US20090112285A1 - Aortic pacemaker - Google Patents
Aortic pacemaker Download PDFInfo
- Publication number
- US20090112285A1 US20090112285A1 US12/295,166 US29516607A US2009112285A1 US 20090112285 A1 US20090112285 A1 US 20090112285A1 US 29516607 A US29516607 A US 29516607A US 2009112285 A1 US2009112285 A1 US 2009112285A1
- Authority
- US
- United States
- Prior art keywords
- aortic
- aorta
- aap
- pulsating
- pacemaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000000709 aorta Anatomy 0.000 claims abstract description 80
- 238000000034 method Methods 0.000 claims abstract description 52
- 230000008602 contraction Effects 0.000 claims abstract description 32
- 230000003534 oscillatory effect Effects 0.000 claims abstract description 11
- 230000004913 activation Effects 0.000 claims abstract description 10
- 230000003190 augmentative effect Effects 0.000 claims abstract description 10
- 230000033764 rhythmic process Effects 0.000 claims abstract description 7
- 230000000747 cardiac effect Effects 0.000 claims description 29
- 230000001965 increasing effect Effects 0.000 claims description 20
- 239000008280 blood Substances 0.000 claims description 19
- 210000004369 blood Anatomy 0.000 claims description 19
- 210000005240 left ventricle Anatomy 0.000 claims description 15
- 230000004936 stimulating effect Effects 0.000 claims description 15
- 210000004351 coronary vessel Anatomy 0.000 claims description 14
- 230000010412 perfusion Effects 0.000 claims description 13
- 230000017531 blood circulation Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 230000002861 ventricular Effects 0.000 claims description 9
- 230000035487 diastolic blood pressure Effects 0.000 claims description 8
- 206010002915 Aortic valve incompetence Diseases 0.000 claims description 7
- 201000002064 aortic valve insufficiency Diseases 0.000 claims description 7
- 230000000004 hemodynamic effect Effects 0.000 claims description 7
- 210000000056 organ Anatomy 0.000 claims description 7
- 206010019280 Heart failures Diseases 0.000 claims description 6
- 206010007625 cardiogenic shock Diseases 0.000 claims description 6
- 230000003205 diastolic effect Effects 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- 210000002460 smooth muscle Anatomy 0.000 claims description 6
- 238000001356 surgical procedure Methods 0.000 claims description 6
- 206010002383 Angina Pectoris Diseases 0.000 claims description 5
- 206010007559 Cardiac failure congestive Diseases 0.000 claims description 5
- 206010037423 Pulmonary oedema Diseases 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 5
- 238000004873 anchoring Methods 0.000 claims description 5
- 208000005333 pulmonary edema Diseases 0.000 claims description 5
- 208000009525 Myocarditis Diseases 0.000 claims description 4
- 208000007474 aortic aneurysm Diseases 0.000 claims description 4
- 230000001746 atrial effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 208000028867 ischemia Diseases 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 230000003387 muscular Effects 0.000 claims description 4
- 208000010125 myocardial infarction Diseases 0.000 claims description 4
- 230000001020 rhythmical effect Effects 0.000 claims description 4
- 210000002978 thoracic duct Anatomy 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 102000001554 Hemoglobins Human genes 0.000 claims description 3
- 108010054147 Hemoglobins Proteins 0.000 claims description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims description 3
- 206010028311 Muscle hypertrophy Diseases 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 3
- 238000002592 echocardiography Methods 0.000 claims description 3
- 206010020718 hyperplasia Diseases 0.000 claims description 3
- 230000003100 immobilizing effect Effects 0.000 claims description 3
- 230000028161 membrane depolarization Effects 0.000 claims description 3
- 230000015604 muscle hyperplasia Effects 0.000 claims description 3
- 230000012042 muscle hypertrophy Effects 0.000 claims description 3
- 238000002496 oximetry Methods 0.000 claims description 3
- 230000035755 proliferation Effects 0.000 claims description 3
- 230000002336 repolarization Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 230000035488 systolic blood pressure Effects 0.000 claims description 3
- 238000009429 electrical wiring Methods 0.000 claims description 2
- 238000002357 laparoscopic surgery Methods 0.000 claims description 2
- 210000001765 aortic valve Anatomy 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 5
- 210000002808 connective tissue Anatomy 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 210000004231 tunica media Anatomy 0.000 description 4
- 210000002376 aorta thoracic Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 208000031225 myocardial ischemia Diseases 0.000 description 3
- 238000005381 potential energy Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 210000004026 tunica intima Anatomy 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 230000036586 afterload Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000005241 right ventricle Anatomy 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 210000001604 vasa vasorum Anatomy 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 1
- KPNJYXKRHWAPHP-UHFFFAOYSA-N CCCC(C)(C)N Chemical compound CCCC(C)(C)N KPNJYXKRHWAPHP-UHFFFAOYSA-N 0.000 description 1
- 206010007558 Cardiac failure chronic Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010047281 Ventricular arrhythmia Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000011128 cardiac conduction Effects 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009558 endoscopic ultrasound Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004457 myocytus nodalis Anatomy 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000287 tissue oxygenation Effects 0.000 description 1
- 210000002620 vena cava superior Anatomy 0.000 description 1
- 208000003663 ventricular fibrillation Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36571—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by blood flow rate, e.g. blood velocity or cardiac output
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36528—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being measured by means of ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36557—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by chemical substances in blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36564—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36114—Cardiac control, e.g. by vagal stimulation
Definitions
- the present invention generally relates to implantable medical devices and more specifically to devices and methods for improving cardiac function by selectively pacing the aortic media.
- the aorta is an elastic artery and as such is quite distensible, stretching and expanding when blood is forced into it from the left ventricle. This stretching creates the potential energy that helps maintain blood pressure during diastole; when the heart relaxes after contraction, the aorta contracts passively.
- Myocardial perfusion is almost solely diastolic; the force that allows blood flow through the coronary arteries is dependent on the difference between the intra-aortic diastolic pressure and the left ventricular diastolic pressure.
- the coronary arteries originate from the aortic stem and penetrate the wall of the heart. Increased resistance to flow in the coronary arteries may be caused by atherosclerosis or increased diastolic intraventricular pressure from ischemia or cardiomyopathy, compromising coronary flow and causing myocardial ischemia.
- Acute myocardial ischemia and other conditions cause cardiogenic shock, in which heart malfunction results in cardiac output inadequate for maintaining vital organ function.
- Pulmonary edema is a complication of cardiogenic shock that further impairs tissue oxygenation and may lead to death.
- Heart failure is also a chronic condition associated with increased morbidity and mortality and poor quality of life.
- aortic regurgitation impaired closure of the aortic valve causes retrograde blood flow from the aorta into the left ventricle during diastole, resulting in increased diastolic intra-aortic pressure, ventricular volume overload and left ventricle (LV) dilatation and eventually congestive heart failure.
- LV left ventricle
- ischemic heart disease is primarily focused on slowing atherosclerosis, preventing thrombosis and coronary angioplasty using catheterization and coronary bypass surgery.
- Chronic heart failure is usually treated medically but may require heart transplantation or use of a Left or Right Ventricular Assist Device (L- or R-VAD).
- L- or R-VAD Left or Right Ventricular Assist Device
- Heart transplantation is problematic in that there are insufficient donors and immunosuppression is required. While LVAD can be used in the long-term it is generally used for those awaiting donor hearts and is patients are plagued by infection and require anticoagulants to prevent blood clotting caused by the blood passing over non-biological surfaces.
- Intra-aortic balloon pumps may be inserted in the case of acute LV failure unresponsive to treatment but this treatment is limited to a short period of time due to infection and thrombotic complication.
- Aortic regurgitation is treated medically by drugs that reduce the arterial resistance (after-load reduction) or by aortic valve replacement in advanced disease. Reducing LV diastolic pressure by pre- and after-load reduction by nitrates and diuretics is the mainstay of treatment in case of pulmonary edema.
- Heart contractions are controlled by electrical impulses created by cardiac pacemaker cells but for many years artificial devices have been installed after damage to the body's intrinsic conduction system to produce these impulses synthetically.
- These existing artificial pacemakers are medical devices designed to regulate the beating of the heart itself. More recently implantable cardioverter-defibrillators (ICD) resembling cardiac pacemakers have been used in patients at risk of sudden cardiac death. ICD's have the ability to treat many types of heart rhythm disturbances by means of pacing, cardoversion or defibrillation.
- the device contains the rudiments of cardiac arrhythmia detection and treatment and primarily deals with ventricular fibrillation but is now also used to deal with atrial and ventricular arrhythmias.
- ICD implantation is similar to implantation of a cardiac pacemaker, these devices typically include a wire that runs through the right chambers of the heart and usually ends in the apex of the right ventricle. They constantly monitor the rate and rhythm of the heart and can deliver therapies when the heart rate goes over a certain number: sensors can detect rate discrimination, rhythm discrimination and morphology discrimination.
- aortic pacemaker constant monitoring of a wide variety of parameters means that it may be activated chronically for congestive heart failure, aortic regurgitation or aortic aneurysm, or activated in a chronic-intermittent manner, for example in the case of exertional angina.
- the pacemaker can be used for acute incidents such as cardiogenic shock or for a limited period of time following myocardial infarction or myocarditis.
- pacemakers of various types exist, these are used to regulate cardiac conduction. There is an obvious clinical benefit to globally increasing coronary blood flow, but no such treatment is available. In addition there is no treatment apart from aortic valve replacement to selectively and efficiently block blood regurgitation to the LV in aortic valve insufficiency. Thus an aortic pacemaker to selectively pace the aortic media is a long-felt need.
- an implantable artificial aortic pacemaker that comprises an oscillatory means providing pulsating signals at a pre-selected frequency to the aorta, thereby pacing the aorta. It is also in the scope of the present invention to disclose an AAP further comprising of a plurality of sensors disposed internally or externally to the aorta and a pacing means wherein the AAP stimulates the aortic media, augmenting physiological aortic elastic recoil.
- the sensors are selected from a group consisting of chemical, mechanical or electrical sensors or any combination thereof.
- the chemical sensors detect parameters selected from a group consisting of pH in the myodcardium, lactate sensors, troponin sensors or any other chemical means to enable early detection of myodcardial ischemia.
- the electrical sensors detect parameters selected from a group consisting of aortic diameter by M-mode echocardiography, aortic blood flow velocity by suing Doppler ultrasound, ECG, saturated hemoglobin fraction by using oximetry and input from any external device which is not part of the pacemaker by means of telemetry or any combination thereof.
- an AAP further comprising a processor capable of obtaining information from the sensors and triggering an appropriate contraction wave in the aortic media.
- processing means is implantable as part of the pacemaker body and/or is external, able to transmit and receive information through telemetry.
- the pacing means comprises a chain of bi-polar electrodes, placed along the aorta, in location and distances according to the specific indication and hemodynamic needs.
- the electrodes are an adjunct to the aorta either glued to the aorta or anchored to the aorta using e.g., invasive immobilizing means.
- the electrode chain is formed by using discrete electrodes or at least one adapter capable of accommodating a few electrodes and connecting them to the aorta.
- the electrodes are connected to any location along the adapter.
- a pacing means capable of modifications in its pulsating intensity, velocity or direction in response to feedback from the sensing means by pre-specified algorithms.
- an AAP adapted for driving blood anterogradely from the aorta to perfuse the body's end organs; retrogradely for increasing coronary artery blood flow or a combination of both; either simultaneous or sequential anterograde and retrograde contractions.
- It is another object of the present invention to disclose a method of managing aortic rhythm comprising; implanting an AAP comprising oscillatory means and pulsating signals at a preselected frequency, so as to stimulate the aorta.
- the pulsating signals are provided by the electrodes, so as to create a synchronized and coordinated activation impulse in a portion of the aorta using electrical impulses.
- the implanting is provided by a procedure selected from a group including applying minimally invasive cervical mediastinoscopy; applying canulation of the thoracic duct, applying cardiac catheterization using arterial or venous access; or any combination thereof.
- N is any integer equal to or greater than 1, but preferably N is between 1 and 6.
- the triggering of the AAP is provided by means selected from a group including, sensors, manual activation by a patient or medical caregiver, or from a remote site especially an emergency hot line, or any combination thereof.
- said pulsating is activated by a group of triggers including intrinsic cardiac activity, artificial cardiac pacemaker or hemodynamics sensed by the aortic electrodes.
- FIG. 1 illustrates the main structures of the human heart
- FIG. 2 schematically represents coronary perfusion to the heart
- FIGS. 3A-3B schematically represent blood flow during systole ( 3 A) and diastole ( 3 B);
- FIGS. 4A-4B illustrate the layers of the aortic wall, wherein FIG. 4A shows a photographic image of the layers of the aortic wall ( 40 a ) and FIG. 4B represents the aortic walls ( 40 b );
- FIGS. 5A-5B schematically represent the contraction wave, wherein FIG. 5A shows increased coronary perfusion ( 50 b ) and FIG. 5B shows increased cardiac output ( 50 b );
- FIG. 6 schematically represents placement of the aortic pacemaker
- FIG. 7 schematically represents the components of the aortic pacemaker
- FIG. 8 schematically represents the method by which the aortic pacemaker operates.
- FIGS. 9A-9I schematically represent various possibly electrodes for use in this aortic pacemaker.
- the following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention.
- Various modifications, however, will remain apparent to those skilled in the art since the generic principles have been defined especially to provide means and methods of providing a portable and implantable device for selective pacing of the aortic media.
- the present invention overcomes the disadvantages of the prior art by providing novel devices and a method for activating the aortic media of patients suffering from heart or circulatory diseases.
- the device is specifically designed to pulsate locations in the aorta
- aorta refers hereinafter in a non-limiting manner to at least one location within or on top of the said aorta, and in which the aorta is the artery originating from the left ventricle of the heart and running in the thorax and abdomen, bringing oxygenated blood to all parts of the body in the systemic circulation.
- aortic media refers hereinafter in a non-limiting manner to the muscular layers of the aorta.
- pulsesating refers hereinafter in a non-limiting manner to rhythmic expansion and contraction of the aorta and the aortic media.
- stimulating refers hereinafter in a non-limiting manner to enhancement of aortic activity either independently or synchronized with the heart during either systole or diastole.
- equilibrium refers hereinafter in a non-limiting manner to the condition of the body in which competing influences are balanced.
- pacemaker body refers hereinafter in a non-limiting manner to a unit of the artificial aortic pacemaker containing the battery, pulse generator and control unit of the device.
- an implantable artificial aortic pacemaker comprising oscillatory means providing pulsating signals at a pre-selected frequency.
- the AAP is further comprising a plurality of sensors disposed internally or externally to the aorta and a pacing means; such that the AAP stimulates the aortic media, augmenting physiological aortic elastic recoil.
- the sensors may be selected from a group consisting of chemical, mechanical or electrical sensors or any combination thereof.
- the mechanical sensors detect parameters selected from a group consisting of aortic wall pressure, left ventricle end diastolic volume and pressure, end systolic volume and pressure, ventricular or atrial wall pressure, aortic wall potential, systolic and diastolic blood pressure or any combination thereof.
- chemical sensors detect parameters selected from a group consisting of pH in the myodcardium, lactate sensors, troponin sensor or any other chemical means to enable early detection of myodcardial ischemia.
- electrical sensors detect parameters selected from a group consisting of aortic diameter by M-mode echocardiography, aortic blood flow velocity by suing Doppler ultrasound, ECG, saturated hemoglobin fraction by using oximetry and input from any external device which is not part of the pacemaker by means of telemetry or any combination thereof.
- the AAP may further comprise a processor or control unit capable of obtaining information from said sensors and triggering an appropriate contraction wave in the aortic media.
- the processing means is implantable as part of the pacemaker body and/or is external, able to transmit and receive information through telemetry.
- the pacing means comprises a chain of bi-polar electrodes, placed along the aorta, in location and distances according to the specific indication and hemodynamic needs.
- the electrodes are adjunct to the aorta either glued to the aorta or anchored to the aorta using for example, invasive immobilizing means.
- the electrode chain may be formed by using discrete electrodes or at least one adapter capable of accommodating a few electrodes and connecting them to the aorta.
- the electrodes are connected to any location along the adapter and the electrode anchoring means are separated by pre-determined distances.
- the pacing means is capable of modifications in its pulsating intensity, velocity or direction in response to feedback from the sensing means by pre-specified algorithms.
- the AAP is adapted for driving blood anterogradely from the aorta to perfuse the body's end organs; retrogradely for increasing coronary artery blood flow or a combination of both; either simultaneous or sequential anterograde and retrograde contractions.
- a method of managing aortic rhythm comprising implanting an AAP comprising oscillatory means and pulsating signals at a preselected frequency, so as to stimulate the aorta.
- the pulsating signals are provided by electrodes, so as to create a synchronized and coordinated activation impulse in a portion of the aorta using electrical impulses.
- a method of augmenting cardiac output comprising synchronizing the pulsating aorta such that blood is pumped anterogradely is yet another embodiment of the present invention.
- a method of increasing coronary perfusion comprising synchronizing the pulsating aorta such that blood is pumped retrogradely is disclosed.
- a method of augmenting cardiac output while increasing coronary perfusion comprising synchronizing said pulsating aorta such that pulses originate in a certain point and proceed in both retrograde and anterograde directions is another embodiment of the present invention.
- implanting of the AAP is provided by a procedure selected from a group including applying minimally invasive cervical mediastinoscopy; applying canulation of the thoracic duct, applying cardiac catheterization using arterial or venous access; or any combination thereof.
- a method of implanting the AAP is provided by open surgery or laparoscopy.
- a method comprising activating contraction waves in the aortic media at a rate of 1 in every N heartbeats, where N is any integer equal to or greater than 1, but preferably N is between 1 and 6, is disclosed.
- a method comprising self-adjusting contraction wave velocity according to aortic smooth muscle depolarization and repolarization rates so as to avoid aortic contraction during systole is disclosed.
- a method comprising stimulating of the contraction wave area, duration or intensity so as to promote aortic muscular layer adaptation to rhythmical contraction or for inducing aortic muscle hypertrophy or hyperplasia is another embodiment of the present invention.
- the method especially adapted for inducing smooth muscle proliferation and improving aortic contraction performance over time comprises implanting an AAP comprising oscillatory means; pulsating signals at a preselected frequency, hence stimulating the aorta is disclosed.
- the method especially adapted for treating acute cardiac insults selected from a group including cardiogenic shock; myocardial infarction or myocarditis comprises the steps of implanting an AAP following said insult, pulsating signals at a preselected frequency, hence stimulating the aorta is yet another embodiment of the present invention.
- the method especially adapted for treating medical conditions selected from a group including congestive heart failure, pulmonary edema, aortic regurgitation and aortic aneurysm comprising the steps of implanting an AAP, continuously pulsating signals at a preselected frequency, hence stimulating the aorta and maintaining cardiovascular equilibrium is also an embodiment of the present invention.
- the method especially adapted for treating exertional angina or angina equivalent comprising the steps of implanting an AAP, triggering AAP activation in times of need, pulsating signals at a preselected frequency, hence stimulating the aorta is yet another embodiment of the present invention.
- said triggering is provided by a means selected from a group including, sensors, manual activation by a patient or medical caregiver, or from a remote site especially an emergency hot line, or any combination thereof.
- a method wherein said pulsating is activated by a group of triggers including intrinsic cardiac activity, artificial cardiac pacemaker or hemodynamics sensed by the aortic electrodes is yet another embodiment of the present invention.
- FIG. 1 illustrates a human heart ( 10 ) and its component parts including the ascending aortic arch ( 1 ), superior vena cava ( 2 ), right coronary artery ( 3 ), anterior cardiac vein ( 4 ), right atrium ( 5 ), right ventricle ( 6 ), left ventricle ( 7 ), great coronary vein ( 8 ), left atrium ( 9 ), right coronary artery ( 11 ) and the pulmonary artery.
- FIG. 1 illustrates a human heart ( 10 ) and its component parts including the ascending aortic arch ( 1 ), superior vena cava ( 2 ), right coronary artery ( 3 ), anterior cardiac vein ( 4 ), right atrium ( 5 ), right ventricle ( 6 ), left ventricle ( 7 ), great coronary vein ( 8 ), left atrium ( 9 ), right coronary artery ( 11 ) and the pulmonary artery.
- FIG. 1 illustrates a human heart ( 10 ) and its component parts including the ascending aortic arch ( 1 ),
- FIG. 2 schematically represents the mechanics of coronary perfusion ( 20 ), in which the penetrating branch ( 25 ) of the coronary artery ( 22 ), exits the aorta ( 24 ) and enters the ventricular wall ( 21 ), approaching the ventricular lumen ( 28 ).
- P A ( 23 ) represents the arterial diastolic pressure
- R C ( 26 ) represents the resistance of coronary arteries
- P L ( 27 ) represents luminal (ventricular lumen) diastolic pressure.
- R C is the resistance of the coronary arteries and r is the radius of the artery, such that if you decrease the radius of an artery by 50%, for example in an atherosclerotic arteries, then resistance will increase by a factor of 16.
- FIG. 3A schematically illustrates the forces involved in aortic pulsation during systole ( 30 a ).
- the left ventricle ( 31 ) contracts, pushing open the aortic valves ( 39 ) and forcing blood ( 34 ) directly into the aorta ( 33 ), without entering the coronary arteries ( 32 ) to perfuse the end organs of the body.
- the force of the blood entering the aorta stretches the walls of the aorta ( 38 ), creating the potential energy that helps maintain blood pressure during diastole.
- FIG. 3B shows the forces involved in aortic pulsation during aortic diastole ( 30 b ).
- the aorta ( 33 ) contracts passively ( 36 ) as the aortic walls ( 38 ) relax, the aortic valves ( 39 ) close and blood is either pushed forward ( 37 a ) to perfuse the end organs of the body or backwards ( 37 b ) to perfuse the coronary arteries, or in both direction to improve coronary flow while increasing cardiac output.
- FIG. 4A showing the aortic wall.
- the tunica intima ( 41 ) is the innermost layer of the aortic wall.
- the next layer is the tunica media ( 42 ), made of smooth muscle cells ( 45 ) and a considerable quantity of elastic fibres ( 44 ).
- the outermost layer is known as the tunica adventitia ( 43 ) and is also known as the tunica externa and is made up mostly of collagen to help anchor the aorta in its surrounding tissue.
- FIG. 4B schematically represents the aortic walls ( 40 b ), in this figure the layers of the aorta, the tunica intima ( 41 ), tunica media ( 42 ) and the tunica adventitia ( 43 ) are shown.
- the tunica intima is made up of one layer of endothelial cells ( 48 ), supported by an internal elastic lamina ( 49 ).
- the endothelial cells are in direct contact with the blood flow in the lumen ( 401 ) of the aorta.
- the smooth muscle cells ( 45 ) of the tunica media are also shown.
- the tunica adventitia additionally contains fibroblasts ( 402 ).
- FIG. 5A schematically represents how coronary perfusion ( 50 b ) may be increased.
- the electrodes of the aortic pacemaker activate a retrograde contraction wave ( 56 ) in the aorta ( 52 ), pushing blood ( 55 ) in the direction of the coronary arteries ( 53 ), but not into the left ventricle ( 51 ).
- increased cardiac output ( 50 b ) is schematically illustrated.
- the aortic valves ( 54 ) are closed such that blood does not enter the left ventricle.
- the anterograde contraction wave ( 58 ) activated by the aortic pacemaker, pushes the blood ( 57 ) forward, thereby increasing cardiac output and improving perfusion of the body's end organs.
- FIG. 6 schematically illustrates the procedure of cervical mediastinoscopy ( 60 ), a relatively simple procedure that may be performed in an outpatient's clinic and which is mainly used for biopsy of lymph nodes e.g. ( 65 ) in lung ( 66 ) cancer, but which also allows access to the aorta ( 64 ).
- a small incision is made in the supra-sternal notch ( 61 ), in which a mediastinoscope ( 62 ) is inserted ( 63 ).
- An optical fiber ( 67 ) may then be inserted to guide pacemaker electrode ( 68 ) implantation, the electrodes can then be fixed to aortic adventitia, possibly using an adaptor (not shown).
- Electrode implantation Other methods of electrode implantation include canulation of the thoracic duct, the main lymphatic vessel which runs parallel and in proximity to the descending aorta, in the base of the neck aided by computer tomography (CT), ultrasound or endoscopic ultrasound guidance. Cardiac catheterization using arterial or venous access may also be used.
- CT computer tomography
- FIG. 7 in which an implanted aortic pacemaker is shown ( 70 ).
- the electrode chain ( 74 ) which may optionally be with an adaptor and sensors, is implanted internally on the aorta ( 72 ).
- the electrode chain is then connected to the body of the pacemaker ( 73 ), which includes the processor or control unit, pulse generator and battery and which is preferably implanted in subcutaneous tissue, but may also be external.
- FIG. 8 shows the method ( 80 ), by which the aortic pacemaker device works.
- a chain of electrodes ( 83 ) is implanted and attached to the aortic arch ( 82 ) of the heart ( 83 ), the electrode chain being the pacing means of the AAP.
- the electrode chain may be attached through an adaptor or may be attached directly to heart. Mechanical, chemical or electrical sensors may be placed directly on any location on the heart and may be disposed either externally or internally to the body.
- a sensing unit ( 84 ) obtains the data and a control unit ( 86 ), which may be part of the pacemaker body itself or in a remote location interprets and processes the data.
- the control unit then directs the pacemaker ( 85 ), also part of the pacemaker body, to pulse the aortic media through the electrode chain pacing means, triggering the appropriate feed-backed contraction waves in the aorta to improve cardiac and aortic function.
- FIG. 9A shows a cross-section of an electrode ( 741 ) being temporarily or permanently, individually or as a part of an array of electrodes, clipped, clasped, immobilized, anchored, stitched, glued, incorporated or otherwise mounted on at least a portion of the aorta ( 74 ).
- the invention discloses an electrode for an AAP as defined in any of the above, comprising inter alia from members selected from a group of arms, anchoring means and electrical wiring. Hence for example, FIG.
- FIGS. 9B-9I shows a perspective view of an electrode ( 741 ), comprising in a non-limiting manner in a schematic non-in-scale manner multiple clamps (e.g., two clamps 74 A, 74 B).
- the electrode may further comprise of one or more handles (See arrows tip in 74 A and 74 B); fixating means, such as teeth etc ( 74 c ) and electrical wires ( 74 E).
- FIGS. 9C-9I shows possible electrodes 742 - 748 , respectively.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
- The present invention generally relates to implantable medical devices and more specifically to devices and methods for improving cardiac function by selectively pacing the aortic media.
- The aorta is an elastic artery and as such is quite distensible, stretching and expanding when blood is forced into it from the left ventricle. This stretching creates the potential energy that helps maintain blood pressure during diastole; when the heart relaxes after contraction, the aorta contracts passively.
- Myocardial perfusion is almost solely diastolic; the force that allows blood flow through the coronary arteries is dependent on the difference between the intra-aortic diastolic pressure and the left ventricular diastolic pressure. The coronary arteries originate from the aortic stem and penetrate the wall of the heart. Increased resistance to flow in the coronary arteries may be caused by atherosclerosis or increased diastolic intraventricular pressure from ischemia or cardiomyopathy, compromising coronary flow and causing myocardial ischemia.
- Several clinical conditions are of relevance to the functioning of the aorta and control of blood flow during systole and diastole. Acute myocardial ischemia and other conditions cause cardiogenic shock, in which heart malfunction results in cardiac output inadequate for maintaining vital organ function. Pulmonary edema is a complication of cardiogenic shock that further impairs tissue oxygenation and may lead to death. Heart failure is also a chronic condition associated with increased morbidity and mortality and poor quality of life. In aortic regurgitation, impaired closure of the aortic valve causes retrograde blood flow from the aorta into the left ventricle during diastole, resulting in increased diastolic intra-aortic pressure, ventricular volume overload and left ventricle (LV) dilatation and eventually congestive heart failure.
- Currently medical management of ischemic heart disease is primarily focused on slowing atherosclerosis, preventing thrombosis and coronary angioplasty using catheterization and coronary bypass surgery. Chronic heart failure is usually treated medically but may require heart transplantation or use of a Left or Right Ventricular Assist Device (L- or R-VAD).
- Heart transplantation is problematic in that there are insufficient donors and immunosuppression is required. While LVAD can be used in the long-term it is generally used for those awaiting donor hearts and is patients are plagued by infection and require anticoagulants to prevent blood clotting caused by the blood passing over non-biological surfaces. Intra-aortic balloon pumps may be inserted in the case of acute LV failure unresponsive to treatment but this treatment is limited to a short period of time due to infection and thrombotic complication. Aortic regurgitation is treated medically by drugs that reduce the arterial resistance (after-load reduction) or by aortic valve replacement in advanced disease. Reducing LV diastolic pressure by pre- and after-load reduction by nitrates and diuretics is the mainstay of treatment in case of pulmonary edema.
- Heart contractions are controlled by electrical impulses created by cardiac pacemaker cells but for many years artificial devices have been installed after damage to the body's intrinsic conduction system to produce these impulses synthetically. These existing artificial pacemakers are medical devices designed to regulate the beating of the heart itself. More recently implantable cardioverter-defibrillators (ICD) resembling cardiac pacemakers have been used in patients at risk of sudden cardiac death. ICD's have the ability to treat many types of heart rhythm disturbances by means of pacing, cardoversion or defibrillation. The device contains the rudiments of cardiac arrhythmia detection and treatment and primarily deals with ventricular fibrillation but is now also used to deal with atrial and ventricular arrhythmias. ICD implantation is similar to implantation of a cardiac pacemaker, these devices typically include a wire that runs through the right chambers of the heart and usually ends in the apex of the right ventricle. They constantly monitor the rate and rhythm of the heart and can deliver therapies when the heart rate goes over a certain number: sensors can detect rate discrimination, rhythm discrimination and morphology discrimination.
- In the aortic pacemaker constant monitoring of a wide variety of parameters means that it may be activated chronically for congestive heart failure, aortic regurgitation or aortic aneurysm, or activated in a chronic-intermittent manner, for example in the case of exertional angina. The pacemaker can be used for acute incidents such as cardiogenic shock or for a limited period of time following myocardial infarction or myocarditis.
- As can be seen medical and surgical treatment for heart conditions are limited and many of the surgical procedures are highly invasive and prone to infection or involve high risk surgery. While pacemakers of various types exist, these are used to regulate cardiac conduction. There is an obvious clinical benefit to globally increasing coronary blood flow, but no such treatment is available. In addition there is no treatment apart from aortic valve replacement to selectively and efficiently block blood regurgitation to the LV in aortic valve insufficiency. Thus an aortic pacemaker to selectively pace the aortic media is a long-felt need.
- It is one object of the present invention to disclose an implantable artificial aortic pacemaker (AAP) that comprises an oscillatory means providing pulsating signals at a pre-selected frequency to the aorta, thereby pacing the aorta. It is also in the scope of the present invention to disclose an AAP further comprising of a plurality of sensors disposed internally or externally to the aorta and a pacing means wherein the AAP stimulates the aortic media, augmenting physiological aortic elastic recoil.
- It is also in the scope of the present invention wherein the sensors are selected from a group consisting of chemical, mechanical or electrical sensors or any combination thereof.
- It is also in the scope of the present invention to disclose a sensor wherein mechanical sensors detect parameters selected from a group consisting of aortic wall pressure, left ventricle end diastolic volume and pressure, end systolic volume and pressure, ventricular or atrial wall pressure, aortic wall potential, systolic and diastolic blood pressure or any combination thereof.
- It is also in the scope of the present invention, wherein the chemical sensors detect parameters selected from a group consisting of pH in the myodcardium, lactate sensors, troponin sensors or any other chemical means to enable early detection of myodcardial ischemia.
- It is also in the scope of the present invention, wherein the electrical sensors detect parameters selected from a group consisting of aortic diameter by M-mode echocardiography, aortic blood flow velocity by suing Doppler ultrasound, ECG, saturated hemoglobin fraction by using oximetry and input from any external device which is not part of the pacemaker by means of telemetry or any combination thereof.
- It is also in the scope of the present invention to disclose an AAP, further comprising a processor capable of obtaining information from the sensors and triggering an appropriate contraction wave in the aortic media.
- It is also in the scope of the present invention, wherein the processing means is implantable as part of the pacemaker body and/or is external, able to transmit and receive information through telemetry.
- It is also in the scope of the present invention, wherein the pacing means comprises a chain of bi-polar electrodes, placed along the aorta, in location and distances according to the specific indication and hemodynamic needs.
- It is also in the scope of the present invention wherein the electrodes are an adjunct to the aorta either glued to the aorta or anchored to the aorta using e.g., invasive immobilizing means.
- It is also in the scope of the present invention wherein the electrode chain is formed by using discrete electrodes or at least one adapter capable of accommodating a few electrodes and connecting them to the aorta.
- It is also in the scope of the present invention wherein the electrodes are connected to any location along the adapter.
- It is also in the scope of the present invention wherein the said electrode anchoring means are separated by pre-determined distances on the adapter.
- It is also in the scope of the present invention to disclose a pacing means capable of modifications in its pulsating intensity, velocity or direction in response to feedback from the sensing means by pre-specified algorithms.
- It is also in the scope of the present invention to disclose an AAP adapted for driving blood anterogradely from the aorta to perfuse the body's end organs; retrogradely for increasing coronary artery blood flow or a combination of both; either simultaneous or sequential anterograde and retrograde contractions.
- It is another object of the present invention to disclose a method of managing aortic rhythm comprising; implanting an AAP comprising oscillatory means and pulsating signals at a preselected frequency, so as to stimulate the aorta.
- It is also in the scope of the present invention wherein the pulsating signals are provided by the electrodes, so as to create a synchronized and coordinated activation impulse in a portion of the aorta using electrical impulses.
- It is also in the scope of the present invention to disclose a method of augmenting cardiac output comprising synchronizing the pulsating aorta such that blood is pumped anterogradely.
- It is also in the scope of the present invention to disclose a method of increasing coronary perfusion comprising synchronizing the pulsating aorta such that blood is pumped retrogradely.
- It is also in the scope of the present invention to disclose a method of augmenting cardiac output while increasing coronary perfusion comprising synchronizing the pulsating aorta such that pulses originate at a certain point and proceed in both retrograde and anterograde directions.
- It is also in the scope of the present invention, wherein the implanting is provided by a procedure selected from a group including applying minimally invasive cervical mediastinoscopy; applying canulation of the thoracic duct, applying cardiac catheterization using arterial or venous access; or any combination thereof.
- It is also in the scope of the present invention to disclose a method comprising activating contraction waves in the aortic media at a rate of 1 in every N heartbeats, where N is any integer equal to or greater than 1, but preferably N is between 1 and 6.
- It is also in the scope of the present invention to disclose a method comprising self-adjusting contraction wave velocity according to aortic smooth muscle depolarization and repolarization rates so as to avoid aortic contraction during systole.
- It is also in the scope of the present invention to disclose a method comprising stimulation of the contraction wave area, duration or intensity so as to promote aortic muscular layer adaptation to rhythmical contraction with decreased fatigue and improved endurance or for inducing aortic muscle hypertrophy or hyperplasia.
- It is also in the scope of the present invention to disclose a method of inducing smooth muscle proliferation and improving performance over time comprising implanting an AAP comprising oscillatory means; pulsating signals at a preselected frequency, hence stimulating the aorta.
- It is also in the scope of the present invention to disclose a method especially adapted for treating acute cardiac insult selected from a group including cardiogenic shock; myocardial infarction or myocarditis, comprising the steps of implanting an AAP following the insult or activating pre-implanted AAP, and pulsating signals at a preselected frequency, hence stimulating the aorta.
- It is also in the scope of the present invention to disclose a method especially adapted for treating medical conditions selected from a group including congestive heart failure, pulmonary edema, aortic regurgitation and aortic aneurysm comprising the steps of implanting an AAP, continuously pulsating signals at a preselected frequency, hence stimulating the aorta and restoring and maintaining cardiovascular equilibrium.
- It is also in the scope of the present invention to disclose a method especially adapted for treating exertional angina, comprising the steps of implanting an AAP, triggering AAP activation in times of need, pulsating signals at a preselected frequency, hence stimulating the aorta.
- It is also in the scope of the present invention wherein the triggering of the AAP is provided by means selected from a group including, sensors, manual activation by a patient or medical caregiver, or from a remote site especially an emergency hot line, or any combination thereof.
- It is also in the scope of the present invention wherein said pulsating is activated by a group of triggers including intrinsic cardiac activity, artificial cardiac pacemaker or hemodynamics sensed by the aortic electrodes.
- The objects and advantages of various embodiments of the invention will become apparent from the following description when read in conjunction with the accompanying drawings wherein;
-
FIG. 1 illustrates the main structures of the human heart; -
FIG. 2 schematically represents coronary perfusion to the heart; -
FIGS. 3A-3B schematically represent blood flow during systole (3A) and diastole (3B); -
FIGS. 4A-4B illustrate the layers of the aortic wall, whereinFIG. 4A shows a photographic image of the layers of the aortic wall (40 a) andFIG. 4B represents the aortic walls (40 b); -
FIGS. 5A-5B schematically represent the contraction wave, whereinFIG. 5A shows increased coronary perfusion (50 b) andFIG. 5B shows increased cardiac output (50 b); -
FIG. 6 schematically represents placement of the aortic pacemaker; -
FIG. 7 schematically represents the components of the aortic pacemaker; -
FIG. 8 ; schematically represents the method by which the aortic pacemaker operates; and -
FIGS. 9A-9I schematically represent various possibly electrodes for use in this aortic pacemaker. - The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art since the generic principles have been defined especially to provide means and methods of providing a portable and implantable device for selective pacing of the aortic media. The present invention overcomes the disadvantages of the prior art by providing novel devices and a method for activating the aortic media of patients suffering from heart or circulatory diseases. The device is specifically designed to pulsate locations in the aorta
- The term ‘aorta’ refers hereinafter in a non-limiting manner to at least one location within or on top of the said aorta, and in which the aorta is the artery originating from the left ventricle of the heart and running in the thorax and abdomen, bringing oxygenated blood to all parts of the body in the systemic circulation.
- The term ‘aortic media’ refers hereinafter in a non-limiting manner to the muscular layers of the aorta.
- The term ‘pulsating’ refers hereinafter in a non-limiting manner to rhythmic expansion and contraction of the aorta and the aortic media.
- The term ‘stimulating’ refers hereinafter in a non-limiting manner to enhancement of aortic activity either independently or synchronized with the heart during either systole or diastole.
- The term ‘equilibrium’ refers hereinafter in a non-limiting manner to the condition of the body in which competing influences are balanced.
- The term ‘pacemaker body’ refers hereinafter in a non-limiting manner to a unit of the artificial aortic pacemaker containing the battery, pulse generator and control unit of the device.
- It is one embodiment of the present invention to provide an implantable artificial aortic pacemaker (AAP) comprising oscillatory means providing pulsating signals at a pre-selected frequency. According to another embodiment of the present invention, the AAP is further comprising a plurality of sensors disposed internally or externally to the aorta and a pacing means; such that the AAP stimulates the aortic media, augmenting physiological aortic elastic recoil.
- It is yet another embodiment of the present invention wherein the sensors may be selected from a group consisting of chemical, mechanical or electrical sensors or any combination thereof. In this embodiment, the mechanical sensors detect parameters selected from a group consisting of aortic wall pressure, left ventricle end diastolic volume and pressure, end systolic volume and pressure, ventricular or atrial wall pressure, aortic wall potential, systolic and diastolic blood pressure or any combination thereof. Also according to this embodiment chemical sensors detect parameters selected from a group consisting of pH in the myodcardium, lactate sensors, troponin sensor or any other chemical means to enable early detection of myodcardial ischemia. Additionally electrical sensors detect parameters selected from a group consisting of aortic diameter by M-mode echocardiography, aortic blood flow velocity by suing Doppler ultrasound, ECG, saturated hemoglobin fraction by using oximetry and input from any external device which is not part of the pacemaker by means of telemetry or any combination thereof.
- According to another embodiment of the present invention the AAP may further comprise a processor or control unit capable of obtaining information from said sensors and triggering an appropriate contraction wave in the aortic media. In this embodiment, the processing means is implantable as part of the pacemaker body and/or is external, able to transmit and receive information through telemetry.
- In yet another embodiment of the present invention, the pacing means comprises a chain of bi-polar electrodes, placed along the aorta, in location and distances according to the specific indication and hemodynamic needs. According to this embodiment the electrodes are adjunct to the aorta either glued to the aorta or anchored to the aorta using for example, invasive immobilizing means. Additionally the electrode chain may be formed by using discrete electrodes or at least one adapter capable of accommodating a few electrodes and connecting them to the aorta. Also according to this embodiment, the electrodes are connected to any location along the adapter and the electrode anchoring means are separated by pre-determined distances.
- According to another embodiment of the present invention, the pacing means is capable of modifications in its pulsating intensity, velocity or direction in response to feedback from the sensing means by pre-specified algorithms.
- In yet another embodiment of the present invention, the AAP is adapted for driving blood anterogradely from the aorta to perfuse the body's end organs; retrogradely for increasing coronary artery blood flow or a combination of both; either simultaneous or sequential anterograde and retrograde contractions.
- According to another embodiment of the present invention, a method of managing aortic rhythm is introduced, comprising implanting an AAP comprising oscillatory means and pulsating signals at a preselected frequency, so as to stimulate the aorta. The pulsating signals are provided by electrodes, so as to create a synchronized and coordinated activation impulse in a portion of the aorta using electrical impulses. A method of augmenting cardiac output comprising synchronizing the pulsating aorta such that blood is pumped anterogradely is yet another embodiment of the present invention. According to another embodiment of the present invention a method of increasing coronary perfusion comprising synchronizing the pulsating aorta such that blood is pumped retrogradely is disclosed. A method of augmenting cardiac output while increasing coronary perfusion comprising synchronizing said pulsating aorta such that pulses originate in a certain point and proceed in both retrograde and anterograde directions is another embodiment of the present invention.
- In yet another embodiment of the present invention, implanting of the AAP is provided by a procedure selected from a group including applying minimally invasive cervical mediastinoscopy; applying canulation of the thoracic duct, applying cardiac catheterization using arterial or venous access; or any combination thereof. In another embodiment of the present invention, a method of implanting the AAP is provided by open surgery or laparoscopy.
- According to another embodiment of the present invention a method comprising activating contraction waves in the aortic media at a rate of 1 in every N heartbeats, where N is any integer equal to or greater than 1, but preferably N is between 1 and 6, is disclosed.
- In yet another embodiment of the present invention, a method, comprising self-adjusting contraction wave velocity according to aortic smooth muscle depolarization and repolarization rates so as to avoid aortic contraction during systole is disclosed.
- A method comprising stimulating of the contraction wave area, duration or intensity so as to promote aortic muscular layer adaptation to rhythmical contraction or for inducing aortic muscle hypertrophy or hyperplasia is another embodiment of the present invention.
- According to another embodiment of the present invention the method especially adapted for inducing smooth muscle proliferation and improving aortic contraction performance over time comprises implanting an AAP comprising oscillatory means; pulsating signals at a preselected frequency, hence stimulating the aorta is disclosed.
- The method especially adapted for treating acute cardiac insults selected from a group including cardiogenic shock; myocardial infarction or myocarditis, comprises the steps of implanting an AAP following said insult, pulsating signals at a preselected frequency, hence stimulating the aorta is yet another embodiment of the present invention.
- The method especially adapted for treating medical conditions selected from a group including congestive heart failure, pulmonary edema, aortic regurgitation and aortic aneurysm comprising the steps of implanting an AAP, continuously pulsating signals at a preselected frequency, hence stimulating the aorta and maintaining cardiovascular equilibrium is also an embodiment of the present invention.
- The method especially adapted for treating exertional angina or angina equivalent, comprising the steps of implanting an AAP, triggering AAP activation in times of need, pulsating signals at a preselected frequency, hence stimulating the aorta is yet another embodiment of the present invention. According to this embodiment, said triggering is provided by a means selected from a group including, sensors, manual activation by a patient or medical caregiver, or from a remote site especially an emergency hot line, or any combination thereof. A method wherein said pulsating is activated by a group of triggers including intrinsic cardiac activity, artificial cardiac pacemaker or hemodynamics sensed by the aortic electrodes is yet another embodiment of the present invention.
- Reference is now made to
FIGS. 1 , 2, 3 and 4 in the prior art showing the structure and function of the heart.FIG. 1 illustrates a human heart (10) and its component parts including the ascending aortic arch (1), superior vena cava (2), right coronary artery (3), anterior cardiac vein (4), right atrium (5), right ventricle (6), left ventricle (7), great coronary vein (8), left atrium (9), right coronary artery (11) and the pulmonary artery.FIG. 2 schematically represents the mechanics of coronary perfusion (20), in which the penetrating branch (25) of the coronary artery (22), exits the aorta (24) and enters the ventricular wall (21), approaching the ventricular lumen (28). PA (23) represents the arterial diastolic pressure, RC (26) represents the resistance of coronary arteries and PL (27) represents luminal (ventricular lumen) diastolic pressure. The forces experienced in these blood vessels can be described by the following equations; - IC=V/R, such that V=PA−PL and RC αI/r4 and in which IC is coronary perfusion or current, V is the potential energy and R is the resistance, according to Ohm's Law. RC is the resistance of the coronary arteries and r is the radius of the artery, such that if you decrease the radius of an artery by 50%, for example in an atherosclerotic arteries, then resistance will increase by a factor of 16.
-
FIG. 3A schematically illustrates the forces involved in aortic pulsation during systole (30 a). The left ventricle (31) contracts, pushing open the aortic valves (39) and forcing blood (34) directly into the aorta (33), without entering the coronary arteries (32) to perfuse the end organs of the body. The force of the blood entering the aorta stretches the walls of the aorta (38), creating the potential energy that helps maintain blood pressure during diastole.FIG. 3B shows the forces involved in aortic pulsation during aortic diastole (30 b). When the heart relaxes after contraction, the aorta (33) contracts passively (36) as the aortic walls (38) relax, the aortic valves (39) close and blood is either pushed forward (37 a) to perfuse the end organs of the body or backwards (37 b) to perfuse the coronary arteries, or in both direction to improve coronary flow while increasing cardiac output. - Reference is now made to
FIG. 4 , showing the aortic wall. InFIG. 4A a photographic image of the layers of the aortic wall (40 a) is shown. The tunica intima (41) is the innermost layer of the aortic wall. The next layer is the tunica media (42), made of smooth muscle cells (45) and a considerable quantity of elastic fibres (44). The outermost layer is known as the tunica adventitia (43) and is also known as the tunica externa and is made up mostly of collagen to help anchor the aorta in its surrounding tissue. Most cells, including those of the aorta, need to be within a few cell-widths of a capillary to stay alive, the network of smaller vessels that supply these cells is known as the vasa vasorum (46). The vasa vasorum penetrates the tunica adventitia, as well as the deeper tunica media of large vessels such as the aorta. The scale bar (47) in this image represents 100 μM.FIG. 4B schematically represents the aortic walls (40 b), in this figure the layers of the aorta, the tunica intima (41), tunica media (42) and the tunica adventitia (43) are shown. It can be seen that the tunica intima is made up of one layer of endothelial cells (48), supported by an internal elastic lamina (49). The endothelial cells are in direct contact with the blood flow in the lumen (401) of the aorta. The smooth muscle cells (45) of the tunica media are also shown. The tunica adventitia additionally contains fibroblasts (402). - Reference is now made to
FIG. 5 in which the different directions of active aortic contraction are shown.FIG. 5A schematically represents how coronary perfusion (50 b) may be increased. The electrodes of the aortic pacemaker activate a retrograde contraction wave (56) in the aorta (52), pushing blood (55) in the direction of the coronary arteries (53), but not into the left ventricle (51). InFIG. 5B , increased cardiac output (50 b) is schematically illustrated. The aortic valves (54) are closed such that blood does not enter the left ventricle. The anterograde contraction wave (58) activated by the aortic pacemaker, pushes the blood (57) forward, thereby increasing cardiac output and improving perfusion of the body's end organs. -
FIG. 6 schematically illustrates the procedure of cervical mediastinoscopy (60), a relatively simple procedure that may be performed in an outpatient's clinic and which is mainly used for biopsy of lymph nodes e.g. (65) in lung (66) cancer, but which also allows access to the aorta (64). A small incision is made in the supra-sternal notch (61), in which a mediastinoscope (62) is inserted (63). An optical fiber (67) may then be inserted to guide pacemaker electrode (68) implantation, the electrodes can then be fixed to aortic adventitia, possibly using an adaptor (not shown). Other methods of electrode implantation include canulation of the thoracic duct, the main lymphatic vessel which runs parallel and in proximity to the descending aorta, in the base of the neck aided by computer tomography (CT), ultrasound or endoscopic ultrasound guidance. Cardiac catheterization using arterial or venous access may also be used. - Reference is now made to
FIG. 7 , in which an implanted aortic pacemaker is shown (70). The electrode chain (74), which may optionally be with an adaptor and sensors, is implanted internally on the aorta (72). The electrode chain is then connected to the body of the pacemaker (73), which includes the processor or control unit, pulse generator and battery and which is preferably implanted in subcutaneous tissue, but may also be external. - Reference is now made to
FIG. 8 , which shows the method (80), by which the aortic pacemaker device works. A chain of electrodes (83) is implanted and attached to the aortic arch (82) of the heart (83), the electrode chain being the pacing means of the AAP. The electrode chain may be attached through an adaptor or may be attached directly to heart. Mechanical, chemical or electrical sensors may be placed directly on any location on the heart and may be disposed either externally or internally to the body. A sensing unit (84) obtains the data and a control unit (86), which may be part of the pacemaker body itself or in a remote location interprets and processes the data. The control unit then directs the pacemaker (85), also part of the pacemaker body, to pulse the aortic media through the electrode chain pacing means, triggering the appropriate feed-backed contraction waves in the aorta to improve cardiac and aortic function. - Lastly reference is now made to
FIGS. 9A-9I , which shows out-of-scale illustrations of various electrodes of the aortic pacemaker according to few possible embodiments of the present invention.FIG. 9A shows a cross-section of an electrode (741) being temporarily or permanently, individually or as a part of an array of electrodes, clipped, clasped, immobilized, anchored, stitched, glued, incorporated or otherwise mounted on at least a portion of the aorta (74). The invention discloses an electrode for an AAP as defined in any of the above, comprising inter alia from members selected from a group of arms, anchoring means and electrical wiring. Hence for example,FIG. 9B shows a perspective view of an electrode (741), comprising in a non-limiting manner in a schematic non-in-scale manner multiple clamps (e.g., twoclamps FIGS. 9C-9I shows possible electrodes 742-748, respectively.
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/295,166 US8868194B2 (en) | 2006-03-31 | 2007-03-29 | Aortic pacemaker |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78732606P | 2006-03-31 | 2006-03-31 | |
US12/295,166 US8868194B2 (en) | 2006-03-31 | 2007-03-29 | Aortic pacemaker |
PCT/IL2007/000420 WO2007113818A2 (en) | 2006-03-31 | 2007-03-29 | Aortic pacemaker |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090112285A1 true US20090112285A1 (en) | 2009-04-30 |
US8868194B2 US8868194B2 (en) | 2014-10-21 |
Family
ID=38564068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/295,166 Expired - Fee Related US8868194B2 (en) | 2006-03-31 | 2007-03-29 | Aortic pacemaker |
Country Status (2)
Country | Link |
---|---|
US (1) | US8868194B2 (en) |
WO (1) | WO2007113818A2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100305392A1 (en) * | 2008-01-31 | 2010-12-02 | Enopace Biomedical Ltd. | Thoracic aorta and vagus nerve stimulation |
US20130123880A1 (en) * | 2011-09-09 | 2013-05-16 | Enopace Biomedical Ltd. | Detector-based aortic stimulation |
US8862243B2 (en) | 2005-07-25 | 2014-10-14 | Rainbow Medical Ltd. | Electrical stimulation of blood vessels |
US8923973B2 (en) | 2011-11-10 | 2014-12-30 | Rainbow Medical Ltd. | Blood flow control element |
US9005106B2 (en) | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
US9186504B2 (en) | 2010-11-15 | 2015-11-17 | Rainbow Medical Ltd | Sleep apnea treatment |
US9386991B2 (en) | 2012-02-02 | 2016-07-12 | Rainbow Medical Ltd. | Pressure-enhanced blood flow treatment |
US9457186B2 (en) | 2010-11-15 | 2016-10-04 | Bluewind Medical Ltd. | Bilateral feedback |
US9526637B2 (en) | 2011-09-09 | 2016-12-27 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
US9649487B2 (en) | 2010-08-05 | 2017-05-16 | Enopace Biomedical Ltd. | Enhancing perfusion by contraction |
US9707076B2 (en) | 2012-08-23 | 2017-07-18 | Minimally Invasive Surgical Access Limited | Direct aortic access system for transcatheter aortic valve procedures |
US20180177431A1 (en) * | 2015-06-10 | 2018-06-28 | Hadasit Medical Reserach Services And Development Ltd. | Implantable monitoring device |
US10779965B2 (en) | 2013-11-06 | 2020-09-22 | Enopace Biomedical Ltd. | Posts with compliant junctions |
US11071870B2 (en) | 2017-12-01 | 2021-07-27 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker |
US11260216B2 (en) | 2017-12-01 | 2022-03-01 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
US11813463B2 (en) | 2017-12-01 | 2023-11-14 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with reversionary behavior |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8626299B2 (en) | 2008-01-31 | 2014-01-07 | Enopace Biomedical Ltd. | Thoracic aorta and vagus nerve stimulation |
US8626290B2 (en) | 2008-01-31 | 2014-01-07 | Enopace Biomedical Ltd. | Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5324323A (en) * | 1992-09-09 | 1994-06-28 | Telectronics Pacing Systems, Inc. | Multiple channel cardiosynchronous myoplasty apparatus |
US20020193841A1 (en) * | 2000-12-28 | 2002-12-19 | Betzold Robert A. | Pacing therapy architecture flow |
US20030233023A1 (en) * | 2000-09-23 | 2003-12-18 | Harefield Cardiac Limited | Blood circulation assistance device |
US20080215117A1 (en) * | 2005-07-25 | 2008-09-04 | Yossi Gross | Electrical Stimulation of Blood Vessels |
-
2007
- 2007-03-29 US US12/295,166 patent/US8868194B2/en not_active Expired - Fee Related
- 2007-03-29 WO PCT/IL2007/000420 patent/WO2007113818A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5324323A (en) * | 1992-09-09 | 1994-06-28 | Telectronics Pacing Systems, Inc. | Multiple channel cardiosynchronous myoplasty apparatus |
US20030233023A1 (en) * | 2000-09-23 | 2003-12-18 | Harefield Cardiac Limited | Blood circulation assistance device |
US20020193841A1 (en) * | 2000-12-28 | 2002-12-19 | Betzold Robert A. | Pacing therapy architecture flow |
US20080215117A1 (en) * | 2005-07-25 | 2008-09-04 | Yossi Gross | Electrical Stimulation of Blood Vessels |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11197992B2 (en) | 2005-07-25 | 2021-12-14 | Enopace Biomedical Ltd. | Electrical stimulation of blood vessels |
US8862243B2 (en) | 2005-07-25 | 2014-10-14 | Rainbow Medical Ltd. | Electrical stimulation of blood vessels |
US9005106B2 (en) | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
US20100305392A1 (en) * | 2008-01-31 | 2010-12-02 | Enopace Biomedical Ltd. | Thoracic aorta and vagus nerve stimulation |
US9649487B2 (en) | 2010-08-05 | 2017-05-16 | Enopace Biomedical Ltd. | Enhancing perfusion by contraction |
US9186504B2 (en) | 2010-11-15 | 2015-11-17 | Rainbow Medical Ltd | Sleep apnea treatment |
US9457186B2 (en) | 2010-11-15 | 2016-10-04 | Bluewind Medical Ltd. | Bilateral feedback |
US10828181B2 (en) | 2011-09-09 | 2020-11-10 | Enopace Biomedical Ltd. | Annular antenna |
US9526637B2 (en) | 2011-09-09 | 2016-12-27 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
US8855783B2 (en) * | 2011-09-09 | 2014-10-07 | Enopace Biomedical Ltd. | Detector-based arterial stimulation |
US20130123880A1 (en) * | 2011-09-09 | 2013-05-16 | Enopace Biomedical Ltd. | Detector-based aortic stimulation |
US8923973B2 (en) | 2011-11-10 | 2014-12-30 | Rainbow Medical Ltd. | Blood flow control element |
US9386991B2 (en) | 2012-02-02 | 2016-07-12 | Rainbow Medical Ltd. | Pressure-enhanced blood flow treatment |
US9707076B2 (en) | 2012-08-23 | 2017-07-18 | Minimally Invasive Surgical Access Limited | Direct aortic access system for transcatheter aortic valve procedures |
US10779965B2 (en) | 2013-11-06 | 2020-09-22 | Enopace Biomedical Ltd. | Posts with compliant junctions |
US11432949B2 (en) | 2013-11-06 | 2022-09-06 | Enopace Biomedical Ltd. | Antenna posts |
US20180177431A1 (en) * | 2015-06-10 | 2018-06-28 | Hadasit Medical Reserach Services And Development Ltd. | Implantable monitoring device |
US11071870B2 (en) | 2017-12-01 | 2021-07-27 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker |
US11260216B2 (en) | 2017-12-01 | 2022-03-01 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker |
US11813463B2 (en) | 2017-12-01 | 2023-11-14 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with reversionary behavior |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
Also Published As
Publication number | Publication date |
---|---|
WO2007113818A3 (en) | 2009-04-16 |
WO2007113818A2 (en) | 2007-10-11 |
US8868194B2 (en) | 2014-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8868194B2 (en) | Aortic pacemaker | |
US10869957B2 (en) | Treating congestive heart failure | |
US8260416B2 (en) | Electrical muscle controller | |
US7062318B2 (en) | Electrical muscle controller | |
JP4175662B2 (en) | Electric muscle control device | |
US6363279B1 (en) | Electrical muscle controller | |
US8321013B2 (en) | Electrical muscle controller and pacing with hemodynamic enhancement | |
JP2006516449A5 (en) | ||
US9289618B1 (en) | Electrical muscle controller | |
US20100137927A1 (en) | Multifunctional cardiac pacemaker system | |
US20240252222A1 (en) | Methods and devices for electroporation for treatment of ventricular fibrillation | |
Yin et al. | Organ conformal electronics for cardiac therapeutics | |
Lapanashvili et al. | Acute Beneficial Effects of Muscular Counterpulsation in Patients with Coronary Heart Diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HADASIT MEDICAL RESEARCH SERVICES AND DEVELOPMENT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAHAN, AMOS;PLANER, DAVID;REEL/FRAME:021607/0065 Effective date: 20080922 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551) Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20221021 |