US20090170243A1 - Stacked Integrated Circuit Module - Google Patents
Stacked Integrated Circuit Module Download PDFInfo
- Publication number
- US20090170243A1 US20090170243A1 US12/402,267 US40226709A US2009170243A1 US 20090170243 A1 US20090170243 A1 US 20090170243A1 US 40226709 A US40226709 A US 40226709A US 2009170243 A1 US2009170243 A1 US 2009170243A1
- Authority
- US
- United States
- Prior art keywords
- leaded
- leads
- circuit
- flex circuit
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 229910000679 solder Inorganic materials 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000005219 brazing Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5385—Assembly of a plurality of insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5387—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/325—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
- H05K3/326—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor the printed circuit having integral resilient or deformable parts, e.g. tabs or parts of flexible circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/147—Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/182—Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
- H05K2201/056—Folded around rigid support or component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/091—Locally and permanently deformed areas including dielectric material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10507—Involving several components
- H05K2201/10515—Stacked components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10689—Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]
Definitions
- This invention relates to stacking leaded integrated circuit devices and, in particular, to stacks and stacking integrated circuits in leaded packages.
- CSPs chip-scale packaged devices
- CSP chip-scale
- TSOP thin small outline package
- TSOP thin small outline package
- Staktek Group L.P. has developed a wide variety of techniques, systems and designs for stacks and stacking with both leaded and CSP devices.
- Staktek Group L.P. has developed, for example, U.S. Pat. No. 6,572,387 issued Jun. 3, 2003 and U.S. patent application Ser. No. 10/449,242 published as Pub. No. 2003/0203663 A1 which disclose and claim various techniques and apparatus related to stacking leaded packages.
- the present application discloses improved systems and methods for electrically and thermally coupling adjacent integrated circuit devices in stacked modules.
- the present invention provides a system and method for stacks and stacking leaded package ICs packages.
- a flex circuit is disposed between leaded ICs to be stacked.
- leads of constituent leaded IC packages are configured to allow the lower surface of the leaded IC packages to contact the surface of the flex circuitry that provides connection between an upper and lower leaded IC package.
- a part of the flex circuit emerges from between the leaded ICs and provides a connective facility for connection to external or application environments.
- FIG. 1 is an exploded view of a stacked module devised in accordance with a preferred embodiment of the present invention.
- FIG. 2 is a side view of a stacked module devised in accordance with a preferred embodiment of the present invention.
- FIG. 3 is a plan view of one side of a flex circuit in accordance with an embodiment of the present invention.
- FIG. 4 is a plan view of another side of a flex circuit in accordance with an embodiment of the present invention.
- FIG. 5 depicts the area marked “A” in FIG. 2 .
- FIG. 6 is a side view of a stacked module in accordance with an alternative preferred embodiment of the present invention.
- FIG. 7 is a plan view of a stacked module in accordance with an alternative preferred embodiment of the present invention.
- FIG. 8 is a plan view of a stacked module in accordance with another alternative preferred embodiment of the present invention.
- FIG. 9 is a plan view of a stacked module in accordance with another alternative preferred embodiment of the present invention.
- FIG. 10 is a plan view of another side of a stacked module in accordance with another alternative preferred embodiment of the present invention.
- FIG. 1 is an exploded view of an exemplar stacked module 10 devised in accordance with a preferred embodiment of the present invention.
- Exemplar module 10 is comprised of leaded ICs 20 and 22 each having upper and lower sides or surfaces 23 and 25 , respectively, and lateral sides S 1 and S 2 which, as those of skill will recognize, may be in the character of edges or sides and need not be perpendicular in aspect to the upper and lower surfaces 23 and 25 .
- Leads 24 are emergent from sides S 1 and S 2 .
- leads 24 are deflected to remain within the space defined by planes PL and PU defined by lower surfaces 25 and 23 respectively of the respective ICs to allow the lower surfaces 25 of each of the respective leaded packaged ICs to be in contact with the respective surfaces 15 and 17 of flex circuit 12 when the ICs are connected to the flex.
- contact between the lower surface 25 of a leaded IC and the surfaces of flex circuit 12 includes not only direct contact between surface or side 25 and flex but shall include those instances where intermediate materials such as adhesive is used between the respective leaded IC and flex.
- the present invention may also be employed with circuitry other than or in addition to memory such as the flash memory depicted in a number of the present Figs.
- Other exemplar types of circuitry that may be aggregated in stacks in accordance with embodiments of the invention include, just as non-limiting examples, DRAMs, FPGAs, and system stacks that include logic and memory as well as communications or graphics devices. It should be noted, therefore, that the depicted profile for ICs 20 and 22 is not a limitation and that upper and lower leaded ICs 20 and 22 respectively need not be TSOPs or TSOP-like and the packages employed may have more than one die or leads emergent from one, two, three or all sides of the respective package body.
- a module 10 in accordance with embodiments of the present invention may employ leaded ICs 20 and 22 that have more than one die within each package and may exhibit leads emergent from only one side of the package. In such cases, adhesives will typically be employed between the IC and flex circuit. Further, a module 10 in accord with the present invention need not have two ICs as the invention may be employed to devise a stacked module 10 with two or more ICs as those of skill will understand after appreciating this disclosure. Further, techniques disclosed herein may be employed to stack a leaded IC in a leaded-CSP combination stack.
- flex circuit 12 (e.g., “flex”, “flex circuitry”, “flexible circuit” etc.) is disposed between leaded ICs 20 and 22 and exhibits a first side 15 having two pluralities of connective sites 34 and 36 adapted for connection to a leaded IC and, in this embodiment, another optional plurality of connective sites 32 . Flex circuit 12 also exhibits a second side 17 having two pluralities of connective sites 44 and 46 .
- flex circuit 12 may be comprised from traditional flexible circuitry or, in some of the alternative embodiments, what is sometimes called rigid-flex may be employed. Such rigid flex exhibits rigid areas and flexible areas to provide an interconnection function required of flex circuit 12 in the present invention.
- Pluralities 34 and 36 and 44 and 46 of connective sites are adapted for connection to the leads of leaded packages IC 20 and IC 22 , respectively, each of which has a plurality of peripheral sides, individual ones of which sides are identified as S 1 and S 2 .
- Optional third plurality of connective sites 32 is adapted for connection of module 10 to an external circuit or environment.
- Plural leads 24 are emergent from at least one of the plural sides of the ICs and typically, a plurality of leads 24 is emergent from one of the plural sides of each of the ICs 20 and 22 and a second plurality of leads 24 is emergent from another one of the plural sides of each of ICs 20 and 22 .
- Leaded ICs 20 and 22 are connected to flex circuit 12 through the leads 24 of leaded ICs 20 and 22 .
- FIG. 2 depicts a side perspective view of a stacked module 10 devised in accordance with a preferred embodiment of the present invention.
- lower side 25 of each of leaded ICs 20 and 22 are adjacent to sides 15 and 17 respectively, of flex circuit 12 .
- leads 24 typically require modification or reconfiguration which is preferably performed before mounting of the leaded IC to flex circuit 12 .
- a preferred method for reconfiguration of leads 24 comprises use of a jig to fix the position of body 29 of the respective leaded IC and, preferably, support the lead at the point of emergence from the body at sides S 1 and S 2 of leaded ICs 20 and 22 before deflection of the respective leads toward the upper plane PU to confine leads 24 to the space between planes PL and PU of the respective leaded IC as earlier shown in FIG. 1 .
- leaded ICs such as TSOPs are configured with leads that extend beyond the lower plane PL.
- the leads 24 must be typically reconfigured.
- FIG. 3 depicts a plan view of side 15 of the flex circuit.
- side 15 exhibits three pluralities of connective sites, 32 , 34 , and 36 , each comprised of individual connective sites 32 C, 34 C, and 36 C, respectively.
- First and second pluralities 34 and 36 are adapted for connection to leaded IC 20 through leads 24 , with optional plurality of connective sites 32 being adapted for connecting module 10 to an external circuit or environment.
- FIG. 4 depicts a plan view of side 17 of flex circuit 12 .
- side 17 exhibits two pluralities of connective sites 44 and 46 respectively, each comprised of multiple connective sites 44 C and 46 C, respectively, these sites being adapted for connection to leaded IC 22 through leads 24 .
- FIG. 5 depicts the area identified by “A” in earlier FIG. 2 .
- the standard lead shape is modified or reconfigured to reduce the profile X of module 10 as lower surfaces 25 of leaded ICs 20 and 22 are adjacent to and, preferably, in contact with surfaces 15 and 17 , respectively, of flex circuit 12 .
- Profile X is the distance between respective upper planes PU 20 and PU 22 .
- Leads 24 of leaded ICs 20 and 22 are preferably configured to allow leaded ICs 20 and 24 to be in either direct or indirect (through intermediary adhesive for example) contact with flex 12 .
- Leads 24 of leaded ICs 20 and 22 employed in an exemplar module 10 are shown in contact with connective sites 34 C and 44 C, for example, while lower surface 25 of the leaded ICs 20 and 22 are in contact with the respective sides 15 and 17 of flex circuit 12 .
- FIG. 6 depicts an exemplar module 10 having connective sites 32 for connection to an external circuit or environment.
- connective sites 32 for connection to an external circuit or environment.
- Those of skill will recognize that when a third plurality of connective sites such as the depicted reference 32 are employed, they may be disposed on either side 15 or 17 of flex circuit 12 .
- adhesive 33 is shown between lower surfaces 25 and respective sides of flex circuit 12 .
- FIG. 7 illustrates that, in devising a module in accordance with the present invention, some embodiments may be constructed where connective sites 32 take the form of edge connector pads for connection with an edge connector such as, for example, those typically found in computer applications for memory expansion.
- FIG. 8 illustrates a plan view of an exemplar module 10 in accordance with an alternative preferred embodiment of the present invention.
- FIG. 8 employs a socket connector as the third plurality of connective sites 32 for connecting stacked module 10 to an external circuit or environment.
- FIG. 9 illustrates a module 10 in accordance with an alternative preferred embodiment of the present invention, showing alternative arrangements of the pluralities of connection sites on side 15 of the flex circuit.
- the first and second pluralities of connective sites are oriented in a first direction while the third plurality of connective sites for connection of the circuit module to an application environment are oriented in a direction perpendicular to the orientation of the first and second pluralities of connective sites.
- FIG. 10 is a plan view of another side of the stacked module depicted in FIG. 9 , sharing alternative arrangements of the pluralities of connective sites on side 17 of the flex circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
Abstract
The present invention provides an improvement on the use of flexible circuit connectors for electrically coupling IC devices to one another in a stacked configuration by use of the flexible circuit to provide the connection of the stacked IC module to other circuits. Use of the flexible circuit as the connection of the IC module allows the flexible circuit to provide strain relief and allows stacked IC modules to be assembled with a lower profile than with previous methods. The IC module can be connected to external circuits through the flexible circuit connectors by a variety of means, including solder pads, edge connector pads, and socket connectors. This allows for IC devices to occupy less space then with previous methods, which is beneficial in modules such as memory modules with multiple, stacked memory devices.
Description
- This application is a divisional of U.S. patent application Ser. No. 11/330,307, filed Jan. 11, 2006, which is hereby incorporated by reference herein.
- This invention relates to stacking leaded integrated circuit devices and, in particular, to stacks and stacking integrated circuits in leaded packages.
- A variety of systems and techniques are known for stacking packaged integrated circuits. Some techniques are devised for stacking chip-scale packaged devices (CSPs) while other systems and methods are better directed to leaded packages such as those that exhibit a set of leads extending from at least one lateral side of a typically rectangular package.
- Memory devices are packaged in both chip-scale (CSP) and leaded packages. However, techniques for stacking CSP devices are typically not optimum for stacking leaded devices. Although CSP devices are gaining market share, in many areas, integrated circuits continue to be packaged in high volumes in leaded packages. For example, the well-known flash memory integrated circuit is typically packaged in a leaded package with fine-pitched leads emergent from one or both sides of the package. A common package for flash memory is the thin small outline package commonly known as the TSOP typified by leads emergent from one or more (typically a pair of opposite sides) lateral sides of the package. thin small outline package commonly known as the TSOP typified by leads emergent from one or more (typically a pair of opposite sides) lateral sides of the package.
- The assignee of the present invention, Staktek Group L.P., has developed a wide variety of techniques, systems and designs for stacks and stacking with both leaded and CSP devices. In leaded package stacking, Staktek Group L.P. has developed, for example, U.S. Pat. No. 6,572,387 issued Jun. 3, 2003 and U.S. patent application Ser. No. 10/449,242 published as Pub. No. 2003/0203663 A1 which disclose and claim various techniques and apparatus related to stacking leaded packages.
- Many other techniques have been developed for interconnecting the leads of the stacked devices. For example, U.S. Pat. No. 4,696,525 to Coller et al. purports to teach a socket connector for coupling adjacent devices in a stacked configuration to one another. The socket has external conductors that interconnect leads from like, adjacent devices to one another. Sockets, however, are limited in several respects. They are not versatile in their ability to implement complex interconnections. In addition, such sockets, which have relatively thick, plastic bodies, act as thermal insulators between upper and lower package surfaces, and inhibit the module's overall ability to dissipate heat.
- Although the art has many techniques for stacking leaded devices, a new system and method for stacking leaded package devices is a welcome development. Accordingly, the present application discloses improved systems and methods for electrically and thermally coupling adjacent integrated circuit devices in stacked modules.
- The present invention provides a system and method for stacks and stacking leaded package ICs packages. A flex circuit is disposed between leaded ICs to be stacked. In a preferred embodiment, leads of constituent leaded IC packages are configured to allow the lower surface of the leaded IC packages to contact the surface of the flex circuitry that provides connection between an upper and lower leaded IC package. In an optional embodiment, a part of the flex circuit emerges from between the leaded ICs and provides a connective facility for connection to external or application environments.
-
FIG. 1 is an exploded view of a stacked module devised in accordance with a preferred embodiment of the present invention. -
FIG. 2 is a side view of a stacked module devised in accordance with a preferred embodiment of the present invention. -
FIG. 3 is a plan view of one side of a flex circuit in accordance with an embodiment of the present invention. -
FIG. 4 is a plan view of another side of a flex circuit in accordance with an embodiment of the present invention. -
FIG. 5 depicts the area marked “A” inFIG. 2 . -
FIG. 6 is a side view of a stacked module in accordance with an alternative preferred embodiment of the present invention. -
FIG. 7 is a plan view of a stacked module in accordance with an alternative preferred embodiment of the present invention. -
FIG. 8 is a plan view of a stacked module in accordance with another alternative preferred embodiment of the present invention. -
FIG. 9 is a plan view of a stacked module in accordance with another alternative preferred embodiment of the present invention. -
FIG. 10 is a plan view of another side of a stacked module in accordance with another alternative preferred embodiment of the present invention. -
FIG. 1 is an exploded view of an exemplar stackedmodule 10 devised in accordance with a preferred embodiment of the present invention.Exemplar module 10 is comprised of leadedICs surfaces lower surfaces Leads 24 are emergent from sides S1 and S2. In a preferred embodiment,leads 24 are deflected to remain within the space defined by planes PL and PU defined bylower surfaces lower surfaces 25 of each of the respective leaded packaged ICs to be in contact with therespective surfaces flex circuit 12 when the ICs are connected to the flex. In this disclosure, contact between thelower surface 25 of a leaded IC and the surfaces offlex circuit 12 includes not only direct contact between surface orside 25 and flex but shall include those instances where intermediate materials such as adhesive is used between the respective leaded IC and flex. - The present invention may also be employed with circuitry other than or in addition to memory such as the flash memory depicted in a number of the present Figs. Other exemplar types of circuitry that may be aggregated in stacks in accordance with embodiments of the invention include, just as non-limiting examples, DRAMs, FPGAs, and system stacks that include logic and memory as well as communications or graphics devices. It should be noted, therefore, that the depicted profile for
ICs ICs module 10 in accordance with embodiments of the present invention may employ leadedICs module 10 in accord with the present invention need not have two ICs as the invention may be employed to devise astacked module 10 with two or more ICs as those of skill will understand after appreciating this disclosure. Further, techniques disclosed herein may be employed to stack a leaded IC in a leaded-CSP combination stack. - In the depicted preferred embodiment, flex circuit 12 (e.g., “flex”, “flex circuitry”, “flexible circuit” etc.) is disposed between leaded
ICs first side 15 having two pluralities ofconnective sites connective sites 32.Flex circuit 12 also exhibits asecond side 17 having two pluralities ofconnective sites flex circuit 12 may be comprised from traditional flexible circuitry or, in some of the alternative embodiments, what is sometimes called rigid-flex may be employed. Such rigid flex exhibits rigid areas and flexible areas to provide an interconnection function required offlex circuit 12 in the present invention. -
Pluralities connective sites 32 is adapted for connection ofmodule 10 to an external circuit or environment. -
Plural leads 24 are emergent from at least one of the plural sides of the ICs and typically, a plurality ofleads 24 is emergent from one of the plural sides of each of theICs leads 24 is emergent from another one of the plural sides of each ofICs ICs flex circuit 12 through theleads 24 of leadedICs leaded ICs -
FIG. 2 depicts a side perspective view of a stackedmodule 10 devised in accordance with a preferred embodiment of the present invention. As depicted,lower side 25 of each ofleaded ICs sides flex circuit 12. To realize the adjacent and, preferably, contact (touching) relationship between thelower side 25 of a selected leaded IC and the respective flex circuit side, leads 24 typically require modification or reconfiguration which is preferably performed before mounting of the leaded IC to flexcircuit 12. Those of skill will note that a preferred method for reconfiguration ofleads 24 comprises use of a jig to fix the position ofbody 29 of the respective leaded IC and, preferably, support the lead at the point of emergence from the body at sides S1 and S2 ofleaded ICs leads 24 to the space between planes PL and PU of the respective leaded IC as earlier shown inFIG. 1 . This is because typically, leaded ICs such as TSOPs are configured with leads that extend beyond the lower plane PL. In order for thelower surface 25 of the respective leaded packaged ICs to contact (either directly or through an adhesive or thermal intermediary) the respective surfaces of the flex circuit, theleads 24 must be typically reconfigured. -
FIG. 3 depicts a plan view ofside 15 of the flex circuit. As depicted,side 15 exhibits three pluralities of connective sites, 32, 34, and 36, each comprised of individualconnective sites second pluralities leaded IC 20 throughleads 24, with optional plurality ofconnective sites 32 being adapted for connectingmodule 10 to an external circuit or environment. -
FIG. 4 depicts a plan view ofside 17 offlex circuit 12. As depicted,side 17 exhibits two pluralities ofconnective sites connective sites 44C and 46C, respectively, these sites being adapted for connection toleaded IC 22 through leads 24. -
FIG. 5 depicts the area identified by “A” in earlierFIG. 2 . As depicted, the standard lead shape is modified or reconfigured to reduce the profile X ofmodule 10 aslower surfaces 25 ofleaded ICs surfaces flex circuit 12. Profile X is the distance between respective upper planes PU20 and PU22. Leads 24 ofleaded ICs leaded ICs flex 12. - Leads 24 of
leaded ICs exemplar module 10 are shown in contact withconnective sites 34C and 44C, for example, whilelower surface 25 of theleaded ICs respective sides flex circuit 12. -
FIG. 6 depicts anexemplar module 10 havingconnective sites 32 for connection to an external circuit or environment. Those of skill will recognize that when a third plurality of connective sites such as the depictedreference 32 are employed, they may be disposed on eitherside flex circuit 12. In this depiction, adhesive 33 is shown betweenlower surfaces 25 and respective sides offlex circuit 12. -
FIG. 7 illustrates that, in devising a module in accordance with the present invention, some embodiments may be constructed whereconnective sites 32 take the form of edge connector pads for connection with an edge connector such as, for example, those typically found in computer applications for memory expansion. -
FIG. 8 illustrates a plan view of anexemplar module 10 in accordance with an alternative preferred embodiment of the present invention.FIG. 8 employs a socket connector as the third plurality ofconnective sites 32 for connecting stackedmodule 10 to an external circuit or environment. -
FIG. 9 illustrates amodule 10 in accordance with an alternative preferred embodiment of the present invention, showing alternative arrangements of the pluralities of connection sites onside 15 of the flex circuit. In the depiction ofFIG. 9 , the first and second pluralities of connective sites are oriented in a first direction while the third plurality of connective sites for connection of the circuit module to an application environment are oriented in a direction perpendicular to the orientation of the first and second pluralities of connective sites. -
FIG. 10 is a plan view of another side of the stacked module depicted inFIG. 9 , sharing alternative arrangements of the pluralities of connective sites onside 17 of the flex circuit. - It will be seen by those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions, and alternations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.
Claims (6)
1. A method for devising a circuit module comprising the steps of:
providing first and second leaded packaged integrated circuits each with upper and lower major surfaces and leads emergent from first and second peripheral sides of the respective packages;
providing a flex circuit along the first surface of which are disposed first and second pluralities of connective sites and along the second major surface of which are disposed first and second pluralities of connective sites; and
reconfiguring the leads of the first and second leaded packaged integrated circuits so as to confine the leads to a space defined by first and second planes defined by the upper and lower major surfaces of the respective packages;
attaching the leads emergent from the first peripheral side of the first leaded packaged integrated circuit to the first plurality of connective sites of the first major surface of the flex circuit and attaching the leads emergent from the second peripheral side of the first leaded packaged integrated circuit to the second plurality of connective sites of the first major surface of the flex circuit so as to realize contact between the lower major surface of the first leaded packaged integrated circuit and the first major surface of the flex circuit and connecting the second leaded packaged integrated circuit to the first and second pluralities of connective sites of the second major surface of the flex circuit.
2. The method of claim 1 in which the flex circuit provided exhibits a third plurality of connective sites for connection of the circuit module to an application environment.
3. The method of claim 1 in which an adhesive is disposed between the lower major surface of the first leaded packaged memory circuit and the first major surface of the flex circuit.
4. The method of claim 2 in which the third plurality of connective sites is configured as a socket connector.
5. The method of claim 2 in which the third plurality of connective sites is configured for connection to an edge connector.
6. The method of claims 1 in which the first and second leaded packaged integrated circuits are flash memory circuits.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/402,267 US20090170243A1 (en) | 2006-01-11 | 2009-03-11 | Stacked Integrated Circuit Module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/330,307 US7508058B2 (en) | 2006-01-11 | 2006-01-11 | Stacked integrated circuit module |
US12/402,267 US20090170243A1 (en) | 2006-01-11 | 2009-03-11 | Stacked Integrated Circuit Module |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/330,307 Division US7508058B2 (en) | 2006-01-11 | 2006-01-11 | Stacked integrated circuit module |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090170243A1 true US20090170243A1 (en) | 2009-07-02 |
Family
ID=38232019
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/330,307 Active US7508058B2 (en) | 2006-01-11 | 2006-01-11 | Stacked integrated circuit module |
US12/402,267 Abandoned US20090170243A1 (en) | 2006-01-11 | 2009-03-11 | Stacked Integrated Circuit Module |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/330,307 Active US7508058B2 (en) | 2006-01-11 | 2006-01-11 | Stacked integrated circuit module |
Country Status (1)
Country | Link |
---|---|
US (2) | US7508058B2 (en) |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4437235A (en) * | 1980-12-29 | 1984-03-20 | Honeywell Information Systems Inc. | Integrated circuit package |
US4567543A (en) * | 1983-02-15 | 1986-01-28 | Motorola, Inc. | Double-sided flexible electronic circuit module |
US4645944A (en) * | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4733461A (en) * | 1984-12-28 | 1988-03-29 | Micro Co., Ltd. | Method of stacking printed circuit boards |
US4911643A (en) * | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US4982533A (en) * | 1989-08-16 | 1991-01-08 | Thomas Florence | Drywell with plugs, drywell system and method for controlling the flow and direction of surface water |
US4985703A (en) * | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US5081067A (en) * | 1989-02-10 | 1992-01-14 | Fujitsu Limited | Ceramic package type semiconductor device and method of assembling the same |
US5099393A (en) * | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5191404A (en) * | 1989-12-20 | 1993-03-02 | Digital Equipment Corporation | High density memory array packaging |
US5198888A (en) * | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US5198965A (en) * | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5276418A (en) * | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5279029A (en) * | 1990-08-01 | 1994-01-18 | Staktek Corporation | Ultra high density integrated circuit packages method |
US5281852A (en) * | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5289062A (en) * | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5289346A (en) * | 1991-02-26 | 1994-02-22 | Microelectronics And Computer Technology Corporation | Peripheral to area adapter with protective bumper for an integrated circuit chip |
US5386341A (en) * | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5390844A (en) * | 1993-07-23 | 1995-02-21 | Tessera, Inc. | Semiconductor inner lead bonding tool |
US5394010A (en) * | 1991-03-13 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor assembly having laminated semiconductor devices |
US5394303A (en) * | 1992-09-11 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device |
US5394300A (en) * | 1992-09-04 | 1995-02-28 | Mitsubishi Denki Kabushiki Kaisha | Thin multilayered IC memory card |
US5397916A (en) * | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5400003A (en) * | 1992-08-19 | 1995-03-21 | Micron Technology, Inc. | Inherently impedance matched integrated circuit module |
US5402006A (en) * | 1992-11-10 | 1995-03-28 | Texas Instruments Incorporated | Semiconductor device with enhanced adhesion between heat spreader and leads and plastic mold compound |
US5484959A (en) * | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US5491612A (en) * | 1995-02-21 | 1996-02-13 | Fairchild Space And Defense Corporation | Three-dimensional modular assembly of integrated circuits |
US5499160A (en) * | 1990-08-01 | 1996-03-12 | Staktek Corporation | High density integrated circuit module with snap-on rail assemblies |
US5502333A (en) * | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
US5592364A (en) * | 1995-01-24 | 1997-01-07 | Staktek Corporation | High density integrated circuit module with complex electrical interconnect rails |
US5594275A (en) * | 1993-11-18 | 1997-01-14 | Samsung Electronics Co., Ltd. | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
US5600541A (en) * | 1993-12-08 | 1997-02-04 | Hughes Aircraft Company | Vertical IC chip stack with discrete chip carriers formed from dielectric tape |
US5612570A (en) * | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
US5714802A (en) * | 1991-06-18 | 1998-02-03 | Micron Technology, Inc. | High-density electronic module |
US5715144A (en) * | 1994-12-30 | 1998-02-03 | International Business Machines Corporation | Multi-layer, multi-chip pyramid and circuit board structure |
US5729894A (en) * | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
US5861666A (en) * | 1995-08-30 | 1999-01-19 | Tessera, Inc. | Stacked chip assembly |
US5869353A (en) * | 1997-11-17 | 1999-02-09 | Dense-Pac Microsystems, Inc. | Modular panel stacking process |
US6013948A (en) * | 1995-11-27 | 2000-01-11 | Micron Technology, Inc. | Stackable chip scale semiconductor package with mating contacts on opposed surfaces |
US6014316A (en) * | 1997-06-13 | 2000-01-11 | Irvine Sensors Corporation | IC stack utilizing BGA contacts |
US6021048A (en) * | 1998-02-17 | 2000-02-01 | Smith; Gary W. | High speed memory module |
US6025642A (en) * | 1995-08-17 | 2000-02-15 | Staktek Corporation | Ultra high density integrated circuit packages |
US6028365A (en) * | 1998-03-30 | 2000-02-22 | Micron Technology, Inc. | Integrated circuit package and method of fabrication |
US6028258A (en) * | 1997-08-14 | 2000-02-22 | Hicks; William J. | Drum bracket |
US6030856A (en) * | 1996-06-10 | 2000-02-29 | Tessera, Inc. | Bondable compliant pads for packaging of a semiconductor chip and method therefor |
US6034878A (en) * | 1996-12-16 | 2000-03-07 | Hitachi, Ltd. | Source-clock-synchronized memory system and memory unit |
US6040624A (en) * | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US6172874B1 (en) * | 1998-04-06 | 2001-01-09 | Silicon Graphics, Inc. | System for stacking of integrated circuit packages |
US6172418B1 (en) * | 1998-06-24 | 2001-01-09 | Nec Corporation | Semiconductor device and method for fabricating the same |
US6180881B1 (en) * | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
US6187652B1 (en) * | 1998-09-14 | 2001-02-13 | Fujitsu Limited | Method of fabrication of multiple-layer high density substrate |
US6190944B1 (en) * | 1999-01-20 | 2001-02-20 | Hyundai Electronics Industries Co., Ltd. | Stacked package for semiconductor device and fabrication method thereof, and apparatus for making the stacked package |
US6205654B1 (en) * | 1992-12-11 | 2001-03-27 | Staktek Group L.P. | Method of manufacturing a surface mount package |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US6336262B1 (en) * | 1996-10-31 | 2002-01-08 | International Business Machines Corporation | Process of forming a capacitor with multi-level interconnection technology |
US6339254B1 (en) * | 1998-09-01 | 2002-01-15 | Texas Instruments Incorporated | Stacked flip-chip integrated circuit assemblage |
US20020006032A1 (en) * | 2000-05-23 | 2002-01-17 | Chris Karabatsos | Low-profile registered DIMM |
US6351029B1 (en) * | 1999-05-05 | 2002-02-26 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US6360433B1 (en) * | 1999-04-23 | 2002-03-26 | Andrew C. Ross | Universal package and method of forming the same |
US6504104B2 (en) * | 1997-12-10 | 2003-01-07 | Siemens Aktiengesellschaft | Flexible wiring for the transformation of a substrate with edge contacts into a ball grid array |
US6509639B1 (en) * | 2001-07-27 | 2003-01-21 | Charles W. C. Lin | Three-dimensional stacked semiconductor package |
US6514794B2 (en) * | 1999-12-23 | 2003-02-04 | Rambus Inc. | Redistributed bond pads in stacked integrated circuit die package |
US6514793B2 (en) * | 1999-05-05 | 2003-02-04 | Dpac Technologies Corp. | Stackable flex circuit IC package and method of making same |
US6522022B2 (en) * | 2000-12-18 | 2003-02-18 | Shinko Electric Industries Co., Ltd. | Mounting structure for semiconductor devices |
US6522018B1 (en) * | 2000-05-16 | 2003-02-18 | Micron Technology, Inc. | Ball grid array chip packages having improved testing and stacking characteristics |
US6521530B2 (en) * | 1998-11-13 | 2003-02-18 | Fujitsu Limited | Composite interposer and method for producing a composite interposer |
US6525413B1 (en) * | 2000-07-12 | 2003-02-25 | Micron Technology, Inc. | Die to die connection method and assemblies and packages including dice so connected |
US6528870B2 (en) * | 2000-01-28 | 2003-03-04 | Kabushiki Kaisha Toshiba | Semiconductor device having a plurality of stacked wiring boards |
US6531337B1 (en) * | 1998-08-28 | 2003-03-11 | Micron Technology, Inc. | Method of manufacturing a semiconductor structure having stacked semiconductor devices |
US6532162B2 (en) * | 2001-05-26 | 2003-03-11 | Intel Corporation | Reference plane of integrated circuit packages |
US20030057540A1 (en) * | 2001-09-26 | 2003-03-27 | Wen-Lo Shieh | Combination-type 3D stacked IC package |
US6673651B2 (en) * | 1999-07-01 | 2004-01-06 | Oki Electric Industry Co., Ltd. | Method of manufacturing semiconductor device including semiconductor elements mounted on base plate |
US6674644B2 (en) * | 2001-11-01 | 2004-01-06 | Sun Microsystems, Inc. | Module and connector having multiple contact rows |
US6677670B2 (en) * | 2000-04-25 | 2004-01-13 | Seiko Epson Corporation | Semiconductor device |
US6683377B1 (en) * | 2000-05-30 | 2004-01-27 | Amkor Technology, Inc. | Multi-stacked memory package |
US6686656B1 (en) * | 2003-01-13 | 2004-02-03 | Kingston Technology Corporation | Integrated multi-chip chip scale package |
US6690584B2 (en) * | 2000-08-14 | 2004-02-10 | Fujitsu Limited | Information-processing device having a crossbar-board connected to back panels on different sides |
US6699730B2 (en) * | 1996-12-13 | 2004-03-02 | Tessers, Inc. | Stacked microelectronic assembly and method therefor |
US6707437B1 (en) * | 1998-05-01 | 2004-03-16 | Canon Kabushiki Kaisha | Image display apparatus and control method thereof |
US6710437B2 (en) * | 1996-12-03 | 2004-03-23 | Oki Electric Industry Co., Ltd. | Semiconductor device having a chip-size package |
US6712226B1 (en) * | 2001-03-13 | 2004-03-30 | James E. Williams, Jr. | Wall or ceiling mountable brackets for storing and displaying board-based recreational equipment |
US6838761B2 (en) * | 2002-09-17 | 2005-01-04 | Chippac, Inc. | Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield |
US6839266B1 (en) * | 1999-09-14 | 2005-01-04 | Rambus Inc. | Memory module with offset data lines and bit line swizzle configuration |
US6841868B2 (en) * | 1996-10-08 | 2005-01-11 | Micron Technology, Inc. | Memory modules including capacity for additional memory |
US20050018495A1 (en) * | 2004-01-29 | 2005-01-27 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
US6849949B1 (en) * | 1999-09-27 | 2005-02-01 | Samsung Electronics Co., Ltd. | Thin stacked package |
US6850414B2 (en) * | 2001-07-02 | 2005-02-01 | Infineon Technologies Ag | Electronic printed circuit board having a plurality of identically designed, housing-encapsulated semiconductor memories |
US6853064B2 (en) * | 2003-05-12 | 2005-02-08 | Micron Technology, Inc. | Semiconductor component having stacked, encapsulated dice |
US20050035440A1 (en) * | 2001-08-22 | 2005-02-17 | Tessera, Inc. | Stacked chip assembly with stiffening layer |
US6858910B2 (en) * | 2000-01-26 | 2005-02-22 | Texas Instruments Incorporated | Method of fabricating a molded package for micromechanical devices |
US20050040508A1 (en) * | 2003-08-22 | 2005-02-24 | Jong-Joo Lee | Area array type package stack and manufacturing method thereof |
US6867660B2 (en) * | 1998-12-25 | 2005-03-15 | Murata Manufacturing Co., Ltd. | Line transition device between dielectric waveguide and waveguide, and oscillator, and transmitter using the same |
US6869825B2 (en) * | 2002-12-31 | 2005-03-22 | Intel Corporation | Folded BGA package design with shortened communication paths and more electrical routing flexibility |
US6873039B2 (en) * | 2002-06-27 | 2005-03-29 | Tessera, Inc. | Methods of making microelectronic packages including electrically and/or thermally conductive element |
US6982869B2 (en) * | 2001-03-21 | 2006-01-03 | Micron Technology, Inc. | Folded interposer |
US6989285B2 (en) * | 1996-05-20 | 2006-01-24 | Micron Technology, Inc. | Method of fabrication of stacked semiconductor devices |
US7011981B2 (en) * | 2000-11-13 | 2006-03-14 | Lg.Philips Lcd Co., Ltd. | Method for forming thin film and method for fabricating liquid crystal display using the same |
US7161237B2 (en) * | 2002-03-04 | 2007-01-09 | Micron Technology, Inc. | Flip chip packaging using recessed interposer terminals |
Family Cites Families (285)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3436604A (en) | 1966-04-25 | 1969-04-01 | Texas Instruments Inc | Complex integrated circuit array and method for fabricating same |
US3654394A (en) | 1969-07-08 | 1972-04-04 | Gordon Eng Co | Field effect transistor switch, particularly for multiplexing |
US3772776A (en) | 1969-12-03 | 1973-11-20 | Thomas & Betts Corp | Method of interconnecting memory plane boards |
US3704455A (en) | 1971-02-01 | 1972-11-28 | Alfred D Scarbrough | 3d-coaxial memory construction and method of making |
US3746934A (en) | 1971-05-06 | 1973-07-17 | Siemens Ag | Stack arrangement of semiconductor chips |
US3766439A (en) | 1972-01-12 | 1973-10-16 | Gen Electric | Electronic module using flexible printed circuit board with heat sink means |
US3983547A (en) | 1974-06-27 | 1976-09-28 | International Business Machines - Ibm | Three-dimensional bubble device |
US4288841A (en) | 1979-09-20 | 1981-09-08 | Bell Telephone Laboratories, Incorporated | Double cavity semiconductor chip carrier |
US4398235A (en) | 1980-09-11 | 1983-08-09 | General Motors Corporation | Vertical integrated circuit package integration |
JPS57181146A (en) | 1981-04-30 | 1982-11-08 | Hitachi Ltd | Resin-sealed semiconductor device |
US4513368A (en) | 1981-05-22 | 1985-04-23 | Data General Corporation | Digital data processing system having object-based logical memory addressing and self-structuring modular memory |
US4406508A (en) | 1981-07-02 | 1983-09-27 | Thomas & Betts Corporation | Dual-in-line package assembly |
JPS58159360A (en) | 1982-03-17 | 1983-09-21 | Fujitsu Ltd | Semiconductor device |
US4656605A (en) | 1983-09-02 | 1987-04-07 | Wang Laboratories, Inc. | Single in-line memory module |
KR890004820B1 (en) | 1984-03-28 | 1989-11-27 | 인터내셔널 비지네스 머신즈 코포레이션 | Memory module and board with double storage density and method of forming the same |
US4587596A (en) | 1984-04-09 | 1986-05-06 | Amp Incorporated | High density mother/daughter circuit board connector |
US4894706A (en) * | 1985-02-14 | 1990-01-16 | Nippon Telegraph And Telephone Corporation | Three-dimensional packaging of semiconductor device chips |
EP0218796B1 (en) | 1985-08-16 | 1990-10-31 | Dai-Ichi Seiko Co. Ltd. | Semiconductor device comprising a plug-in-type package |
US4696525A (en) | 1985-12-13 | 1987-09-29 | Amp Incorporated | Socket for stacking integrated circuit packages |
US4850892A (en) | 1985-12-16 | 1989-07-25 | Wang Laboratories, Inc. | Connecting apparatus for electrically connecting memory modules to a printed circuit board |
US4709300A (en) | 1986-05-05 | 1987-11-24 | Itt Gallium Arsenide Technology Center, A Division Of Itt Corporation | Jumper for a semiconductor assembly |
US4763188A (en) | 1986-08-08 | 1988-08-09 | Thomas Johnson | Packaging system for multiple semiconductor devices |
US4821007A (en) | 1987-02-06 | 1989-04-11 | Tektronix, Inc. | Strip line circuit component and method of manufacture |
US5159535A (en) | 1987-03-11 | 1992-10-27 | International Business Machines Corporation | Method and apparatus for mounting a flexible film semiconductor chip carrier on a circuitized substrate |
US4862249A (en) | 1987-04-17 | 1989-08-29 | Xoc Devices, Inc. | Packaging system for stacking integrated circuits |
KR970003915B1 (en) * | 1987-06-24 | 1997-03-22 | 미다 가쓰시게 | Semiconductor memory device and semiconductor memory module using same |
IT1214254B (en) | 1987-09-23 | 1990-01-10 | Sgs Microelettonica S P A | SEMICONDUCTOR DEVICE IN PLASTIC OR CERAMIC CONTAINER WITH "CHIPS" FIXED ON BOTH SIDES OF THE CENTRAL ISLAND OF THE "FRAME". |
US5016138A (en) | 1987-10-27 | 1991-05-14 | Woodman John K | Three dimensional integrated circuit package |
US4983533A (en) * | 1987-10-28 | 1991-01-08 | Irvine Sensors Corporation | High-density electronic modules - process and product |
US4833568A (en) | 1988-01-29 | 1989-05-23 | Berhold G Mark | Three-dimensional circuit component assembly and method corresponding thereto |
US4891789A (en) * | 1988-03-03 | 1990-01-02 | Bull Hn Information Systems, Inc. | Surface mounted multilayer memory printed circuit board |
US5253010A (en) | 1988-05-13 | 1993-10-12 | Minolta Camera Kabushiki Kaisha | Printed circuit board |
JPH025375A (en) | 1988-06-24 | 1990-01-10 | Toshiba Corp | Actual fitting of electronic component |
US5025306A (en) | 1988-08-09 | 1991-06-18 | Texas Instruments Incorporated | Assembly of semiconductor chips |
US4956694A (en) | 1988-11-04 | 1990-09-11 | Dense-Pac Microsystems, Inc. | Integrated circuit chip stacking |
DE69006609T2 (en) | 1989-03-15 | 1994-06-30 | Ngk Insulators Ltd | Ceramic lid for closing a semiconductor element and method for closing a semiconductor element in a ceramic package. |
US4953060A (en) | 1989-05-05 | 1990-08-28 | Ncr Corporation | Stackable integrated circuit chip package with improved heat removal |
US5104820A (en) | 1989-07-07 | 1992-04-14 | Irvine Sensors Corporation | Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting |
US5200362A (en) | 1989-09-06 | 1993-04-06 | Motorola, Inc. | Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film |
DK1004252T3 (en) * | 1989-10-03 | 2002-06-24 | Anatomic Res Inc | Shoe sole with a midsole with variations in firmness and density |
US5012323A (en) | 1989-11-20 | 1991-04-30 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
JPH03227541A (en) | 1990-02-01 | 1991-10-08 | Hitachi Ltd | Semiconductor device |
US5083697A (en) | 1990-02-14 | 1992-01-28 | Difrancesco Louis | Particle-enhanced joining of metal surfaces |
US5041015A (en) | 1990-03-30 | 1991-08-20 | Cal Flex, Inc. | Electrical jumper assembly |
US5345205A (en) | 1990-04-05 | 1994-09-06 | General Electric Company | Compact high density interconnected microwave system |
US5053853A (en) | 1990-05-08 | 1991-10-01 | International Business Machines Corporation | Modular electronic packaging system |
US5261068A (en) | 1990-05-25 | 1993-11-09 | Dell Usa L.P. | Dual path memory retrieval system for an interleaved dynamic RAM memory unit |
US5050039A (en) | 1990-06-26 | 1991-09-17 | Digital Equipment Corporation | Multiple circuit chip mounting and cooling arrangement |
US5241456A (en) | 1990-07-02 | 1993-08-31 | General Electric Company | Compact high density interconnect structure |
US5065277A (en) | 1990-07-13 | 1991-11-12 | Sun Microsystems, Inc. | Three dimensional packaging arrangement for computer systems and the like |
US5446620A (en) | 1990-08-01 | 1995-08-29 | Staktek Corporation | Ultra high density integrated circuit packages |
US5475920A (en) | 1990-08-01 | 1995-12-19 | Burns; Carmen D. | Method of assembling ultra high density integrated circuit packages |
US5377077A (en) | 1990-08-01 | 1994-12-27 | Staktek Corporation | Ultra high density integrated circuit packages method and apparatus |
US5140405A (en) | 1990-08-30 | 1992-08-18 | Micron Technology, Inc. | Semiconductor assembly utilizing elastomeric single axis conductive interconnect |
US5148265A (en) | 1990-09-24 | 1992-09-15 | Ist Associates, Inc. | Semiconductor chip assemblies with fan-in leads |
US5117282A (en) | 1990-10-29 | 1992-05-26 | Harris Corporation | Stacked configuration for integrated circuit devices |
US5219794A (en) | 1991-03-14 | 1993-06-15 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of fabricating same |
US5138430A (en) | 1991-06-06 | 1992-08-11 | International Business Machines Corporation | High performance versatile thermally enhanced IC chip mounting |
JPH0513666A (en) | 1991-06-29 | 1993-01-22 | Sony Corp | Complex semiconductor device |
US5311401A (en) | 1991-07-09 | 1994-05-10 | Hughes Aircraft Company | Stacked chip assembly and manufacturing method therefor |
US5252857A (en) | 1991-08-05 | 1993-10-12 | International Business Machines Corporation | Stacked DCA memory chips |
US5448450A (en) | 1991-08-15 | 1995-09-05 | Staktek Corporation | Lead-on-chip integrated circuit apparatus |
US5241454A (en) | 1992-01-22 | 1993-08-31 | International Business Machines Corporation | Mutlilayered flexible circuit package |
US5262927A (en) | 1992-02-07 | 1993-11-16 | Lsi Logic Corporation | Partially-molded, PCB chip carrier package |
US5224023A (en) | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5208729A (en) | 1992-02-14 | 1993-05-04 | International Business Machines Corporation | Multi-chip module |
US5268815A (en) | 1992-02-14 | 1993-12-07 | International Business Machines Corporation | High density, high performance memory circuit package |
US5243133A (en) | 1992-02-18 | 1993-09-07 | International Business Machines, Inc. | Ceramic chip carrier with lead frame or edge clip |
US5222014A (en) | 1992-03-02 | 1993-06-22 | Motorola, Inc. | Three-dimensional multi-chip pad array carrier |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5313096A (en) | 1992-03-16 | 1994-05-17 | Dense-Pac Microsystems, Inc. | IC chip package having chip attached to and wire bonded within an overlying substrate |
US5259770A (en) | 1992-03-19 | 1993-11-09 | Amp Incorporated | Impedance controlled elastomeric connector |
US5438224A (en) | 1992-04-23 | 1995-08-01 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
US5361228A (en) | 1992-04-30 | 1994-11-01 | Fuji Photo Film Co., Ltd. | IC memory card system having a common data and address bus |
US5422435A (en) | 1992-05-22 | 1995-06-06 | National Semiconductor Corporation | Stacked multi-chip modules and method of manufacturing |
US5247423A (en) | 1992-05-26 | 1993-09-21 | Motorola, Inc. | Stacking three dimensional leadless multi-chip module and method for making the same |
JPH0653277A (en) | 1992-06-04 | 1994-02-25 | Lsi Logic Corp | Semiconductor device assembly and its assembly method |
US5804870A (en) | 1992-06-26 | 1998-09-08 | Staktek Corporation | Hermetically sealed integrated circuit lead-on package configuration |
US5702985A (en) | 1992-06-26 | 1997-12-30 | Staktek Corporation | Hermetically sealed ceramic integrated circuit heat dissipating package fabrication method |
US5229917A (en) | 1992-07-24 | 1993-07-20 | The United States Of America As Represented By The Secretary Of The Air Force | VLSI integration into a 3-D WSI dual composite module |
US5731633A (en) | 1992-09-16 | 1998-03-24 | Gary W. Hamilton | Thin multichip module |
US5313097A (en) | 1992-11-16 | 1994-05-17 | International Business Machines, Corp. | High density memory module |
US5375041A (en) | 1992-12-02 | 1994-12-20 | Intel Corporation | Ra-tab array bump tab tape based I.C. package |
US5347428A (en) | 1992-12-03 | 1994-09-13 | Irvine Sensors Corporation | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
US5455740A (en) | 1994-03-07 | 1995-10-03 | Staktek Corporation | Bus communication system for stacked high density integrated circuit packages |
US5644161A (en) | 1993-03-29 | 1997-07-01 | Staktek Corporation | Ultra-high density warp-resistant memory module |
US5801437A (en) | 1993-03-29 | 1998-09-01 | Staktek Corporation | Three-dimensional warp-resistant integrated circuit module method and apparatus |
US5428190A (en) | 1993-07-02 | 1995-06-27 | Sheldahl, Inc. | Rigid-flex board with anisotropic interconnect and method of manufacture |
US5548091A (en) | 1993-10-26 | 1996-08-20 | Tessera, Inc. | Semiconductor chip connection components with adhesives and methods for bonding to the chip |
US5523619A (en) | 1993-11-03 | 1996-06-04 | International Business Machines Corporation | High density memory structure |
US5477082A (en) | 1994-01-11 | 1995-12-19 | Exponential Technology, Inc. | Bi-planar multi-chip module |
KR950027550U (en) | 1994-03-07 | 1995-10-18 | 정의훈 | Left side of the inclined guide of the cloth guide. Right feeder |
TW381328B (en) | 1994-03-07 | 2000-02-01 | Ibm | Dual substrate package assembly for being electrically coupled to a conducting member |
JPH088389A (en) | 1994-04-20 | 1996-01-12 | Fujitsu Ltd | Semiconductor device and semiconductor device unit |
US5448511A (en) * | 1994-06-01 | 1995-09-05 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
US5523695A (en) | 1994-08-26 | 1996-06-04 | Vlsi Technology, Inc. | Universal test socket for exposing the active surface of an integrated circuit in a die-down package |
US5659952A (en) | 1994-09-20 | 1997-08-26 | Tessera, Inc. | Method of fabricating compliant interface for semiconductor chip |
JP2570628B2 (en) | 1994-09-21 | 1997-01-08 | 日本電気株式会社 | Semiconductor package and manufacturing method thereof |
US5579207A (en) | 1994-10-20 | 1996-11-26 | Hughes Electronics | Three-dimensional integrated circuit stacking |
KR0147259B1 (en) | 1994-10-27 | 1998-08-01 | 김광호 | Stack type semiconductor package and method for manufacturing the same |
US5631807A (en) | 1995-01-20 | 1997-05-20 | Minnesota Mining And Manufacturing Company | Electronic circuit structure with aperture suspended component |
US5588205A (en) | 1995-01-24 | 1996-12-31 | Staktek Corporation | Method of manufacturing a high density integrated circuit module having complex electrical interconnect rails |
US5514907A (en) | 1995-03-21 | 1996-05-07 | Simple Technology Incorporated | Apparatus for stacking semiconductor chips |
US5677566A (en) | 1995-05-08 | 1997-10-14 | Micron Technology, Inc. | Semiconductor chip package |
US5657537A (en) | 1995-05-30 | 1997-08-19 | General Electric Company | Method for fabricating a stack of two dimensional circuit modules |
US5844168A (en) | 1995-08-01 | 1998-12-01 | Minnesota Mining And Manufacturing Company | Multi-layer interconnect sutructure for ball grid arrays |
US6002167A (en) | 1995-09-22 | 1999-12-14 | Hitachi Cable, Ltd. | Semiconductor device having lead on chip structure |
SG45122A1 (en) | 1995-10-28 | 1998-01-16 | Inst Of Microelectronics | Low cost and highly reliable chip-sized package |
JPH09139559A (en) | 1995-11-13 | 1997-05-27 | Minolta Co Ltd | Connection structure of circuit board |
EP0865082A4 (en) | 1995-11-28 | 1999-10-13 | Hitachi Ltd | SEMICONDUCTOR ARRANGEMENT, PRODUCTION METHOD THEREFOR AND PACKED SUBSTRATE |
US5719440A (en) | 1995-12-19 | 1998-02-17 | Micron Technology, Inc. | Flip chip adaptor package for bare die |
US5646446A (en) | 1995-12-22 | 1997-07-08 | Fairchild Space And Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
JP3718008B2 (en) | 1996-02-26 | 2005-11-16 | 株式会社日立製作所 | Memory module and manufacturing method thereof |
JPH09260568A (en) | 1996-03-27 | 1997-10-03 | Mitsubishi Electric Corp | Semiconductor device and its manufacture |
TW338180B (en) | 1996-03-29 | 1998-08-11 | Mitsubishi Electric Corp | Semiconductor and its manufacturing method |
US5789815A (en) | 1996-04-23 | 1998-08-04 | Motorola, Inc. | Three dimensional semiconductor package having flexible appendages |
JP2810647B2 (en) | 1996-04-30 | 1998-10-15 | 山一電機株式会社 | IC package |
US5778522A (en) | 1996-05-20 | 1998-07-14 | Staktek Corporation | Method of manufacturing a high density integrated circuit module with complex electrical interconnect rails having electrical interconnect strain relief |
US5917242A (en) | 1996-05-20 | 1999-06-29 | Micron Technology, Inc. | Combination of semiconductor interconnect |
JP2755252B2 (en) * | 1996-05-30 | 1998-05-20 | 日本電気株式会社 | Semiconductor device package and semiconductor device |
US5723907A (en) | 1996-06-25 | 1998-03-03 | Micron Technology, Inc. | Loc simm |
US5811879A (en) | 1996-06-26 | 1998-09-22 | Micron Technology, Inc. | Stacked leads-over-chip multi-chip module |
DE19626126C2 (en) | 1996-06-28 | 1998-04-16 | Fraunhofer Ges Forschung | Method for forming a spatial chip arrangement and spatial chip arrangement |
US6247228B1 (en) | 1996-08-12 | 2001-06-19 | Tessera, Inc. | Electrical connection with inwardly deformable contacts |
DE19638175C2 (en) | 1996-09-18 | 2000-05-25 | Siemens Ag | Integrated circuit (chip) with a housing and external configuration option |
US5805424A (en) | 1996-09-24 | 1998-09-08 | Texas Instruments Incorporated | Microelectronic assemblies including Z-axis conductive films |
US5729896A (en) | 1996-10-31 | 1998-03-24 | International Business Machines Corporation | Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder |
US5754409A (en) | 1996-11-06 | 1998-05-19 | Dynamem, Inc. | Foldable electronic assembly module |
JP3602939B2 (en) | 1996-11-19 | 2004-12-15 | 松下電器産業株式会社 | Semiconductor storage device |
US7149095B2 (en) * | 1996-12-13 | 2006-12-12 | Tessera, Inc. | Stacked microelectronic assemblies |
US6121676A (en) | 1996-12-13 | 2000-09-19 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
US5959839A (en) | 1997-01-02 | 1999-09-28 | At&T Corp | Apparatus for heat removal using a flexible backplane |
US5915167A (en) | 1997-04-04 | 1999-06-22 | Elm Technology Corporation | Three dimensional structure memory |
US6084778A (en) | 1997-04-29 | 2000-07-04 | Texas Instruments Incorporated | Three dimensional assembly using flexible wiring board |
US6028352A (en) * | 1997-06-13 | 2000-02-22 | Irvine Sensors Corporation | IC stack utilizing secondary leadframes |
US5917709A (en) | 1997-06-16 | 1999-06-29 | Eastman Kodak Company | Multiple circuit board assembly having an interconnect mechanism that includes a flex connector |
US5986209A (en) | 1997-07-09 | 1999-11-16 | Micron Technology, Inc. | Package stack via bottom leaded plastic (BLP) packaging |
US6234820B1 (en) | 1997-07-21 | 2001-05-22 | Rambus Inc. | Method and apparatus for joining printed circuit boards |
US6002589A (en) | 1997-07-21 | 1999-12-14 | Rambus Inc. | Integrated circuit package for coupling to a printed circuit board |
JPH1197619A (en) | 1997-07-25 | 1999-04-09 | Oki Electric Ind Co Ltd | Semiconductor device, manufacture thereof and mounting thereof |
JP3294785B2 (en) | 1997-09-01 | 2002-06-24 | シャープ株式会社 | Heat dissipation structure of circuit element |
US6097087A (en) | 1997-10-31 | 2000-08-01 | Micron Technology, Inc. | Semiconductor package including flex circuit, interconnects and dense array external contacts |
US6740960B1 (en) | 1997-10-31 | 2004-05-25 | Micron Technology, Inc. | Semiconductor package including flex circuit, interconnects and dense array external contacts |
US5899705A (en) | 1997-11-20 | 1999-05-04 | Akram; Salman | Stacked leads-over chip multi-chip module |
US6266252B1 (en) | 1997-12-01 | 2001-07-24 | Chris Karabatsos | Apparatus and method for terminating a computer memory bus |
US5953215A (en) | 1997-12-01 | 1999-09-14 | Karabatsos; Chris | Apparatus and method for improving computer memory speed and capacity |
US5949657A (en) | 1997-12-01 | 1999-09-07 | Karabatsos; Chris | Bottom or top jumpered foldable electronic assembly |
US5963427A (en) | 1997-12-11 | 1999-10-05 | Sun Microsystems, Inc. | Multi-chip module with flexible circuit board |
DE19758197C2 (en) | 1997-12-30 | 2002-11-07 | Infineon Technologies Ag | Stack arrangement for two semiconductor memory chips and printed circuit board, which is equipped with a plurality of such stack arrangements |
JP2000208698A (en) | 1999-01-18 | 2000-07-28 | Toshiba Corp | Semiconductor device |
US6222739B1 (en) | 1998-01-20 | 2001-04-24 | Viking Components | High-density computer module with stacked parallel-plane packaging |
US5926369A (en) | 1998-01-22 | 1999-07-20 | International Business Machines Corporation | Vertically integrated multi-chip circuit package with heat-sink support |
US6137164A (en) | 1998-03-16 | 2000-10-24 | Texas Instruments Incorporated | Thin stacked integrated circuit device |
US6233650B1 (en) | 1998-04-01 | 2001-05-15 | Intel Corporation | Using FET switches for large memory arrays |
KR100260997B1 (en) | 1998-04-08 | 2000-07-01 | 마이클 디. 오브라이언 | Semiconductor package |
JP3055619B2 (en) | 1998-04-30 | 2000-06-26 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
US6072233A (en) | 1998-05-04 | 2000-06-06 | Micron Technology, Inc. | Stackable ball grid array package |
KR100285664B1 (en) | 1998-05-15 | 2001-06-01 | 박종섭 | Stack Package and Manufacturing Method |
US6300679B1 (en) | 1998-06-01 | 2001-10-09 | Semiconductor Components Industries, Llc | Flexible substrate for packaging a semiconductor component |
US6300687B1 (en) | 1998-06-26 | 2001-10-09 | International Business Machines Corporation | Micro-flex technology in semiconductor packages |
US5977640A (en) | 1998-06-26 | 1999-11-02 | International Business Machines Corporation | Highly integrated chip-on-chip packaging |
US6414391B1 (en) | 1998-06-30 | 2002-07-02 | Micron Technology, Inc. | Module assembly for stacked BGA packages with a common bus bar in the assembly |
JP3842444B2 (en) | 1998-07-24 | 2006-11-08 | 富士通株式会社 | Manufacturing method of semiconductor device |
DE19833713C1 (en) | 1998-07-27 | 2000-05-04 | Siemens Ag | Laminate or stacked package arrangement based on at least two integrated circuits |
JP2000068444A (en) | 1998-08-26 | 2000-03-03 | Mitsubishi Electric Corp | Semiconductor device |
CN1229863C (en) | 1998-09-09 | 2005-11-30 | 精工爱普生株式会社 | Semiconductor device, method of manufacture thereof, circuit board, and electronic device |
US6329713B1 (en) | 1998-10-21 | 2001-12-11 | International Business Machines Corporation | Integrated circuit chip carrier assembly comprising a stiffener attached to a dielectric substrate |
US6180181B1 (en) * | 1998-12-14 | 2001-01-30 | Ppg Industries Ohio, Inc. | Methods for forming composite coatings on substrates |
US6310392B1 (en) | 1998-12-28 | 2001-10-30 | Staktek Group, L.P. | Stacked micro ball grid array packages |
JP3914651B2 (en) | 1999-02-26 | 2007-05-16 | エルピーダメモリ株式会社 | Memory module and manufacturing method thereof |
US6313998B1 (en) | 1999-04-02 | 2001-11-06 | Legacy Electronics, Inc. | Circuit board assembly having a three dimensional array of integrated circuit packages |
US6315614B1 (en) | 1999-04-16 | 2001-11-13 | Sun Microsystems, Inc. | Memory module with offset notches for improved insertion and stability and memory module connector |
JP3602000B2 (en) | 1999-04-26 | 2004-12-15 | 沖電気工業株式会社 | Semiconductor device and semiconductor module |
DE10005161A1 (en) | 1999-04-30 | 2000-11-02 | Fujitsu Ltd | Semiconductor circuit with test function activated according to state of specific connection when supply switched on |
US6446158B1 (en) | 1999-05-17 | 2002-09-03 | Chris Karabatsos | Memory system using FET switches to select memory banks |
US6376769B1 (en) | 1999-05-18 | 2002-04-23 | Amerasia International Technology, Inc. | High-density electronic package, and method for making same |
JP2001053243A (en) * | 1999-08-06 | 2001-02-23 | Hitachi Ltd | Semiconductor storage device and memory module |
US6675469B1 (en) | 1999-08-11 | 2004-01-13 | Tessera, Inc. | Vapor phase connection techniques |
WO2001015228A1 (en) * | 1999-08-19 | 2001-03-01 | Seiko Epson Corporation | Wiring board, method of manufacturing wiring board, electronic device, method of manufacturing electronic device, circuit board and electronic apparatus |
US6303981B1 (en) | 1999-09-01 | 2001-10-16 | Micron Technology, Inc. | Semiconductor package having stacked dice and leadframes and method of fabrication |
US6572387B2 (en) | 1999-09-24 | 2003-06-03 | Staktek Group, L.P. | Flexible circuit connector for stacked chip module |
WO2001026155A1 (en) | 1999-10-01 | 2001-04-12 | Seiko Epson Corporation | Semiconductor device, method and device for producing the same, circuit board, and electronic equipment |
US6441476B1 (en) | 2000-10-18 | 2002-08-27 | Seiko Epson Corporation | Flexible tape carrier with external terminals formed on interposers |
JP2001127246A (en) | 1999-10-29 | 2001-05-11 | Fujitsu Ltd | Semiconductor device |
JP3798597B2 (en) | 1999-11-30 | 2006-07-19 | 富士通株式会社 | Semiconductor device |
JP2001177051A (en) | 1999-12-20 | 2001-06-29 | Toshiba Corp | Semiconductor device and system apparatus |
US6262895B1 (en) | 2000-01-13 | 2001-07-17 | John A. Forthun | Stackable chip package with flex carrier |
JP2001203319A (en) | 2000-01-18 | 2001-07-27 | Sony Corp | Laminated semiconductor device |
JP2001217388A (en) | 2000-02-01 | 2001-08-10 | Sony Corp | Electronic device and method for manufacturing the same |
US6444921B1 (en) | 2000-02-03 | 2002-09-03 | Fujitsu Limited | Reduced stress and zero stress interposers for integrated-circuit chips, multichip substrates, and the like |
US6437990B1 (en) | 2000-03-20 | 2002-08-20 | Agere Systems Guardian Corp. | Multi-chip ball grid array IC packages |
JP2001274323A (en) | 2000-03-24 | 2001-10-05 | Hitachi Ltd | Semiconductor device, semiconductor module mounting the same, and method of manufacturing semiconductor device |
KR100559664B1 (en) | 2000-03-25 | 2006-03-10 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor Package |
JP3980807B2 (en) | 2000-03-27 | 2007-09-26 | 株式会社東芝 | Semiconductor device and semiconductor module |
US6462421B1 (en) | 2000-04-10 | 2002-10-08 | Advanced Semicondcutor Engineering, Inc. | Multichip module |
US6833984B1 (en) | 2000-05-03 | 2004-12-21 | Rambus, Inc. | Semiconductor module with serial bus connection to multiple dies |
US6449159B1 (en) | 2000-05-03 | 2002-09-10 | Rambus Inc. | Semiconductor module with imbedded heat spreader |
US6660561B2 (en) | 2000-06-15 | 2003-12-09 | Dpac Technologies Corp. | Method of assembling a stackable integrated circuit chip |
US6404043B1 (en) | 2000-06-21 | 2002-06-11 | Dense-Pac Microsystems, Inc. | Panel stacking of BGA devices to form three-dimensional modules |
US6560117B2 (en) | 2000-06-28 | 2003-05-06 | Micron Technology, Inc. | Packaged microelectronic die assemblies and methods of manufacture |
US6552910B1 (en) | 2000-06-28 | 2003-04-22 | Micron Technology, Inc. | Stacked-die assemblies with a plurality of microelectronic devices and methods of manufacture |
JP3390412B2 (en) | 2000-08-07 | 2003-03-24 | 株式会社キャットアイ | head lamp |
US6608763B1 (en) | 2000-09-15 | 2003-08-19 | Staktek Group L.P. | Stacking system and method |
KR100340285B1 (en) | 2000-10-24 | 2002-06-15 | 윤종용 | Memory module having series-connected printed circuit boards |
KR100402391B1 (en) | 2000-10-26 | 2003-10-22 | 삼성전자주식회사 | Memory card system |
US6392162B1 (en) | 2000-11-10 | 2002-05-21 | Chris Karabatsos | Double-sided flexible jumper assembly and method of manufacture |
US6414384B1 (en) | 2000-12-22 | 2002-07-02 | Silicon Precision Industries Co., Ltd. | Package structure stacking chips on front surface and back surface of substrate |
JP2002204053A (en) | 2001-01-04 | 2002-07-19 | Mitsubishi Electric Corp | Method and apparatus for mounting circuit as well as semiconductor device |
KR100355032B1 (en) | 2001-01-08 | 2002-10-05 | 삼성전자 주식회사 | High density package memory device, memory module using this device, and control method of this module |
US6737891B2 (en) | 2001-02-01 | 2004-05-18 | Chris Karabatsos | Tri-directional, high-speed bus switch |
US6410857B1 (en) | 2001-03-01 | 2002-06-25 | Lockheed Martin Corporation | Signal cross-over interconnect for a double-sided circuit card assembly |
JP3929250B2 (en) | 2001-03-08 | 2007-06-13 | 株式会社ルネサステクノロジ | Semiconductor device |
US6910268B2 (en) | 2001-03-27 | 2005-06-28 | Formfactor, Inc. | Method for fabricating an IC interconnect system including an in-street integrated circuit wafer via |
US6462408B1 (en) | 2001-03-27 | 2002-10-08 | Staktek Group, L.P. | Contact member stacking system and method |
SG108245A1 (en) | 2001-03-30 | 2005-01-28 | Micron Technology Inc | Ball grid array interposer, packages and methods |
US6707684B1 (en) | 2001-04-02 | 2004-03-16 | Advanced Micro Devices, Inc. | Method and apparatus for direct connection between two integrated circuits via a connector |
SG106054A1 (en) | 2001-04-17 | 2004-09-30 | Micron Technology Inc | Method and apparatus for package reduction in stacked chip and board assemblies |
US7115986B2 (en) | 2001-05-02 | 2006-10-03 | Micron Technology, Inc. | Flexible ball grid array chip scale packages |
DE20108758U1 (en) | 2001-05-25 | 2001-08-09 | Infineon Technologies AG, 81669 München | Arrangement of memory chip packages on DIMM board |
US20030090879A1 (en) | 2001-06-14 | 2003-05-15 | Doblar Drew G. | Dual inline memory module |
KR100415279B1 (en) | 2001-06-26 | 2004-01-16 | 삼성전자주식회사 | Chip stack package and manufacturing method thereof |
JP2003031885A (en) | 2001-07-19 | 2003-01-31 | Toshiba Corp | Semiconductor laser device |
US6627984B2 (en) | 2001-07-24 | 2003-09-30 | Dense-Pac Microsystems, Inc. | Chip stack with differing chip package types |
JP3808335B2 (en) | 2001-07-26 | 2006-08-09 | エルピーダメモリ株式会社 | Memory module |
JP2003045179A (en) | 2001-08-01 | 2003-02-14 | Mitsubishi Electric Corp | Semiconductor device and semiconductor memory module using the same |
JP2003059297A (en) | 2001-08-08 | 2003-02-28 | Mitsubishi Electric Corp | Semiconductor memory and semiconductor module using the same |
US6927471B2 (en) | 2001-09-07 | 2005-08-09 | Peter C. Salmon | Electronic system modules and method of fabrication |
US6897565B2 (en) | 2001-10-09 | 2005-05-24 | Tessera, Inc. | Stacked packages |
US6977440B2 (en) | 2001-10-09 | 2005-12-20 | Tessera, Inc. | Stacked packages |
KR20030029743A (en) | 2001-10-10 | 2003-04-16 | 삼성전자주식회사 | Stack package using flexible double wiring substrate |
US6620651B2 (en) | 2001-10-23 | 2003-09-16 | National Starch And Chemical Investment Holding Corporation | Adhesive wafers for die attach application |
US6509659B1 (en) * | 2001-10-24 | 2003-01-21 | Motorola, Inc. | Cable or module identification apparatus and method |
US7485951B2 (en) * | 2001-10-26 | 2009-02-03 | Entorian Technologies, Lp | Modularized die stacking system and method |
US6914324B2 (en) | 2001-10-26 | 2005-07-05 | Staktek Group L.P. | Memory expansion and chip scale stacking system and method |
US6576992B1 (en) | 2001-10-26 | 2003-06-10 | Staktek Group L.P. | Chip scale stacking system and method |
US6940729B2 (en) | 2001-10-26 | 2005-09-06 | Staktek Group L.P. | Integrated circuit stacking system and method |
JP2003133518A (en) * | 2001-10-29 | 2003-05-09 | Mitsubishi Electric Corp | Semiconductor module |
US6815818B2 (en) | 2001-11-19 | 2004-11-09 | Micron Technology, Inc. | Electrode structure for use in an integrated circuit |
US6657134B2 (en) | 2001-11-30 | 2003-12-02 | Honeywell International Inc. | Stacked ball grid array |
US6774475B2 (en) | 2002-01-24 | 2004-08-10 | International Business Machines Corporation | Vertically stacked memory chips in FBGA packages |
US7238550B2 (en) | 2002-02-26 | 2007-07-03 | Tandon Group Ltd. | Methods and apparatus for fabricating Chip-on-Board modules |
US6639309B2 (en) * | 2002-03-28 | 2003-10-28 | Sandisk Corporation | Memory package with a controller on one side of a printed circuit board and memory on another side of the circuit board |
US6590282B1 (en) * | 2002-04-12 | 2003-07-08 | Industrial Technology Research Institute | Stacked semiconductor package formed on a substrate and method for fabrication |
US6600222B1 (en) | 2002-07-17 | 2003-07-29 | Intel Corporation | Stacked microelectronic packages |
JP2004055009A (en) | 2002-07-18 | 2004-02-19 | Renesas Technology Corp | Semiconductor memory module |
US7132311B2 (en) | 2002-07-26 | 2006-11-07 | Intel Corporation | Encapsulation of a stack of semiconductor dice |
US6765288B2 (en) | 2002-08-05 | 2004-07-20 | Tessera, Inc. | Microelectronic adaptors, assemblies and methods |
WO2004017399A1 (en) | 2002-08-16 | 2004-02-26 | Tessera, Inc. | Microelectronic packages with self-aligning features |
US7246431B2 (en) | 2002-09-06 | 2007-07-24 | Tessera, Inc. | Methods of making microelectronic packages including folded substrates |
US7071547B2 (en) | 2002-09-11 | 2006-07-04 | Tessera, Inc. | Assemblies having stacked semiconductor chips and methods of making same |
US6737742B2 (en) | 2002-09-11 | 2004-05-18 | International Business Machines Corporation | Stacked package for integrated circuits |
US6972481B2 (en) | 2002-09-17 | 2005-12-06 | Chippac, Inc. | Semiconductor multi-package module including stacked-die package and having wire bond interconnect between stacked packages |
US7064426B2 (en) | 2002-09-17 | 2006-06-20 | Chippac, Inc. | Semiconductor multi-package module having wire bond interconnect between stacked packages |
US7061088B2 (en) | 2002-10-08 | 2006-06-13 | Chippac, Inc. | Semiconductor stacked multi-package module having inverted second package |
WO2004034434A2 (en) | 2002-10-11 | 2004-04-22 | Tessera, Inc. | Components, methods and assemblies for multi-chip packages |
US6798057B2 (en) | 2002-11-05 | 2004-09-28 | Micron Technology, Inc. | Thin stacked ball-grid array package |
JP3618330B2 (en) | 2002-11-08 | 2005-02-09 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
US6760220B2 (en) | 2002-11-25 | 2004-07-06 | Lockheed Martin Corporation | Rugged modular PC 104 chassis with blind mate connector and forced convection cooling capabilities |
KR100616435B1 (en) | 2002-11-28 | 2006-08-29 | 삼성전자주식회사 | Semiconductor Package and Laminated Package |
US7291906B2 (en) | 2002-12-31 | 2007-11-06 | Ki Bon Cha | Stack package and fabricating method thereof |
US20040217471A1 (en) | 2003-02-27 | 2004-11-04 | Tessera, Inc. | Component and assemblies with ends offset downwardly |
DE10319984B4 (en) | 2003-05-05 | 2009-09-03 | Qimonda Ag | Device for cooling memory modules |
US20040245617A1 (en) | 2003-05-06 | 2004-12-09 | Tessera, Inc. | Dense multichip module |
US6943454B1 (en) | 2003-05-23 | 2005-09-13 | White Electronic Designs Corp. | Memory module |
US6924551B2 (en) * | 2003-05-28 | 2005-08-02 | Intel Corporation | Through silicon via, folded flex microelectronic package |
US6940158B2 (en) * | 2003-05-30 | 2005-09-06 | Tessera, Inc. | Assemblies having stacked semiconductor chips and methods of making same |
US7269481B2 (en) | 2003-06-25 | 2007-09-11 | Intel Corporation | Method and apparatus for memory bandwidth thermal budgetting |
US6926272B2 (en) * | 2003-08-12 | 2005-08-09 | Lexmark International, Inc. | Sensor and diverter mechanism for an image forming apparatus |
US7078793B2 (en) | 2003-08-29 | 2006-07-18 | Infineon Technologies Ag | Semiconductor memory module |
US7061085B2 (en) | 2003-09-19 | 2006-06-13 | Micron Technology, Inc. | Semiconductor component and system having stiffener and circuit decal |
JP2005150154A (en) * | 2003-11-11 | 2005-06-09 | Sharp Corp | Semiconductor module and its mounting method |
US7061121B2 (en) | 2003-11-12 | 2006-06-13 | Tessera, Inc. | Stacked microelectronic assemblies with central contacts |
KR100535181B1 (en) | 2003-11-18 | 2005-12-09 | 삼성전자주식회사 | Semiconductor chip package having decoupling capacitor and manufacturing method thereof |
US7646649B2 (en) | 2003-11-18 | 2010-01-12 | International Business Machines Corporation | Memory device with programmable receivers to improve performance |
KR100575590B1 (en) | 2003-12-17 | 2006-05-03 | 삼성전자주식회사 | Heat-Resistant Stacking Packages and Modules with They |
US7199466B2 (en) | 2004-05-03 | 2007-04-03 | Intel Corporation | Package design using thermal linkage from die to printed circuit board |
US20060033217A1 (en) * | 2004-08-10 | 2006-02-16 | Brian Taggart | Flip-chips on flex substrates, flip-chip and wire-bonded chip stacks, and methods of assembling same |
US7423885B2 (en) | 2004-09-03 | 2008-09-09 | Entorian Technologies, Lp | Die module system |
US20060261449A1 (en) * | 2005-05-18 | 2006-11-23 | Staktek Group L.P. | Memory module system and method |
US7606050B2 (en) | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Compact module system and method |
US20060055024A1 (en) | 2004-09-14 | 2006-03-16 | Staktek Group, L.P. | Adapted leaded integrated circuit module |
US20060087013A1 (en) | 2004-10-21 | 2006-04-27 | Etron Technology, Inc. | Stacked multiple integrated circuit die package assembly |
US7291907B2 (en) * | 2005-02-28 | 2007-11-06 | Infineon Technologies, Ag | Chip stack employing a flex circuit |
US7033861B1 (en) * | 2005-05-18 | 2006-04-25 | Staktek Group L.P. | Stacked module systems and method |
US7352058B2 (en) * | 2005-11-01 | 2008-04-01 | Sandisk Corporation | Methods for a multiple die integrated circuit package |
-
2006
- 2006-01-11 US US11/330,307 patent/US7508058B2/en active Active
-
2009
- 2009-03-11 US US12/402,267 patent/US20090170243A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4437235A (en) * | 1980-12-29 | 1984-03-20 | Honeywell Information Systems Inc. | Integrated circuit package |
US4567543A (en) * | 1983-02-15 | 1986-01-28 | Motorola, Inc. | Double-sided flexible electronic circuit module |
US4645944A (en) * | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4733461A (en) * | 1984-12-28 | 1988-03-29 | Micro Co., Ltd. | Method of stacking printed circuit boards |
US5198888A (en) * | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US4985703A (en) * | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US4911643A (en) * | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US5276418A (en) * | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5081067A (en) * | 1989-02-10 | 1992-01-14 | Fujitsu Limited | Ceramic package type semiconductor device and method of assembling the same |
US4982533A (en) * | 1989-08-16 | 1991-01-08 | Thomas Florence | Drywell with plugs, drywell system and method for controlling the flow and direction of surface water |
US5191404A (en) * | 1989-12-20 | 1993-03-02 | Digital Equipment Corporation | High density memory array packaging |
US5499160A (en) * | 1990-08-01 | 1996-03-12 | Staktek Corporation | High density integrated circuit module with snap-on rail assemblies |
US5279029A (en) * | 1990-08-01 | 1994-01-18 | Staktek Corporation | Ultra high density integrated circuit packages method |
US5289346A (en) * | 1991-02-26 | 1994-02-22 | Microelectronics And Computer Technology Corporation | Peripheral to area adapter with protective bumper for an integrated circuit chip |
US5394010A (en) * | 1991-03-13 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor assembly having laminated semiconductor devices |
US5289062A (en) * | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5099393A (en) * | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5714802A (en) * | 1991-06-18 | 1998-02-03 | Micron Technology, Inc. | High-density electronic module |
US5281852A (en) * | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5397916A (en) * | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5198965A (en) * | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5729894A (en) * | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
US5400003A (en) * | 1992-08-19 | 1995-03-21 | Micron Technology, Inc. | Inherently impedance matched integrated circuit module |
US5394300A (en) * | 1992-09-04 | 1995-02-28 | Mitsubishi Denki Kabushiki Kaisha | Thin multilayered IC memory card |
US5394303A (en) * | 1992-09-11 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device |
US5402006A (en) * | 1992-11-10 | 1995-03-28 | Texas Instruments Incorporated | Semiconductor device with enhanced adhesion between heat spreader and leads and plastic mold compound |
US5484959A (en) * | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US6205654B1 (en) * | 1992-12-11 | 2001-03-27 | Staktek Group L.P. | Method of manufacturing a surface mount package |
US5390844A (en) * | 1993-07-23 | 1995-02-21 | Tessera, Inc. | Semiconductor inner lead bonding tool |
US5386341A (en) * | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5594275A (en) * | 1993-11-18 | 1997-01-14 | Samsung Electronics Co., Ltd. | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
US5600541A (en) * | 1993-12-08 | 1997-02-04 | Hughes Aircraft Company | Vertical IC chip stack with discrete chip carriers formed from dielectric tape |
US5502333A (en) * | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
US5715144A (en) * | 1994-12-30 | 1998-02-03 | International Business Machines Corporation | Multi-layer, multi-chip pyramid and circuit board structure |
US5592364A (en) * | 1995-01-24 | 1997-01-07 | Staktek Corporation | High density integrated circuit module with complex electrical interconnect rails |
US5491612A (en) * | 1995-02-21 | 1996-02-13 | Fairchild Space And Defense Corporation | Three-dimensional modular assembly of integrated circuits |
US5612570A (en) * | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
US6025642A (en) * | 1995-08-17 | 2000-02-15 | Staktek Corporation | Ultra high density integrated circuit packages |
US5861666A (en) * | 1995-08-30 | 1999-01-19 | Tessera, Inc. | Stacked chip assembly |
US6013948A (en) * | 1995-11-27 | 2000-01-11 | Micron Technology, Inc. | Stackable chip scale semiconductor package with mating contacts on opposed surfaces |
US6989285B2 (en) * | 1996-05-20 | 2006-01-24 | Micron Technology, Inc. | Method of fabrication of stacked semiconductor devices |
US6030856A (en) * | 1996-06-10 | 2000-02-29 | Tessera, Inc. | Bondable compliant pads for packaging of a semiconductor chip and method therefor |
US6841868B2 (en) * | 1996-10-08 | 2005-01-11 | Micron Technology, Inc. | Memory modules including capacity for additional memory |
US6336262B1 (en) * | 1996-10-31 | 2002-01-08 | International Business Machines Corporation | Process of forming a capacitor with multi-level interconnection technology |
US6710437B2 (en) * | 1996-12-03 | 2004-03-23 | Oki Electric Industry Co., Ltd. | Semiconductor device having a chip-size package |
US6699730B2 (en) * | 1996-12-13 | 2004-03-02 | Tessers, Inc. | Stacked microelectronic assembly and method therefor |
US6034878A (en) * | 1996-12-16 | 2000-03-07 | Hitachi, Ltd. | Source-clock-synchronized memory system and memory unit |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US6014316A (en) * | 1997-06-13 | 2000-01-11 | Irvine Sensors Corporation | IC stack utilizing BGA contacts |
US6028258A (en) * | 1997-08-14 | 2000-02-22 | Hicks; William J. | Drum bracket |
US6040624A (en) * | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US5869353A (en) * | 1997-11-17 | 1999-02-09 | Dense-Pac Microsystems, Inc. | Modular panel stacking process |
US6504104B2 (en) * | 1997-12-10 | 2003-01-07 | Siemens Aktiengesellschaft | Flexible wiring for the transformation of a substrate with edge contacts into a ball grid array |
US6021048A (en) * | 1998-02-17 | 2000-02-01 | Smith; Gary W. | High speed memory module |
US6028365A (en) * | 1998-03-30 | 2000-02-22 | Micron Technology, Inc. | Integrated circuit package and method of fabrication |
US6172874B1 (en) * | 1998-04-06 | 2001-01-09 | Silicon Graphics, Inc. | System for stacking of integrated circuit packages |
US6707437B1 (en) * | 1998-05-01 | 2004-03-16 | Canon Kabushiki Kaisha | Image display apparatus and control method thereof |
US6180881B1 (en) * | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
US6172418B1 (en) * | 1998-06-24 | 2001-01-09 | Nec Corporation | Semiconductor device and method for fabricating the same |
US6531337B1 (en) * | 1998-08-28 | 2003-03-11 | Micron Technology, Inc. | Method of manufacturing a semiconductor structure having stacked semiconductor devices |
US6531338B2 (en) * | 1998-08-28 | 2003-03-11 | Micron Technology, Inc. | Method of manufacturing a semiconductor structure having stacked semiconductor devices |
US6339254B1 (en) * | 1998-09-01 | 2002-01-15 | Texas Instruments Incorporated | Stacked flip-chip integrated circuit assemblage |
US6187652B1 (en) * | 1998-09-14 | 2001-02-13 | Fujitsu Limited | Method of fabrication of multiple-layer high density substrate |
US6521530B2 (en) * | 1998-11-13 | 2003-02-18 | Fujitsu Limited | Composite interposer and method for producing a composite interposer |
US6867660B2 (en) * | 1998-12-25 | 2005-03-15 | Murata Manufacturing Co., Ltd. | Line transition device between dielectric waveguide and waveguide, and oscillator, and transmitter using the same |
US6190944B1 (en) * | 1999-01-20 | 2001-02-20 | Hyundai Electronics Industries Co., Ltd. | Stacked package for semiconductor device and fabrication method thereof, and apparatus for making the stacked package |
US6360433B1 (en) * | 1999-04-23 | 2002-03-26 | Andrew C. Ross | Universal package and method of forming the same |
US6514793B2 (en) * | 1999-05-05 | 2003-02-04 | Dpac Technologies Corp. | Stackable flex circuit IC package and method of making same |
US6351029B1 (en) * | 1999-05-05 | 2002-02-26 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US6673651B2 (en) * | 1999-07-01 | 2004-01-06 | Oki Electric Industry Co., Ltd. | Method of manufacturing semiconductor device including semiconductor elements mounted on base plate |
US6839266B1 (en) * | 1999-09-14 | 2005-01-04 | Rambus Inc. | Memory module with offset data lines and bit line swizzle configuration |
US6849949B1 (en) * | 1999-09-27 | 2005-02-01 | Samsung Electronics Co., Ltd. | Thin stacked package |
US6514794B2 (en) * | 1999-12-23 | 2003-02-04 | Rambus Inc. | Redistributed bond pads in stacked integrated circuit die package |
US6858910B2 (en) * | 2000-01-26 | 2005-02-22 | Texas Instruments Incorporated | Method of fabricating a molded package for micromechanical devices |
US6528870B2 (en) * | 2000-01-28 | 2003-03-04 | Kabushiki Kaisha Toshiba | Semiconductor device having a plurality of stacked wiring boards |
US6677670B2 (en) * | 2000-04-25 | 2004-01-13 | Seiko Epson Corporation | Semiconductor device |
US6522018B1 (en) * | 2000-05-16 | 2003-02-18 | Micron Technology, Inc. | Ball grid array chip packages having improved testing and stacking characteristics |
US20020006032A1 (en) * | 2000-05-23 | 2002-01-17 | Chris Karabatsos | Low-profile registered DIMM |
US6683377B1 (en) * | 2000-05-30 | 2004-01-27 | Amkor Technology, Inc. | Multi-stacked memory package |
US6525413B1 (en) * | 2000-07-12 | 2003-02-25 | Micron Technology, Inc. | Die to die connection method and assemblies and packages including dice so connected |
US6690584B2 (en) * | 2000-08-14 | 2004-02-10 | Fujitsu Limited | Information-processing device having a crossbar-board connected to back panels on different sides |
US7011981B2 (en) * | 2000-11-13 | 2006-03-14 | Lg.Philips Lcd Co., Ltd. | Method for forming thin film and method for fabricating liquid crystal display using the same |
US6522022B2 (en) * | 2000-12-18 | 2003-02-18 | Shinko Electric Industries Co., Ltd. | Mounting structure for semiconductor devices |
US6712226B1 (en) * | 2001-03-13 | 2004-03-30 | James E. Williams, Jr. | Wall or ceiling mountable brackets for storing and displaying board-based recreational equipment |
US6982869B2 (en) * | 2001-03-21 | 2006-01-03 | Micron Technology, Inc. | Folded interposer |
US6532162B2 (en) * | 2001-05-26 | 2003-03-11 | Intel Corporation | Reference plane of integrated circuit packages |
US6850414B2 (en) * | 2001-07-02 | 2005-02-01 | Infineon Technologies Ag | Electronic printed circuit board having a plurality of identically designed, housing-encapsulated semiconductor memories |
US6509639B1 (en) * | 2001-07-27 | 2003-01-21 | Charles W. C. Lin | Three-dimensional stacked semiconductor package |
US20050035440A1 (en) * | 2001-08-22 | 2005-02-17 | Tessera, Inc. | Stacked chip assembly with stiffening layer |
US20030057540A1 (en) * | 2001-09-26 | 2003-03-27 | Wen-Lo Shieh | Combination-type 3D stacked IC package |
US6674644B2 (en) * | 2001-11-01 | 2004-01-06 | Sun Microsystems, Inc. | Module and connector having multiple contact rows |
US7161237B2 (en) * | 2002-03-04 | 2007-01-09 | Micron Technology, Inc. | Flip chip packaging using recessed interposer terminals |
US6873039B2 (en) * | 2002-06-27 | 2005-03-29 | Tessera, Inc. | Methods of making microelectronic packages including electrically and/or thermally conductive element |
US6838761B2 (en) * | 2002-09-17 | 2005-01-04 | Chippac, Inc. | Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield |
US6869825B2 (en) * | 2002-12-31 | 2005-03-22 | Intel Corporation | Folded BGA package design with shortened communication paths and more electrical routing flexibility |
US6686656B1 (en) * | 2003-01-13 | 2004-02-03 | Kingston Technology Corporation | Integrated multi-chip chip scale package |
US6853064B2 (en) * | 2003-05-12 | 2005-02-08 | Micron Technology, Inc. | Semiconductor component having stacked, encapsulated dice |
US20050040508A1 (en) * | 2003-08-22 | 2005-02-24 | Jong-Joo Lee | Area array type package stack and manufacturing method thereof |
US20050018495A1 (en) * | 2004-01-29 | 2005-01-27 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
Also Published As
Publication number | Publication date |
---|---|
US20070170561A1 (en) | 2007-07-26 |
US7508058B2 (en) | 2009-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7066741B2 (en) | Flexible circuit connector for stacked chip module | |
US8345431B2 (en) | Thin multi-chip flex module | |
US6721189B1 (en) | Memory module | |
US20080185597A1 (en) | Light-emitting module | |
US20080079132A1 (en) | Inverted CSP Stacking System and Method | |
KR20030060882A (en) | Semiconductor device and semiconductor module | |
JP2001189412A (en) | Semiconductor device and mounting method of semiconductor | |
US20040264148A1 (en) | Method and system for fan fold packaging | |
US20100006260A1 (en) | Heat sink | |
US7438557B1 (en) | Stacked multiple electronic component interconnect structure | |
US7508058B2 (en) | Stacked integrated circuit module | |
US20030043650A1 (en) | Multilayered memory device | |
US20070257349A1 (en) | Leaded Package Integrated Circuit Stacking | |
US7304382B2 (en) | Managed memory component | |
US7608920B2 (en) | Memory card and method for devising | |
US6817869B1 (en) | Connector for transporting signals between contact pads on two surfaces | |
US7605454B2 (en) | Memory card and method for devising | |
US7508069B2 (en) | Managed memory component | |
US7133295B2 (en) | Memory module and memory system | |
US20070158811A1 (en) | Low profile managed memory component | |
US20050231929A1 (en) | Board mounting method and mounting structure | |
US20070158821A1 (en) | Managed memory component | |
JPH08116146A (en) | Module substrate and packaging structure of module substrate | |
KR20010038948A (en) | Mult-laminated type memory module | |
CN2374980Y (en) | Three-dimensional combined structure of integrated circuit components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENTORIAN TECHNOLOGIES, LP, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEHRLY, JAMES DOUGLAS, JR.;REEL/FRAME:022406/0744 Effective date: 20060109 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |