US20090216300A1 - Method and apparatus for light-activated drug therapy - Google Patents
Method and apparatus for light-activated drug therapy Download PDFInfo
- Publication number
- US20090216300A1 US20090216300A1 US12/161,323 US16132307A US2009216300A1 US 20090216300 A1 US20090216300 A1 US 20090216300A1 US 16132307 A US16132307 A US 16132307A US 2009216300 A1 US2009216300 A1 US 2009216300A1
- Authority
- US
- United States
- Prior art keywords
- light
- transurethral
- drug therapy
- activated drug
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002651 drug therapy Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000011282 treatment Methods 0.000 claims abstract description 112
- 210000002307 prostate Anatomy 0.000 claims abstract description 25
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims abstract description 8
- 239000010453 quartz Substances 0.000 claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000004913 activation Effects 0.000 claims abstract description 4
- 238000009792 diffusion process Methods 0.000 claims abstract description 4
- 229920000642 polymer Polymers 0.000 claims abstract description 3
- 210000003708 urethra Anatomy 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 238000001126 phototherapy Methods 0.000 claims 3
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 238000012806 monitoring device Methods 0.000 claims 2
- 208000017497 prostate disease Diseases 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 abstract description 26
- 208000004403 Prostatic Hyperplasia Diseases 0.000 abstract description 19
- 239000003814 drug Substances 0.000 abstract description 14
- 229940079593 drug Drugs 0.000 abstract description 14
- 206010060862 Prostate cancer Diseases 0.000 abstract description 10
- 208000000236 Prostatic Neoplasms Diseases 0.000 abstract description 10
- 230000030833 cell death Effects 0.000 abstract description 4
- 210000002700 urine Anatomy 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 9
- VSEIDZLLWQQJGK-CHOZPQDDSA-N CCC1=C(C)C2=N\C\1=C/C1=C(C)C(C(O)=O)=C(N1)\C(CC(=O)N[C@@H](CC(O)=O)C(O)=O)=C1/N=C(/C=C3\N/C(=C\2)C(C=C)=C3C)[C@@H](C)[C@@H]1CCC(O)=O Chemical compound CCC1=C(C)C2=N\C\1=C/C1=C(C)C(C(O)=O)=C(N1)\C(CC(=O)N[C@@H](CC(O)=O)C(O)=O)=C1/N=C(/C=C3\N/C(=C\2)C(C=C)=C3C)[C@@H](C)[C@@H]1CCC(O)=O VSEIDZLLWQQJGK-CHOZPQDDSA-N 0.000 description 8
- 229950010924 talaporfin Drugs 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 7
- 239000000906 photoactive agent Substances 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 230000001969 hypertrophic effect Effects 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 206010051482 Prostatomegaly Diseases 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000002428 photodynamic therapy Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- ATNMPCPGYQSWBN-REOHCLBHSA-N (3s)-3-amino-4-chloro-4-oxobutanoic acid Chemical compound ClC(=O)[C@@H](N)CC(O)=O ATNMPCPGYQSWBN-REOHCLBHSA-N 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 201000003146 cystitis Diseases 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000005070 sphincter Anatomy 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010038967 Retrograde ejaculation Diseases 0.000 description 1
- 206010065584 Urethral stenosis Diseases 0.000 description 1
- 206010062903 Urethritis noninfective Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000009084 cardiovascular function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000011471 prostatectomy Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000287 tissue oxygenation Effects 0.000 description 1
- 238000002691 topical anesthesia Methods 0.000 description 1
- 201000009160 urethral calculus Diseases 0.000 description 1
- 206010046459 urethral obstruction Diseases 0.000 description 1
- 201000001988 urethral stricture Diseases 0.000 description 1
- 208000000143 urethritis Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00274—Prostate operation, e.g. prostatectomy, turp, bhp treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22065—Functions of balloons
- A61B2017/22068—Centering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00273—Anchoring means for temporary attachment of a device to tissue
- A61B2018/00279—Anchoring means for temporary attachment of a device to tissue deployable
- A61B2018/00285—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00547—Prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00821—Temperature measured by a thermocouple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B2018/2255—Optical elements at the distal end of probe tips
- A61B2018/2261—Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N2005/0602—Apparatus for use inside the body for treatment of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
- A61N2005/061—Bladder and/or urethra
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/063—Radiation therapy using light comprising light transmitting means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/065—Light sources therefor
- A61N2005/0651—Diodes
- A61N2005/0652—Arrays of diodes
Definitions
- the present invention relates generally to a prostate treatment system for treating prostatic tissue in combination with a photoactive agent, and more specifically a transurethral device in combination with a light-activated drug for use in treating benign prostatic hyperplasia (BPH).
- BPH benign prostatic hyperplasia
- Benign prostatic hyperplasia BPH
- prostate cancer are common conditions in the older male population.
- the enlarged prostate can compress the urethra causing obstruction of the urine pathway, which results in difficulty urinating.
- the enlarged prostate can also cause urethral stones, inflammation, infection and in some instances, kidney failure.
- Major treatment methods for BPH include surgical treatment such as a prostatectomy or transurethral resection of the prostate. These treatments require the patient to be hospitalized, which can be a financial burden to the patient. Additionally, surgical procedures can result in significant side effects such as bleeding, infection, residual urethral obstruction or stricture, retrograde ejaculation, and/or incontinence or impotence. Patients who are too old or who have weak cardiovascular functions are not good candidates for receiving these treatment methods.
- Photodynamic treatment (PDT) methods are new methods for treating cancers.
- light-activated drug therapy also known as PDT
- light of a specific wavelength or waveband is directed toward a target cell or cells that have been rendered photosensitive through the administration of a photoreactive, photoinitiating, or photosensitizing agent.
- the drug is commonly administered to the patient via intravenous injection, oral administration, or by local delivery to the treatment site.
- a light source emitting certain wavelength or waveband can be used to irradiate the cancerous tumor or the enlarged tissue by activating the photosensitizer to produce a strong oxidizing agent that can kill the cancerous tumor or enlarged tissues.
- the light-activated drug therapy is minimally invasive, less costly, and has a lower risk of complications.
- One type of light delivery system used for light-activated drug therapy comprises the delivery of light from a light source, such as a laser, to the targeted cells using an optical fiber delivery system with special light-diffusing tips on the fibers.
- This type of light delivery system may further include optical fiber cylindrical diffusers, spherical diffusers, micro-lensing systems, an over-the-wire cylindrical diffusing multi-optical fiber catheter, and a light-diffusing optical fiber guide wire.
- This light delivery system generally employs a remotely located high-powered laser, or solid-state laser diode array, coupled to optical fibers for delivery of the light to the targeted cells.
- the light source for the light delivery system used for light-activated drug therapy may also be light emitting diodes (LEDs) or solid-state laser diodes (LDs). LEDs or LDs may be arrayed in an elongated device to form a “light bar” for the light delivery system.
- the LEDs or LDs may be either wire bonded or electrically coupled utilizing a “flip chip” technique that is used in arranging other types of semiconductor chips on a conductive substrate.
- Various arrangements and configurations of LEDs or LDs are described in U.S. Pat. Nos. 5,445,608; 6,958,498; 6,784,460; and 6,445,011, which are incorporated herein by reference.
- the largest diameter of the light bar is defined by human anatomy and the smallest diameter is defined by the size of the light emitters that emit light of a desired wavelength or waveband at a sufficient energy level, and the fragility of the bar as its thickness is reduced, which increases the risk of breaking in the patient.
- a transurethral treatment device can include an elongated support member configured to pass through the urethra, a light delivery device, and a positioning element carried by the support member.
- the support member can be a catheter having at least one lumen, or in other embodiments the support member can be a generally closed body without a lumen.
- the light delivery device can have a light generator along the support member and a light emitting region configured to be positioned within the urethra at least proximate to a treatment site.
- the light generator is configured to generate light at a preselected wavelength or waveband in the range of an activation waveband of a photoactive composition.
- the positioning element is configured to locate the light emitting region within the urethra at least proximate to the treatment site.
- the positioning element for example, can be a balloon or indicators on the support member.
- a transurethral treatment device comprises a light delivery device positionable within or along an elongated support member for treatment of benign prostatic hyperplasia (BPH).
- the light delivery system may include light emitting diodes (LEDs), laser diodes (LDs), or may include a diffusion quartz fiber tip connected to an internal source of light energy.
- the treatment device may further include a temperature monitoring system for monitoring the temperature at the treatment site and a urine drainage system.
- the treatment device has a light delivery device positioned within a catheter-like device, such as a Foley catheter or a conventional balloon catheter.
- a light bar sized to fit into a standard or custom optically clear Foley catheter, is inserted into the catheter which has been placed via the urethra at the prostate.
- the device can be used in a sterile Foley catheter or can be delivered in a sterile pack kit prepackaged with the catheter and/or an appropriate photoactive agent dose so that it is convenient for prostatic procedures, and thus facilitates treatment in a non-surgical environment leading to potential reduction in costs and medical complications.
- the transurethral treatment device can have an outer diameter of about 0.8 mm to about 10 mm (e.g., 2.5 mm).
- the light source may have a cross-sectional dimension of about 0.5 mm to about 1.5 mm, but in other embodiments it can be larger.
- the size of an LED for example, can be approximately 0.25 mm to 1 mm.
- the transurethral treatment device, light source and LEDs can have other cross-sectional dimensions.
- the light bar may further include an encapsulant made from a flexible polymeric material with an appropriate refractive index to ensure efficient light coupling into the body.
- the encapsulant can also be made from opaque or reflective material to direct the light to the targeted tissues and to protect other tissues.
- non-LED light sources such as laser diodes (LDs) can be used. Generated light can be transmitted to the treatment site via optical fibers.
- the light delivery system may further include a diffusion quartz fiber tip connected to a source of light.
- the light emitting region of the treatment device is fixed in place in the elongated support member.
- the light emitting region of the light delivery device is movable within or along the elongated support member. For example, at the end of the treatment the light delivery device may be removed and the elongated support member left in place to act as a urine drain.
- the treatment device may further include printed markings or indicia on the catheter to aid in placement of the light bar within the catheter.
- the catheter has a selective coating to control where light transmits to the prostatic tissue thus directing the light activate drug therapy and reducing the potential to treat adjacent tissue.
- a Y-connection with a leakage control valve is included to allow the light delivery device to be inserted into the elongated support member through a separate lumen from a urine collection lumen.
- the elongated support member may include one or more lumens as needed to provide light transmission source manipulation and placement.
- the elongated support member may include a balloon to further aid in positioning the light delivery device proximate to the prostate using non-incision type methods.
- the catheter may include a retractable fixation device such as balloon, umbrella, tines, disk or other means for fixation and placement within the bladder.
- the elongated support member and light bar may include echogenic material to reflect high-frequency sound waves and thus be imageable by ultrasound techniques. Echogenic material will aid in proper placement of the elongated support member and the light bar in operation.
- the light delivery system also includes temperature sensors which are electrically connected to temperature monitors for monitoring temperature at the treatment site.
- the treatment device may be used to treat prostate cancer, prostatits, cystitis, bladder cancer, hypertrophic trigone, and hypertrophic urethral sphincter.
- the present invention utilizes light-activated drug therapy to minimally-invasively treat BPH or prostate cancer via the urethra. As a result, patients with BPH or prostate cancer can be treated using the present invention without being admitted to a hospital, undergo general anesthesia and blood transfusion, and thus have lower risk of complications.
- a photosensitizer is administered intravenously before activating the light delivery device.
- the light activates the photosensitizer to promote cell death in the prostatic tissue.
- the device provides a minimally invasive transurethral method for treating BPH, prostate cancer or other prostatic conditions. This type of light-activated drug therapy would treat prostatic tissue, for example, by causing cell death in the prostatic tissue. Such cell death and the absorption of the tissue by the patient's body would create an opening for urine to flow from the bladder out the urethra.
- the invention also provides methods of administering light-activated drug therapy to treat targeted tissue of a human or non-human patient.
- the method includes identifying a location of tissue to be treated in the prostate; inserting an elongated support member into the urethral tract to position a light emitting region at least proximate to the location of the targeted tissue; and administering an effective dose of a photoactive composition to the targeted tissue.
- the method may include confirming placement of the light source prior to treatment.
- the method further includes treating the targeted tissue with light-activated drug therapy for a predetermined period of treatment.
- the light-activated drug is mono-L-aspartyl chlorine e 6 , also referred to herein as Talaporfin Sodium.
- This compound's absorption spectrum has several absorption bands: 400-420 nm (e.g., peak of about 411 nm), 500-520 nm (e.g., peak of about 507 nm), and 655-670 nm (e.g., peak of about 664 nm).
- the drug could be excited at any of these bands.
- Alternative light-activated drugs of suitable excitation wavelengths may also be used as is known in the art.
- FIG. 1 is an elevational side view of a prostate treatment system having a transurethral treatment device according to one embodiment of the invention.
- FIG. 2 is a cross-sectional view taken along line 2 - 2 of FIG. 1 illustrating one embodiment of lumens in the transurethral treatment device.
- FIG. 3 is side view of a transurethral treatment device positioned in the urethra tract of a patient according to an embodiment of the invention.
- FIG. 4 is a cross-sectional view of a transurethral treatment device in accordance with another embodiment of the invention.
- FIG. 5 is a cross-sectional view of a transurethral treatment device in accordance with yet another embodiment of the invention.
- FIG. 6 is a cross-sectional view of a transurethral treatment device in accordance with still another embodiment of the invention.
- FIG. 7 is a cross-sectional view of a transurethral treatment device in accordance with another embodiment of the invention.
- a prostate treatment system can include a transurethral treatment device having a light delivery device positioned within or along an elongated support member for treatment of benign prostate hyperplasia (BPH) and other prostate conditions.
- the treatment device includes a light delivery device disposed on the surface of the elongated support member, or in other embodiments, the light delivery device is within a lumen of the elongated support member.
- the light generator can be optically connected to a light emitting region via optical fibers or light guides. Alternatively, the light generator and the light emitting region may be positioned together at the distal end of the elongated member at least proximate to a treatment site.
- the light generator may include a laser, an LED, a thin plastic sheet material which produces light at a selected wavelength or waveband, or other suitable light sources that can be transmitted to or placed at the treatment site.
- the transurethral treatment device also includes temperature sensors which are electrically connected to temperature monitors.
- FIG. 1 illustrates a prostate treatment system 20 including a power supply 1 and a transurethral treatment device 21 having an elongated support member 2 and a light delivery device 6 positioned along or within the support member 2 .
- the transurethral treatment device 20 may further includes a balloon 3 or other type of positioning element carried by the elongated support member 2 .
- the support member 2 can be a catheter having a lumen 4 , or the support member 2 can be a closed body without a lumen.
- the support member 2 has a total length of 400 to 450 mm and has an outer diameter of 3.327 mm, and the balloon 3 at the distal end of the support member 2 has a volume of 10 to 30 ml and is used to position and fix the light delivery device 6 proximate to the treatment site such as the prostate.
- the light delivery device 6 can have a light generator 6 a and a light emitting region 6 b .
- the light generator 6 a and the light emitting region 6 b are at approximately the same location of the elongated member, but in other embodiments shown below, the light generator 6 a may not be coincident with the light emitting region 6 b .
- the light generator 6 a may be located towards the proximal end of the support member 2 .
- the support member 2 is a catheter with a lumen 4
- the light delivery device 6 can move within the lumen to be positioned relative to the treatment site.
- the light delivery device 6 can be disposed on the surface of the catheter 2 below the balloon 3 or other type of positioning element.
- the power for the light generator can be transmitted to the light delivery device 6 via a lead wire 7 coupled to the power source 1 .
- light could be emitted by a light emitting diode (LED), a laser diode, light-emitting polymer, or a quartz fiber tip optically coupled to another internal source of light energy.
- the support member 2 can include a plurality of lumens therein.
- the balloon 3 is connected to a fluid inlet 5 via lumen 4 .
- Gas or liquid can be pumped into inlet 5 and through lumen 4 to inflate balloon 3 .
- the transurethral treatment device 21 can optionally have a urine aperture 11 positioned at the distal end of the support member 2 that is connected to a urine collection bag 13 via a urine lumen 12 .
- the urine aperture 11 can be used to collect the patient's urine during treatment.
- the transurethral treatment device 21 can also optionally include a temperature measuring system having at least one of a temperature sensor 8 and a temperature monitor 10 .
- the temperature sensor 8 can be a thermocouple or other sensor as is known in the art.
- the temperature sensor 8 is disposed on or thermally coupled to a surface of the support member 2 and is electrically connected to the temperature monitor 10 via wires 9 disposed within the support member 2 .
- the temperature sensor 8 measures a temperature at the treatment site, for example, proximate to the prostate during treatment.
- a control loop (not shown) may further be connected to the temperature monitor 10 to automatically shut the treatment device off in the event that the temperature at the treatment site exceeds a predetermined value.
- the temperature monitor 10 may further include a warning device (not shown), such as a visual indicator or audible indicator, to provide an operator with a warning that a predetermined temperature has been reached or is being exceeded during treatment.
- the treatment device is positioned transurethrally to allow access to the prostate, followed by administration of a photoactive drug, by injection, intravenously, or orally.
- the transurethral treatment device 21 and more specifically a portion of the support member 2 , can be directed into the urethra under topical anesthesia.
- 4 to 10 ml of saline or air can be pumped into the balloon 3 via the air pumping channel 4 to inflate the balloon 3 .
- the support member 2 can be pulled slightly proximally such that the balloon 3 can be fixed at the inner opening of the urethra.
- the light delivery device 6 can be positioned at least proximate to or within the prostate.
- the photoactive drug can then be administered to the patient, and the light generator 6 b can be activated.
- the support member 2 has a proximal portion and a distal portion relative to a power controller.
- the distal portion of support member 2 includes the light delivery device 6 .
- the light delivery device comprises a plurality of LEDs in electrical communication with the power supply via lead wires 7 as shown in FIG. 1 .
- the lead wires may be selected from any suitable conductor that can be accommodated within the dimensions of the support member, for example: a bus bar that electronically couples the LEDs to the controller; flexible wires; a conductive film or ink applied to a substrate, and the like.
- the light delivery device may include Bragg reflectors to better control the wavelength of the light that is to be transmitted to the target cells.
- a power controller 1 may be programmed to activate and deactivate LEDs of a light delivery device in a pulsed sequence or a continuous sequence.
- the LEDs may form two halves of the light array that may be turned on and off independently from each other.
- the system may be programmed to selectively activate and deactivate (e.g., address) different selected individual or groups of LEDs along the length of the bar.
- a treatment protocol for example causing the LEDs to be lit in a certain sequence or at a particular power level for a selected period of time, may be programmed into the controller. Therefore, by selectively timing the pulses and/or location of the light, the system delivers light in accordance with a selected program.
- LEDs can be powered by DC continuously.
- Examples of addressable light transmission arrays are disclosed in U.S. Pat. No. 6,096,066, herein incorporated in its entirety by reference.
- Exemplary light transmission arrays which include shielding or distal protection are disclosed in U.S. patent application Ser. Nos. 10/799,357 and 10/888,572, herein incorporated in their entirety by reference.
- the efficacy of the light-activated drug therapy is improved, given that the treated tissue is allowed to reoxygenate during the cycles when the light is off.
- tissue oxygenation during therapy is improved by using a lower frequency.
- the operational frequency is 50 Hz-5 kHz, and in one embodiment, is 50-70 Hz.
- the treatment device may further include a temperature monitoring system for monitoring the temperature at the treatment site.
- the support member 2 is a Foley catheter and the light delivery device 6 is disposed in the Foley catheter.
- the treatment device has a light delivery device disposed in a conventional balloon catheter.
- Foley catheters are available in several sub-types, for example, a Coude catheter has a 45° bend at the tip to allow easier passage through an enlarged prostate.
- Council tip catheters have a small hole at the tip which allows them to be passed over a wire.
- Three-way catheters are used primarily after bladder, prostate cancer or prostate surgery to allow an irrigant to pass to the tip of the catheter through a small separate channel into the bladder. This serves to wash away blood and small clots through the primary arm that drains into a collection device.
- FIG. 4 is a cross-sectional view of still another embodiment of a transurethral treatment device 21 .
- the light delivery device includes a light generator 6 a along the support member 2 at a location that is either within or external (shown) to the patient.
- the light delivery device can further include a light emitting region 6 b positioned at least proximate to the treatment site and a light transmitting region 6 c (e.g., fiber optic) between the light generator 6 a and the light emitting region 6 b .
- the support member 2 can be a catheter through which the light delivery device 6 can be moved for positioning, or the support member can be a closed body to which the light delivery device 6 is attached (e.g., fixed at a set position).
- FIGS. 5-7 are cross-sectional views showing additional embodiments of portions of transurethral treatment devices.
- FIG. 5 more specifically, shows a device having a closed body support member 2 and a light delivery device fixed to the support member 2 .
- the light delivery device has a light generator 6 a , a light emitting region spaced apart from the light generator 6 a distally along the support member 2 , and a light transmitting region 6 c between the light generator 6 a and the light emitting region 6 b .
- the light transmitting region 6 c conducts light from the light generator 6 a to the light emitting region 6 b .
- FIG. 5 shows a device having a closed body support member 2 and a light delivery device fixed to the support member 2 .
- the light delivery device has a light generator 6 a , a light emitting region spaced apart from the light generator 6 a distally along the support member 2 , and a light transmitting region 6 c between the light generator 6 a and the light emit
- FIG. 6 illustrates a device having a solid or otherwise lumen-less support member 2 and a light delivery device 6 with a light generator 6 a and a light emitting region 6 b at the same location longitudinally along the support member 2 .
- the light generator is within the support member 2 .
- FIG. 7 shows still another embodiment in which the light delivery device is on a surface of the support member. More specifically, the light delivery device 6 has the light generator 6 a and the light emitting region 6 b disposed on an external surface of the support member.
- a light delivery system that is sized to fit into a standard or custom optically clear Foley catheter is inserted into that catheter which has been placed via the urethra at the prostate.
- the light delivery device can be used with a sterile Foley catheter or can be delivered in a sterile pack kit prepackaged with the catheter and/or an appropriate photoactive agent dose so that it is convenient for prostatic procedures.
- the light bar or light array may include a plurality of LEDs contained in a catheter assembly or otherwise attached to a closed elongated support member.
- the support member 2 may have an outer diameter of about 0.8 to about 10 mm.
- Example of LED arrays are disclosed in U.S. application Ser. No. 11/416,783 entitled “Light Transmission system for Photo-reactive Therapy,” and U.S. application Ser. No. 11/323,319 entitled “Medical Apparatus Employing Flexible Light Structures and Methods for Manufacturing Same,” herein incorporated in their entirety by reference.
- Additional embodiments have a power controller drive circuit capable of producing constant current D.C., A.C., square wave and pulsed wave drive signals. This is accomplished by combining a constant source with a programmable current steering network allowing the controller to selectively change the drive wave form. For example, the steering network may be modulated to achieve the various functions described above, for example, producing the desired impedance to fully discharge the battery.
- use of an A.C. drive allows for a two-wire connection to the LEDs, thereby reducing the cross-sectional diameter of the catheter, while still permitting use of two back-to-back emission sources, that when combined, produce a cylindrical light source emission pattern.
- the transurethral treatment device 21 can comprise a unitary, single use disposable system for light-activated drug therapy. It should be noted that in certain embodiments the catheter is fused to the power controller to form an integrated single unit. Any attempt to disconnect the support member in this embodiment results in damage to either the catheter, or module, or both.
- the prostate treatment system can be used in connection with any light-activated drug of which there are many known in the art and some of which are listed in U.S. Pat. No. 7,015,240 which is fully incorporated by reference with regard to disclosed photoactive compositions.
- the light-activated drug is Talaporfin Sodium.
- Talaporfin Sodium is a chemically synthesized photosensitizer, having an absorption spectrum that exhibits a maximum peak at 664 nm.
- the Talaporfin Sodium is presented as a lyophilized powder for reconstitution. One hundred milligrams of Talaporfin Sodium is reconstituted with 4 milliliters of 0.9% isotonic sterile sodium chloride solution, to give a solution at a concentration of 25 mg/ml.
- the drug must be activated with light, and light energy is measured here in Joules (J) per centimeter of length of the light transmitting array. Likewise the fluence of light is measured in milli-watts (mW) per centimeter of length of the light emitting array.
- J Joules
- mW milli-watts
- the fluence may be delivered for only a fraction of the treatment time, because the light array may be pulsed, for example in a frequency such as 60 kHz, or may be controlled by a timing pattern.
- a timing pattern is that the array is at full fluence for 20 seconds, then off for 10 seconds in a repetitive cycle.
- the control module may further be programmable in embodiments for such fractionated light delivery.
- light energy in the range from about 50 to about 1000 J/cm of light array fluence in the range from about 5 to about 50 mW/cm of light array is delivered to the treatment site.
- the equation discussed above relating energy time and fluence plays a role in selection of the fluence and energy delivered.
- a certain time period may be selected as suitable.
- the nature of treatment might dictate the energy required.
- the light array should be capable of providing that fluence in the allotted time period. For example, if a total of 200 J/cm of light array must be delivered to the treatment site at 20 mW/cm of light array, then the treatment period is approximately 2.8 hours.
- the support member further has a selective coating to control where light transmits to the prostatic tissue thus directing the light activate drug therapy and reducing the potential to treat adjacent tissue.
- the light delivery device is fixed in place in the catheter.
- the light delivery device is movable within the catheter.
- the treatment device may further include printed markings or indicia on the catheter to aid in placement of the light bar within the catheter.
- the light delivery device can also have asymmetric light delivery to protect the colon or rectum.
- the light deliver device can be double sided and/or shielded so that one side of the light bar emits light at a higher intensity than another side. Exemplary light delivery devices are disclosed in U.S. Pat. No. 5,876,427, herein incorporated in its entirety by reference.
- a Y-connection with a leakage control valve is included to allow the light transmission source to be inserted into the catheter through a separate lumen from a urine collection lumen.
- the catheter may include two or more lumens as needed to provide light transmission source manipulation and placement.
- the catheter includes a balloon or other positional element to further aid in positioning the light source transmission end proximate to the prostate using non-incision type methods.
- the catheter may include a retractable fixation device such as balloon, umbrella, tines, disk or other means for fixation and placement within the bladder.
- the light source catheter and/or the light bar may include echogenic material to reflect high-frequency sound waves and thus be imageable by ultrasound techniques. In operation, echogenic material will aid in proper placement of the catheter and the light source.
- the light transmission source also includes temperature sensors which are electrically connected to temperature monitors.
- the prostate treatment systems are expected to provide highly efficient, low cost, and minimally-invasive treatment of prostate conditions.
- the treatment device may be used to treat prostate cancer, prostatis, cystitis, bladder cancer, hypertrophic trigone, and hypertrophic urethral sphincter.
- the present invention utilizes light-activated drug therapy methods to minimally-invasively treat BPH or prostate cancer via the urethra. As a result patients with BPH or prostate cancer can be treated using the present invention without being hospitalized, undergo general anesthesia and blood transfusion, and thus have lower risk of complications.
- the invention also provides methods of administering photoactive therapy to treat targeted tissue of a human or non-human patient.
- the method includes identifying a location of tissue to be treated in the prostate; inserting a catheter into the urethra tract; inserting a light delivery device at least proximate to the location of the targeted tissue; and administering an effective dose of a photoactive drug.
- the method may include confirming placement of the light source prior to treatment.
- the method further includes treating the targeted tissue by activating the light delivery device for a predetermined period of treatment.
- the light-activated drug is mono-L-aspartyl chlorine e 6 , also referred to herein as Talaporfin Sodium.
- compositions and methods of making Talaporfin Sodium are disclosed and taught in co-pending U.S. patent application Ser. No. ______ entitled “Compositions and Methods of Making a Photoactive Agent” filed Jun. 30, 2006, herein incorporated in its entirety.
- This compound has an absorption spectrum that exhibits several peaks, including one with the excitation wavelength of 664 nm, which is the wavelength favored when it is used in photoreactive therapy.
- Alternative light-activated drugs of suitable excitation wavelengths may also be used as is known in the art.
- the method further includes monitoring a temperature at treatment site.
- the temperature measuring system includes a temperature sensor for monitoring the temperature at the treatment site.
- the temperature sensor may be a thermal couple or any suitable device for providing temperature information at the treatment site.
- the temperature sensor may be disposed at the surface of the support member and is further electrically connected to the temperature monitor via wires. Alternatively, the temperature sensor may be wirelessly connected to the temperature monitor.
- the temperature sensor provides the temperature proximate to the treatment site during treatment to ensure safe operating temperatures during the treatment at the treatment site.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Radiation-Therapy Devices (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates generally to a prostate treatment system for treating prostatic tissue in combination with a photoactive agent, and more specifically a transurethral device in combination with a light-activated drug for use in treating benign prostatic hyperplasia (BPH).
- 2. Description of the Related Art
- Benign prostatic hyperplasia (BPH) and prostate cancer are common conditions in the older male population. For people with BPH, the enlarged prostate can compress the urethra causing obstruction of the urine pathway, which results in difficulty urinating. The enlarged prostate can also cause urethral stones, inflammation, infection and in some instances, kidney failure.
- Major treatment methods for BPH include surgical treatment such as a prostatectomy or transurethral resection of the prostate. These treatments require the patient to be hospitalized, which can be a financial burden to the patient. Additionally, surgical procedures can result in significant side effects such as bleeding, infection, residual urethral obstruction or stricture, retrograde ejaculation, and/or incontinence or impotence. Patients who are too old or who have weak cardiovascular functions are not good candidates for receiving these treatment methods.
- Photodynamic treatment (PDT) methods are new methods for treating cancers. In light-activated drug therapy, also known as PDT, light of a specific wavelength or waveband is directed toward a target cell or cells that have been rendered photosensitive through the administration of a photoreactive, photoinitiating, or photosensitizing agent. The drug is commonly administered to the patient via intravenous injection, oral administration, or by local delivery to the treatment site. A light source emitting certain wavelength or waveband can be used to irradiate the cancerous tumor or the enlarged tissue by activating the photosensitizer to produce a strong oxidizing agent that can kill the cancerous tumor or enlarged tissues. As compared to surgical alternatives, the light-activated drug therapy is minimally invasive, less costly, and has a lower risk of complications.
- One type of light delivery system used for light-activated drug therapy comprises the delivery of light from a light source, such as a laser, to the targeted cells using an optical fiber delivery system with special light-diffusing tips on the fibers. This type of light delivery system may further include optical fiber cylindrical diffusers, spherical diffusers, micro-lensing systems, an over-the-wire cylindrical diffusing multi-optical fiber catheter, and a light-diffusing optical fiber guide wire. This light delivery system generally employs a remotely located high-powered laser, or solid-state laser diode array, coupled to optical fibers for delivery of the light to the targeted cells.
- The light source for the light delivery system used for light-activated drug therapy may also be light emitting diodes (LEDs) or solid-state laser diodes (LDs). LEDs or LDs may be arrayed in an elongated device to form a “light bar” for the light delivery system. The LEDs or LDs may be either wire bonded or electrically coupled utilizing a “flip chip” technique that is used in arranging other types of semiconductor chips on a conductive substrate. Various arrangements and configurations of LEDs or LDs are described in U.S. Pat. Nos. 5,445,608; 6,958,498; 6,784,460; and 6,445,011, which are incorporated herein by reference.
- One of the challenges in design and production of light bars relates to size. The largest diameter of the light bar is defined by human anatomy and the smallest diameter is defined by the size of the light emitters that emit light of a desired wavelength or waveband at a sufficient energy level, and the fragility of the bar as its thickness is reduced, which increases the risk of breaking in the patient.
- Presently, there exists a need for an apparatus for light-activated drug therapy for effectively treating prostate via the urethra that is cost effective, less invasive than other treatments, and has less risk of complications. Accordingly, there is a need for smaller LEDs or LDs and other light sources that are safe for use in a urethra tract introduced via a catheter-like device.
- The invention describes devices, methods and systems for light-activated drug therapy for treating the prostate transurethrally. One embodiment of a transurethral treatment device can include an elongated support member configured to pass through the urethra, a light delivery device, and a positioning element carried by the support member. The support member can be a catheter having at least one lumen, or in other embodiments the support member can be a generally closed body without a lumen. The light delivery device can have a light generator along the support member and a light emitting region configured to be positioned within the urethra at least proximate to a treatment site. The light generator is configured to generate light at a preselected wavelength or waveband in the range of an activation waveband of a photoactive composition. The positioning element is configured to locate the light emitting region within the urethra at least proximate to the treatment site. The positioning element, for example, can be a balloon or indicators on the support member.
- In other embodiments a transurethral treatment device comprises a light delivery device positionable within or along an elongated support member for treatment of benign prostatic hyperplasia (BPH). The light delivery system may include light emitting diodes (LEDs), laser diodes (LDs), or may include a diffusion quartz fiber tip connected to an internal source of light energy. The treatment device may further include a temperature monitoring system for monitoring the temperature at the treatment site and a urine drainage system.
- According to another embodiment of the invention, the treatment device has a light delivery device positioned within a catheter-like device, such as a Foley catheter or a conventional balloon catheter. In one embodiment, a light bar, sized to fit into a standard or custom optically clear Foley catheter, is inserted into the catheter which has been placed via the urethra at the prostate. The device can be used in a sterile Foley catheter or can be delivered in a sterile pack kit prepackaged with the catheter and/or an appropriate photoactive agent dose so that it is convenient for prostatic procedures, and thus facilitates treatment in a non-surgical environment leading to potential reduction in costs and medical complications.
- In additional embodiments, the transurethral treatment device can have an outer diameter of about 0.8 mm to about 10 mm (e.g., 2.5 mm). The light source may have a cross-sectional dimension of about 0.5 mm to about 1.5 mm, but in other embodiments it can be larger. The size of an LED, for example, can be approximately 0.25 mm to 1 mm. In other embodiment, the transurethral treatment device, light source and LEDs can have other cross-sectional dimensions. The light bar may further include an encapsulant made from a flexible polymeric material with an appropriate refractive index to ensure efficient light coupling into the body. The encapsulant can also be made from opaque or reflective material to direct the light to the targeted tissues and to protect other tissues.
- In additional embodiments, non-LED light sources such as laser diodes (LDs) can be used. Generated light can be transmitted to the treatment site via optical fibers. The light delivery system may further include a diffusion quartz fiber tip connected to a source of light.
- In additional embodiments, the light emitting region of the treatment device is fixed in place in the elongated support member. In yet another embodiment, the light emitting region of the light delivery device is movable within or along the elongated support member. For example, at the end of the treatment the light delivery device may be removed and the elongated support member left in place to act as a urine drain. The treatment device may further include printed markings or indicia on the catheter to aid in placement of the light bar within the catheter.
- In additional embodiments, the catheter has a selective coating to control where light transmits to the prostatic tissue thus directing the light activate drug therapy and reducing the potential to treat adjacent tissue.
- According to still further embodiments, a Y-connection with a leakage control valve is included to allow the light delivery device to be inserted into the elongated support member through a separate lumen from a urine collection lumen. The elongated support member may include one or more lumens as needed to provide light transmission source manipulation and placement. In additional embodiments, the elongated support member may include a balloon to further aid in positioning the light delivery device proximate to the prostate using non-incision type methods. In additional embodiments, the catheter may include a retractable fixation device such as balloon, umbrella, tines, disk or other means for fixation and placement within the bladder.
- In additional embodiments, to make the light bar visible to ultrasound, the elongated support member and light bar may include echogenic material to reflect high-frequency sound waves and thus be imageable by ultrasound techniques. Echogenic material will aid in proper placement of the elongated support member and the light bar in operation. In additional embodiments, the light delivery system also includes temperature sensors which are electrically connected to temperature monitors for monitoring temperature at the treatment site.
- Several embodiments of the present invention are expected to provide efficient, low cost, and minimally-invasive treatments of prostate conditions. The treatment device may be used to treat prostate cancer, prostatits, cystitis, bladder cancer, hypertrophic trigone, and hypertrophic urethral sphincter. The present invention utilizes light-activated drug therapy to minimally-invasively treat BPH or prostate cancer via the urethra. As a result, patients with BPH or prostate cancer can be treated using the present invention without being admitted to a hospital, undergo general anesthesia and blood transfusion, and thus have lower risk of complications.
- For many of the described embodiments, a photosensitizer is administered intravenously before activating the light delivery device. The light activates the photosensitizer to promote cell death in the prostatic tissue. The device provides a minimally invasive transurethral method for treating BPH, prostate cancer or other prostatic conditions. This type of light-activated drug therapy would treat prostatic tissue, for example, by causing cell death in the prostatic tissue. Such cell death and the absorption of the tissue by the patient's body would create an opening for urine to flow from the bladder out the urethra.
- The invention also provides methods of administering light-activated drug therapy to treat targeted tissue of a human or non-human patient. In one embodiment, the method includes identifying a location of tissue to be treated in the prostate; inserting an elongated support member into the urethral tract to position a light emitting region at least proximate to the location of the targeted tissue; and administering an effective dose of a photoactive composition to the targeted tissue. The method may include confirming placement of the light source prior to treatment. The method further includes treating the targeted tissue with light-activated drug therapy for a predetermined period of treatment.
- In some embodiments, the light-activated drug is mono-L-aspartyl chlorine e6, also referred to herein as Talaporfin Sodium. This compound's absorption spectrum has several absorption bands: 400-420 nm (e.g., peak of about 411 nm), 500-520 nm (e.g., peak of about 507 nm), and 655-670 nm (e.g., peak of about 664 nm). The drug could be excited at any of these bands. Alternative light-activated drugs of suitable excitation wavelengths may also be used as is known in the art.
- The following drawings are intended as an aid to an understanding of the invention to present examples of the invention, but do not limit the scope of the invention as described and claimed herein. In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
-
FIG. 1 is an elevational side view of a prostate treatment system having a transurethral treatment device according to one embodiment of the invention. -
FIG. 2 is a cross-sectional view taken along line 2-2 ofFIG. 1 illustrating one embodiment of lumens in the transurethral treatment device. -
FIG. 3 is side view of a transurethral treatment device positioned in the urethra tract of a patient according to an embodiment of the invention. -
FIG. 4 is a cross-sectional view of a transurethral treatment device in accordance with another embodiment of the invention. -
FIG. 5 is a cross-sectional view of a transurethral treatment device in accordance with yet another embodiment of the invention. -
FIG. 6 is a cross-sectional view of a transurethral treatment device in accordance with still another embodiment of the invention. -
FIG. 7 is a cross-sectional view of a transurethral treatment device in accordance with another embodiment of the invention. - In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the relevant art will recognize that the invention may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with light sources, catheters and/or treatment devices have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention.
- Generally, a prostate treatment system can include a transurethral treatment device having a light delivery device positioned within or along an elongated support member for treatment of benign prostate hyperplasia (BPH) and other prostate conditions. In one embodiment, the treatment device includes a light delivery device disposed on the surface of the elongated support member, or in other embodiments, the light delivery device is within a lumen of the elongated support member. The light generator can be optically connected to a light emitting region via optical fibers or light guides. Alternatively, the light generator and the light emitting region may be positioned together at the distal end of the elongated member at least proximate to a treatment site. Thus, the light generator may include a laser, an LED, a thin plastic sheet material which produces light at a selected wavelength or waveband, or other suitable light sources that can be transmitted to or placed at the treatment site. According to a further embodiment of the invention, the transurethral treatment device also includes temperature sensors which are electrically connected to temperature monitors.
-
FIG. 1 illustrates aprostate treatment system 20 including apower supply 1 and atransurethral treatment device 21 having anelongated support member 2 and alight delivery device 6 positioned along or within thesupport member 2. Thetransurethral treatment device 20 may further includes aballoon 3 or other type of positioning element carried by theelongated support member 2. Thesupport member 2 can be a catheter having alumen 4, or thesupport member 2 can be a closed body without a lumen. According to an embodiment, thesupport member 2 has a total length of 400 to 450 mm and has an outer diameter of 3.327 mm, and theballoon 3 at the distal end of thesupport member 2 has a volume of 10 to 30 ml and is used to position and fix thelight delivery device 6 proximate to the treatment site such as the prostate. - The
light delivery device 6 can have alight generator 6 a and alight emitting region 6 b. In the embodiment shown inFIG. 1 , thelight generator 6 a and thelight emitting region 6 b are at approximately the same location of the elongated member, but in other embodiments shown below, thelight generator 6 a may not be coincident with thelight emitting region 6 b. As shown below, thelight generator 6 a may be located towards the proximal end of thesupport member 2. When thesupport member 2 is a catheter with alumen 4, thelight delivery device 6 can move within the lumen to be positioned relative to the treatment site. In other embodiments, thelight delivery device 6 can be disposed on the surface of thecatheter 2 below theballoon 3 or other type of positioning element. The power for the light generator can be transmitted to thelight delivery device 6 via alead wire 7 coupled to thepower source 1. According to an embodiment of the invention, light could be emitted by a light emitting diode (LED), a laser diode, light-emitting polymer, or a quartz fiber tip optically coupled to another internal source of light energy. - As illustrated in
FIG. 2 , thesupport member 2 can include a plurality of lumens therein. For example, theballoon 3 is connected to afluid inlet 5 vialumen 4. Gas or liquid can be pumped intoinlet 5 and throughlumen 4 to inflateballoon 3. Referring toFIGS. 1 and 2 together, thetransurethral treatment device 21 can optionally have aurine aperture 11 positioned at the distal end of thesupport member 2 that is connected to aurine collection bag 13 via aurine lumen 12. Theurine aperture 11 can be used to collect the patient's urine during treatment. - The
transurethral treatment device 21 can also optionally include a temperature measuring system having at least one of atemperature sensor 8 and atemperature monitor 10. Thetemperature sensor 8 can be a thermocouple or other sensor as is known in the art. Thetemperature sensor 8 is disposed on or thermally coupled to a surface of thesupport member 2 and is electrically connected to the temperature monitor 10 viawires 9 disposed within thesupport member 2. Thetemperature sensor 8 measures a temperature at the treatment site, for example, proximate to the prostate during treatment. A control loop (not shown) may further be connected to the temperature monitor 10 to automatically shut the treatment device off in the event that the temperature at the treatment site exceeds a predetermined value. Alternatively, the temperature monitor 10 may further include a warning device (not shown), such as a visual indicator or audible indicator, to provide an operator with a warning that a predetermined temperature has been reached or is being exceeded during treatment. - As illustrated in
FIG. 3 , the treatment device is positioned transurethrally to allow access to the prostate, followed by administration of a photoactive drug, by injection, intravenously, or orally. Thetransurethral treatment device 21, and more specifically a portion of thesupport member 2, can be directed into the urethra under topical anesthesia. Once the support member is positioned, 4 to 10 ml of saline or air can be pumped into theballoon 3 via theair pumping channel 4 to inflate theballoon 3. After inflation of theballoon 3, thesupport member 2 can be pulled slightly proximally such that theballoon 3 can be fixed at the inner opening of the urethra. Accordingly, thelight delivery device 6 can be positioned at least proximate to or within the prostate. The photoactive drug can then be administered to the patient, and thelight generator 6 b can be activated. - The
support member 2 has a proximal portion and a distal portion relative to a power controller. The distal portion ofsupport member 2 includes thelight delivery device 6. In one embodiment, the light delivery device comprises a plurality of LEDs in electrical communication with the power supply vialead wires 7 as shown inFIG. 1 . The lead wires may be selected from any suitable conductor that can be accommodated within the dimensions of the support member, for example: a bus bar that electronically couples the LEDs to the controller; flexible wires; a conductive film or ink applied to a substrate, and the like. Additionally or alternatively, the light delivery device may include Bragg reflectors to better control the wavelength of the light that is to be transmitted to the target cells. - A
power controller 1 may be programmed to activate and deactivate LEDs of a light delivery device in a pulsed sequence or a continuous sequence. For example, the LEDs may form two halves of the light array that may be turned on and off independently from each other. Alternatively, the system may be programmed to selectively activate and deactivate (e.g., address) different selected individual or groups of LEDs along the length of the bar. In this manner, a treatment protocol, for example causing the LEDs to be lit in a certain sequence or at a particular power level for a selected period of time, may be programmed into the controller. Therefore, by selectively timing the pulses and/or location of the light, the system delivers light in accordance with a selected program. Alternatively, LEDs can be powered by DC continuously. Examples of addressable light transmission arrays are disclosed in U.S. Pat. No. 6,096,066, herein incorporated in its entirety by reference. Exemplary light transmission arrays which include shielding or distal protection are disclosed in U.S. patent application Ser. Nos. 10/799,357 and 10/888,572, herein incorporated in their entirety by reference. - Without being bound by any theory, applicants believe that by delivering light in pulses, the efficacy of the light-activated drug therapy is improved, given that the treated tissue is allowed to reoxygenate during the cycles when the light is off. Applicants further believe that tissue oxygenation during therapy is improved by using a lower frequency. In one embodiment the operational frequency is 50 Hz-5 kHz, and in one embodiment, is 50-70 Hz.
- According to a further embodiment of the invention, the treatment device may further include a temperature monitoring system for monitoring the temperature at the treatment site.
- In one embodiment, the
support member 2 is a Foley catheter and thelight delivery device 6 is disposed in the Foley catheter. Alternatively, the treatment device has a light delivery device disposed in a conventional balloon catheter. Foley catheters are available in several sub-types, for example, a Coude catheter has a 45° bend at the tip to allow easier passage through an enlarged prostate. Council tip catheters have a small hole at the tip which allows them to be passed over a wire. Three-way catheters are used primarily after bladder, prostate cancer or prostate surgery to allow an irrigant to pass to the tip of the catheter through a small separate channel into the bladder. This serves to wash away blood and small clots through the primary arm that drains into a collection device. -
FIG. 4 is a cross-sectional view of still another embodiment of atransurethral treatment device 21. In this embodiment, the light delivery device includes alight generator 6 a along thesupport member 2 at a location that is either within or external (shown) to the patient. The light delivery device can further include alight emitting region 6 b positioned at least proximate to the treatment site and alight transmitting region 6 c (e.g., fiber optic) between thelight generator 6 a and thelight emitting region 6 b. InFIG. 4 , thesupport member 2 can be a catheter through which thelight delivery device 6 can be moved for positioning, or the support member can be a closed body to which thelight delivery device 6 is attached (e.g., fixed at a set position). -
FIGS. 5-7 are cross-sectional views showing additional embodiments of portions of transurethral treatment devices.FIG. 5 , more specifically, shows a device having a closedbody support member 2 and a light delivery device fixed to thesupport member 2. The light delivery device has alight generator 6 a, a light emitting region spaced apart from thelight generator 6 a distally along thesupport member 2, and alight transmitting region 6 c between thelight generator 6 a and thelight emitting region 6 b. Thelight transmitting region 6 c conducts light from thelight generator 6 a to thelight emitting region 6 b.FIG. 6 illustrates a device having a solid or otherwiselumen-less support member 2 and alight delivery device 6 with alight generator 6 a and alight emitting region 6 b at the same location longitudinally along thesupport member 2. InFIGS. 5 and 6 , the light generator is within thesupport member 2.FIG. 7 shows still another embodiment in which the light delivery device is on a surface of the support member. More specifically, thelight delivery device 6 has thelight generator 6 a and thelight emitting region 6 b disposed on an external surface of the support member. - In one embodiment, a light delivery system that is sized to fit into a standard or custom optically clear Foley catheter is inserted into that catheter which has been placed via the urethra at the prostate. The light delivery device can be used with a sterile Foley catheter or can be delivered in a sterile pack kit prepackaged with the catheter and/or an appropriate photoactive agent dose so that it is convenient for prostatic procedures.
- The light bar or light array may include a plurality of LEDs contained in a catheter assembly or otherwise attached to a closed elongated support member. The
support member 2 may have an outer diameter of about 0.8 to about 10 mm. Example of LED arrays are disclosed in U.S. application Ser. No. 11/416,783 entitled “Light Transmission system for Photo-reactive Therapy,” and U.S. application Ser. No. 11/323,319 entitled “Medical Apparatus Employing Flexible Light Structures and Methods for Manufacturing Same,” herein incorporated in their entirety by reference. - Additional embodiments have a power controller drive circuit capable of producing constant current D.C., A.C., square wave and pulsed wave drive signals. This is accomplished by combining a constant source with a programmable current steering network allowing the controller to selectively change the drive wave form. For example, the steering network may be modulated to achieve the various functions described above, for example, producing the desired impedance to fully discharge the battery. Furthermore, use of an A.C. drive allows for a two-wire connection to the LEDs, thereby reducing the cross-sectional diameter of the catheter, while still permitting use of two back-to-back emission sources, that when combined, produce a cylindrical light source emission pattern.
- Therefore, as discussed above, the
transurethral treatment device 21 can comprise a unitary, single use disposable system for light-activated drug therapy. It should be noted that in certain embodiments the catheter is fused to the power controller to form an integrated single unit. Any attempt to disconnect the support member in this embodiment results in damage to either the catheter, or module, or both. - The prostate treatment system can be used in connection with any light-activated drug of which there are many known in the art and some of which are listed in U.S. Pat. No. 7,015,240 which is fully incorporated by reference with regard to disclosed photoactive compositions. In one particular embodiment, the light-activated drug is Talaporfin Sodium. Talaporfin Sodium is a chemically synthesized photosensitizer, having an absorption spectrum that exhibits a maximum peak at 664 nm. In one embodiment, the Talaporfin Sodium is presented as a lyophilized powder for reconstitution. One hundred milligrams of Talaporfin Sodium is reconstituted with 4 milliliters of 0.9% isotonic sterile sodium chloride solution, to give a solution at a concentration of 25 mg/ml.
- The drug must be activated with light, and light energy is measured here in Joules (J) per centimeter of length of the light transmitting array. Likewise the fluence of light is measured in milli-watts (mW) per centimeter of length of the light emitting array. Clearly, the amount of energy delivered will depend on several factors, among them: the photoactive agent used, the dose administered, the type of tissue being treated, the proximity of the light array to the tissue being treated, among others. The energy (E) delivered is the product of the fluence (F) and the time period (T) over which the fluence is delivered: E=F×T. The fluence may be delivered for only a fraction of the treatment time, because the light array may be pulsed, for example in a frequency such as 60 kHz, or may be controlled by a timing pattern. An example of a timing pattern is that the array is at full fluence for 20 seconds, then off for 10 seconds in a repetitive cycle. Of course, any pattern and cycle that is expected to be useful in a particular procedure may be used. The control module may further be programmable in embodiments for such fractionated light delivery.
- In accordance with an embodiment, fifteen minutes to one hour following Talaporfin Sodium administration, light energy in the range from about 50 to about 1000 J/cm of light array fluence in the range from about 5 to about 50 mW/cm of light array is delivered to the treatment site. As may be expected, the equation discussed above relating energy time and fluence plays a role in selection of the fluence and energy delivered. For example, depending upon the patient, a certain time period may be selected as suitable. In addition, the nature of treatment might dictate the energy required. Thus, fluence F is then determined by F=E/T. The light array should be capable of providing that fluence in the allotted time period. For example, if a total of 200 J/cm of light array must be delivered to the treatment site at 20 mW/cm of light array, then the treatment period is approximately 2.8 hours.
- In additional embodiments, the support member further has a selective coating to control where light transmits to the prostatic tissue thus directing the light activate drug therapy and reducing the potential to treat adjacent tissue.
- In another embodiment, the light delivery device is fixed in place in the catheter. In yet another embodiment, the light delivery device is movable within the catheter. According to this embodiment, the treatment device may further include printed markings or indicia on the catheter to aid in placement of the light bar within the catheter. The light delivery device can also have asymmetric light delivery to protect the colon or rectum. For example, the light deliver device can be double sided and/or shielded so that one side of the light bar emits light at a higher intensity than another side. Exemplary light delivery devices are disclosed in U.S. Pat. No. 5,876,427, herein incorporated in its entirety by reference.
- In additional embodiments, a Y-connection with a leakage control valve is included to allow the light transmission source to be inserted into the catheter through a separate lumen from a urine collection lumen. The catheter may include two or more lumens as needed to provide light transmission source manipulation and placement.
- In additional embodiments, the catheter includes a balloon or other positional element to further aid in positioning the light source transmission end proximate to the prostate using non-incision type methods. In additional embodiments, the catheter may include a retractable fixation device such as balloon, umbrella, tines, disk or other means for fixation and placement within the bladder.
- In additional embodiments, to make the light bar visible to ultrasound, the light source catheter and/or the light bar may include echogenic material to reflect high-frequency sound waves and thus be imageable by ultrasound techniques. In operation, echogenic material will aid in proper placement of the catheter and the light source.
- In additional embodiments, the light transmission source also includes temperature sensors which are electrically connected to temperature monitors.
- Several embodiments of the prostate treatment systems are expected to provide highly efficient, low cost, and minimally-invasive treatment of prostate conditions. The treatment device may be used to treat prostate cancer, prostatis, cystitis, bladder cancer, hypertrophic trigone, and hypertrophic urethral sphincter. The present invention utilizes light-activated drug therapy methods to minimally-invasively treat BPH or prostate cancer via the urethra. As a result patients with BPH or prostate cancer can be treated using the present invention without being hospitalized, undergo general anesthesia and blood transfusion, and thus have lower risk of complications.
- The invention also provides methods of administering photoactive therapy to treat targeted tissue of a human or non-human patient. In one embodiment, the method includes identifying a location of tissue to be treated in the prostate; inserting a catheter into the urethra tract; inserting a light delivery device at least proximate to the location of the targeted tissue; and administering an effective dose of a photoactive drug. The method may include confirming placement of the light source prior to treatment. The method further includes treating the targeted tissue by activating the light delivery device for a predetermined period of treatment. In some embodiments, the light-activated drug is mono-L-aspartyl chlorine e6, also referred to herein as Talaporfin Sodium. Compositions and methods of making Talaporfin Sodium are disclosed and taught in co-pending U.S. patent application Ser. No. ______ entitled “Compositions and Methods of Making a Photoactive Agent” filed Jun. 30, 2006, herein incorporated in its entirety. This compound has an absorption spectrum that exhibits several peaks, including one with the excitation wavelength of 664 nm, which is the wavelength favored when it is used in photoreactive therapy. Alternative light-activated drugs of suitable excitation wavelengths may also be used as is known in the art.
- The method further includes monitoring a temperature at treatment site. The temperature measuring system includes a temperature sensor for monitoring the temperature at the treatment site. The temperature sensor may be a thermal couple or any suitable device for providing temperature information at the treatment site. The temperature sensor may be disposed at the surface of the support member and is further electrically connected to the temperature monitor via wires. Alternatively, the temperature sensor may be wirelessly connected to the temperature monitor. The temperature sensor provides the temperature proximate to the treatment site during treatment to ensure safe operating temperatures during the treatment at the treatment site.
- The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the invention, as will be recognized by those skilled in the relevant art. The teachings provided herein of the invention can be applied to light sources, catheters and/or treatment devices, not necessarily the exemplary light sources, catheters and/or treatment devices generally described above.
- Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense that is as “including, but not limited to.”
- Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Further more, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. The headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed invention.
- The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety. Embodiments of the invention can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments of the invention.
- These and other changes can be made to the invention in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all catheters, light transmission sources and treatment devices that operate in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims.
- From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims (35)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200620088987.8 | 2006-01-18 | ||
CNU2006200889878U CN2885311Y (en) | 2006-01-18 | 2006-01-18 | Via urethra prostate therapeutic equipment using photodynamic therapy |
PCT/US2007/001324 WO2007084608A2 (en) | 2006-01-18 | 2007-01-18 | Method and apparatus for light-activated drug therapy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/001324 A-371-Of-International WO2007084608A2 (en) | 2003-03-14 | 2007-01-18 | Method and apparatus for light-activated drug therapy |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/799,357 Continuation-In-Part US7252677B2 (en) | 2003-03-14 | 2004-03-12 | Light generating device to intravascular use |
US15/091,270 Continuation-In-Part US20160213945A1 (en) | 2003-03-14 | 2016-04-05 | Method and apparatus for treating benign prostatic hyperplasia with light-activated drug therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090216300A1 true US20090216300A1 (en) | 2009-08-27 |
Family
ID=37960404
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/161,323 Abandoned US20090216300A1 (en) | 2006-01-18 | 2007-01-18 | Method and apparatus for light-activated drug therapy |
US15/091,270 Abandoned US20160213945A1 (en) | 2003-03-14 | 2016-04-05 | Method and apparatus for treating benign prostatic hyperplasia with light-activated drug therapy |
US15/406,057 Active US10307610B2 (en) | 2006-01-18 | 2017-01-13 | Method and apparatus for light-activated drug therapy |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/091,270 Abandoned US20160213945A1 (en) | 2003-03-14 | 2016-04-05 | Method and apparatus for treating benign prostatic hyperplasia with light-activated drug therapy |
US15/406,057 Active US10307610B2 (en) | 2006-01-18 | 2017-01-13 | Method and apparatus for light-activated drug therapy |
Country Status (13)
Country | Link |
---|---|
US (3) | US20090216300A1 (en) |
EP (1) | EP1973598B1 (en) |
JP (2) | JP5548849B2 (en) |
CN (2) | CN2885311Y (en) |
CY (1) | CY1120623T1 (en) |
DK (1) | DK1973598T3 (en) |
ES (1) | ES2673181T3 (en) |
HU (1) | HUE039930T2 (en) |
LT (1) | LT1973598T (en) |
PL (1) | PL1973598T3 (en) |
PT (1) | PT1973598T (en) |
SI (1) | SI1973598T1 (en) |
WO (1) | WO2007084608A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130267888A1 (en) * | 2012-04-05 | 2013-10-10 | Veritas Medical, L.L.C. | Methods and apparatus to inactivate infectious agents on a catheter residing in a body cavity |
US20140276101A1 (en) * | 2013-03-14 | 2014-09-18 | Boston Scientific Scimed, Inc. | Medical device for detecting a target and related methods of use |
WO2016014999A1 (en) * | 2014-07-24 | 2016-01-28 | John Schwartz | Lighted endoscopy for identifying anatomical locations |
US9593138B2 (en) | 2012-10-05 | 2017-03-14 | Wayne State University | Nitrile-containing enzyme inhibitors and ruthenium complexes thereof |
US9820690B1 (en) * | 2014-07-16 | 2017-11-21 | Verily Life Sciences Llc | Analyte detection system |
US9956040B1 (en) * | 2014-09-30 | 2018-05-01 | Emilio F. Lastarria | Laser surgery system with safety control of non-target tissue temperature and method of use |
US10357661B2 (en) | 2011-09-30 | 2019-07-23 | Percuvision, Llc | Medical device and method for internal healing and antimicrobial purposes |
US10589120B1 (en) | 2012-12-31 | 2020-03-17 | Gary John Bellinger | High-intensity laser therapy method and apparatus |
US10737110B2 (en) | 2011-11-09 | 2020-08-11 | John Stephan | Light therapy apparatus |
US11458329B2 (en) | 2016-07-27 | 2022-10-04 | Z2020, Llc | Componentry and devices for light therapy delivery and methods related thereto |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2885311Y (en) | 2006-01-18 | 2007-04-04 | 郑成福 | Via urethra prostate therapeutic equipment using photodynamic therapy |
US8109981B2 (en) | 2005-01-25 | 2012-02-07 | Valam Corporation | Optical therapies and devices |
US8603106B2 (en) | 2005-05-20 | 2013-12-10 | Neotract, Inc. | Integrated handle assembly for anchor delivery system |
US7645286B2 (en) | 2005-05-20 | 2010-01-12 | Neotract, Inc. | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
US10925587B2 (en) | 2005-05-20 | 2021-02-23 | Neotract, Inc. | Anchor delivery system |
US8668705B2 (en) | 2005-05-20 | 2014-03-11 | Neotract, Inc. | Latching anchor device |
US7758594B2 (en) | 2005-05-20 | 2010-07-20 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US9549739B2 (en) | 2005-05-20 | 2017-01-24 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US8628542B2 (en) | 2005-05-20 | 2014-01-14 | Neotract, Inc. | Median lobe destruction apparatus and method |
US10195014B2 (en) | 2005-05-20 | 2019-02-05 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US10292801B2 (en) | 2012-03-29 | 2019-05-21 | Neotract, Inc. | System for delivering anchors for treating incontinence |
US10130353B2 (en) | 2012-06-29 | 2018-11-20 | Neotract, Inc. | Flexible system for delivering an anchor |
JP2016067697A (en) * | 2014-09-30 | 2016-05-09 | テルモ株式会社 | Urethral stenosis treatment device and urethral stenosis treatment method |
JPWO2018061201A1 (en) * | 2016-09-30 | 2019-08-15 | 国立大学法人名古屋大学 | Phototherapy system |
EP3573570B1 (en) * | 2017-01-25 | 2023-01-04 | Dentsply Sirona Inc. | Light curing dental system |
IT201700048421A1 (en) * | 2017-05-04 | 2018-11-04 | Materias S R L | DEVICE FOR THE TRANSDERMIC ADMINISTRATION OF ACTIVE MOLECULES, USES OF SUCH A DEVICE AND METHODS OF PRODUCTION OF SUCH A DEVICE AND OF ITS COMPONENTS |
US11191976B2 (en) | 2017-05-19 | 2021-12-07 | Prometheus Therapeutics Inc. | Devices and methods for repair of a selected blood vessel or part thereof and rapid healing of injured internal body cavity walls |
CN107706306B (en) * | 2017-10-26 | 2020-02-04 | 京东方科技集团股份有限公司 | An organic light emitting diode display substrate, a manufacturing method thereof, and a display device |
EP4477157A3 (en) | 2017-12-23 | 2025-03-05 | Teleflex Life Sciences LLC | Expandable tissue engagement apparatus |
JP2021166563A (en) * | 2018-05-15 | 2021-10-21 | オリンパス株式会社 | Optical treatment device and optical treatment method |
WO2020090057A1 (en) * | 2018-10-31 | 2020-05-07 | オリンパス株式会社 | Phototherapy system and balloon catheter |
JP7326021B2 (en) | 2019-05-16 | 2023-08-15 | 朝日インテック株式会社 | Light irradiation device and light irradiation system |
DE102019212199A1 (en) * | 2019-08-14 | 2021-02-18 | Richard Wolf Gmbh | Light applicator |
DE102019212201A1 (en) * | 2019-08-14 | 2021-02-18 | Richard Wolf Gmbh | Light applicator |
JP7433013B2 (en) * | 2019-10-07 | 2024-02-19 | 朝日インテック株式会社 | Catheter and light irradiation device |
DE102020000934A1 (en) | 2020-02-14 | 2021-08-19 | Albert-Ludwigs-Universität Freiburg | Transurethral catheter with antimicrobial effect |
US11529153B2 (en) | 2020-08-21 | 2022-12-20 | University Of Washington | Vaccine generation |
WO2022040258A1 (en) | 2020-08-21 | 2022-02-24 | University Of Washington | Disinfection method and apparatus |
US11425905B2 (en) | 2020-09-02 | 2022-08-30 | University Of Washington | Antimicrobial preventive netting |
WO2022103775A1 (en) | 2020-11-12 | 2022-05-19 | Singletto Inc. | Microbial disinfection for personal protection equipment |
US20220219008A1 (en) * | 2021-01-09 | 2022-07-14 | Nancy B. Lipko | Photobiomodulation delivery devices for intracorporeal illumination via natural or surgically created orifices. |
CN113304036B (en) * | 2021-05-06 | 2023-04-07 | 重庆医科大学附属第三医院(捷尔医院) | Bladder constant pressure oxygen therapy system for improving symptoms of LUTS (Luts urine storage period) |
WO2023213711A1 (en) * | 2022-05-04 | 2023-11-09 | Koninklijke Philips N.V. | Photo stimulation therapy of tissue and associated devices, systems, and methods |
US20240066168A1 (en) * | 2022-08-23 | 2024-02-29 | Becton, Dickinson And Company | Ultraviolet Disinfection Probe for Indwelling Catheters |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5409483A (en) * | 1993-01-22 | 1995-04-25 | Jeffrey H. Reese | Direct visualization surgical probe |
US5415654A (en) * | 1993-10-05 | 1995-05-16 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
US5445608A (en) * | 1993-08-16 | 1995-08-29 | James C. Chen | Method and apparatus for providing light-activated therapy |
US5456661A (en) * | 1994-03-31 | 1995-10-10 | Pdt Cardiovascular | Catheter with thermally stable balloon |
US5643334A (en) * | 1995-02-07 | 1997-07-01 | Esc Medical Systems Ltd. | Method and apparatus for the diagnostic and composite pulsed heating and photodynamic therapy treatment |
US5698866A (en) * | 1994-09-19 | 1997-12-16 | Pdt Systems, Inc. | Uniform illuminator for phototherapy |
US5800478A (en) * | 1996-03-07 | 1998-09-01 | Light Sciences Limited Partnership | Flexible microcircuits for internal light therapy |
US5861020A (en) * | 1994-12-09 | 1999-01-19 | Schwarzmaier; Hans-Joachim | Apparatus for irradiating body tissue with laser light |
US5876427A (en) * | 1997-01-29 | 1999-03-02 | Light Sciences Limited Partnership | Compact flexible circuit configuration |
US5951543A (en) * | 1997-06-30 | 1999-09-14 | Clinicon Corporation | Delivery system and method for surgical laser |
US6096066A (en) * | 1998-09-11 | 2000-08-01 | Light Sciences Limited Partnership | Conformal patch for administering light therapy to subcutaneous tumors |
US6445011B1 (en) * | 1999-01-29 | 2002-09-03 | Toyoda Gosei Co., Ltd. | Light-emitting diode |
US20020193850A1 (en) * | 1993-09-29 | 2002-12-19 | Selman Steven H. | Use of photodynamic therapy to treat prostatic tissue |
US20030065315A1 (en) * | 2001-06-29 | 2003-04-03 | Norihiko Hareyama | Thermal treatment apparatus |
US20030167033A1 (en) * | 2002-01-23 | 2003-09-04 | James Chen | Systems and methods for photodynamic therapy |
US20040093044A1 (en) * | 2002-08-05 | 2004-05-13 | Rychnovsky Steven J. | Light delivery catheter |
US6784460B2 (en) * | 2002-10-10 | 2004-08-31 | Agilent Technologies, Inc. | Chip shaping for flip-chip light emitting diode |
WO2004112902A1 (en) * | 2003-06-20 | 2004-12-29 | Keio University | Photodynamic therapy apparatus, method for controlling photodynamic therapy apparatus, and photodynamic therapy method |
US20050075704A1 (en) * | 2003-02-24 | 2005-04-07 | Hosheng Tu | Optical apparatus for detecting and treating vulnerable plaque |
US20050131510A1 (en) * | 2003-03-14 | 2005-06-16 | Chen James C. | Device for distal protection and treatment of blood vessels |
US20050228260A1 (en) * | 2003-03-14 | 2005-10-13 | Phillip Burwell | Light generating device to intravascular use |
US6958498B2 (en) * | 2002-09-27 | 2005-10-25 | Emcore Corporation | Optimized contact design for flip-chip LED |
US7015240B2 (en) * | 2001-07-20 | 2006-03-21 | Qlt, Inc. | Treatment of macular edema |
US20070002582A1 (en) * | 2003-03-14 | 2007-01-04 | Light Sciences Corporation | Medical apparatus employing flexible light structures and methods for manufacturing same |
US20080021210A1 (en) * | 2006-06-30 | 2008-01-24 | Light Sciences Oncology, Inc. | Compositions and methods of making a photoactive agent |
Family Cites Families (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4128173A (en) | 1975-10-28 | 1978-12-05 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
US4408263A (en) | 1981-12-14 | 1983-10-04 | Wonder Corporation Of America | Disposable flashlight |
US4470407A (en) | 1982-03-11 | 1984-09-11 | Laserscope, Inc. | Endoscopic device |
US4423725A (en) | 1982-03-31 | 1984-01-03 | Baran Ostap E | Multiple surgical cuff |
US4445892A (en) | 1982-05-06 | 1984-05-01 | Laserscope, Inc. | Dual balloon catheter device |
US4545390A (en) | 1982-09-22 | 1985-10-08 | C. R. Bard, Inc. | Steerable guide wire for balloon dilatation procedure |
US4773899A (en) | 1982-11-23 | 1988-09-27 | The Beth Israel Hospital Association | Method of treatment of artherosclerosis and balloon catheter the same |
US4538622A (en) | 1983-11-10 | 1985-09-03 | Advanced Cardiovascular Systems, Inc. | Guide wire for catheters |
US4627436A (en) | 1984-03-01 | 1986-12-09 | Innoventions Biomedical Inc. | Angioplasty catheter and method for use thereof |
US4522302A (en) | 1984-03-05 | 1985-06-11 | Sterling Drug Inc. | Pre-sterilized medical procedure kit packages |
US4675338A (en) | 1984-07-18 | 1987-06-23 | Nippon Petrochemicals Co., Ltd. | Tetrapyrrole therapeutic agents |
US4693885A (en) | 1984-07-18 | 1987-09-15 | Nippon Petrochemicals Co., Ltd. | Tetrapyrrole therapeutic agents |
US5226430A (en) | 1984-10-24 | 1993-07-13 | The Beth Israel Hospital | Method for angioplasty |
US4799479A (en) | 1984-10-24 | 1989-01-24 | The Beth Israel Hospital Association | Method and apparatus for angioplasty |
US5019075A (en) | 1984-10-24 | 1991-05-28 | The Beth Israel Hospital | Method and apparatus for angioplasty |
US5104392A (en) | 1985-03-22 | 1992-04-14 | Massachusetts Institute Of Technology | Laser spectro-optic imaging for diagnosis and treatment of diseased tissue |
EP0195375B1 (en) | 1985-03-22 | 1994-09-21 | Massachusetts Institute Of Technology | Catheter for laser angiosurgery |
US5066274A (en) | 1985-04-30 | 1991-11-19 | Nippon Petrochemicals Company, Ltd. | Tetrapyrrole therapeutic agents |
US4977177A (en) | 1985-04-30 | 1990-12-11 | Nippon Petrochemicals Company, Ltd. | Tetrapyrrole polyaminomonocarboxylic acid therapeutic agents |
US4656186A (en) | 1985-04-30 | 1987-04-07 | Nippon Petrochemicals Co., Ltd. | Tetrapyrrole therapeutic agents |
US4763654A (en) | 1986-09-10 | 1988-08-16 | Jang G David | Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use |
US4961738A (en) | 1987-01-28 | 1990-10-09 | Mackin Robert A | Angioplasty catheter with illumination and visualization within angioplasty balloon |
US4832023A (en) | 1987-06-03 | 1989-05-23 | Mcm Laboratories, Inc. | Method and apparatus for reducing blockage in body channels |
US4820349A (en) | 1987-08-21 | 1989-04-11 | C. R. Bard, Inc. | Dilatation catheter with collapsible outer diameter |
US5129889A (en) | 1987-11-03 | 1992-07-14 | Hahn John L | Synthetic absorbable epidural catheter |
US4906241A (en) | 1987-11-30 | 1990-03-06 | Boston Scientific Corporation | Dilation balloon |
US5004811A (en) | 1987-12-24 | 1991-04-02 | Nippon Petrochemicals Company, Ltd. | Tetrapyrrole aminocarboxylic acids |
US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
US5178616A (en) | 1988-06-06 | 1993-01-12 | Sumitomo Electric Industries, Ltd. | Method and apparatus for intravascular laser surgery |
US4983167A (en) | 1988-11-23 | 1991-01-08 | Harvinder Sahota | Balloon catheters |
US5147377A (en) | 1988-11-23 | 1992-09-15 | Harvinder Sahota | Balloon catheters |
US5160321A (en) | 1988-11-23 | 1992-11-03 | Harvinder Sahota | Balloon catheters |
US5090958A (en) | 1988-11-23 | 1992-02-25 | Harvinder Sahota | Balloon catheters |
US5019042A (en) | 1988-11-23 | 1991-05-28 | Harvinder Sahota | Balloon catheters |
JPH02185269A (en) | 1989-01-12 | 1990-07-19 | Olympus Optical Co Ltd | Photochemical treatment device |
US5246447A (en) * | 1989-02-22 | 1993-09-21 | Physical Sciences, Inc. | Impact lithotripsy |
US5176619A (en) | 1989-05-05 | 1993-01-05 | Jacob Segalowitz | Heart-assist balloon pump with segmented ventricular balloon |
US5034001A (en) | 1989-09-08 | 1991-07-23 | Advanced Cardiovascular Systems, Inc. | Method of repairing a damaged blood vessel with an expandable cage catheter |
JPH0394780A (en) * | 1989-09-08 | 1991-04-19 | Olympus Optical Co Ltd | Treating device |
US4997639A (en) | 1989-11-27 | 1991-03-05 | Nippon Petrochemicals Company, Limited | Method for detecting cholesterol deposited in bodies of mammals |
JPH0394780U (en) | 1990-01-12 | 1991-09-26 | ||
US5514153A (en) | 1990-03-02 | 1996-05-07 | General Surgical Innovations, Inc. | Method of dissecting tissue layers |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5169395A (en) | 1991-04-26 | 1992-12-08 | Pdt Cardiovascular, Inc. | Laser delivery system |
JP3154742B2 (en) | 1991-04-30 | 2001-04-09 | 日本石油化学株式会社 | Remedy for mammalian atherosclerosis |
GB9118670D0 (en) | 1991-08-30 | 1991-10-16 | Mcnicholas Thomas A | Surgical devices and uses thereof |
US5196005A (en) | 1991-11-26 | 1993-03-23 | Pdt Systems, Inc. | Continuous gradient cylindrical diffusion tip for optical fibers and method for making |
US5267959A (en) | 1991-11-29 | 1993-12-07 | Schneider, Inc. | Laser bonding of angioplasty balloon catheters |
ES2116355T3 (en) | 1992-01-13 | 1998-07-16 | Schneider Usa Inc | CUTTING DEVICE FOR ATERECTOMY CATHETER. |
US5304214A (en) * | 1992-01-21 | 1994-04-19 | Med Institute, Inc. | Transurethral ablation catheter |
US5683448A (en) | 1992-02-21 | 1997-11-04 | Boston Scientific Technology, Inc. | Intraluminal stent and graft |
US5217456A (en) | 1992-02-24 | 1993-06-08 | Pdt Cardiovascular, Inc. | Device and method for intra-vascular optical radial imaging |
US5413588A (en) * | 1992-03-06 | 1995-05-09 | Urologix, Inc. | Device and method for asymmetrical thermal therapy with helical dipole microwave antenna |
US5700243A (en) | 1992-10-30 | 1997-12-23 | Pdt Systems, Inc. | Balloon perfusion catheter |
US5383467A (en) | 1992-11-18 | 1995-01-24 | Spectrascience, Inc. | Guidewire catheter and apparatus for diagnostic imaging |
US5417653A (en) | 1993-01-21 | 1995-05-23 | Sahota; Harvinder | Method for minimizing restenosis |
JP3565442B2 (en) | 1993-04-22 | 2004-09-15 | 新日本石油化学株式会社 | Diagnostic and / or therapeutic agent for mammalian arthritis |
US5849035A (en) | 1993-04-28 | 1998-12-15 | Focal, Inc. | Methods for intraluminal photothermoforming |
US5634921A (en) | 1993-08-23 | 1997-06-03 | Hood; Larry | Method and apparatus for modifications of visual acuity by thermal means |
JPH0795986A (en) | 1993-09-30 | 1995-04-11 | S L T Japan:Kk | Laser balloon catheter |
US5454794A (en) | 1993-10-15 | 1995-10-03 | Pdt Systems, Inc. | Steerable light diffusing catheter |
US5406960A (en) | 1994-04-13 | 1995-04-18 | Cordis Corporation | Guidewire with integral core and marker bands |
DE69426071T2 (en) | 1994-06-24 | 2001-05-10 | Schneider (Europe) Gmbh, Buelach | Medicinal device for the treatment of a part of a body vessel by means of ionizing radiation |
US5672171A (en) | 1994-06-30 | 1997-09-30 | American Medical Systems, Inc. | Apparatus and method for interstitial laser treatment |
US5582171A (en) | 1994-07-08 | 1996-12-10 | Insight Medical Systems, Inc. | Apparatus for doppler interferometric imaging and imaging guidewire |
US5441497A (en) | 1994-07-14 | 1995-08-15 | Pdt Cardiovascular, Inc. | Light diffusing guidewire |
US8025661B2 (en) | 1994-09-09 | 2011-09-27 | Cardiofocus, Inc. | Coaxial catheter instruments for ablation with radiant energy |
US6423055B1 (en) | 1999-07-14 | 2002-07-23 | Cardiofocus, Inc. | Phototherapeutic wave guide apparatus |
US5723040A (en) | 1994-09-22 | 1998-03-03 | Stone & Webster Engineering Corporation | Fluid catalytic cracking process and apparatus |
WO1996029943A1 (en) | 1995-03-28 | 1996-10-03 | Eli Lilly And Company | Photodynamic therapy system and method |
US5607419A (en) | 1995-04-24 | 1997-03-04 | Angiomedics Ii Inc. | Method and apparatus for treating vessel wall with UV radiation following angioplasty |
US5645528A (en) * | 1995-06-06 | 1997-07-08 | Urologix, Inc. | Unitary tip and balloon for transurethral catheter |
US5775331A (en) * | 1995-06-07 | 1998-07-07 | Uromed Corporation | Apparatus and method for locating a nerve |
JPH0938220A (en) | 1995-07-28 | 1997-02-10 | Yasuo Hashimoto | Cancer treatment device |
JP2961074B2 (en) | 1995-09-06 | 1999-10-12 | 明治製菓株式会社 | Neovascular occlusive agents for photochemotherapy |
US5947958A (en) | 1995-09-14 | 1999-09-07 | Conceptus, Inc. | Radiation-transmitting sheath and methods for its use |
JPH09112424A (en) | 1995-10-17 | 1997-05-02 | Matsushita Electric Ind Co Ltd | Protector of electric equipment |
JP3845469B2 (en) | 1996-02-21 | 2006-11-15 | 明治製菓株式会社 | Administration agent for occlusion of neovascularization of the fundus |
US6254571B1 (en) | 1996-04-18 | 2001-07-03 | Applied Medical Resources Corporation | Remote clot management |
US6013053A (en) | 1996-05-17 | 2000-01-11 | Qlt Photo Therapeutics Inc. | Balloon catheter for photodynamic therapy |
US6146409A (en) | 1996-05-20 | 2000-11-14 | Bergein F. Overholt | Therapeutic methods and devices for irradiating columnar environments |
US5876426A (en) | 1996-06-13 | 1999-03-02 | Scimed Life Systems, Inc. | System and method of providing a blood-free interface for intravascular light delivery |
US5798523A (en) | 1996-07-19 | 1998-08-25 | Theratechnologies Inc. | Irradiating apparatus using a scanning light source for photodynamic treatment |
US5709653A (en) | 1996-07-25 | 1998-01-20 | Cordis Corporation | Photodynamic therapy balloon catheter with microporous membrane |
US5814008A (en) | 1996-07-29 | 1998-09-29 | Light Sciences Limited Partnership | Method and device for applying hyperthermia to enhance drug perfusion and efficacy of subsequent light therapy |
US5830210A (en) | 1996-10-21 | 1998-11-03 | Plc Medical Systems, Inc. | Catheter navigation apparatus |
US6058323A (en) | 1996-11-05 | 2000-05-02 | Lemelson; Jerome | System and method for treating select tissue in a living being |
WO1998019677A1 (en) | 1996-11-06 | 1998-05-14 | Meiji Seika Kaisha, Ltd. | Treatment of autoimmune diseases by photochemotherapy |
EP0984727A4 (en) | 1996-11-08 | 2000-05-24 | Thomas J Fogarty | TRANSMYOCARDIAL VASCULARIZATION METHOD AND DEVICE |
JP2001505100A (en) * | 1996-11-21 | 2001-04-17 | ボストン サイエンティフィック コーポレイション | Mucosal detachment using light |
US5851221A (en) | 1996-12-05 | 1998-12-22 | Medtronic Inc. | Attachment apparatus and method for an implantable medical device |
US5779731A (en) | 1996-12-20 | 1998-07-14 | Cordis Corporation | Balloon catheter having dual markers and method |
US5997569A (en) | 1997-01-29 | 1999-12-07 | Light Sciences Limited Partnership | Flexible and adjustable grid for medical therapy |
US5782896A (en) | 1997-01-29 | 1998-07-21 | Light Sciences Limited Partnership | Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe |
US5913853A (en) | 1997-01-30 | 1999-06-22 | Cardiodyne, Inc. | Laser energy device and procedure for forming a channel within tissue |
US6575965B1 (en) | 1997-03-06 | 2003-06-10 | The Regents Of The University Of California | Medical devices utilizing optical fibers for simultaneous power, communications and control |
US5827186A (en) | 1997-04-11 | 1998-10-27 | Light Sciences Limited Partnership | Method and PDT probe for minimizing CT and MRI image artifacts |
US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
US5779697A (en) | 1997-05-28 | 1998-07-14 | Linvatec Corporation | Arthroscopic cannula with fluid seals |
US6096030A (en) * | 1997-09-23 | 2000-08-01 | Pharmacyclics, Inc. | Light delivery catheter and PDT treatment method |
DE69832408T2 (en) | 1997-09-29 | 2006-09-28 | Boston Scientific Ltd., St. Michael | GUIDANCE CATHETER FOR INTRAVASCULAR PICTURE GENERATION |
US6193676B1 (en) | 1997-10-03 | 2001-02-27 | Intraluminal Therapeutics, Inc. | Guide wire assembly |
US5865840A (en) | 1997-10-22 | 1999-02-02 | Light Sciences Limited Partnership | Enhancement of light activation effect by immune augmentation |
US6162214A (en) | 1997-10-30 | 2000-12-19 | Eclipse Surgical Technologies, Inc. | Corning device for myocardial revascularization |
DE69838952T2 (en) | 1997-11-07 | 2009-01-02 | Salviac Ltd. | EMBOLISM PROTECTION DEVICE |
US5997571A (en) | 1997-12-17 | 1999-12-07 | Cardiofocus, Inc. | Non-occluding phototherapy probe stabilizers |
DE69839157T2 (en) | 1997-12-19 | 2009-05-14 | Cordis Corp., Miami Lakes | FULLURENE KATHERDERSYSTEM CONTAINING |
US6175669B1 (en) | 1998-03-30 | 2001-01-16 | The Regents Of The Universtiy Of California | Optical coherence domain reflectometry guidewire |
RU2145247C1 (en) * | 1998-04-10 | 2000-02-10 | Жаров Владимир Павлович | Photomatrix therapeutic device for treatment of extended pathologies |
US6290668B1 (en) | 1998-04-30 | 2001-09-18 | Kenton W. Gregory | Light delivery catheter and methods for the use thereof |
US6416531B2 (en) | 1998-06-24 | 2002-07-09 | Light Sciences Corporation | Application of light at plural treatment sites within a tumor to increase the efficacy of light therapy |
CA2336582C (en) | 1998-07-10 | 2006-06-06 | Meija Seika Kaisha Ltd. | Novel x-ray intercepting metal complexes of chlorin derivatives |
US20020004053A1 (en) | 1998-08-25 | 2002-01-10 | Biel Merrill A. | Cellular or acellular organism eradication via photodynamic activation of a cellular or acellular organism specific immunological response |
US6355030B1 (en) | 1998-09-25 | 2002-03-12 | Cardiothoracic Systems, Inc. | Instruments and methods employing thermal energy for the repair and replacement of cardiac valves |
US6605030B2 (en) | 1998-11-09 | 2003-08-12 | The Trustees Of Columbia University In The City Of New York | Apparatus and method for treating a disease process in a luminal structure |
US20010049502A1 (en) | 1998-11-25 | 2001-12-06 | Light Sciences Corporation | Guide sheath for repeated placement of a device |
US6344050B1 (en) | 1998-12-21 | 2002-02-05 | Light Sciences Corporation | Use of pegylated photosensitizer conjugated with an antibody for treating abnormal tissue |
US6454789B1 (en) * | 1999-01-15 | 2002-09-24 | Light Science Corporation | Patient portable device for photodynamic therapy |
EP1131099A2 (en) | 1999-01-15 | 2001-09-12 | Light Sciences Corporation | Noninvasive vascular therapy |
US6602274B1 (en) | 1999-01-15 | 2003-08-05 | Light Sciences Corporation | Targeted transcutaneous cancer therapy |
CA2358662A1 (en) | 1999-01-15 | 2000-07-20 | James Chen | Therapeutic compositions for metabolic bone disorders or bone metastases |
US6159236A (en) | 1999-01-28 | 2000-12-12 | Advanced Photodynamic Technologies, Inc. | Expandable treatment device for photodynamic therapy and method of using same |
US6203537B1 (en) * | 1999-02-04 | 2001-03-20 | Sorin Adrian | Laser-driven acoustic ablation catheter |
US6299599B1 (en) | 1999-02-19 | 2001-10-09 | Alsius Corporation | Dual balloon central venous line catheter temperature control system |
US6210408B1 (en) | 1999-02-24 | 2001-04-03 | Scimed Life Systems, Inc. | Guide wire system for RF recanalization of vascular blockages |
US6273904B1 (en) | 1999-03-02 | 2001-08-14 | Light Sciences Corporation | Polymer battery for internal light device |
US6245012B1 (en) | 1999-03-19 | 2001-06-12 | Nmt Medical, Inc. | Free standing filter |
US6240925B1 (en) | 1999-03-23 | 2001-06-05 | Cynosure, Inc. | Photothermal vascular targeting with bioreductive agents |
US6161049A (en) | 1999-03-26 | 2000-12-12 | Urologix, Inc. | Thermal therapy catheter |
US6689380B1 (en) | 1999-05-17 | 2004-02-10 | Kevin S. Marchitto | Remote and local controlled delivery of pharmaceutical compounds using electromagnetic energy |
US6210425B1 (en) | 1999-07-08 | 2001-04-03 | Light Sciences Corporation | Combined imaging and PDT delivery system |
US6238426B1 (en) | 1999-07-19 | 2001-05-29 | Light Sciences Corporation | Real-time monitoring of photodynamic therapy over an extended time |
US6575966B2 (en) | 1999-08-23 | 2003-06-10 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
US20030114434A1 (en) | 1999-08-31 | 2003-06-19 | James Chen | Extended duration light activated cancer therapy |
JP4388180B2 (en) | 1999-11-08 | 2009-12-24 | 川澄化学工業株式会社 | Laser fiber guide catheter |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US6319273B1 (en) | 1999-12-16 | 2001-11-20 | Light Sciences Corporation | Illuminating device for treating eye disease |
US6540767B1 (en) | 2000-02-08 | 2003-04-01 | Scimed Life Systems, Inc. | Recoilable thrombosis filtering device and method |
US6984655B1 (en) | 2000-02-17 | 2006-01-10 | Meiji Seika Kaisha, Ltd. | Photodynamic therapy for selectively closing neovasa in eyeground tissue |
US20020156033A1 (en) | 2000-03-03 | 2002-10-24 | Bratzler Robert L. | Immunostimulatory nucleic acids and cancer medicament combination therapy for the treatment of cancer |
DE60126585T2 (en) | 2000-03-10 | 2007-12-06 | Anthony T. Bakersfield Don Michael | Device for the prevention of vascular embolism |
US6749623B1 (en) | 2000-03-31 | 2004-06-15 | Richard A Hsi | Method and apparatus for catheter phototherapy with dose sensing |
US6508784B1 (en) | 2000-05-19 | 2003-01-21 | Yan-Ho Shu | Balloon catheter having adjustable centering capabilities and methods thereof |
WO2001089598A2 (en) | 2000-05-19 | 2001-11-29 | C.R. Bard, Inc. | Guidewire with viewing capability |
US6656174B1 (en) | 2000-07-20 | 2003-12-02 | Scimed Life Systems, Inc. | Devices and methods for creating lesions in blood vessels without obstructing blood flow |
US6811562B1 (en) | 2000-07-31 | 2004-11-02 | Epicor, Inc. | Procedures for photodynamic cardiac ablation therapy and devices for those procedures |
US20020107281A1 (en) | 2000-09-22 | 2002-08-08 | Photogen, Inc. | Phototherapeutic and chemotherapeutic immunotherapy against tumors |
US20030130649A1 (en) * | 2000-12-15 | 2003-07-10 | Murray Steven C. | Method and system for treatment of benign prostatic hypertrophy (BPH) |
US6562058B2 (en) | 2001-03-02 | 2003-05-13 | Jacques Seguin | Intravascular filter system |
US20020127224A1 (en) | 2001-03-02 | 2002-09-12 | James Chen | Use of photoluminescent nanoparticles for photodynamic therapy |
US6661167B2 (en) | 2001-03-14 | 2003-12-09 | Gelcore Llc | LED devices |
CA2445898A1 (en) | 2001-05-01 | 2002-12-19 | The General Hospital Corporation | Photoimmunotherapies for cancer using photosensitizer immunoconjugates and combination therapies |
US6872715B2 (en) | 2001-08-06 | 2005-03-29 | Kosan Biosciences, Inc. | Benzoquinone ansamycins |
US6962584B1 (en) | 2001-09-06 | 2005-11-08 | Stone Gregg W | Electromagnetic photonic catheter for reducing restenosis |
US6634765B2 (en) | 2001-11-30 | 2003-10-21 | Chien-Yao Lin | Light strip bendable to form various pattern |
US7048756B2 (en) * | 2002-01-18 | 2006-05-23 | Apasara Medical Corporation | System, method and apparatus for evaluating tissue temperature |
CA2478047C (en) | 2002-03-01 | 2014-01-21 | Immunomedics, Inc. | Rs7 antibodies |
US20040122419A1 (en) | 2002-12-18 | 2004-06-24 | Ceramoptec Industries, Inc. | Medical device recognition system with write-back feature |
AU2003900176A0 (en) | 2003-01-16 | 2003-01-30 | Rofin Australia Pty Ltd | Photodynamic therapy light source |
CN2607149Y (en) * | 2003-01-28 | 2004-03-24 | 深圳市微创医学科技有限公司 | Semiconductor laser photodynamic therapeutic apparatus |
US20080269846A1 (en) | 2003-03-14 | 2008-10-30 | Light Sciences Oncology, Inc. | Device for treatment of blood vessels using light |
CN2885311Y (en) | 2006-01-18 | 2007-04-04 | 郑成福 | Via urethra prostate therapeutic equipment using photodynamic therapy |
AU2003304154A1 (en) * | 2003-05-29 | 2005-01-21 | Keio University | Diagnosis of fragile plaque by active temperature-measurement |
CA2531532A1 (en) * | 2003-07-08 | 2005-01-20 | Light Sciences Corporation | Light generating device that self centers within a lumen to render photodynamic therapy |
US20050013812A1 (en) | 2003-07-14 | 2005-01-20 | Dow Steven W. | Vaccines using pattern recognition receptor-ligand:lipid complexes |
CA2539924A1 (en) | 2003-09-23 | 2005-04-07 | Light Sciences Corporation | Conjugates for photodynamic therapy |
US20050085455A1 (en) | 2003-10-16 | 2005-04-21 | Light Sciences Corporation | Photodynamic therapy for local adipocyte reduction |
US7914517B2 (en) * | 2003-10-31 | 2011-03-29 | Trudell Medical International | System and method for manipulating a catheter for delivering a substance to a body cavity |
US7135034B2 (en) * | 2003-11-14 | 2006-11-14 | Lumerx, Inc. | Flexible array |
US7118564B2 (en) | 2003-11-26 | 2006-10-10 | Ethicon Endo-Surgery, Inc. | Medical treatment system with energy delivery device for limiting reuse |
WO2005077457A1 (en) * | 2004-02-13 | 2005-08-25 | Qlt Inc. | Photodynamic therapy for the treatment of prostatic conditions |
US7052167B2 (en) | 2004-02-25 | 2006-05-30 | Vanderschuit Carl R | Therapeutic devices and methods for applying therapy |
US7273452B2 (en) | 2004-03-04 | 2007-09-25 | Scimed Life Systems, Inc. | Vision catheter system including movable scanning plate |
US20050279354A1 (en) | 2004-06-21 | 2005-12-22 | Harvey Deutsch | Structures and Methods for the Joint Delivery of Fluids and Light |
US20060067889A1 (en) | 2004-09-27 | 2006-03-30 | Light Sciences Corporation | Singlet oxygen photosensitizers activated by target binding enhancing the selectivity of targeted PDT agents |
WO2006036968A2 (en) | 2004-09-28 | 2006-04-06 | Reliant Technologies, Inc. | Methods and apparatus for modulation of the immune response using light-based fractional treatment |
JP2008530235A (en) | 2005-02-17 | 2008-08-07 | ライト サイエンシーズ オンコロジー, インコーポレイテッド | Photoreactive system and prophylactic treatment of atherosclerosis |
GB0510390D0 (en) | 2005-05-20 | 2005-06-29 | Novartis Ag | Organic compounds |
US20060270916A1 (en) | 2005-05-20 | 2006-11-30 | Medtronic, Inc. | Portable therapy delivery device with a removable connector board |
US7515957B2 (en) | 2005-06-23 | 2009-04-07 | Medtronic Vascular, Inc. | Catheter-based, dual balloon photopolymerization system |
WO2007047892A1 (en) | 2005-10-20 | 2007-04-26 | Light Sciences Oncology, Inc. | External wearable light therapy treatment systems |
US20070142880A1 (en) | 2005-11-07 | 2007-06-21 | Barnard William L | Light delivery apparatus |
US8057464B2 (en) | 2006-05-03 | 2011-11-15 | Light Sciences Oncology, Inc. | Light transmission system for photoreactive therapy |
US7943562B2 (en) | 2006-06-19 | 2011-05-17 | Samsung Electronics Co., Ltd. | Semiconductor substrate cleaning methods, and methods of manufacture using same |
US7993640B2 (en) | 2008-08-06 | 2011-08-09 | Light Sciences Oncology, Inc. | Enhancement of light activated therapy by immune augmentation using anti-CTLA-4 antibody |
US20110008372A1 (en) | 2009-07-08 | 2011-01-13 | Light Sciences Oncology, Inc. | Enhancement of light activated drug therapy through combination with other therapeutic agents |
-
2006
- 2006-01-18 CN CNU2006200889878U patent/CN2885311Y/en not_active Expired - Fee Related
-
2007
- 2007-01-18 JP JP2008551389A patent/JP5548849B2/en not_active Expired - Fee Related
- 2007-01-18 US US12/161,323 patent/US20090216300A1/en not_active Abandoned
- 2007-01-18 SI SI200732049T patent/SI1973598T1/en unknown
- 2007-01-18 LT LTEP07718240.0T patent/LT1973598T/en unknown
- 2007-01-18 PL PL07718240T patent/PL1973598T3/en unknown
- 2007-01-18 PT PT77182400T patent/PT1973598T/en unknown
- 2007-01-18 WO PCT/US2007/001324 patent/WO2007084608A2/en active Application Filing
- 2007-01-18 EP EP07718240.0A patent/EP1973598B1/en not_active Not-in-force
- 2007-01-18 CN CN2007800095033A patent/CN101404949B/en not_active Expired - Fee Related
- 2007-01-18 HU HUE07718240A patent/HUE039930T2/en unknown
- 2007-01-18 DK DK07718240.0T patent/DK1973598T3/en active
- 2007-01-18 ES ES07718240.0T patent/ES2673181T3/en active Active
-
2013
- 2013-12-26 JP JP2013269064A patent/JP5753573B2/en not_active Expired - Fee Related
-
2016
- 2016-04-05 US US15/091,270 patent/US20160213945A1/en not_active Abandoned
-
2017
- 2017-01-13 US US15/406,057 patent/US10307610B2/en active Active
-
2018
- 2018-08-10 CY CY181100841T patent/CY1120623T1/en unknown
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5409483A (en) * | 1993-01-22 | 1995-04-25 | Jeffrey H. Reese | Direct visualization surgical probe |
US5445608A (en) * | 1993-08-16 | 1995-08-29 | James C. Chen | Method and apparatus for providing light-activated therapy |
US20020193850A1 (en) * | 1993-09-29 | 2002-12-19 | Selman Steven H. | Use of photodynamic therapy to treat prostatic tissue |
US5415654A (en) * | 1993-10-05 | 1995-05-16 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
US5456661A (en) * | 1994-03-31 | 1995-10-10 | Pdt Cardiovascular | Catheter with thermally stable balloon |
US5698866A (en) * | 1994-09-19 | 1997-12-16 | Pdt Systems, Inc. | Uniform illuminator for phototherapy |
US5861020A (en) * | 1994-12-09 | 1999-01-19 | Schwarzmaier; Hans-Joachim | Apparatus for irradiating body tissue with laser light |
US5643334A (en) * | 1995-02-07 | 1997-07-01 | Esc Medical Systems Ltd. | Method and apparatus for the diagnostic and composite pulsed heating and photodynamic therapy treatment |
US5800478A (en) * | 1996-03-07 | 1998-09-01 | Light Sciences Limited Partnership | Flexible microcircuits for internal light therapy |
US5876427A (en) * | 1997-01-29 | 1999-03-02 | Light Sciences Limited Partnership | Compact flexible circuit configuration |
US5951543A (en) * | 1997-06-30 | 1999-09-14 | Clinicon Corporation | Delivery system and method for surgical laser |
US6096066A (en) * | 1998-09-11 | 2000-08-01 | Light Sciences Limited Partnership | Conformal patch for administering light therapy to subcutaneous tumors |
US6445011B1 (en) * | 1999-01-29 | 2002-09-03 | Toyoda Gosei Co., Ltd. | Light-emitting diode |
US20030065315A1 (en) * | 2001-06-29 | 2003-04-03 | Norihiko Hareyama | Thermal treatment apparatus |
US7015240B2 (en) * | 2001-07-20 | 2006-03-21 | Qlt, Inc. | Treatment of macular edema |
US20030167033A1 (en) * | 2002-01-23 | 2003-09-04 | James Chen | Systems and methods for photodynamic therapy |
US20040093044A1 (en) * | 2002-08-05 | 2004-05-13 | Rychnovsky Steven J. | Light delivery catheter |
US6958498B2 (en) * | 2002-09-27 | 2005-10-25 | Emcore Corporation | Optimized contact design for flip-chip LED |
US6784460B2 (en) * | 2002-10-10 | 2004-08-31 | Agilent Technologies, Inc. | Chip shaping for flip-chip light emitting diode |
US20050075704A1 (en) * | 2003-02-24 | 2005-04-07 | Hosheng Tu | Optical apparatus for detecting and treating vulnerable plaque |
US20050131510A1 (en) * | 2003-03-14 | 2005-06-16 | Chen James C. | Device for distal protection and treatment of blood vessels |
US20050228260A1 (en) * | 2003-03-14 | 2005-10-13 | Phillip Burwell | Light generating device to intravascular use |
US20070002582A1 (en) * | 2003-03-14 | 2007-01-04 | Light Sciences Corporation | Medical apparatus employing flexible light structures and methods for manufacturing same |
US7252677B2 (en) * | 2003-03-14 | 2007-08-07 | Light Sciences Oncology, Inc. | Light generating device to intravascular use |
WO2004112902A1 (en) * | 2003-06-20 | 2004-12-29 | Keio University | Photodynamic therapy apparatus, method for controlling photodynamic therapy apparatus, and photodynamic therapy method |
US20080021210A1 (en) * | 2006-06-30 | 2008-01-24 | Light Sciences Oncology, Inc. | Compositions and methods of making a photoactive agent |
Non-Patent Citations (2)
Title |
---|
Chen et al., "New Technology for Deep Light Distribution in Tissue for Phototherapy", The Cancer Journal, March/April 2002, Volume 8, Issue 2, p 154-163. * |
English language translation of WO 2004/112902 A1, 12/29/04 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10357661B2 (en) | 2011-09-30 | 2019-07-23 | Percuvision, Llc | Medical device and method for internal healing and antimicrobial purposes |
US10737110B2 (en) | 2011-11-09 | 2020-08-11 | John Stephan | Light therapy apparatus |
US11273323B2 (en) | 2011-11-09 | 2022-03-15 | John Stephan | Light therapy apparatus |
US20130267888A1 (en) * | 2012-04-05 | 2013-10-10 | Veritas Medical, L.L.C. | Methods and apparatus to inactivate infectious agents on a catheter residing in a body cavity |
US9808647B2 (en) * | 2012-04-05 | 2017-11-07 | Veritas Medical, L.L.C. | Methods and apparatus to inactivate infectious agents on a catheter residing in a body cavity |
US9593138B2 (en) | 2012-10-05 | 2017-03-14 | Wayne State University | Nitrile-containing enzyme inhibitors and ruthenium complexes thereof |
US10589120B1 (en) | 2012-12-31 | 2020-03-17 | Gary John Bellinger | High-intensity laser therapy method and apparatus |
US20140276101A1 (en) * | 2013-03-14 | 2014-09-18 | Boston Scientific Scimed, Inc. | Medical device for detecting a target and related methods of use |
US9820690B1 (en) * | 2014-07-16 | 2017-11-21 | Verily Life Sciences Llc | Analyte detection system |
WO2016014999A1 (en) * | 2014-07-24 | 2016-01-28 | John Schwartz | Lighted endoscopy for identifying anatomical locations |
US9956040B1 (en) * | 2014-09-30 | 2018-05-01 | Emilio F. Lastarria | Laser surgery system with safety control of non-target tissue temperature and method of use |
US11458329B2 (en) | 2016-07-27 | 2022-10-04 | Z2020, Llc | Componentry and devices for light therapy delivery and methods related thereto |
Also Published As
Publication number | Publication date |
---|---|
PL1973598T3 (en) | 2019-01-31 |
PT1973598T (en) | 2018-07-05 |
US10307610B2 (en) | 2019-06-04 |
ES2673181T3 (en) | 2018-06-20 |
DK1973598T3 (en) | 2018-07-23 |
JP5753573B2 (en) | 2015-07-22 |
SI1973598T1 (en) | 2018-11-30 |
EP1973598B1 (en) | 2018-05-16 |
WO2007084608A3 (en) | 2008-01-31 |
CY1120623T1 (en) | 2019-12-11 |
HUE039930T2 (en) | 2019-02-28 |
LT1973598T (en) | 2018-10-10 |
JP2014087682A (en) | 2014-05-15 |
WO2007084608A2 (en) | 2007-07-26 |
CN101404949B (en) | 2013-07-24 |
US20170128741A1 (en) | 2017-05-11 |
JP2009523549A (en) | 2009-06-25 |
EP1973598A2 (en) | 2008-10-01 |
EP1973598A4 (en) | 2015-07-01 |
US20160213945A1 (en) | 2016-07-28 |
CN2885311Y (en) | 2007-04-04 |
JP5548849B2 (en) | 2014-07-16 |
CN101404949A (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10307610B2 (en) | Method and apparatus for light-activated drug therapy | |
ES2252578T3 (en) | PHOTODYNAMIC THERAPY DEVICE. | |
JP3648555B2 (en) | Improved phototherapy device for irradiating a columnar environment | |
US5405369A (en) | Photochemical ablation of gastro-intestinal tissue for augmentation of an organ | |
CA2168575C (en) | Use of photodynamic therapy to treat prostatic tissue | |
KR20180095587A (en) | Apparatus for photodynamic therapy | |
US20050228260A1 (en) | Light generating device to intravascular use | |
JP2009523549A5 (en) | ||
CN102553084B (en) | Phototherapy device | |
JP2007528754A (en) | Light generator that automatically aligns in the lumen for photodynamic therapy | |
ES2231960T3 (en) | DEVICE FOR THE ABLATION OF LASER FABRIC. | |
CN100496428C (en) | Apparatus for treating prostate diseases, and its making method | |
Krasner et al. | Photodynamic therapy of tumours in gastroenterology—a review | |
Spinelli et al. | Endoscopic photodynamic therapy: clinical aspects | |
Spinelli et al. | Laserchemotherapy of tumours: clinical aspects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIGHT SCIENCES ONCOLOGY, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KELTNER, LLEW;WINSHIP, JAY;HAGSTROM, S. ERIK;AND OTHERS;REEL/FRAME:018870/0879;SIGNING DATES FROM 20070122 TO 20070125 |
|
AS | Assignment |
Owner name: LIGHT SCIENCES ONCOLOGY, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KELTNER, LLEW;WINSHIP, JAY;HAGSTROM, ERIK;AND OTHERS;REEL/FRAME:021863/0412;SIGNING DATES FROM 20080812 TO 20080813 |
|
AS | Assignment |
Owner name: LIGHT SCIENCES ONCOLOGY, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHENG, FRANK;REEL/FRAME:022063/0086 Effective date: 20070804 |
|
AS | Assignment |
Owner name: PURDUE PHARMACEUTICAL PRODUCTS L.P., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIGHT SCIENCES ONCOLOGY, INC.;REEL/FRAME:032274/0112 Effective date: 20140129 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: LIGHT SCIENCES ONCOLOGY INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PURDUE PHARMACEUTICAL PRODUCTS L.P.;REEL/FRAME:048751/0954 Effective date: 20181122 |