US20090159282A1 - Methods for Introducing Pulsing to Cementing Operations - Google Patents
Methods for Introducing Pulsing to Cementing Operations Download PDFInfo
- Publication number
- US20090159282A1 US20090159282A1 US11/961,458 US96145807A US2009159282A1 US 20090159282 A1 US20090159282 A1 US 20090159282A1 US 96145807 A US96145807 A US 96145807A US 2009159282 A1 US2009159282 A1 US 2009159282A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- casing
- well bore
- pulses
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000012530 fluid Substances 0.000 claims abstract description 76
- 230000001939 inductive effect Effects 0.000 claims abstract description 17
- 230000005012 migration Effects 0.000 claims abstract description 6
- 238000013508 migration Methods 0.000 claims abstract description 6
- 239000004568 cement Substances 0.000 claims description 51
- 239000012065 filter cake Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 description 9
- 230000010349 pulsation Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000004941 influx Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/14—Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B28/00—Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
Definitions
- the present invention relates to cementing operations, and, more particularly, methods and apparatuses for providing more competent cement bonds during and after cementing operations in well bores.
- Settable compositions such as cement slurries may be used in primary cementing operations in which pipe strings, such as casing and liners, are cemented in well bores.
- a cement may be pumped through the casing into an annulus between the walls of a well bore and the casing disposed therein.
- the cement typically is pumped into this annulus until it reaches a predetermined height in the well bore to provide zonal isolation.
- the cement cures in the annulus, thereby forming an annular sheath of hardened cement (e.g. a cement sheath) that supports and positions the pipe string in the well bore and bonds the exterior surface of the pipe string to the walls of the well bore.
- FIG. 1 illustrates an example of such damage and incomplete bonding in a small section of formation 100 containing well bore 101 with casing 102 .
- Cement 103 fills annulus 104 between the walls of well bore 101 and the exterior surface of casing 102 .
- Pockets 105 and 106 illustrate examples of damage caused by fluid or gas influx.
- channels will form between formation 100 and the exterior surface of casing 102 , such as channels 107 and 108 .
- Influx damage can occur at the interface between cement 103 and well bore 100 , or in the cement 103 itself.
- Filter cake 109 also can prevent complete bonding between well bore 101 and cement 103 .
- Conventional methods of filter cake removal often rely on mechanical means such as scratchers with pipe reciprocation or require that cement 103 reach a specific annular velocity. These removal methods can be time-consuming and often leave filter cake residues behind, impeding bonding between cement 103 and well bore 101 .
- the present invention relates to cementing operations, and, more particularly, methods and apparatuses for providing more competent cement bonds during and after cementing operations in well bores.
- a method for bonding a well bore to a casing therein may comprise the steps of introducing the casing into the well bore, directing pulses of fluid from within the casing into the well bore, and filling an annulus between an inner surface of the well bore and an outer surface of the casing with the fluid.
- the step of directing pulses of fluid may performed while moving the casing further into the well bore.
- the method may further comprise the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce filter cake formed on the inner surface of the well bore.
- the method may further comprise the step of vibrating well fluid at a resonance frequency for the well fluid.
- the method may further comprise the step of vibrating the casing at a resonance frequency for the casing. Vibrating the casing at a resonance frequency may comprise the step of directing pulses of fluid into the well bore at a frequency and pressure selected to induce resonance vibrations in the casing.
- the fluid may be a cement. If the fluid is a cement, the method may further comprise the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce the amount non-cement material on the casing, and the method may further comprise the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce filter cake formed on the inner surface of the well bore, such that the pulses have a dual-step profile.
- a method for reducing fluid or gas migration into a fluid in an annulus formed between a surface of a well bore in a formation and a casing may comprising the step of inducing pressure pulses in the fluid before the fluid has cured.
- the fluid may be a cement.
- the method may further comprise the step of selecting a frequency and amplitude for the pressure pulses such that the pressure pulses prevent shear damage of the fluid during curing.
- the step of inducing pressure pulses in fluid before the fluid has cured may comprise the step of inducing a low-amplitude pressure pulse. Additionally, or alternatively, the step of inducing pressure pulses in fluid before the fluid has cured may comprise the step of inducing a low-frequency pressure pulse.
- the step of inducing pressure pulses in fluid before the cement has cured may comprise the step of inducing a pressure pulse having a dual-step profile.
- FIG. 1 illustrates conventional cement bonding
- FIG. 2 illustrates a method for bonding a well bore to a casing in accordance with one embodiment of the present invention.
- FIG. 3 illustrates an alternate embodiment of a method for bonding a well bore to a casing.
- FIG. 4 illustrates yet another embodiment of a method for bonding a well bore to a casing.
- FIG. 5 illustrates various pressure pulses in accordance with one embodiment of the present invention.
- FIG. 6 illustrates a shear damage profile in accordance with one embodiment of the present invention.
- FIG. 7 illustrates a fluidic oscillator in accordance with one embodiment of the present invention.
- FIG. 8 illustrates an alternate embodiment of a method for bonding a well bore to a casing.
- FIG. 9 illustrates yet another embodiment of a method for bonding a well bore to a casing.
- the present invention relates to cementing operations, and, more particularly, methods and apparatuses for providing more competent cement bonds during and after cementing operations in well bores.
- a cementing operation involves attaching float shoe 110 to an end of casing 102 and introducing casing 102 into well bore 101 .
- Cement 103 may then flow down the interior of casing 102 and out through float shoe 110 into annulus 104 .
- a reverse cementing operation may be used to place cement 103 in annulus 104 .
- material such as drilling fluid, filter cake, gas, or debris occupying annulus 104 .
- some material occupying annulus 104 remains, particularly near the walls of well bore 101 and casing 102 .
- a displacement efficiency of the material is typically significantly below 100% efficiency, which would correspond to the instance when cement 103 completely displaces the material occupying annulus 104 .
- Low displacement efficiency results in undesirable channeling and pocketing, which causes the cement bond to be compromised.
- the material may be more completely replaced by cement 103 when pulsing or oscillation is used during the introduction of cement 103 into annulus 104 .
- a number of devices rely on fluid oscillation effects to create pulsating fluid flow. Generally, these devices connect to a source of fluid flow, provide a mechanism for oscillating the fluid flow between two different locations within the device and emit fluid pulses downstream of the source of fluid flow. These “fluidic oscillator” 112 devices require no moving parts to generate the oscillations and have been used in various applications for which pulsating fluid flow is desired, such as massaging showerheads, flow meters, and windshield-wiper-fluid-supply units. Specialized fluidic oscillator devices have been developed for the oilfield industry, such as, for example, the Pulsonix TF tool offered by Halliburton Energy Services, Inc. of Duncan, Okla.
- fluidic oscillator 112 may help mitigate fluid and/or gas migration during cement cure time.
- fluidic oscillator 112 may be present in float shoe 110 .
- a feedback loop may be scaled and adapted to allow desired flow rates and cement passages to allow application into a Super Seal II float shoe by matching flow areas of the 23 ⁇ 4′′′ or 41 ⁇ 4′′ Super Seal II Valves. This may allow for filter cake 109 removal while running in hole using a top drive unit. Filter cake 109 may be removed more effectively by direct fluid impingement of the well bore 101 .
- TD total depth
- Pulsing may break down gel strength, fragmenting or breaking down filter cake 109 .
- an additional benefit of fluidic oscillator 112 in float shoe 110 may be available in either standard or top drive applications.
- cement 103 is displaced more effectively at the walls of well bore 101 and casing 102 .
- the oscillation effect tends to place cement 103 further into formation 100 , compacting cement 103 , which results in fewer voids due to filter cake contamination entrapment or consistency issues.
- casing 102 may be set into resonance by the oscillation at float shoe 110 . This resonance tends to prevent voids at the wall of casing 102 .
- the resonance and compaction effect continuously occurs from the beginning of the displacement until the top plug lands or pumping is discontinued.
- frequency may be set such that the well bore fluids are set into resonance.
- fluidic oscillator 112 Since each well will have different frequency variables, such as fluid, rate, and geometry, it may be particularly useful for fluidic oscillator 112 to have variable components.
- a fluctuating or variable fluidic oscillator 112 may be used to allow for alternating resonance of casing 102 and well bore fluids.
- a high frequency component, a low frequency component, or a combination of the two may enhance the effectiveness of the system. These components may be further combined with either high or low amplitude components, or both.
- variable rate or “dual-step profile” pumping may be used.
- two or more fluidic oscillators 112 could be used to alternate between two or more resonances.
- a specific design may be used for a specific well bore fluid system. As more cement 103 is pumped, resonant frequency will change. Thus it may be desirable for fluidic oscillator 112 to change based on changes in the system. This may be a result of monitoring of instrumentation measuring the level of excitation. This may be done with a sensor such as a hydrophone, a pressure transducer, a flow device, an accelerometer, or any number of other devices known in the art. This monitoring may allow for fluidic oscillator 112 to maintain resonance.
- a sensor such as a hydrophone, a pressure transducer, a flow device, an accelerometer, or any number of other devices known in the art. This monitoring may allow for fluidic oscillator 112 to maintain resonance.
- a pressure pulsation tool 114 may be optimized from its normal high amplitude/low frequency configuration to a low amplitude/low frequency tool by way of configurable inserts and pump rate control. Pressure pulsation tool 114 may be encapsulated in a canister and used in conjunction with a reservoir system to create a surface cement pulsation system to apply low pressure/low frequency pressure pulses to annulus 104 to delay the curing time and prevent fluid migration as a result of cement volume reduction.
- Idealized pressure wave forms can be controlled to provide optimal pulsation and help prevent shear of cement 103 during dehydration. Examples of what the inventors envision as optimal pressure pulses are illustrated in FIG. 5 . These profiles may prevent shear damage to cement 103 , as indicated in FIG. 6 .
- FIG. 7 Yet another embodiment involves a low cost “tubing” size fluidic oscillator 112 , as shown in FIG. 7 .
- This fluidic oscillator 112 may be composed of phenolic inserts cemented into a low cost case.
- Cement 103 may be fairly resistant to acid, thus allowing application to hydraulic work order (“HWO”) or Well Intervention applications in addition to cementing applications.
- HWO hydraulic work order
- Well Intervention applications in addition to cementing applications.
- a pulse generator capable of pumping cement may allow for pulsing on the fly or, as illustrated, pulsing of the displacement fluid could be accomplished.
- Pulsation or oscillation may be used to set more competent balanced plugs. Shown in FIG. 9 is an oscillation guide shoe 113 used with either the tubing release tool (“TRT”) or bottom hole kickoff assembly (“BHKA”) tool. Retrieving drillpipe adapter and collet retainer 115 may be removed as releasing plug 116 is latched and collet is disengaged, releasing tubing. Alternatively, pressure pulsation may be used during hesitant squeeze cementing (not shown).
- TRT tubing release tool
- BHKA bottom hole kickoff assembly
- This disclosure covers two basic fluid energy principles: fluidic oscillation and pressure pulsing technology. These two principles can be used during or after the cementing job. This technology is adaptable for both primary cementing and setting of balanced plugs.
- This technology potentially could reduce sustained casing pressure which is a major concern particularly offshore.
- Earlier methods do not consider the advantage of inducing fluid energies by fluidic oscillation or pressure pulsation methods. This methodology greatly enhances the chances for competent cement bonding.
- every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values, and set forth every range encompassed within the broader range of values.
- the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Pipe Accessories (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
A method for bonding a well bore to a casing may include several steps. Casing may be introduced into the well bore and pulses of fluid may be directed from within the casing into the well bore. An annulus between an inner surface of the well bore and an outer surface of the casing may be filled with fluid. A method for reducing fluid or gas migration into a fluid in the annulus may include inducing pressure pulses in the fluid before the fluid has cured.
Description
- The present invention relates to cementing operations, and, more particularly, methods and apparatuses for providing more competent cement bonds during and after cementing operations in well bores.
- Settable compositions such as cement slurries may be used in primary cementing operations in which pipe strings, such as casing and liners, are cemented in well bores. In performing primary cementing, a cement may be pumped through the casing into an annulus between the walls of a well bore and the casing disposed therein. The cement typically is pumped into this annulus until it reaches a predetermined height in the well bore to provide zonal isolation. The cement cures in the annulus, thereby forming an annular sheath of hardened cement (e.g. a cement sheath) that supports and positions the pipe string in the well bore and bonds the exterior surface of the pipe string to the walls of the well bore.
- Fluid or gas influx into the annulus and cement therein during the cement curing or “gelling” stage is quite common. This fluid or gas influx can damage the cement bond between the well bore formation and the exterior surface of the casing. Moreover, the buildup of residues such as filter cake on or in the surface of the well bore also can prevent a complete bond between the cement and the well bore.
FIG. 1 illustrates an example of such damage and incomplete bonding in a small section offormation 100 containing wellbore 101 withcasing 102.Cement 103 fillsannulus 104 between the walls of well bore 101 and the exterior surface ofcasing 102.Pockets formation 100 and the exterior surface ofcasing 102, such aschannels cement 103 and well bore 100, or in thecement 103 itself.Filter cake 109 also can prevent complete bonding between wellbore 101 andcement 103. Conventional methods of filter cake removal often rely on mechanical means such as scratchers with pipe reciprocation or require thatcement 103 reach a specific annular velocity. These removal methods can be time-consuming and often leave filter cake residues behind, impeding bonding betweencement 103 and well bore 101. - The present invention relates to cementing operations, and, more particularly, methods and apparatuses for providing more competent cement bonds during and after cementing operations in well bores.
- A method for bonding a well bore to a casing therein, may comprise the steps of introducing the casing into the well bore, directing pulses of fluid from within the casing into the well bore, and filling an annulus between an inner surface of the well bore and an outer surface of the casing with the fluid. The step of directing pulses of fluid may performed while moving the casing further into the well bore. Additionally or alternatively, the method may further comprise the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce filter cake formed on the inner surface of the well bore. Additionally or alternatively, the method may further comprise the step of vibrating well fluid at a resonance frequency for the well fluid. Additionally or alternatively, the method may further comprise the step of vibrating the casing at a resonance frequency for the casing. Vibrating the casing at a resonance frequency may comprise the step of directing pulses of fluid into the well bore at a frequency and pressure selected to induce resonance vibrations in the casing. Additionally, or alternatively, the fluid may be a cement. If the fluid is a cement, the method may further comprise the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce the amount non-cement material on the casing, and the method may further comprise the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce filter cake formed on the inner surface of the well bore, such that the pulses have a dual-step profile.
- A method for reducing fluid or gas migration into a fluid in an annulus formed between a surface of a well bore in a formation and a casing, may comprising the step of inducing pressure pulses in the fluid before the fluid has cured. The fluid may be a cement. The method may further comprise the step of selecting a frequency and amplitude for the pressure pulses such that the pressure pulses prevent shear damage of the fluid during curing. The step of inducing pressure pulses in fluid before the fluid has cured may comprise the step of inducing a low-amplitude pressure pulse. Additionally, or alternatively, the step of inducing pressure pulses in fluid before the fluid has cured may comprise the step of inducing a low-frequency pressure pulse. Alternatively, the step of inducing pressure pulses in fluid before the cement has cured may comprise the step of inducing a pressure pulse having a dual-step profile.
- The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.
- These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.
-
FIG. 1 illustrates conventional cement bonding. -
FIG. 2 illustrates a method for bonding a well bore to a casing in accordance with one embodiment of the present invention. -
FIG. 3 illustrates an alternate embodiment of a method for bonding a well bore to a casing. -
FIG. 4 illustrates yet another embodiment of a method for bonding a well bore to a casing. -
FIG. 5 illustrates various pressure pulses in accordance with one embodiment of the present invention. -
FIG. 6 illustrates a shear damage profile in accordance with one embodiment of the present invention. -
FIG. 7 illustrates a fluidic oscillator in accordance with one embodiment of the present invention. -
FIG. 8 illustrates an alternate embodiment of a method for bonding a well bore to a casing. -
FIG. 9 illustrates yet another embodiment of a method for bonding a well bore to a casing. - The present invention relates to cementing operations, and, more particularly, methods and apparatuses for providing more competent cement bonds during and after cementing operations in well bores.
- These methods and apparatuses may result in less fluid influx during the pre and post gelling stage of a cement slurry or other fluid, resulting in significant savings in time and cost, and improved hydrocarbon recovery.
- Typically, a cementing operation involves attaching
float shoe 110 to an end ofcasing 102 and introducingcasing 102 into wellbore 101.Cement 103 may then flow down the interior ofcasing 102 and out throughfloat shoe 110 intoannulus 104. Alternatively, a reverse cementing operation may be used to placecement 103 inannulus 104. In either instance, ascement 103 entersannulus 104, it displaces material such as drilling fluid, filter cake, gas, ordebris occupying annulus 104. Typically, ascement 103 entersannulus 104, somematerial occupying annulus 104 remains, particularly near the walls of well bore 101 andcasing 102. In other words, a displacement efficiency of the material is typically significantly below 100% efficiency, which would correspond to the instance whencement 103 completely displaces thematerial occupying annulus 104. Low displacement efficiency results in undesirable channeling and pocketing, which causes the cement bond to be compromised. - The material may be more completely replaced by
cement 103 when pulsing or oscillation is used during the introduction ofcement 103 intoannulus 104. A number of devices rely on fluid oscillation effects to create pulsating fluid flow. Generally, these devices connect to a source of fluid flow, provide a mechanism for oscillating the fluid flow between two different locations within the device and emit fluid pulses downstream of the source of fluid flow. These “fluidic oscillator” 112 devices require no moving parts to generate the oscillations and have been used in various applications for which pulsating fluid flow is desired, such as massaging showerheads, flow meters, and windshield-wiper-fluid-supply units. Specialized fluidic oscillator devices have been developed for the oilfield industry, such as, for example, the Pulsonix TF tool offered by Halliburton Energy Services, Inc. of Duncan, Okla. - In addition to providing for more complete displacement of materials in
annulus 104,fluidic oscillator 112 may help mitigate fluid and/or gas migration during cement cure time. As shown inFIG. 2 ,fluidic oscillator 112 may be present infloat shoe 110. In this embodiment, a feedback loop may be scaled and adapted to allow desired flow rates and cement passages to allow application into a Super Seal II float shoe by matching flow areas of the 2¾″′ or 4¼″ Super Seal II Valves. This may allow forfilter cake 109 removal while running in hole using a top drive unit.Filter cake 109 may be removed more effectively by direct fluid impingement of thewell bore 101. Once total depth (“TD”) is reached reduced well conditioning time (bottoms up) may be required, since filter cake may be removed hydraulically while running in hole, instead of requiring cleaning at a specific annular velocity or by mechanical means such as scratchers and pipe reciprocation. Pulsing may break down gel strength, fragmenting or breaking downfilter cake 109. - Referring now to
FIG. 3 , an additional benefit offluidic oscillator 112 infloat shoe 110 may be available in either standard or top drive applications. As a result of the oscillatory effect atfloat shoe 110,cement 103 is displaced more effectively at the walls of well bore 101 andcasing 102. The oscillation effect tends to placecement 103 further intoformation 100, compactingcement 103, which results in fewer voids due to filter cake contamination entrapment or consistency issues. Another potential advantage is that casing 102 may be set into resonance by the oscillation atfloat shoe 110. This resonance tends to prevent voids at the wall ofcasing 102. The resonance and compaction effect continuously occurs from the beginning of the displacement until the top plug lands or pumping is discontinued. Alternatively, or additionally, frequency may be set such that the well bore fluids are set into resonance. - Since each well will have different frequency variables, such as fluid, rate, and geometry, it may be particularly useful for
fluidic oscillator 112 to have variable components. A fluctuating or variablefluidic oscillator 112 may be used to allow for alternating resonance ofcasing 102 and well bore fluids. A high frequency component, a low frequency component, or a combination of the two may enhance the effectiveness of the system. These components may be further combined with either high or low amplitude components, or both. To reach the various resonance ranges, variable rate or “dual-step profile” pumping may be used. Alternatively, two or morefluidic oscillators 112 could be used to alternate between two or more resonances. - As an alternative to alternating between multiple frequencies and/or amplitudes, a specific design may be used for a specific well bore fluid system. As
more cement 103 is pumped, resonant frequency will change. Thus it may be desirable forfluidic oscillator 112 to change based on changes in the system. This may be a result of monitoring of instrumentation measuring the level of excitation. This may be done with a sensor such as a hydrophone, a pressure transducer, a flow device, an accelerometer, or any number of other devices known in the art. This monitoring may allow forfluidic oscillator 112 to maintain resonance. - Referring now to
FIG. 4 , in an alternative embodiment, low frequency, low pressure pulses are induced after the plug has landed and the curing has begun. Apressure pulsation tool 114 may be optimized from its normal high amplitude/low frequency configuration to a low amplitude/low frequency tool by way of configurable inserts and pump rate control.Pressure pulsation tool 114 may be encapsulated in a canister and used in conjunction with a reservoir system to create a surface cement pulsation system to apply low pressure/low frequency pressure pulses toannulus 104 to delay the curing time and prevent fluid migration as a result of cement volume reduction. - Idealized pressure wave forms can be controlled to provide optimal pulsation and help prevent shear of
cement 103 during dehydration. Examples of what the inventors envision as optimal pressure pulses are illustrated inFIG. 5 . These profiles may prevent shear damage tocement 103, as indicated inFIG. 6 . - Yet another embodiment involves a low cost “tubing”
size fluidic oscillator 112, as shown inFIG. 7 . Thisfluidic oscillator 112 may be composed of phenolic inserts cemented into a low cost case.Cement 103 may be fairly resistant to acid, thus allowing application to hydraulic work order (“HWO”) or Well Intervention applications in addition to cementing applications. - The concept of “pulsing” the top plug after catching cement is illustrated in
FIG. 8 . A pulse generator capable of pumping cement may allow for pulsing on the fly or, as illustrated, pulsing of the displacement fluid could be accomplished. - Pulsation or oscillation may be used to set more competent balanced plugs. Shown in
FIG. 9 is anoscillation guide shoe 113 used with either the tubing release tool (“TRT”) or bottom hole kickoff assembly (“BHKA”) tool. Retrieving drillpipe adapter andcollet retainer 115 may be removed as releasingplug 116 is latched and collet is disengaged, releasing tubing. Alternatively, pressure pulsation may be used during hesitant squeeze cementing (not shown). - This disclosure covers two basic fluid energy principles: fluidic oscillation and pressure pulsing technology. These two principles can be used during or after the cementing job. This technology is adaptable for both primary cementing and setting of balanced plugs.
- This technology potentially could reduce sustained casing pressure which is a major concern particularly offshore. Earlier methods do not consider the advantage of inducing fluid energies by fluidic oscillation or pressure pulsation methods. This methodology greatly enhances the chances for competent cement bonding.
- Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values, and set forth every range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Claims (15)
1. A method for bonding a well bore to a casing therein, comprising the steps of:
introducing the casing into the well bore;
directing pulses of fluid from within the casing into the well bore; and
filling an annulus between an inner surface of the well bore and an outer surface of the casing with the fluid.
2. The method of claim 1 , wherein the fluid is a cement.
3. The method of claim 1 , wherein the step of directing pulses of fluid is performed while moving the casing further into the well bore.
4. The method of claim 1 , further comprising the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce filter cake formed on the inner surface of the well bore.
5. The method of claim 2 , further comprising the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce the amount non-cement material on the casing.
6. The method of claim 5 , further comprising the step of selecting a frequency and pressure level for the pulses of fluid so as to reduce filter cake formed on the inner surface of the well bore, such that the pulses have a dual-step profile.
7. The method of claim 1 , further comprising the step of vibrating the casing at a resonance frequency for the casing.
8. The method of claim 7 , wherein the step of vibrating the casing at a resonance frequency comprises the step of directing pulses of fluid into the well bore at a frequency and pressure selected to induce resonance vibrations in the casing.
9. The method of claim 1 , further comprising the step of vibrating well fluid at a resonance frequency for the well fluid.
10. (canceled)
11. (canceled)
12. A method for reducing fluid or gas migration into a fluid in an annulus formed between a surface of a well bore in a formation and a casing, comprising the step of inducing pressure pulses in the fluid before the fluid has cured, further comprising the step of selecting a frequency and amplitude for the pressure pulses such that the pressure pulses prevent shear damage of the fluid during curing.
13. The method of claim 12 , wherein the step of inducing pressure pulses in fluid before the fluid has cured comprises the step of inducing a low-amplitude pressure pulse.
14. The method of claim 12 , wherein the step of inducing pressure pulses in fluid before the fluid has cured comprises the step of inducing a low-frequency pressure pulse.
15. A method for reducing fluid or gas migration into a fluid in an annulus formed between a surface of a well bore in a formation and a casing, comprising the step of inducing pressure pulses in the fluid before the fluid has cured, wherein the step of inducing pressure pulses in fluid before the cement has cured comprises the step of inducing a pressure pulse having a dual-step profile.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/961,458 US20090159282A1 (en) | 2007-12-20 | 2007-12-20 | Methods for Introducing Pulsing to Cementing Operations |
PCT/GB2008/003566 WO2009081088A2 (en) | 2007-12-20 | 2008-10-20 | Methods for introducing pulsing to cementing operations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/961,458 US20090159282A1 (en) | 2007-12-20 | 2007-12-20 | Methods for Introducing Pulsing to Cementing Operations |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090159282A1 true US20090159282A1 (en) | 2009-06-25 |
Family
ID=40787228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/961,458 Abandoned US20090159282A1 (en) | 2007-12-20 | 2007-12-20 | Methods for Introducing Pulsing to Cementing Operations |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090159282A1 (en) |
WO (1) | WO2009081088A2 (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100050905A1 (en) * | 2007-04-02 | 2010-03-04 | Sam Lewis | Activating compositions in subterranean zones |
US20100051275A1 (en) * | 2007-04-02 | 2010-03-04 | Sam Lewis | Methods of activating compositions in subterranean zones |
US20110048711A1 (en) * | 2009-08-25 | 2011-03-03 | Sam Lewis | Methods of sonically activating cement compositions |
WO2011023934A3 (en) * | 2009-08-25 | 2011-06-30 | Halliburton Energy Services, Inc. | Sonically activating settable compositions and methods of activating them |
US20110214876A1 (en) * | 2009-08-18 | 2011-09-08 | Halliburton Energy Services, Inc. | Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well |
WO2011150223A2 (en) | 2010-05-27 | 2011-12-01 | Cooke Claude E | Method and apparatus for maintaining pressure in well cement during curing |
WO2011157740A1 (en) | 2010-06-17 | 2011-12-22 | Nbt As | Method employing pressure transients in hydrocarbon recovery operations |
US20130037259A1 (en) * | 2009-07-14 | 2013-02-14 | Halliburton Energy Services, Inc. | Acoustic generator and associated methods and well systems |
US8381817B2 (en) | 2011-05-18 | 2013-02-26 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8418725B2 (en) | 2010-12-31 | 2013-04-16 | Halliburton Energy Services, Inc. | Fluidic oscillators for use with a subterranean well |
US8424605B1 (en) | 2011-05-18 | 2013-04-23 | Thru Tubing Solutions, Inc. | Methods and devices for casing and cementing well bores |
US8430130B2 (en) | 2010-09-10 | 2013-04-30 | Halliburton Energy Services, Inc. | Series configured variable flow restrictors for use in a subterranean well |
WO2013104069A1 (en) * | 2012-01-11 | 2013-07-18 | Loree Randle M | Fluid or slurry pulsing casing/liner shoe |
US8573066B2 (en) | 2011-08-19 | 2013-11-05 | Halliburton Energy Services, Inc. | Fluidic oscillator flowmeter for use with a subterranean well |
US8616290B2 (en) | 2010-04-29 | 2013-12-31 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
US8646483B2 (en) | 2010-12-31 | 2014-02-11 | Halliburton Energy Services, Inc. | Cross-flow fluidic oscillators for use with a subterranean well |
US8657017B2 (en) | 2009-08-18 | 2014-02-25 | Halliburton Energy Services, Inc. | Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8678035B2 (en) | 2011-04-11 | 2014-03-25 | Halliburton Energy Services, Inc. | Selectively variable flow restrictor for use in a subterranean well |
US8684094B2 (en) | 2011-11-14 | 2014-04-01 | Halliburton Energy Services, Inc. | Preventing flow of undesired fluid through a variable flow resistance system in a well |
US8733401B2 (en) | 2010-12-31 | 2014-05-27 | Halliburton Energy Services, Inc. | Cone and plate fluidic oscillator inserts for use with a subterranean well |
US8739880B2 (en) | 2011-11-07 | 2014-06-03 | Halliburton Energy Services, P.C. | Fluid discrimination for use with a subterranean well |
US8844651B2 (en) | 2011-07-21 | 2014-09-30 | Halliburton Energy Services, Inc. | Three dimensional fluidic jet control |
US8851180B2 (en) | 2010-09-14 | 2014-10-07 | Halliburton Energy Services, Inc. | Self-releasing plug for use in a subterranean well |
US8863835B2 (en) | 2011-08-23 | 2014-10-21 | Halliburton Energy Services, Inc. | Variable frequency fluid oscillators for use with a subterranean well |
US8893804B2 (en) | 2009-08-18 | 2014-11-25 | Halliburton Energy Services, Inc. | Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well |
US8905144B2 (en) | 2009-08-18 | 2014-12-09 | Halliburton Energy Services, Inc. | Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well |
US8950502B2 (en) | 2010-09-10 | 2015-02-10 | Halliburton Energy Services, Inc. | Series configured variable flow restrictors for use in a subterranean well |
US8955585B2 (en) | 2011-09-27 | 2015-02-17 | Halliburton Energy Services, Inc. | Forming inclusions in selected azimuthal orientations from a casing section |
US8991506B2 (en) | 2011-10-31 | 2015-03-31 | Halliburton Energy Services, Inc. | Autonomous fluid control device having a movable valve plate for downhole fluid selection |
US9127526B2 (en) | 2012-12-03 | 2015-09-08 | Halliburton Energy Services, Inc. | Fast pressure protection system and method |
US9212522B2 (en) | 2011-05-18 | 2015-12-15 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US9260952B2 (en) | 2009-08-18 | 2016-02-16 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch |
US9291032B2 (en) | 2011-10-31 | 2016-03-22 | Halliburton Energy Services, Inc. | Autonomous fluid control device having a reciprocating valve for downhole fluid selection |
US9316065B1 (en) | 2015-08-11 | 2016-04-19 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US9404349B2 (en) | 2012-10-22 | 2016-08-02 | Halliburton Energy Services, Inc. | Autonomous fluid control system having a fluid diode |
US9506320B2 (en) | 2011-11-07 | 2016-11-29 | Halliburton Energy Services, Inc. | Variable flow resistance for use with a subterranean well |
US9599106B2 (en) | 2009-05-27 | 2017-03-21 | Impact Technology Systems As | Apparatus employing pressure transients for transporting fluids |
US9695654B2 (en) | 2012-12-03 | 2017-07-04 | Halliburton Energy Services, Inc. | Wellhead flowback control system and method |
US9863225B2 (en) | 2011-12-19 | 2018-01-09 | Impact Technology Systems As | Method and system for impact pressure generation |
US10781654B1 (en) | 2018-08-07 | 2020-09-22 | Thru Tubing Solutions, Inc. | Methods and devices for casing and cementing wellbores |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8261839B2 (en) | 2010-06-02 | 2012-09-11 | Halliburton Energy Services, Inc. | Variable flow resistance system for use in a subterranean well |
US8356668B2 (en) | 2010-08-27 | 2013-01-22 | Halliburton Energy Services, Inc. | Variable flow restrictor for use in a subterranean well |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3557875A (en) * | 1969-04-10 | 1971-01-26 | B & W Inc | Method and apparatus for vibrating and cementing a well casing |
US4407365A (en) * | 1981-08-28 | 1983-10-04 | Exxon Production Research Co. | Method for preventing annular fluid flow |
US4548271A (en) * | 1983-10-07 | 1985-10-22 | Exxon Production Research Co. | Oscillatory flow method for improved well cementing |
US5361837A (en) * | 1992-11-25 | 1994-11-08 | Exxon Production Research Company | Method for preventing annular fluid flow using tube waves |
US5377753A (en) * | 1993-06-24 | 1995-01-03 | Texaco Inc. | Method and apparatus to improve the displacement of drilling fluid by cement slurries during primary and remedial cementing operations, to improve cement bond logs and to reduce or eliminate gas migration problems |
US20040231841A1 (en) * | 2001-07-20 | 2004-11-25 | Baker Hughes Incorporated | Formation testing apparatus and method for smooth draw down |
US20050214147A1 (en) * | 2004-03-25 | 2005-09-29 | Schultz Roger L | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3239005A (en) * | 1964-01-28 | 1966-03-08 | Jr Albert G Bodine | Method of molding well liners and the like |
US5190114A (en) * | 1988-11-25 | 1993-03-02 | Intech International Inc. | Flow pulsing apparatus for drill string |
US6691778B2 (en) * | 2000-11-03 | 2004-02-17 | The United States Of America As Represented By The United States Department Of Energy | Methods of performing downhole operations using orbital vibrator energy sources |
-
2007
- 2007-12-20 US US11/961,458 patent/US20090159282A1/en not_active Abandoned
-
2008
- 2008-10-20 WO PCT/GB2008/003566 patent/WO2009081088A2/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3557875A (en) * | 1969-04-10 | 1971-01-26 | B & W Inc | Method and apparatus for vibrating and cementing a well casing |
US4407365A (en) * | 1981-08-28 | 1983-10-04 | Exxon Production Research Co. | Method for preventing annular fluid flow |
US4548271A (en) * | 1983-10-07 | 1985-10-22 | Exxon Production Research Co. | Oscillatory flow method for improved well cementing |
US5361837A (en) * | 1992-11-25 | 1994-11-08 | Exxon Production Research Company | Method for preventing annular fluid flow using tube waves |
US5377753A (en) * | 1993-06-24 | 1995-01-03 | Texaco Inc. | Method and apparatus to improve the displacement of drilling fluid by cement slurries during primary and remedial cementing operations, to improve cement bond logs and to reduce or eliminate gas migration problems |
US20040231841A1 (en) * | 2001-07-20 | 2004-11-25 | Baker Hughes Incorporated | Formation testing apparatus and method for smooth draw down |
US20050214147A1 (en) * | 2004-03-25 | 2005-09-29 | Schultz Roger L | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100051275A1 (en) * | 2007-04-02 | 2010-03-04 | Sam Lewis | Methods of activating compositions in subterranean zones |
US20100050905A1 (en) * | 2007-04-02 | 2010-03-04 | Sam Lewis | Activating compositions in subterranean zones |
US8083849B2 (en) | 2007-04-02 | 2011-12-27 | Halliburton Energy Services, Inc. | Activating compositions in subterranean zones |
US8162055B2 (en) | 2007-04-02 | 2012-04-24 | Halliburton Energy Services Inc. | Methods of activating compositions in subterranean zones |
US9599106B2 (en) | 2009-05-27 | 2017-03-21 | Impact Technology Systems As | Apparatus employing pressure transients for transporting fluids |
US10100823B2 (en) | 2009-05-27 | 2018-10-16 | Impact Technology Systems As | Apparatus employing pressure transients for transporting fluids |
US20130037259A1 (en) * | 2009-07-14 | 2013-02-14 | Halliburton Energy Services, Inc. | Acoustic generator and associated methods and well systems |
US8813838B2 (en) * | 2009-07-14 | 2014-08-26 | Halliburton Energy Services, Inc. | Acoustic generator and associated methods and well systems |
US9410388B2 (en) | 2009-07-14 | 2016-08-09 | Halliburton Energy Services, Inc. | Acoustic generator and associated methods and well systems |
US9567819B2 (en) | 2009-07-14 | 2017-02-14 | Halliburton Energy Services, Inc. | Acoustic generator and associated methods and well systems |
US9260952B2 (en) | 2009-08-18 | 2016-02-16 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch |
US9080410B2 (en) | 2009-08-18 | 2015-07-14 | Halliburton Energy Services, Inc. | Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8657017B2 (en) | 2009-08-18 | 2014-02-25 | Halliburton Energy Services, Inc. | Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8893804B2 (en) | 2009-08-18 | 2014-11-25 | Halliburton Energy Services, Inc. | Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well |
US20110214876A1 (en) * | 2009-08-18 | 2011-09-08 | Halliburton Energy Services, Inc. | Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well |
US9394759B2 (en) | 2009-08-18 | 2016-07-19 | Halliburton Energy Services, Inc. | Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well |
US8714266B2 (en) | 2009-08-18 | 2014-05-06 | Halliburton Energy Services, Inc. | Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8905144B2 (en) | 2009-08-18 | 2014-12-09 | Halliburton Energy Services, Inc. | Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well |
US8931566B2 (en) | 2009-08-18 | 2015-01-13 | Halliburton Energy Services, Inc. | Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US9109423B2 (en) | 2009-08-18 | 2015-08-18 | Halliburton Energy Services, Inc. | Apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8327885B2 (en) | 2009-08-18 | 2012-12-11 | Halliburton Energy Services, Inc. | Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well |
US20110048711A1 (en) * | 2009-08-25 | 2011-03-03 | Sam Lewis | Methods of sonically activating cement compositions |
WO2011023934A3 (en) * | 2009-08-25 | 2011-06-30 | Halliburton Energy Services, Inc. | Sonically activating settable compositions and methods of activating them |
US8047282B2 (en) | 2009-08-25 | 2011-11-01 | Halliburton Energy Services Inc. | Methods of sonically activating cement compositions |
US9133685B2 (en) | 2010-02-04 | 2015-09-15 | Halliburton Energy Services, Inc. | Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8985222B2 (en) | 2010-04-29 | 2015-03-24 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
US8622136B2 (en) | 2010-04-29 | 2014-01-07 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
US8616290B2 (en) | 2010-04-29 | 2013-12-31 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
US8757266B2 (en) | 2010-04-29 | 2014-06-24 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
US8708050B2 (en) | 2010-04-29 | 2014-04-29 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
WO2011150223A2 (en) | 2010-05-27 | 2011-12-01 | Cooke Claude E | Method and apparatus for maintaining pressure in well cement during curing |
US8726993B2 (en) | 2010-05-27 | 2014-05-20 | Claude E Cooke, Jr. | Method and apparatus for maintaining pressure in well cementing during curing |
EP2940243A1 (en) | 2010-06-17 | 2015-11-04 | Impact Technology Systems AS | Method employing pressure transients in hydrocarbon recovery operations |
WO2011157740A1 (en) | 2010-06-17 | 2011-12-22 | Nbt As | Method employing pressure transients in hydrocarbon recovery operations |
US9903170B2 (en) | 2010-06-17 | 2018-02-27 | Impact Technology Systems As | Method employing pressure transients in hydrocarbon recovery operations |
US9803442B2 (en) | 2010-06-17 | 2017-10-31 | Impact Technology Systems As | Method employing pressure transients in hydrocarbon recovery operations |
US8950502B2 (en) | 2010-09-10 | 2015-02-10 | Halliburton Energy Services, Inc. | Series configured variable flow restrictors for use in a subterranean well |
US8430130B2 (en) | 2010-09-10 | 2013-04-30 | Halliburton Energy Services, Inc. | Series configured variable flow restrictors for use in a subterranean well |
US8464759B2 (en) | 2010-09-10 | 2013-06-18 | Halliburton Energy Services, Inc. | Series configured variable flow restrictors for use in a subterranean well |
US8851180B2 (en) | 2010-09-14 | 2014-10-07 | Halliburton Energy Services, Inc. | Self-releasing plug for use in a subterranean well |
US8733401B2 (en) | 2010-12-31 | 2014-05-27 | Halliburton Energy Services, Inc. | Cone and plate fluidic oscillator inserts for use with a subterranean well |
US8646483B2 (en) | 2010-12-31 | 2014-02-11 | Halliburton Energy Services, Inc. | Cross-flow fluidic oscillators for use with a subterranean well |
US8418725B2 (en) | 2010-12-31 | 2013-04-16 | Halliburton Energy Services, Inc. | Fluidic oscillators for use with a subterranean well |
US8678035B2 (en) | 2011-04-11 | 2014-03-25 | Halliburton Energy Services, Inc. | Selectively variable flow restrictor for use in a subterranean well |
US8453745B2 (en) | 2011-05-18 | 2013-06-04 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8517107B2 (en) | 2011-05-18 | 2013-08-27 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US10301905B1 (en) * | 2011-05-18 | 2019-05-28 | Thru Tubing Solutions, Inc. | Methods and devices for casing and cementing well bores |
US8517108B2 (en) | 2011-05-18 | 2013-08-27 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8517105B2 (en) | 2011-05-18 | 2013-08-27 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8381817B2 (en) | 2011-05-18 | 2013-02-26 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8517106B2 (en) | 2011-05-18 | 2013-08-27 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8424605B1 (en) | 2011-05-18 | 2013-04-23 | Thru Tubing Solutions, Inc. | Methods and devices for casing and cementing well bores |
US9212522B2 (en) | 2011-05-18 | 2015-12-15 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8439117B2 (en) | 2011-05-18 | 2013-05-14 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US8844651B2 (en) | 2011-07-21 | 2014-09-30 | Halliburton Energy Services, Inc. | Three dimensional fluidic jet control |
US8573066B2 (en) | 2011-08-19 | 2013-11-05 | Halliburton Energy Services, Inc. | Fluidic oscillator flowmeter for use with a subterranean well |
US8863835B2 (en) | 2011-08-23 | 2014-10-21 | Halliburton Energy Services, Inc. | Variable frequency fluid oscillators for use with a subterranean well |
US8955585B2 (en) | 2011-09-27 | 2015-02-17 | Halliburton Energy Services, Inc. | Forming inclusions in selected azimuthal orientations from a casing section |
US10119356B2 (en) | 2011-09-27 | 2018-11-06 | Halliburton Energy Services, Inc. | Forming inclusions in selected azimuthal orientations from a casing section |
US9291032B2 (en) | 2011-10-31 | 2016-03-22 | Halliburton Energy Services, Inc. | Autonomous fluid control device having a reciprocating valve for downhole fluid selection |
US8991506B2 (en) | 2011-10-31 | 2015-03-31 | Halliburton Energy Services, Inc. | Autonomous fluid control device having a movable valve plate for downhole fluid selection |
US8739880B2 (en) | 2011-11-07 | 2014-06-03 | Halliburton Energy Services, P.C. | Fluid discrimination for use with a subterranean well |
US8967267B2 (en) | 2011-11-07 | 2015-03-03 | Halliburton Energy Services, Inc. | Fluid discrimination for use with a subterranean well |
US9506320B2 (en) | 2011-11-07 | 2016-11-29 | Halliburton Energy Services, Inc. | Variable flow resistance for use with a subterranean well |
US9598930B2 (en) | 2011-11-14 | 2017-03-21 | Halliburton Energy Services, Inc. | Preventing flow of undesired fluid through a variable flow resistance system in a well |
US8684094B2 (en) | 2011-11-14 | 2014-04-01 | Halliburton Energy Services, Inc. | Preventing flow of undesired fluid through a variable flow resistance system in a well |
US10107081B2 (en) | 2011-12-19 | 2018-10-23 | Impact Technology Systems As | Method for recovery of hydrocarbon fluid |
US9863225B2 (en) | 2011-12-19 | 2018-01-09 | Impact Technology Systems As | Method and system for impact pressure generation |
WO2013104069A1 (en) * | 2012-01-11 | 2013-07-18 | Loree Randle M | Fluid or slurry pulsing casing/liner shoe |
US9404349B2 (en) | 2012-10-22 | 2016-08-02 | Halliburton Energy Services, Inc. | Autonomous fluid control system having a fluid diode |
US9127526B2 (en) | 2012-12-03 | 2015-09-08 | Halliburton Energy Services, Inc. | Fast pressure protection system and method |
US9695654B2 (en) | 2012-12-03 | 2017-07-04 | Halliburton Energy Services, Inc. | Wellhead flowback control system and method |
US9316065B1 (en) | 2015-08-11 | 2016-04-19 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US10865605B1 (en) | 2015-08-11 | 2020-12-15 | Thru Tubing Solutions, Inc. | Vortex controlled variable flow resistance device and related tools and methods |
US10781654B1 (en) | 2018-08-07 | 2020-09-22 | Thru Tubing Solutions, Inc. | Methods and devices for casing and cementing wellbores |
Also Published As
Publication number | Publication date |
---|---|
WO2009081088A3 (en) | 2010-01-21 |
WO2009081088A2 (en) | 2009-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090159282A1 (en) | Methods for Introducing Pulsing to Cementing Operations | |
US5377753A (en) | Method and apparatus to improve the displacement of drilling fluid by cement slurries during primary and remedial cementing operations, to improve cement bond logs and to reduce or eliminate gas migration problems | |
US7770638B2 (en) | Method for completion, maintenance and stimulation of oil and gas wells | |
US3990512A (en) | Method and system for ultrasonic oil recovery | |
AU2016296502B2 (en) | Well abandonment using vibration to assist cement placement | |
US4512401A (en) | Method for forming a cement annulus for a well | |
EP3130746A1 (en) | Method of sealing wells by squeezing sealant | |
AU2015378635B2 (en) | Establishing control of oil and gas producing wellbore through application of self-degrading particulates | |
CN203742544U (en) | Well cementing device for ultrasonically processing downhole hydraulic pulse coupled concrete slurry | |
EP2161405A1 (en) | An assembly and method for placing a cement plug | |
US5361837A (en) | Method for preventing annular fluid flow using tube waves | |
US5484018A (en) | Method for accessing bypassed production zones | |
US4716555A (en) | Sonic method for facilitating the fracturing of earthen formations in well bore holes | |
RU2291948C1 (en) | Method for cementing oil and gas wells and device for realization of said method | |
RU2344281C1 (en) | Method of well bottom zone development | |
EA008134B1 (en) | Continuous monobore liquid lining system | |
WO2021086407A1 (en) | Methods to perform wellbore strengthening, methods to pulse hydraulic fracture a downhole formation, and wellbore strengthening systems | |
RU2383720C1 (en) | Procedure of well bottomhole zone treatment | |
RU2615188C1 (en) | Well stage cementing method | |
RU2736429C1 (en) | Cementing method of well | |
RU2781458C1 (en) | Well casing method in complicated conditions and device for its implementation | |
RU2477799C1 (en) | Method for hydraulic treatment of coal bed | |
US12044096B2 (en) | Method for plugging a wellbore allowing for efficient re-stimulation | |
RU2168006C1 (en) | Method of oil wells treatment | |
RU2581592C2 (en) | Method of destruction of asphaltic and paraffin deposits in wells fitted with rod deep well pumps and oil production well |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEBB, EARL;ROGERS, HENRY;SCHULTZ, ROGER;SIGNING DATES FROM 20080207 TO 20080211;REEL/FRAME:020590/0445 |
|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEBB, EARL;ROGERS, HENRY;SCHULTZ, ROGER;SIGNING DATES FROM 20080131 TO 20080207;REEL/FRAME:020712/0912 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |