US20090181406A1 - Kits for detecting cervical dysplasia - Google Patents
Kits for detecting cervical dysplasia Download PDFInfo
- Publication number
- US20090181406A1 US20090181406A1 US12/400,629 US40062909A US2009181406A1 US 20090181406 A1 US20090181406 A1 US 20090181406A1 US 40062909 A US40062909 A US 40062909A US 2009181406 A1 US2009181406 A1 US 2009181406A1
- Authority
- US
- United States
- Prior art keywords
- cells
- marker
- sample
- test kit
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010008263 Cervical dysplasia Diseases 0.000 title claims description 16
- 238000012360 testing method Methods 0.000 claims abstract description 79
- 238000010606 normalization Methods 0.000 claims abstract description 75
- 239000003550 marker Substances 0.000 claims description 130
- 238000001514 detection method Methods 0.000 claims description 98
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 239000003153 chemical reaction reagent Substances 0.000 claims description 27
- 239000000872 buffer Substances 0.000 claims description 25
- 108010084448 gamma Catenin Proteins 0.000 claims description 25
- 102000054078 gamma Catenin Human genes 0.000 claims description 25
- 238000009739 binding Methods 0.000 claims description 22
- 230000027455 binding Effects 0.000 claims description 21
- 210000002919 epithelial cell Anatomy 0.000 claims description 17
- -1 mcm-2 Proteins 0.000 claims description 17
- 238000011160 research Methods 0.000 claims description 16
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 claims description 15
- 239000000427 antigen Substances 0.000 claims description 15
- 108091007433 antigens Proteins 0.000 claims description 15
- 102000036639 antigens Human genes 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 12
- 102100023972 Keratin, type II cytoskeletal 8 Human genes 0.000 claims description 10
- 239000007790 solid phase Substances 0.000 claims description 9
- 238000000338 in vitro Methods 0.000 claims description 8
- 102000000905 Cadherin Human genes 0.000 claims description 7
- 108050007957 Cadherin Proteins 0.000 claims description 7
- 102100040487 Keratin, type I cytoskeletal 13 Human genes 0.000 claims description 7
- 230000009089 cytolysis Effects 0.000 claims description 6
- 102000007236 involucrin Human genes 0.000 claims description 6
- 108010033564 involucrin Proteins 0.000 claims description 6
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 5
- 238000002405 diagnostic procedure Methods 0.000 claims description 5
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 claims description 4
- 208000009608 Papillomavirus Infections Diseases 0.000 claims description 4
- 108010079351 Tumor Suppressor Protein p14ARF Proteins 0.000 claims description 4
- 102000003730 Alpha-catenin Human genes 0.000 claims description 3
- 108090000020 Alpha-catenin Proteins 0.000 claims description 3
- 102000015735 Beta-catenin Human genes 0.000 claims description 3
- 108060000903 Beta-catenin Proteins 0.000 claims description 3
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 claims description 3
- 102100040836 Claudin-1 Human genes 0.000 claims description 3
- 108090000600 Claudin-1 Proteins 0.000 claims description 3
- 102000002554 Cyclin A Human genes 0.000 claims description 3
- 108010068192 Cyclin A Proteins 0.000 claims description 3
- 102000002427 Cyclin B Human genes 0.000 claims description 3
- 108010068150 Cyclin B Proteins 0.000 claims description 3
- 102000003909 Cyclin E Human genes 0.000 claims description 3
- 108090000257 Cyclin E Proteins 0.000 claims description 3
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 claims description 3
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 claims description 3
- 239000000816 peptidomimetic Substances 0.000 claims description 3
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 2
- 101100236724 Caenorhabditis elegans mcm-5 gene Proteins 0.000 claims description 2
- 102000001301 EGF receptor Human genes 0.000 claims description 2
- 108060006698 EGF receptor Proteins 0.000 claims description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 2
- 101000614627 Homo sapiens Keratin, type I cytoskeletal 13 Proteins 0.000 claims description 2
- 208000021145 human papilloma virus infection Diseases 0.000 claims description 2
- 101000975496 Homo sapiens Keratin, type II cytoskeletal 8 Proteins 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 67
- 238000003745 diagnosis Methods 0.000 abstract description 49
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 26
- 230000002380 cytological effect Effects 0.000 abstract description 22
- 230000000877 morphologic effect Effects 0.000 abstract description 18
- 201000010099 disease Diseases 0.000 abstract description 11
- 238000012956 testing procedure Methods 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 185
- 239000000523 sample Substances 0.000 description 110
- 206010028980 Neoplasm Diseases 0.000 description 77
- 238000002965 ELISA Methods 0.000 description 50
- 108090000623 proteins and genes Proteins 0.000 description 46
- 235000018102 proteins Nutrition 0.000 description 44
- 102000004169 proteins and genes Human genes 0.000 description 44
- 239000000243 solution Substances 0.000 description 41
- 102000039446 nucleic acids Human genes 0.000 description 36
- 108020004707 nucleic acids Proteins 0.000 description 36
- 150000007523 nucleic acids Chemical class 0.000 description 36
- 201000011510 cancer Diseases 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 26
- 210000000981 epithelium Anatomy 0.000 description 22
- 230000003902 lesion Effects 0.000 description 22
- 238000001262 western blot Methods 0.000 description 21
- 102000004196 processed proteins & peptides Human genes 0.000 description 20
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 238000011534 incubation Methods 0.000 description 19
- 241000701806 Human papillomavirus Species 0.000 description 18
- 102100033421 Keratin, type I cytoskeletal 18 Human genes 0.000 description 18
- 108010066327 Keratin-18 Proteins 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 17
- 102100023970 Keratin, type I cytoskeletal 10 Human genes 0.000 description 16
- 208000035475 disorder Diseases 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 15
- 239000012139 lysis buffer Substances 0.000 description 15
- 230000002062 proliferating effect Effects 0.000 description 15
- 238000010186 staining Methods 0.000 description 15
- 238000003556 assay Methods 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 239000011534 wash buffer Substances 0.000 description 13
- 239000003599 detergent Substances 0.000 description 12
- 108010085238 Actins Proteins 0.000 description 11
- 101000975474 Homo sapiens Keratin, type I cytoskeletal 10 Proteins 0.000 description 11
- 230000004069 differentiation Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000012488 sample solution Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 206010058314 Dysplasia Diseases 0.000 description 10
- 230000001413 cellular effect Effects 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- 210000004379 membrane Anatomy 0.000 description 9
- 229920000136 polysorbate Polymers 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 108010070511 Keratin-8 Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 210000003679 cervix uteri Anatomy 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 210000005168 endometrial cell Anatomy 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 201000009030 Carcinoma Diseases 0.000 description 7
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 7
- 101000920667 Homo sapiens Epithelial cell adhesion molecule Proteins 0.000 description 7
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 7
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 210000002345 respiratory system Anatomy 0.000 description 7
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 238000001574 biopsy Methods 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 6
- 239000010839 body fluid Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 210000002777 columnar cell Anatomy 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000006166 lysate Substances 0.000 description 6
- 102000007469 Actins Human genes 0.000 description 5
- 206010008342 Cervix carcinoma Diseases 0.000 description 5
- 101710183404 Keratin, type I cytoskeletal 10 Proteins 0.000 description 5
- 108010065070 Keratin-13 Proteins 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 5
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 201000010881 cervical cancer Diseases 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 230000000984 immunochemical effect Effects 0.000 description 5
- 238000011532 immunohistochemical staining Methods 0.000 description 5
- 208000020816 lung neoplasm Diseases 0.000 description 5
- 230000011987 methylation Effects 0.000 description 5
- 238000007069 methylation reaction Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000001613 neoplastic effect Effects 0.000 description 5
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 102100028906 Catenin delta-1 Human genes 0.000 description 4
- 102000016362 Catenins Human genes 0.000 description 4
- 108010067316 Catenins Proteins 0.000 description 4
- 108050006400 Cyclin Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 4
- 108090000288 Glycoproteins Proteins 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 108091093037 Peptide nucleic acid Proteins 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 208000036142 Viral infection Diseases 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 208000007951 cervical intraepithelial neoplasia Diseases 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 4
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 description 4
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 230000000762 glandular Effects 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 238000011206 morphological examination Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000007170 pathology Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000012723 sample buffer Substances 0.000 description 4
- 208000000587 small cell lung carcinoma Diseases 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 230000009385 viral infection Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000012224 working solution Substances 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- 229940126074 CDK kinase inhibitor Drugs 0.000 description 3
- 102100034770 Cyclin-dependent kinase inhibitor 3 Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 101000945639 Homo sapiens Cyclin-dependent kinase inhibitor 3 Proteins 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 3
- 102000001938 Plasminogen Activators Human genes 0.000 description 3
- 108010001014 Plasminogen Activators Proteins 0.000 description 3
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 102100036691 Proliferating cell nuclear antigen Human genes 0.000 description 3
- 108010067787 Proteoglycans Proteins 0.000 description 3
- 102000016611 Proteoglycans Human genes 0.000 description 3
- 206010041067 Small cell lung cancer Diseases 0.000 description 3
- 229920004890 Triton X-100 Polymers 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 239000002532 enzyme inhibitor Substances 0.000 description 3
- 238000010562 histological examination Methods 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 230000036963 noncompetitive effect Effects 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 238000009595 pap smear Methods 0.000 description 3
- 229940127126 plasminogen activator Drugs 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000004994 reproductive system Anatomy 0.000 description 3
- 238000002271 resection Methods 0.000 description 3
- 238000003118 sandwich ELISA Methods 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000004085 squamous epithelial cell Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000002485 urinary effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- KRGPOSNYCVHSAP-UHFFFAOYSA-N 1-(dimethylazaniumyl)pentadecane-1-sulfonate Chemical compound CCCCCCCCCCCCCCC([NH+](C)C)S([O-])(=O)=O KRGPOSNYCVHSAP-UHFFFAOYSA-N 0.000 description 2
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 2
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 2
- WRDABNWSWOHGMS-UHFFFAOYSA-N AEBSF hydrochloride Chemical compound Cl.NCCC1=CC=C(S(F)(=O)=O)C=C1 WRDABNWSWOHGMS-UHFFFAOYSA-N 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 208000009458 Carcinoma in Situ Diseases 0.000 description 2
- 102000005483 Cell Cycle Proteins Human genes 0.000 description 2
- 108010031896 Cell Cycle Proteins Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 108010089072 Dolichyl-diphosphooligosaccharide-protein glycotransferase Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- 101000733249 Homo sapiens Tumor suppressor ARF Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 101000767631 Human papillomavirus type 16 Protein E7 Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 108010063954 Mucins Proteins 0.000 description 2
- 102000015728 Mucins Human genes 0.000 description 2
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 108010066816 Polypeptide N-acetylgalactosaminyltransferase Proteins 0.000 description 2
- 101710150974 Regulator of chromosome condensation Proteins 0.000 description 2
- 102100039977 Regulator of chromosome condensation Human genes 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 210000000941 bile Anatomy 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 230000003196 chaotropic effect Effects 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 239000012568 clinical material Substances 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 108010031971 delta catenin Proteins 0.000 description 2
- 229960003964 deoxycholic acid Drugs 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 2
- 210000000750 endocrine system Anatomy 0.000 description 2
- 230000002357 endometrial effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 201000004933 in situ carcinoma Diseases 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000003526 lymphopoietic effect Effects 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000003147 molecular marker Substances 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000009826 neoplastic cell growth Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000010827 pathological analysis Methods 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 238000012123 point-of-care testing Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001855 preneoplastic effect Effects 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000003161 ribonuclease inhibitor Substances 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 108010088201 squamous cell carcinoma-related antigen Proteins 0.000 description 2
- 230000010097 squamous lesion Effects 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- IJWCGVPEDDQUDE-YGJAXBLXSA-N (2s)-2-[[(1s)-2-[[(2s)-5-amino-1,5-dioxo-1-[[(2s)-1-oxopropan-2-yl]amino]pentan-2-yl]amino]-1-[(6s)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-2-oxoethyl]carbamoylamino]-4-methylpentanoic acid Chemical compound O=C[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)N[C@@H](CC(C)C)C(O)=O)[C@@H]1CCN=C(N)N1 IJWCGVPEDDQUDE-YGJAXBLXSA-N 0.000 description 1
- YDZNPPPIORIATN-WNQIDUERSA-N (2s)-2-amino-3-hydroxypropanoic acid;benzenecarboximidamide Chemical compound OC[C@H](N)C(O)=O.NC(=N)C1=CC=CC=C1 YDZNPPPIORIATN-WNQIDUERSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 102100036464 Activated RNA polymerase II transcriptional coactivator p15 Human genes 0.000 description 1
- 201000007490 Adenocarcinoma in Situ Diseases 0.000 description 1
- 241000321096 Adenoides Species 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 101001007348 Arachis hypogaea Galactose-binding lectin Proteins 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 206010060999 Benign neoplasm Diseases 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- VGGGPCQERPFHOB-UHFFFAOYSA-N Bestatin Natural products CC(C)CC(C(O)=O)NC(=O)C(O)C(N)CC1=CC=CC=C1 VGGGPCQERPFHOB-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102100025805 Cadherin-1 Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- PGGUOGKHUUUWAF-ROUUACIJSA-N Calpeptin Chemical compound CCCC[C@@H](C=O)NC(=O)[C@H](CC(C)C)NC(=O)OCC1=CC=CC=C1 PGGUOGKHUUUWAF-ROUUACIJSA-N 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- 102100028003 Catenin alpha-1 Human genes 0.000 description 1
- 101710106615 Catenin alpha-1 Proteins 0.000 description 1
- 102100028002 Catenin alpha-2 Human genes 0.000 description 1
- 102100028914 Catenin beta-1 Human genes 0.000 description 1
- 108050004754 Catenin delta-1 Proteins 0.000 description 1
- 102100027047 Cell division control protein 6 homolog Human genes 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 108010069814 Concanavalin A Receptors Proteins 0.000 description 1
- 208000027205 Congenital disease Diseases 0.000 description 1
- 208000029767 Congenital, Hereditary, and Neonatal Diseases and Abnormalities Diseases 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 1
- 102000009508 Cyclin-Dependent Kinase Inhibitor p16 Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 102000015833 Cystatin Human genes 0.000 description 1
- 102100024829 DNA polymerase delta catalytic subunit Human genes 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102100030960 DNA replication licensing factor MCM2 Human genes 0.000 description 1
- 102100034001 DNA replication licensing factor MCM5 Human genes 0.000 description 1
- 102100033720 DNA replication licensing factor MCM6 Human genes 0.000 description 1
- 101100447432 Danio rerio gapdh-2 gene Proteins 0.000 description 1
- 102100038199 Desmoplakin Human genes 0.000 description 1
- 108091000074 Desmoplakin Proteins 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 102000003850 Dipeptidase 1 Human genes 0.000 description 1
- 206010061825 Duodenal neoplasm Diseases 0.000 description 1
- 108700034637 EC 3.2.-.- Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- IJWCGVPEDDQUDE-UHFFFAOYSA-N Elastatinal Natural products O=CC(C)NC(=O)C(CCC(N)=O)NC(=O)C(NC(=O)NC(CC(C)C)C(O)=O)C1CCN=C(N)N1 IJWCGVPEDDQUDE-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 101150112014 Gapdh gene Proteins 0.000 description 1
- 108090001053 Gastrin releasing peptide Proteins 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 101710088172 HTH-type transcriptional regulator RipA Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 101100168888 Homo sapiens CTNNB1 gene Proteins 0.000 description 1
- 101000984015 Homo sapiens Cadherin-1 Proteins 0.000 description 1
- 101000914465 Homo sapiens Cell division control protein 6 homolog Proteins 0.000 description 1
- 101000868333 Homo sapiens Cyclin-dependent kinase 1 Proteins 0.000 description 1
- 101000980920 Homo sapiens Cyclin-dependent kinase 4 inhibitor D Proteins 0.000 description 1
- 101000980932 Homo sapiens Cyclin-dependent kinase inhibitor 2A Proteins 0.000 description 1
- 101000909198 Homo sapiens DNA polymerase delta catalytic subunit Proteins 0.000 description 1
- 101000583807 Homo sapiens DNA replication licensing factor MCM2 Proteins 0.000 description 1
- 101001017545 Homo sapiens DNA replication licensing factor MCM5 Proteins 0.000 description 1
- 101001018484 Homo sapiens DNA replication licensing factor MCM6 Proteins 0.000 description 1
- 101001018431 Homo sapiens DNA replication licensing factor MCM7 Proteins 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 101000994460 Homo sapiens Keratin, type I cytoskeletal 20 Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101000934372 Homo sapiens Macrosialin Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101001133081 Homo sapiens Mucin-2 Proteins 0.000 description 1
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 1
- 101150047694 ID1 gene Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 240000004759 Inga spectabilis Species 0.000 description 1
- 102100032700 Keratin, type I cytoskeletal 20 Human genes 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 239000012741 Laemmli sample buffer Substances 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 102100025136 Macrosialin Human genes 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108010052006 Mitogen Receptors Proteins 0.000 description 1
- 102000018656 Mitogen Receptors Human genes 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 102100034263 Mucin-2 Human genes 0.000 description 1
- 101000596402 Mus musculus Neuronal vesicle trafficking-associated protein 1 Proteins 0.000 description 1
- 101000800539 Mus musculus Translationally-controlled tumor protein Proteins 0.000 description 1
- 101000983859 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Lipoprotein LpqH Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102100036961 Nuclear mitotic apparatus protein 1 Human genes 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000003753 Plakophilins Human genes 0.000 description 1
- 108010057275 Plakophilins Proteins 0.000 description 1
- 102100024078 Plasma serine protease inhibitor Human genes 0.000 description 1
- 102000004179 Plasminogen Activator Inhibitor 2 Human genes 0.000 description 1
- 108090000614 Plasminogen Activator Inhibitor 2 Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010001953 Protein C Inhibitor Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102100028588 Protein ZNRD2 Human genes 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 102100038042 Retinoblastoma-associated protein Human genes 0.000 description 1
- 101710124357 Retinoblastoma-associated protein Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 101000781972 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Protein wos2 Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101000652566 Tetrahymena thermophila (strain SB210) Telomerase-associated protein of 19 kDa Proteins 0.000 description 1
- 101001009610 Toxoplasma gondii Dense granule protein 5 Proteins 0.000 description 1
- 102100040250 Transcription elongation factor A protein-like 1 Human genes 0.000 description 1
- 108050008367 Transmembrane emp24 domain-containing protein 7 Proteins 0.000 description 1
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 208000006374 Uterine Cervicitis Diseases 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 210000002534 adenoid Anatomy 0.000 description 1
- 208000002517 adenoid cystic carcinoma Diseases 0.000 description 1
- 201000008395 adenosquamous carcinoma Diseases 0.000 description 1
- 201000008424 adenosquamous lung carcinoma Diseases 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 210000000576 arachnoid Anatomy 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000003123 bronchiole Anatomy 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 108010082989 calpeptin Proteins 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 206010008323 cervicitis Diseases 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 108050004038 cystatin Proteins 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 210000002270 ectocervical squamous cell Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 108010039262 elastatinal Proteins 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 210000000918 epididymis Anatomy 0.000 description 1
- 201000010063 epididymitis Diseases 0.000 description 1
- AWNIEFSZNNQBRL-ZCNUETMSSA-N ethyl (2r,3r)-3-[[4-methyl-1-oxo-1-[4-[(2,3,4-trimethoxyphenyl)methyl]piperazin-1-yl]pentan-2-yl]carbamoyl]oxirane-2-carboxylate;sulfuric acid Chemical compound OS(O)(=O)=O.CCOC(=O)[C@@H]1O[C@H]1C(=O)NC(CC(C)C)C(=O)N1CCN(CC=2C(=C(OC)C(OC)=CC=2)OC)CC1.CCOC(=O)[C@@H]1O[C@H]1C(=O)NC(CC(C)C)C(=O)N1CCN(CC=2C(=C(OC)C(OC)=CC=2)OC)CC1 AWNIEFSZNNQBRL-ZCNUETMSSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 231100001014 gastrointestinal tract lesion Toxicity 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 208000037824 growth disorder Diseases 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000000777 hematopoietic system Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000012760 immunocytochemical staining Methods 0.000 description 1
- 238000013115 immunohistochemical detection Methods 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 201000009592 jejunal neoplasm Diseases 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000000244 kidney pelvis Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007762 localization of cell Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 208000026807 lung carcinoid tumor Diseases 0.000 description 1
- 201000009546 lung large cell carcinoma Diseases 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000002418 meninge Anatomy 0.000 description 1
- 208000010569 mesonephric adenocarcinoma Diseases 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 208000014761 nasopharyngeal type undifferentiated carcinoma Diseases 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 238000013188 needle biopsy Methods 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000003448 neutrophilic effect Effects 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 108010036112 nuclear matrix protein 22 Proteins 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 210000003695 paranasal sinus Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000007388 punch biopsy Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 238000005395 radioluminescence Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 208000019694 serous adenocarcinoma Diseases 0.000 description 1
- 208000004548 serous cystadenocarcinoma Diseases 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 230000002992 thymic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- 208000010576 undifferentiated carcinoma Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000003741 urothelium Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57411—Specifically defined cancers of cervix
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5076—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5091—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/82—Translation products from oncogenes
Definitions
- sequence.txt This application includes a sequence listing submitted electronically herewith as an ASCII text file named “sequence.txt”, which is 53 kB in size and was created Mar. 9, 2009; the electronic sequence listing is incorporated herein by reference in its entirety.
- This invention relates to methods for performing diagnosis of medically relevant conditions by detecting the levels of relevant markers characteristic for the medically relevant condition and the levels of normalization markers.
- the methods pertain to characterization of the sample in a solution phase, without relying on morphological cell based information.
- the diagnosis of a large number of medically relevant conditions is currently performed using molecular markers as tools.
- the molecular tools are generally used as one aspect in a complex examination, taking into account a series of different parameters characterizing the samples to be examined.
- morphological examination of samples by cytological or histological means is in common use.
- Such methods based on morphological characterization of cell based samples are applicable for example in analysis of clinical samples such as body fluids, blood, surgical resections, secretions, swabs or lavages.
- swabs are used for detection of neoplastic lesions of the cervix uteri.
- lesions of different origin have to be distinguished.
- causes for lesions may for example be inflammations (due to infectious agents or physical or chemical damage) or preneoplastic and neoplastic changes.
- morphological examinations the lesions of different characteristics are sophisticated to distinguish.
- cytologists and pathologists have to be especially trained and even experienced examiners have a high inter- and intra-observer variance in the assessment of a diagnosis based on cytological specimens.
- the result of the examination is based upon the subjective interpretation of diagnostic criteria by the examining pathologist/cytologist. As a result the rate of false positive and false negative results in the screening tests remains unsatisfying high.
- markers are often used in immuno-histochemical staining reactions, or in the course of in-situ hybridization reactions.
- morphological examinations and immuno-histochemical staining reactions based on marker molecules characteristic for different medically relevant states of tissues or cells, may lead to enhanced results.
- the morphologic examination remains laborious and time consuming and thus expensive, even when supported by the molecular methods, that make the results more reliable.
- diagnosis on a morphologically cell based level is, even when supported by molecular parameters, subject to individual perception of the morphology by individual examiners. Thus the diagnosis is dependent on the person, that performs the examinations.
- molecular markers may be used as diagnostic tools without further support by cell based morphological examinations. This is especially the case, if markers are to be detected in an environment, where they do only occur under exactly defined conditions. So the methods for diagnosis of conditions on a molecular level only, without the support of cell based information, are restricted to cases, where there are suitable markers, that are non-ambiguously specific for the condition to be characterized. For example, detection of viral infections may be carried out in solutions of samples, because the markers characteristic for the presence of viruses in tissues do not occur in unaffected human tissues.
- the morphologically supported diagnostic methods performed routinely in the art show two major disadvantages. First, the methods are highly dependent on individual perception of the examiners. Secondly the morphological information is quite sensitive to decay processes and thus may cause artefacts after preparation of the samples. Both aspects contribute to improper reproducibility of the results.
- the present invention is directed to a method for diagnosing a medically relevant condition of a patient.
- the method comprises the steps of: obtaining a raw sample containing cells or cell debris from a patient; preparing a sample solution from the raw sample; detecting the levels of one or more relevant markers characteristic for said medically relevant condition in said sample solution; detecting the levels of one or more normalization markers; normalizing the detected level of the relevant markers with respect to said normalization parameters; and diagnosing the medically relevant condition from the normalized levels of said relevant markers within the sample solution.
- the normalization markers are characteristic for at least one of the following normalization parameters: the presence or absence of a particular cell type among the cells represented within the sample solution, the presence or absence of a particular differentiation pattern in the cells represented within the sample solution, and the presence or absence of particular proliferation properties of the cells represented within the sample solution.
- the medically relevant condition is a cell proliferative disorder, cancer or a precursory lesion.
- the present invention is also directed to a test kit for diagnosing a medically relevant condition.
- FIG. 1 shows the specific immunohistochemical staining of endocervical and ectocervical epithelial cells in cervical sections.
- FIG. 1A shows a positive reaction detected in columnar epithelium of the endocervix using an antibody directed against cytokeratin 18 (CK18).
- FIG. 1B shows no specific staining in columnar epithelium of the ectocervix using an antibody directed against cytokeratin 18 (CK18).
- FIG. 1C shows no specific staining in columnar epithelium of the endocervix using an antibody directed against cytokeratin 10/13 (CK10/13).
- FIG. 1D shows a strong staining of the squamous epithelium of the ectocervix using an antibody directed against cytokeratin 10/13 (CK10/13).
- FIG. 2 shows the Western Blot analysis of solubilized samples from cervical swabs.
- the numbers 1 to 4 refer to samples (cervical swabs) obtained from individual patients
- FIG. 3 shows the Western blot and ELISA analysis to demonstrate sample adequacy.
- Samples of four patients with high-grade cervical dysplasias were analysed using western blot analysis (upper panel of figure).
- the lower panel of this figure shows the results of ELISA analysis.
- This invention provides methods for improved diagnosis of medically relevant conditions by solution-based biochemical testing procedures performed in solutions of test samples.
- the invention provides a method to substitute the cell based morphological information contained within the cytological and/or histological data of the test sample by molecular information obtainable from the solution, wherein the original test sample is dissolved and thus enables for accurate and reproducible assessment of medically relevant diagnosis from dissolved test samples.
- the method according to the invention comprises the steps of determining the levels of one or more markers associated with the condition to be diagnosed, determining the level of a set of normalization markers suitable to substitute the information related to morphological aspects of the sample, that would have enabled or supported diagnosis in a cell based test system, comparing and/or combining the data concerning the levels of said markers and assessing diagnosis of a medically relevant condition.
- the present invention discovers that diagnosis of conditions, which is normally (in cell based diagnostic systems) enabled and/or supported by histological and/or cytological examination procedures, may be performed in solutions from raw samples containing various cell types of different characteristics, by a method comprising the steps of obtaining a raw sample, dissolving the sample in an appropriate solute, detecting the level of one or more markers associated with the condition to be diagnosed and additionally one or more normalization markers within the sample solution, normalizing the data correlating to the markers associated with said condition with respect to the data correlating to the normalization markers and diagnosing the presence or absence of a condition in the sample.
- the method according to the present invention may for example be applied as a primary screening test in cases, where a cytological, histological or pathological examination is normally performed.
- a cytological, histological or pathological examination is normally performed.
- one may discriminate, if the condition to be diagnosed may be present in the sample. If the solution based diagnosis gives a negative result concerning a particular condition, a further examination may be omissible. In case of positive results, ascertaining by classically applicable methods may follow. Thus, expensive and time consuming microscopic or other examinations could be avoided by means of an inexpensive rapid primary screening test.
- One aspect of the present invention is a method for enhanced diagnosis of medically relevant conditions, wherein the assessment of diagnosis is performed using solutions of lysed raw tissue- or cell-samples.
- the method for diagnosis disclosed according to the present invention does not rely on morphological parameters but enables for a diagnosis by means of biochemical analysis.
- a second aspect of the present invention is a method for characterizing a complex sample in solution by means of molecular markers characteristic for the parameters of interest, thus substituting information, which could otherwise be obtainable from cytological or histological examinations.
- a third aspect of the present invention is to provide suitable combinations of markers for the diagnosis of particular conditions of medical relevance in complex samples.
- the markers for normalization are chosen such that parameters included within the raw sample, that enable or support the diagnosis, which are lost by the dissolution of the sample, may be substituted.
- a fourth aspect of the present invention are test kits for performing diagnostic or research studies according to the present invention.
- the present invention enables for a rapid and easy assay for diagnosing of conditions in raw samples such as body fluids, swabs, ravages (e.g. bronchio-alveolar lavages, breast ductal lavages, etc.), aspirates (needle-apirates, fine-needle-aspirates) or complex cell- or tissue samples.
- raw samples such as body fluids, swabs, ravages (e.g. bronchio-alveolar lavages, breast ductal lavages, etc.), aspirates (needle-apirates, fine-needle-aspirates) or complex cell- or tissue samples.
- a problem with raw materials is the presence of a number of different cell-types within the sample and the presence of particular microorganisms and extracellular substances.
- the raw material contains a mixture of cells and compositions, that is prone to give artefacts as results.
- the information about the single constituents within the raw sample may be classically obtained by microscopic examination. Morphologic inspection gives hints about the differentiation, the localization of cells, as well as about the environment, in which the cells appear.
- the particular cells may be identified as epithelial cells and further categorized as e.g. endocervical or ectocervical epithelial cells. Even the presence of non-cervical cells such as endometrial cells may be ascertained easily by microscopic inspection.
- raw materials may directly be dissolved in an appropriate solvent without further preparation or characterization independent of the homogeneous or heterogeneous character of the sample material.
- Data, which are lost through lysis of the material are contained within the sample solution encoded by the levels of a series of marker molecules and may thus be reconstructed using said molecular data for normalization to the respective morphologic characteristics.
- This is achieved by employing a suitable set of molecular markers for each of the characteristic parameters needed for unambiguous diagnosis. By detecting a suitable array of markers one may assess the relevant parameters characterizing the raw sample and thus overcome the disadvantage of loss of information through lysis of the sample.
- the testing procedure according to the present invention includes detecting the levels of markers characteristic for cell conditions in question and of markers for normalizing the data with respect to parameters characterizing the particular environment in the test sample.
- the markers suitable for the present invention may be of various origin.
- the expression pattern of a marker, that is suitable for the detection of conditions in question may be dependent on the proliferative status of cells, on the differentiation status, on the cell type or on the organism. Examples for appropriate markers are set forth below.
- diagnosis generally comprises any kind of assessment of the presence of absence of a medically relevant condition. Diagnosis thus comprises processes such as screening for the predisposition for a medically relevant condition, screening for the precursor of a medically relevant condition, screening for a medically relevant condition, clinical or pathological diagnosis of a medically relevant condition, etc. Diagnosis of medically relevant conditions as used herein may comprise examination of any condition, that is detectable on a cytological, histological, biochemical or molecular biological level, that may be useful in respect to the human health and/or body. Such examinations may comprise e.g. medically diagnostic methods and research studies in life sciences. In one embodiment of the invention, the method is used for diagnosis of medically relevant conditions such as e.g. diseases. Such diseases may for example comprise disorders characterized by non-wild type proliferation of cells or tissues.
- the diagnosis pertains to diagnosis of cancers and their precursory stages, to monitoring of the disease course in cancers, to assessment of prognosis in cancers and to detection of disseminated tumor cells e.g. in the course of minimal residual disease diagnosis.
- the method according to the present invention may for example be used in the course of clinical or pathological diagnosis of cancers and their precursory stages or in routine screening tests as performed for particular cancers such as for example for examination of swabs e.g. in screening tests for cervical lesions, of bronchial lavages for lung cancer or of stool for lesions of the gastrointestinal tract, e.g. colorectal lesions.
- the method according to the present invention is applicable to all kinds of medically relevant conditions.
- Medically relevant conditions as used according to the present invention may for example be compositions of tissues, body fluids, secretions, washes or swabs. Such conditions may for example comprise the cellular composition of body fluids, such as the composition of blood, the composition of liquor or the composition of semen.
- the compositions shall be for example the presence or absence of particular cell types (e.g. pathogens, such as, viruses etc., preneoplastic, neoplastic and/or dysplastic cells etc.), the presence or absence of differentiation patterns of particular cell types, the total number of a particular cell types (e.g. erythrocytes, leucocytes, sperm, etc.), the total number of all cells of any cell types or the fraction of cells of particular other characteristics present or absent in the sample.
- particular cell types e.g. pathogens, such as, viruses etc., preneoplastic, neoplastic and/or dysplastic cells etc.
- differentiation patterns of particular cell types e.g. erythrocytes,
- medically relevant conditions may also comprise disorders related to cells, or tissues.
- the conditions to be diagnosed may comprise parameters related to cells in cytological or histological tissue samples.
- the conditions may comprise a differentiation pattern of cells in a tissue sample, such as surgical resection samples, biopsies, swabs, ravages etc.
- Such conditions may comprise e.g. congenital disorders, inflammatory disorders, mechanical disorders, traumatic disorders, vascular disorders, degenerative disorders, growth disorders, benign neoplasms, malignant neoplasms.
- Another aspect of the conditions according to the present invention may comprise conditions characterized by the presence or absence of proliferative characteristics. Conditions characterized by the presence or absence of proliferative characteristics may be for example cell proliferative disorders.
- Cell proliferative disorders comprise diseases characterized by abnormal growth properties of cells or tissues compared to the growth properties of normal control cells or tissues.
- the growth of the cells or tissues may be for example abnormally accelerated, decelerated or may be regulated abnormally.
- Abnormal regulation as used above may comprise any form of presence or absence of non wild-type responses of the cells or tissues to naturally occurring growth regulating influences.
- the abnormalities in growth of the cells or tissues may be for example neoplastic or hyperplastic.
- the cell proliferative disorders are tumors.
- Tumors may comprise tumors of the head and the neck, tumors of the respiratory tract, tumors of the anogenital tract, tumors of the gastrointestinal tract, tumors of the urinary system, tumors of the reproductive system, tumors of the endocrine system, tumors of the central and peripheral nervous system, tumors of the skin and its appendages, tumors of the soft tissues and bones, tumors of the lymphopoietic and hematopoietic system, etc.
- Tumors may comprise for example neoplasms such as benign and malignant tumors, carcinomas, sarcomas, leukemias, lymphomas or dysplasias.
- the tumor is for example cancer of the head and the neck, cancer of the respiratory tract, cancer of the anogenital tract, cancer of the gastrointestinal tract, cancer of the skin and its appendages, cancer of the central and peripheral nervous system, cancer of the urinary system, cancer of the reproductive system, cancer of the endocrine system, cancer of the soft tissues and bone, cancer of the hematopoietic and lymphopoietic system.
- Tumors of the anogenital tract may comprise cancer of the perineal, the perinanal and the scrotal skin, cervical cancer, cancer of the vulva, cancer of the vagina, caner of the penis, cancer of the anus, etc.
- Cervical cancer may comprise squamous lesions, glandular lesions or other epithelial tumors.
- Squamous lesions comprise, e.g., cervical intraepithelial neoplasias (mild, moderate and severe dysplasia), carcinoma in-situ, squamous cell carcinoma (e.g., keratinizing, nonkeratinizing, verrucous, warty, papillary, lymphoepithelioma-like).
- Glandular lesions may comprise atypical hyperplasias, adenocarcinoma in-situ, andenocarcinoma (such as, e.g., mucinous, endometrioid, clear cell, adenoma malignum, papillary, serous or mesonephric adenocarcinoma).
- Other epithelial tumors may comprise adenosquamous carcinoma, glassy cell carcinoma, adenoid cystic carcinoma, adenoid basal carcinoma, carcinoid tumor, small cell carcinoma and undifferentiated carcinoma.
- Gastrointestinal tumors may comprise colon cancer, cancer of the colon ascendens, of the colon descendens, of the colon transversum, of the sigmoidum, of the rectum, cancer of the small intestine, cancer of the jejunum, cancer of the duodenum, gastric cancer, oesophageal cancer, liver cancer, cancer of the bile, cancer of the biliary system, pancreatic cancer, etc.
- a comprehensive overview over gastrointestinal lesions is given in “Hamilton Sr, Aaltonen L A (Eds.): World Health Organization Classification of Tumours, Pathology and Genetics of Tumors of the Digestive System , IARC Press: Lyon 2000,” which shall be incorporated herein by reference.
- Tumors of the respiratory tract may comprise any malignant condition of the respiratory tract such as, e.g., cancer of the lung, the alveoles, the bronchioles, the bronchial tree and the broncus, the nasopharyngeal space, the oral cavity, the pharynx, the nasal cavity and the paranasal sinus.
- Lung cancer such as small cell lung cancer, non-small cell lung cancer, squamous cell lung carcinoma, small cell lung carcinoma, adenocarcinoma of the lung, large cell lung carcinoma, adeno-squamous lung carcinoma, carcinoid tumor of the lung, broncheal gland tumor or (malignant) mesothelioma.
- Tumors of the urinary system may comprise bladder cancer, cancer of the kidney, renal pelvis, cancer of the ureters and cancer of the urethra, etc.
- Tumors of the reproductive system may comprise cancer and precursory stages thereof of the ovary, the uterus, the testis, the prostate, the epididymis, etc.
- the methods according to the present invention also apply to precursor stages of the lesions, tumors or cancers.
- the method according to the present invention pertains to the detection of disseminated tumor cells or metastases.
- the carcinoma is e.g. cervical cancer, colon cancer, gastric cancer, breast cancer, bladder cancer, lung cancer, cancer of the oral cavity etc.
- Samples may be e.g. prepared in a reproducible and easy to store and transport form by dissolving the cellular components of the raw sample in a suitable solvent immediately after or even during obtaining the sample.
- Body fluids may directly be transferred from the body of an individual to a solution containing suitable detergents and preservative substances.
- tissue samples may immediately be transferred to denaturing lysis conditions (eventually supported by physical forces) and be thus preserved.
- denaturing lysis conditions eventually supported by physical forces
- the molecular components of the original sample may be preserved, and no degradation may occur.
- the degradation by enzymatic activities may, for example, be minimized by the use of enzyme inhibitors.
- a solution of test samples may easily represent the molecular properties of a test sample at the time of dissolution, without requiring additional preservative precautions.
- Raw samples may comprise clinical samples, such as e.g. secretions, swabs, lavages, body fluids, blood, urine, semen, stool, bile, liquor, bone marrow, biopsies, cell- and tissue-samples.
- Biopsies as used in the context of the present invention may comprise e.g. resection samples of tumors, tissue samples prepared by endoscopic means or punch- or needle-biopsies of organs.
- any sample potentially containing the marker molecules to be detected may be a sample according to the present invention.
- the sample comprises cervical swabs, bronchial lavages, stool etc.
- Raw sample as used in the context of the present invention may comprise fixed or preserved cell or tissue samples. E.g. cells preserved in suitable solutions (alcohols etc.) or fixed tissue samples may be used as raw samples in the methods according to the present invention.
- a raw sample according to the method of the present invention includes any sample comprising cells or cell debris.
- the cells may for example be prokaryotic or eukaryotic cells.
- the cells to be determined may be cells of microorganisms such as chlamydia, E. coli , candida, etc.
- a suitable lysis buffer comprising e.g. solvents.
- solvents may for example be aqueous solutions of chaotropic agents such as e.g. urea, GuaSCN, Formamid, of detergents such as anionic detergents (e.g.
- SDS N-lauryl sarcosine, sodium deoxycholate, alkyl-aryl sulphonates, long chain (fatty) alcohol sulphates, olefine sulphates and sulphonates, alpha olefine sulphates and sulphonates, sulphated monoglycerides, sulphated ethers, sulphosuccinates, alkane sulphonates, phosphate esters, alkyl isethionates, sucrose esters), cationic detergents (e.g. cetyl trimethylammonium chloride), non-ionic detergents (e.g.
- TWEEN®-20 polyethylene glycol sorbitan monolaurate; nonidet P-40, TRITON® X-100, t-octylphenoxypolyethoxyethanol; NP-40, IGEPAL® CA 630, nonidet P 40; N-Octyl-Glucosid) or amphoteric detergents (e.g. CHAPS, 3-Dodecyl-dimethylammonio-propane-1-sulfonate, Lauryldimethylamine oxide) and/or of alkali hydroxides such as e.g. NaOH or KOH.
- alkali hydroxides such as e.g. NaOH or KOH.
- the solvent is designed, so that cells, cell debris, nucleic acids, polypeptides, lipids and other biomolecules potentially present in the raw sample are dissolved.
- the solution for dissolving the raw samples according to the present invention may furthermore comprise one or more agents that prevent the degradation of components within the raw samples.
- Such components may for example comprise enzyme inhibitors such as proteinase inhibitors, RNAse inhibitors, DNAse inhibitors etc.
- the sample is lysed directly in the form it is obtainable from the test-individuals.
- the sample may be further purified before being lysed.
- Such purification procedures may for example comprise washing away of contaminants such as mucus or the like, separation or concentration of cellular components, preserving and transporting of the cells.
- the cellular components of the raw samples are included in a single sample solution.
- the preparation of a sample for use in a method as disclosed herein may also comprise several steps of further preparations of the sample, such as separation of insoluble components, isolation of polypeptides or nucleic acids, preparation of solid phase fixed peptides or nucleic acids or preparation of beads, membranes or slides to which the molecules to be determined are coupled covalently or non-covalently.
- the detection of the marker molecules is performed directly from this solution.
- the detection may be carried out in solution or using reagents fixed to a solid phase.
- the detection of the marker molecules is performed from a solution of dissolved body samples. Therefore detection may be carried out in solution or using reagents fixed to a solid phase.
- a solid phase as used in the context of the present invention may comprise various embodiments of solid substances such as planar surfaces, particles (including micro-, nano-particles or even smaller particles). In certain embodiments particles may be provided as beads, colloids or the like.
- the fixation of reagents to the solid phase in a test kit or an in-vitro diagnostic device may be effected via direct fixation or via indirect fixation.
- Direct fixation may e.g. be effected by covalent or non-covalent binding or association to surfaces. Indirect fixation may be effected through binding of the reagents (e.g. antibodies, probes etc.) to agents which themselves are directly fixed to solid phases. Such agents may comprise antibodies or other binding agents like avidin, streptavidin, biotin or the like.
- the detection of one or more molecular markers may be performed in a single reaction mixture or in two or more separate reaction mixtures. The detection reactions for several marker molecules may for example be performed simultaneously in multi-well reaction vessels or as the case may be on one single or two or more separate test strips.
- the markers characteristic for the cell proliferative disorders may be detected using reagents that specifically recognise these molecules.
- the normalization markers may be detected using reagents, that specifically recognize them.
- the detection reaction for each class of markers may comprise one or more further reactions with detecting agents either recognizing the initial marker molecules or preferably recognizing the prior molecules (e.g. primary antibodies) used to recognize the initial markers.
- the detection reaction further may comprise a reporter reaction indicating the level of the markers characteristic for cell proliferative disorders or the normalization markers.
- marker or “marker molecule” in all their grammatical forms as used in the context of the present invention refers to nucleic acid as well as polypeptide molecules. Marker or marker molecule thus comprises e.g. RNA (mRNA, hnRNA, etc.), DNA (cDNA, genomic DNA, etc.), proteins, polypeptides, proteoglycans, glycoproteins and the respective fragments of these molecules.
- relevant marker shall refer to marker molecules characteristic for a medically relevant condition.
- normalization marker shall refer to marker molecules used for normalization purposes.
- a level of a marker molecule as used herein refers to a semiquantitave as well as a quantitative value regarding the amount of the respective marker present in a sample.
- a quantitative value may e.g. be represented in terms of a concentration.
- a semiquantitative value may be expressed in terms of a scale of levels e.g. undetectable levels, low levels, intermediate levels, high levels or any other suitable mode.
- the level of a marker may also be represented in terms of a dependent parameter such as the intensity of a signal generated in an assay format in response to the presence of a marker molecule.
- a probe for the detection of the marker molecules as used in the context of the present invention shall be any molecule, that specifically binds to said marker molecules.
- the probe may for example be an antigen binding agent such as antibodies (monoclonal or polyclonal), antibody fragments or artificial molecules comprising antigen binding epitopes, DNA or RNA binding molecules such as proteins or nucleic acids.
- Nucleic acids binding to other nucleic acids may for example be peptide nucleic acids (PNAs) or oligonucleotides (RNA, DNA, PNA, artificial nucleic acids, etc.) for detection purposes or primers.
- PNAs peptide nucleic acids
- RNA DNA, PNA, artificial nucleic acids, etc.
- a molecule is said to recognize another molecules if it specifically interacts with that molecule. Specific interaction may for example be specific binding to or of the other molecule.
- the reporter reaction may be for example a reaction producing a colored compound.
- the reporter substances correlated to the particular markers develop different colors.
- the normalization marker specific reporter may be a molecule quenching the signal produced by the reporter molecule specific for the marker, characteristic for the medically relevant condition, in dependence on the level of the normalization marker present in the sample.
- the reporter reactions may produce fluorescent dyes with differing wavelength characteristics.
- the reporter reaction may comprise light emitting reactions with different wavelength characteristics for the reporter substances specific for either marker to be detected.
- the reporter reaction may comprise the emission of radioactive radiation and additional methods for visualizing or quantifying the radiation.
- the different marker molecules may be recognized by agents, that bear radio-nuclides emitting radiation with different energetic properties, so that the signals referring to marker molecules could be distinguished.
- Applicable formats for the detection reaction according to the present invention may be blotting techniques, such as Western-Blot, Southern-blot, Northern-blot.
- the blotting techniques are known to those of ordinary skill in the art and may be performed for example as electro-blots, semidry-blots, vacuum-blots or dot-blots.
- immunological methods for detection of molecules may be applied, such as for example immunoprecipitation or immunological assays, such as EIA, ELISA, RIA, lateral flow assays, flow through assays, immunochromatographic strips, etc.
- immunoassays for use in the invention may comprise competitive as well as non-competitive immunoassays such as sandwich assays.
- immunochemical or nucleic acid based testing may be performed using a testing device for clinical laboratories.
- Such testing device may comprise any device suitable for immunochemical or nucleic acid based testing including any format such as e.g. Point of care testing devices as well as bench top or laboratory devices.
- the devices may be e.g. provided as open or closed platform systems.
- the system may be based on any suitable methodology such as e.g. employing microtiter plates, multiwell plates, flow through or lateral flow systems, microchip or array based systems or bead or membrane based systems.
- the detection methods employed may comprise any methods known to those of skill in the art useful for immunochemical or nucleic acids based detection reactions. Such detection systems may be e.g.
- luminescence systems electrochemoluminescence, fluorescence based systems, conductivity based detection systems, radiation (light, UV, X-ray, gamma etc.) or any other known method.
- the method for detection of the level of the marker molecules in one embodiment of the present invention is any method, which is suited to detect even very small amounts of specific molecules in biological samples. Furthermore any method for detection of the marker molecules irrespective of the sensitivity may be applied.
- the detection reaction according to the present invention may comprise for example detection reactions on the level of nucleic acids and/or detection reactions on the level of polypeptides.
- the detection of the marker molecules may comprise the detection of particular splicing variants.
- the detection method may comprise the detection of modifications of marker molecules such as phosphorylation or glycosylation etc of polypeptides or the methylation of nucleic acid molecules in samples.
- the detection of the level of marker molecules is carried out by detection of the level of nucleic acids coding for the marker molecules or fragments thereof present in the sample.
- the means for detection of nucleic acid molecules are known to those skilled in the art.
- the procedure for the detection of nucleic acids can for example be carried out by a binding reaction of the molecule to be detected to complementary nucleic acid probes, proteins with binding specificity for the nucleic acids or any other entities specifically recognizing and binding to said nucleic acids. This method can be performed as well in vitro as directly in-situ for example in the course of a detecting staining reaction.
- Another way of detecting the marker molecules in a sample on the level of nucleic acids performed in the method according to the present invention is an amplification reaction of nucleic acids, which can be carried out in a quantitative manner such as for example the polymerase chain reaction.
- amplification reaction of nucleic acids e.g. real time RT PCR may be used to quantify the level of marker RNA in samples of cell proliferative disorders.
- the detection of the level of marker molecules is carried out by determining the level of expression of a protein.
- the determination of the marker molecules on the protein level may for example be carried out in a reaction comprising a binding agent specific for the detection of the marker molecules.
- binding agents may comprise for example antibodies and antigen-binding fragments, bifunctional hybrid antibodies, peptidomimetics containing minimal antigen-binding epitopes etc.
- the binding agents may be used in many different detection techniques for example in western-blot, ELISA, RIA, EIA, flow through assay, lateral flow assay, latex-agglutination, immunochromatographic strips or immuno-precipitation.
- binding agent based detection may be carried out as well in vitro as directly in situ for example in the course of an immunocytochemical staining reaction. Any other method suitable for determining the amount of particular polypeptides in solutions of biological samples can be used according to the present invention.
- Methods for detection of methylation of nucleic acids are known to those of skill in the art and may comprise for example methods employing chemical pre-treatment of nucleic acids with e.g. sodium bisulphite, permanganate or hydrazine, and subsequent detection of the modification by means of specific restriction endonucleases or by means of specific probes e.g. in the course of an amplification reaction.
- the detection of methylation may furthermore be performed using methylation specific restriction endonucleases.
- Methods for the detection of methylation states in nucleic acids are e.g. disclosed in patent application EP02010272.9, U.S. Pat. No. 5,856,094, WO0031294, U.S. Pat. No. 6,331,393 etc. The cited documents are incorporated herein by reference.
- Detection of modified states of polypeptides may for example comprise binding agents specifically recognizing modified or unmodified states of polypeptides.
- enzymes such as phosphatases or glycosylases may be used to remove modifications in molecules. The presence or absence of modifications can thus be detected by determination of mass or charge of the molecules by means of electrophoresis, chromatography, mass spectrometry etc. prior and subsequent to the incubation with a respective enzyme.
- the detection of a series of marker molecules is carried out on the level of polypeptides and simultaneously the detection of a further series of marker molecules and/or of all or some of the same marker molecules is carried out on the level of nucleic acids.
- Markers associated with medically relevant cellular conditions may e.g. be molecules which influence and/or reflect the proliferation and/or differentiation characteristics of cells and/or tissues.
- Such molecules may comprise for example cell cycle regulatory proteins, proteins associated with the DNA replication, transmembrane proteins, receptor proteins, signal transducing proteins, calcium binding proteins, proteins containing DNA-binding domains, metalloproteinases, kinases, kinase inhibitors, chaperones, embryogenesis proteins, heat shock proteins or enzymes which modify other proteins posttranslationally thus regulating their activity, or nucleic acids coding for the named proteins.
- mRNA coding for the named proteins may be marker molecules useful according to the present invention.
- the marker associated with the cell proliferative disorder may be for example uniquely expressed in cells affected by the disorder, may be not expressed in said cells or may be overexpressed in said cells.
- Marker molecules for use according to the present invention may comprise one or more markers chosen from p13.5, p14, p15, p16 (also referred to p16 INK4a ), p19, p21, p27, p53, pRb, p14ARF, cyclin A, cyclin B, cyclin E, MDM-2, MCM2, MCM5, MCM6, CDC2, CDC6, Id1, osteopontine, GRP, renal dipeptidase, her2/neu, TGF ⁇ II receptor, HPV associated markers e.g. derived from HPV genes L1, L2, E1, E2, E4, E5, E6 or E7, etc.
- a selection of markers useful in one embodiment of the present invention for the detection of medically relevant conditions is shown below in Table 1.
- the marker for a medically relevant condition may be a marker for tumors (tumor markers).
- the marker molecules characteristic for tumors may e.g. be proteins, that are expressed in a non-wild type manner in tumors compared to normal control tissue.
- Non-wild type expression as used herein may comprise increased or decreased levels of expression or lack of expression or expression of non-wild type forms of the respective molecules.
- Expression of non-wild type forms of a protein may comprise expression of mutated forms of proteins, arising by insertion, deletion, substitution, or frameshift mutations or any other known types of mutations in proteins or nucleic acids.
- the proteins, polypeptides or fragments thereof or nucleic acids encoding these proteins or polypeptides or fragments of these nucleic acids may be used as molecular markers associated with tumors and may thus be understood under the term “tumor marker” as used in the context of the present invention.
- tumor marker Proteins that show non-wild type expression in association with tumors are disclosed for example in the documents WO9904265A2, WO0149716A2, WO0055633A2 and WO142792A2, which shall be incorporated by reference herein.
- the marker characteristic for the medically relevant condition may be a cell cycle regulatory protein such as for example a cyclin, a cyclin dependent kinase or a cyclin dependent kinase inhibitor.
- the marker characteristic for the medically relevant condition may be a marker associated with a transient or a persistent viral infection.
- the viral infection may comprise an infection by a human papilloma virus (HPV) such as high risk or low risk HPV.
- HPV human papilloma virus
- HPV high risk or low risk HPV.
- HPV human papilloma virus
- the high risk HPV may comprise HPV subtypes such as e.g. HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56 and 58.
- the markers for HPV infection may e.g.
- a marker characteristic for a viral infection may be used in combination with any other marker for a medically relevant condition such as e.g. in combination with a cell cycle regulatory protein.
- Combinations of marker molecules, which may be of special interest with respect to HPV association are e.g. disclosed in WO0208764 which document shall be incorporated herein by reference.
- cell cycle regulatory proteins for use in combination with HPV markers may for example be chosen from a group comprising pRb, p53, p14 ARF, cyclin dependent kinase inhibitors.
- p16 INK4a may be used in combination with markers for HPV infection (e.g. L1, L2, E2, E4, E5, E6 or E7).
- markers useful as markers for medically relevant conditions in certain embodiments may serve as markers for normalization in certain other embodiments and vice versa.
- a marker can only serve either as marker for the medically relevant condition or as marker for normalization.
- Ki67 as a marker for cell proliferation may be useful as a normalization marker in certain embodiments (e.g. in combination with p16, p14ARF, claudin-1 or others as markers for medically relevant condition).
- Ki67 may serve as a marker for medically relevant condition (e.g. as a marker for cervical dysplasia or other dysplastic diseases) in combination with suitable normalization markers (e.g. cytokeratins, catenins or others).
- suitable normalization markers e.g. cytokeratins, catenins or others.
- Various other markers may likewise serve either as a marker for medically relevant conditions or for a normalization depending on the particular embodiment of application.
- Normalization markers may comprise for example housekeeping genes, such as actin, gapdh, histone proteins, phospholipase, ⁇ 2-microglobulin, proteins associated with active cell proliferation such as e.g. Ki67, PCNA or statin, or proteins characteristic for particular cell types such as for example CK20 in epithelial cells or any cell specific cell-surface antigens.
- housekeeping genes such as actin, gapdh, histone proteins, phospholipase, ⁇ 2-microglobulin, proteins associated with active cell proliferation such as e.g. Ki67, PCNA or statin, or proteins characteristic for particular cell types such as for example CK20 in epithelial cells or any cell specific cell-surface antigens.
- carbohydrate structures present on glycoproteins, proteoglycans, lectin receptors such as the concanavalin A receptor, mucins and enzymes which are involved in the biosynthesis of these molecules such as GalNac transferases and oligosaccharyltransferases might also serve
- modified states of molecules may be used as markers in the method according to the present invention.
- markers for medically relevant conditions such as polypeptides and nucleic acids
- modified states of molecules such as polypeptides and nucleic acids
- phosphorylated, glycosylated or otherwise modified polypeptides or methylated nucleic acids may be addressed as markers in the method according to the present invention.
- Normalization as used according to the present invention shall comprise any method suitable for relating the detected levels of markers to parameters valuable for the assessment of the diagnosis.
- One aspect of this normalization may be a reconstruction of the relevant cytological and histological information contained within the raw sample by means of suitable molecular markers detectable in the sample solutions. Normalization may comprise for example the detection of the total number of cells present in the sample, of the presence or absence of a particular cell types in a sample, of the presence or absence of an organism or of cells of an organism in a sample, of the number of cells of a particular cell type or organism present in the sample, of the proliferative characteristics of cells present in the sample or of the differentiation pattern of the cells present in the sample.
- normalization may also comprise proving the adequacy of the test, wherein as the case may be inadequate test results may be discarded or classified as invalid. Therefore, normalization as used in the context of the present invention may comprise qualitative or semi-quantitative methods for normalization.
- semi-quantitative normalization may comprise determining a threshold value for a normalization marker.
- semi-quantitative normalization may be applied e.g. as follows: the level determined for the relevant marker may be regarded as a valid test result only if the level of the normalization marker exceeds a defined threshold value; in case the threshold value is not reached the test result for the relevant marker is regarded as invalid; diagnosis may not be assessed on the basis of the test.
- a threshold may be set that may not be exceeded.
- qualitative normalization may be performed with respect to the presence or absence of a normalization marker. In those cases, e.g. the value determined for the relevant marker is compared to the presence or absence of a normalization marker. As predefined, the value is valid only in case the normalization parameter (presence or absence of a detectable level of the normalization marker) is met.
- Plakophilin (80.5 kD PP1-5C2, Research Heid, HW, squamous IgG1 Diagnostics Differentiation. cells (W, Elisa, Inc. 1994 Dec; 58(2): 113-31 IHC, IF) endometrial Vimentin VIM 3B4, Research Smedts F et al., Am cells IgG1, (W, Diagnostics J Pathol. 1990 ELISA, IF, Inc. Mar; 136(3): 657-68 IHC) Erythrocytes Haemoglobin RDI-CBL63, Research Smith et al., J. IgM Diagnostics Histochem. (RIA, EIA) Inc.
- the normalization may comprise the determination of the presence of a number of (human) cells in question in a sample.
- This is a crucial aspect of the invention.
- embodiments false (especially false negative) results of tests can only be avoided, if the testing procedure verifies, that the test sample contains the materials (e.g. cells, tissues organisms etc.), that are necessary for performing the particular test. In various tests this will comprise ensuring, that the sample contains cells.
- the verification of the adequacy of the sample will not just comprise ensuring of the presence of cells, but will include the detection of the presence of cells of a distinct origin or of a special cell type.
- normalization may also comprise the determination of cells of particular origin such as e.g. cells from a particular organ or of a particular histological localization such as for example the detection of cells of distinct regions of epithelia, or of cells of connective tissue, cells originating from the basal lamina of a tissue or of cells of a heterologous origin, such as metastatic cells.
- cells of particular origin such as e.g. cells from a particular organ or of a particular histological localization
- cells of distinct regions of epithelia, or of cells of connective tissue cells originating from the basal lamina of a tissue or of cells of a heterologous origin, such as metastatic cells.
- a marker which might be used for the detection of a medically relevant condition, such as e.g. neoplasia or dysplasia, under certain normal conditions.
- Normalization as used according to the present invention may comprise the detection of the presence or absence and/or the level of any cell-types, that may possibly contribute to the total level of
- the method may be applied for the detection of cervical lesions.
- Cervical lesion may comprise any kind of cervical dysplasia such as cervical cancers as defined above and its precursory stages. Markers and combinations thereof useful for this detection purpose are for example disclosed in WO0208764 and EP1217377, which documents shall be incorporated herein by reference.
- the test may be performed using any suitable sample of cervical origin.
- the sample may for example comprise biopsies or microbiopsies of the cervix or swabs taken from the cervical region.
- Cervical swabs as used herein are samples that may for example be obtained using a suitable device such as a brush, a tampon, a spatula or the like, which is contacted with the uterine cervix during the sampling procedure.
- the sampling device may be any suitable device, which may be used in conventional testing performed by a physician or a self sampling device.
- Promising molecular markers for enhancing the evaluation of cervical swabs are e.g. p16 INK4a , p14ARF, cyclin E, cyclin A, cyclin B, MN, her2/neu, mdm-2, bcl-2, EGF-Receptor, mcm-2, mcm-5, claudin-1, Markers indicative for Human papilloma virus infection, pRb, p53 etc. which might be used to detect dysplastic and neoplastic cells.
- molecular markers for enhancing the evaluation of cervical swabs are e.g. p16 INK4a , p14ARF, cyclin E, cyclin A, cyclin B, MN, her2/neu, mdm-2, bcl-2, EGF-Receptor, mcm-2, mcm-5, claudin-1, Markers indicative for Human papilloma virus infection, pRb,
- Normalization according to the present invention for the purpose of analysis of cervical swabs may comprise the detection of the presence of human cells at all, the detection of cells of the cervical epithelium, the detection of the presence of endocervical as well as ectocervical cells and the detection of cells of endometrial origin.
- the endocervical epithelium is a glandular columnar epithelium. Cells originating from the endocervix may thus be identified by markers that are selectively expressed by columnar epithelial cells or by cells in glandular epithelia.
- the ectocervical epithelium is a squamous epithelium.
- Identification of ectocervical cells thus may be achieved by detection of markers characteristic for squamous epithelial cells.
- the detection of epithelial cells may be sufficient.
- the differentiation of especially endocervical cells may be crucial. It is a crucial step to ensure the presence of ecto- and endocervical cells within the sample to ensure, that the specimen was taken at the cervical transformation zone, where most dysplasias and neoplasias arise. If there are no such cells, the sample is not adequate for the testing procedure, for it is prone to give false negative results.
- p16 INK4a may be expressed in normal endometrial cells normalization of the p 16 INK4a expression level in regard to the number of endometrial cells might be necessary.
- the normalization furthermore may comprise the detection of the presence or absence of the named cellular components within the sample, and additionally the detection of the total level of a particular cell type or of the fraction, that a particular cell type contributes to the total number of cells within the sample.
- the detected level of the p16 INK4a protein may be normalized to the cytological conditions represented by the particular sample, so that one may state, if the detected level of the p16 INK4a protein is indicative for cervical cells overexpressing p16 INK4a , or if there is an abundant number of endometrial cells present in the sample, thus mimicking the overexpression of p16 INK4a .
- normalization may comprise the determination of the quantity of endometrial cells within a cervical sample on the basis of a molecular marker. Comparing the level of e.g.
- p16 INK4a as a marker for a medically relevant condition determined in a cervical sample to the quantity of endometrial cells assessed by means of molecular markers, one may state, whether the total amount of p16 may arise only from the endometrial cells present within the sample solution. Thus, false positive results in diagnosing cervical dysplasias overexpressing p16 INK4a attributable to the presence of high levels of endometrial cells may be excluded.
- a quantity as used in the context of the present invention may refer to a quantitative or semi-quantitative assessment. This may e.g. comprise the assessment of a total number of cells or the assessment of a fraction with respect to the total number of cells. In certain embodiments of the invention the determination of a quantity may refer to the assessment of the fraction of an overall marker level that is contributed by a particular type of cells.
- normalization markers For the purpose of providing a normalization marker for the evaluation of cervical specimens, several normalization markers appear to be useful and may e.g. be selected from the following: Cytokeratins, E-Cadherins, Involucrin, Urokinase-like Plasminogen-activator, SCCA (Squamous cell carcinoma antigen), Catenins, (e.g. alpha-catenin, beta-Catenin, gamma-Catenin (Plakoglobin)), Ep-Cam.
- Cytokeratins e.g. alpha-catenin, beta-Catenin, gamma-Catenin (Plakoglobin)
- Ep-Cam Ep-Cam.
- the markers for normalization may for example be applied as markers indicative of the presence of specific cell differentiation patterns such as e.g. terminal differentiation or differentiation as specific epithelial cells.
- normalization markers may be marker molecules characteristic for squamous epithelial cells e.g. indicative for the presence of ectocervical cells in a cervical sample.
- Suitable markers may comprise e.g. CK13, E-Cadherin, gamma-Catenin, or Involucrin.
- the markers may be characteristic for the presence of columnar epithelial cells indicating the presence of endocervical cells in the specimen.
- Suitable markers comprise: Ep-Cam, CK18, CK8.
- normalization may comprise the detection of epithelial cells generally; in these cases any marker suitable for the detection of epithelial cells may be employed. Markers may be for example those given in Tables 2 and 3.
- the method disclosed herein may be used for the detection of disorders of the respiratory tract.
- NSE neuron specific enolase
- Samples of tumor specimens are yielded by bronchoscopy with collection of cells by means of brushes or bronchoalveolar ravages. Since NSE is also expressed in few normal cells within the lung, the level of NSE expression detected in the dissolved sample has to be set in relation to the normalisation maker (for example actin) for detection of the amount of cells present within the sample.
- the normalisation maker for example actin
- a third embodiment of the present invention is the detection of lesions of the gastrointestinal tract, e.g. colorectal lesions from stool samples.
- the origin of indicative nucleic acids and/or polypeptides detectable in stool samples may be crucial for the assessment of diagnosis.
- false results based e.g. on the detection of marker molecules originating from foodstuff ingested by individuals rather than from lesion of the mucosa of the gastrointestinal tract may be eliminated.
- artefacts produced by the presence of traces of markers from the blood circulation, or originating from swallowed sputum etc. may be eliminated using the methods disclosed herein.
- kits for performing the method according to the present invention.
- the kit may be for example a diagnostic kit, an analytical kit or a research kit.
- kit as used according to the present invention may comprise kits as well as diagnostic devices.
- the kits or devices may e.g. be designed for ELISA (e.g. sandwich, competitive, non-competitive, etc.), EIA (competitive, non-competitive, etc.) RIA tests, bead based test systems, lateral flow assays, flow through assays, strip test assays, dip stick assays, or any other known laboratory-, bench top- or point of care-testing format.
- a kit according to the present invention may in certain embodiments comprise in-vitro diagnostic devices for performing diagnostic tests.
- In vitro-diagnostic devices may e.g. be ELISA devices of any kind known to those of skill in the art.
- the in-vitro diagnostic device may be a lateral flow assay device, or a flow through assay device e.g. employing at least one reagent binding to a marker characteristic for a medically relevant condition and one reagent binding to a normalization marker, both fixed to a solid phase.
- Such devices may employ various mechanisms for visualization of the test result.
- the tests may employ secondary detection reagents directed against the marker molecules coupled to detectable moieties.
- the detectable moieties may comprise colloidal gold, (coloured) latex particles and others.
- the in-vitro diagnostic test device may be a flow through assay device based on capillaries or on porous members (such as membranes, beads or other three dimensional arrangements of porous substances).
- porous members such as membranes, beads or other three dimensional arrangements of porous substances.
- the size of pores or capillaries need to be adjusted to ensure optimal flow conditions.
- a kit according to present invention may comprise
- the reagents and buffers commonly used for carrying out the detection reaction such as buffers, detection-markers, carrier substances and others,
- the test kit may optionally include a lysis buffer for solublization of the raw sample.
- a lysis buffer for solublization of the raw sample.
- the lysis buffer may be any suitable solvent known to those of skill in the art.
- the lysis buffer for use in the kit may for example be aqueous solutions of chaotropic agents such as e.g. urea, GuaSCN, Formamid, of detergents such as anionic detergents (e.g.
- SDS N-lauryl sarcosine, sodium deoxycholate, alkyl-aryl sulphonates, long chain (fatty) alcohol sulphates, olefine sulphates and sulphonates, alpha olefine sulphates and sulphonates, sulphated monoglycerides, sulphated ethers, sulphosuccinates, alkane sulphonates, phosphate esters, alkyl isethionates, sucrose esters), cationic detergents (e.g. cetyl trimethylammonium chloride), non-ionic detergents (e.g.
- Such components may for example comprise enzyme inhibitors such as proteinase inhibitors, RNAse inhibitors, DNAse inhibitors etc.
- the inhibitors may e.g. comprise proteinase inhibitors selected from the compositions given in Table 5.
- the lysis buffer by the way of providing an inhibitor of degradation enables for detection of p16 in the sample.
- the cyclin dependent kinase inhibitor p16 is degraded in the solubilized samples and may thus not be detected. This is especially true, if the samples are directly transferred to a lysing medium and stored therein for a certain period of time.
- the lysis buffer may also comprise bulk protein (e.g. albumin such as bovine serum albumin or calf serum albumin or other bulk proteins) to compete in degradation with the sample proteins.
- the bulk proteins may e.g. be present in combination with proteinase inhibitors or may be added instead of proteinase inhibitors.
- the solvent may be selected to be compatible with the performance of the test (EIA, ELISA or strip test performance), so that solubilized samples may directly be applied to the test.
- Test as used in the context may comprise any procedure for detecting the presence or absence and/or the level of marker molecules.
- the reagent for the detection of the marker molecules may include any agent capable of binding to the marker molecule.
- Such reagents may include proteins, (poly)peptides, nucleic acids, peptide nucleic acids (PNAs), glycoproteins, proteoglycans, polysaccharids or lipids.
- the markers characteristic for medically relevant conditions and/or normalization marker samples for carrying out positive and/or negative controls may comprise for example nucleic acids in applicable form such as solution or salt, peptides in applicable form, tissue section samples, microorganisms or positive or negative cell-lines.
- the detection of the marker molecules is carried out on the level of polypeptides.
- the binding agent may be for example an antibody specific for the marker molecules or a fragments thereof.
- binding agents may comprise antigen-binding fragments such as Fab fragments, single chain antibodies, bifunctional hybrid antibodies, peptidomimetics containing minimal antigen-binding epitopes etc.
- the binding agent might be a lectin binding to a specific carbohydrate structure on the marker molecule.
- the detection of the marker molecules is carried out on the nucleic acid level.
- the reagent for the detection may be for example a nucleic acid probe or a primer reverse-complementary to said marker nucleic acid.
- FIG. 1 shows specific staining of endocervical epithelia with anti-Cytokeratin 18 antibody and specific staining of ectocervical epithelia with anti-Cytokeratin 10/13 antibody. The experiment was performed as follows:
- Formalin-fixed, paraffin-embedded sections were deparaffinized in xylene bath for 5 min (step was repeated once), excess liquid was tapped off and slides were placed in 95-96% ethanol for 3 ( ⁇ 1) min, in 70% ethanol for 3 ( ⁇ 1) min (step was repeated once) and finally in distilled water for a minimum of 30 sec.
- slides were placed in a Coplin jar and boiled for 40 min at 95-99° C. in 10 mM Citrate buffer pH 6.0. Slides were allowed to cool down for 20 min ( ⁇ 1 min) at RT in this buffer.
- CK18 cytokeratin 18
- FIG. 1A Using an antibody directed against cytokeratin 18 (CK18) in an immunohistochemical staining procedure, a positive reaction was detected in columnar epithelium of the endocervix ( FIG. 1A ), whereas the squamous epithelium of the ectocervix showed no specific staining ( FIG. 1B ).
- Immunohistochemical staining with an antibody directed against cytokeratin 10/13 (CK 10/13) showed no staining in the columnar epithelium of the endocervix ( FIG. 1C ), whereas there is a strong staining of the squamous epithelium of the ectocervix ( FIG. 1D ). So CK18 might be used as a specific marker for the detection of columnar epithelial cells of the endocervix and CK10/13 as a specific marker for squamous epithelial cells of the ectocer
- the clinical material was in a first step solubilzed by boiling (5 min, 95° C.) in Lämmli Protein Sample buffer (100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB) prior to sonification.
- Lämmli Protein Sample buffer 100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB
- protein samples were resolved on a SDS-PAGE (12% Acrylamide) and subsequently transferred on a nitrocellulose membrane by tank blotting (Towbin et al., 1979, Proc Natl Acad Sci: 76:4350-4354).
- the membranes were: blocked to prevent unspecific antibody binding (10% non fat dry milk in PBS) and subsequently incubated with the specific monoclonal mouse antibody (CK 8: 35 ⁇ H11, 1:100, DAKO; p16 INK4a : D7D7, 1:140, MTM Laboratories).
- the binding of the specific antibody was visualized by Horseradish Peroxidase conjugated secondary reagents (binding to the marker specific antibody) catalyzing photon emitting substrates.
- Cytokeratin 8 (CK 8) was used as an endocervical cell specific marker, indicating the adequacy of the sample collection in the present experiments.
- the cyclin dependent kinase inhibitor p16 INK4a was used as specific disease related marker.
- the results of the present experiment are given in FIG. 2 .
- the numbers 1 to 4 refer to samples (cervical swabs) obtained from individual patients. Immunoblot detection was performed using specific antibodies directed against cytokeratin 8 (CK8) and specific antibodies directed against p16 INK4a (p16).
- the samples of patient 1, 2, and 3 show no signal for p16 INK4a . This indicates that no dysplastic cervical cells were present in these samples.
- the sample of patient 4 shows a strong signal for p16 INK4a . This indicates that dysplastic cervical cells were present in the sample.
- the upper bands show the specific signals for cytokeratin 8. In sample 1,3, and 4 cytokeratin 8 can be detected, whereas in for sample 2 no signal can be seen.
- the parallel cytological analysis of the swabs indicated a normal cellular composition for woman 1 and 3. In women 2, no diagnosis due to sparse cellular material could be obtained. In woman 4, a high-grade dysplasia was diagnosed. Note that the upper band (CIK 8) refers to the endocervical cell specific normalization marker Cytokeratin 8, indicating the adequacy of the sample collection. The lower band indicates the specific disease related marker p16 INK4a . The blot shows for patient 4 a positive signal for p16 INK4a consistent with a high-grade cervical dysplasia.
- Samples of patient 1 and 3 show only the CK 8 specific band, indicating proper sample collection, but no disease related marker (p16 INK4a ) consistent with a normal, healthy cervical epithelium.
- the sample of patient 2 shows no CK 8 signal, consistent with the low cell number in this sample, so no diagnostic conclusion can be drawn from the negative signal for p16 INK4a .
- Proteins were transferred from the gel to HYBOND® (Hydrophobic polyvinylidene difluoride membrane) ECL Nitrocellulose membrane (Amersham) by standard tank blotting using the Bio Rad Criterion Blotter (15 min at constant 100 Volt and subsequently 45 min at constant 50 Volt). Nitrocellulose-membrane was stained for 5 min in Ponceau S solution to assure protein transfer. Ponceau S solution was removed by 2 ⁇ 10 min washes in PBS. For immunodetection, blots were blocked over night in blocking buffer (10% milk powder in PBS with 0.1% TWEEN-20®).
- the ELISA analysis was performed as follows: Flat bottom 96 well plates (MAXISORB®, chemical product; Nunc) were coated with capture antibody (p16 INK4a : MTM-E6H4, 2 ⁇ g/ml in PBS, MTM Laboratories; CK10: MS481P1ABX, 2 ⁇ g/ml, dianova; CK18: K18.7, 2 ⁇ g/ml, dianova; 50 ⁇ l/well) over night at 4° C. Plates were washed 6 ⁇ with PBS/0.1% TWEEN®-20 and blocked with SUPERBLOCK® buffer (chemical reagent, Pierce).
- Solubilized protein extract from cervical swabs were dissolved in incubation buffer (PBS, 3% SUPERBLOCK® (Chemical reagent), 0.1% TWEEN®-20), and added in triplicates to each well. After 1 h incubation at RT, plates were washed 6 ⁇ with PBS/0.1% TWEEN®-20 and incubated with biotinylated detection antibody (p16 INK4a : MTM-D7D7 (0.2 ⁇ g/ml, MTM Laboratories, CK10: MS481-BO, 200 ⁇ g/ml, dianova; CK18: MS142-BO, 200 ⁇ g/ml, dianova; in incubation buffer) for 1 h at RT.
- incubation buffer PBS, 3% SUPERBLOCK® (Chemical reagent), 0.1% TWEEN®-20
- the sandwich ELISA format exhibits sensitivity, which is suitable for the use in the methods according to the present invention.
- the sandwich ELISA format as described in this example may be applied to multiple marker molecules, such as markers for normalization/adequacy and markers characteristic for medically relevant conditions.
- the immunoblot detections show positive signals for all the applied adequacy markers (CK10/13, CK 18, ⁇ -actin) and for the marker (p16 INK4a ) indicative of dysplastic cells.
- Samples 3 and 4 were negative for p16 INK4a bands in Western blot.
- the ⁇ -actin and the two cytokeratin markers showed an extremely weak (patient 3, ⁇ -actin) or negative (patient 4, all markers; patient 3, CK markers) signal in the Western blot analysis. So no diagnostic conclusion can be drawn from the negative signal for p16 INK4a .
- the lower panel of this figure shows the results of ELISA analysis. Positive signals for the adequacy markers (CK10/13, CK 18) were detected for the sample of patient 1 and 2, whereas for the samples of patients 3 and 4 no signals for CK10/13 and CK 18 was seen. So the ELISA analysis results resemble the Western blot analysis results and the same conclusions can be drawn.
- the clinical samples were analyzed by Standard Western Analysis as follows. Cells from bronchoalveolar lavage were pelleted by centrifugation (5 min, 1000 rpm) and the pellet was dissolved in Lämmli Protein Sample buffer (100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB). Cells obtained by brushing were dissolved directly in Lämmli Protein Sample buffer (100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB). The material was boiled (5 min, 95° C.) prior to sonification.
- the membranes were blocked to prevent unspecific antibody binding (10% non fat dry milk in PBS) and subsequently one membrane was incubated with specific monoclonal mouse antibodies against NSE (DAKO Germany, clone BSS/NC/V1-H14, mouse monoclonal, dilution 1:1000;) and one membrane was incubated with the normalization marker actin (ICN, USA, clone C4, mouse monoclonal, dilution 1:400). The binding of the specific antibody was visualized by Horseradish Peroxidase conjugated secondary reagents (binding to the marker specific antibody) catalyzing photon emitting substrates.
- Cervical swab brushes are given into 15 ml vessels, containing 2 ml of mtm lysis buffer. Cervical cells present in the brush are lysed for at least 20 h. The lysates of the cervical swab samples are then transferred in 2 ml tubes and are centrifuged at 4° C. (15 min at 28.000 ⁇ g (16.600 rpm High-speed Centrifuge JEC Multi RF)); Supernatant is transferred to a fresh tube. As the case may be the supernatant may be stored at ⁇ 20° C.
- the plates are incubated overnight at 4° C.
- Coating solutions are removed from the ELISA plates and the plates are rinsed using an automated ELISA washer as follows:
- Lysates of HeLa-cells are used as positive control for antibodies specifically detecting p16 INK4a and gamma-Catenin; Lysates of HT29-cells are used as positive control for antibodies specifically detecting Ep-Cam;
- recombinant p16 protein For purpose of calibration of the test, different concentrations of recombinant p16 protein, recombinant gamma-Catenin and Ep-Cam (0 pg/ml, 50 pg/ml, 100 pg/ml, 200 pg/ml, 400 pg/ml, 800 pg/ml) are included in the test.
- Streptavidin-HRP-polymers (1 mg/ml) are pre-diluted 1:10 (4 ⁇ l+36 ⁇ l incubation buffer); Final incubation solution is prepared by dilution 1:300 in incubation buffer (0.1% BSA in PBS) to a final concentration of 0.33 ⁇ g/ml.
- TMB-substrate is equilibrated to 25° C. for 1 h in the dark.
- the ELISA plates are incubated at 25° C. for exactly 15 min in the dark. Then the reaction is stopped by addition of 80 ⁇ l 2.5M H 2 SO 4 .
- OD values of all samples for gamma-Catenin have to exceed a defined threshold value to prove proper sampling of a minimum of cells. Furthermore to ensure proper sampling a threshold for the OD value of Ep-Cam indicating the presence of endocervical cells has to be exceeded.
- OD values for p16 INK4a have to exceed a defined threshold value to prove the presence of a minimum of p16-positive dysplastic cells.
- the ELISA results were compared to the diagnostic results of a Papanicolaou test (PAP test, cervical cytology) from the same patients.
- the cervical cytology were evaluated according to the Kunststoff Classification II (1990).
- Pap II encompasses benign cells, cervicitis and metaplasia
- Pap IV encompasses severe dysplasia and carcinoma in situ. It turned out that samples returning an OD for p16 INK4a of greater than 0.9 in the ELISA correspond to samples, that are classified as dysplastic by the conventional cytological PAP test.
- the ELISA test is positive in all 3 samples (100%) from women having severe dysplasia and is negative in all 30 samples (100%) of women having no dysplasia.
- One sample only contained very few cells and therefore was excluded from evaluation, since sampling was inadequate.
- the normalization of p16 INK4a protein levels in solubilized patient samples with respect to a normalization marker characteristic for the presence of epithelial cells allows to assess diagnosis of dysplasias from the samples.
- the normalization in the present case allows especially to avoid false negative results due to inadequate sampling (for example total amount of patient material not sufficient to perform analysis, or the patient material is not taken at the correct anatomical location).
- the normalization is carried out in the testing format by applying a threshold value for the OD for the gamma-Catenin normalization marker determined in the ELISA above which the sample is to be classified as adequate. Below a certain threshold (corresponding to 200.000 squamous ectocervical cells) the sample does not contain an adequate amount of patient material.
- a second normalization marker indicating the presence of endocervical cells provides further information about the adequacy of the sample.
- the normalization is carried out in the testing format by applying a threshold value for the OD for the Ep-Cam normalization marker determined in the ELISA above which the sample is to be classified as adequate. Below a certain threshold (corresponding to 2000 columnar endocervical cells) the sample does not contain an adequate amount of endocervical cells. (It must be understood that the threshold value applied in this example are adjusted to the particular reaction conditions. The value for the cells as well for OD may vary depending on the reaction conditions. Thus the values herein are intended to exemplify the conditions and not to limit the scope of the invention.
- endocervical cells provide the information that the swab or brush has had contact with the columnar epithelium of the endocervix and thus hints to a contact of the swab or brush with the transformation zone, where cervical dysplasia usually originates.
- the detection of a certain amount of ectocervical cells (gamma-catenin) together with a certain amount of endocervical cells (Ep-Cam) provides with a high probability the information that the patient material was taken at the correct anatomical location (cervical transformation zone).
- cytological specimens of 300 patients were tested in the presented ELISA testing format.
- the specimens identified as being dysplastic by cytological examination may also be identified as being dysplastic in the ELISA testing format.
- Example 5 The 34 cervical swabs as already used in Example 5 provided in lysis buffer have been subjected to ELISA based detection of overexpression of HPV E7 Protein and one adequacy marker in solutions prepared from the cells contained in the swabs.
- the ELISA testing was performed as follows:
- Cervical swab brushes are given into 15 ml vessels, containing 2 ml of mtm lysis buffer. Cervical cells present in the brush are lysed for at least 20 h. The lysates of the cervical swab samples are then transferred in 2 ml tubes and are centrifuged at 4° C. (15 min at 28.000 ⁇ g (16.600 rpm High-speed Centrifuge JEC Multi RF)); Supernatant is transferred to a fresh tube. As the case may be the supernatant may be stored at ⁇ 20° C.
- the plates are incubated overnight at 4° C.
- Coating solutions are removed from the ELISA plates and the plates are rinsed using an automated ELISA washer as follows:
- Lysates of HeLa-cells are used as positive control for antibodies specifically detecting gamma-Catenin;
- concentrations of recombinant HPV 16 E7-protein, recombinant gamma-Catenin (0 pg/ml, 50 pg/ml, 100 pg/ml, 200 pg/ml, 400 pg/ml, 800 pg/ml) are included in the test.
- biotinylated secondary antibodies (clone NM13 specific for HPV16 E7 protein and clone MAB 2083 specific for gamma-Catenin) are prepared by dilution of stock solutions.
- Streptavidin-HRP-polymers (1 mg/ml) are pre-diluted 1:10. (4 ⁇ l+36 ⁇ l incubation buffer); Final incubation solution is prepared by dilution 1:300 in incubation buffer (0.1% BSA in PBS) to a final concentration of 0.33 ⁇ g/ml.
- TMB-substrate is equilibrated to 25° C. for 1 h in the dark.
- the ELISA plates are incubated at 25° C. for exactly 15 min in the dark. Then the reaction is stopped by addition of 80 ⁇ l 2.5M H 2 SO 4 .
- OD values of all samples for gamma-Catenin have to exceed a defined threshold value to prove presence of a minimum of epithelial cells. (cf. Example 5)
- OD values for HPV 16 E7 have to exceed a defined threshold value to prove the presence of a minimum of transformed cells.
- the threshold depends on the ELISA conditions applied and was set as OD 0.7 in our test format.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Physiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- External Artificial Organs (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
This invention provides methods and kits for improved diagnosis of medically relevant conditions by solution based biochemical testing procedures performed in solutions of test samples. The invention provides a method to substitute the cell based morphological information contained within the cytological and/or histological data of the test sample by molecular information obtainable from the solution, wherein the original test sample is dissolved and thus enables for accurate and reproducible assessment of medically relevant diagnosis from dissolved test samples. The method according to the invention comprises the steps of determining the levels of one or more disease markers associated with the condition to be diagnosed, determining the level of one or more normalization markers suitable to substitute the information related to morphological aspects of the sample, comparing and/or combining the data of the disease and normalization markers, and assessing diagnosis of a medically relevant condition.
Description
- This application is a divisional of U.S. application Ser. No. 10/633,484, filed Jul. 31, 2003, which claims benefit to a foreign application, EP 02017313.4, filed Aug. 1, 2002. The contents of the above applications are incorporated herein by reference in their entirety.
- This application includes a sequence listing submitted electronically herewith as an ASCII text file named “sequence.txt”, which is 53 kB in size and was created Mar. 9, 2009; the electronic sequence listing is incorporated herein by reference in its entirety.
- This invention relates to methods for performing diagnosis of medically relevant conditions by detecting the levels of relevant markers characteristic for the medically relevant condition and the levels of normalization markers. The methods pertain to characterization of the sample in a solution phase, without relying on morphological cell based information.
- The diagnosis of a large number of medically relevant conditions is currently performed using molecular markers as tools. The molecular tools are generally used as one aspect in a complex examination, taking into account a series of different parameters characterizing the samples to be examined.
- In medically relevant analysis, the morphological examination of samples by cytological or histological means is in common use. Such methods based on morphological characterization of cell based samples are applicable for example in analysis of clinical samples such as body fluids, blood, surgical resections, secretions, swabs or lavages.
- In screening for cervical cancer, for example, swabs are used for detection of neoplastic lesions of the cervix uteri. In the screening procedure, lesions of different origin have to be distinguished. Causes for lesions may for example be inflammations (due to infectious agents or physical or chemical damage) or preneoplastic and neoplastic changes. In morphological examinations the lesions of different characteristics are sophisticated to distinguish. Thus, for examination of swabs, cytologists and pathologists have to be especially trained and even experienced examiners have a high inter- and intra-observer variance in the assessment of a diagnosis based on cytological specimens. In general the result of the examination is based upon the subjective interpretation of diagnostic criteria by the examining pathologist/cytologist. As a result the rate of false positive and false negative results in the screening tests remains unsatisfying high.
- Therefore, in many cases these cytological or histological examination procedures are supported by the use of molecular markers. Such markers are often used in immuno-histochemical staining reactions, or in the course of in-situ hybridization reactions. In the prior art combinations of morphological examinations and immuno-histochemical staining reactions based on marker molecules, characteristic for different medically relevant states of tissues or cells, may lead to enhanced results. The morphologic examination remains laborious and time consuming and thus expensive, even when supported by the molecular methods, that make the results more reliable. Additionally, the diagnosis on a morphologically cell based level is, even when supported by molecular parameters, subject to individual perception of the morphology by individual examiners. Thus the diagnosis is dependent on the person, that performs the examinations.
- Only in very few cases, molecular markers may be used as diagnostic tools without further support by cell based morphological examinations. This is especially the case, if markers are to be detected in an environment, where they do only occur under exactly defined conditions. So the methods for diagnosis of conditions on a molecular level only, without the support of cell based information, are restricted to cases, where there are suitable markers, that are non-ambiguously specific for the condition to be characterized. For example, detection of viral infections may be carried out in solutions of samples, because the markers characteristic for the presence of viruses in tissues do not occur in unaffected human tissues.
- The reproducibility of the results of examination can be enhanced by the use of supporting molecular tools. However, the problem with the preservation and preparation of the samples may not be overcome by just additionally using molecular markers.
- When using molecular tools in cytological or histological examinations, strict precautions in preserving the samples have to be taken to prevent artefacts and improper results of the tests. This is in part due to the instability of the cell based morphological information and in part to the instability of the molecular markers to be detected during the tests. If the samples are not prepared, transported or stored in the appropriate manner, the cell based information, or even the molecular information may get lost, or may be altered. So the diagnosis may be impossible, or may be prone to artefacts. For example, the interpretation of biopsies or cytological preparations is frequently made difficult or impossible because of damaged (physically or biochemically) cells. Regarding tissue samples or biopsies, the preservation of molecular constituents of the samples, which are subject to a rapid turnover, seems sophisticated due to the time elapsed until penetration of the total sample by appropriate preservatives.
- The morphologically supported diagnostic methods performed routinely in the art show two major disadvantages. First, the methods are highly dependent on individual perception of the examiners. Secondly the morphological information is quite sensitive to decay processes and thus may cause artefacts after preparation of the samples. Both aspects contribute to improper reproducibility of the results.
- For improved diagnosis of medically relevant conditions, methods that do not depend on cell based morphological information would be desirable.
- The present invention is directed to a method for diagnosing a medically relevant condition of a patient. The method comprises the steps of: obtaining a raw sample containing cells or cell debris from a patient; preparing a sample solution from the raw sample; detecting the levels of one or more relevant markers characteristic for said medically relevant condition in said sample solution; detecting the levels of one or more normalization markers; normalizing the detected level of the relevant markers with respect to said normalization parameters; and diagnosing the medically relevant condition from the normalized levels of said relevant markers within the sample solution. The normalization markers are characteristic for at least one of the following normalization parameters: the presence or absence of a particular cell type among the cells represented within the sample solution, the presence or absence of a particular differentiation pattern in the cells represented within the sample solution, and the presence or absence of particular proliferation properties of the cells represented within the sample solution.
- In one embodiment of the invention, the medically relevant condition is a cell proliferative disorder, cancer or a precursory lesion.
- The present invention is also directed to a test kit for diagnosing a medically relevant condition.
-
FIG. 1 shows the specific immunohistochemical staining of endocervical and ectocervical epithelial cells in cervical sections.FIG. 1A shows a positive reaction detected in columnar epithelium of the endocervix using an antibody directed against cytokeratin 18 (CK18).FIG. 1B shows no specific staining in columnar epithelium of the ectocervix using an antibody directed against cytokeratin 18 (CK18).FIG. 1C shows no specific staining in columnar epithelium of the endocervix using an antibody directed against cytokeratin 10/13 (CK10/13).FIG. 1D shows a strong staining of the squamous epithelium of the ectocervix using an antibody directed against cytokeratin 10/13 (CK10/13). -
FIG. 2 shows the Western Blot analysis of solubilized samples from cervical swabs. Thenumbers 1 to 4 refer to samples (cervical swabs) obtained from individual patients -
FIG. 3 shows the Western blot and ELISA analysis to demonstrate sample adequacy. Samples of four patients with high-grade cervical dysplasias (see Diagnosis) were analysed using western blot analysis (upper panel of figure). The lower panel of this figure shows the results of ELISA analysis. - This invention provides methods for improved diagnosis of medically relevant conditions by solution-based biochemical testing procedures performed in solutions of test samples. The invention provides a method to substitute the cell based morphological information contained within the cytological and/or histological data of the test sample by molecular information obtainable from the solution, wherein the original test sample is dissolved and thus enables for accurate and reproducible assessment of medically relevant diagnosis from dissolved test samples. The method according to the invention comprises the steps of determining the levels of one or more markers associated with the condition to be diagnosed, determining the level of a set of normalization markers suitable to substitute the information related to morphological aspects of the sample, that would have enabled or supported diagnosis in a cell based test system, comparing and/or combining the data concerning the levels of said markers and assessing diagnosis of a medically relevant condition.
- The present invention discovers that diagnosis of conditions, which is normally (in cell based diagnostic systems) enabled and/or supported by histological and/or cytological examination procedures, may be performed in solutions from raw samples containing various cell types of different characteristics, by a method comprising the steps of obtaining a raw sample, dissolving the sample in an appropriate solute, detecting the level of one or more markers associated with the condition to be diagnosed and additionally one or more normalization markers within the sample solution, normalizing the data correlating to the markers associated with said condition with respect to the data correlating to the normalization markers and diagnosing the presence or absence of a condition in the sample.
- The method according to the present invention may for example be applied as a primary screening test in cases, where a cytological, histological or pathological examination is normally performed. Using the present invention one may discriminate, if the condition to be diagnosed may be present in the sample. If the solution based diagnosis gives a negative result concerning a particular condition, a further examination may be omissible. In case of positive results, ascertaining by classically applicable methods may follow. Thus, expensive and time consuming microscopic or other examinations could be avoided by means of an inexpensive rapid primary screening test.
- One aspect of the present invention is a method for enhanced diagnosis of medically relevant conditions, wherein the assessment of diagnosis is performed using solutions of lysed raw tissue- or cell-samples. The method for diagnosis disclosed according to the present invention does not rely on morphological parameters but enables for a diagnosis by means of biochemical analysis.
- A second aspect of the present invention is a method for characterizing a complex sample in solution by means of molecular markers characteristic for the parameters of interest, thus substituting information, which could otherwise be obtainable from cytological or histological examinations.
- A third aspect of the present invention is to provide suitable combinations of markers for the diagnosis of particular conditions of medical relevance in complex samples. The markers for normalization are chosen such that parameters included within the raw sample, that enable or support the diagnosis, which are lost by the dissolution of the sample, may be substituted.
- A fourth aspect of the present invention are test kits for performing diagnostic or research studies according to the present invention.
- The present invention enables for a rapid and easy assay for diagnosing of conditions in raw samples such as body fluids, swabs, ravages (e.g. bronchio-alveolar lavages, breast ductal lavages, etc.), aspirates (needle-apirates, fine-needle-aspirates) or complex cell- or tissue samples. In general, a problem with raw materials is the presence of a number of different cell-types within the sample and the presence of particular microorganisms and extracellular substances. Thus the raw material contains a mixture of cells and compositions, that is prone to give artefacts as results. The presence of different cell types with different proliferative characteristics, of organisms and substances within the raw sample gives rise to multiple factors, that may contribute to the particular level of a marker molecule. Detecting solely the level of one single molecular marker may thus only lead to a diagnostically useful information, if further (morphological) parameters concerning the raw sample are provided. All morphologic data obtainable from the raw sample are lost due to lysis in solution. Yet there are suitable molecular markers corresponding to particular morphologic or other parameters obtainable by histological, cytological methods.
- For example, the information about the single constituents within the raw sample may be classically obtained by microscopic examination. Morphologic inspection gives hints about the differentiation, the localization of cells, as well as about the environment, in which the cells appear. In cytological preparations of cervical-swabs, for example, the particular cells may be identified as epithelial cells and further categorized as e.g. endocervical or ectocervical epithelial cells. Even the presence of non-cervical cells such as endometrial cells may be ascertained easily by microscopic inspection.
- According to the present invention, raw materials may directly be dissolved in an appropriate solvent without further preparation or characterization independent of the homogeneous or heterogeneous character of the sample material. Data, which are lost through lysis of the material are contained within the sample solution encoded by the levels of a series of marker molecules and may thus be reconstructed using said molecular data for normalization to the respective morphologic characteristics. This is achieved by employing a suitable set of molecular markers for each of the characteristic parameters needed for unambiguous diagnosis. By detecting a suitable array of markers one may assess the relevant parameters characterizing the raw sample and thus overcome the disadvantage of loss of information through lysis of the sample.
- The testing procedure according to the present invention includes detecting the levels of markers characteristic for cell conditions in question and of markers for normalizing the data with respect to parameters characterizing the particular environment in the test sample. The markers suitable for the present invention may be of various origin. The expression pattern of a marker, that is suitable for the detection of conditions in question, may be dependent on the proliferative status of cells, on the differentiation status, on the cell type or on the organism. Examples for appropriate markers are set forth below.
- The term diagnosis as used herein generally comprises any kind of assessment of the presence of absence of a medically relevant condition. Diagnosis thus comprises processes such as screening for the predisposition for a medically relevant condition, screening for the precursor of a medically relevant condition, screening for a medically relevant condition, clinical or pathological diagnosis of a medically relevant condition, etc. Diagnosis of medically relevant conditions as used herein may comprise examination of any condition, that is detectable on a cytological, histological, biochemical or molecular biological level, that may be useful in respect to the human health and/or body. Such examinations may comprise e.g. medically diagnostic methods and research studies in life sciences. In one embodiment of the invention, the method is used for diagnosis of medically relevant conditions such as e.g. diseases. Such diseases may for example comprise disorders characterized by non-wild type proliferation of cells or tissues.
- In one embodiment, the diagnosis pertains to diagnosis of cancers and their precursory stages, to monitoring of the disease course in cancers, to assessment of prognosis in cancers and to detection of disseminated tumor cells e.g. in the course of minimal residual disease diagnosis. The method according to the present invention may for example be used in the course of clinical or pathological diagnosis of cancers and their precursory stages or in routine screening tests as performed for particular cancers such as for example for examination of swabs e.g. in screening tests for cervical lesions, of bronchial lavages for lung cancer or of stool for lesions of the gastrointestinal tract, e.g. colorectal lesions.
- The method according to the present invention is applicable to all kinds of medically relevant conditions.
- Medically relevant conditions as used according to the present invention may for example be compositions of tissues, body fluids, secretions, washes or swabs. Such conditions may for example comprise the cellular composition of body fluids, such as the composition of blood, the composition of liquor or the composition of semen. In this context the compositions shall be for example the presence or absence of particular cell types (e.g. pathogens, such as, viruses etc., preneoplastic, neoplastic and/or dysplastic cells etc.), the presence or absence of differentiation patterns of particular cell types, the total number of a particular cell types (e.g. erythrocytes, leucocytes, sperm, etc.), the total number of all cells of any cell types or the fraction of cells of particular other characteristics present or absent in the sample.
- Furthermore, medically relevant conditions may also comprise disorders related to cells, or tissues. The conditions to be diagnosed may comprise parameters related to cells in cytological or histological tissue samples. The conditions may comprise a differentiation pattern of cells in a tissue sample, such as surgical resection samples, biopsies, swabs, ravages etc. Such conditions may comprise e.g. congenital disorders, inflammatory disorders, mechanical disorders, traumatic disorders, vascular disorders, degenerative disorders, growth disorders, benign neoplasms, malignant neoplasms. Another aspect of the conditions according to the present invention may comprise conditions characterized by the presence or absence of proliferative characteristics. Conditions characterized by the presence or absence of proliferative characteristics may be for example cell proliferative disorders.
- Cell proliferative disorders according to the present invention comprise diseases characterized by abnormal growth properties of cells or tissues compared to the growth properties of normal control cells or tissues. The growth of the cells or tissues may be for example abnormally accelerated, decelerated or may be regulated abnormally. Abnormal regulation as used above may comprise any form of presence or absence of non wild-type responses of the cells or tissues to naturally occurring growth regulating influences. The abnormalities in growth of the cells or tissues may be for example neoplastic or hyperplastic.
- In one embodiment, the cell proliferative disorders are tumors. Tumors may comprise tumors of the head and the neck, tumors of the respiratory tract, tumors of the anogenital tract, tumors of the gastrointestinal tract, tumors of the urinary system, tumors of the reproductive system, tumors of the endocrine system, tumors of the central and peripheral nervous system, tumors of the skin and its appendages, tumors of the soft tissues and bones, tumors of the lymphopoietic and hematopoietic system, etc. Tumors may comprise for example neoplasms such as benign and malignant tumors, carcinomas, sarcomas, leukemias, lymphomas or dysplasias. In a particular embodiment, the tumor is for example cancer of the head and the neck, cancer of the respiratory tract, cancer of the anogenital tract, cancer of the gastrointestinal tract, cancer of the skin and its appendages, cancer of the central and peripheral nervous system, cancer of the urinary system, cancer of the reproductive system, cancer of the endocrine system, cancer of the soft tissues and bone, cancer of the hematopoietic and lymphopoietic system.
- Tumors of the anogenital tract may comprise cancer of the perineal, the perinanal and the scrotal skin, cervical cancer, cancer of the vulva, cancer of the vagina, caner of the penis, cancer of the anus, etc. Cervical cancer may comprise squamous lesions, glandular lesions or other epithelial tumors. Squamous lesions comprise, e.g., cervical intraepithelial neoplasias (mild, moderate and severe dysplasia), carcinoma in-situ, squamous cell carcinoma (e.g., keratinizing, nonkeratinizing, verrucous, warty, papillary, lymphoepithelioma-like). Glandular lesions may comprise atypical hyperplasias, adenocarcinoma in-situ, andenocarcinoma (such as, e.g., mucinous, endometrioid, clear cell, adenoma malignum, papillary, serous or mesonephric adenocarcinoma). Other epithelial tumors may comprise adenosquamous carcinoma, glassy cell carcinoma, adenoid cystic carcinoma, adenoid basal carcinoma, carcinoid tumor, small cell carcinoma and undifferentiated carcinoma. For more detailed information, confer “Kurman, R., Norris, H., et al., Tumors of the Cervix, Vagina, and Vulva, Atlas of Tumor Pathology, 1992, AFIP,” the contents of which shall be incorporated herein by reference.
- Gastrointestinal tumors may comprise colon cancer, cancer of the colon ascendens, of the colon descendens, of the colon transversum, of the sigmoidum, of the rectum, cancer of the small intestine, cancer of the jejunum, cancer of the duodenum, gastric cancer, oesophageal cancer, liver cancer, cancer of the bile, cancer of the biliary system, pancreatic cancer, etc. A comprehensive overview over gastrointestinal lesions is given in “Hamilton Sr, Aaltonen L A (Eds.): World Health Organization Classification of Tumours, Pathology and Genetics of Tumors of the Digestive System, IARC Press: Lyon 2000,” which shall be incorporated herein by reference.
- Tumors of the respiratory tract may comprise any malignant condition of the respiratory tract such as, e.g., cancer of the lung, the alveoles, the bronchioles, the bronchial tree and the broncus, the nasopharyngeal space, the oral cavity, the pharynx, the nasal cavity and the paranasal sinus. Lung cancer such as small cell lung cancer, non-small cell lung cancer, squamous cell lung carcinoma, small cell lung carcinoma, adenocarcinoma of the lung, large cell lung carcinoma, adeno-squamous lung carcinoma, carcinoid tumor of the lung, broncheal gland tumor or (malignant) mesothelioma. An overview over tumors of the respiratory tract may be found in Colby T V, et al.: Tumors of the Lower Respiratory Tract, Atlas of Tumor Pathology, Third Series,
Fascicle 13, AFIP: Washington 1995,” which shall be incorporated herein by reference. - Tumors of the urinary system may comprise bladder cancer, cancer of the kidney, renal pelvis, cancer of the ureters and cancer of the urethra, etc. Tumors of the reproductive system may comprise cancer and precursory stages thereof of the ovary, the uterus, the testis, the prostate, the epididymis, etc.
- In all cases, the methods according to the present invention also apply to precursor stages of the lesions, tumors or cancers.
- In one embodiment, the method according to the present invention pertains to the detection of disseminated tumor cells or metastases.
- In one embodiment of the invention, the carcinoma is e.g. cervical cancer, colon cancer, gastric cancer, breast cancer, bladder cancer, lung cancer, cancer of the oral cavity etc.
- The present invention provides a number of robust, fast and easy ways to preserve molecular properties of samples, whereby the morphological information of samples is lost. Samples may be e.g. prepared in a reproducible and easy to store and transport form by dissolving the cellular components of the raw sample in a suitable solvent immediately after or even during obtaining the sample. Body fluids may directly be transferred from the body of an individual to a solution containing suitable detergents and preservative substances. Furthermore, tissue samples may immediately be transferred to denaturing lysis conditions (eventually supported by physical forces) and be thus preserved. Using appropriate ingredients in the solvent, the molecular components of the original sample may be preserved, and no degradation may occur. The degradation by enzymatic activities may, for example, be minimized by the use of enzyme inhibitors. Thus, a solution of test samples may easily represent the molecular properties of a test sample at the time of dissolution, without requiring additional preservative precautions.
- Raw samples may comprise clinical samples, such as e.g. secretions, swabs, lavages, body fluids, blood, urine, semen, stool, bile, liquor, bone marrow, biopsies, cell- and tissue-samples. Biopsies as used in the context of the present invention may comprise e.g. resection samples of tumors, tissue samples prepared by endoscopic means or punch- or needle-biopsies of organs. Furthermore, any sample potentially containing the marker molecules to be detected may be a sample according to the present invention. In one embodiment of the invention, the sample comprises cervical swabs, bronchial lavages, stool etc. Raw sample as used in the context of the present invention may comprise fixed or preserved cell or tissue samples. E.g. cells preserved in suitable solutions (alcohols etc.) or fixed tissue samples may be used as raw samples in the methods according to the present invention.
- A raw sample according to the method of the present invention includes any sample comprising cells or cell debris. The cells may for example be prokaryotic or eukaryotic cells. When the present invention is applied for the detection of infectious diseases, the cells to be determined may be cells of microorganisms such as chlamydia, E. coli, candida, etc.
- According to the present invention, all or part of the molecular components of the raw samples are solubilized in a suitable lysis buffer comprising e.g. solvents. Such solvents may for example be aqueous solutions of chaotropic agents such as e.g. urea, GuaSCN, Formamid, of detergents such as anionic detergents (e.g. SDS, N-lauryl sarcosine, sodium deoxycholate, alkyl-aryl sulphonates, long chain (fatty) alcohol sulphates, olefine sulphates and sulphonates, alpha olefine sulphates and sulphonates, sulphated monoglycerides, sulphated ethers, sulphosuccinates, alkane sulphonates, phosphate esters, alkyl isethionates, sucrose esters), cationic detergents (e.g. cetyl trimethylammonium chloride), non-ionic detergents (e.g. TWEEN®-20, polyethylene glycol sorbitan monolaurate; nonidet P-40, TRITON® X-100, t-octylphenoxypolyethoxyethanol; NP-40, IGEPAL® CA 630, nonidet P 40; N-Octyl-Glucosid) or amphoteric detergents (e.g. CHAPS, 3-Dodecyl-dimethylammonio-propane-1-sulfonate, Lauryldimethylamine oxide) and/or of alkali hydroxides such as e.g. NaOH or KOH. The solvent is designed, so that cells, cell debris, nucleic acids, polypeptides, lipids and other biomolecules potentially present in the raw sample are dissolved. The solution for dissolving the raw samples according to the present invention may furthermore comprise one or more agents that prevent the degradation of components within the raw samples. Such components may for example comprise enzyme inhibitors such as proteinase inhibitors, RNAse inhibitors, DNAse inhibitors etc. In one embodiment of the present invention the sample is lysed directly in the form it is obtainable from the test-individuals. In another embodiment of the present invention the sample may be further purified before being lysed. Such purification procedures may for example comprise washing away of contaminants such as mucus or the like, separation or concentration of cellular components, preserving and transporting of the cells. Thus the cellular components of the raw samples are included in a single sample solution.
- The preparation of a sample for use in a method as disclosed herein may also comprise several steps of further preparations of the sample, such as separation of insoluble components, isolation of polypeptides or nucleic acids, preparation of solid phase fixed peptides or nucleic acids or preparation of beads, membranes or slides to which the molecules to be determined are coupled covalently or non-covalently.
- According to the present invention, the detection of the marker molecules is performed directly from this solution. The detection may be carried out in solution or using reagents fixed to a solid phase. In certain embodiments of the present invention the detection of the marker molecules is performed from a solution of dissolved body samples. Therefore detection may be carried out in solution or using reagents fixed to a solid phase. A solid phase as used in the context of the present invention may comprise various embodiments of solid substances such as planar surfaces, particles (including micro-, nano-particles or even smaller particles). In certain embodiments particles may be provided as beads, colloids or the like. The fixation of reagents to the solid phase in a test kit or an in-vitro diagnostic device may be effected via direct fixation or via indirect fixation. Direct fixation may e.g. be effected by covalent or non-covalent binding or association to surfaces. Indirect fixation may be effected through binding of the reagents (e.g. antibodies, probes etc.) to agents which themselves are directly fixed to solid phases. Such agents may comprise antibodies or other binding agents like avidin, streptavidin, biotin or the like. The detection of one or more molecular markers may be performed in a single reaction mixture or in two or more separate reaction mixtures. The detection reactions for several marker molecules may for example be performed simultaneously in multi-well reaction vessels or as the case may be on one single or two or more separate test strips. The markers characteristic for the cell proliferative disorders may be detected using reagents that specifically recognise these molecules. Simultaneously the normalization markers may be detected using reagents, that specifically recognize them. The detection reaction for each class of markers may comprise one or more further reactions with detecting agents either recognizing the initial marker molecules or preferably recognizing the prior molecules (e.g. primary antibodies) used to recognize the initial markers. The detection reaction further may comprise a reporter reaction indicating the level of the markers characteristic for cell proliferative disorders or the normalization markers.
- The terms “marker” or “marker molecule” in all their grammatical forms as used in the context of the present invention refers to nucleic acid as well as polypeptide molecules. Marker or marker molecule thus comprises e.g. RNA (mRNA, hnRNA, etc.), DNA (cDNA, genomic DNA, etc.), proteins, polypeptides, proteoglycans, glycoproteins and the respective fragments of these molecules. The term “relevant marker” shall refer to marker molecules characteristic for a medically relevant condition. The term normalization marker shall refer to marker molecules used for normalization purposes.
- A level of a marker molecule as used herein refers to a semiquantitave as well as a quantitative value regarding the amount of the respective marker present in a sample. A quantitative value may e.g. be represented in terms of a concentration. A semiquantitative value may be expressed in terms of a scale of levels e.g. undetectable levels, low levels, intermediate levels, high levels or any other suitable mode. The level of a marker may also be represented in terms of a dependent parameter such as the intensity of a signal generated in an assay format in response to the presence of a marker molecule.
- A probe for the detection of the marker molecules as used in the context of the present invention shall be any molecule, that specifically binds to said marker molecules. The probe may for example be an antigen binding agent such as antibodies (monoclonal or polyclonal), antibody fragments or artificial molecules comprising antigen binding epitopes, DNA or RNA binding molecules such as proteins or nucleic acids. Nucleic acids binding to other nucleic acids may for example be peptide nucleic acids (PNAs) or oligonucleotides (RNA, DNA, PNA, artificial nucleic acids, etc.) for detection purposes or primers.
- A molecule is said to recognize another molecules if it specifically interacts with that molecule. Specific interaction may for example be specific binding to or of the other molecule.
- The reporter reaction may be for example a reaction producing a colored compound. In one embodiment of the present invention the reporter substances correlated to the particular markers develop different colors. In another embodiment, the normalization marker specific reporter may be a molecule quenching the signal produced by the reporter molecule specific for the marker, characteristic for the medically relevant condition, in dependence on the level of the normalization marker present in the sample. In yet another embodiment the reporter reactions may produce fluorescent dyes with differing wavelength characteristics. In a further embodiment of the present invention the reporter reaction may comprise light emitting reactions with different wavelength characteristics for the reporter substances specific for either marker to be detected. In another embodiment of the present invention the reporter reaction may comprise the emission of radioactive radiation and additional methods for visualizing or quantifying the radiation. In one embodiment, the different marker molecules may be recognized by agents, that bear radio-nuclides emitting radiation with different energetic properties, so that the signals referring to marker molecules could be distinguished.
- Applicable formats for the detection reaction according to the present invention may be blotting techniques, such as Western-Blot, Southern-blot, Northern-blot. The blotting techniques are known to those of ordinary skill in the art and may be performed for example as electro-blots, semidry-blots, vacuum-blots or dot-blots. Furthermore immunological methods for detection of molecules may be applied, such as for example immunoprecipitation or immunological assays, such as EIA, ELISA, RIA, lateral flow assays, flow through assays, immunochromatographic strips, etc. immunoassays for use in the invention may comprise competitive as well as non-competitive immunoassays such as sandwich assays.
- In certain embodiments of the invention immunochemical or nucleic acid based testing may be performed using a testing device for clinical laboratories. Such testing device may comprise any device suitable for immunochemical or nucleic acid based testing including any format such as e.g. Point of care testing devices as well as bench top or laboratory devices. The devices may be e.g. provided as open or closed platform systems. The system may be based on any suitable methodology such as e.g. employing microtiter plates, multiwell plates, flow through or lateral flow systems, microchip or array based systems or bead or membrane based systems. The detection methods employed may comprise any methods known to those of skill in the art useful for immunochemical or nucleic acids based detection reactions. Such detection systems may be e.g. luminescence systems (electroluminescence, bioluminescence, photoluminescence, radioluminescence, chemiluminescence, electrochemoluminescence), fluorescence based systems, conductivity based detection systems, radiation (light, UV, X-ray, gamma etc.) or any other known method.
- The method for detection of the level of the marker molecules in one embodiment of the present invention is any method, which is suited to detect even very small amounts of specific molecules in biological samples. Furthermore any method for detection of the marker molecules irrespective of the sensitivity may be applied. The detection reaction according to the present invention may comprise for example detection reactions on the level of nucleic acids and/or detection reactions on the level of polypeptides. In one embodiment of the invention, the detection of the marker molecules may comprise the detection of particular splicing variants. In another embodiment of the present invention, the detection method may comprise the detection of modifications of marker molecules such as phosphorylation or glycosylation etc of polypeptides or the methylation of nucleic acid molecules in samples.
- In one embodiment of the invention, the detection of the level of marker molecules is carried out by detection of the level of nucleic acids coding for the marker molecules or fragments thereof present in the sample. The means for detection of nucleic acid molecules are known to those skilled in the art. The procedure for the detection of nucleic acids can for example be carried out by a binding reaction of the molecule to be detected to complementary nucleic acid probes, proteins with binding specificity for the nucleic acids or any other entities specifically recognizing and binding to said nucleic acids. This method can be performed as well in vitro as directly in-situ for example in the course of a detecting staining reaction. Another way of detecting the marker molecules in a sample on the level of nucleic acids performed in the method according to the present invention is an amplification reaction of nucleic acids, which can be carried out in a quantitative manner such as for example the polymerase chain reaction. In one embodiment of the present invention e.g. real time RT PCR may be used to quantify the level of marker RNA in samples of cell proliferative disorders.
- In another embodiment of the invention, the detection of the level of marker molecules is carried out by determining the level of expression of a protein. The determination of the marker molecules on the protein level may for example be carried out in a reaction comprising a binding agent specific for the detection of the marker molecules. These binding agents may comprise for example antibodies and antigen-binding fragments, bifunctional hybrid antibodies, peptidomimetics containing minimal antigen-binding epitopes etc. The binding agents may be used in many different detection techniques for example in western-blot, ELISA, RIA, EIA, flow through assay, lateral flow assay, latex-agglutination, immunochromatographic strips or immuno-precipitation. Generally binding agent based detection may be carried out as well in vitro as directly in situ for example in the course of an immunocytochemical staining reaction. Any other method suitable for determining the amount of particular polypeptides in solutions of biological samples can be used according to the present invention.
- Methods for the detection of the modified states of nucleic acid molecules and/or polypeptides are known to those of ordinary skill in the art.
- Methods for detection of methylation of nucleic acids are known to those of skill in the art and may comprise for example methods employing chemical pre-treatment of nucleic acids with e.g. sodium bisulphite, permanganate or hydrazine, and subsequent detection of the modification by means of specific restriction endonucleases or by means of specific probes e.g. in the course of an amplification reaction. The detection of methylation may furthermore be performed using methylation specific restriction endonucleases. Methods for the detection of methylation states in nucleic acids are e.g. disclosed in patent application EP02010272.9, U.S. Pat. No. 5,856,094, WO0031294, U.S. Pat. No. 6,331,393 etc. The cited documents are incorporated herein by reference.
- Detection of modified states of polypeptides may for example comprise binding agents specifically recognizing modified or unmodified states of polypeptides. Alternatively enzymes such as phosphatases or glycosylases may be used to remove modifications in molecules. The presence or absence of modifications can thus be detected by determination of mass or charge of the molecules by means of electrophoresis, chromatography, mass spectrometry etc. prior and subsequent to the incubation with a respective enzyme.
- In a further embodiment of the present invention, the detection of a series of marker molecules is carried out on the level of polypeptides and simultaneously the detection of a further series of marker molecules and/or of all or some of the same marker molecules is carried out on the level of nucleic acids.
- Markers associated with medically relevant cellular conditions may e.g. be molecules which influence and/or reflect the proliferation and/or differentiation characteristics of cells and/or tissues. Such molecules may comprise for example cell cycle regulatory proteins, proteins associated with the DNA replication, transmembrane proteins, receptor proteins, signal transducing proteins, calcium binding proteins, proteins containing DNA-binding domains, metalloproteinases, kinases, kinase inhibitors, chaperones, embryogenesis proteins, heat shock proteins or enzymes which modify other proteins posttranslationally thus regulating their activity, or nucleic acids coding for the named proteins. Also mRNA coding for the named proteins may be marker molecules useful according to the present invention. In one embodiment the marker associated with the cell proliferative disorder may be for example uniquely expressed in cells affected by the disorder, may be not expressed in said cells or may be overexpressed in said cells.
- Marker molecules for use according to the present invention may comprise one or more markers chosen from p13.5, p14, p15, p16 (also referred to p16INK4a), p19, p21, p27, p53, pRb, p14ARF, cyclin A, cyclin B, cyclin E, MDM-2, MCM2, MCM5, MCM6, CDC2, CDC6, Id1, osteopontine, GRP, renal dipeptidase, her2/neu, TGFβII receptor, HPV associated markers e.g. derived from HPV genes L1, L2, E1, E2, E4, E5, E6 or E7, etc. A selection of markers useful in one embodiment of the present invention for the detection of medically relevant conditions is shown below in Table 1.
- In one embodiment the marker for a medically relevant condition may be a marker for tumors (tumor markers). The marker molecules characteristic for tumors may e.g. be proteins, that are expressed in a non-wild type manner in tumors compared to normal control tissue. Non-wild type expression as used herein may comprise increased or decreased levels of expression or lack of expression or expression of non-wild type forms of the respective molecules. Expression of non-wild type forms of a protein may comprise expression of mutated forms of proteins, arising by insertion, deletion, substitution, or frameshift mutations or any other known types of mutations in proteins or nucleic acids. In all cases of the expression of non-wild type proteins or non-wild type levels of proteins the proteins, polypeptides or fragments thereof or nucleic acids encoding these proteins or polypeptides or fragments of these nucleic acids may be used as molecular markers associated with tumors and may thus be understood under the term “tumor marker” as used in the context of the present invention. Proteins that show non-wild type expression in association with tumors are disclosed for example in the documents WO9904265A2, WO0149716A2, WO0055633A2 and WO142792A2, which shall be incorporated by reference herein.
- In one embodiment of the invention, the marker characteristic for the medically relevant condition may be a cell cycle regulatory protein such as for example a cyclin, a cyclin dependent kinase or a cyclin dependent kinase inhibitor. In a further embodiment of the invention the marker characteristic for the medically relevant condition may be a marker associated with a transient or a persistent viral infection. The viral infection may comprise an infection by a human papilloma virus (HPV) such as high risk or low risk HPV. The high risk HPV may comprise HPV subtypes such as
e.g. HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56 and 58. The markers for HPV infection may e.g. comprise HPV expression products of HPV genes L1, L2, E2, E4, E5, E6 or E7. In a third embodiment of the invention a marker characteristic for a viral infection may be used in combination with any other marker for a medically relevant condition such as e.g. in combination with a cell cycle regulatory protein. Combinations of marker molecules, which may be of special interest with respect to HPV association are e.g. disclosed in WO0208764 which document shall be incorporated herein by reference. - In one embodiment, cell cycle regulatory proteins for use in combination with HPV markers may for example be chosen from a group comprising pRb, p53, p14 ARF, cyclin dependent kinase inhibitors. In one special embodiment for example p16INK4a may be used in combination with markers for HPV infection (e.g. L1, L2, E2, E4, E5, E6 or E7).
- It must be understood, that as the case may be markers useful as markers for medically relevant conditions in certain embodiments may serve as markers for normalization in certain other embodiments and vice versa. However, in each single embodiment, a marker can only serve either as marker for the medically relevant condition or as marker for normalization. For example, Ki67 as a marker for cell proliferation may be useful as a normalization marker in certain embodiments (e.g. in combination with p16, p14ARF, claudin-1 or others as markers for medically relevant condition). In other embodiments, Ki67 may serve as a marker for medically relevant condition (e.g. as a marker for cervical dysplasia or other dysplastic diseases) in combination with suitable normalization markers (e.g. cytokeratins, catenins or others). Various other markers may likewise serve either as a marker for medically relevant conditions or for a normalization depending on the particular embodiment of application.
- Normalization markers according to the present invention may comprise for example housekeeping genes, such as actin, gapdh, histone proteins, phospholipase, β2-microglobulin, proteins associated with active cell proliferation such as e.g. Ki67, PCNA or statin, or proteins characteristic for particular cell types such as for example CK20 in epithelial cells or any cell specific cell-surface antigens. In addition, carbohydrate structures present on glycoproteins, proteoglycans, lectin receptors such as the concanavalin A receptor, mucins and enzymes which are involved in the biosynthesis of these molecules such as GalNac transferases and oligosaccharyltransferases might also serve as normalization markers. The type of marker protein has to be chosen according to the information, which shall be provided by the marker. Principally the markers useful for particular medically relevant conditions may under certain circumstances be useful as normalization markers. A selection of markers useful in performing the methods according to the present invention are given in Table 1.
- As well concerning markers for medically relevant conditions as well as concerning normalization markers modified states of molecules (such as polypeptides and nucleic acids) may be used as markers in the method according to the present invention. For example phosphorylated, glycosylated or otherwise modified polypeptides or methylated nucleic acids may be addressed as markers in the method according to the present invention.
- Normalization as used according to the present invention shall comprise any method suitable for relating the detected levels of markers to parameters valuable for the assessment of the diagnosis. One aspect of this normalization may be a reconstruction of the relevant cytological and histological information contained within the raw sample by means of suitable molecular markers detectable in the sample solutions. Normalization may comprise for example the detection of the total number of cells present in the sample, of the presence or absence of a particular cell types in a sample, of the presence or absence of an organism or of cells of an organism in a sample, of the number of cells of a particular cell type or organism present in the sample, of the proliferative characteristics of cells present in the sample or of the differentiation pattern of the cells present in the sample.
- In certain embodiments normalization may also comprise proving the adequacy of the test, wherein as the case may be inadequate test results may be discarded or classified as invalid. Therefore, normalization as used in the context of the present invention may comprise qualitative or semi-quantitative methods for normalization. In certain embodiments, semi-quantitative normalization may comprise determining a threshold value for a normalization marker. In one embodiment, semi-quantitative normalization may be applied e.g. as follows: the level determined for the relevant marker may be regarded as a valid test result only if the level of the normalization marker exceeds a defined threshold value; in case the threshold value is not reached the test result for the relevant marker is regarded as invalid; diagnosis may not be assessed on the basis of the test. In other embodiments a threshold may be set that may not be exceeded. In certain embodiments, qualitative normalization may be performed with respect to the presence or absence of a normalization marker. In those cases, e.g. the value determined for the relevant marker is compared to the presence or absence of a normalization marker. As predefined, the value is valid only in case the normalization parameter (presence or absence of a detectable level of the normalization marker) is met.
-
TABLE 1 marker for cell type antigen Antibody supplier Literature cell type epithelial human epithelial HEA125 Research Kommoss et al., cells cell surface IgG1 (W, Diagnostics Hum Pathol. 2000 glycoprotein IHC, ICC, Inc. Sep; 31(9): 1055-61 IF) Human epithelial AUA-1 Research Gottschalk et al, proliferation 40 kD IgG1 Diagnostics Pathol Res Pract. protein (from (Elisa) Inc. 1992 Feb; 188(1-2): LoVo) 182-90 Human epithelial Ber-EP4, Dako Latza U et al., J Clin antigen (34 + 39 kD) IgG1 Pathol. 1990 (IHC, Elisa) Mar; 43(3): 213-9 Human epithelial AUA-1 Research Epenetos, A et al., proliferating (Elisa, W, Diagnostics Lancet. 1982 Nov antigen (40 kD) IHC) Inc. 6; 2(8306): 1004-6 endocervix Cytokeratin 18 RGE 53, Research Smedts F et al., Am columnar (45 kD) IgG1 Diagnostics J Pathol. 1990 cells (W, IHC, IF) Inc. Mar; 136(3): 657-68 Cytokeratin 18RCK 106 Research Smedts F et al., Am (45 kD) (W, IHF, Diagnostics J Pathol. 1990 IHC) Inc Mar; 136(3): 657-68 Cytokeratin 8CAM 5.2 BD Smedts F et al., Am (52.5 kD) (W, IHC) PharMingen J Pathol. 1990 Mar; 136(3): 657-68 Endocervical Mucin Antigens DF3 Centocor Tashiro et al., Hum columnar (Tn, STn, MUC1, Pathol. 1994 cells MUC2 Apr; 25(4): 364-72 Endocervic Concanavalin A Herckenrode et al., Columnar receptor Br J Cancer. 1988 cells Mar; 57(3): 293-4; Koch et al., Br J Cancer. 1986 Jan; 53(1): 13-22 Endocervix GalNacTransferase Chilton et l., Oligosaccharyltransferase Endocrinology. 1988 Sep; 123(3): 1237-44 Endocervic/ Lectins (ConA, Di Loretto et al., Ectocervix WGA, PNA, Basic Appl UEA I, DBA, Histochem. SBA, SNA 1987; 31(2): 143-52; Versura et al., Basic Appl Histochem. 1988; 32(2): 219-27 ectocervix Plakophilin (80.5 kD PP1-5C2, Research Heid, HW, squamous IgG1 Diagnostics Differentiation. cells (W, Elisa, Inc. 1994 Dec; 58(2): 113-31 IHC, IF) endometrial Vimentin VIM 3B4, Research Smedts F et al., Am cells IgG1, (W, Diagnostics J Pathol. 1990 ELISA, IF, Inc. Mar; 136(3): 657-68 IHC) Erythrocytes Haemoglobin RDI-CBL63, Research Smith et al., J. IgM Diagnostics Histochem. (RIA, EIA) Inc. Cytochem. 1998 Inflammation neutrophilic CD16(NK, DJ130-c, DIANOVA Grundhoever D and granulocytes Macro, Gran) IgG1 Patterson BK, NK-cells (IHC) Cytometry Macrophages 2001; 46: 340-344 CD56(NK) clone Ki-M6 Hermann et al., J. Clin. Immunol. 1990 CD68(Macro) (antiCD68) Cavayal et al., Eur. J. Immunol: 1998(6)1991-2002 (CD56) B-cells CD19 clone AE 1, DIANOVA Harrada et al., Blood (CD20) FACS 1993; 81: 2658-63 (CD19) Mason et al., Am J. Pathol 1990; 136: 12 15-22(CD20) T-cells CD3 (panTcell) clone CRIS- DIANOVA Jones et al., J (CD4); (CD8) 7 (antiCD3); Immunol 1993; IF, IHC, WB 150: 5429-35 dysplastic p16INK4a E6H4, D7D7 MTM Klaes R., et. al. Int J and Cancer. 2001 Apr neoplastic 15; 92(2): 276-84 cervical cells tumor different P53 (mutations) Mendoza-Rodriguez cells cancer cell CA, et al., Rev types Invest Clin 2001 May-Jun; 53(3): 266-73 adeno- CEA Mistretta et al., carcinoma Experientia. 1974 cells Oct 15; 30(10): 1209-10; Rogers et al., Eur J Cancer Clin Oncol. 1984 Oct; 20(10): 1279-86 bladder NMP22, BTA van der Poel HG et cancer cells al., Curr Opin Urol, 11, 503-509, 2001 lung cancer PreproGRP Hamid et al., cells Cancer, 63, 266-271, 1989, Pagani et al., Int. J. Cancer 47, 371-375, 1991 Proliferation all PCNA Pc10, IgG2a Zymed Waseem NH, Lane proliferating Ki67 DP, J Cell Sci cells 1990: 96: 121 (PCNA) Cattoretti et al., J Pathol 1992: 168: 357-63(Ki67) Infectious HPV 16 E6 BF 7, IgG1 Research Iftner et al., J Virol. agent (IHC and in Diagnostics 1988 diagnostic Inc. Oct; 62(10): 3655-61 kits for cervical swabs) L1 CamVir-1, Research Browne L et al., J IgG2a Diagnostics Gen Virol. 1988 (IP, W, IF, Inc. Jun; 69 (Pt 6): 1263-73 IHC) HPV 18L1 RDI-HPV18- Research Iftner et al., J Virol. 5A3, IgG1 Diagnostics 1988 (W, IHC) Inc. Oct; 62(10): 3655-61 HPV 6, 11, 18RDI-HPVX- Research Iftner et al., J Virol. 4C4 Diagnostics 1988 Inc. Oct; 62(10): 3655-61 Gouillou et al., Am. J. Surg. Pathol., 1991 - According to the present invention the normalization may comprise the determination of the presence of a number of (human) cells in question in a sample. This is a crucial aspect of the invention. In particular, embodiments false (especially false negative) results of tests can only be avoided, if the testing procedure verifies, that the test sample contains the materials (e.g. cells, tissues organisms etc.), that are necessary for performing the particular test. In various tests this will comprise ensuring, that the sample contains cells. In a wide range of embodiments of the invention the verification of the adequacy of the sample will not just comprise ensuring of the presence of cells, but will include the detection of the presence of cells of a distinct origin or of a special cell type.
- Thus normalization may also comprise the determination of cells of particular origin such as e.g. cells from a particular organ or of a particular histological localization such as for example the detection of cells of distinct regions of epithelia, or of cells of connective tissue, cells originating from the basal lamina of a tissue or of cells of a heterologous origin, such as metastatic cells. This may be necessary in particular cases, because there might be cells, that under certain circumstances do express a marker, which might be used for the detection of a medically relevant condition, such as e.g. neoplasia or dysplasia, under certain normal conditions. Normalization as used according to the present invention may comprise the detection of the presence or absence and/or the level of any cell-types, that may possibly contribute to the total level of a particular marker selected to diagnose a medically relevant condition.
- In one embodiment, the method may be applied for the detection of cervical lesions. Cervical lesion may comprise any kind of cervical dysplasia such as cervical cancers as defined above and its precursory stages. Markers and combinations thereof useful for this detection purpose are for example disclosed in WO0208764 and EP1217377, which documents shall be incorporated herein by reference. In this embodiment the test may be performed using any suitable sample of cervical origin. The sample may for example comprise biopsies or microbiopsies of the cervix or swabs taken from the cervical region. Cervical swabs as used herein are samples that may for example be obtained using a suitable device such as a brush, a tampon, a spatula or the like, which is contacted with the uterine cervix during the sampling procedure. The sampling device may be any suitable device, which may be used in conventional testing performed by a physician or a self sampling device.
- Promising molecular markers for enhancing the evaluation of cervical swabs are e.g. p16INK4a, p14ARF, cyclin E, cyclin A, cyclin B, MN, her2/neu, mdm-2, bcl-2, EGF-Receptor, mcm-2, mcm-5, claudin-1, Markers indicative for Human papilloma virus infection, pRb, p53 etc. which might be used to detect dysplastic and neoplastic cells. Normalization according to the present invention for the purpose of analysis of cervical swabs may comprise the detection of the presence of human cells at all, the detection of cells of the cervical epithelium, the detection of the presence of endocervical as well as ectocervical cells and the detection of cells of endometrial origin. The endocervical epithelium is a glandular columnar epithelium. Cells originating from the endocervix may thus be identified by markers that are selectively expressed by columnar epithelial cells or by cells in glandular epithelia. The ectocervical epithelium is a squamous epithelium. Identification of ectocervical cells thus may be achieved by detection of markers characteristic for squamous epithelial cells. In certain embodiments, the detection of epithelial cells (comprising squamous as well as columnar epithelia) may be sufficient. In other embodiments, the differentiation of especially endocervical cells may be crucial. It is a crucial step to ensure the presence of ecto- and endocervical cells within the sample to ensure, that the specimen was taken at the cervical transformation zone, where most dysplasias and neoplasias arise. If there are no such cells, the sample is not adequate for the testing procedure, for it is prone to give false negative results. As p16INK4a may be expressed in normal endometrial cells normalization of the p16 INK4a expression level in regard to the number of endometrial cells might be necessary.
- To enable for reliable diagnosis the normalization furthermore may comprise the detection of the presence or absence of the named cellular components within the sample, and additionally the detection of the total level of a particular cell type or of the fraction, that a particular cell type contributes to the total number of cells within the sample.
- Thus, in one embodiment the detected level of the p16INK4a protein may be normalized to the cytological conditions represented by the particular sample, so that one may state, if the detected level of the p16INK4a protein is indicative for cervical cells overexpressing p16INK4a, or if there is an abundant number of endometrial cells present in the sample, thus mimicking the overexpression of p16INK4a. In this respect normalization may comprise the determination of the quantity of endometrial cells within a cervical sample on the basis of a molecular marker. Comparing the level of e.g. p16INK4a as a marker for a medically relevant condition determined in a cervical sample to the quantity of endometrial cells assessed by means of molecular markers, one may state, whether the total amount of p16 may arise only from the endometrial cells present within the sample solution. Thus, false positive results in diagnosing cervical dysplasias overexpressing p16INK4a attributable to the presence of high levels of endometrial cells may be excluded. A quantity as used in the context of the present invention may refer to a quantitative or semi-quantitative assessment. This may e.g. comprise the assessment of a total number of cells or the assessment of a fraction with respect to the total number of cells. In certain embodiments of the invention the determination of a quantity may refer to the assessment of the fraction of an overall marker level that is contributed by a particular type of cells.
- For the purpose of providing a normalization marker for the evaluation of cervical specimens, several normalization markers appear to be useful and may e.g. be selected from the following: Cytokeratins, E-Cadherins, Involucrin, Urokinase-like Plasminogen-activator, SCCA (Squamous cell carcinoma antigen), Catenins, (e.g. alpha-catenin, beta-Catenin, gamma-Catenin (Plakoglobin)), Ep-Cam.
- Several candidates for normalization markers have been examined for their properties in characterization of cervical specimens. The results are given in Table 2 and Table 3.
-
TABLE 2 Clinical/Biochemical Name Histology/Cytology Data Literature UPA-1 Cervical tissue ↑ In cervix CA Horn LC Aust N Z J (Urokinase-type Normal epithelium Obstet Gynaecol, 2002 Plasminogen- showed presence of both Larsson G Thromb. Activator; Swissprot t-PA and u-PA Haemost. 1987 Accession P00749; immunoreactivity only also known as EC in the superficial 3.4.21.73, U- cellular layer, whereas plasminogen activator in preinvasive lesions uPA) they were present in all layers. PAI-1 Cervical tissue ↑ In cervix CA Horn LC Aust N Z J (Plasminogen- Normal epithelium positive prognostic marker Obstet Gynaecol, 2002 Activator Inhibitor 1;showed presence of both Larsson G Thromb. Swissprot Accession t-PA and u-PA Haemost. 1987 P05121; also known as immunoreactivity only PAI-1 in the superficial Endothelial cellular layer, whereas plasminogen activator in preinvasive lesions inhibitor they were present in all PAI; Isoforms: PAI-2 layers. P05120 and PAI-3 P05154) Involucrin Only squamous Involucrin expression is Shirley A, Human (Swissprot Accession epithelia, no columnar abnormal in squamous cell Pathology, 2001 P07476) cells; immature and carcinomas and de Boer et al., 1999, SEQ ID NO: 7 mature squamous premalignant lesions, and is Am J of Pathol, metaplastic cells. reduced in severe dysplasias 155: 505-515 In normal epidermis, it of the larynx and cervix. Nair SA, Pathobiology, is first expressed in the Marker for terminal 1996 upper spinous layers, differentiation. and in keratinocyte cultures it is expressed by all cells that have left the basal layer. gamma-Catenin Squamous epithelia High in normal cervical de Boer et al., 1999, (Swissprot Accession epithelium at cell-cell- Am J of Pathol, Q86W21; also known boundaries. Moderate 155: 505-515 as Plakoglobin; e.g. reduction in high grade Epitope: C-Terminus; SILS AA553-738) SEQ ID NO: 1 Alpha-1 Catenin Squamous epithelia High in normal cervical de Boer et al., 1999, Am (Swissprot Accession epithelium at cell-cell- J of Pathol, 155: 505-515 P35221; also known boundaries as Cadherin-associated Strong reduction in high protein grade SILS Alpha E-Catenin) SEQ ID NO: 4 Alpha-2 Catenin (Swissprot Accession P26232; also known as Alpha-Catenin related protein Alpha N-Catenin) SEQ ID NO: 5 beta-Catenin Squamous epithelia High in normal cervical de Boer et al., 1999, Am (Swissprot Accession epithelium at cell-cell- J of Pathol, 155: 505-515 P35222 also known as boundaries PRO2286) Strong reduction in high SEQ ID NO: 6 grade SILS Desmoplakin stratified epithelia, ↓ in HSIL area de Boer et al., 1999, Am (Swissprot Accession simple epithelia, J of Pathol, 155: 505-515 P15924; also known as including glands, DP urothelium, thymic 250/210 kDa reticular epithelium, paraneoplastic hepatocytes, pemphigus antigen) intercalated disks of myocardium and arachnoid cells of meninges suprabasal layers of cervix (Superficial cells largely negative) ↓: down regulated; ↑: up regulated; -
TABLE 3 Western Blot Analysis (clinical samples were freshly lysed with Marker Histological testing Cytological testing MTM buffer) E-Cadherin Squamous epithelia, Parabasal, intermediate Only weak signal for HT- (Swissprot Accession (Parabasal, cells, no columnar cells 29. All clinical samples P12830; also known as intermediate cells) are negative Uvomorulin, no columnar epithelia Cadherin-1, CAM 120/80; e.g.epitope: C- Terminus; AA735- 883) SEQ ID NO: 3 p120 Squamous epithelia, Very strong staining of Only negative control Swissprot Accession (Parabasal, parabasal, intermediate (lymphocytes) and O60716; p120 catenin, intermediate cells) cells positive control (C4.1) p120(ctn), Cadherin- also very strong in strong columnar cells positive associated Src columnar epithelia substrate, CAS, p120(cas); e.g.epitope: C-Terminus; AA790- 911) SEQ ID NO: 8 gamma-Catenin Squamous epithelia, Very strong staining of Double bands (82/95 kD) Swissprot Accession (Parabasal, parabasal, intermediate in 60% of samples Q86W21; also known intermediate cells) no cells (9/15); after acetone as Plakoglobin; e.g. columnar epithelia, no columnar cells precipitation of 150 μl of epitope: C-Terminus; total epithelium is samples: 87% (13/15) AA553-738) stained indysplasia positive Ep-Cam strong columnar strong columnar cells, (Tumor-associated epithelia, at very high calcium signal at very high concentrations rather transducer 1, concentrations rather unspecific Swissprot Accession unspecific (cytoplasmic) staining P16422; also known as (cytoplasmic) staining of squamous epithelia, Major gastrointestinal of squamous epithelia, (Parabasal, tumor-associated (Parabasal, Intermediate Cells) protein, GA733-2, Intermediate Cells) Epithelial cell surface antigen, Epithelial glycoproteins, EGP, Adenocarcinoma- associated antigen KSA KS 1/4 antigen Cell surface glycoprotein Trop-1) SEQ ID NO: 2 Involucrin Strong staining of All cells and (Swissprot Accession squamous epithelia, structures positive P07476) (Parabasal, Intermediate Cells) and columnar epithelia; unspecific staining of stromal cells; - The markers for normalization may for example be applied as markers indicative of the presence of specific cell differentiation patterns such as e.g. terminal differentiation or differentiation as specific epithelial cells. In certain embodiments, normalization markers may be marker molecules characteristic for squamous epithelial cells e.g. indicative for the presence of ectocervical cells in a cervical sample. Suitable markers may comprise e.g. CK13, E-Cadherin, gamma-Catenin, or Involucrin. In another embodiment the markers may be characteristic for the presence of columnar epithelial cells indicating the presence of endocervical cells in the specimen. Suitable markers comprise: Ep-Cam, CK18, CK8.
- In certain embodiments, normalization may comprise the detection of epithelial cells generally; in these cases any marker suitable for the detection of epithelial cells may be employed. Markers may be for example those given in Tables 2 and 3.
- In yet another embodiment of the invention, the method disclosed herein may be used for the detection of disorders of the respiratory tract. In the diagnosis of small cell lung cancer detection of neuron specific enolase (NSE) is one of the employed markers. Samples of tumor specimens are yielded by bronchoscopy with collection of cells by means of brushes or bronchoalveolar ravages. Since NSE is also expressed in few normal cells within the lung, the level of NSE expression detected in the dissolved sample has to be set in relation to the normalisation maker (for example actin) for detection of the amount of cells present within the sample.
- A third embodiment of the present invention is the detection of lesions of the gastrointestinal tract, e.g. colorectal lesions from stool samples. In this case the origin of indicative nucleic acids and/or polypeptides detectable in stool samples may be crucial for the assessment of diagnosis. According to the present invention, it is possible to determine the origin (cell types/organism) of the employed marker molecules. Thus false results based e.g. on the detection of marker molecules originating from foodstuff ingested by individuals rather than from lesion of the mucosa of the gastrointestinal tract may be eliminated. Furthermore artefacts produced by the presence of traces of markers from the blood circulation, or originating from swallowed sputum etc. may be eliminated using the methods disclosed herein.
- Another aspect of the present invention is a testing kit for performing the method according to the present invention. The kit may be for example a diagnostic kit, an analytical kit or a research kit.
- The term kit as used according to the present invention may comprise kits as well as diagnostic devices. The kits or devices may e.g. be designed for ELISA (e.g. sandwich, competitive, non-competitive, etc.), EIA (competitive, non-competitive, etc.) RIA tests, bead based test systems, lateral flow assays, flow through assays, strip test assays, dip stick assays, or any other known laboratory-, bench top- or point of care-testing format. A kit according to the present invention may in certain embodiments comprise in-vitro diagnostic devices for performing diagnostic tests. In vitro-diagnostic devices may e.g. be ELISA devices of any kind known to those of skill in the art. These devices comprise devices for sandwich ELISA formats, for competitive ELISA formats and any other ELISA formats. In another embodiment the in-vitro diagnostic device may be a lateral flow assay device, or a flow through assay device e.g. employing at least one reagent binding to a marker characteristic for a medically relevant condition and one reagent binding to a normalization marker, both fixed to a solid phase. Such devices may employ various mechanisms for visualization of the test result. In certain embodiments the tests may employ secondary detection reagents directed against the marker molecules coupled to detectable moieties. The detectable moieties may comprise colloidal gold, (coloured) latex particles and others.
- In yet another embodiment the in-vitro diagnostic test device may be a flow through assay device based on capillaries or on porous members (such as membranes, beads or other three dimensional arrangements of porous substances). Depending on the embodiment the size of pores or capillaries need to be adjusted to ensure optimal flow conditions.
- A kit according to present invention may comprise
- a) reagents for the detection of the marker molecules,
- b) the reagents and buffers commonly used for carrying out the detection reaction, such as buffers, detection-markers, carrier substances and others,
- c) one or more markers and/or samples representative for medically relevant conditions to be diagnosed for carrying out positive and/or control reactions, and
- d) one or more normalization marker samples for carrying out a positive and/or control reaction.
- The test kit may optionally include a lysis buffer for solublization of the raw sample. Generally the lysis buffer may be any suitable solvent known to those of skill in the art. The lysis buffer for use in the kit may for example be aqueous solutions of chaotropic agents such as e.g. urea, GuaSCN, Formamid, of detergents such as anionic detergents (e.g. SDS, N-lauryl sarcosine, sodium deoxycholate, alkyl-aryl sulphonates, long chain (fatty) alcohol sulphates, olefine sulphates and sulphonates, alpha olefine sulphates and sulphonates, sulphated monoglycerides, sulphated ethers, sulphosuccinates, alkane sulphonates, phosphate esters, alkyl isethionates, sucrose esters), cationic detergents (e.g. cetyl trimethylammonium chloride), non-ionic detergents (e.g. TWEEN®-20, nonidet P-40, TRITON® X-100, NP-40, IGEPAL® CA 630, N-Octyl-Glucosid) or amphoteric detergents (e.g. CHAPS, 3-Dodecyl-dimethylammonio-propane-1-sulfonate, Lauryldimethylamine oxide) and/or of alkali hydroxides such as e.g. NaOH or KOH.
Examples of Lysis Buffers are given in Table 4. -
TABLE 4 Solubilization of p16INK4a in compatibility Lysis buffer Western blot with Elisa Detergents: 0.1-1% SDS + +/− 0.2-3% SDS + <0.5% 0.2-3% DOC ++ +/− 0.1-1% n-Octylglycoside + yes 0.1-3% TRITON ® X-100 + yes 0.1-1% Chaps + nd Detergent-Mix: RIPA (1% NP40, 0.5% DOC, ++ yes 0.1% SDS, PBS) 40-100% SOX (0.5% DOC, 0.5% n- + yes Octylglycoside) 40-100% mtm lysis buffer (3% TRITON ® ++ yes X-100, 0.4% SDS, PBS) Commerical lysis buffers: Dynal (Dynal, Oslo, Norway) ++ yes M-PER/B-PER (Pierce, Rockford, ++ yes IL) Miscellaneous: 0.5-8 M urea in PBS +++ Compatible < 2 M Lammli sample buffer +++ no 10-80% DMSO +++ no 10-80% Formamide nd no 50-70% formic acid ++ no PBS +/− yes Citrate buffer pH 6.0 +/− yes 500 mM NaCl in Phosphate buffer +/− yes nd: not determined; +/−: poor; +: good; ++: very good; +++: excellent;
The lysis buffer may furthermore comprise one or more agents that prevent the degradation of components within the raw samples. Such components may for example comprise enzyme inhibitors such as proteinase inhibitors, RNAse inhibitors, DNAse inhibitors etc. The inhibitors may e.g. comprise proteinase inhibitors selected from the compositions given in Table 5. In certain embodiments the lysis buffer by the way of providing an inhibitor of degradation enables for detection of p16 in the sample. In certain embodiments the cyclin dependent kinase inhibitor p16 is degraded in the solubilized samples and may thus not be detected. This is especially true, if the samples are directly transferred to a lysing medium and stored therein for a certain period of time. -
TABLE 5 Class of Solubility stability inhibited in in Inhibitor proteinase concentration water water Aprotinin Serine 0.6-2 μg/ml Very good good Benzamidine Serine 0.5-4 mM good good Bestatin Aminopeptidases 1-10 μM good good Calpeptin Cysteine 0.3-1 μM good good Cystatin Cysteine 1 μM good good E-64 Cysteine 1-10 μM good good EDTA Metallo 0.5-5 mM good good Elastatinal Serine 0.5-2 μg/ml poor good EST Cysteine 20-50 μg/ml bad poor Fetal calf all classes 10% good good serum Leupeptin Serine/Cysteine 10-100 μM good good a2- all classes 1 μM good good Macroglobulin NCO-700 Cysteine 0.5-100 mM poor poor Pefabloc = Serine 0.2-10 μM good very AEBSF poor Pepstatin A Aspartic 1 μM bad poor PMSF Serine 0.2-10 μM bad very poor o- Metallo 1-10 mM bad poor Phenanthroline - For stabilization purpose the lysis buffer may also comprise bulk protein (e.g. albumin such as bovine serum albumin or calf serum albumin or other bulk proteins) to compete in degradation with the sample proteins. The bulk proteins may e.g. be present in combination with proteinase inhibitors or may be added instead of proteinase inhibitors. In one embodiment the solvent may be selected to be compatible with the performance of the test (EIA, ELISA or strip test performance), so that solubilized samples may directly be applied to the test. Test as used in the context may comprise any procedure for detecting the presence or absence and/or the level of marker molecules.
- The reagent for the detection of the marker molecules may include any agent capable of binding to the marker molecule. Such reagents may include proteins, (poly)peptides, nucleic acids, peptide nucleic acids (PNAs), glycoproteins, proteoglycans, polysaccharids or lipids.
- The markers characteristic for medically relevant conditions and/or normalization marker samples for carrying out positive and/or negative controls may comprise for example nucleic acids in applicable form such as solution or salt, peptides in applicable form, tissue section samples, microorganisms or positive or negative cell-lines.
- In one embodiment of the invention, the detection of the marker molecules is carried out on the level of polypeptides. In this embodiment the binding agent may be for example an antibody specific for the marker molecules or a fragments thereof. Furthermore binding agents may comprise antigen-binding fragments such as Fab fragments, single chain antibodies, bifunctional hybrid antibodies, peptidomimetics containing minimal antigen-binding epitopes etc. Moreover the binding agent might be a lectin binding to a specific carbohydrate structure on the marker molecule.
- In another embodiment of the test kit the detection of the marker molecules is carried out on the nucleic acid level. In this embodiment of the invention the reagent for the detection may be for example a nucleic acid probe or a primer reverse-complementary to said marker nucleic acid.
- The following examples are given for the purpose of illustration only and are not intended to limit the scope of the invention disclosed herein.
- In order to evaluate markers indicating the adequacy of cervical swabs, cervical sections (fixed in 4% formaldehyde solution and paraffin-embedded) were stained with antibodies directed against Cytokeratin 18 (marker for endocervical columnar epithelia) and Cytokeratin 10/13 (marker for ectocervical squamous epithelia).
FIG. 1 shows specific staining of endocervical epithelia with anti-Cytokeratin 18 antibody and specific staining of ectocervical epithelia with anti-Cytokeratin 10/13 antibody. The experiment was performed as follows: - Formalin-fixed, paraffin-embedded sections were deparaffinized in xylene bath for 5 min (step was repeated once), excess liquid was tapped off and slides were placed in 95-96% ethanol for 3 (±1) min, in 70% ethanol for 3 (±1) min (step was repeated once) and finally in distilled water for a minimum of 30 sec. For epitope retrieval, slides were placed in a Coplin jar and boiled for 40 min at 95-99° C. in 10 mM Citrate buffer pH 6.0. Slides were allowed to cool down for 20 min (±1 min) at RT in this buffer. Slides were covered with Peroxidase-Blocking Reagent (3% H2O2; NaN3 15 mM) and incubated for 5 (±1) min at RT. After 5 min washing in washing buffer, slides were incubated with primary antibodies (CK 10/13: DE-K13, 1:50, DAKO; CK 18: K18.7, 1 μg/ml, dianova) for 30 min. Thereafter, slides were rinsed with wash buffer and washed in wash buffer for 5 min at RT. Following 30 min incubation with EnVision (ready to use anti-mouse horseradish peroxidase-complex; DAKO), slides were washed 3×5 min and incubated in DAB substrate for 10 min, counterstained with hematoxylin and mounted with Faramount mounting medium.
- Using an antibody directed against cytokeratin 18 (CK18) in an immunohistochemical staining procedure, a positive reaction was detected in columnar epithelium of the endocervix (
FIG. 1A ), whereas the squamous epithelium of the ectocervix showed no specific staining (FIG. 1B ). Immunohistochemical staining with an antibody directed against cytokeratin 10/13 (CK 10/13) showed no staining in the columnar epithelium of the endocervix (FIG. 1C ), whereas there is a strong staining of the squamous epithelium of the ectocervix (FIG. 1D ). So CK18 might be used as a specific marker for the detection of columnar epithelial cells of the endocervix and CK10/13 as a specific marker for squamous epithelial cells of the ectocervix. - In order to evaluate, whether western blot analysis of solubilized samples allows assessing diagnosis of cervical lesions, clinical samples with known diagnosis were subjected to an immuno-chemical analysis on the basis of marker molecules after lysis of the sample material.
- The clinical material (cervical swabs) samples were analyzed by Standard Western Analysis as follows.
- In brief, the clinical material was in a first step solubilzed by boiling (5 min, 95° C.) in Lämmli Protein Sample buffer (100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB) prior to sonification. In a second step, protein samples were resolved on a SDS-PAGE (12% Acrylamide) and subsequently transferred on a nitrocellulose membrane by tank blotting (Towbin et al., 1979, Proc Natl Acad Sci: 76:4350-4354). In a further step, the membranes were: blocked to prevent unspecific antibody binding (10% non fat dry milk in PBS) and subsequently incubated with the specific monoclonal mouse antibody (CK 8: 35βH11, 1:100, DAKO; p16INK4a: D7D7, 1:140, MTM Laboratories). The binding of the specific antibody was visualized by Horseradish Peroxidase conjugated secondary reagents (binding to the marker specific antibody) catalyzing photon emitting substrates.
- Cytokeratin 8 (CK 8) was used as an endocervical cell specific marker, indicating the adequacy of the sample collection in the present experiments. The cyclin dependent kinase inhibitor p16INK4a was used as specific disease related marker.
- The results of the present experiment are given in
FIG. 2 . Thenumbers 1 to 4 refer to samples (cervical swabs) obtained from individual patients. Immunoblot detection was performed using specific antibodies directed against cytokeratin 8 (CK8) and specific antibodies directed against p16INK4a (p16). The samples ofpatient patient 4 shows a strong signal for p16INK4a. This indicates that dysplastic cervical cells were present in the sample. The upper bands show the specific signals forcytokeratin 8. Insample cytokeratin 8 can be detected, whereas in forsample 2 no signal can be seen. This indicates that endocervical columnar cells were present insamples sample 2. As the presence of endocervical columnar epithelial cells is one of the parameters for the adequacy of cervical swabs,sample 2 is considered inadaequat and no diagnostic conclusions can be drawn from the negative result of the p16INK4a detection.Samples sample Sample 4 showed a positive signal for p16INK4a, indicating the presence of a dysplastic cervical lesion in this patient. - The parallel cytological analysis of the swabs indicated a normal cellular composition for
woman women 2, no diagnosis due to sparse cellular material could be obtained. Inwoman 4, a high-grade dysplasia was diagnosed. Note that the upper band (CIK 8) refers to the endocervical cell specificnormalization marker Cytokeratin 8, indicating the adequacy of the sample collection. The lower band indicates the specific disease related marker p16INK4a. The blot shows for patient 4 a positive signal for p16INK4a consistent with a high-grade cervical dysplasia. Samples ofpatient CK 8 specific band, indicating proper sample collection, but no disease related marker (p16INK4a) consistent with a normal, healthy cervical epithelium. The sample ofpatient 2 shows noCK 8 signal, consistent with the low cell number in this sample, so no diagnostic conclusion can be drawn from the negative signal for p16INK4a. - To evaluate, whether results of solution based analysis differing from diagnosis of samples may be due to inadequacy of sample, Western blot analysis of cervical swabs of four different patients with ascertained diagnosis (high-grade cervical intraepithelial neoplasia according to the cytological diagnosis of Pap IVa and Pap IVb) was performed. Antibody against p16INK4a was used to indicate presence of dysplastic cells, whereas antibodies against CK18 and CK10/13 were used to demonstrate adequacy of the sample.
- Western blot analysis was performed as follows: Patient samples were collected with a cervical brush and directly lysed in Laemmli Sample Buffer (2% SDS, 60 mM Tris pH.6.8, 0.01%, 100 mM DTT) for 5 min at 95° C. (1×107 cells/ml) with subsequent sonification (5×5 sec pulses, maximum intensity). Lysates were centrifuged for 12 min at 16,600×g) in a microcentrifuge and supernatant was transferred into a new tube. Precast 4-20% linear gradient acrylamide gels (Criterion System, Bio-Rad) were loaded with 10 μl (105 cells) of whole cell extracts and proteins were separated at 25 mA constant current for 45 min. Proteins were transferred from the gel to HYBOND® (Hydrophobic polyvinylidene difluoride membrane) ECL Nitrocellulose membrane (Amersham) by standard tank blotting using the Bio Rad Criterion Blotter (15 min at constant 100 Volt and subsequently 45 min at constant 50 Volt). Nitrocellulose-membrane was stained for 5 min in Ponceau S solution to assure protein transfer. Ponceau S solution was removed by 2×10 min washes in PBS. For immunodetection, blots were blocked over night in blocking buffer (10% milk powder in PBS with 0.1% TWEEN-20®). Primary antibodies were incubated at dilutions according to the manufacturer in blocking buffer for 1 h at RT with agitation (CK18: MAB 3236), 1:1000, CHEMICON; CK 10/13: DE-K13, 1:500, DAKO, p16INK4a: D7D7, 1:140, MTM Laboratories). After 6 washes for 10 min with PBS/0.1% TWEEN-20®, blots were incubated with rabbit anti mouse-HRP, (DAKO, diluted 1:5,000 in blocking buffer) for 1 h at RT. After 6 washes for 10 min with PBS/0.1% Tween-20, membranes were incubated for 5 min in substrate solution (Super Signal West Femto Maximum Substrate, Pierce), wrapped in a plastic envelope and exposed to an x-ray film for 1-5 min. Finally, x-ray films were developed, fixed, dried and documented with an imaging system (Bio-Rad). The same samples were used to perform ELISA analysis for p16INK4a, CK 10/13, CK18. The detected signals and results were the similar to the Western blot analysis and the same conclusions were drawn.
- The ELISA analysis was performed as follows: Flat bottom 96 well plates (MAXISORB®, chemical product; Nunc) were coated with capture antibody (p16INK4a: MTM-E6H4, 2 μg/ml in PBS, MTM Laboratories; CK10: MS481P1ABX, 2 μg/ml, dianova; CK18: K18.7, 2 μg/ml, dianova; 50 μl/well) over night at 4° C. Plates were washed 6× with PBS/0.1% TWEEN®-20 and blocked with SUPERBLOCK® buffer (chemical reagent, Pierce). Solubilized protein extract from cervical swabs were dissolved in incubation buffer (PBS, 3% SUPERBLOCK® (Chemical reagent), 0.1% TWEEN®-20), and added in triplicates to each well. After 1 h incubation at RT, plates were washed 6× with PBS/0.1% TWEEN®-20 and incubated with biotinylated detection antibody (p16INK4a: MTM-D7D7 (0.2 μg/ml, MTM Laboratories, CK10: MS481-BO, 200 μg/ml, dianova; CK18: MS142-BO, 200 μg/ml, dianova; in incubation buffer) for 1 h at RT. Following 6× washes with PBS/0.1% TWEEN®-20 TMB, 50 μl of streptavidin-coated alkaline phosphatase (1:1000 dilution; Dianova) was added for 30 min. Thereafter, plates were washed 6× with PBS/0.1% TWEEN®-20 and 100 μl of p-nitrophenyl phosphate substrate (PnPP; dissolved in diethanol amine buffer) were added to each well. OD 405 nm (620 nm reference wavelength) was measured with an ELISA reader (TECAN®) after 30 min, 1 h and 2 hrs. The present example shows, that the sandwich ELISA format exhibits sensitivity, which is suitable for the use in the methods according to the present invention. For use in the method disclosed herein the sandwich ELISA format as described in this example may be applied to multiple marker molecules, such as markers for normalization/adequacy and markers characteristic for medically relevant conditions.
- Samples of four patients with high-grade cervical dysplasias (see Diagnosis) were analysed using western blot analysis (upper panel of figure). For the left blot immunoblot detection was performed using antibodies specific for β-actin and p16INK4a, for the middle blot antibodies specific for cytokeratin 10/13 and for the right blot antibodies specific for
cytokeratin 18 were used. β-actin, CK18, and CK10/13 were used as markers demonstrating the adequacy of the sample. β-actin indicates the presence of any cells, CK10/13 the presence of ectocervical squamous cells,CK 18 the presence of endocervical columnar cells. - As shown in
FIG. 3 , for the samples ofpatient CK 18, β-actin) and for the marker (p16INK4a) indicative of dysplastic cells.Samples patient 3, β-actin) or negative (patient 4, all markers;patient 3, CK markers) signal in the Western blot analysis. So no diagnostic conclusion can be drawn from the negative signal for p16INK4a. - The lower panel of this figure shows the results of ELISA analysis. Positive signals for the adequacy markers (CK10/13, CK 18) were detected for the sample of
patient patients CK 18 was seen. So the ELISA analysis results resemble the Western blot analysis results and the same conclusions can be drawn. - In order to evaluate, whether Western blot analysis of solubilized samples allows to assess diagnosis of pulmonary lesions, clinical samples with known diagnosis were solubilized and subjected to an immuno-chemical analysis on the basis of marker and normalization molecules.
- The clinical samples (cells collected by brushing or bronchoalveolar lavage) were analyzed by Standard Western Analysis as follows. Cells from bronchoalveolar lavage were pelleted by centrifugation (5 min, 1000 rpm) and the pellet was dissolved in Lämmli Protein Sample buffer (100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB). Cells obtained by brushing were dissolved directly in Lämmli Protein Sample buffer (100 mM Tris pH.6.8, 2% SDS, 200 mM DTT, 0.05% BpB). The material was boiled (5 min, 95° C.) prior to sonification. In a second step aliquots of the protein samples were resolved in duplicates on a SDS-PAGE (12% acrylamide) and subsequently transferred on a nitrocellulose membrane by tank blotting (Towbin et al., 1979, Proc Natl Acad Sci; 76:4350-4354). In a further step the membranes were blocked to prevent unspecific antibody binding (10% non fat dry milk in PBS) and subsequently one membrane was incubated with specific monoclonal mouse antibodies against NSE (DAKO Germany, clone BSS/NC/V1-H14, mouse monoclonal, dilution 1:1000;) and one membrane was incubated with the normalization marker actin (ICN, USA, clone C4, mouse monoclonal, dilution 1:400). The binding of the specific antibody was visualized by Horseradish Peroxidase conjugated secondary reagents (binding to the marker specific antibody) catalyzing photon emitting substrates.
- In the bronchoalveolar lavages of patients with known small cell lung cancers high levels of NSE in comparison with the expression levels of actin was detected, whereas in patients without tumor hardly any NSE could be detected, the actin level however was comparable to the level of the cancer patients. (Data not shown)
- The results indicate, that a normalization of the solution based testing procedure according to the method presented herein enables for assessing diagnosis of diseases without relying on morphological information
- 34 cervical swabs provided in lysis buffer have been subjected to ELISA based detection of overexpression of cyclin dependent kinase inhibitor p16INK4a in solutions prepared from the cells contained in the swabs. The ELISA testing was performed as follows:
- Cervical swab brushes are given into 15 ml vessels, containing 2 ml of mtm lysis buffer. Cervical cells present in the brush are lysed for at least 20 h. The lysates of the cervical swab samples are then transferred in 2 ml tubes and are centrifuged at 4° C. (15 min at 28.000×g (16.600 rpm High-speed Centrifuge JEC Multi RF)); Supernatant is transferred to a fresh tube. As the case may be the supernatant may be stored at −20° C.
- Stock-solutions of p16INK4a-specific antibody clone mtm E6H4, Ep-Cam specific antibody Ber-Ep4 and gamma-Catenin specific antibody clone 15 are diluted in PBS to give ready-to-use coating solution.
- 50 μl of each ready-to-use capture antibody coating solution is added to ELISA plates.
- For coating, the plates are incubated overnight at 4° C.
- Coating solutions are removed from the ELISA plates and the plates are rinsed using an automated ELISA washer as follows:
-
- 7×250 μl washing buffer (0.1% TWEEN®-20 (v/v) in PBS)
- after removing remnants of the washing buffer, 300 μl blocking buffer (2% BSA in PBS) is added to each well. Plates are incubated for 1 h on a rocking device at ambient temperature.
- Incubation with Samples
- After removing the blocking buffer 100 μl of the lysed cell sample is added to each well. Lysates of HeLa-cells are used as positive control for antibodies specifically detecting p16INK4a and gamma-Catenin; Lysates of HT29-cells are used as positive control for antibodies specifically detecting Ep-Cam;
- For purpose of calibration of the test, different concentrations of recombinant p16 protein, recombinant gamma-Catenin and Ep-Cam (0 pg/ml, 50 pg/ml, 100 pg/ml, 200 pg/ml, 400 pg/ml, 800 pg/ml) are included in the test.
- Samples are incubated for 1 h at room temperature.
- Thereafter washing is performed on an automated ELISA washer as follows
-
- 7×250 μl washing buffer. The remaining buffer is removed.
Incubation with Detection Antibody
- 7×250 μl washing buffer. The remaining buffer is removed.
- Working solutions of biotinylated secondary antibodies (clone mtm D7D7 specific for p16INK4a, clone A5B4 for Ep-Cam and clone MAB 2083 specific for gamma-Catenin) are prepared by dilution of stock solutions.
- 100 μl of working solutions of biotinylated secondary antibodies are added to wells incubated with corresponding antigen and capture antibody. After incubation for 1 h at RT, antibody solutions are removed and ELISA plates are washed by an automated ELISA washer
-
- 7× with 250 μl washing buffer.
- Streptavidin-HRP-polymers (1 mg/ml) are pre-diluted 1:10 (4 μl+36 μl incubation buffer); Final incubation solution is prepared by dilution 1:300 in incubation buffer (0.1% BSA in PBS) to a final concentration of 0.33 μg/ml.
- 100 μl of this solution are added to each well and incubated for 1 h at RT.
- Thereafter, the buffer is removed and the plates are washed manually with 200 μl washing buffer per well 5 times.
- Substrate Incubation
- TMB-substrate is equilibrated to 25° C. for 1 h in the dark.
- 100 μl of substrate solution is added to each well.
- The ELISA plates are incubated at 25° C. for exactly 15 min in the dark. Then the reaction is stopped by addition of 80 μl 2.5M H2SO4.
- Within 5 min. after stopping the reaction OD 450 nm is determined. After evaluation of the results, each sample returns a value for the OD.
- For sample adequacy, OD values of all samples for gamma-Catenin have to exceed a defined threshold value to prove proper sampling of a minimum of cells. Furthermore to ensure proper sampling a threshold for the OD value of Ep-Cam indicating the presence of endocervical cells has to be exceeded.
- For detection of dysplastic cells, OD values for p16INK4a have to exceed a defined threshold value to prove the presence of a minimum of p16-positive dysplastic cells.
- Results of this experiment are given in Table 6.
-
TABLE 6 No. of Gamma- samples P16INK4a Catenin Conclusion 3 + + Sample is adequate; p16INK4a indicates the presence of dysplastic cells 30 − + Sample is adequate; absence of detectable p16INK4a indicates absence of dysplastic cells 1 − − Sample is inadequate; re- sampling necessary - Comparison of OD values for p16INK4a and gamma-Catenin of 34 samples with corresponding threshold values revealed that 33 samples were adequate and could be further evaluated. From theses 33 samples, 30 samples were negative for p16INK4a and 3 were positive.
- The ELISA results were compared to the diagnostic results of a Papanicolaou test (PAP test, cervical cytology) from the same patients. The cervical cytology were evaluated according to the Munich Classification II (1990). Pap II encompasses benign cells, cervicitis and metaplasia, Pap IV encompasses severe dysplasia and carcinoma in situ. It turned out that samples returning an OD for p16INK4a of greater than 0.9 in the ELISA correspond to samples, that are classified as dysplastic by the conventional cytological PAP test.
- Applying OD 0.9 as threshold for the evaluation of the samples the ELISA results may be reported as follows.
-
TABLE 7 Diagnosis/ ELISA ELISA ELISA positive for negative results p16INK4a for p16INK4a Pap II 0 30 Pap IV 3 0 Not enough cells 0 1 - The ELISA test is positive in all 3 samples (100%) from women having severe dysplasia and is negative in all 30 samples (100%) of women having no dysplasia. One sample only contained very few cells and therefore was excluded from evaluation, since sampling was inadequate.
- The normalization of p16INK4a protein levels in solubilized patient samples with respect to a normalization marker characteristic for the presence of epithelial cells allows to assess diagnosis of dysplasias from the samples. The normalization in the present case allows especially to avoid false negative results due to inadequate sampling (for example total amount of patient material not sufficient to perform analysis, or the patient material is not taken at the correct anatomical location). The normalization is carried out in the testing format by applying a threshold value for the OD for the gamma-Catenin normalization marker determined in the ELISA above which the sample is to be classified as adequate. Below a certain threshold (corresponding to 200.000 squamous ectocervical cells) the sample does not contain an adequate amount of patient material. The use of a second normalization marker indicating the presence of endocervical cells provides further information about the adequacy of the sample. The normalization is carried out in the testing format by applying a threshold value for the OD for the Ep-Cam normalization marker determined in the ELISA above which the sample is to be classified as adequate. Below a certain threshold (corresponding to 2000 columnar endocervical cells) the sample does not contain an adequate amount of endocervical cells. (It must be understood that the threshold value applied in this example are adjusted to the particular reaction conditions. The value for the cells as well for OD may vary depending on the reaction conditions. Thus the values herein are intended to exemplify the conditions and not to limit the scope of the invention. Those of skill in the art know how an appropriate threshold value for a particular test format may be established.) The presence of endocervical cells provides the information that the swab or brush has had contact with the columnar epithelium of the endocervix and thus hints to a contact of the swab or brush with the transformation zone, where cervical dysplasia usually originates. In particular the detection of a certain amount of ectocervical cells (gamma-catenin) together with a certain amount of endocervical cells (Ep-Cam) provides with a high probability the information that the patient material was taken at the correct anatomical location (cervical transformation zone).
- Using the threshold values evaluated in these experiments, cytological specimens of 300 patients were tested in the presented ELISA testing format. In this experiments the specimens identified as being dysplastic by cytological examination may also be identified as being dysplastic in the ELISA testing format.
- The 34 cervical swabs as already used in Example 5 provided in lysis buffer have been subjected to ELISA based detection of overexpression of HPV E7 Protein and one adequacy marker in solutions prepared from the cells contained in the swabs. The ELISA testing was performed as follows:
- Cervical swab brushes are given into 15 ml vessels, containing 2 ml of mtm lysis buffer. Cervical cells present in the brush are lysed for at least 20 h. The lysates of the cervical swab samples are then transferred in 2 ml tubes and are centrifuged at 4° C. (15 min at 28.000×g (16.600 rpm High-speed Centrifuge JEC Multi RF)); Supernatant is transferred to a fresh tube. As the case may be the supernatant may be stored at −20° C.
- Coating of ELISA-Plates
- Stock-solutions of E7-specific antibody clone NM2 and gamma-Catenin specific antibody clone 15 are diluted in PBS to give ready-to-use coating solution.
- 50 μl of each ready-to-use capture antibody coating solution is added to ELISA plates.
- For coating, the plates are incubated overnight at 4° C.
- Coating solutions are removed from the ELISA plates and the plates are rinsed using an automated ELISA washer as follows:
-
- 7×250 μl washing buffer (0.1% TWEEN®-20 (v/v) in PBS)
- after removing remnants of the washing buffer, 300 μl blocking buffer (2% BSA in PBS) is added to each well. Plates are incubated for 1 h on a rocking device at ambient temperature.
- Incubation with Samples
- After removing the blocking buffer 100 μl of the lysed cell sample is added to each well. Lysates of HeLa-cells are used as positive control for antibodies specifically detecting gamma-Catenin; For purpose of calibration of the test, different concentrations of recombinant HPV 16 E7-protein, recombinant gamma-Catenin (0 pg/ml, 50 pg/ml, 100 pg/ml, 200 pg/ml, 400 pg/ml, 800 pg/ml) are included in the test.
- Samples are incubated for 1 h at room temperature.
- Thereafter washing is performed on an automated ELISA washer as follows
-
- 7×250 μl washing buffer. The remaining buffer is removed.
- Incubation with Detection Antibody
- Working solutions of biotinylated secondary antibodies (clone NM13 specific for HPV16 E7 protein and clone MAB 2083 specific for gamma-Catenin) are prepared by dilution of stock solutions.
- 100 μl of working solutions of biotinylated secondary antibodies are added to wells incubated with corresponding antigen and capture antibody. After incubation for 1 h at RT, antibody solutions are removed and ELISA plates are washed by an automated ELISA washer
-
- 7× with 250 μl washing buffer.
- Streptavidin-HRP-polymers (1 mg/ml) are pre-diluted 1:10. (4 μl+36 μl incubation buffer); Final incubation solution is prepared by dilution 1:300 in incubation buffer (0.1% BSA in PBS) to a final concentration of 0.33 μg/ml.
- 100 μl of this solution are added to each well and incubated for 1 h at RT.
- Thereafter, the buffer is removed and the plates are washed manually with 200 μl washing buffer per well 5 times.
- TMB-substrate is equilibrated to 25° C. for 1 h in the dark.
- 100 μl of substrate solution is added to each well.
- The ELISA plates are incubated at 25° C. for exactly 15 min in the dark. Then the reaction is stopped by addition of 80 μl 2.5M H2SO4.
- Within 5 min. after stopping the reaction OD 450 nm is determined. After evaluation of the results, each sample returns a value for the OD.
- For sample adequacy, OD values of all samples for gamma-Catenin have to exceed a defined threshold value to prove presence of a minimum of epithelial cells. (cf. Example 5)
- For detection of dysplastic cells, OD values for HPV 16 E7 have to exceed a defined threshold value to prove the presence of a minimum of transformed cells. The threshold depends on the ELISA conditions applied and was set as OD 0.7 in our test format.
- Comparison of OD values for HPV 16 E7, gamma-Catenin of 34 samples with threshold values revealed that the 33 samples proven to contain epithelial cells by means of detection of gamma-Catenin.
- Although the invention has been described with reference to the presently preferred embodiments, it should be understood that various modifications could be made without departing from the scope of the invention.
Claims (11)
1. A test kit for detecting cervical dysplasia, comprising:
(a) a first reagent for detecting a first marker molecule characteristic for cervical dysplasias selected from the group consisting of p16INK4a, p14ARF, cyclin E, cyclin A, cyclin B, MN, her2/neu, mdm-2, bcl-2, EGF-Receptor, mcm-2, mcm-5, claudin-1, markers indicative for human papilloma virus infection, pRb, and p53; and
(b) a second reagent for detecting a normalization marker molecular characteristic for the presence or absence of epithelial cells selected from the group consisting of CK8, Ep-Cam, CK13, CK8, CK8, E-Cadherin, alpha-Catenin, beta-Catenin, gamma-Catenin, and involucrin.
2. The test kit according to claim 1 , wherein at least one of the first reagent and the second reagent is fixed to a solid phase.
3. The test kit according to claim 1 , furthermore comprising at least one of the following components:
(a) the first marker molecular,
(b) the normalization marker molecular, and
(c) reagents and buffers commonly used for carrying out the detection reaction.
4. The test kit according to claim 1 , wherein the reagents for detecting the first marker molecule and the normal marker molecule comprise binding agents specific for said marker molecules.
5. The test kit according to claim 4 , wherein the binding agents are an antibody, a miniantibody, or a peptidomimetic comprising an antigen binding epitope.
6. The test kit according to claim 1 , wherein the test kit is a diagnostic test kit, an in-vitro diagnostic device, a research kit, or an analytical kit.
7. The test kit according to claim 1 , wherein the first marker molecule is p16INK4a, and the normalization marker molecule is gamma-Catenin.
8. The test kit according to claim 7 , further comprising a reagent for the detection of Ep-Cam.
9. The test kit according to claim 7 , further comprising a buffer for sample lysis.
10. The test kit according to claim 7 , wherein the reagents for detecting p16INK4a and gamma-Catenin are fixed to solid phases.
11. The test kit according to claim 7 , wherein the test kit is an in-vitro diagnostic device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/400,629 US20090181406A1 (en) | 2002-08-01 | 2009-03-09 | Kits for detecting cervical dysplasia |
US14/480,546 US10697966B2 (en) | 2002-08-01 | 2014-09-08 | Method for detecting cervical dysplasia |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPEP02017313.4 | 2002-08-01 | ||
EP02017313A EP1388734B1 (en) | 2002-08-01 | 2002-08-01 | Method for solution based diagnosis |
US10/633,484 US7517662B2 (en) | 2002-08-01 | 2003-07-31 | Method for solution based diagnosis |
US12/400,629 US20090181406A1 (en) | 2002-08-01 | 2009-03-09 | Kits for detecting cervical dysplasia |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/633,484 Division US7517662B2 (en) | 1998-07-01 | 2003-07-31 | Method for solution based diagnosis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/480,546 Continuation US10697966B2 (en) | 2002-08-01 | 2014-09-08 | Method for detecting cervical dysplasia |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090181406A1 true US20090181406A1 (en) | 2009-07-16 |
Family
ID=30129176
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/633,484 Expired - Lifetime US7517662B2 (en) | 1998-07-01 | 2003-07-31 | Method for solution based diagnosis |
US12/400,629 Abandoned US20090181406A1 (en) | 2002-08-01 | 2009-03-09 | Kits for detecting cervical dysplasia |
US14/480,546 Expired - Lifetime US10697966B2 (en) | 2002-08-01 | 2014-09-08 | Method for detecting cervical dysplasia |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/633,484 Expired - Lifetime US7517662B2 (en) | 1998-07-01 | 2003-07-31 | Method for solution based diagnosis |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/480,546 Expired - Lifetime US10697966B2 (en) | 2002-08-01 | 2014-09-08 | Method for detecting cervical dysplasia |
Country Status (13)
Country | Link |
---|---|
US (3) | US7517662B2 (en) |
EP (2) | EP1388734B1 (en) |
JP (4) | JP2005534313A (en) |
CN (1) | CN100570366C (en) |
AT (1) | ATE261126T1 (en) |
AU (1) | AU2003262554B2 (en) |
CA (1) | CA2487048C (en) |
DE (1) | DE60200248T2 (en) |
DK (1) | DK1388734T3 (en) |
ES (1) | ES2215957T3 (en) |
MX (1) | MXPA04012648A (en) |
RU (1) | RU2315312C2 (en) |
WO (1) | WO2004013632A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100113299A1 (en) * | 2008-10-14 | 2010-05-06 | Von Hoff Daniel D | Gene and gene expressed protein targets depicting biomarker patterns and signature sets by tumor type |
US20100203529A1 (en) * | 2008-11-12 | 2010-08-12 | Caris Mpi, Inc. | Methods and systems of using exosomes for determining phenotypes |
US20100304989A1 (en) * | 2009-02-11 | 2010-12-02 | Von Hoff Daniel D | Molecular profiling of tumors |
US20110028293A1 (en) * | 2006-01-24 | 2011-02-03 | Mycrolab Pty Ltd | Methods for Low Cost Manufacturing of Complex Layered Materials and Device |
US20110183333A1 (en) * | 2008-09-04 | 2011-07-28 | Peter Martin | Method for prediction of the progression risk of tumors |
WO2013016449A3 (en) * | 2011-07-26 | 2013-04-25 | Indicator Systems International, Inc. | Assays for the detection of microbes |
US8700335B2 (en) | 2006-05-18 | 2014-04-15 | Caris Mpi, Inc. | System and method for determining individualized medical intervention for a disease state |
US9128101B2 (en) | 2010-03-01 | 2015-09-08 | Caris Life Sciences Switzerland Holdings Gmbh | Biomarkers for theranostics |
US9469876B2 (en) | 2010-04-06 | 2016-10-18 | Caris Life Sciences Switzerland Holdings Gmbh | Circulating biomarkers for metastatic prostate cancer |
US20170027485A1 (en) * | 2011-05-05 | 2017-02-02 | Anpac Bio-Medical Science Co., Ltd. | Devices for detecting or filtering tumor cells |
KR101858801B1 (en) * | 2015-01-30 | 2018-05-17 | 중앙대학교 산학협력단 | Method of diagnosis of cervical cancer using glycosylation anaylsis of serum antibody and kit for diagnosis of cervical cancer using the same |
US10527526B2 (en) | 2011-11-03 | 2020-01-07 | Tripath Imaging, Inc. | Methods and compositions for preparing samples for immunostaining |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7306926B2 (en) * | 1998-07-01 | 2007-12-11 | Mtm Laboratories Ag | Method for detecting carcinomas in a solubilized cervical body sample |
WO2002101075A2 (en) * | 2001-06-13 | 2002-12-19 | Millennium Pharmaceuticals, Inc. | Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of cervical cancer |
US8986944B2 (en) | 2001-10-11 | 2015-03-24 | Aviva Biosciences Corporation | Methods and compositions for separating rare cells from fluid samples |
US8980568B2 (en) | 2001-10-11 | 2015-03-17 | Aviva Biosciences Corporation | Methods and compositions for detecting non-hematopoietic cells from a blood sample |
EP1369694A1 (en) | 2002-04-09 | 2003-12-10 | MTM Laboratories AG | Method for discrimination of metaplasias from neoplastic or preneoplastic lesions |
US20040229294A1 (en) * | 2002-05-21 | 2004-11-18 | Po-Ying Chan-Hui | ErbB surface receptor complexes as biomarkers |
US7402397B2 (en) | 2002-05-21 | 2008-07-22 | Monogram Biosciences, Inc. | Detecting and profiling molecular complexes |
US20040229380A1 (en) * | 2002-05-21 | 2004-11-18 | Po-Ying Chan-Hui | ErbB heterodimers as biomarkers |
DE60200248T2 (en) | 2002-08-01 | 2005-01-27 | Mtm Laboratories Ag | Procedure for solution-based diagnosis |
EP1422526A1 (en) | 2002-10-28 | 2004-05-26 | MTM Laboratories AG | Method for improved diagnosis of dysplasias |
EP1510820B1 (en) * | 2003-08-25 | 2010-03-17 | MTM Laboratories AG | Method for detecting medically relevant conditions in a solubilized LBC sample |
ATE289685T1 (en) | 2003-08-25 | 2005-03-15 | Mtm Lab Ag | METHOD FOR DETECTING CARCINOMAS IN SOLUBILIZED CERVICAL BODY SAMPLES |
US7402399B2 (en) * | 2003-10-14 | 2008-07-22 | Monogram Biosciences, Inc. | Receptor tyrosine kinase signaling pathway analysis for diagnosis and therapy |
WO2005083440A2 (en) | 2004-02-19 | 2005-09-09 | Yale University | Identification of cancer protein biomarkers using proteomic techniques |
US7229778B2 (en) | 2004-02-26 | 2007-06-12 | The Procter & Gamble Company | Methods for determining the relative benefits and/or evaluating quantitative changes of products on epithelial tissue |
DE102004009934A1 (en) * | 2004-02-26 | 2005-09-22 | Niendorf, Axel, Prof.Dr.med. | Method for examining a tissue sample |
KR20110027823A (en) * | 2004-03-24 | 2011-03-16 | 트리패스 이미징, 인코포레이티드 | Methods and compositions for the detection of cervical disease |
WO2005116241A1 (en) * | 2004-05-31 | 2005-12-08 | Sysmex Corporation | Method of judging properties of mammalian cell and method of diagnosing cancer |
GB0413001D0 (en) | 2004-06-10 | 2004-07-14 | Johnson & Johnson Medical Ltd | Diagnostic and prognostic |
EP1628135A1 (en) * | 2004-08-20 | 2006-02-22 | MTM Laboratories AG | Method for detecting medically relevant conditions in a solubilized LBC sample |
ITBO20040576A1 (en) * | 2004-09-17 | 2004-12-17 | Alma Mater Studiorum Uni Di Bologna | METHOD AND KIT FOR THE EVALUATION OF DNA FRAGMENTATION AFTER EXPOSURE TO RADIATION |
MX2007004342A (en) | 2004-10-14 | 2007-07-16 | Genentech Inc | Cop1 molecules and uses thereof. |
ES2475975T3 (en) * | 2004-12-21 | 2014-07-11 | Yale University | Preeclampsia diagnosis |
US7595380B2 (en) | 2005-04-27 | 2009-09-29 | Tripath Imaging, Inc. | Monoclonal antibodies and methods for their use in the detection of cervical disease |
US7901896B2 (en) * | 2005-07-21 | 2011-03-08 | Wayne State University | Asbestos exposure, pleural mesothelioma, and osteopontin levels |
US20100029504A1 (en) * | 2007-01-16 | 2010-02-04 | Phigenix, Inc. | Detecting pax2 for the diagnosis of breast cancer |
US7632498B2 (en) | 2005-12-19 | 2009-12-15 | Tripath Imaging, Inc. | MCM6 and MCM7 monoclonal antibodies and methods for their use in the detection of cervical disease |
DE602006007942D1 (en) * | 2006-02-03 | 2009-09-03 | Mtm Lab Ag | Method for carrying out a denaturing immunoassay |
US20070292869A1 (en) * | 2006-03-02 | 2007-12-20 | Ppd Biomarker Discovery Sciences, Llc | Compositions and Methods for Analyzing Renal Cancer |
RU2310197C1 (en) * | 2006-03-17 | 2007-11-10 | ФГУ Ростовский НИИ акушерства и педиатрии Росздрава | Method for predicting pre-cancer diseases of uterine cervix in women with papilloma-viral infection |
CN101583722A (en) | 2006-07-14 | 2009-11-18 | 阿维瓦生物科学股份有限公司 | Methods and compositions for detecting rare cells from a biological sample |
KR101396673B1 (en) * | 2006-11-02 | 2014-05-16 | 교와 메덱스 가부시키가이샤 | Method of immunoassaying a component to be measured |
US8865162B2 (en) | 2008-06-13 | 2014-10-21 | Oncohealth Corp. | Monoclonal antibodies against HPV proteins |
US8968995B2 (en) | 2008-11-12 | 2015-03-03 | Oncohealth Corp. | Detection, screening, and diagnosis of HPV-associated cancers |
US8877507B2 (en) * | 2007-04-06 | 2014-11-04 | Qiagen Gaithersburg, Inc. | Ensuring sample adequacy using turbidity light scattering techniques |
RU2369873C1 (en) * | 2008-03-18 | 2009-10-10 | Государственное образовательное учреждение высшего профессионального образования Читинская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию | Method of producing biological material for enzyme-linked immunoassay |
RU2372405C1 (en) * | 2008-08-04 | 2009-11-10 | Павел Петрович Лактионов | Method of extracting extracellular deoxyribonucleic acid from blood |
EP2224244A1 (en) * | 2009-02-26 | 2010-09-01 | Universität des Saarlandes | A diagnostic in-vitro method or assay for diagnosing chronic obstructive pulmonary disease (COPD) |
JP2012526286A (en) * | 2009-05-07 | 2012-10-25 | オンコヘルス コーポレーション | Identification of advanced or ≧ CIN2 for detection, screening, and diagnosis of early and late stages of human papillomavirus (HPV) and HPV-related cancers |
RU2426991C2 (en) * | 2009-05-25 | 2011-08-20 | Учреждение Российской академии медицинских наук Научно-исследовательский институт онкологии Сибирского отделения Российской академии медицинских наук (НИИ онкологии СО РАМН) | Method for prediction of clinical outcomes of head and neck squamous cell carcinomas |
EP2270510A1 (en) * | 2009-07-02 | 2011-01-05 | EMBL (European Molecular Biology Laboratory) | Diagnostic method for predicting the risk of cancer recurrence based on Histone macroH2A isoforms |
CN101942017B (en) * | 2009-07-07 | 2013-08-14 | 清华大学 | Tumor marker |
EP2333105A1 (en) * | 2009-12-08 | 2011-06-15 | Koninklijke Philips Electronics N.V. | Selective lysis of cells |
CN102822672B (en) | 2010-01-08 | 2015-12-09 | 安科健康公司 | For the high-flux cell base HPV immunoassays diagnosed with screen the cancer relevant with HPV |
WO2011103274A1 (en) | 2010-02-17 | 2011-08-25 | Gen-Probe Incorporated | Compositions and methods to detect atopobium vaginae nucleic acid |
WO2011109705A2 (en) * | 2010-03-04 | 2011-09-09 | Purdue Research Foundation | Integrated assay that combines flow-cytometry and multiplexed hpv genotype identification |
RU2464570C2 (en) * | 2010-11-19 | 2012-10-20 | Федеральное государственное учреждение "Российский научный центр рентгенрадиологии" Министерства здравоохранения и социального развития России | Diagnostic technique for cervical intraepithelial neoplasms |
AU2012249751B2 (en) | 2011-04-25 | 2016-11-03 | Gen-Probe Incorporated | Compositions and methods for detecting BV-associated bacterial nucleic acid |
US8859215B2 (en) | 2011-06-30 | 2014-10-14 | Ge Healthcare Bio-Sciences Ab | Cell binding assay |
WO2013036928A1 (en) | 2011-09-08 | 2013-03-14 | Gen-Probe Incorporated | Compositions and methods for detecting bv-associated bacterial nucleic acid |
US9534058B2 (en) | 2012-02-08 | 2017-01-03 | Abbvie Stemcentrx Llc | Anti-CD324 monoclonal antibodies and uses thereof |
RU2508542C1 (en) * | 2012-07-16 | 2014-02-27 | Полина Михайловна Шварцбурд | Rapid method for determining risk of cell malignancy |
US9618514B2 (en) | 2012-09-17 | 2017-04-11 | Agios Pharmaceuticals, Inc | Methods of evaluating patients using E-cadherin and vimentin |
AU2013205122B2 (en) | 2012-10-11 | 2016-11-10 | Gen-Probe Incorporated | Compositions and Methods for Detecting Human Papillomavirus Nucleic Acid |
JP6333280B2 (en) | 2012-11-21 | 2018-05-30 | アジオス ファーマシューティカルズ, インコーポレイテッド | Glutaminase inhibitors and methods of use thereof |
WO2014079011A1 (en) | 2012-11-22 | 2014-05-30 | Agios Pharmaceuticals, Inc. | Heterocyclic compounds for inhibiting glutaminase and their methods of use |
US9029531B2 (en) | 2012-11-22 | 2015-05-12 | Agios Pharmaceuticals, Inc. | Compounds and their methods of use |
RU2538618C2 (en) * | 2012-12-26 | 2015-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" | Differential diagnostic technique for cervical dysplasia and cervical cancer |
MX374488B (en) * | 2013-03-15 | 2025-03-06 | Genentech Inc | BIOMARKERS AND THEIR USE IN THE TREATMENT OF CONDITIONS RELATED TO PD-1 AND PD-L1. |
RU2535042C1 (en) * | 2013-11-25 | 2014-12-10 | Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России) | Method for determining biological age of dead body in prolonged haemorrhage |
CN106231900B (en) | 2014-03-21 | 2019-05-28 | 阿吉奥斯制药公司 | Compound and its application method |
EP3166974A1 (en) | 2014-07-11 | 2017-05-17 | Genentech, Inc. | Anti-pd-l1 antibodies and diagnostic uses thereof |
CN107771285A (en) | 2015-06-08 | 2018-03-06 | 阿奎尔诊断有限公司 | Method |
EP4060344A1 (en) | 2015-06-08 | 2022-09-21 | Arquer Diagnostics Limited | Methods and kits |
CN108267586A (en) * | 2016-12-30 | 2018-07-10 | 苏州和锐生物科技有限公司 | A kind of people CK18 protein assay reagents and preparation method thereof |
SG11201908865WA (en) * | 2017-06-29 | 2019-10-30 | Quanticision Diagnostics Inc | Apparatus and method for absolute quantification of biomarkers for solid tumor diagnosis |
EP3861141A1 (en) | 2018-10-01 | 2021-08-11 | Gen-Probe Incorporated | Compositions and methods for amplifying or detecting varicella-zoster virus |
CN111257565A (en) * | 2018-12-03 | 2020-06-09 | 上海细胞治疗集团有限公司 | Detection kit and detection method for aged cells |
CN109781977B (en) * | 2019-01-09 | 2022-03-29 | 首都医科大学附属北京安定医院 | IL15R alpha and related membrane protein detection kit and application thereof |
CN110672558B (en) * | 2019-09-24 | 2022-05-10 | 东南大学 | Neural activity observation method and system based on OCT technology |
CN113702341B (en) * | 2020-05-22 | 2022-08-16 | 中国科学院大连化学物理研究所 | Peroxidase-catalyzed cell surface protein labeling method |
US20240295561A1 (en) * | 2021-06-17 | 2024-09-05 | Konica Minolta, Inc. | Quantification method and labeling method |
CN113985028A (en) * | 2021-11-25 | 2022-01-28 | 济南百博生物技术股份有限公司 | Diluent for colloidal gold method antigen detection |
CN115389598A (en) * | 2022-09-27 | 2022-11-25 | 达碧清诊断技术(上海)有限公司 | Rapid focusing electrophoresis quantitative analysis method of glycosylated hemoglobin |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4281061A (en) * | 1979-07-27 | 1981-07-28 | Syva Company | Double antibody for enhanced sensitivity in immunoassay |
US5328826A (en) * | 1991-03-22 | 1994-07-12 | Mochida Pharmaceutical Co., Ltd. | Immunochemical detection of human uterine endometrial cancer cell |
US5976799A (en) * | 1996-03-21 | 1999-11-02 | The Board Of Trustees Of The University Of Arkansas | Early detection of ovarian carcinoma using P16 gene products |
US6033847A (en) * | 1995-02-06 | 2000-03-07 | St. Jude Children's Research Hospital | InK4c-p18 and InK4d-p19, inhibitors of cyclin-dependent kinases CDK4 and CDK6, and uses thereof |
US20010039023A1 (en) * | 2000-03-24 | 2001-11-08 | Walter Schubert | Process for identifying cell-specific target structures |
US6316208B1 (en) * | 1994-01-07 | 2001-11-13 | Memorial Sloan-Kettering Cancer Center | Methods for determining isolated p27 protein levels and uses thereof |
US20020086288A1 (en) * | 1998-10-13 | 2002-07-04 | Robert Earl Bird | Carcinogen assay |
US20030157482A1 (en) * | 1996-08-30 | 2003-08-21 | Susan K. Keesee | Methods and compositions for the detection of cervical cancer |
US6709832B1 (en) * | 1998-07-01 | 2004-03-23 | Magnus Von Knebel Doeberitz | Method of early diagnosis of carcinomas |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US86288A (en) * | 1869-01-26 | Improvement in bbeb-drill and corn-covereh | ||
US39023A (en) * | 1863-06-23 | Improvement in churns | ||
WO1989006692A1 (en) * | 1988-01-12 | 1989-07-27 | Genentech, Inc. | Method of treating tumor cells by inhibiting growth factor receptor function |
DE3923951A1 (en) * | 1989-07-19 | 1991-01-31 | Boehringer Mannheim Gmbh | METHOD FOR DETECTING LIVER CIRRUS |
US5776783A (en) * | 1993-11-02 | 1998-07-07 | Private Clinic Laboratories, Inc. | Method of monitoring therapeutic agent consumption |
CA2164167A1 (en) * | 1994-12-20 | 1996-06-21 | Izak Bahar | Assay normalization method |
GB9519275D0 (en) * | 1995-09-21 | 1995-11-22 | Univ Dundee | Substances and their therapeutic use |
GB9616429D0 (en) | 1996-08-05 | 1996-09-25 | Quantum Biosystems Ltd | Assessment of cervical cells |
AU6564798A (en) * | 1997-03-18 | 1998-10-12 | Brigham And Women's Hospital | Methods and kits for treating and diagnosing leiomyomas |
AU8403098A (en) * | 1997-07-15 | 1999-02-10 | Deaconess Hospital | Reagents and methods for diagnosis and prognosis of proliferative disor ders |
JP2002505433A (en) * | 1998-02-25 | 2002-02-19 | ニューヨーク メディカル カレッジ | Detection of pRB conformation in single cells by flow cytometry |
US7306926B2 (en) * | 1998-07-01 | 2007-12-11 | Mtm Laboratories Ag | Method for detecting carcinomas in a solubilized cervical body sample |
US6331393B1 (en) * | 1999-05-14 | 2001-12-18 | University Of Southern California | Process for high-throughput DNA methylation analysis |
US6864066B1 (en) * | 1999-09-08 | 2005-03-08 | The Regents Of The University Of California | Epithelial protein lost in neoplasm (EPLIN) |
JP2003515535A (en) * | 1999-11-16 | 2003-05-07 | ザ ゼネラル ホスピタル コーポレーション | Compositions and methods for modulating tumor-associated antigen expression |
WO2001038878A2 (en) | 1999-11-29 | 2001-05-31 | Beth Israel Deaconess Medical Center | Pin1 as a marker for abnormal cell growth |
EP1325338A2 (en) * | 2000-04-03 | 2003-07-09 | Oxford GlycoSciences (UK) Limited | Diagnosis and treatment of alzheimer's disease |
GB0018140D0 (en) * | 2000-07-24 | 2000-09-13 | Medical Res Council | Screening for abnormalities |
AUPQ901700A0 (en) * | 2000-07-26 | 2000-08-17 | National Cancer Centre Of Singapore Pte Ltd | Molecular markers |
CA2421070A1 (en) * | 2000-09-01 | 2002-03-14 | International Bioimmune Systems, Inc. | The identification and development of specific monoclonal antibodies to squamous cell carcinoma |
US6548252B1 (en) * | 2000-10-13 | 2003-04-15 | Esa, Inc. | Detection of DNA damage |
DE10063179A1 (en) * | 2000-12-18 | 2002-06-20 | Bayer Ag | Detecting tumor cells and their precursors in cervical smears, by simultaneous detection of two markers, suitable for automation and providing an objective diagnosis |
US6500630B2 (en) * | 2001-01-12 | 2002-12-31 | Mayo Foundation For Medical Education And Research | Marker for inflammatory conditions |
EP1369694A1 (en) | 2002-04-09 | 2003-12-10 | MTM Laboratories AG | Method for discrimination of metaplasias from neoplastic or preneoplastic lesions |
DE60200248T2 (en) | 2002-08-01 | 2005-01-27 | Mtm Laboratories Ag | Procedure for solution-based diagnosis |
EP1422526A1 (en) | 2002-10-28 | 2004-05-26 | MTM Laboratories AG | Method for improved diagnosis of dysplasias |
CA2735853C (en) | 2008-09-04 | 2021-08-31 | Mtm Laboratories Ag | Method for prediction of the progression risk of tumors |
-
2002
- 2002-08-01 DE DE60200248T patent/DE60200248T2/en not_active Expired - Lifetime
- 2002-08-01 AT AT02017313T patent/ATE261126T1/en not_active IP Right Cessation
- 2002-08-01 EP EP02017313A patent/EP1388734B1/en not_active Expired - Lifetime
- 2002-08-01 DK DK02017313T patent/DK1388734T3/en active
- 2002-08-01 ES ES02017313T patent/ES2215957T3/en not_active Expired - Lifetime
-
2003
- 2003-07-31 US US10/633,484 patent/US7517662B2/en not_active Expired - Lifetime
- 2003-07-31 MX MXPA04012648A patent/MXPA04012648A/en active IP Right Grant
- 2003-07-31 RU RU2005101643/15A patent/RU2315312C2/en active
- 2003-07-31 CN CNB038185652A patent/CN100570366C/en not_active Expired - Lifetime
- 2003-07-31 AU AU2003262554A patent/AU2003262554B2/en not_active Expired
- 2003-07-31 JP JP2004525433A patent/JP2005534313A/en active Pending
- 2003-07-31 CA CA2487048A patent/CA2487048C/en not_active Expired - Lifetime
- 2003-07-31 WO PCT/EP2003/050354 patent/WO2004013632A1/en active Application Filing
- 2003-07-31 EP EP03766414A patent/EP1525476A1/en not_active Withdrawn
-
2009
- 2009-03-09 US US12/400,629 patent/US20090181406A1/en not_active Abandoned
-
2010
- 2010-07-09 JP JP2010157288A patent/JP2010266460A/en active Pending
-
2013
- 2013-04-30 JP JP2013095451A patent/JP5997094B2/en not_active Expired - Lifetime
-
2014
- 2014-09-08 US US14/480,546 patent/US10697966B2/en not_active Expired - Lifetime
-
2015
- 2015-04-10 JP JP2015081030A patent/JP2015180201A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4281061A (en) * | 1979-07-27 | 1981-07-28 | Syva Company | Double antibody for enhanced sensitivity in immunoassay |
US5328826A (en) * | 1991-03-22 | 1994-07-12 | Mochida Pharmaceutical Co., Ltd. | Immunochemical detection of human uterine endometrial cancer cell |
US6316208B1 (en) * | 1994-01-07 | 2001-11-13 | Memorial Sloan-Kettering Cancer Center | Methods for determining isolated p27 protein levels and uses thereof |
US6033847A (en) * | 1995-02-06 | 2000-03-07 | St. Jude Children's Research Hospital | InK4c-p18 and InK4d-p19, inhibitors of cyclin-dependent kinases CDK4 and CDK6, and uses thereof |
US5976799A (en) * | 1996-03-21 | 1999-11-02 | The Board Of Trustees Of The University Of Arkansas | Early detection of ovarian carcinoma using P16 gene products |
US20030157482A1 (en) * | 1996-08-30 | 2003-08-21 | Susan K. Keesee | Methods and compositions for the detection of cervical cancer |
US6709832B1 (en) * | 1998-07-01 | 2004-03-23 | Magnus Von Knebel Doeberitz | Method of early diagnosis of carcinomas |
US20020086288A1 (en) * | 1998-10-13 | 2002-07-04 | Robert Earl Bird | Carcinogen assay |
US20010039023A1 (en) * | 2000-03-24 | 2001-11-08 | Walter Schubert | Process for identifying cell-specific target structures |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110028293A1 (en) * | 2006-01-24 | 2011-02-03 | Mycrolab Pty Ltd | Methods for Low Cost Manufacturing of Complex Layered Materials and Device |
US8220704B2 (en) * | 2006-01-24 | 2012-07-17 | Mycrolab Diagnostics Pty Ltd | Methods for low cost manufacturing of complex layered materials and device |
US8700335B2 (en) | 2006-05-18 | 2014-04-15 | Caris Mpi, Inc. | System and method for determining individualized medical intervention for a disease state |
US8728745B2 (en) | 2008-09-04 | 2014-05-20 | Ventana Medical Sysems, Inc. | Method for prediction of the progression risk of tumors |
US20110183333A1 (en) * | 2008-09-04 | 2011-07-28 | Peter Martin | Method for prediction of the progression risk of tumors |
US20100113299A1 (en) * | 2008-10-14 | 2010-05-06 | Von Hoff Daniel D | Gene and gene expressed protein targets depicting biomarker patterns and signature sets by tumor type |
US20100203529A1 (en) * | 2008-11-12 | 2010-08-12 | Caris Mpi, Inc. | Methods and systems of using exosomes for determining phenotypes |
US7897356B2 (en) | 2008-11-12 | 2011-03-01 | Caris Life Sciences | Methods and systems of using exosomes for determining phenotypes |
US20100304989A1 (en) * | 2009-02-11 | 2010-12-02 | Von Hoff Daniel D | Molecular profiling of tumors |
US8768629B2 (en) | 2009-02-11 | 2014-07-01 | Caris Mpi, Inc. | Molecular profiling of tumors |
US9128101B2 (en) | 2010-03-01 | 2015-09-08 | Caris Life Sciences Switzerland Holdings Gmbh | Biomarkers for theranostics |
US9469876B2 (en) | 2010-04-06 | 2016-10-18 | Caris Life Sciences Switzerland Holdings Gmbh | Circulating biomarkers for metastatic prostate cancer |
US20170027485A1 (en) * | 2011-05-05 | 2017-02-02 | Anpac Bio-Medical Science Co., Ltd. | Devices for detecting or filtering tumor cells |
US10345307B2 (en) * | 2011-05-05 | 2019-07-09 | Anpac Bio-Medical Science Co., Ltd. | Devices for detecting or filtering tumor cells |
US8609355B2 (en) | 2011-07-26 | 2013-12-17 | Indicator Systems International, Inc. | Assays for the detection of microbes |
WO2013016449A3 (en) * | 2011-07-26 | 2013-04-25 | Indicator Systems International, Inc. | Assays for the detection of microbes |
US10527526B2 (en) | 2011-11-03 | 2020-01-07 | Tripath Imaging, Inc. | Methods and compositions for preparing samples for immunostaining |
KR101858801B1 (en) * | 2015-01-30 | 2018-05-17 | 중앙대학교 산학협력단 | Method of diagnosis of cervical cancer using glycosylation anaylsis of serum antibody and kit for diagnosis of cervical cancer using the same |
Also Published As
Publication number | Publication date |
---|---|
DE60200248D1 (en) | 2004-04-22 |
CN1675550A (en) | 2005-09-28 |
AU2003262554A1 (en) | 2004-02-23 |
JP2015180201A (en) | 2015-10-15 |
MXPA04012648A (en) | 2005-03-23 |
RU2315312C2 (en) | 2008-01-20 |
JP2005534313A (en) | 2005-11-17 |
JP2013210373A (en) | 2013-10-10 |
CA2487048C (en) | 2010-08-17 |
ES2215957T3 (en) | 2004-10-16 |
JP2010266460A (en) | 2010-11-25 |
DK1388734T3 (en) | 2004-05-03 |
ATE261126T1 (en) | 2004-03-15 |
DE60200248T2 (en) | 2005-01-27 |
US10697966B2 (en) | 2020-06-30 |
EP1388734A1 (en) | 2004-02-11 |
WO2004013632A1 (en) | 2004-02-12 |
EP1388734B1 (en) | 2004-03-03 |
JP5997094B2 (en) | 2016-09-28 |
US20150065383A1 (en) | 2015-03-05 |
AU2003262554B2 (en) | 2009-02-19 |
EP1525476A1 (en) | 2005-04-27 |
RU2005101643A (en) | 2005-06-27 |
US20040023288A1 (en) | 2004-02-05 |
CN100570366C (en) | 2009-12-16 |
US7517662B2 (en) | 2009-04-14 |
CA2487048A1 (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10697966B2 (en) | Method for detecting cervical dysplasia | |
US7056690B2 (en) | Detection of dysplastic or neoplastic cells using anti-MCM2 antibodies | |
EP1025444B1 (en) | Determination of cellular growth abnormality | |
US6746848B2 (en) | Protein quantitation with cell imaging densitometry | |
Chopin et al. | Monoclonal antibodies against transitional cell carcinoma for detection of malignant urothelial cells in bladder washing | |
Sapierzynski | Practical aspects of immunocytochemistry in canine lymphomas | |
Heatley et al. | C-erbB-2 oncogene product expression depends on tumour type and is related to oestrogen receptor and lymph node status in human breast carcinoma | |
US20040253649A1 (en) | Protein quantitation with cell imaging densitometry | |
Baildam et al. | The expression of milk fat globule antigens within human mammary tumours: relationship to steroid hormone receptors and response to endocrine treatment | |
Santangelo et al. | Special Staining Techniques: Application and Quality Assurance | |
CZ20001502A3 (en) | Method of determining presence of abnormally proliferating cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROCHE MTM LABORATORIES AG, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:MTM LABORATORIES AG;REEL/FRAME:027232/0381 Effective date: 20110921 |
|
AS | Assignment |
Owner name: VENTANA MEDICAL SYSTEMS, INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE MTM LABORATORIES AG;REEL/FRAME:032630/0218 Effective date: 20140407 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |