+

US20090218084A1 - Liquid tank structure of heat exchanger - Google Patents

Liquid tank structure of heat exchanger Download PDF

Info

Publication number
US20090218084A1
US20090218084A1 US12/093,201 US9320106A US2009218084A1 US 20090218084 A1 US20090218084 A1 US 20090218084A1 US 9320106 A US9320106 A US 9320106A US 2009218084 A1 US2009218084 A1 US 2009218084A1
Authority
US
United States
Prior art keywords
liquid tank
suppression member
sloshing suppression
heat exchanger
condensed refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/093,201
Inventor
Masayoshi Shinhama
Masahiro Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Assigned to CALSONIC KANSEI CORPORATION reassignment CALSONIC KANSEI CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORISHITA, MASAHIRO, SHINHAMA, MASAYOSHI
Publication of US20090218084A1 publication Critical patent/US20090218084A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a liquid tank structure of a heat exchanger which is mounted on a motor vehicles and the like.
  • a heat exchange core which includes a condensation part and an under cooling part, is provided with a pair of headers which fluidically connects the condensing part and the under cooling part.
  • One of the headers is defined into an inlet part and an outlet part, where the inlet part is provided with an inlet port to be fluidically connected with the condensing part, and the outlet part is provided with an outlet port to be fluidically connected with the under cooling part.
  • the other of the headers is defined into an inlet part and an outlet part, where the inlet part is fluidically connected with the under cooling part, being provided with an inlet side connecting pipe which is fluidically connected with an outlet port of a liquid tank, and an outlet part is fluidically connected with the condensation part, being provided with an outlet side connecting pipe which is fluidically connected with an inlet port of the liquid tank.
  • the liquid tank is constructed so that it separates gas and liquid of condensed refrigerant, which enters through the inlet port provided on an upper portion inside of the liquid tank, to move in an upward direction and a downward direction, respectively, so as to discharge the condensed refrigerant which is accumulated on a lower portion thereof to the under cooling part through the outlet port.
  • the inlet portion 101 of the condensed refrigerant is located at a position higher than that of the outlet portion 102 in order to separates its gas and liquid, which causes the condensed refrigerant to course into an inner space of the liquid tank through the inlet portion 101 .
  • This hard fall of the condensed refrigerant disturbs a liquid surface of the condensed refrigerant 130 which is accumulated in a bottom portion of the liquid tank 100 .
  • the present invention is made in order to solve the above described problem, and its object is to provide a liquid tank of a heat exchanger which can decrease a charge quantity of refrigerant by preventing the refrigerant from being sent to an under cooling part in a state where condensed refrigerant is unsufficiently separated into a gas and a liquid, due to a disturbance of a liquid surface of the condensed refrigerant.
  • a liquid tank structure of a heat exchanger according to the present invention is attached to a heat exchanger which has a heat exchange core which is divided into a condensation part and an under cooling part, and a pair of headers each having an inlet part fluidically connected with the condensation part and an outlet part fluidically connected with the under cooling part, to separate condensed refrigerant into a gas and a liquid.
  • the liquid tank structure includes: an inlet-port side connecting pipe fluidically connected with the inlet part of one header of the pair of headers, the inlet-port side connecting portion being formed with an inlet port for flowing the condensed refrigerant into an inner space of a liquid tank; through the inlet part; an outlet-port side connecting pipe fluidically connected with the outlet part of the one header, the outlet-port side connecting pipe being formed with an outlet port under the inlet port so that the condensed refrigerant which is accumulated in a bottom portion of the liquid tank can be discharged to the outlet part; and a sloshing suppression member arranged in the liquid tank between the inlet port and the outlet port, the sloshing suppression member allowing the condensed refrigerant to pass through the sloshing suppression member and suppressing a sloshing of the condensed refrigerant which is accumulated in the bottom portion of the liquid tank.
  • the sloshing suppression member is arranged in the inner space of the liquid tank between the inlet port and the outlet port for suppressing the condensed refrigerate accumulated in the bottom portion of the liquid tank. Therefore, even when the condensed refrigerate which causes through the inlet part falls on the condensed refrigerate accumulated in the bottom portion of the liquid tank to disturb a liquid surface, the liquid surface is calmed down while and after the condensed refrigerant passes through the sloshing suppression member with the passing-through ability, and consequently its gas and its liquid are more surely separated from each other, only the condensed refrigerate is sent to the under cooling part through the outlet part.
  • the liquid tank structure of the invention can prevent the condensed refrigerant from being sent to the under cooling part in a state where its gas and its liquid are unsufficiently separated from each other, due to a disturbance of the liquid surface of the condensed refrigerate in the liquid tank, and thereby it can obtain the effect in decreasing a necessary amount of the refrigerant.
  • FIG. 1 is an entire front view showing a condenser to which a liquid tank structure of a heat exchanger, of a first embodiment according to the present invention, is applied;
  • FIG. 2 is an enlarged cross sectional view showing a connector portion of the liquid tank structure of the heat exchanger of the first embodiment shown in FIG. 1 ;
  • FIG. 3 is an enlarged cross sectional view showing a connector of the liquid tank structure of the heat exchanger of the first embodiment shown in FIG. 1 ;
  • FIG. 4 is an enlarged cross sectional view showing a liquid tank which corresponds to a main part of the liquid tank structure of the heat exchanger of the first embodiment shown in FIG. 1 ;
  • FIG. 5 is a characteristic diagram showing relationships between refrigerant enclosed capacity and under cooling rate, which are comparatively indicated by an optimally set line and a conventional structure's line;
  • FIG. 6 is a cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a second embodiment of the present invention, is applied;
  • FIG. 7 is a cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a third embodiment of the present invention, is applied;
  • FIG. 8 is a cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a fourth embodiment of the present invention, is applied;
  • FIG. 9 is an enlarged main section cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a fifth embodiment of the present invention, is applied.
  • FIG. 10 is a cross sectional view showing a conventional liquid tank structure of a heat exchanger.
  • liquid tank structure of a heat exchanger of a first embodiment will be described.
  • the liquid tank structure of the heat exchanger of the first embodiment is applied to a liquid tank which is mounted on a motor vehicle.
  • a condenser corresponds to the heat exchanger of the present invention.
  • the liquid tank structure of the heat exchanger of the first embodiment has a pair of headers 1 and 2 , a condenser core 3 and a liquid tank 4 .
  • the condenser core 3 is constructed by a plurality of tubes 3 a and a plurality fins 3 b, which are piled alternately to each other, and it is arranged between the pair of headers 1 and 2 .
  • the headers 1 and 2 are arranged at a right side and a left side, respectively, and their detail structure will later be described. Both end portions of each tube 3 a are inserted into and fixed to the corresponding headers 1 and 2 , respectively.
  • the condenser core 3 corresponds to a heat exchanger core of the present invention.
  • the headers 1 and 2 are formed like a circular cylinder, and each of their inner spaces are divided by partition parts 5 an 6 , which are indicated by dotted lines in FIG. 1 , to form a first room R 1 to a fourth room R 4 .
  • the first room R 1 of the header 1 and the second room R 2 of the header 2 are fluidically connected with a condensation part AC which are an upper portion of the condenser, and the third room R 3 of the header 2 and the fourth room R 4 of the header 1 are fluidically connected with an under cooling part BC which is a lower portion of the condenser.
  • headers 1 and 2 are connected with each other by a pair of upper reinforcement 9 a and lower reinforcement 9 b, between their upper portions and between their lower portions.
  • the upper portion of the header 1 is provided with a connector 10 , which will later be described.
  • the connector 10 is made of alminum to entirely form like a rectangular shape. It is provided with an inlet port 10 a formed to penetrate like a straight duct, an outlet port 10 b formed to penetrate like a bent shape like a letter L, and a fixing hole 10 c for fixing a not-shown motor-vehicle side connector.
  • the inlet port 10 a of the connector 10 is fluidically communicated with the first room R 1 of the header 1
  • the outlet port 10 b thereof is fluidically communicated with the fourth room R 4 of the header 1 through the connecting pipe 8 .
  • the first room R 1 of the header 1 corresponds to an inlet part of the present invention
  • the fourth room R 4 of the header 1 corresponds to an outlet part of the present invention.
  • the connector 10 is fixed to the header 1 by brazing in a state where an end portion of its fit-in portion 10 e forming the inlet port 10 a therein is inserted into and fixed into a through hole 1 a formed in the header 1 .
  • the liquid tank 4 is fixed to the header 2 through a bracket 7 , where an inlet-port side connecting pipe 4 a is fluidically connected between the liquid tank 4 and a bottom side of the second room R 2 of the header 2 , and an outlet-port side connecting pipe 4 b is fluidically connected between the liquid tank 4 and an upper side of the third room R 3 of the header 2 .
  • the second room R 2 of the header 2 corresponds to the inlet part of the present invention
  • the third room R 3 of the header 2 corresponds to the outlet part of the present invention.
  • the liquid tank 4 is formed like a long circular cylinder in a vertical direction and along the header 2 . A bottom portion thereof is fluidically connected with the inlet-port side connecting pipe 4 a and the outlet-port side connecting pipe 4 b.
  • the inlet-port side connecting pipe 4 a which is fluidically connected with the second room R 2 of the header 2 , is inserted into an inner space of the liquid tank 4 deeply in an upper direction so that its opening formed at a top portion of the connecting pipe 4 a opens into the inner space of the liquid tank 4 near a top end portion of the liquid tank 4 .
  • the outlet-port side connecting pipe 4 b which is fluidically connected with the third room R 3 of the header 2 , opens into the inner space near a bottom portion of the liquid tank 4 .
  • a sloshing suppression member 11 which has a passing-through ability of the refrigerant, for suppressing a sloshing of condensed refrigerant Q accumulated in the bottom portion of the liquid tank 4 .
  • the sloshing suppression member 11 is installed at a position slightly upper than the opening portion b 1 of the outlet-port side connecting pipe 4 b so that the condensed refrigerant Q can normally be accumulated over and above the opening b 1 .
  • the opening portion a 1 of the inlet-port side connecting pipe 4 a corresponds to an inlet port of the present invention
  • the opening portion b 1 of the outlet-port side connecting pipe 4 b corresponds to an outlet port of the present invention.
  • the sloshing suppression member 11 is constructed by a solid cylinder that allows the condensed refrigerant Q to flow through the sloshing suppression member 11 from its upper side to its lower side, such as a felt member having a predetermined thickness in the vertical direction, a laminate body of multiple fine meshes and a scrubber-like member formed by intertwining metal wires.
  • the refrigerant which enters the first room R 1 of the header 1 through the inlet port 10 a of the connector 10 at a temperature of approximately 80° C. as indicated by broken lined arrows X in FIG. 2 , changes its heat through the fins 3 b to be condensed between the refrigerant and wind forcibly sent by a motor fan or wind generated when the motor vehicle is running, while the refrigerant flows through the tubes 3 a connecting the first room R 1 and the second room R 2 . Then the refrigerant flows into the second room R 2 of the header 2 .
  • the tubes 3 a connecting the first room R 1 and the second room R 2 correspond to a condensation part AC of the present invention.
  • the refrigerant in the second room R 2 of the header 2 enters the upper portion of the liquid tank 4 through the inlet-port side connecting pipe 4 a, where it is gas-liquid separated. After its separation, the refrigerant flows into the third room 3 of the header 2 through the outlet-port side connecting pipe 4 b.
  • the refrigerant in the third room R 3 of the header 2 changes its heat through the fins 3 b down to a temperature of approximately 40° C. between the refrigerant and the wind generated by the fan or the wind generated when the vehicle running, while it flows through the tubes 3 a connecting the third room R 3 and the forth room R 4 .
  • the refrigerant enters the forth room R 4 of the header 1 .
  • the tubes 3 a connecting the third room R 3 and the fourth room R 4 corresponds to an under cooling part BC of the present invention.
  • the refrigerant is discharged from the connecting pipe 8 to a not-shown expansion valve through the outlet port 10 b of the connector 10 as indicated by a broken lined arrow Y in FIG. 2 .
  • the condensed refrigerant which flows into the liquid tank 4 through the inlet-port side connecting pipe 4 a at the upper portion of the liquid tank 4 , flows through the desiccating agent 12 , the filter 13 and the sloshing suppression member 11 in these order, falling downward, and is accumulated in the bottom portion of the liquid tank 4 in a state where its gas and its liquid are separated from each other. Then, the refrigerant flows to the under cooling part BC through the outlet-port side connecting pipe 4 b and the third room R 3 of the header 2 .
  • the condensed refrigerant which courses into the liquid tank through the inlet-port side connecting pipe 4 a, is slowed down by passing through desiccating agent 12 , the filter 13 , and then the sloshing suppression member 11 at downward thereof, thereby the sloshing, due to the falling condensed refrigerant, of the surface of the condensed refrigerant which is accumulated in the bottom portion of the liquid tank 4 being suppressed. Therefore, the gas and the liquid thereof can surely be separated, and only the condensed refrigerant Q is sent to the under cooling part BC from the outlet-port side connecting pipe 4 b through the third room R 3 of the header 2 .
  • the sloshing suppression member 11 is has a solid cross section, and accordingly it can absorb the sloshing of the liquid surface generated due to falling of the condensed refrigerant Q.
  • the condensed refrigerant is prevented from being sent to the under cooling part BC in a state where the gas and the liquid thereof are unsufficiently separated from each other because of the sloshing of the liquid surface of the condensed refrigerant in the liquid tank 4 .
  • the enclosed capacity D can be set to be a necessity minimum amount, namely within a range meeting a condition D 1 ⁇ D ⁇ D 2 , according to an optimum line indicated by a dot line in FIG. 5 .
  • the enclosed capacity can be set within the range of D 1 to D 3 , while its range can be set to enlarge according to a specification of the condenser, relative to a range (D 2 to D 3 of the conventional liquid tank structure.
  • the second embodiment is different from the first embodiment in that a sloshing suppression member 11 is arranged in a bottom portion of the liquid tank 4 , and also in that the sloshing suppression member 11 is directly connected with an opening portion b 1 formed on an end portion of an outlet-port side connecting pipe 4 b.
  • the other parts and portions of the second embodiment is constructed similarly to those of the first embodiment.
  • liquid tank structure of the second embodiment can obtain the effects similar to those of the first embodiment.
  • a sloshing suppression member 11 is partially arranged in a state where the sloshing suppression member 11 covers an opening portion of an outlet-port side connecting pipe 4 b while it does not cover all are of a bottom portion of a liquid tank.
  • the other parts and portions of the third embodiment are constructed similarly to those of the first embodiment.
  • liquid tank structure of the third embodiment can also obtain the effects similar to those of the second embodiment.
  • liquid tank structures of the first to third embodiments they are constructed so that condensed refrigerant Q can accumulate above a sloshing suppression member 11
  • the sloshing suppression member 11 is set to be at an installation position and have a passing-through ability of the condensed refrigerant so that the condensed refrigerant falls directly on an upper surface of the sloshing suppression member 11 and it does not accumulate thereon.
  • the sloshing of a liquid surface of the condensed refrigerant accumulated under the sloshing suppression member 11 is suppressed, and then it is separated into a gas and a liquid, where only the condensed refrigerant is sent to an under cooling part BC through an outlet-port side connecting pipe 4 b and a third room R 3 of a header 2 .
  • liquid tank structure of the fourth embodiment can also obtain the effects similar to those of the first embodiment.
  • an inlet-port side connecting pipe 4 a is connected with a lower side wall of a liquid tank so that condensed refrigerant discharged from the connecting pipe 4 a can flow into the condensed refrigerant Q accumulated on an upper surface of a sloshing suppression member 11 in a horizontal surface direction.
  • an out-let side connecting pipe 4 a is also connected with the lower side wall at a position under the inlet-port side connecting pipe 4 a, heading in the horizontal surface direction.
  • a filter 13 is removed, while the other parts and portions are constructed similarly to those of the first embodiment.
  • the condensed refrigerant does not directly flow downward through the inlet-port side connecting pipe 4 a, and it enters the condensed refrigerant Q, which is accumulated on the upper surface of the sloshing suppression member 11 , heading substantially in the horizontal surface direction. Therefore, the sloshing of the liquid surface of the condensed refrigerant Q is suppressed relative to that in a case where the condensed refrigerant falls on the upper surface of the accumulated condensed refrigerant Q.
  • the accumulated condensed refrigerant is surely separated into a gas and a liquid when it passes through the sloshing suppression member 11 , and then it is accumulated under the sloshing suppression member 11 .
  • the accumulated condensed refrigerant Q is sent to an under cooling part BC through the outlet-port side connecting pipe 4 b and a third room R 3 of a header 2 .
  • liquid tank structure of the fifth embodiment can also obtain the effects similar to those of the first embodiment.
  • liquid tank structures of the above described first to fifth embodiments they have only one path having a flow (a flow in an one-way direction) of the condensed refrigerant Q in the condensation part AC of the condenser core 3 , while they may have a plurality of paths (at least one round trip flow).
  • heat exchanger is not limited to the condenser, and the liquid tank structure of the invention may be adapted for others except motor vehicles.
  • the invention can be adapted for a liquid tank necessary for separating condensed refrigerant into a gas and a liquid between an inlet port and an outlet port of a liquid tank of a heat exchanger for a motor vehicle and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

In a liquid tank structure of a heat exchanger, a liquid tank 4 is attached to a heat exchanger having a heat exchanger core defining a condensation part AC and an under cooling part BC, and a pair of headers 1 and 2 each having an inlet part R1, R2 connected with the condensation part AC and an outlet part R3, R4. The condensed refrigerant from the inlet part R2 flows in the liquid tank 4 through an inlet port 1 a of an inlet-port side connecting pipe 4 a connected with the inlet part R2 of one header 2 of the pair of header. The condensed refrigerant Q accumulated in a bottom portion of the liquid tank 4 is discharged to the outlet part R3 through an outlet port b1 of an outlet-port side connecting pipe 4 b connected with the outlet part R3 at a position under an inlet port a1. A sloshing suppression member 11, for suppressing a sloshing of the condensed refrigerant Q accumulated in the bottom portion of the liquid tank 4, has a passing-through ability of the condensed refrigerant and is provided in an inner space of the liquid tank 4 between the inlet port a1 and the outlet port b1.

Description

    TECHNICAL FIELD
  • The present invention relates to a liquid tank structure of a heat exchanger which is mounted on a motor vehicles and the like.
  • BACKGROUND OF THE INVENTION
  • Conventional liquid tank structures of heat exchangers are disclosed in Japanese Patents Laid-open No. (Tokkaihei) 11-316064 and No. 2000-46444. In these liquid tank structures, a heat exchange core, which includes a condensation part and an under cooling part, is provided with a pair of headers which fluidically connects the condensing part and the under cooling part. One of the headers is defined into an inlet part and an outlet part, where the inlet part is provided with an inlet port to be fluidically connected with the condensing part, and the outlet part is provided with an outlet port to be fluidically connected with the under cooling part. The other of the headers is defined into an inlet part and an outlet part, where the inlet part is fluidically connected with the under cooling part, being provided with an inlet side connecting pipe which is fluidically connected with an outlet port of a liquid tank, and an outlet part is fluidically connected with the condensation part, being provided with an outlet side connecting pipe which is fluidically connected with an inlet port of the liquid tank.
  • Incidentally, the liquid tank is constructed so that it separates gas and liquid of condensed refrigerant, which enters through the inlet port provided on an upper portion inside of the liquid tank, to move in an upward direction and a downward direction, respectively, so as to discharge the condensed refrigerant which is accumulated on a lower portion thereof to the under cooling part through the outlet port.
  • DISCLOSURE OF THE INVENTION Problem(s) to be Solved by the Invention
  • In the conventional liquid tank structures of the heat exchangers, as shown in FIG. 10, the inlet portion 101 of the condensed refrigerant is located at a position higher than that of the outlet portion 102 in order to separates its gas and liquid, which causes the condensed refrigerant to course into an inner space of the liquid tank through the inlet portion 101. This hard fall of the condensed refrigerant disturbs a liquid surface of the condensed refrigerant 130 which is accumulated in a bottom portion of the liquid tank 100. This causes a problem in that the condensed refrigerant 100, which is accumulated in the bottom portion of the liquid tank 100, is discharged to the under cooling part in a white turbidity state where the condensed refrigerant 103 contains the gas because the gas and the liquid thereof are remixed up due to the hard fall.
  • As a result, as shown in FIG. 5, in an examination to determine the optimum charge quantity of the refrigerant, there is tendency that a large charge quantity of refrigerant is needed in order to obtain an under cooling rate, as shown y a solid line LC2 relative to an optimum line LC1 indicated by a broken line, where a horizontal axis indicates an enclosed capacity of the refrigerant and a vertical axis indicates an under cooling rate. Accordingly, in the conventional liquid tank structure, there is a problem in that the enclosed capacity of the refrigerant increases too much, thereby increasing a consumption amount of the refrigerant which causes environmental problems in recent years.
  • The present invention is made in order to solve the above described problem, and its object is to provide a liquid tank of a heat exchanger which can decrease a charge quantity of refrigerant by preventing the refrigerant from being sent to an under cooling part in a state where condensed refrigerant is unsufficiently separated into a gas and a liquid, due to a disturbance of a liquid surface of the condensed refrigerant.
  • Means for Solving the Problems
  • A liquid tank structure of a heat exchanger according to the present invention is attached to a heat exchanger which has a heat exchange core which is divided into a condensation part and an under cooling part, and a pair of headers each having an inlet part fluidically connected with the condensation part and an outlet part fluidically connected with the under cooling part, to separate condensed refrigerant into a gas and a liquid. The liquid tank structure includes: an inlet-port side connecting pipe fluidically connected with the inlet part of one header of the pair of headers, the inlet-port side connecting portion being formed with an inlet port for flowing the condensed refrigerant into an inner space of a liquid tank; through the inlet part; an outlet-port side connecting pipe fluidically connected with the outlet part of the one header, the outlet-port side connecting pipe being formed with an outlet port under the inlet port so that the condensed refrigerant which is accumulated in a bottom portion of the liquid tank can be discharged to the outlet part; and a sloshing suppression member arranged in the liquid tank between the inlet port and the outlet port, the sloshing suppression member allowing the condensed refrigerant to pass through the sloshing suppression member and suppressing a sloshing of the condensed refrigerant which is accumulated in the bottom portion of the liquid tank.
  • Effect of the Invention
  • In the liquid tank structure of the invention, the sloshing suppression member is arranged in the inner space of the liquid tank between the inlet port and the outlet port for suppressing the condensed refrigerate accumulated in the bottom portion of the liquid tank. Therefore, even when the condensed refrigerate which causes through the inlet part falls on the condensed refrigerate accumulated in the bottom portion of the liquid tank to disturb a liquid surface, the liquid surface is calmed down while and after the condensed refrigerant passes through the sloshing suppression member with the passing-through ability, and consequently its gas and its liquid are more surely separated from each other, only the condensed refrigerate is sent to the under cooling part through the outlet part.
  • Therefore, the liquid tank structure of the invention can prevent the condensed refrigerant from being sent to the under cooling part in a state where its gas and its liquid are unsufficiently separated from each other, due to a disturbance of the liquid surface of the condensed refrigerate in the liquid tank, and thereby it can obtain the effect in decreasing a necessary amount of the refrigerant.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an entire front view showing a condenser to which a liquid tank structure of a heat exchanger, of a first embodiment according to the present invention, is applied;
  • FIG. 2 is an enlarged cross sectional view showing a connector portion of the liquid tank structure of the heat exchanger of the first embodiment shown in FIG. 1;
  • FIG. 3 is an enlarged cross sectional view showing a connector of the liquid tank structure of the heat exchanger of the first embodiment shown in FIG. 1;
  • FIG. 4 is an enlarged cross sectional view showing a liquid tank which corresponds to a main part of the liquid tank structure of the heat exchanger of the first embodiment shown in FIG. 1;
  • FIG. 5 is a characteristic diagram showing relationships between refrigerant enclosed capacity and under cooling rate, which are comparatively indicated by an optimally set line and a conventional structure's line;
  • FIG. 6 is a cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a second embodiment of the present invention, is applied;
  • FIG. 7 is a cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a third embodiment of the present invention, is applied;
  • FIG. 8 is a cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a fourth embodiment of the present invention, is applied;
  • FIG. 9 is an enlarged main section cross sectional view showing a liquid tank as a main part of a liquid tank structure of a heat exchanger to which a connector, of a fifth embodiment of the present invention, is applied; and
  • FIG. 10 is a cross sectional view showing a conventional liquid tank structure of a heat exchanger.
  • DESCRIPTION OF REFERENCE NUMBER
    • R1 first room
    • R2 second room
    • R3 third room
    • R4 fourth room
    • 1 header
    • 2 header
    • 3 condenser core (core of heat exchanger)
    • 3 a tube
    • 3 b fin
    • 4 liquid tank
    • 4 a inlet-port side connecting pipe
    • 4 b outlet-port side connecting pipe
    • 5 partition part
    • 6 partition part
    • 7 bracket
    • 8 connecting pipe
    • 9 a reinforcement
    • 9 b reinforcement
    • 10 a inlet port
    • 10 b outlet port
    • 10 c fixing hole
    • 11 sloshing suppression member
    • 12 drying agent
    • 13 filter
    • a1 opening portion (inlet port)
    • b1 opening portion (outlet port)
    BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.
  • First Embodiment
  • Hereinafter, a liquid tank structure of a heat exchanger of a first embodiment according to the present invention will be described. Incidentally, the liquid tank structure of the heat exchanger of the first embodiment is applied to a liquid tank which is mounted on a motor vehicle. Herein, a condenser corresponds to the heat exchanger of the present invention.
  • First, an entire structure of the heat exchanger with the liquid tank structure of the first embodiment will be described.
  • As shown in FIG. 1, the liquid tank structure of the heat exchanger of the first embodiment has a pair of headers 1 and 2, a condenser core 3 and a liquid tank 4.
  • The condenser core 3 is constructed by a plurality of tubes 3 a and a plurality fins 3 b, which are piled alternately to each other, and it is arranged between the pair of headers 1 and 2. The headers 1 and 2 are arranged at a right side and a left side, respectively, and their detail structure will later be described. Both end portions of each tube 3 a are inserted into and fixed to the corresponding headers 1 and 2, respectively. Incidentally, the condenser core 3 corresponds to a heat exchanger core of the present invention.
  • The headers 1 and 2 are formed like a circular cylinder, and each of their inner spaces are divided by partition parts 5 an 6, which are indicated by dotted lines in FIG. 1, to form a first room R1 to a fourth room R4.
  • The first room R1 of the header 1 and the second room R2 of the header 2 are fluidically connected with a condensation part AC which are an upper portion of the condenser, and the third room R3 of the header 2 and the fourth room R4 of the header 1 are fluidically connected with an under cooling part BC which is a lower portion of the condenser.
  • In addition, the headers 1 and 2 are connected with each other by a pair of upper reinforcement 9 a and lower reinforcement 9 b, between their upper portions and between their lower portions.
  • Further, the upper portion of the header 1 is provided with a connector 10, which will later be described.
  • As shown in FIG. 2 and FIG. 3, the connector 10 is made of alminum to entirely form like a rectangular shape. It is provided with an inlet port 10 a formed to penetrate like a straight duct, an outlet port 10 b formed to penetrate like a bent shape like a letter L, and a fixing hole 10 c for fixing a not-shown motor-vehicle side connector.
  • In addition, the inlet port 10 a of the connector 10 is fluidically communicated with the first room R1 of the header 1, while the outlet port 10 b thereof is fluidically communicated with the fourth room R4 of the header 1 through the connecting pipe 8. Herein, the first room R1 of the header 1 corresponds to an inlet part of the present invention, and the fourth room R4 of the header 1 corresponds to an outlet part of the present invention.
  • Further, the connector 10 is fixed to the header 1 by brazing in a state where an end portion of its fit-in portion 10 e forming the inlet port 10 a therein is inserted into and fixed into a through hole 1 a formed in the header 1.
  • On the other hand, as shown in FIG. 1, the liquid tank 4 is fixed to the header 2 through a bracket 7, where an inlet-port side connecting pipe 4 a is fluidically connected between the liquid tank 4 and a bottom side of the second room R2 of the header 2, and an outlet-port side connecting pipe 4 b is fluidically connected between the liquid tank 4 and an upper side of the third room R3 of the header 2. Herein, the second room R2 of the header 2 corresponds to the inlet part of the present invention, and the third room R3 of the header 2 corresponds to the outlet part of the present invention.
  • As shown in FIG. 4, the liquid tank 4 is formed like a long circular cylinder in a vertical direction and along the header 2. A bottom portion thereof is fluidically connected with the inlet-port side connecting pipe 4 a and the outlet-port side connecting pipe 4 b.
  • The inlet-port side connecting pipe 4 a, which is fluidically connected with the second room R2 of the header 2, is inserted into an inner space of the liquid tank 4 deeply in an upper direction so that its opening formed at a top portion of the connecting pipe 4 a opens into the inner space of the liquid tank 4 near a top end portion of the liquid tank 4. On the other hand, the outlet-port side connecting pipe 4 b, which is fluidically connected with the third room R3 of the header 2, opens into the inner space near a bottom portion of the liquid tank 4.
  • In addition, in the liquid tank 4, between an opening al of the inlet-port side connecting pipe 4 a and the outlet-port side connecting pipe 4 b, there is provided a sloshing suppression member 11, which has a passing-through ability of the refrigerant, for suppressing a sloshing of condensed refrigerant Q accumulated in the bottom portion of the liquid tank 4. Further, in this embodiment, the sloshing suppression member 11 is installed at a position slightly upper than the opening portion b1 of the outlet-port side connecting pipe 4 b so that the condensed refrigerant Q can normally be accumulated over and above the opening b1. Incidentally, the opening portion a1 of the inlet-port side connecting pipe 4 a corresponds to an inlet port of the present invention, and the opening portion b1 of the outlet-port side connecting pipe 4 b corresponds to an outlet port of the present invention.
  • In addition, the sloshing suppression member 11 is constructed by a solid cylinder that allows the condensed refrigerant Q to flow through the sloshing suppression member 11 from its upper side to its lower side, such as a felt member having a predetermined thickness in the vertical direction, a laminate body of multiple fine meshes and a scrubber-like member formed by intertwining metal wires.
  • Further, in the inner space of the liquid tank 4, there provided a desiccating agent 12 and a filter above the sloshing suppression member 11.
  • Next, the operation of the liquid tank structure of the first embodiment will be described.
  • Since the liquid tank structure of the first embodiment is constructed as described above, the refrigerant, which enters the first room R1 of the header 1 through the inlet port 10 a of the connector 10 at a temperature of approximately 80° C. as indicated by broken lined arrows X in FIG. 2, changes its heat through the fins 3 b to be condensed between the refrigerant and wind forcibly sent by a motor fan or wind generated when the motor vehicle is running, while the refrigerant flows through the tubes 3 a connecting the first room R1 and the second room R2. Then the refrigerant flows into the second room R2 of the header 2. Incidentally, the tubes 3 a connecting the first room R1 and the second room R2 correspond to a condensation part AC of the present invention.
  • Then, the refrigerant in the second room R2 of the header 2 enters the upper portion of the liquid tank 4 through the inlet-port side connecting pipe 4 a, where it is gas-liquid separated. After its separation, the refrigerant flows into the third room 3 of the header 2 through the outlet-port side connecting pipe 4 b.
  • Then, the refrigerant in the third room R3 of the header 2 changes its heat through the fins 3 b down to a temperature of approximately 40° C. between the refrigerant and the wind generated by the fan or the wind generated when the vehicle running, while it flows through the tubes 3 a connecting the third room R3 and the forth room R4. After cooling, the refrigerant enters the forth room R4 of the header 1. Incidentally, the tubes 3 a connecting the third room R3 and the fourth room R4 corresponds to an under cooling part BC of the present invention.
  • Then, the refrigerant is discharged from the connecting pipe 8 to a not-shown expansion valve through the outlet port 10 b of the connector 10 as indicated by a broken lined arrow Y in FIG. 2.
  • Next, the operation and the effect of the sloshing suppression member 11 that is arranged in the inner space of the liquid tank 4 will be described. The condensed refrigerant, which flows into the liquid tank 4 through the inlet-port side connecting pipe 4 a at the upper portion of the liquid tank 4, flows through the desiccating agent 12, the filter 13 and the sloshing suppression member 11 in these order, falling downward, and is accumulated in the bottom portion of the liquid tank 4 in a state where its gas and its liquid are separated from each other. Then, the refrigerant flows to the under cooling part BC through the outlet-port side connecting pipe 4 b and the third room R3 of the header 2.
  • The condensed refrigerant, which courses into the liquid tank through the inlet-port side connecting pipe 4 a, is slowed down by passing through desiccating agent 12, the filter 13, and then the sloshing suppression member 11 at downward thereof, thereby the sloshing, due to the falling condensed refrigerant, of the surface of the condensed refrigerant which is accumulated in the bottom portion of the liquid tank 4 being suppressed. Therefore, the gas and the liquid thereof can surely be separated, and only the condensed refrigerant Q is sent to the under cooling part BC from the outlet-port side connecting pipe 4 b through the third room R3 of the header 2. Thus, the sloshing suppression member 11 is has a solid cross section, and accordingly it can absorb the sloshing of the liquid surface generated due to falling of the condensed refrigerant Q.
  • Therefore, the condensed refrigerant is prevented from being sent to the under cooling part BC in a state where the gas and the liquid thereof are unsufficiently separated from each other because of the sloshing of the liquid surface of the condensed refrigerant in the liquid tank 4.
  • Consequently, in a test to determining an optimum enclosed capacity D of the refrigerant, the enclosed capacity D can be set to be a necessity minimum amount, namely within a range meeting a condition D1<D<D2, according to an optimum line indicated by a dot line in FIG. 5. Obviously, the enclosed capacity can be set within the range of D1 to D3, while its range can be set to enlarge according to a specification of the condenser, relative to a range (D2 to D3 of the conventional liquid tank structure.
  • Next, the other embodiments according to the present invention will be described. In these embodiments, descriptions of parts or portions different from those of FIG. 1 will be made, these parts and portions similar to the first embodiment being omitted in the drawings or being illustrated with the same reference number, and their descriptions being omitted.
  • Second Embodiment
  • In a liquid tank structure of a heat exchanger of a second embodiment, as shown in an enlarged cross section view of a main part of a liquid tank of FIG. 6, the second embodiment is different from the first embodiment in that a sloshing suppression member 11 is arranged in a bottom portion of the liquid tank 4, and also in that the sloshing suppression member 11 is directly connected with an opening portion b1 formed on an end portion of an outlet-port side connecting pipe 4 b. The other parts and portions of the second embodiment is constructed similarly to those of the first embodiment.
  • This means that, in the liquid tank structure of the second embodiment, falling condensed refrigerant passes through the sloshing suppression member 11, and then it is directly sent to an under cooling part BC through the outlet-port side connecting pipe 4 b and the third room R3 of a header 2. Accordingly, the liquid tank structure of the second embodiment can obtain the effects similar to those of the first embodiment.
  • Third Embodiment
  • In a liquid tank structure of a third embodiment, it is different from the first and second embodiments in that a sloshing suppression member 11 is partially arranged in a state where the sloshing suppression member 11 covers an opening portion of an outlet-port side connecting pipe 4 b while it does not cover all are of a bottom portion of a liquid tank. The other parts and portions of the third embodiment are constructed similarly to those of the first embodiment.
  • This means that, in the liquid tank structure of the third embodiment, falling condensed refrigerant passes through the sloshing suppression member 11, and then it is directly sent to an under cooling part BC through the outlet-port side connecting pipe 4 b and the third room R3 of a header 2. Accordingly, the liquid tank structure of the third embodiment can also obtain the effects similar to those of the second embodiment.
  • Fourth Enbodiment
  • In the above-described liquid tank structures of the first to third embodiments, they are constructed so that condensed refrigerant Q can accumulate above a sloshing suppression member 11, while in a liquid tank structure of a fourth embodiment, the sloshing suppression member 11 is set to be at an installation position and have a passing-through ability of the condensed refrigerant so that the condensed refrigerant falls directly on an upper surface of the sloshing suppression member 11 and it does not accumulate thereon.
  • In the liquid tank structure of the fourth embodiment, the sloshing of a liquid surface of the condensed refrigerant accumulated under the sloshing suppression member 11 is suppressed, and then it is separated into a gas and a liquid, where only the condensed refrigerant is sent to an under cooling part BC through an outlet-port side connecting pipe 4 b and a third room R3 of a header 2.
  • As a result, the liquid tank structure of the fourth embodiment can also obtain the effects similar to those of the first embodiment.
  • Fifth Embodiment
  • Although the condensed refrigerant falls on the condensed refrigerant Q accumulated on the upper surface of the sloshing suppression member 11 in the first to third embodiments, in the liquid tank structure of the fifth embodiment, as shown in FIG. 9, an inlet-port side connecting pipe 4 a is connected with a lower side wall of a liquid tank so that condensed refrigerant discharged from the connecting pipe 4 a can flow into the condensed refrigerant Q accumulated on an upper surface of a sloshing suppression member 11 in a horizontal surface direction. In addition, an out-let side connecting pipe 4 a is also connected with the lower side wall at a position under the inlet-port side connecting pipe 4 a, heading in the horizontal surface direction. Incidentally, a filter 13 is removed, while the other parts and portions are constructed similarly to those of the first embodiment.
  • In the liquid tank structure of the fifth embodiment, the condensed refrigerant does not directly flow downward through the inlet-port side connecting pipe 4 a, and it enters the condensed refrigerant Q, which is accumulated on the upper surface of the sloshing suppression member 11, heading substantially in the horizontal surface direction. Therefore, the sloshing of the liquid surface of the condensed refrigerant Q is suppressed relative to that in a case where the condensed refrigerant falls on the upper surface of the accumulated condensed refrigerant Q. In addition, the accumulated condensed refrigerant is surely separated into a gas and a liquid when it passes through the sloshing suppression member 11, and then it is accumulated under the sloshing suppression member 11. The accumulated condensed refrigerant Q is sent to an under cooling part BC through the outlet-port side connecting pipe 4 b and a third room R3 of a header 2.
  • As a result, the liquid tank structure of the fifth embodiment can also obtain the effects similar to those of the first embodiment.
  • While the embodiments have been described above, the invention is not limited to the above described embodiments, its modifications and its design changes are contained in the invention as long as they depart from the subject matter of the invention.
  • In the liquid tank structures of the above described first to fifth embodiments, they have only one path having a flow (a flow in an one-way direction) of the condensed refrigerant Q in the condensation part AC of the condenser core 3, while they may have a plurality of paths (at least one round trip flow).
  • In addition, the heat exchanger is not limited to the condenser, and the liquid tank structure of the invention may be adapted for others except motor vehicles.
  • INDUSTRIAL APPLICABILITY
  • The invention can be adapted for a liquid tank necessary for separating condensed refrigerant into a gas and a liquid between an inlet port and an outlet port of a liquid tank of a heat exchanger for a motor vehicle and the like.

Claims (18)

1. A liquid tank structure of a heat exchanger attached to a heat exchanger which has a heat exchange core which is divided into a condensation part and an under cooling part, and a pair of headers each having an inlet part fluidically connected with the condensation part and an outlet part fluidically connected with the under cooling part, to separate condensed refrigerant into a gas and a liquid, the liquid tank structure comprising:
an inlet-port side connecting pipe fluidically connected with the inlet part of one header of the pair of headers, the inlet-port side connecting portion being formed with an inlet port for flowing the condensed refrigerant into an inner space of a liquid tank through the inlet part;
an outlet-port side connecting pipe fluidically connected with the outlet part of the one header, the outlet-port side connecting pipe being formed with an outlet port under the inlet port so that the condensed refrigerant which is accumulated in a bottom portion of the liquid tank can be discharged to the outlet part; and
a sloshing suppression member arranged in the liquid tank between the inlet port and the outlet port, the sloshing suppression member allowing the condensed refrigerant to pass through the sloshing suppression member and suppressing a sloshing of the condensed refrigerant which is accumulated in the bottom portion of the liquid tank.
2. The liquid tank structure of the heat exchanger according to claim 1, wherein
the sloshing suppression member is solid and has a passing-through ability of the condensed refrigerant.
3. The liquid tank structure of the heat exchanger according to claim 1, wherein
the sloshing suppression member is one of a felt member, a laminate body of multiple fine meshes and a scrubber-like member formed by intertwining metal wires.
4. The liquid tank structure of the heat exchanger according to claim 1, wherein
the sloshing suppression member extends to a position under the outlet port to cover at least the outlet port of the outlet-port side connecting pipe and to be capable of accumulating the condensed refrigerant at least at an upper side of the sloshing suppression member.
5. The liquid tank structure of the heat exchanger according to claim 1, wherein
the sloshing suppression member is located at a position over the outlet port to be capable of accumulating the condensed refrigerant on an upper side and a lower side of the sloshing suppression member in the bottom portion.
6. The liquid tank structure of the heat exchanger according to claim 1, wherein
the inlet port flows the condensed refrigerant in a horizontal surface direction into an inner portion of the inner space which is at an upper side of the sloshing suppression member.
7. The liquid tank structure of the heat exchanger according to claim 1, wherein
the sloshing suppression member is located at a position over the outlet port to be capable of accumulating the condensed refrigerant only at a position under the sloshing suppression member.
8. The liquid tank structure of the heat exchanger according to claim 2, wherein
the sloshing suppression member is one of a felt member, a laminate body of multiple fine meshes and a scrubber-like member formed by intertwining metal wires.
9. The liquid tank structure of the heat exchanger according to claim 2, wherein
the sloshing suppression member extends to a position under the outlet port to cover at least the outlet port of the outlet-port side connecting pipe and to be capable of accumulating the condensed refrigerant at least at an upper side of the sloshing suppression member.
10. The liquid tank structure of the heat exchanger according to claim 3, wherein
the sloshing suppression member extends to a position under the outlet port to cover at least the outlet port of the outlet-port side connecting pipe and to be capable of accumulating the condensed refrigerant at least at an upper side of the sloshing suppression member.
11. The liquid tank structure of the heat exchanger according to claim 2, wherein
the sloshing suppression member is located at a position over the outlet port to be capable of accumulating the condensed refrigerant on an upper side and a lower side of the sloshing suppression member in the bottom portion.
12. The liquid tank structure of the heat exchanger according to claim 3, wherein
the sloshing suppression member is located at a position over the outlet port to be capable of accumulating the condensed refrigerant on an upper side and a lower side of the sloshing suppression member in the bottom portion.
13. The liquid tank structure of the heat exchanger according to claim 2, wherein
the inlet port flows the condensed refrigerant in a horizontal surface direction into an inner portion of the inner space which is at an upper side of the sloshing suppression member.
14. The liquid tank structure of the heat exchanger according to claim 3, wherein
the inlet port flows the condensed refrigerant in a horizontal surface direction into an inner portion of the inner space which is at an upper side of the sloshing suppression member.
15. The liquid tank structure of the heat exchanger according to claim 4, wherein
the inlet port flows the condensed refrigerant in a horizontal surface direction into an inner portion of the inner space which is at an upper side of the sloshing suppression member.
16. The liquid tank structure of the heat exchanger according to claim 5, wherein
the inlet port flows the condensed refrigerant in a horizontal surface direction into an inner portion of the inner space which is at an upper side of the sloshing suppression member.
17. The liquid tank structure of the heat exchanger according to claim 2, wherein
the sloshing suppression member is located at a position over the outlet port to be capable of accumulating the condensed refrigerant only at a position under the sloshing suppression member.
18. The liquid tank structure of the heat exchanger according to claim 3, wherein
the sloshing suppression member is located at a position over the outlet port to be capable of accumulating the condensed refrigerant only at a position under the sloshing suppression member.
US12/093,201 2005-11-11 2006-11-10 Liquid tank structure of heat exchanger Abandoned US20090218084A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005-327769 2005-11-11
JP2005327769A JP2007132623A (en) 2005-11-11 2005-11-11 Liquid tank structure of heat exchanger
PCT/JP2006/322460 WO2007055318A1 (en) 2005-11-11 2006-11-10 Liquid tank structure for heat exchanger

Publications (1)

Publication Number Publication Date
US20090218084A1 true US20090218084A1 (en) 2009-09-03

Family

ID=38023313

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/093,201 Abandoned US20090218084A1 (en) 2005-11-11 2006-11-10 Liquid tank structure of heat exchanger

Country Status (4)

Country Link
US (1) US20090218084A1 (en)
EP (1) EP1956322A1 (en)
JP (1) JP2007132623A (en)
WO (1) WO2007055318A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135222A1 (en) * 2006-12-06 2008-06-12 Philippe Biver Pipe connecting structure for a heat exchanger
US20140366571A1 (en) * 2010-06-21 2014-12-18 Danfoss A/S Heat exchanger
US20160084581A1 (en) * 2014-09-23 2016-03-24 Hangzhou Sanhua Research Institute Co.,Ltd. Heat exchanger and air-condition system
CN109682124A (en) * 2018-12-24 2019-04-26 上海加冷松芝汽车空调股份有限公司 A kind of outdoor heat exchanger and heat pump air conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047811A (en) * 1996-08-02 1998-02-20 Mitsubishi Heavy Ind Ltd Capacitor
JP2002054862A (en) * 2000-08-08 2002-02-20 Showa Denko Kk Receiver tank for refrigerating system
JP2002090007A (en) * 2000-09-20 2002-03-27 Showa Denko Kk Receiver drier for refrigeration cycle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135222A1 (en) * 2006-12-06 2008-06-12 Philippe Biver Pipe connecting structure for a heat exchanger
US20140366571A1 (en) * 2010-06-21 2014-12-18 Danfoss A/S Heat exchanger
US9752833B2 (en) * 2010-06-21 2017-09-05 Sanhua (Hangzhou) Micro Channel Heat Exchange Co., Ltd Heat exchanger
US20160084581A1 (en) * 2014-09-23 2016-03-24 Hangzhou Sanhua Research Institute Co.,Ltd. Heat exchanger and air-condition system
CN105509368A (en) * 2014-09-23 2016-04-20 杭州三花研究院有限公司 Heat exchanger and air-conditioning system
US9810459B2 (en) * 2014-09-23 2017-11-07 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger and air conditioning system having an allocation tube within heat exchanger manifold
CN109682124A (en) * 2018-12-24 2019-04-26 上海加冷松芝汽车空调股份有限公司 A kind of outdoor heat exchanger and heat pump air conditioning system

Also Published As

Publication number Publication date
WO2007055318A1 (en) 2007-05-18
EP1956322A1 (en) 2008-08-13
JP2007132623A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP5501242B2 (en) Capacitor
US9791190B2 (en) Condenser
EP1365200B1 (en) Multistage gas and liquid phase separation condenser
US10047984B2 (en) Evaporator
JP4599245B2 (en) Heat exchanger
US5394710A (en) Refrigerating apparatus
US20110253354A1 (en) Condenser
US20140224455A1 (en) Condenser with a stack of heat exchanger plates
US20090218084A1 (en) Liquid tank structure of heat exchanger
JP5430542B2 (en) Refrigerant condenser
JPH0694329A (en) Condenser for vehicle
EP1596146A2 (en) Heat exchangers and air conditioning systems including such heat exchangers
JP4774295B2 (en) Evaporator
JP2010065880A (en) Condenser
JP2006170600A (en) Heat exchanger
JP2010139089A (en) Heat exchanger
JP2000213825A5 (en)
JP3966090B2 (en) Condenser with integrated receiver
JP5484150B2 (en) Capacitor
JP2002318090A (en) Duplex heat exchanger
US6971251B2 (en) Integrated condenser/receiver
CN107806723B (en) Shell and Tube Condenser
JP5622414B2 (en) Capacitor
CN220705943U (en) Oil-gas separation device and refrigeration equipment
CN215724325U (en) Oil separator and refrigerating system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALSONIC KANSEI CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHINHAMA, MASAYOSHI;MORISHITA, MASAHIRO;REEL/FRAME:022654/0925;SIGNING DATES FROM 20080506 TO 20080516

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载