US20090111284A1 - Method for silicon based dielectric chemical vapor deposition - Google Patents
Method for silicon based dielectric chemical vapor deposition Download PDFInfo
- Publication number
- US20090111284A1 US20090111284A1 US12/348,382 US34838209A US2009111284A1 US 20090111284 A1 US20090111284 A1 US 20090111284A1 US 34838209 A US34838209 A US 34838209A US 2009111284 A1 US2009111284 A1 US 2009111284A1
- Authority
- US
- United States
- Prior art keywords
- silicon
- nitrogen
- substrate
- processing chamber
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 61
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 239000010703 silicon Substances 0.000 title claims abstract description 60
- 238000005229 chemical vapour deposition Methods 0.000 title description 8
- 239000000758 substrate Substances 0.000 claims abstract description 55
- 239000000126 substance Substances 0.000 claims abstract description 54
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 38
- 238000000151 deposition Methods 0.000 claims abstract description 35
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910003828 SiH3 Inorganic materials 0.000 claims description 15
- OLRJXMHANKMLTD-UHFFFAOYSA-N silyl Chemical compound [SiH3] OLRJXMHANKMLTD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 239000012159 carrier gas Substances 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- VOSJXMPCFODQAR-UHFFFAOYSA-N ac1l3fa4 Chemical compound [SiH3]N([SiH3])[SiH3] VOSJXMPCFODQAR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000001451 organic peroxides Chemical class 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 41
- 239000010410 layer Substances 0.000 description 41
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 41
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 33
- 239000010408 film Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000005137 deposition process Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000015654 memory Effects 0.000 description 7
- 238000005086 pumping Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- -1 Si<100> or Si<111>) Inorganic materials 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000012686 silicon precursor Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 229910007991 Si-N Inorganic materials 0.000 description 2
- 229910020286 SiOxNy Inorganic materials 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910008045 Si-Si Inorganic materials 0.000 description 1
- 229910003811 SiGeC Inorganic materials 0.000 description 1
- 229910006411 Si—Si Inorganic materials 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CRHGSCXKJPJNAB-UHFFFAOYSA-M fomesafen-sodium Chemical compound [Na+].C1=C([N+]([O-])=O)C(C(/[O-])=N/S(=O)(=O)C)=CC(OC=2C(=CC(=CC=2)C(F)(F)F)Cl)=C1 CRHGSCXKJPJNAB-UHFFFAOYSA-M 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005389 semiconductor device fabrication Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/318—Inorganic layers composed of nitrides
- H01L21/3185—Inorganic layers composed of nitrides of siliconnitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
- H10D30/0275—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs forming single crystalline semiconductor source or drain regions resulting in recessed gates, e.g. forming raised source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/608—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having non-planar bodies, e.g. having recessed gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0223—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
- H10D30/0227—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/021—Manufacture or treatment using multiple gate spacer layers, e.g. bilayered sidewall spacers
Definitions
- Embodiments of the invention generally relate to methods for depositing silicon-containing materials, and more particularly, embodiments of the invention relate to chemical vapor deposition techniques for thermally depositing silicon nitride materials.
- Thermal chemical vapor deposition (CVD) of silicon-containing films is a state of the art, front end process used during semiconductor device manufacturing.
- thermal energy is utilized for breaking one or more feedstock chemicals, which includes a silicon precursor, to make a thin film of a silicon nitride on a substrate surface.
- feedstock chemicals which includes a silicon precursor
- Conventional thermal CVD of silicon-containing materials is typically performed in a batch furnace or in a single wafer deposition chamber operating at elevated temperatures typically in excess of 550 degrees Celsius.
- the thermal budget for deposited films must be reduced in order to obtain satisfactory processing results, good production yield and robust device performance.
- silicon-containing materials such as silicon nitride
- Embodiments of the invention generally provide a method for depositing silicon-containing films.
- a method for depositing a silicon-containing film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius.
- the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH 3 ) 3 —N.
- a method for depositing silicon-containing material film on a substrate includes heating a substrate disposed in a processing chamber to a temperature less than about 550 degrees Celsius; flowing a nitrogen and carbon containing chemical comprising (H 3 C)—N ⁇ N—H into the processing chamber; flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber; and depositing a silicon and nitrogen containing film on the substrate.
- FIG. 1 is a simplified cross sectional view of one embodiment of a deposition chamber in which a method of depositing silicon nitride of the present invention may be performed;
- FIG. 2 is a flow diagram of one embodiment of a method of depositing a silicon nitride film
- FIGS. 3A-B are cross sectional views of a MOSFET transistor having a silicon nitride layer at least partially deposited according to the method of FIG. 2 ;
- FIG. 4 is a cross section of an exemplary bi-polar transistor having a silicon nitride layer at least partially deposited utilizing the method of FIG. 2 .
- Embodiments of the invention provide a method for depositing a silicon-containing film, such as silicon nitride and the like, on a substrate utilizing temperatures less than about 550 degrees Celsius.
- a silicon-containing film such as silicon nitride and the like
- FIG. 1 a single wafer thermal-chemical vapor deposition (processing) chamber 100 illustrated in FIG. 1
- the method may be beneficially practiced in other deposition systems, including batch deposition systems.
- One processing chamber in which the silicon nitride deposition process may be performed is a SiNgen® Plus chamber, available from Applied Materials, Inc., of Santa Clara, Calif.
- Examples of other systems which may be adapted to practice the invention include the TELFORMULA batch furnace available from Tokyo Electron Limited; the FLEXSTAR® mini-batch silicon deposition system available from Applied Materials, Inc.; and the EPSILON® Single-Wafer Epitaxial Reactors from ASM International N.V., among others.
- reagents such as a silicon precursor and a reactant
- ALD atomic layer deposition
- reagents such as a silicon precursor and a reactant
- plasma enhanced deposition techniques may be used during either ALD or CVD processes. Silicon-containing materials may be deposited to a single substrate or a batch of substrates during the deposition processes described herein.
- the processing chamber 100 includes a chamber body 102 coupled to a pumping system 138 , a controller 146 , and a gas panel 136 .
- the chamber body 102 has walls 106 , a bottom 108 , and a lid 110 that define an internal volume 104 .
- the walls 106 of the body 102 may be thermally regulated.
- a plurality of conduits 112 are disposed in the walls 106 and are configured to circulate a heat transfer fluid that regulates the temperature of the chamber body 102 .
- the walls 106 additionally include a substrate access port 128 configured to facilitate entry and egress of a workpiece, such as a substrate 122 , from the processing chamber 100 .
- a substrate support pedestal 124 is disposed in the internal volume 104 of the chamber body 102 and supports the substrate 122 during processing.
- the substrate support pedestal 124 includes a heater 120 configured to regulate the temperature of the substrate 122 and/or heat the interior volume 104 of the processing chamber 100 .
- the heater 120 is a resistive heating element coupled to a power source 116 and is capable of heating the substrate to a temperature of at least 550 degrees Celsius.
- a pedestal lift assembly 130 is coupled to the substrate support pedestal 124 and is configured to control the elevation of the pedestal 124 between an elevated processing position (as shown in FIG. 1 ) and a lowered position that facilitates access to the substrate 122 disposed on the pedestal 124 through the substrate access port 128 .
- the pedestal lift assembly 130 is sealingly coupled to the bottom 108 of the chamber body 102 by a flexible bellows 132 .
- the pedestal lift assembly 130 may be configured to rotate the pedestal 124 during processing.
- the gas panel 136 is coupled to the processing chamber 100 and is configured to provide process chemicals, in liquid and/or gaseous form, and other gases to the internal volume 124 of the chamber body.
- the gas panel 136 is coupled by a gas line 140 , which is used to transfer process chemical or mixed process gases or vapors from liquid injector generated from a selected liquid chemical source, to an inlet port 134 formed in the lid 110 of the chamber body 102 . It is contemplated that the inlet port 134 may be formed through one or more other locations of the chamber body 102 .
- a showerhead 144 is coupled to the chamber body 102 to enhance the uniform distribution of gases or vapors provided by the gas panel or liquid injector 136 into the internal volume 104 of the processing chamber 100 .
- the showerhead 144 includes a perforated region 154 .
- the holes formed in the perforated region 154 are configured in size, geometry, number and distribution as to provide a predefined flow distribution of gases passing through the showerhead 144 to the substrate 122 .
- Lift pins 114 are provided to separate the substrate 122 from the upper surface of the substrate support pedestal 124 to facilitate substrate hand-off with a robot (not shown) entering the chamber body through the access port 128 .
- a lift plate 118 is disposed below the substrate support pedestal 124 and arranged such that as the pedestal 124 is lowered, the lift pins 114 come in contact with the lift plate 118 before the pedestal 124 has completed its downward travel.
- the lift plate 118 supports the lift pins 114 as the pedestal 124 continues downward, causing the lift pins 114 to extend from the upper surface of the pedestal.
- the position of the lift plate 118 and/or the length of the lift pins 114 are configured such that the substrate 122 becomes spaced-apart from the substrate support pedestal 124 and generally aligned with the access port 128 when the pedestal 124 is in the lowered position.
- the pumping system 138 is coupled to a pumping port 126 formed in the chamber body 102 .
- the pumping system 138 generally includes a throttle valve and one or more pumps arranged to control the pressure within the internal volume 104 of the processing chamber 100 . Gases flowing from the internal volume 104 to the pumping port 126 may be routed through a pumping ring 142 to enhance gas flow uniformity across the surface of the substrate 122 .
- One pumping ring which may be adapted to benefit from the invention is described in U.S. patent Ser. No. 10/911,208, filed Oct. 4, 2004, which is hereby incorporated by reference in its entirety.
- the controller 146 is coupled to the various components of the processing chamber 100 to facilitate control of a silicon nitride deposition process as described below.
- the controller 146 generally includes a central processing unit (CPU) 150 , a memory 148 , and support circuits 152 .
- the CPU 150 may be one of any form of computer processor that can be used in an industrial setting for controlling various chambers and sub processors.
- the memory 148 or computer readable medium, may be one or more of readily available memory, such as random access memories (RAM), read-only memory (ROM), floppy disk, hard drive, flash memory, or any other form of digital storage, local or remote.
- the support circuits 152 are coupled to the CPU 150 for supporting the processor in a conventional manner.
- These support circuits 152 include cache, power supplies, clock circuits, input/output circuitry and subsystems, and the like.
- a process for example, a silicon-containing material deposition process 200 described below, is generally stored in the memory 148 , typically as a software routine.
- the software routine may also be stored and/or executed by a second CPU (not shown) that is remotely located from the hardware being controlled by the CPU 150 .
- the deposition process of the present invention is described as being implemented as a software routine, some of the method steps that are disclosed therein may be performed in hardware as well as by the software controller. As such, the invention may be implemented in software as executed upon a system computer, in hardware as an application specific integrated circuit or other type of hardware implementation, or a combination of software and hardware.
- FIG. 2 is a flow diagram of one embodiment of a silicon-containing material deposition process 200 , which may be performed in the processing chamber 100 , or other suitable equipment.
- the method 200 begins at step 202 by placing the substrate 122 on the substrate support pedestal 124 .
- the substrate 122 on which embodiments of the silicon nitride deposition process of the invention may be practiced include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si ⁇ 100> or Si ⁇ 111>), silicon oxide, strained silicon, SOI, silicon germanium, and doped or undoped polysilicon.
- the substrate surface on which the silicon-containing layer is deposited may be bare silicon, a dielectric material, a conductive material, a barrier material, and the like.
- the substrate 122 may be pretreated prior to the deposition of the silicon-containing material by polishing, etching, reduction, oxidation, halogenation, hydroxylation, annealing and/or baking.
- the substrate 122 is heated to a temperature less than about 550 degrees Celsius.
- the substrate 122 may be heated to a temperature above 550 degrees Celsius depending on fabrication requirements.
- the substrate 122 is heated by applying power from the power source 116 to the resistive heating element (i.e., the heater 120 ) to heat the substrate 122 to a temperature between about 300 and about 500 degrees Celsius, and in yet another embodiment, the substrate 122 is heated to less than about 450 degrees Celsius.
- a nitrogen and carbon containing chemical is provided to the interior volume of the processing chamber 100 .
- the nitrogen and carbon containing chemical is generally provided from the gas panel 136 to the inlet 104 .
- the nitrogen and carbon containing chemicals may be in liquid and/or gaseous form.
- the nitrogen and carbon containing chemical has the general chemical formula of R(C)—C X N Y R(N), where R(C) is hydrogen or other hydrocarbon compound group, R(N) is nitrogen or other nitrogen containing compound group, and x and y are positive integers.
- suitable nitrogen and carbon containing gases include, but are not limited to, (CH 3 ) 3 —N, H 3 C—NH 2 , methylamine, H 3 C—NH—NH 2 , methylhydrazine, (H 3 C)—N ⁇ N—H, and HC ⁇ N, among others.
- the nitrogen and carbon containing chemical may alternatively be characterized as a carbon, nitrogen and hydrogen containing compound that can be disassociated below 500 degrees Celsius with a high vapor pressure at room temperatures.
- suitable nitrogen and carbon containing chemicals include, but are not limited to, CH 5 N (vapor pressure of about 353 kPa at 25 degrees Celsius), methyl-hydrazine (CH 6 N 2 , vapor pressure of about 66 kPa at 25 degrees Celsius), and hydrocyanic acid (CHN; vapor pressure of about 98.8 kPa at 25 degrees Celsius), among others.
- a flow of Si-source chemical having at least one Si—N bond is provided to the interior volume 104 of the chamber body 102 through the showerhead 144 from the gas panel 136 .
- the Si-source chemical may be in liquid and/or gaseous form.
- the Si-source chemical includes at least one of (SiR 3 ) 3 —N, (SiR 3 ) 2 N—N(SiR 3 ) 2 and (SiR 3 )N ⁇ (SiR 3 )N, wherein R is hydrogen (H), or a hydrocarbon reagent or a fragment consisting of methyl, ethyl, phenyl, tertiary, butyl and their combinations.
- R is free of halogens and contains hydrogen. In another embodiment, R includes one or more halogens elements and contains hydrogen. Examples of suitable Si-source gases include (SiH 3 ) 3 —N, (SiH 3 ) 2 N—N(SiH 3 ) 2 , (SiH 3 )N ⁇ (SiH 3 )N and trisilylamine, among others.
- a silicon-containing material such as a silicon nitride (Si 3 N 4 ) film
- the deposited silicon-containing material exhibit good film qualities such as reflective index and wet etch rate, and deposition rates greater than 5 ⁇ /min.
- the silicon-containing film is deposited at a rate from about 10 ⁇ /min to about 500 ⁇ /min and is deposited to a thickness from about 10 ⁇ to about 1,000 ⁇ .
- the silicon-containing film formed as described above exhibits low hydrogen content and includes a small amount of carbon doping, which enhances boron retention in PMOS devices. In embodiments where a halogen-free Si-source chemical is utilized, improved wet etch rate may be realized.
- a carrier gas may be provided at step 206 and/or step 208 to control the partial pressure of the nitrogen and carbon containing chemical and/or the Si-source chemical from a few mtorr to a few hundred Torr, and to control the total process pressure from about 100 mtorr to about 740 Torr in single wafer chambers. In another embodiment, the pressure within the processing chamber is maintained between about 10 to 740 Torr.
- the carrier gas may be provided to control the partial pressure of the nitrogen and carbon containing chemical and/or the Si-source chemical from about 100 mTorr to 1 Torr in batch processing systems. Examples of suitable carrier gases include N 2 , Ar and He, among others.
- the method 200 includes heating the substrate 122 at step 202 to a temperature of between a temperature between about 300 and about 500 degrees Celsius, for example 450 degrees Celsius.
- a nitrogen and carbon chemical for example, (CH 3 ) 3 —N, is provided to the processing chamber 100 at step 206 .
- the nitrogen and carbon chemical is delivered at a rate between about 100 sccm to about 3000 sccm, for example about 1000 sccm to about 2000 sccm.
- a Si-source chemical for example, trisilylamine
- the total rate for a liquid source is about 10 sccm to 10,000 sccm.
- a flow ratio for (CH 3 ) 3 —N to trisilylamine is maintained at a ratio of about 10:1 to about 1:1. In one embodiment, the (CH 3 ) 3 —N to trisilylamine flow ratio is 3:1.
- an oxygen precursor may be added to the deposition method 200 , typically at step 206 and/or step 208 , to form silicon oxide or silicon oxynitride.
- Oxygen precursors that may be used in the deposition processes described herein include atomic oxygen, oxygen (O 2 ), ozone (O 3 ), H 2 O, H 2 O 2 , organic peroxides, alcohols, N 2 O, NO, NO 2 , N 2 O 5 , derivatives thereof and combinations thereof.
- the method 200 when practiced in a single-wafer processing chamber 100 as described above allows tuning of the deposited film, particularly the ability to manage and control the Si/N/C/H content of the films.
- film properties such as wet etch rate, dry etch rate, dielectric constant, and the like may be tailored for specific applications. For example, by reducing the hydrogen content, the film may be deposited with higher tensile stress.
- N—Si—R or N—Si—Si—R type of precursors the dissociation of the Si-source molecule takes place at lower temperatures, thereby enabling lower temperature processing.
- the functional group (Si—R or Si—Si) is weakly bonded compared to Si—N bond.
- nitrogen-containing source chemicals used in this invention that contain a carbon and hydrogen function group, which react with R or Si—R from N—Si—R or N—Si—Si—R in the Si-source, allow the R group to become dissociated and more easily removed than without reacting with nitrogen-source chemical.
- the nitrogen-source chemical functions as catalyst in this process in addition to providing additional nitrogen and carbon source to the final film.
- the nitrogen-source advantageously facilitates low temperature processing, e.g., at temperatures less than about 550 degrees Celsius.
- Silicon-containing materials are deposited utilizing the method 200 described above are used throughout electronic features/devices due to several physical properties.
- Silicon-nitrogen-containing materials such as silicon nitride
- the barrier properties inhibit ion diffusion between dissimilar materials or elements when silicon-nitride-containing material is placed therebetween, such as a gate material and an electrode, or between a low dielectric constant porous materials and copper. Therefore, silicon-nitride-containing materials may be used in barrier layers, protective layers, off-set layers, spacer layers and capping layers. Another physical property of silicon nitride materials is a high degree of hardness. In some applications, silicon-containing materials may be used as a protective coating for various optical devices as well as tools.
- silicon-nitride-containing material such as silicon nitride
- silicon oxide i.e., silicon nitride can be used as etch stop layer under a silicon oxide dielectric layer to accurately control etch depth without over etching or under etching.
- silicon-nitrogen-containing materials is that the carbon and hydrogen concentration can be used to tune film stress, such as high tensile stress which is desirable in selected applications.
- silicon nitride materials may be deposited as various layers in MOSFET and bipolar transistors as depicted in FIGS. 3A-B and 4 .
- FIG. 3A shows silicon nitride materials deposited within a MOSFET containing both recessed and elevated source/drains.
- Source/drain layer 312 is formed by ion implantation of the substrate 310 .
- the substrate 310 is doped n-type while the source/drain layer 312 is doped p-type material.
- Silicon-containing layer 313 usually Si, SiGe or SiGeC, is selectively and epitaxially grown on the source/drain layer 312 or directly on substrate 310 by CVD methods.
- Silicon-containing layer 314 is also selectively and epitaxially grown on the silicon-containing layer 313 by CVD methods.
- a gate barrier layer 318 bridges the segmented silicon-containing layer 313 .
- gate barrier layer 318 maybe composed of silicon oxide, silicon oxynitride, hafnium oxide or hafnium silicate.
- a spacer 316 is usually an isolation material such as a nitride/oxide/nitride stack (e.g., Si 3 N 4 /SiO 2 /Si 3 N 4 ).
- spacer 316 may be a homogeneous layer of a silicon nitride material, such as silicon nitride or silicon oxynitride deposited by the various methods described herein.
- Gate layer 322 e.g., polysilicon
- Off-set layers 320 may be composed of a silicon nitride material, such as silicon nitride, deposited by the various processes described herein.
- FIG. 3B shows etch stop layer 324 for source/drain and gate contact via etch deposited over a MOSFET.
- Etch stop layer 324 may be composed of a silicon nitride material, such as silicon nitride, deposited by the various methods described herein.
- a pre-metal dielectric layer 326 e.g., silicon oxide is deposited on etch stop layer 324 and contains contact hole vias 328 formed thereon.
- FIG. 4 depicts deposited silicon nitride material as several layers within a bipolar transistor using various embodiments of the invention.
- the silicon-containing compound layer 434 is deposited on an n-type collector layer 432 previously deposited on substrate 430 .
- the transistor further includes isolation layer 433 (e.g., SiO 2 , SiO x N y or Si 3 N 4 ), contact layer 436 (e.g., heavily doped poly-Si), off-set layer 438 (e.g., Si 3 N 4 ), and a second isolation layer 440 (e.g., SiO 2 , SiO x N y or Si 3 N 4 ).
- isolation layer 433 e.g., SiO 2 , SiO x N y or Si 3 N 4
- contact layer 436 e.g., heavily doped poly-Si
- off-set layer 438 e.g., Si 3 N 4
- a second isolation layer 440 e.g., SiO 2 , Si
- Isolation layers 433 and 440 and off-set layer 438 may be independently deposited as a silicon nitride material, such as silicon oxynitride, silicon carbon nitride, and/or silicon nitride deposited by the various processes described herein.
- the isolation layers 433 and 440 are silicon oxynitride and off-set layer 338 is silicon nitride.
- a method for depositing a silicon-containing layer such as silicon nitride.
- the method described above is suitable for device fabrication having small critical dimensions requiring low thermal budgets due to the use of deposition temperatures less than about 550 degrees Celsius, which advantageously facilitates robust circuit fabrication using sub 90 nm technology.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes heating a substrate disposed in a processing chamber to a temperature less than about 550 degrees Celsius; flowing a nitrogen and carbon containing chemical comprising (H3C)—N═N—H into the processing chamber; flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber; and depositing a silicon and nitrogen containing film on the substrate.
Description
- This application is a continuation of U.S. patent application Ser. No. 11/155,646, filed Jun. 17, 2005, by Yaxin Wang, et al., entitled, “Method For Silicon Based Dielectric Chemical Vapor Deposition,” which is hereby incorporated by reference in its entirety.
- 1. Field
- Embodiments of the invention generally relate to methods for depositing silicon-containing materials, and more particularly, embodiments of the invention relate to chemical vapor deposition techniques for thermally depositing silicon nitride materials.
- 2. Description of the Related Art
- Thermal chemical vapor deposition (CVD) of silicon-containing films, such as silicon nitride, is a state of the art, front end process used during semiconductor device manufacturing. For example, in a thermal CVD process for depositing silicon nitride, thermal energy is utilized for breaking one or more feedstock chemicals, which includes a silicon precursor, to make a thin film of a silicon nitride on a substrate surface. Conventional thermal CVD of silicon-containing materials is typically performed in a batch furnace or in a single wafer deposition chamber operating at elevated temperatures typically in excess of 550 degrees Celsius. As device geometries shrink to enable faster integrated circuits, the thermal budget for deposited films must be reduced in order to obtain satisfactory processing results, good production yield and robust device performance. Although some CVD processes for silicon-containing materials having deposition temperatures less than 550 degrees Celsius have been proposed, none have exhibited production worthiness suitable for large scale utilization in semiconductor device fabrication.
- Thus, there is a need for a method of depositing silicon-containing materials, such as silicon nitride, at a temperature less than about 550 degrees Celsius.
- Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing a silicon-containing film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.
- In one embodiment, a method for depositing silicon-containing material film on a substrate includes heating a substrate disposed in a processing chamber to a temperature less than about 550 degrees Celsius; flowing a nitrogen and carbon containing chemical comprising (H3C)—N═N—H into the processing chamber; flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber; and depositing a silicon and nitrogen containing film on the substrate.
- So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
-
FIG. 1 is a simplified cross sectional view of one embodiment of a deposition chamber in which a method of depositing silicon nitride of the present invention may be performed; -
FIG. 2 is a flow diagram of one embodiment of a method of depositing a silicon nitride film; -
FIGS. 3A-B are cross sectional views of a MOSFET transistor having a silicon nitride layer at least partially deposited according to the method ofFIG. 2 ; and -
FIG. 4 is a cross section of an exemplary bi-polar transistor having a silicon nitride layer at least partially deposited utilizing the method ofFIG. 2 . - To facilitate understanding, identical reference numerals have been used, wherever possible, to designate identical elements that are common to the figures. It is contemplated that some elements of one embodiment may be beneficially incorporated in other embodiments.
- Embodiments of the invention provide a method for depositing a silicon-containing film, such as silicon nitride and the like, on a substrate utilizing temperatures less than about 550 degrees Celsius. Although the invention is described with reference to a single wafer thermal-chemical vapor deposition (processing)
chamber 100 illustrated inFIG. 1 , it is contemplated that the method may be beneficially practiced in other deposition systems, including batch deposition systems. One processing chamber in which the silicon nitride deposition process may be performed is a SiNgen® Plus chamber, available from Applied Materials, Inc., of Santa Clara, Calif. Examples of other systems which may be adapted to practice the invention include the TELFORMULA batch furnace available from Tokyo Electron Limited; the FLEXSTAR® mini-batch silicon deposition system available from Applied Materials, Inc.; and the EPSILON® Single-Wafer Epitaxial Reactors from ASM International N.V., among others. - Besides thermal-CVD, other useful processes to deposit silicon nitride materials include pulsed-CVD and atomic layer deposition (ALD). During a pulsed-CVD process, reagents, such as a silicon precursor and a reactant, are co-flowed and pulsed into the process chamber. During an ALD process, reagents, such as a silicon precursor and a reactant, are individually and sequentially pulsed into the process chamber. Plasma enhanced deposition techniques may be used during either ALD or CVD processes. Silicon-containing materials may be deposited to a single substrate or a batch of substrates during the deposition processes described herein.
- In the embodiment of
FIG. 1 , theprocessing chamber 100 includes achamber body 102 coupled to apumping system 138, acontroller 146, and agas panel 136. Thechamber body 102 haswalls 106, abottom 108, and alid 110 that define aninternal volume 104. Thewalls 106 of thebody 102 may be thermally regulated. In one embodiment, a plurality ofconduits 112 are disposed in thewalls 106 and are configured to circulate a heat transfer fluid that regulates the temperature of thechamber body 102. Thewalls 106 additionally include asubstrate access port 128 configured to facilitate entry and egress of a workpiece, such as asubstrate 122, from theprocessing chamber 100. - A
substrate support pedestal 124 is disposed in theinternal volume 104 of thechamber body 102 and supports thesubstrate 122 during processing. Thesubstrate support pedestal 124 includes aheater 120 configured to regulate the temperature of thesubstrate 122 and/or heat theinterior volume 104 of theprocessing chamber 100. In the embodiment depicted inFIG. 1 , theheater 120 is a resistive heating element coupled to apower source 116 and is capable of heating the substrate to a temperature of at least 550 degrees Celsius. - A
pedestal lift assembly 130 is coupled to thesubstrate support pedestal 124 and is configured to control the elevation of thepedestal 124 between an elevated processing position (as shown inFIG. 1 ) and a lowered position that facilitates access to thesubstrate 122 disposed on thepedestal 124 through thesubstrate access port 128. Thepedestal lift assembly 130 is sealingly coupled to thebottom 108 of thechamber body 102 by aflexible bellows 132. Optionally, thepedestal lift assembly 130 may be configured to rotate thepedestal 124 during processing. - The
gas panel 136 is coupled to theprocessing chamber 100 and is configured to provide process chemicals, in liquid and/or gaseous form, and other gases to theinternal volume 124 of the chamber body. In the embodiment depicted inFIG. 1 , thegas panel 136 is coupled by agas line 140, which is used to transfer process chemical or mixed process gases or vapors from liquid injector generated from a selected liquid chemical source, to aninlet port 134 formed in thelid 110 of thechamber body 102. It is contemplated that theinlet port 134 may be formed through one or more other locations of thechamber body 102. - A
showerhead 144 is coupled to thechamber body 102 to enhance the uniform distribution of gases or vapors provided by the gas panel orliquid injector 136 into theinternal volume 104 of theprocessing chamber 100. Theshowerhead 144 includes aperforated region 154. The holes formed in theperforated region 154 are configured in size, geometry, number and distribution as to provide a predefined flow distribution of gases passing through theshowerhead 144 to thesubstrate 122. - Lift pins 114 (of which one is shown in
FIG. 1 ) are provided to separate thesubstrate 122 from the upper surface of thesubstrate support pedestal 124 to facilitate substrate hand-off with a robot (not shown) entering the chamber body through theaccess port 128. In the embodiment depicted inFIG. 1 , alift plate 118 is disposed below thesubstrate support pedestal 124 and arranged such that as thepedestal 124 is lowered, thelift pins 114 come in contact with thelift plate 118 before thepedestal 124 has completed its downward travel. Thelift plate 118 supports thelift pins 114 as thepedestal 124 continues downward, causing thelift pins 114 to extend from the upper surface of the pedestal. The position of thelift plate 118 and/or the length of thelift pins 114 are configured such that thesubstrate 122 becomes spaced-apart from thesubstrate support pedestal 124 and generally aligned with theaccess port 128 when thepedestal 124 is in the lowered position. - The
pumping system 138 is coupled to apumping port 126 formed in thechamber body 102. Thepumping system 138 generally includes a throttle valve and one or more pumps arranged to control the pressure within theinternal volume 104 of theprocessing chamber 100. Gases flowing from theinternal volume 104 to thepumping port 126 may be routed through apumping ring 142 to enhance gas flow uniformity across the surface of thesubstrate 122. One pumping ring which may be adapted to benefit from the invention is described in U.S. patent Ser. No. 10/911,208, filed Oct. 4, 2004, which is hereby incorporated by reference in its entirety. - The
controller 146 is coupled to the various components of theprocessing chamber 100 to facilitate control of a silicon nitride deposition process as described below. Thecontroller 146 generally includes a central processing unit (CPU) 150, a memory 148, and supportcircuits 152. TheCPU 150 may be one of any form of computer processor that can be used in an industrial setting for controlling various chambers and sub processors. The memory 148, or computer readable medium, may be one or more of readily available memory, such as random access memories (RAM), read-only memory (ROM), floppy disk, hard drive, flash memory, or any other form of digital storage, local or remote. Thesupport circuits 152 are coupled to theCPU 150 for supporting the processor in a conventional manner. Thesesupport circuits 152 include cache, power supplies, clock circuits, input/output circuitry and subsystems, and the like. A process, for example, a silicon-containingmaterial deposition process 200 described below, is generally stored in the memory 148, typically as a software routine. The software routine may also be stored and/or executed by a second CPU (not shown) that is remotely located from the hardware being controlled by theCPU 150. Although the deposition process of the present invention is described as being implemented as a software routine, some of the method steps that are disclosed therein may be performed in hardware as well as by the software controller. As such, the invention may be implemented in software as executed upon a system computer, in hardware as an application specific integrated circuit or other type of hardware implementation, or a combination of software and hardware. -
FIG. 2 is a flow diagram of one embodiment of a silicon-containingmaterial deposition process 200, which may be performed in theprocessing chamber 100, or other suitable equipment. Themethod 200 begins atstep 202 by placing thesubstrate 122 on thesubstrate support pedestal 124. Thesubstrate 122 on which embodiments of the silicon nitride deposition process of the invention may be practiced include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, strained silicon, SOI, silicon germanium, and doped or undoped polysilicon. The substrate surface on which the silicon-containing layer is deposited may be bare silicon, a dielectric material, a conductive material, a barrier material, and the like. Optionally, thesubstrate 122 may be pretreated prior to the deposition of the silicon-containing material by polishing, etching, reduction, oxidation, halogenation, hydroxylation, annealing and/or baking. - At
step 204, thesubstrate 122 is heated to a temperature less than about 550 degrees Celsius. Optionally, thesubstrate 122 may be heated to a temperature above 550 degrees Celsius depending on fabrication requirements. In one embodiment, thesubstrate 122 is heated by applying power from thepower source 116 to the resistive heating element (i.e., the heater 120) to heat thesubstrate 122 to a temperature between about 300 and about 500 degrees Celsius, and in yet another embodiment, thesubstrate 122 is heated to less than about 450 degrees Celsius. - At
step 206, a nitrogen and carbon containing chemical is provided to the interior volume of theprocessing chamber 100. The nitrogen and carbon containing chemical is generally provided from thegas panel 136 to theinlet 104. The nitrogen and carbon containing chemicals may be in liquid and/or gaseous form. - In one embodiment, the nitrogen and carbon containing chemical has the general chemical formula of R(C)—CXNYR(N), where R(C) is hydrogen or other hydrocarbon compound group, R(N) is nitrogen or other nitrogen containing compound group, and x and y are positive integers. Examples of suitable nitrogen and carbon containing gases include, but are not limited to, (CH3)3—N, H3C—NH2, methylamine, H3C—NH—NH2, methylhydrazine, (H3C)—N═N—H, and HC≡N, among others.
- The nitrogen and carbon containing chemical may alternatively be characterized as a carbon, nitrogen and hydrogen containing compound that can be disassociated below 500 degrees Celsius with a high vapor pressure at room temperatures. Other examples of suitable nitrogen and carbon containing chemicals include, but are not limited to, CH5N (vapor pressure of about 353 kPa at 25 degrees Celsius), methyl-hydrazine (CH6N2, vapor pressure of about 66 kPa at 25 degrees Celsius), and hydrocyanic acid (CHN; vapor pressure of about 98.8 kPa at 25 degrees Celsius), among others.
- At
step 208, a flow of Si-source chemical having at least one Si—N bond is provided to theinterior volume 104 of thechamber body 102 through theshowerhead 144 from thegas panel 136. The Si-source chemical may be in liquid and/or gaseous form. In one embodiment, the Si-source chemical includes at least one of (SiR3)3—N, (SiR3)2N—N(SiR3)2 and (SiR3)N═(SiR3)N, wherein R is hydrogen (H), or a hydrocarbon reagent or a fragment consisting of methyl, ethyl, phenyl, tertiary, butyl and their combinations. In one embodiment, R is free of halogens and contains hydrogen. In another embodiment, R includes one or more halogens elements and contains hydrogen. Examples of suitable Si-source gases include (SiH3)3—N, (SiH3)2N—N(SiH3)2, (SiH3)N═(SiH3)N and trisilylamine, among others. - Although one
gas line 140 is shown disposed between thegas panel 136 and theinlet port 134, it is contemplated that the Si-source chemical and the nitrogen and carbon containing chemical are provided to theprocessing chamber 100 in separate gas lines. It is also contemplated that the gas lines may be temperature controlled. It is further also contemplated that carbon containing chemicals instep 206 together with nitrogen and/or Si-containing chemicals instep 208 can be introduced toinlet port 134 simultaneously, or sequentially. As such, either step 206 may occur beforestep 208, or step 206 may occur afterstep 208. Furthermore, steps 206, 208 may be executed to selectively control the chemical dosing time to ensure atomic layer coverage, and to allow purging between each step with desirable inert gases, such as argon. - As the Si-source chemical and the nitrogen and carbon containing chemical are combined in the
substrate processing chamber 100, a silicon-containing material, such as a silicon nitride (Si3N4) film, is formed on theheated substrate 122. The deposited silicon-containing material exhibit good film qualities such as reflective index and wet etch rate, and deposition rates greater than 5 Å/min. In one embodiment, the silicon-containing film is deposited at a rate from about 10 Å/min to about 500 Å/min and is deposited to a thickness from about 10 Å to about 1,000 Å. The silicon-containing film formed as described above exhibits low hydrogen content and includes a small amount of carbon doping, which enhances boron retention in PMOS devices. In embodiments where a halogen-free Si-source chemical is utilized, improved wet etch rate may be realized. - A carrier gas may be provided at
step 206 and/or step 208 to control the partial pressure of the nitrogen and carbon containing chemical and/or the Si-source chemical from a few mtorr to a few hundred Torr, and to control the total process pressure from about 100 mtorr to about 740 Torr in single wafer chambers. In another embodiment, the pressure within the processing chamber is maintained between about 10 to 740 Torr. The carrier gas may be provided to control the partial pressure of the nitrogen and carbon containing chemical and/or the Si-source chemical from about 100 mTorr to 1 Torr in batch processing systems. Examples of suitable carrier gases include N2, Ar and He, among others. - In another embodiment, the
method 200 includes heating thesubstrate 122 atstep 202 to a temperature of between a temperature between about 300 and about 500 degrees Celsius, for example 450 degrees Celsius. A nitrogen and carbon chemical, for example, (CH3)3—N, is provided to theprocessing chamber 100 atstep 206. The nitrogen and carbon chemical is delivered at a rate between about 100 sccm to about 3000 sccm, for example about 1000 sccm to about 2000 sccm. A Si-source chemical, for example, trisilylamine, is provided to theprocessing chamber 100 atstep 208 at a rate between about 1 sccm to about 300 sccm, or in another example, at a rate between about 13 sccm to about 130 sccm. In embodiments where a carrier gas is combined with the Si-source chemical, the total rate for a liquid source is about 10 sccm to 10,000 sccm. Generally, a flow ratio for (CH3)3—N to trisilylamine is maintained at a ratio of about 10:1 to about 1:1. In one embodiment, the (CH3)3—N to trisilylamine flow ratio is 3:1. - Optionally, an oxygen precursor may be added to the
deposition method 200, typically atstep 206 and/or step 208, to form silicon oxide or silicon oxynitride. Oxygen precursors that may be used in the deposition processes described herein include atomic oxygen, oxygen (O2), ozone (O3), H2O, H2O2, organic peroxides, alcohols, N2O, NO, NO2, N2O5, derivatives thereof and combinations thereof. - The
method 200 when practiced in a single-wafer processing chamber 100 as described above allows tuning of the deposited film, particularly the ability to manage and control the Si/N/C/H content of the films. By controlling the relative Si, N, C and H content of the film, film properties such as wet etch rate, dry etch rate, dielectric constant, and the like may be tailored for specific applications. For example, by reducing the hydrogen content, the film may be deposited with higher tensile stress. - Additionally, by using N—Si—R or N—Si—Si—R type of precursors, the dissociation of the Si-source molecule takes place at lower temperatures, thereby enabling lower temperature processing. The reason for this is that the functional group (Si—R or Si—Si) is weakly bonded compared to Si—N bond. Furthermore, nitrogen-containing source chemicals used in this invention that contain a carbon and hydrogen function group, which react with R or Si—R from N—Si—R or N—Si—Si—R in the Si-source, allow the R group to become dissociated and more easily removed than without reacting with nitrogen-source chemical. Thus, the nitrogen-source chemical functions as catalyst in this process in addition to providing additional nitrogen and carbon source to the final film. Thus, the nitrogen-source advantageously facilitates low temperature processing, e.g., at temperatures less than about 550 degrees Celsius.
- Silicon-containing materials are deposited utilizing the
method 200 described above are used throughout electronic features/devices due to several physical properties. Silicon-nitrogen-containing materials, such as silicon nitride, are electric insulators, as well as barrier materials. The barrier properties inhibit ion diffusion between dissimilar materials or elements when silicon-nitride-containing material is placed therebetween, such as a gate material and an electrode, or between a low dielectric constant porous materials and copper. Therefore, silicon-nitride-containing materials may be used in barrier layers, protective layers, off-set layers, spacer layers and capping layers. Another physical property of silicon nitride materials is a high degree of hardness. In some applications, silicon-containing materials may be used as a protective coating for various optical devices as well as tools. Another physical property of silicon-nitride-containing material such as silicon nitride is etch selectivity to silicon oxide, i.e., silicon nitride can be used as etch stop layer under a silicon oxide dielectric layer to accurately control etch depth without over etching or under etching. Yet another physical property of silicon-nitrogen-containing materials is that the carbon and hydrogen concentration can be used to tune film stress, such as high tensile stress which is desirable in selected applications. - In some embodiments, silicon nitride materials may be deposited as various layers in MOSFET and bipolar transistors as depicted in
FIGS. 3A-B and 4. For example,FIG. 3A shows silicon nitride materials deposited within a MOSFET containing both recessed and elevated source/drains. Source/drain layer 312 is formed by ion implantation of thesubstrate 310. Generally, thesubstrate 310 is doped n-type while the source/drain layer 312 is doped p-type material. Silicon-containinglayer 313, usually Si, SiGe or SiGeC, is selectively and epitaxially grown on the source/drain layer 312 or directly onsubstrate 310 by CVD methods. Silicon-containinglayer 314 is also selectively and epitaxially grown on the silicon-containinglayer 313 by CVD methods. Agate barrier layer 318 bridges the segmented silicon-containinglayer 313. Generally,gate barrier layer 318 maybe composed of silicon oxide, silicon oxynitride, hafnium oxide or hafnium silicate. Partially encompassing thegate barrier layer 318 is aspacer 316, which is usually an isolation material such as a nitride/oxide/nitride stack (e.g., Si3N4/SiO2/Si3N4). Alternatively,spacer 316 may be a homogeneous layer of a silicon nitride material, such as silicon nitride or silicon oxynitride deposited by the various methods described herein. Gate layer 322 (e.g., polysilicon) may have aspacer 316 and off-setlayers 320 disposed on either side. Off-setlayers 320 may be composed of a silicon nitride material, such as silicon nitride, deposited by the various processes described herein. -
FIG. 3B showsetch stop layer 324 for source/drain and gate contact via etch deposited over a MOSFET.Etch stop layer 324 may be composed of a silicon nitride material, such as silicon nitride, deposited by the various methods described herein. A pre-metal dielectric layer 326 (e.g., silicon oxide) is deposited onetch stop layer 324 and contains contact hole vias 328 formed thereon. - In another embodiment,
FIG. 4 depicts deposited silicon nitride material as several layers within a bipolar transistor using various embodiments of the invention. The silicon-containingcompound layer 434 is deposited on an n-type collector layer 432 previously deposited onsubstrate 430. The transistor further includes isolation layer 433 (e.g., SiO2, SiOxNy or Si3N4), contact layer 436 (e.g., heavily doped poly-Si), off-set layer 438 (e.g., Si3N4), and a second isolation layer 440 (e.g., SiO2, SiOxNy or Si3N4). Isolation layers 433 and 440 and off-setlayer 438 may be independently deposited as a silicon nitride material, such as silicon oxynitride, silicon carbon nitride, and/or silicon nitride deposited by the various processes described herein. In one embodiment, the isolation layers 433 and 440 are silicon oxynitride and off-set layer 338 is silicon nitride. - Thus, a method for depositing a silicon-containing layer, such as silicon nitride, has been provided. The method described above is suitable for device fabrication having small critical dimensions requiring low thermal budgets due to the use of deposition temperatures less than about 550 degrees Celsius, which advantageously facilitates robust circuit fabrication using sub 90 nm technology.
- While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims (20)
1. A method for depositing a silicon-containing film on a substrate, the method comprising:
heating a substrate disposed in a processing chamber to a temperature less than about 550 degrees Celsius;
flowing a nitrogen and carbon containing chemical comprising (H3C)—N═N—H into the processing chamber;
flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber; and
depositing a silicon and nitrogen containing film on the substrate.
2. The method of claim 1 , wherein the silicon-containing source chemical is at least one of (SiR3)3—N, (SiR3)2N—N(SiR3)2 and (SiR3)N═(SiR3)N, wherein R is hydrogen (H), or a hydrocarbon reagent or a fragment consisting of methyl, ethyl, phenyl, tertiary butyl and their combinations.
3. The method of claim 2 , wherein the R is free of halogens and contains hydrogen.
4. The method of claim 2 , wherein the R includes one or more halogen elements.
5. The method of claim 1 , wherein the silicon-containing source chemical is (SiH3)3—N, (SiH3)2N—N(SiH3)2, (SiH3)N═(SiH3)N.
6. The method of claim 1 , wherein a deposition rate of the silicon and nitrogen containing film is between about 10 to about 500 Angstroms/second.
7. The method of claim 1 , further comprising:
providing a carrier gas to control the partial pressure of at least one of the nitrogen and carbon containing chemical or the silicon-containing source chemical, wherein the partial pressure is between about 0.1 to about 1 Torr.
8. The method of claim 7 , wherein the carrier gas includes at least one of nitrogen (N2), argon (Ar), or helium (He).
9. The method of claim 1 , wherein the silicon-containing source chemical is trisilylamine.
10. The method of claim 1 , wherein the step of heating the substrate further comprises:
heating the substrate to a temperature between about 300 to about 500 degrees Celsius; and
maintaining a pressure within the processing chamber between about 10 to 740 Torr.
11. The method of claim 1 further comprising:
flowing an oxygen precursor into the processing chamber, wherein the oxygen precursor is at least one of atomic-oxygen, oxygen (O2), ozone (O3), H2O, H2O2, organic peroxides, alcohols, N2O, NO, NO2, N2O5 and derivatives thereof.
12. The method of claim 1 , wherein the step of depositing the silicon-containing film further comprises:
depositing a single atomic layer of silicon-containing material.
13. A method for depositing a silicon-containing film on a substrate, the method comprising:
heating a substrate disposed in a processing chamber to a temperature between about 400-500 degrees Celsius;
flowing a nitrogen and carbon containing chemical comprising (H3C)—N═N—H into the processing chamber;
flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber, wherein the silicon-containing source chemical is at least one of (SiR3)3—N, (SiR3)2N—N(SiR3)2 and (SiR3)N═(SiR3)N, wherein R is hydrogen (H), or a hydrocarbon reagent or a fragment consisting of methyl, ethyl, phenyl, tertiary butyl and their combinations; and
depositing a silicon and nitrogen containing film on the substrate.
14. The method of claim 13 , wherein the R is free of halogens and contains hydrogen.
15. The method of claim 13 , wherein the R includes one or more halogen elements.
16. The method of claim 13 , wherein the silicon-containing source chemical is (SiH3)3—N, (SiH3)2N—N(SiH3)2, or (SiH3)N═(SiH3)N.
17. The method of claim 13 , wherein a deposition rate of the silicon and nitrogen containing film is between about 10 to about 500 Angstroms/second.
18. The method of claim 13 , further comprising:
providing a carrier gas to control the partial pressure of at least one of the nitrogen and carbon containing chemical or the silicon-containing source chemical, wherein the partial pressure is between about 0.1 to about 1 Torr.
19. The method of claim 19 , wherein the carrier gas includes at least one of nitrogen (N2), argon (Ar), or helium (He).
20. The method of claim 13 , further comprising:
flowing an oxygen precursor into the processing chamber, wherein the oxygen precursor is at least one of atomic-oxygen, oxygen (O2), ozone (O3), H2O, H2O2, organic peroxides, alcohols, N2O, NO, NO2, N2O5 and derivatives thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/348,382 US20090111284A1 (en) | 2005-06-17 | 2009-01-05 | Method for silicon based dielectric chemical vapor deposition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/155,646 US7473655B2 (en) | 2005-06-17 | 2005-06-17 | Method for silicon based dielectric chemical vapor deposition |
US12/348,382 US20090111284A1 (en) | 2005-06-17 | 2009-01-05 | Method for silicon based dielectric chemical vapor deposition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/155,646 Continuation US7473655B2 (en) | 2005-06-17 | 2005-06-17 | Method for silicon based dielectric chemical vapor deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090111284A1 true US20090111284A1 (en) | 2009-04-30 |
Family
ID=37570963
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/155,646 Expired - Fee Related US7473655B2 (en) | 2005-06-17 | 2005-06-17 | Method for silicon based dielectric chemical vapor deposition |
US12/348,382 Abandoned US20090111284A1 (en) | 2005-06-17 | 2009-01-05 | Method for silicon based dielectric chemical vapor deposition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/155,646 Expired - Fee Related US7473655B2 (en) | 2005-06-17 | 2005-06-17 | Method for silicon based dielectric chemical vapor deposition |
Country Status (6)
Country | Link |
---|---|
US (2) | US7473655B2 (en) |
JP (1) | JP2008547199A (en) |
KR (1) | KR20080006019A (en) |
CN (1) | CN101199044A (en) |
TW (1) | TWI343952B (en) |
WO (1) | WO2006138103A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150162191A1 (en) * | 2013-12-10 | 2015-06-11 | Applied Materials, Inc. | Substituted Silacyclopropane Precursors And Their Use For The Deposition Of Silicon-Containing Films |
US20170323783A1 (en) * | 2016-12-11 | 2017-11-09 | Air Liquide Advanced Materials, Inc. | Short inorganic trisilylamine-based polysilazanes for thin film deposition |
CN110579516A (en) * | 2019-09-02 | 2019-12-17 | 青岛歌尔智能传感器有限公司 | nitrogen dioxide gas detection device, manufacturing method thereof and electronic product |
US11107674B2 (en) | 2019-01-24 | 2021-08-31 | Applied Materials, Inc. | Methods for depositing silicon nitride |
Families Citing this family (423)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050252449A1 (en) | 2004-05-12 | 2005-11-17 | Nguyen Son T | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
JP2006261434A (en) | 2005-03-17 | 2006-09-28 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | Method for forming silicon oxide film |
US7473655B2 (en) * | 2005-06-17 | 2009-01-06 | Applied Materials, Inc. | Method for silicon based dielectric chemical vapor deposition |
US7798096B2 (en) | 2006-05-05 | 2010-09-21 | Applied Materials, Inc. | Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool |
US7501355B2 (en) | 2006-06-29 | 2009-03-10 | Applied Materials, Inc. | Decreasing the etch rate of silicon nitride by carbon addition |
US20080274626A1 (en) * | 2007-05-04 | 2008-11-06 | Frederique Glowacki | Method for depositing a high quality silicon dielectric film on a germanium substrate with high quality interface |
US7659158B2 (en) | 2008-03-31 | 2010-02-09 | Applied Materials, Inc. | Atomic layer deposition processes for non-volatile memory devices |
KR101008490B1 (en) * | 2008-05-19 | 2011-01-14 | 주식회사 테스 | Oxide film deposition method by low temperature chemical vapor deposition |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US20110256734A1 (en) | 2010-04-15 | 2011-10-20 | Hausmann Dennis M | Silicon nitride films and methods |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US8956983B2 (en) | 2010-04-15 | 2015-02-17 | Novellus Systems, Inc. | Conformal doping via plasma activated atomic layer deposition and conformal film deposition |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9076646B2 (en) | 2010-04-15 | 2015-07-07 | Lam Research Corporation | Plasma enhanced atomic layer deposition with pulsed plasma exposure |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US8912353B2 (en) | 2010-06-02 | 2014-12-16 | Air Products And Chemicals, Inc. | Organoaminosilane precursors and methods for depositing films comprising same |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US8647993B2 (en) | 2011-04-11 | 2014-02-11 | Novellus Systems, Inc. | Methods for UV-assisted conformal film deposition |
US8771807B2 (en) | 2011-05-24 | 2014-07-08 | Air Products And Chemicals, Inc. | Organoaminosilane precursors and methods for making and using same |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US8592328B2 (en) | 2012-01-20 | 2013-11-26 | Novellus Systems, Inc. | Method for depositing a chlorine-free conformal sin film |
JP6041527B2 (en) * | 2012-05-16 | 2016-12-07 | キヤノン株式会社 | Liquid discharge head |
US9064694B2 (en) | 2012-07-12 | 2015-06-23 | Tokyo Electron Limited | Nitridation of atomic layer deposited high-k dielectrics using trisilylamine |
US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
KR102207992B1 (en) | 2012-10-23 | 2021-01-26 | 램 리써치 코포레이션 | Sub-saturated atomic layer deposition and conformal film deposition |
SG2013083654A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Methods for depositing films on sensitive substrates |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
EP2935646A4 (en) * | 2012-12-21 | 2016-10-12 | Prasad Narhar Gadgil | Methods of low temperature deposition of ceramic thin films |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9824881B2 (en) | 2013-03-14 | 2017-11-21 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US9564309B2 (en) | 2013-03-14 | 2017-02-07 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US8993054B2 (en) | 2013-07-12 | 2015-03-31 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US9605343B2 (en) | 2013-11-13 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming conformal carbon films, structures conformal carbon film, and system of forming same |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9576792B2 (en) | 2014-09-17 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of SiN |
US9875888B2 (en) | 2014-10-03 | 2018-01-23 | Applied Materials, Inc. | High temperature silicon oxide atomic layer deposition technology |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
KR102300403B1 (en) | 2014-11-19 | 2021-09-09 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing thin film |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
KR102263121B1 (en) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor device and manufacuring method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
US20170051405A1 (en) * | 2015-08-18 | 2017-02-23 | Asm Ip Holding B.V. | Method for forming sin or sicn film in trenches by peald |
US10410857B2 (en) | 2015-08-24 | 2019-09-10 | Asm Ip Holding B.V. | Formation of SiN thin films |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
KR102458309B1 (en) | 2015-12-28 | 2022-10-24 | 삼성전자주식회사 | Method of forming a SiOCN material layer and method of fabricating a semiconductor device |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102592471B1 (en) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming metal interconnection and method of fabricating semiconductor device using the same |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (en) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR102762543B1 (en) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10790140B2 (en) | 2017-02-14 | 2020-09-29 | Applied Materials, Inc. | High deposition rate and high quality nitride |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR102354258B1 (en) * | 2017-07-06 | 2022-01-21 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods of Forming a Stack of Multiple Deposited Semiconductor Layers |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10276411B2 (en) | 2017-08-18 | 2019-04-30 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
KR102597978B1 (en) | 2017-11-27 | 2023-11-06 | 에이에스엠 아이피 홀딩 비.브이. | Storage device for storing wafer cassettes for use with batch furnaces |
JP7206265B2 (en) | 2017-11-27 | 2023-01-17 | エーエスエム アイピー ホールディング ビー.ブイ. | Equipment with a clean mini-environment |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
WO2019142055A2 (en) | 2018-01-19 | 2019-07-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US11028480B2 (en) | 2018-03-19 | 2021-06-08 | Applied Materials, Inc. | Methods of protecting metallic components against corrosion using chromium-containing thin films |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
KR102600229B1 (en) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate supporting device, substrate processing apparatus including the same and substrate processing method |
WO2019209401A1 (en) | 2018-04-27 | 2019-10-31 | Applied Materials, Inc. | Protection of components from corrosion |
US10580645B2 (en) | 2018-04-30 | 2020-03-03 | Asm Ip Holding B.V. | Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
CN112292477A (en) | 2018-06-27 | 2021-01-29 | Asm Ip私人控股有限公司 | Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials |
TWI871083B (en) | 2018-06-27 | 2025-01-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
CN112771645A (en) * | 2018-07-31 | 2021-05-07 | 应用材料公司 | Oxide/nitride (ON) stack coverage improvement for 3D NAND |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11009339B2 (en) | 2018-08-23 | 2021-05-18 | Applied Materials, Inc. | Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (en) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI866480B (en) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR102727227B1 (en) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
JP7603377B2 (en) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and apparatus for filling recesses formed in a substrate surface - Patents.com |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI838458B (en) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for plug fill deposition in 3-d nand applications |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR102762833B1 (en) | 2019-03-08 | 2025-02-04 | 에이에스엠 아이피 홀딩 비.브이. | STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR102782593B1 (en) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
JP2020167398A (en) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | Door openers and substrate processing equipment provided with door openers |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
WO2020219332A1 (en) | 2019-04-26 | 2020-10-29 | Applied Materials, Inc. | Methods of protecting aerospace components against corrosion and oxidation |
JP7494209B2 (en) | 2019-05-01 | 2024-06-03 | ラム リサーチ コーポレーション | Tailored atomic layer deposition |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
US11794382B2 (en) | 2019-05-16 | 2023-10-24 | Applied Materials, Inc. | Methods for depositing anti-coking protective coatings on aerospace components |
JP7612342B2 (en) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
JP7598201B2 (en) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141002A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of using a gas-phase reactor system including analyzing exhausted gas |
KR20200141931A (en) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for cleaning quartz epitaxial chambers |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
US11697879B2 (en) | 2019-06-14 | 2023-07-11 | Applied Materials, Inc. | Methods for depositing sacrificial coatings on aerospace components |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210015655A (en) | 2019-07-30 | 2021-02-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (en) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | Liquid level sensor for a chemical source vessel |
KR20210018761A (en) | 2019-08-09 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | heater assembly including cooling apparatus and method of using same |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR102733104B1 (en) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11466364B2 (en) | 2019-09-06 | 2022-10-11 | Applied Materials, Inc. | Methods for forming protective coatings containing crystallized aluminum oxide |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
JP2021097227A (en) | 2019-12-17 | 2021-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride layer and structure including vanadium nitride layer |
KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
TW202142733A (en) | 2020-01-06 | 2021-11-16 | 荷蘭商Asm Ip私人控股有限公司 | Reactor system, lift pin, and processing method |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
KR102667792B1 (en) | 2020-02-03 | 2024-05-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming structures including a vanadium or indium layer |
KR20210100010A (en) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (en) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
TWI855223B (en) | 2020-02-17 | 2024-09-11 | 荷蘭商Asm Ip私人控股有限公司 | Method for growing phosphorous-doped silicon layer |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR102775390B1 (en) | 2020-03-12 | 2025-02-28 | 에이에스엠 아이피 홀딩 비.브이. | Method for Fabricating Layer Structure Having Target Topological Profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (en) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210130646A (en) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
TW202208671A (en) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods of forming structures including vanadium boride and vanadium phosphide layers |
KR20210132605A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Vertical batch furnace assembly comprising a cooling gas supply |
KR20210132612A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and apparatus for stabilizing vanadium compounds |
CN113555279A (en) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | Methods of forming vanadium nitride-containing layers and structures comprising the same |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR102783898B1 (en) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
TW202147543A (en) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing system |
KR102788543B1 (en) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
TW202147383A (en) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210145079A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Flange and apparatus for processing substrates |
US11519066B2 (en) | 2020-05-21 | 2022-12-06 | Applied Materials, Inc. | Nitride protective coatings on aerospace components and methods for making the same |
TWI862836B (en) | 2020-05-21 | 2024-11-21 | 荷蘭商Asm Ip私人控股有限公司 | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202208659A (en) | 2020-06-16 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for depositing boron containing silicon germanium layers |
TWI797640B (en) | 2020-06-18 | 2023-04-01 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Silicon-based self-assembling monolayer compositions and surface preparation using the same |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
WO2022005696A1 (en) | 2020-07-03 | 2022-01-06 | Applied Materials, Inc. | Methods for refurbishing aerospace components |
TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
KR20220011093A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for depositing molybdenum layers |
KR20220011092A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming structures including transition metal layers |
KR20220021863A (en) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (en) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for cleaning a substrate, method for selectively depositing, and reaction system |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
TW202217045A (en) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing gap filing fluids and related systems and devices |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (en) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
TW202218049A (en) | 2020-09-25 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220050048A (en) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat |
TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202229620A (en) | 2020-11-12 | 2022-08-01 | 特文特大學 | Deposition system, method for controlling reaction condition, method for depositing |
TW202229795A (en) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | A substrate processing apparatus with an injector |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
KR20220081905A (en) | 2020-12-09 | 2022-06-16 | 에이에스엠 아이피 홀딩 비.브이. | Silicon precursors for silicon silicon nitride deposition |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (en) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD1059311S1 (en) | 2021-08-13 | 2025-01-28 | Asm Ip Holding B.V. | Reaction chamber base plate |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
CN119038558B (en) * | 2024-10-31 | 2025-01-24 | 溧阳天目先导电池材料科技有限公司 | A nitrogen-doped porous silicon-carbon negative electrode material and its preparation method and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4801468A (en) * | 1985-02-25 | 1989-01-31 | Canon Kabushiki Kaisha | Process for forming deposited film |
US6630413B2 (en) * | 2000-04-28 | 2003-10-07 | Asm Japan K.K. | CVD syntheses of silicon nitride materials |
US20050048204A1 (en) * | 2001-11-30 | 2005-03-03 | Christian Dussarrat | Method for the fabrication of silicon nitride, silicon oxynitride, and silicon oxide films by chemical vapor deposition |
US20050109276A1 (en) * | 2003-11-25 | 2005-05-26 | Applied Materials, Inc. | Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber |
US6962859B2 (en) * | 2001-02-12 | 2005-11-08 | Asm America, Inc. | Thin films and method of making them |
US20060084283A1 (en) * | 2004-10-20 | 2006-04-20 | Paranjpe Ajit P | Low temperature sin deposition methods |
US7473655B2 (en) * | 2005-06-17 | 2009-01-06 | Applied Materials, Inc. | Method for silicon based dielectric chemical vapor deposition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4214944A1 (en) * | 1992-05-06 | 1993-11-11 | Bayer Ag | Inorganic polymers useful as precursors to ceramics - prepd. by poly:condensn. reaction carried out in presence of porous solids and/or adsorbents |
-
2005
- 2005-06-17 US US11/155,646 patent/US7473655B2/en not_active Expired - Fee Related
-
2006
- 2006-06-05 KR KR1020077029457A patent/KR20080006019A/en not_active Ceased
- 2006-06-05 CN CNA2006800218397A patent/CN101199044A/en active Pending
- 2006-06-05 WO PCT/US2006/021787 patent/WO2006138103A2/en active Application Filing
- 2006-06-05 JP JP2008516930A patent/JP2008547199A/en not_active Withdrawn
- 2006-06-07 TW TW095120260A patent/TWI343952B/en not_active IP Right Cessation
-
2009
- 2009-01-05 US US12/348,382 patent/US20090111284A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4801468A (en) * | 1985-02-25 | 1989-01-31 | Canon Kabushiki Kaisha | Process for forming deposited film |
US6630413B2 (en) * | 2000-04-28 | 2003-10-07 | Asm Japan K.K. | CVD syntheses of silicon nitride materials |
US6962859B2 (en) * | 2001-02-12 | 2005-11-08 | Asm America, Inc. | Thin films and method of making them |
US20050048204A1 (en) * | 2001-11-30 | 2005-03-03 | Christian Dussarrat | Method for the fabrication of silicon nitride, silicon oxynitride, and silicon oxide films by chemical vapor deposition |
US20050109276A1 (en) * | 2003-11-25 | 2005-05-26 | Applied Materials, Inc. | Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber |
US20060084283A1 (en) * | 2004-10-20 | 2006-04-20 | Paranjpe Ajit P | Low temperature sin deposition methods |
US7473655B2 (en) * | 2005-06-17 | 2009-01-06 | Applied Materials, Inc. | Method for silicon based dielectric chemical vapor deposition |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150162191A1 (en) * | 2013-12-10 | 2015-06-11 | Applied Materials, Inc. | Substituted Silacyclopropane Precursors And Their Use For The Deposition Of Silicon-Containing Films |
US9177783B2 (en) * | 2013-12-10 | 2015-11-03 | Applied Materials, Inc. | Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films |
US9382270B2 (en) | 2013-12-10 | 2016-07-05 | Applied Materials, Inc. | Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films |
US20170323783A1 (en) * | 2016-12-11 | 2017-11-09 | Air Liquide Advanced Materials, Inc. | Short inorganic trisilylamine-based polysilazanes for thin film deposition |
US10192734B2 (en) * | 2016-12-11 | 2019-01-29 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploration des Procédés Georges Claude | Short inorganic trisilylamine-based polysilazanes for thin film deposition |
CN110036139A (en) * | 2016-12-11 | 2019-07-19 | 乔治洛德方法研究和开发液化空气有限公司 | Short inorganic trimethylsilyl amido polysilazane for film deposition |
CN110036139B (en) * | 2016-12-11 | 2021-12-07 | 乔治洛德方法研究和开发液化空气有限公司 | Short inorganic trisilylamino polysilazanes for thin film deposition |
US11107674B2 (en) | 2019-01-24 | 2021-08-31 | Applied Materials, Inc. | Methods for depositing silicon nitride |
CN110579516A (en) * | 2019-09-02 | 2019-12-17 | 青岛歌尔智能传感器有限公司 | nitrogen dioxide gas detection device, manufacturing method thereof and electronic product |
Also Published As
Publication number | Publication date |
---|---|
WO2006138103A3 (en) | 2007-08-16 |
KR20080006019A (en) | 2008-01-15 |
US20060286818A1 (en) | 2006-12-21 |
WO2006138103A2 (en) | 2006-12-28 |
TW200704819A (en) | 2007-02-01 |
US7473655B2 (en) | 2009-01-06 |
CN101199044A (en) | 2008-06-11 |
JP2008547199A (en) | 2008-12-25 |
TWI343952B (en) | 2011-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7473655B2 (en) | Method for silicon based dielectric chemical vapor deposition | |
US7365029B2 (en) | Method for silicon nitride chemical vapor deposition | |
US7294581B2 (en) | Method for fabricating silicon nitride spacer structures | |
US6867152B1 (en) | Properties of a silica thin film produced by a rapid vapor deposition (RVD) process | |
US7498270B2 (en) | Method of forming a silicon oxynitride film with tensile stress | |
KR101002445B1 (en) | Methods for silicon oxide and oxynitride deposition using single wafer low pressure cvd | |
US7488690B2 (en) | Silicon nitride film with stress control | |
CN1898409B (en) | Method and apparatus for forming a high quality low temperature silicon nitride layer | |
US20060019032A1 (en) | Low thermal budget silicon nitride formation for advance transistor fabrication | |
US20030124818A1 (en) | Method and apparatus for forming silicon containing films | |
KR20060054387A (en) | Germanium surface treatment before deposition | |
WO2008016769A1 (en) | Method for fabricating an integrated gate dielectric layer for field effect transistors | |
KR100871006B1 (en) | Thin tungsten silicide layer deposition and gate metal integration | |
US7737051B2 (en) | Silicon germanium surface layer for high-k dielectric integration | |
US20070190768A1 (en) | Manufacturing method of semiconductor device | |
WO2013052145A1 (en) | In-situ hydroxylation apparatus | |
TWI831926B (en) | Polysilicon liners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, YAXIN;MAEDA, YUJI;MELE, THOMAS C.;AND OTHERS;REEL/FRAME:022056/0985;SIGNING DATES FROM 20050513 TO 20050713 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |