US20090191347A1 - Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same - Google Patents
Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same Download PDFInfo
- Publication number
- US20090191347A1 US20090191347A1 US12/421,149 US42114909A US2009191347A1 US 20090191347 A1 US20090191347 A1 US 20090191347A1 US 42114909 A US42114909 A US 42114909A US 2009191347 A1 US2009191347 A1 US 2009191347A1
- Authority
- US
- United States
- Prior art keywords
- ceramic
- turbine
- gel
- corrosion resistant
- metal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 88
- 238000000576 coating method Methods 0.000 title claims abstract description 78
- 230000007797 corrosion Effects 0.000 title claims abstract description 64
- 238000005260 corrosion Methods 0.000 title claims abstract description 64
- 239000011248 coating agent Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 36
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 36
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 241000588731 Hafnia Species 0.000 claims abstract description 13
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 239000012702 metal oxide precursor Substances 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000010304 firing Methods 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 2
- 238000005240 physical vapour deposition Methods 0.000 abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000007921 spray Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 229910000601 superalloy Inorganic materials 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005422 blasting Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 150000001805 chlorine compounds Chemical class 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- -1 india Chemical compound 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000004901 spalling Methods 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001173 rene N5 Inorganic materials 0.000 description 2
- 238000009718 spray deposition Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000968352 Scandia <hydrozoan> Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- GEZAXHSNIQTPMM-UHFFFAOYSA-N dysprosium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Dy+3].[Dy+3] GEZAXHSNIQTPMM-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- ZXGIFJXRQHZCGJ-UHFFFAOYSA-N erbium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Er+3].[Er+3] ZXGIFJXRQHZCGJ-UHFFFAOYSA-N 0.000 description 1
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Chemical compound CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229910001235 nimonic Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- HJGMWXTVGKLUAQ-UHFFFAOYSA-N oxygen(2-);scandium(3+) Chemical compound [O-2].[O-2].[O-2].[Sc+3].[Sc+3] HJGMWXTVGKLUAQ-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1283—Control of temperature, e.g. gradual temperature increase, modulation of temperature
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1225—Deposition of multilayers of inorganic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1254—Sol or sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/007—Preventing corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/286—Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
- F05D2230/314—Layer deposition by chemical vapour deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/95—Preventing corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/21—Oxide ceramics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/21—Oxide ceramics
- F05D2300/2118—Zirconium oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- This invention broadly relates to turbine components other than airfoils, such as turbine disks, turbine seals and other static components, having thereon a ceramic corrosion resistant coating. This invention further broadly relates to methods for forming such coatings on the turbine component.
- the compressors and turbines of the turbine engine can comprise turbine disks (sometimes termed “turbine rotors”) or turbine shafts, as well as a number of blades mounted to the turbine disks/shafts and extending radially outwardly therefrom into the gas flow path. Also included in the turbine engine are rotating, as well as static, seal elements that channel the airflow used for cooling certain components such as turbine blades and vanes. As the maximum operating temperature of the turbine engine increases, the turbine disks/shafts and seal elements are subjected to higher temperatures. As a result, oxidation and corrosion of the disks/shafts and seal elements have become of greater concern.
- Metal salts such as alkaline sulfate, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc., are a major source of the corrosion, but other elements in the aggressive bleed gas environment (e.g., air extracted from the compressor to cool hotter components in the engine) can also accelerate the corrosion.
- Alkaline sulfate corrosion in the temperature range and atmospheric region of interest results in pitting of the turbine disk/shaft and seal element substrate at temperatures typically starting around 1200° F. (649° C.). This pitting corrosion has been shown to occur on critical turbine disk/shaft and seal elements. The oxidation and corrosion damage can lead to premature removal and replacement of the disks/shafts and seal elements unless the damage is reduced or repaired.
- Turbine disks/shafts and seal elements for use at the highest operating temperatures are typically made of nickel-base superalloys selected for good elevated temperature toughness and fatigue resistance. These superalloys have resistance to oxidation and corrosion damage, but that resistance is not sufficient to protect them at sustained operating temperatures now being reached in gas turbine engines. Disks and other rotor components made from newer generation alloys can also contain lower levels of aluminum and/or chromium, and can therefore be more susceptible to corrosion attack.
- Corrosion resistant diffusion coatings can also be formed from aluminum or chromium, or from the respective oxides (i.e., alumina or chromia). See, for example, commonly assigned U.S. Pat. No. 5,368,888 (Rigney), issued Nov. 29, 1994 (aluminide diffusion coating); and commonly assigned U.S. Pat. No. 6,283,715 (Nagaraj et al), issued Sep. 4, 2001 (chromium diffusion coating). A number of corrosion-resistant coatings have also been considered for use on turbine disk/shaft and seal elements. See, for example, U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan.
- MOCVD metal-organic chemical vapor deposition
- These prior corrosion resistant coatings can have a number of disadvantages, including: (1) possibly adversely affecting the fatigue life of the turbine disks/shafts and seal elements because these prior coatings diffuse into the underlying metal substrate; (2) coefficient of thermal expansion (CTE) mismatches between the coating and the underlying metal substrate that can make the coating more prone to spalling; and (3) more complicated and expensive processes (e.g., chemical vapor deposition) for depositing the corrosion resistant coating on the metal substrate.
- CTE coefficient of thermal expansion
- An embodiment of this invention broadly relates to an article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate, wherein the ceramic corrosion resistant coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof.
- Another embodiment of this invention broadly relates to a method for forming this ceramic corrosion resistant coating on the underlying metal substrate of the turbine component.
- One embodiment of this method comprises the following steps:
- the ceramic corrosion resistant coating of this invention provides a number of significant benefits and advantages. Because the ceramic corrosion resistant coating comprises a zirconia and/or hafnia as the ceramic metal oxide, it does not diffuse into the underlying metal substrate. As a result, the ceramic corrosion resistant coating does not adversely affect the fatigue properties of the coated turbine disk/shafts, seal elements and other turbine components.
- the ceramic corrosion resistant coating of this invention provides greater adherence to the substrate and thus greater resistance to spalling. This increased adherence will also further improve the fatigue properties of the coated turbine disks/shafts, seal elements and other turbine components by resisting propagation ofcracks though the thickness of the coating into the metal substrate.
- Ceramic corrosion resistant coating can be formed by embodiments of the method of this invention that are relatively uncomplicated and inexpensive.
- the ceramic corrosion resistant coating can be formed by embodiments of the methods of this invention as a relatively thin layer on the metal substrate.
- FIG. 1 is a schematic sectional view of a portion of the turbine section of a gas turbine engine.
- FIG. 2 is a sectional view of an embodiment of the ceramic corrosion resistant coating of this invention deposited on the metal substrate of a turbine rotor component.
- FIG. 3 is a frontal view of a turbine disk showing where the ceramic corrosion resistant coating of this invention is desirably located.
- ceramic metal oxide refers to zirconia, hafnia or combinations of zirconia and hafnia (i.e., mixtures thereof). These ceramic metal oxides were previously used in thermal barrier coatings that are capable of reducing heat flow to the underlying metal substrate of the article, i.e., forming a thermal barrier, and which have a melting point that is typically at least about 2600° F. (1426° C.), and more typically in the range of from about from about 3450° to about 4980° F. (from about 1900° to about 2750° C.).
- the ceramic metal oxide can comprise 100 mole % zirconia, 100 mole % hafnia, or any percentage combination of zirconia and hafnia that is desired. Typically, the ceramic metal oxide comprises from about 85 to 100 mole % zirconia and from 0 to about 15 mole % hafnia, more typically from about 95 to 100 mole % zirconia and from 0 to about 5 mole % hafnia.
- ceramic metal oxide precursor refers to any composition, compound, molecule, etc., that is converted into or forms the ceramic metal oxide, for example, from the respective ceramic metal hydroxide, at any point up to and including the formation of the ceramic corrosion resistant coating.
- ceramic corrosion resistant coating refers to coatings of this invention that provide resistance against corrosion caused by various corrodants, including metal (e.g., alkaline) sulfates, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc.; at temperatures typically of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and which comprise the ceramic metal oxide.
- metal e.g., alkaline
- the ceramic corrosion resistant coatings of this invention usually comprise at least about 60 mole % ceramic metal oxide, typically from about 60 to about 98 mole % ceramic metal oxide, and more typically from about 94 to about 97 mole % ceramic metal oxide.
- the ceramic corrosion resistant coatings of this invention further typically comprise a stabilizing amount of a stabilizer metal oxide for the ceramic metal oxide.
- stabilizer metal oxides can be selected from the group consisting of yttria, calcia, scandia, magnesia, india, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, lanthana, tantala, etc., and mixtures thereof.
- this stabilizer metal oxide that is “stabilizing” will depend on a variety of factors, including the stabilizer metal oxide used, the ceramic metal oxide used, etc.
- the stabilizer metal oxide comprises from about 2 about 40 mole %, more typically from about 3 to about 6 mole %, of the ceramic corrosion resistant coating.
- the ceramic corrosion resistant coatings used herein typically comprise yttria as the stabilizer metal oxide. See, for example, Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 24, pp. 882-883 (1984) for a description of suitable yttria-stabilized zirconia-containing ceramic compositions that can be used in the ceramic corrosion resistant coatings of this invention.
- ceramic composition refers to compositions used to form the ceramic corrosion resistant coatings of this invention, and which comprise the ceramic metal oxide, optionally but typically the stabilizer metal oxide, etc.
- turbine component other than an airfoil refers to those turbine components that are not airfoils (e.g., blades, vanes, etc.) that are formed from metals or metal alloys, and include turbine disks (also referred to sometimes as “turbine rotors”), turbine shafts, turbine seal elements that are either rotating or static, including forward, interstage and aft turbine seals, turbine blade retainers, other static turbine components, etc.
- turbine component for which the ceramic corrosion resistant coatings of this invention are particularly advantageous are those that experience a service operating temperature of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and typically in the range of from about 1000° to about 1600° F.
- turbine bleed air e.g., air extracted from the compressor to cool hotter components in the engine
- corrosive components typically metal sulfates, sulfites, chlorides, carbonates, etc.
- the ceramic corrosion resistant coatings of this invention are particularly useful when formed on all or selected portions of the surfaces of the component, such as the surfaces of turbine disks/shafts and turbine seal elements.
- the mid-to-outer portion of the hub of a turbine disk can have the ceramic corrosion resistant coating of this invention, while the bore region, inner portion of the hub, and blade slots mayor may not have this coating.
- the contact points or mating surfaces between these components can be void or absent of the ceramic corrosion resistant coating so as to retain desired or specified as produced dimensions.
- the term “comprising” means various coatings, compositions, metal oxides, components, layers, steps, etc., can be conjointly employed in the present invention. Accordingly, the term “comprising” encompasses the more restrictive terms “consisting essentially of” and “consisting of.”
- a turbine engine rotor component 30 is provided that can be of any operable type, for example, a turbine disk 32 or a turbine seal element 34 .
- FIG. 1 a turbine engine rotor component 30 is provided that can be of any operable type, for example, a turbine disk 32 or a turbine seal element 34 .
- FIG. 1 schematically illustrates a stage 1 turbine disk 36 , a stage 1 turbine blade 38 mounted to the turbine disk 36 , a stage 2 turbine disk 40 , a stage 2 turbine blade 42 mounted to the turbine disk 40 , a forward turbine seal 44 that also functions as a forward blade retainer for blade 38 , an aft turbine seal 46 , and an interstage turbine seal 48 that also functions as a forward blade retainer for blade 42 , an aft blade retainer 50 for blade 38 that is held in place by seal 48 , and an aft blade retainer 52 for blade 42 .
- turbine disks 32 e.g., stage 1 turbine disk 36 and a stage 2 turbine disk 40
- turbine seal elements 34 e.g., forward turbine seal 44 , aft turbine seal 46 , and interstage turbine seal 48
- blade retainers 50 / 52 can be provided with the ceramic corrosion resistant coating of this invention, depending upon whether corrosion is expected or observed.
- the metal substrate 60 of the turbine engine rotor component 30 can comprise any of a variety of metals, or more typically metal alloys, including those based on nickel, cobalt and/or iron alloys.
- Substrate 60 typically comprises a superalloy based on nickel, cobalt and/or iron.
- superalloys are disclosed in various references, such as, for example, commonly assigned U.S. Pat. No. 4,957,567 (Krueger et al), issued Sep. 18, 1990, and U.S. Pat. No. 6,521,175 (Mourer et al), issued Feb. 18, 2003, the relevant portions of which are incorporated by reference.
- Nickel-based superalloys are also generally described in Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 12, pp. 417-479 (1980), and Vol. 15, pp. 787-800 (1981).
- Illustrative nickel-based superalloys are designated by the trade names Inconel®, Nimonic®, Rene® (e.g., Rene® 88, Rene® 104, Rene N5 alloys), and Udime®.
- Substrate 60 more typically comprises a nickel-based alloy, and particularly a nickel-based superalloy, that has more nickel than any other element.
- the nickel-based superalloy can be strengthened by the precipitation of gamma prime or a related phase.
- a nickel-based superalloy for which the ceramic corrosion resistant coating of this invention is particularly useful is available by the trade name Rene 88, which has a nominal composition, by weight of 13% cobalt, 16% chromium, 4% molybdenum, 3.7% titanium, 2.1% aluminum, 4% tungsten, 0.70% niobium, 0.015% boron, 0.03% zirconium, and 0.03 percent carbon, with the balance nickel and minor impurities.
- surface 62 is typically pretreated mechanically, chemically or both to make the surface more receptive for coating 64 .
- Suitable pretreatment methods include grit blasting, with or without masking of surfaces that are not to be subjected to grit blasting (see U.S. Pat. No. 5,723,078 to Niagara et al, issued Mar. 3, 1998, especially col. 4, lines 46-66, which is incorporated by reference), micromachining, laser etching (see U.S. Pat. No. 5,723,078 to Nagaraj et al, issued Mar. 3, 1998, especially col. 4, line 67 to col.
- the surface 62 of metal substrate 60 is pretreated by grit blasting where surface 62 is subjected to the abrasive action of silicon carbide particles, steel particles, alumina particles or other types of abrasive particles.
- These particles used in grit blasting are typically alumina particles and typically have a particle size of from about 600 to about 35 mesh (from about 25 to about 500 micrometers), more typically from about 400 to about 300 mesh (from about 38 to about 50 micrometers).
- An embodiment of the method of this invention for forming ceramic corrosion resistant coating 64 on metal substrate 60 is by use of a sol-gel process. See commonly assigned U.S. Patent Application No. 2004/0081767 (Pfaendtner et al), published Apr. 29, 2004, which is incorporated by reference.
- Sol-gel processing is a chemical solution method to produce a ceramic oxide (e.g., zirconia).
- a chemical gel-forming solution which typically comprises an alkoxide precursor or a metal salt is combined with ceramic metal oxide precursor materials, as well as any stabilizer metal oxide precursor materials, etc.
- a gel is formed as the gel-forming solution is heated to slightly dry it at a first preselected temperature for a first preselected time. The gel is then applied over the surface 62 of metal substrate 60 .
- the sol-gel can be applied to surface 62 of substrate 60 by any convenient technique.
- the sol-gel can be applied by spraying at least one thin layer, e.g., a single thin layer, or more typically a plurality of thin layers to build up a film to the desired thickness for coating 64 .
- the gel is then fired at a second elevated preselected temperature above the first elevated temperature for a second preselected time to form coating 64 .
- the ceramic corrosion resistant coating 64 comprises a dense matrix that has a thickness of up to about 5 mils (127 microns) and typically from about 0.01 to about 1 mils (from about 0.2 to about 25 microns), more typically from about 0.04 to about 0.5 mils (from about 1 to about 13 microns).
- inert oxide filler particles can be added to the sol-gel solution to enable a greater per-layer thickness to be applied to the substrate.
- PVD physical vapor deposition
- EB-PVD electron beam PVD
- filtered arc deposition or by sputtering.
- Suitable sputtering techniques for use herein include but are not limited to direct current diode sputtering, radio frequency sputtering, ion beam sputtering, reactive sputtering, magnetron sputtering and steered arc sputtering.
- PVD techniques can form ceramic corrosion resistant coatings 64 having strain resistant or tolerant microstructures such as vertical microcracked structures.
- EB-PVD techniques can form columnar structures that are highly strain resistant to further increase the coating adherence.
- strain resistant or tolerant structures have direct paths between the coating surface 66 and the substrate 60 , the paths are sufficiently narrow that the partially molten or highly viscous corrodant salts do not infiltrate or minimally infiltrate the cracks of the vertically microcracked structures or column gaps of the columnar structures.
- thermal spray refers to any method for spraying, applying or otherwise depositing the ceramic composition that involves heating and typically at least partial or complete thermal melting of the overlay coating material and depositing of the heated/melted material, typically by entrainment in a heated gas stream, onto the metal substrate to be coated.
- Suitable thermal spray deposition techniques include plasma spray, such as air plasma spray (APS) and vacuum plasma spray (YPS), high velocity oxy-fuel (HYOF) spray, detonation spray, wire spray, etc., as well as combinations of these techniques.
- a particularly suitable thermal spray deposition technique for use herein is plasma spray.
- Suitable plasma spray techniques are well known to those skilled in the art. See, for example, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., Vol. 15, page 255, and references noted therein, as well as U.S. Pat. No. 5,332,598 (Kawasaki et al), issued Jul. 26, 1994; U.S. Pat. No. 5,047,612 (Savkar et al) issued Sep. 10, 1991; and U.S. Pat. No. 4,741,286 (Hoh et al), issued May 3, 1998 (herein incorporated by reference) which are instructive in regard to various aspects of plasma spraying suitable for use herein.
- Suitable methods for carrying out chemical vapor deposition and/or pack cementation are disclosed in, for example, commonly assigned U.S. Pat. No. 3,540,878 (Levine et al), issued Nov. 17, 1970; commonly assigned U.S. Pat. No. 3,598,638 (Levine), issued Aug. 10, 1971; commonly assigned U.S. Pat. No. 3,667,985 (Levine et al), issued Jun. 6, 1972, the relevant disclosures of which are incorporated by reference.
- Metal-organic chemical vapor phase deposition (MOCYD) processes can also be used herein. See commonly assigned U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan. 22, 2004, the relevant disclosures of which are incorporated by reference.
- FIG. 3 shows a turbine disk 32 having an inner generally circular hub portion indicated as 74 and an outer generally circular perimeter or diameter indicated as 78 , and a periphery indicated as 82 that is provided with a plurality of circumferentially spaced slots indicated as 86 for receiving the root portion of turbine blades such as 38 , 42 . While the ceramic corrosion resistant coating 64 can be applied to the entire surface of disk 70 , it is typically needed only on the surface of outer diameter 78 .
- this invention can be used to form a ceramic corrosion resistant coating 64 , as described above, on the surfaces of various turbine engine rotor components, including compressor disks, seals, and shafts, which can then be exposed to corrosive elements at elevated temperatures.
- the ceramic corrosion resistant coatings of this invention can also be applied during original manufacture of the component (i.e., an OEM component), after the component has been in operation for a period of time, after other coatings have been removed from the component (e.g., a repair situation), while the component is assembled or after the component is disassembled, etc.
- a one inch round sample of Rene N5 alloy is coated with an approximately 5 micron layer of a 7 wt. % yttria stabilized zirconia deposited from a sol gel.
- a sulfate containing corrodant is applied to the surface of the coating and run through a 2 hour cycle at 1300° F. (704° C.).
- the first hour of the 2 hour cycle uses a reducing atmosphere to try to cause a reaction between the corrodant and the surface of the coated sample, while the second hour uses air to cause corrosion scale growth.
- the corrodant is removed by water washing and coated sample is then inspected for damage. This corrosion application, thermal exposure, cleaning and inspection cycle is repeated until the coated sample shows signs of damage.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Chemically Coating (AREA)
Abstract
An article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate. This coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof. This coating can be formed by a method comprising the following steps: (a) providing a turbine component other than an airfoil comprising the metal substrate; (b) providing a gel-forming solution comprising a ceramic metal oxide precursor; (c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel; (d) depositing the gel on the metal substrate; and (e) firing the gel at a second preselected temperature above the first preselected temperature to form the ceramic corrosion resistant coating comprising the ceramic metal oxide. This coating can also be formed by alternative methods wherein a ceramic composition comprising the ceramic metal oxide is deposited by physical vapor deposition on the metal substrate to provide a strain-tolerant columnar structure, or is thermal sprayed on the metal substrate.
Description
- This application is a Division of co-pending U.S. patent application Ser. No. 11/094,351 filed Mar. 31, 2005.
- This invention broadly relates to turbine components other than airfoils, such as turbine disks, turbine seals and other static components, having thereon a ceramic corrosion resistant coating. This invention further broadly relates to methods for forming such coatings on the turbine component.
- In an aircraft gas turbine engine, air is drawn into the front of the engine, compressed by a shaft-mounted compressor, and mixed with fuel. The mixture is burned, and the hot exhaust gases are passed through a turbine mounted on the same shaft. The flow of combustion gas turns the turbine by impingement against the airfoil section of the turbine blades, which turns the shaft and provides power to the compressor. The hot exhaust gases flow from the back of the engine, driving it and the aircraft forward. The hotter the combustion and exhaust gases, the more efficient is the operation of the jet engine. Thus, there is incentive to raise the combustion gas temperature.
- The compressors and turbines of the turbine engine can comprise turbine disks (sometimes termed “turbine rotors”) or turbine shafts, as well as a number of blades mounted to the turbine disks/shafts and extending radially outwardly therefrom into the gas flow path. Also included in the turbine engine are rotating, as well as static, seal elements that channel the airflow used for cooling certain components such as turbine blades and vanes. As the maximum operating temperature of the turbine engine increases, the turbine disks/shafts and seal elements are subjected to higher temperatures. As a result, oxidation and corrosion of the disks/shafts and seal elements have become of greater concern.
- Metal salts such as alkaline sulfate, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc., are a major source of the corrosion, but other elements in the aggressive bleed gas environment (e.g., air extracted from the compressor to cool hotter components in the engine) can also accelerate the corrosion. Alkaline sulfate corrosion in the temperature range and atmospheric region of interest results in pitting of the turbine disk/shaft and seal element substrate at temperatures typically starting around 1200° F. (649° C.). This pitting corrosion has been shown to occur on critical turbine disk/shaft and seal elements. The oxidation and corrosion damage can lead to premature removal and replacement of the disks/shafts and seal elements unless the damage is reduced or repaired.
- Turbine disks/shafts and seal elements for use at the highest operating temperatures are typically made of nickel-base superalloys selected for good elevated temperature toughness and fatigue resistance. These superalloys have resistance to oxidation and corrosion damage, but that resistance is not sufficient to protect them at sustained operating temperatures now being reached in gas turbine engines. Disks and other rotor components made from newer generation alloys can also contain lower levels of aluminum and/or chromium, and can therefore be more susceptible to corrosion attack.
- Corrosion resistant diffusion coatings can also be formed from aluminum or chromium, or from the respective oxides (i.e., alumina or chromia). See, for example, commonly assigned U.S. Pat. No. 5,368,888 (Rigney), issued Nov. 29, 1994 (aluminide diffusion coating); and commonly assigned U.S. Pat. No. 6,283,715 (Nagaraj et al), issued Sep. 4, 2001 (chromium diffusion coating). A number of corrosion-resistant coatings have also been considered for use on turbine disk/shaft and seal elements. See, for example, U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan. 22, 2004, which discloses metal-organic chemical vapor deposition (MOCVD) of aluminum, silicon, tantalum, titanium or chromium oxide on turbine disks and seal elements to provide a protective coating. These prior corrosion resistant coatings can have a number of disadvantages, including: (1) possibly adversely affecting the fatigue life of the turbine disks/shafts and seal elements because these prior coatings diffuse into the underlying metal substrate; (2) coefficient of thermal expansion (CTE) mismatches between the coating and the underlying metal substrate that can make the coating more prone to spalling; and (3) more complicated and expensive processes (e.g., chemical vapor deposition) for depositing the corrosion resistant coating on the metal substrate.
- Accordingly, there is still a need for coatings for turbine disks, turbine shafts, turbine seal elements and other non-airfoil turbine components that: (1) provide corrosion resistance, especially at higher or elevated temperatures; (2) without affecting other mechanical properties of the underlying metal substrate or potentially causing other undesired effects such as spalling; and (3) can be formed by relatively uncomplicated and inexpensive methods.
- An embodiment of this invention broadly relates to an article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate, wherein the ceramic corrosion resistant coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof.
- Another embodiment of this invention broadly relates to a method for forming this ceramic corrosion resistant coating on the underlying metal substrate of the turbine component. One embodiment of this method comprises the following steps:
- (a) providing a turbine component other than an airfoil comprising a metal substrate;
- (b) providing a gel-forming solution comprising a ceramic metal oxide precursor;
- (c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel;
- (d) depositing the gel on the metal substrate; and
- (e) firing the deposited gel at a second preselected temperature above the first preselected temperature to form a ceramic corrosion resistant coating comprising a ceramic metal oxide, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
- An alternative embodiment of this method for forming this coating comprises the following steps:
- (a) providing a turbine component other than an airfoil comprising a metal substrate; and
- (b) depositing a ceramic composition comprising a ceramic metal oxide on the metal substrate by physical vapor deposition to form a ceramic corrosion resistant coating comprising the ceramic metal oxide and having a strain-tolerant columnar structure, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
- Another alternative embodiment of this method for forming this coating comprises the following steps:
- (a) providing a turbine component other than an airfoil comprising a metal substrate; and
- (b) thermal spraying a ceramIC composition comprising a ceramic metal oxide on the metal substrate to form the ceramic corrosion resistant coating comprising the ceramic metal oxide, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
- The ceramic corrosion resistant coating of this invention provides a number of significant benefits and advantages. Because the ceramic corrosion resistant coating comprises a zirconia and/or hafnia as the ceramic metal oxide, it does not diffuse into the underlying metal substrate. As a result, the ceramic corrosion resistant coating does not adversely affect the fatigue properties of the coated turbine disk/shafts, seal elements and other turbine components.
- Because of the greater coefficient of thermal expansion match between the ceramic metal oxide and the underlying metal substrate, the ceramic corrosion resistant coating of this invention provides greater adherence to the substrate and thus greater resistance to spalling. This increased adherence will also further improve the fatigue properties of the coated turbine disks/shafts, seal elements and other turbine components by resisting propagation ofcracks though the thickness of the coating into the metal substrate.
- These ceramic corrosion resistant coating can be formed by embodiments of the method of this invention that are relatively uncomplicated and inexpensive. In addition, the ceramic corrosion resistant coating can be formed by embodiments of the methods of this invention as a relatively thin layer on the metal substrate.
-
FIG. 1 is a schematic sectional view of a portion of the turbine section of a gas turbine engine. -
FIG. 2 is a sectional view of an embodiment of the ceramic corrosion resistant coating of this invention deposited on the metal substrate of a turbine rotor component. -
FIG. 3 is a frontal view of a turbine disk showing where the ceramic corrosion resistant coating of this invention is desirably located. - As used herein, the term “ceramic metal oxide” refers to zirconia, hafnia or combinations of zirconia and hafnia (i.e., mixtures thereof). These ceramic metal oxides were previously used in thermal barrier coatings that are capable of reducing heat flow to the underlying metal substrate of the article, i.e., forming a thermal barrier, and which have a melting point that is typically at least about 2600° F. (1426° C.), and more typically in the range of from about from about 3450° to about 4980° F. (from about 1900° to about 2750° C.). The ceramic metal oxide can comprise 100 mole % zirconia, 100 mole % hafnia, or any percentage combination of zirconia and hafnia that is desired. Typically, the ceramic metal oxide comprises from about 85 to 100 mole % zirconia and from 0 to about 15 mole % hafnia, more typically from about 95 to 100 mole % zirconia and from 0 to about 5 mole % hafnia.
- As used herein, the term “ceramic metal oxide precursor” refers to any composition, compound, molecule, etc., that is converted into or forms the ceramic metal oxide, for example, from the respective ceramic metal hydroxide, at any point up to and including the formation of the ceramic corrosion resistant coating.
- As used herein, the term “ceramic corrosion resistant coating” refers to coatings of this invention that provide resistance against corrosion caused by various corrodants, including metal (e.g., alkaline) sulfates, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc.; at temperatures typically of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and which comprise the ceramic metal oxide. The ceramic corrosion resistant coatings of this invention usually comprise at least about 60 mole % ceramic metal oxide, typically from about 60 to about 98 mole % ceramic metal oxide, and more typically from about 94 to about 97 mole % ceramic metal oxide. The ceramic corrosion resistant coatings of this invention further typically comprise a stabilizing amount of a stabilizer metal oxide for the ceramic metal oxide. These stabilizer metal oxides can be selected from the group consisting of yttria, calcia, scandia, magnesia, india, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, lanthana, tantala, etc., and mixtures thereof. The particular amount of this stabilizer metal oxide that is “stabilizing” will depend on a variety of factors, including the stabilizer metal oxide used, the ceramic metal oxide used, etc. Typically, the stabilizer metal oxide comprises from about 2 about 40 mole %, more typically from about 3 to about 6 mole %, of the ceramic corrosion resistant coating. The ceramic corrosion resistant coatings used herein typically comprise yttria as the stabilizer metal oxide. See, for example, Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 24, pp. 882-883 (1984) for a description of suitable yttria-stabilized zirconia-containing ceramic compositions that can be used in the ceramic corrosion resistant coatings of this invention.
- As used herein, the term “ceramic composition” refers to compositions used to form the ceramic corrosion resistant coatings of this invention, and which comprise the ceramic metal oxide, optionally but typically the stabilizer metal oxide, etc.
- As used herein, the term “turbine component other than an airfoil” refers to those turbine components that are not airfoils (e.g., blades, vanes, etc.) that are formed from metals or metal alloys, and include turbine disks (also referred to sometimes as “turbine rotors”), turbine shafts, turbine seal elements that are either rotating or static, including forward, interstage and aft turbine seals, turbine blade retainers, other static turbine components, etc. The turbine component for which the ceramic corrosion resistant coatings of this invention are particularly advantageous are those that experience a service operating temperature of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and typically in the range of from about 1000° to about 1600° F. (from about 538° to about 871° C.). These components are usually exposed to turbine bleed air (e.g., air extracted from the compressor to cool hotter components in the engine) having ingested corrosive components, typically metal sulfates, sulfites, chlorides, carbonates, etc., that can deposit on the surface of the component. The ceramic corrosion resistant coatings of this invention are particularly useful when formed on all or selected portions of the surfaces of the component, such as the surfaces of turbine disks/shafts and turbine seal elements. For example, the mid-to-outer portion of the hub of a turbine disk can have the ceramic corrosion resistant coating of this invention, while the bore region, inner portion of the hub, and blade slots mayor may not have this coating. In addition, the contact points or mating surfaces between these components such as the disk post pressure faces (i.e., the mating surface between the disk post and the turbine blade dovetail), as well as the contact points between the disks and seals, can be void or absent of the ceramic corrosion resistant coating so as to retain desired or specified as produced dimensions.
- As used herein, the term “comprising” means various coatings, compositions, metal oxides, components, layers, steps, etc., can be conjointly employed in the present invention. Accordingly, the term “comprising” encompasses the more restrictive terms “consisting essentially of” and “consisting of.”
- All amounts, parts, ratios and percentages used herein are by mole % unless otherwise specified.
- The various embodiments of the turbine components having the ceramic corrosion resistant coating of this invention are further illustrated by reference to the drawings as described hereafter. Referring to
FIG. 1 , a turbineengine rotor component 30 is provided that can be of any operable type, for example, aturbine disk 32 or aturbine seal element 34.FIG. 1 schematically illustrates a stage 1turbine disk 36, a stage 1turbine blade 38 mounted to theturbine disk 36, a stage 2turbine disk 40, a stage 2turbine blade 42 mounted to theturbine disk 40, aforward turbine seal 44 that also functions as a forward blade retainer forblade 38, anaft turbine seal 46, and aninterstage turbine seal 48 that also functions as a forward blade retainer forblade 42, anaft blade retainer 50 forblade 38 that is held in place byseal 48, and anaft blade retainer 52 forblade 42. Any or all of these turbine disks 32 (e.g., stage 1turbine disk 36 and a stage 2 turbine disk 40), turbine seal elements 34 (e.g.,forward turbine seal 44,aft turbine seal 46, and interstage turbine seal 48) and/orblade retainers 50/52, or any selected portion thereof, can be provided with the ceramic corrosion resistant coating of this invention, depending upon whether corrosion is expected or observed. - Referring to
FIG. 2 , themetal substrate 60 of the turbineengine rotor component 30 can comprise any of a variety of metals, or more typically metal alloys, including those based on nickel, cobalt and/or iron alloys.Substrate 60 typically comprises a superalloy based on nickel, cobalt and/or iron. Such superalloys are disclosed in various references, such as, for example, commonly assigned U.S. Pat. No. 4,957,567 (Krueger et al), issued Sep. 18, 1990, and U.S. Pat. No. 6,521,175 (Mourer et al), issued Feb. 18, 2003, the relevant portions of which are incorporated by reference. Superalloys are also generally described in Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 12, pp. 417-479 (1980), and Vol. 15, pp. 787-800 (1981). Illustrative nickel-based superalloys are designated by the trade names Inconel®, Nimonic®, Rene® (e.g., Rene® 88, Rene® 104, Rene N5 alloys), and Udime®. -
Substrate 60 more typically comprises a nickel-based alloy, and particularly a nickel-based superalloy, that has more nickel than any other element. The nickel-based superalloy can be strengthened by the precipitation of gamma prime or a related phase. A nickel-based superalloy for which the ceramic corrosion resistant coating of this invention is particularly useful is available by the trade name Rene 88, which has a nominal composition, by weight of 13% cobalt, 16% chromium, 4% molybdenum, 3.7% titanium, 2.1% aluminum, 4% tungsten, 0.70% niobium, 0.015% boron, 0.03% zirconium, and 0.03 percent carbon, with the balance nickel and minor impurities. - In forming the ceramic corrosion
resistant coating 64 of this invention on thesurface 62 ofmetal substrate 60,surface 62 is typically pretreated mechanically, chemically or both to make the surface more receptive forcoating 64. Suitable pretreatment methods include grit blasting, with or without masking of surfaces that are not to be subjected to grit blasting (see U.S. Pat. No. 5,723,078 to Niagara et al, issued Mar. 3, 1998, especially col. 4, lines 46-66, which is incorporated by reference), micromachining, laser etching (see U.S. Pat. No. 5,723,078 to Nagaraj et al, issued Mar. 3, 1998, especially col. 4, line 67 to col. 5, line 3 and 14-17, which is incorporated by reference), treatment with chemical etchants such as those containing hydrochloric acid, hydrofluoric acid, nitric acid, ammonium bifluorides and mixtures thereof (see, for example, U.S. Pat. No. 5,723,078 to Nagaraj et al, issued Mar. 3, 1998, especially col. 5, lines 3-10; U.S. Pat. No. 4,563,239 to Adinolfi et al, issued Jan. 7, 1986, especially col. 2, line 67 to col. 3, line 7; U.S. Pat. No. 4,353,780 to Fishter et al, issued Oct. 12, 1982, especially col. 1, lines 50-58; and U.S. Pat. No. 4,411,730 to Fishter et al, issued Oct. 25, 1983, especially col. 2, lines 40-51, all of which are incorporated by reference), treatment with water under pressure (i.e., water jet treatment), with or without loading with abrasive particles, as well as various combinations of these methods. Typically, thesurface 62 ofmetal substrate 60 is pretreated by grit blasting wheresurface 62 is subjected to the abrasive action of silicon carbide particles, steel particles, alumina particles or other types of abrasive particles. These particles used in grit blasting are typically alumina particles and typically have a particle size of from about 600 to about 35 mesh (from about 25 to about 500 micrometers), more typically from about 400 to about 300 mesh (from about 38 to about 50 micrometers). - An embodiment of the method of this invention for forming ceramic corrosion
resistant coating 64 onmetal substrate 60 is by use of a sol-gel process. See commonly assigned U.S. Patent Application No. 2004/0081767 (Pfaendtner et al), published Apr. 29, 2004, which is incorporated by reference. Sol-gel processing is a chemical solution method to produce a ceramic oxide (e.g., zirconia). A chemical gel-forming solution which typically comprises an alkoxide precursor or a metal salt is combined with ceramic metal oxide precursor materials, as well as any stabilizer metal oxide precursor materials, etc. A gel is formed as the gel-forming solution is heated to slightly dry it at a first preselected temperature for a first preselected time. The gel is then applied over thesurface 62 ofmetal substrate 60. Proper application of the ceramic metal oxide precursor materials and proper drying produce a continuous film over thesurface 62. The sol-gel can be applied to surface 62 ofsubstrate 60 by any convenient technique. For example, the sol-gel can be applied by spraying at least one thin layer, e.g., a single thin layer, or more typically a plurality of thin layers to build up a film to the desired thickness forcoating 64. The gel is then fired at a second elevated preselected temperature above the first elevated temperature for a second preselected time to formcoating 64. The ceramic corrosionresistant coating 64 comprises a dense matrix that has a thickness of up to about 5 mils (127 microns) and typically from about 0.01 to about 1 mils (from about 0.2 to about 25 microns), more typically from about 0.04 to about 0.5 mils (from about 1 to about 13 microns). Optionally, inert oxide filler particles can be added to the sol-gel solution to enable a greater per-layer thickness to be applied to the substrate. - An alternative method for forming ceramic corrosion
resistant coating 64 is by physical vapor deposition (PVD), such as electron beam PVD (EB-PVD), filtered arc deposition, or by sputtering. Suitable sputtering techniques for use herein include but are not limited to direct current diode sputtering, radio frequency sputtering, ion beam sputtering, reactive sputtering, magnetron sputtering and steered arc sputtering. PVD techniques can form ceramic corrosionresistant coatings 64 having strain resistant or tolerant microstructures such as vertical microcracked structures. EB-PVD techniques can form columnar structures that are highly strain resistant to further increase the coating adherence. Although these strain resistant or tolerant structures have direct paths between thecoating surface 66 and thesubstrate 60, the paths are sufficiently narrow that the partially molten or highly viscous corrodant salts do not infiltrate or minimally infiltrate the cracks of the vertically microcracked structures or column gaps of the columnar structures. - Other suitable alternative methods for forming these ceramic corrosion resistant coating include thermal spray, aerosol spray, chemical vapor deposition (CVD) and pack cementation. As used herein, the term “thermal spray” refers to any method for spraying, applying or otherwise depositing the ceramic composition that involves heating and typically at least partial or complete thermal melting of the overlay coating material and depositing of the heated/melted material, typically by entrainment in a heated gas stream, onto the metal substrate to be coated. Suitable thermal spray deposition techniques include plasma spray, such as air plasma spray (APS) and vacuum plasma spray (YPS), high velocity oxy-fuel (HYOF) spray, detonation spray, wire spray, etc., as well as combinations of these techniques. A particularly suitable thermal spray deposition technique for use herein is plasma spray. Suitable plasma spray techniques are well known to those skilled in the art. See, for example, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., Vol. 15, page 255, and references noted therein, as well as U.S. Pat. No. 5,332,598 (Kawasaki et al), issued Jul. 26, 1994; U.S. Pat. No. 5,047,612 (Savkar et al) issued Sep. 10, 1991; and U.S. Pat. No. 4,741,286 (Hoh et al), issued May 3, 1998 (herein incorporated by reference) which are instructive in regard to various aspects of plasma spraying suitable for use herein.
- Suitable methods for carrying out chemical vapor deposition and/or pack cementation are disclosed in, for example, commonly assigned U.S. Pat. No. 3,540,878 (Levine et al), issued Nov. 17, 1970; commonly assigned U.S. Pat. No. 3,598,638 (Levine), issued Aug. 10, 1971; commonly assigned U.S. Pat. No. 3,667,985 (Levine et al), issued Jun. 6, 1972, the relevant disclosures of which are incorporated by reference. Metal-organic chemical vapor phase deposition (MOCYD) processes can also be used herein. See commonly assigned U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan. 22, 2004, the relevant disclosures of which are incorporated by reference.
- As illustrated in
FIG. 3 , typically only a portion of the surface of these turbine disks/shafts, seals and/or blade retainers are provided with the ceramic corrosionresistant coating 64 of this invention.FIG. 3 shows aturbine disk 32 having an inner generally circular hub portion indicated as 74 and an outer generally circular perimeter or diameter indicated as 78, and a periphery indicated as 82 that is provided with a plurality of circumferentially spaced slots indicated as 86 for receiving the root portion of turbine blades such as 38, 42. While the ceramic corrosionresistant coating 64 can be applied to the entire surface of disk 70, it is typically needed only on the surface ofouter diameter 78. - While the above embodiments have been described in the context of coating turbine engine disks, this invention can be used to form a ceramic corrosion
resistant coating 64, as described above, on the surfaces of various turbine engine rotor components, including compressor disks, seals, and shafts, which can then be exposed to corrosive elements at elevated temperatures. The ceramic corrosion resistant coatings of this invention can also be applied during original manufacture of the component (i.e., an OEM component), after the component has been in operation for a period of time, after other coatings have been removed from the component (e.g., a repair situation), while the component is assembled or after the component is disassembled, etc. - The following example illustrates an embodiment for forming the ceramic corrosion coating of this invention on a metal substrate by sol-gel processing and the benefits obtained thereby:
- A one inch round sample of Rene N5 alloy is coated with an approximately 5 micron layer of a 7 wt. % yttria stabilized zirconia deposited from a sol gel. A sulfate containing corrodant is applied to the surface of the coating and run through a 2 hour cycle at 1300° F. (704° C.). The first hour of the 2 hour cycle uses a reducing atmosphere to try to cause a reaction between the corrodant and the surface of the coated sample, while the second hour uses air to cause corrosion scale growth. The corrodant is removed by water washing and coated sample is then inspected for damage. This corrosion application, thermal exposure, cleaning and inspection cycle is repeated until the coated sample shows signs of damage. After 8 cycles no appreciable damage is noted on the coated sample. After 10 cycles, the coating is still adherent to the a Hoy, but discoloration is noted and the coated sample is cross-sectioned for evaluation. After cross-sectioning, a corrosion production layer approximately 10 microns thick is found below the coating. For comparison, this is representative of a bare alloy sample (i.e., with no coating) after approximately 2 cycles of such testing.
- While specific embodiments of this invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of this invention as defined in the appended claims.
Claims (7)
1. A method comprising the following steps:
(a) providing a turbine component other than a turbine airfoil comprising a metal substrate;
(b) providing a gel-forming solution comprising a ceramic metal oxide precursor;
(c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel;
(d) depositing the gel on the metal substrate; and
(e) firing the deposited gel at a second preselected temperature above the first preselected temperature to form a ceramic corrosion resistant coating comprising a ceramic metal oxide, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
2. The method of claim 1 wherein step (d) is carried out by applying at least one layer of the gel on the metal substrate.
3. The method of claim 2 wherein step (d) is carried out by applying a plurality of layers of the gel on the metal substrate.
4. The method of claim 1 wherein the gel-forming solution provided in step (b) further comprises inert oxide filler particles.
5. The method of claim 1 wherein after step (e), the ceramic corrosion resistant coating has a thickness of from about 0.01 to about 1 mils.
6. The method of claim 1 wherein the turbine component provided during step (a) is a compressor or turbine disk.
7. The method of claim 1 wherein the turbine component provided during step (a) is a seal element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/421,149 US20090191347A1 (en) | 2005-03-31 | 2009-04-09 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/094,351 US7666515B2 (en) | 2005-03-31 | 2005-03-31 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
US12/421,149 US20090191347A1 (en) | 2005-03-31 | 2009-04-09 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/094,351 Division US7666515B2 (en) | 2005-03-31 | 2005-03-31 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090191347A1 true US20090191347A1 (en) | 2009-07-30 |
Family
ID=36570571
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/094,351 Active 2026-04-24 US7666515B2 (en) | 2005-03-31 | 2005-03-31 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
US12/421,149 Abandoned US20090191347A1 (en) | 2005-03-31 | 2009-04-09 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
US12/421,190 Abandoned US20090191353A1 (en) | 2005-03-31 | 2009-04-09 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/094,351 Active 2026-04-24 US7666515B2 (en) | 2005-03-31 | 2005-03-31 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/421,190 Abandoned US20090191353A1 (en) | 2005-03-31 | 2009-04-09 | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same |
Country Status (3)
Country | Link |
---|---|
US (3) | US7666515B2 (en) |
EP (1) | EP1710398A1 (en) |
JP (1) | JP5225551B2 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090239061A1 (en) * | 2006-11-08 | 2009-09-24 | General Electric Corporation | Ceramic corrosion resistant coating for oxidation resistance |
US9644273B2 (en) | 2007-02-09 | 2017-05-09 | Honeywell International Inc. | Protective barrier coatings |
EP2143884A1 (en) * | 2008-07-11 | 2010-01-13 | Siemens Aktiengesellschaft | Rotor disc for a turbomachine |
JP5610698B2 (en) * | 2009-03-26 | 2014-10-22 | 三菱重工業株式会社 | Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine |
EP2233600B1 (en) | 2009-03-26 | 2020-04-29 | Ansaldo Energia Switzerland AG | Method for the protection of a thermal barrier coating system and a method for the renewal of such a protection |
EP2416037B1 (en) * | 2009-03-30 | 2013-09-04 | Eagle Industry Co., Ltd. | Bellows type mechanical seal |
US9568108B2 (en) * | 2009-03-30 | 2017-02-14 | Eagle Industry Co., Ltd. | Bellows type mechanical seal |
GB0907278D0 (en) * | 2009-04-29 | 2009-06-10 | Rolls Royce Plc | A seal arrangement and a method of repairing a seal arrangement |
CA2715958A1 (en) * | 2009-10-12 | 2011-04-12 | General Electric Company | Process of forming a coating system, coating system formed thereby, and components coated therewith |
US20110280716A1 (en) * | 2010-05-17 | 2011-11-17 | Douglas Gerard Konitzer | Gas turbine engine compressor components comprising thermal barriers, thermal barrier systems, and methods of using the same |
UA110643C2 (en) | 2011-04-13 | 2016-01-25 | Роллс-Ройс Корпорейшн | Resistant to high corrosion disc or separator gas turbine and method for corrosion-resistant coatings vykosotemperaturnoyi |
US10539039B2 (en) * | 2012-08-14 | 2020-01-21 | Safran Aircraft Engines | Method of measuring the temperature reached by a part, in particular a turbine engine part |
US20140094356A1 (en) * | 2012-09-28 | 2014-04-03 | General Electric Company | Treatment process, oxide-forming treatment composition, and treated component |
US9764989B2 (en) | 2013-03-13 | 2017-09-19 | Rolls-Royce Corporation | Reactive fiber interface coatings for improved environmental stability |
BR112015022549A2 (en) | 2013-03-13 | 2017-07-18 | Gen Electric | turbine and gas turbine component |
EP2918705B1 (en) | 2014-03-12 | 2017-05-03 | Rolls-Royce Corporation | Coating including diffusion barrier layer including iridium and oxide layer and method of coating |
US10047614B2 (en) | 2014-10-09 | 2018-08-14 | Rolls-Royce Corporation | Coating system including alternating layers of amorphous silica and amorphous silicon nitride |
US10280770B2 (en) | 2014-10-09 | 2019-05-07 | Rolls-Royce Corporation | Coating system including oxide nanoparticles in oxide matrix |
US11085116B2 (en) * | 2017-03-22 | 2021-08-10 | The Boeing Company | Engine shaft assembly and method |
US11162457B2 (en) * | 2017-08-11 | 2021-11-02 | General Electric Company | Turbine fan system and method |
US11555241B2 (en) * | 2018-07-03 | 2023-01-17 | Raytheon Technologies Corporation | Coating system having synthetic oxide layers |
FR3111157B1 (en) * | 2020-06-05 | 2022-07-22 | Safran Aircraft Engines | Motor comprising a sealing member between two rotor elements |
US12012870B1 (en) * | 2022-11-29 | 2024-06-18 | Rtx Corporation | Machinable coating for CMC and metal interface in a turbine section |
US20240392685A1 (en) * | 2023-05-26 | 2024-11-28 | Raytheon Technologies Corporation | Bowed-rotor-resistant low shaft |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946710A (en) * | 1987-06-02 | 1990-08-07 | National Semiconductor Corporation | Method for preparing PLZT, PZT and PLT sol-gels and fabricating ferroelectric thin films |
US5766680A (en) * | 1994-05-18 | 1998-06-16 | Institut Fur Neue Materialien Gemeinnutzige Gmbh | Method of producing structured inorganic layers |
US6057047A (en) * | 1997-11-18 | 2000-05-02 | United Technologies Corporation | Ceramic coatings containing layered porosity |
US6146692A (en) * | 1998-12-14 | 2000-11-14 | General Electric Company | Caustic process for replacing a thermal barrier coating |
US6270318B1 (en) * | 1999-12-20 | 2001-08-07 | United Technologies Corporation | Article having corrosion resistant coating |
US20030049470A1 (en) * | 1996-12-12 | 2003-03-13 | Maloney Michael J. | Thermal barrier coating systems and materials |
US20030118873A1 (en) * | 2001-12-21 | 2003-06-26 | Murphy Kenneth S. | Stabilized zirconia thermal barrier coating with hafnia |
US20030138658A1 (en) * | 2002-01-22 | 2003-07-24 | Taylor Thomas Alan | Multilayer thermal barrier coating |
US20030152814A1 (en) * | 2002-02-11 | 2003-08-14 | Dinesh Gupta | Hybrid thermal barrier coating and method of making the same |
US6641907B1 (en) * | 1999-12-20 | 2003-11-04 | Siemens Westinghouse Power Corporation | High temperature erosion resistant coating and material containing compacted hollow geometric shapes |
US20040013802A1 (en) * | 2002-07-19 | 2004-01-22 | Ackerman John Frederick | Protection of a gas turbine component by a vapor-deposited oxide coating |
US20040115406A1 (en) * | 2002-12-12 | 2004-06-17 | Nagaraj Bangalore Aswatha | Thermal barrier coating protected by thermally glazed layer and method for preparing same |
US20040115469A1 (en) * | 2002-12-12 | 2004-06-17 | Nagaraj Bangalore Aswatha | Thermal barrier coating protected by alumina and method for preparing same |
US20040115470A1 (en) * | 2002-12-12 | 2004-06-17 | Ackerman John Frederick | Thermal barrier coating protected by infiltrated alumina and method for preparing same |
US6869703B1 (en) * | 2003-12-30 | 2005-03-22 | General Electric Company | Thermal barrier coatings with improved impact and erosion resistance |
US6887595B1 (en) * | 2003-12-30 | 2005-05-03 | General Electric Company | Thermal barrier coatings having lower layer for improved adherence to bond coat |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3248251A (en) * | 1963-06-28 | 1966-04-26 | Teleflex Inc | Inorganic coating and bonding composition |
US3248250A (en) * | 1963-06-28 | 1966-04-26 | Teleflex Inc | Coating and bonding composition |
US3248249A (en) * | 1963-06-28 | 1966-04-26 | Telefiex Inc | Inorganic coating and bonding composition |
US3540878A (en) * | 1967-12-14 | 1970-11-17 | Gen Electric | Metallic surface treatment material |
US3667985A (en) * | 1967-12-14 | 1972-06-06 | Gen Electric | Metallic surface treatment method |
US3598638A (en) * | 1968-11-29 | 1971-08-10 | Gen Electric | Diffusion metallic coating method |
US4353780A (en) * | 1980-10-01 | 1982-10-12 | United Technologies Corporation | Chemical milling of high tungsten content superalloys |
US4411730A (en) * | 1980-10-01 | 1983-10-25 | United Technologies Corporation | Selective chemical milling of recast surfaces |
US4563239A (en) * | 1984-10-16 | 1986-01-07 | United Technologies Corporation | Chemical milling using an inert particulate and moving vessel |
JPS61259777A (en) * | 1985-05-13 | 1986-11-18 | Onoda Cement Co Ltd | Single-torch type plasma spraying method and apparatus |
US5015502A (en) * | 1988-11-03 | 1991-05-14 | Allied-Signal Inc. | Ceramic thermal barrier coating with alumina interlayer |
US4957567A (en) * | 1988-12-13 | 1990-09-18 | General Electric Company | Fatigue crack growth resistant nickel-base article and alloy and method for making |
US5221354A (en) * | 1991-11-04 | 1993-06-22 | General Electric Company | Apparatus and method for gas phase coating of hollow articles |
JPH0693404A (en) * | 1991-12-04 | 1994-04-05 | Ngk Insulators Ltd | Production of lanthanum chromite film and lanthanum chromite coating |
US5660885A (en) * | 1995-04-03 | 1997-08-26 | General Electric Company | Protection of thermal barrier coating by a sacrificial surface coating |
US5824423A (en) * | 1996-02-07 | 1998-10-20 | N.V. Interturbine | Thermal barrier coating system and methods |
US5723078A (en) | 1996-05-24 | 1998-03-03 | General Electric Company | Method for repairing a thermal barrier coating |
US5753078A (en) * | 1996-06-07 | 1998-05-19 | Cartons St-Laurent, Inc./St. Laurent Paperboard, Inc. | Method of making surface coated or impregnated paper or paperboard |
JPH10195629A (en) * | 1996-12-27 | 1998-07-28 | Mitsubishi Heavy Ind Ltd | Gas turbine blade and method for forming film thereon |
US6521175B1 (en) * | 1998-02-09 | 2003-02-18 | General Electric Co. | Superalloy optimized for high-temperature performance in high-pressure turbine disks |
US6106959A (en) * | 1998-08-11 | 2000-08-22 | Siemens Westinghouse Power Corporation | Multilayer thermal barrier coating systems |
US6296447B1 (en) * | 1999-08-11 | 2001-10-02 | General Electric Company | Gas turbine component having location-dependent protective coatings thereon |
US6224673B1 (en) * | 1999-08-11 | 2001-05-01 | General Electric Company | Apparatus for masking turbine components during vapor phase diffusion coating |
JP2003075326A (en) * | 2001-08-31 | 2003-03-12 | Mitsubishi Heavy Ind Ltd | Evaluation method and evaluation device for heat insulating coating film |
US6821641B2 (en) * | 2001-10-22 | 2004-11-23 | General Electric Company | Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication |
US6682821B2 (en) * | 2001-12-28 | 2004-01-27 | Kyocera Corporation | Corrosion-resistant ceramics |
US6616978B1 (en) * | 2002-05-09 | 2003-09-09 | General Electric Company | Protecting a substrate with a multilayer oxide/phosphate coating having a temperature-stepped cure |
US6746783B2 (en) * | 2002-06-27 | 2004-06-08 | General Electric Company | High-temperature articles and method for making |
US6884476B2 (en) * | 2002-10-28 | 2005-04-26 | General Electric Company | Ceramic masking material and application method for protecting turbine airfoil component surfaces during vapor phase aluminiding |
US6905730B2 (en) * | 2003-07-08 | 2005-06-14 | General Electric Company | Aluminide coating of turbine engine component |
US7455890B2 (en) | 2003-08-05 | 2008-11-25 | General Electric Company | Ion implantation of turbine engine rotor component |
US7654645B2 (en) * | 2005-04-04 | 2010-02-02 | Silverbrook Research Pty Ltd | MEMS bubble generator |
-
2005
- 2005-03-31 US US11/094,351 patent/US7666515B2/en active Active
-
2006
- 2006-03-23 EP EP06251560A patent/EP1710398A1/en not_active Ceased
- 2006-03-30 JP JP2006093435A patent/JP5225551B2/en not_active Expired - Fee Related
-
2009
- 2009-04-09 US US12/421,149 patent/US20090191347A1/en not_active Abandoned
- 2009-04-09 US US12/421,190 patent/US20090191353A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946710A (en) * | 1987-06-02 | 1990-08-07 | National Semiconductor Corporation | Method for preparing PLZT, PZT and PLT sol-gels and fabricating ferroelectric thin films |
US5766680A (en) * | 1994-05-18 | 1998-06-16 | Institut Fur Neue Materialien Gemeinnutzige Gmbh | Method of producing structured inorganic layers |
US20030049470A1 (en) * | 1996-12-12 | 2003-03-13 | Maloney Michael J. | Thermal barrier coating systems and materials |
US6057047A (en) * | 1997-11-18 | 2000-05-02 | United Technologies Corporation | Ceramic coatings containing layered porosity |
US6146692A (en) * | 1998-12-14 | 2000-11-14 | General Electric Company | Caustic process for replacing a thermal barrier coating |
US6641907B1 (en) * | 1999-12-20 | 2003-11-04 | Siemens Westinghouse Power Corporation | High temperature erosion resistant coating and material containing compacted hollow geometric shapes |
US6270318B1 (en) * | 1999-12-20 | 2001-08-07 | United Technologies Corporation | Article having corrosion resistant coating |
US20030118873A1 (en) * | 2001-12-21 | 2003-06-26 | Murphy Kenneth S. | Stabilized zirconia thermal barrier coating with hafnia |
US20030138658A1 (en) * | 2002-01-22 | 2003-07-24 | Taylor Thomas Alan | Multilayer thermal barrier coating |
US20030152814A1 (en) * | 2002-02-11 | 2003-08-14 | Dinesh Gupta | Hybrid thermal barrier coating and method of making the same |
US20040013802A1 (en) * | 2002-07-19 | 2004-01-22 | Ackerman John Frederick | Protection of a gas turbine component by a vapor-deposited oxide coating |
US20040115406A1 (en) * | 2002-12-12 | 2004-06-17 | Nagaraj Bangalore Aswatha | Thermal barrier coating protected by thermally glazed layer and method for preparing same |
US20040115469A1 (en) * | 2002-12-12 | 2004-06-17 | Nagaraj Bangalore Aswatha | Thermal barrier coating protected by alumina and method for preparing same |
US20040115470A1 (en) * | 2002-12-12 | 2004-06-17 | Ackerman John Frederick | Thermal barrier coating protected by infiltrated alumina and method for preparing same |
US6869703B1 (en) * | 2003-12-30 | 2005-03-22 | General Electric Company | Thermal barrier coatings with improved impact and erosion resistance |
US6887595B1 (en) * | 2003-12-30 | 2005-05-03 | General Electric Company | Thermal barrier coatings having lower layer for improved adherence to bond coat |
Also Published As
Publication number | Publication date |
---|---|
US20090191353A1 (en) | 2009-07-30 |
US7666515B2 (en) | 2010-02-23 |
JP5225551B2 (en) | 2013-07-03 |
US20060222884A1 (en) | 2006-10-05 |
EP1710398A1 (en) | 2006-10-11 |
JP2006283759A (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090191353A1 (en) | Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same | |
JP5160194B2 (en) | Ceramic corrosion resistant coating for oxidation resistance | |
JP4191427B2 (en) | Improved plasma sprayed thermal bond coat system | |
US7776143B2 (en) | Particulate corrosion resistant coating composition | |
US7666528B2 (en) | Protection of thermal barrier coating by a sacrificial coating | |
EP1595977B1 (en) | Superalloy article having corrosion resistant coating thereon | |
US6365281B1 (en) | Thermal barrier coatings for turbine components | |
US7314674B2 (en) | Corrosion resistant coating composition, coated turbine component and method for coating same | |
EP1752559A2 (en) | Method for restoring portion of turbine component | |
US7311940B2 (en) | Layered paint coating for turbine blade environmental protection | |
US20090123722A1 (en) | Coating system | |
CN110325666A (en) | The coating of aerofoil profile for gas-turbine unit and the method for applying coating | |
US7166373B2 (en) | Ceramic compositions for thermal barrier coatings with improved mechanical properties | |
JP3579262B2 (en) | Bonding coat for thermal barrier coating system | |
EP2431495A1 (en) | A method for forming thermal barrier coating and device with the thermal barrier coating | |
US20100279148A1 (en) | Nickel-based alloys and turbine components | |
US20110293963A1 (en) | Coatings, turbine engine components, and methods for coating turbine engine components | |
Stolle | Conventional and advanced coatings for turbine airfoils | |
EP2423347A1 (en) | Method for forming a thermal barrier coating and a turbine component with the thermal barrier coating | |
US11274562B2 (en) | Gas turbine components and methods of assembling the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGARAJ, BANGALORE ASWATHA;HAZEL, BRIAN THOMAS;PFAENDTNER, JEFFREY ALLAN;REEL/FRAME:022536/0307;SIGNING DATES FROM 20050317 TO 20050324 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |