008-03-06 2015-03-09 Method of forming a welded full contact floating roof for a storage tank

Country Status (1)

Country Link
US (3) US20090223957A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193363A1 (en) * 2011-02-01 2012-08-02 Robert James Baillie Batten Joint for an Internal Floating Roof of a Fluid Tank
US20170015495A1 (en) * 2015-07-14 2017-01-19 Hmt, Llc Welded full contact floating roof and method
US10183803B2 (en) 2015-02-18 2019-01-22 T.F. Warren Group Corporation Floating roof for storage tanks
US10919694B2 (en) 2016-10-28 2021-02-16 Hmt Llc Welded deck seam skin pontoon internal floating roof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103692095B (en) * 2013-12-11 2016-08-17 中国化学工程第四建设有限公司 Large-scale single disc-type External floating roof tank construction method of installation
CN105290573A (en) * 2014-06-17 2016-02-03 中石化南京工程有限公司 Welding method of medium-sized storage tank of 1000m<3>00Cr14Ni14Si4 steel
US9926044B1 (en) * 2017-05-17 2018-03-27 Float-Tek International Co., Ltd. Full contact pontoon floating deck
CN108994417A (en) * 2017-06-06 2018-12-14 五冶集团上海有限公司 The welding method of large-size stainless steel groove tank siding under hot environment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304354A (en) * 1940-02-01 1942-12-08 Stacey Brothers Gas Constructi Method of increasing the height of storage tanks
US2960053A (en) * 1954-08-26 1960-11-15 Union Tank Car Co Welding tool manipulator for tank construction and tools for the same
US3764777A (en) * 1971-01-22 1973-10-09 Hitachi Ltd Automatic welding method and apparatus
US3930137A (en) * 1973-07-04 1975-12-30 Sumitomo Shipbuild Machinery Method and apparatus for fillett welding longitudinal members of framed structures
US4202460A (en) * 1978-04-13 1980-05-13 Imbeault Fernand A Sectional floating cover
US5704509A (en) * 1995-05-08 1998-01-06 Allentech, Inc. Full contact floating roof
US6282863B1 (en) * 1998-07-02 2001-09-04 Chicago Bridge And Iron Scaffoldless tank erection method
US6513297B2 (en) * 2001-01-04 2003-02-04 Michael Kloepfer Wall constructions
US6581819B1 (en) * 1996-03-19 2003-06-24 Hitachi, Ltd. Panel structure, a friction stir welding method, and a panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987215A (en) * 1955-08-15 1961-06-06 Ii William E Joor Variable volume storage tanks
GB2152996B (en) 1984-01-14 1988-01-06 Motherwell Bridge Fabricators Floating roofs
DE69031328T2 (en) * 1989-06-30 1998-04-02 Hitachi Ltd Passenger car structures and their manufacturing processes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304354A (en) * 1940-02-01 1942-12-08 Stacey Brothers Gas Constructi Method of increasing the height of storage tanks
US2960053A (en) * 1954-08-26 1960-11-15 Union Tank Car Co Welding tool manipulator for tank construction and tools for the same
US3764777A (en) * 1971-01-22 1973-10-09 Hitachi Ltd Automatic welding method and apparatus
US3930137A (en) * 1973-07-04 1975-12-30 Sumitomo Shipbuild Machinery Method and apparatus for fillett welding longitudinal members of framed structures
US4202460A (en) * 1978-04-13 1980-05-13 Imbeault Fernand A Sectional floating cover
US5704509A (en) * 1995-05-08 1998-01-06 Allentech, Inc. Full contact floating roof
US6581819B1 (en) * 1996-03-19 2003-06-24 Hitachi, Ltd. Panel structure, a friction stir welding method, and a panel
US6282863B1 (en) * 1998-07-02 2001-09-04 Chicago Bridge And Iron Scaffoldless tank erection method
US6513297B2 (en) * 2001-01-04 2003-02-04 Michael Kloepfer Wall constructions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193363A1 (en) * 2011-02-01 2012-08-02 Robert James Baillie Batten Joint for an Internal Floating Roof of a Fluid Tank
US9267521B2 (en) * 2011-02-01 2016-02-23 Baillie Tank Equipment Pty Ltd Batten joint for an internal floating roof of a fluid tank
US10183803B2 (en) 2015-02-18 2019-01-22 T.F. Warren Group Corporation Floating roof for storage tanks
US10800602B2 (en) 2015-02-18 2020-10-13 TF Warren Group Corporation Floating roof for storage tanks
US20170015495A1 (en) * 2015-07-14 2017-01-19 Hmt, Llc Welded full contact floating roof and method
US9975693B2 (en) * 2015-07-14 2018-05-22 Hmt, Llc Welded full contact floating roof and method
US10919694B2 (en) 2016-10-28 2021-02-16 Hmt Llc Welded deck seam skin pontoon internal floating roof

Also Published As

Publication number Publication date
US20130284740A1 (en) 2013-10-31
US9868590B2 (en) 2018-01-16
US8973771B2 (en) 2015-03-10
US20150175349A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
US9868590B2 (en) Method of forming a welded full contact floating roof for a storage tank
US8074406B2 (en) Modular secondary containment system
CN110088547B (en) Skid-mounted cold box and prefabricated structure and assembling method thereof
EP2504244B1 (en) Device for aseptic or sterile treatment of packaging elements
US9625175B2 (en) Curb adapter
US20140231431A1 (en) Internal Floating Roof for Covering Fluid Bodies in Storage Tanks
AU2007264231A1 (en) Method for setting up a condensation plant
CN104989133B (en) False roof prefabricated cabin, top cover and waterproof connector of the movable roof prefabricated cabin
US11460215B2 (en) Pre-insulated ductwork railing technology
CN204876692U (en) Top cap and waterproof connecting piece in prefabricated cabin of conertible top lid, prefabricated cabin of conertible top lid
US9975693B2 (en) Welded full contact floating roof and method
US7610770B2 (en) Cooling tower seal joint
DE102006043478B4 (en) Device for fastening composite panels to a tank structure
CN210116853U (en) High corrosion resistant dry bulk container
EP2710312B1 (en) Method for repairing and/or checking a refrigerating installation accommodated in a tank which is closed in a pressure-tight manner
CN111655955B (en) Improvement in deflectors for protecting the foot of structures
JP3246238U (en) square pipe house
KR102144096B1 (en) Method and a plate module for manufacturing a thermal modification kiln
JP3100906U (en) Square pipe house
CN114922334A (en) Roof system and box house
JP2023086364A (en) Vehicle and vehicle manufacturing method
CN204804388U (en) Prefabricated cabin of conertible top lid
CN117248472A (en) Bolt welding combination repair structure and method for U-rib upward welding operation port
CA2929339A1 (en) Floating roof for storage tanks
EP4164964A1 (en) Large container and method for producing a large container

Legal Events

Date Code Title Description
AS Assignment

Owner name: HMT, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOXEY, MICHAEL J.;KING, RICHARD;REEL/FRAME:020685/0186

Effective date: 20080303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载