US20090090214A1 - Method for forming nano-scale metal particles - Google Patents
Method for forming nano-scale metal particles Download PDFInfo
- Publication number
- US20090090214A1 US20090090214A1 US12/244,849 US24484908A US2009090214A1 US 20090090214 A1 US20090090214 A1 US 20090090214A1 US 24484908 A US24484908 A US 24484908A US 2009090214 A1 US2009090214 A1 US 2009090214A1
- Authority
- US
- United States
- Prior art keywords
- solution
- reducing agent
- nano
- metal particles
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000002923 metal particle Substances 0.000 title claims abstract description 59
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 62
- 239000002904 solvent Substances 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 238000002156 mixing Methods 0.000 claims abstract description 30
- 150000003839 salts Chemical class 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 28
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052796 boron Inorganic materials 0.000 claims abstract description 16
- 239000002270 dispersing agent Substances 0.000 claims abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 150000004678 hydrides Chemical class 0.000 claims abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 19
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 claims description 13
- 229910052718 tin Inorganic materials 0.000 claims description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- -1 sulfonate ion Chemical class 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 11
- 239000011135 tin Substances 0.000 claims description 11
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 150000001879 copper Chemical class 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 8
- NQZKZGHOYUYCHU-UHFFFAOYSA-N boron;tetraethylazanium Chemical group [B].CC[N+](CC)(CC)CC NQZKZGHOYUYCHU-UHFFFAOYSA-N 0.000 claims description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 229940085991 phosphate ion Drugs 0.000 claims description 6
- 239000002798 polar solvent Substances 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- SDKPSXWGRWWLKR-UHFFFAOYSA-M sodium;9,10-dioxoanthracene-1-sulfonate Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)[O-] SDKPSXWGRWWLKR-UHFFFAOYSA-M 0.000 claims description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 2
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 7
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
Definitions
- the present invention is generally related to a method for forming nano-scale particles and more particularly to a method for forming nano-scale particles by a novel reducing agent.
- a nano-scale metal material means a material containing nano-scale metal particles or having the nano-scale structure in the matrix thereof. As the diameter of metal particles is within the nano scale, the surface area of particles becomes very large and new electrical, magnetic, optical, and chemical characteristics different from the bulk material thereof are appeared due to the particle diameter being less than the light wavelength so that these nano-scale particles can be applied in various fields, such as electrode materials, conducting films, biochemical sensing, drug delivery, optical sensing, catalyzed reaction, and electrical engineering.
- Nano-scale metal materials can be categorized into nano-scale metal particles, nano-wires, nano-membranes, nano bulk materials. The later three forms can be derived from the first one, that is, nano-scale particles. Therefore, the preparation and development of nano-scale metal particles are more important than that of the rest forms of nano-scale metal materials.
- a method for forming nano-scale metal particles to effectively control the particle diameter, the distribution of the particle diameters, particle types, and crystal structures, etc., is the current research target.
- the chemical reduction method is commonly used to prepare nano-scale metal particles.
- the chemical reduction method uses a reducing agent or an electrochemical system to reduce metal oxide into metal in a free space or confined space.
- the reducing agent in use can easily react with oxygen or moisture to result in burning or an explosion. Base on safety consideration, it should take place under an inactive environment (without oxygen). By doing so, the production cost will be increased.
- the invention provides a method for forming nano-scale metal particles.
- the invention discloses a method for forming nano-scale metal particles by a novel reducing agent.
- the method can be carried out at room temperature and under an atmospheric environment by relatively simple processes to prepare nano-scale metal particles with a diameter less than 20 nm.
- This method comprises the following steps. At first, a first blending process is performed to blend a metal salt and a first solvent together to form a first solution. Then, a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution.
- the reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon. Following that, a third blending process is performed to blend the first solution and the second solution together to form a third solution.
- the reducing agent is used to reduce the metal salt in the third solution to form the nano-scale metal particles.
- the nano-scale metal particles can have a particle diameter less than 10 nm.
- FIG. 1A and FIG. 1B are particle size spectra of tin-containing nano-scale metal particles
- FIG. 2 shows TEM images of tin-containing nano-scale metal particles
- FIG. 3A and FIG. 3B show TEM images of copper nano-scale metal particles. Image analysis of 30 nm to 60 nm;
- FIG. 4A and FIG. 4B show TEM images of nano-scale metal particles. Image analysis of 30 nm to 60 nm.
- a method for forming nano-scale metal particles at room temperature is disclosed.
- a first blending process is performed to blend a metal salt and a first solvent together to form a first solution.
- a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution.
- the reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon.
- a third blending process is performed to blend the first solution and the second solution together to form a third solution.
- the reducing agent is used to reduce the metal salt in the third solution to form the nano-scale metal particles.
- the temperature of the first, second, and third blending processes is less than or equal to 40° C.
- the processes are carried out under an atmospheric environment.
- the processes are carried out under an inactive environment.
- the molar concentration of the metal salt is less than or equal to 10 ⁇ 4 M while in the second solution the molar concentration of the reducing agent is less than or equal to 10 ⁇ 4 M.
- the reducing agent is tetraethylammonium borohydride.
- the metal salt has a general formula: MX where M is selected from the group consisting of the following: tin, copper, silver, and gold; and X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
- the nano-scale metal particles are dispersed in solution by a dispersing agent after formed where the dispersing agent is selected from the group consisting of the following: water, alcohol, n-hexane, toluene, and tetrahydrofuran.
- the first solvent and the second solvent are independently selected from the group consisting of the following or combination thereof: water, alcohol, and a polar solvent.
- the molar ratio of the reducing agent to the metal salt is 60 ⁇ 300.
- the particle diameter of the formed nano-scale metal particles is 5 ⁇ 70 nm and preferably less than 10 nm.
- the first solvent and the second solvent are independently selected from the group consisting of the following: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP).
- DMAC N,N-dimethyl-acetamide
- DMSO dimethyl-sulfoxide
- NMP 1-methyl-2-pyrrolidinone
- the molar ratio of the reducing agent to the metal salt is 5 ⁇ 25.
- the particle diameter of the formed nano-scale metal particles is 15 ⁇ 60 nm and preferably less than 20 nm.
- a method for forming tin-containing nano-scale metal particles at room temperature is disclosed.
- a blending process is performed to blend a tin salt, a reducing agent, and a solvent together to form a mixture solution.
- the reducing agent is used to reduce the metal salt in the mixture solution to form the tin-containing nano-scale metal particles.
- the mixture solution selectively comprises other metal salts and the reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon.
- the blending process is carried out under an atmospheric environment.
- the temperature of the blending processes is less than or equal to 40° C.
- the nano-scale metal particles are dispersed in solution by a dispersing agent after formed where the dispersing agent is selected from the group consisting of the following: water, alcohol, n-hexane, toluene, and tetrahydrofuran.
- the reducing agent is tetraethylammonium borohydride.
- the solvent is selected from the group consisting of the following or combination thereof: water, alcohol, and a polar solvent.
- the tin salt has a general formula: SnX where X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
- the other metal salt is selected from the group consisting of the following or combination thereof: silver salt, copper salt, and gold salt.
- the molar ratio of the reducing agent to all of the metal salts is 60 ⁇ 300.
- the particle diameter of the tin-containing nano-scale metal particles formed in this embodiment is 5 ⁇ 70 nm and preferably less than 10 nm.
- a method for forming copper nano-scale metal particles is disclosed.
- a first blending process is performed to blend a copper salt and a first solvent together to form a first solution.
- a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution.
- the reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon.
- the second solvent is independently selected from the group consisting of the following: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP).
- DMAC N,N-dimethyl-acetamide
- DMSO dimethyl-sulfoxide
- NMP 1-methyl-2-pyrrolidinone
- a third blending process is performed to blend the first solution and the second solution together to form a third solution.
- the reducing agent is used to reduce the copper salt in the third solution
- the first, second, and third blending processes are carried out under a nitrogen environment.
- the temperature of the first, second, and third blending processes is less than or equal to 40° C.
- the molar concentration of the metal salt is preferably less than or equal to 10 ⁇ 4 M while in the second solution the molar concentration of the reducing agent is preferably less than or equal to 10 ⁇ 4 M.
- the molar ratio of the reducing agent to the copper-containing metal salts is 5 ⁇ 25.
- the reducing agent is tetraethylammonium borohydride.
- the copper salt has a general formula: CuX where X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
- the first solvent is independently selected from the group consisting of the following or combination thereof: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP).
- DMAC N,N-dimethyl-acetamide
- DMSO dimethyl-sulfoxide
- NMP 1-methyl-2-pyrrolidinone
- the first solvent is N,N-dimethyl-acetamide (DMAC) while the second solvent is dimethyl-sulfoxide (DMSO).
- the particle diameter of the copper nano-scale metal particles formed in this embodiment is 15 ⁇ 60 nm and preferably less than 20 nm.
- the solvent water, alcohols (such as methanol, ethanol, butanol, ethylene glycol), and polar solvents (such as DMAC and NMP) are used as the solvent. It is found that the samples using DMAC and NMP as the solvent have better results and the particle diameter can be controlled easily as well. Besides, according the test results, the added quantity of the SnCl 2 solution has great influence on the particle diameter. If a small quantity of the reducing agent solution is added into a large quantity of the SnCl 2 solution, the particle diameter of the obtained particles is relatively large after analyzed and can not be nano-scale. If a small quantity of the SnCl 2 solution is added into a large quantity of the reducing agent solution, the particle diameter of the obtained particles is clearly relatively small.
- this example uses DMAC as the solvent to form tin-containing nano-scale metal particles.
- the particle diameter of the formed tin nano-scale metal particles is less than 50 nm.
- the average particle diameters are 16 nm and 34 nm, respectively. Since the data show the average particle diameter, the particle diameter being less than 10 nm can also be seen in the figure.
- This example also tests the same sample by transmission electron microscopy (TEM). The sample is dripped on copper gauze coated with carbon film. The excess liquid is removed and the sample is dried and ready for investigation. The result is shown in FIG. 2 .
- TEM transmission electron microscopy
- the detailed steps are given in the following.
- a proper quantity of the reducing agent is weighted.
- the reducing agent is tetraethylammonium borohydride.
- the reducing agent dissolves in the solvent to form 20 ml of 0.01M reducing agent solution.
- a proper quantity of copper chloride is weighted and dissolves in the solvent to form 20 ml of 0.005M copper chloride solution.
- These solutions are separately stirred by magnets for over 20 minutes to ensure completely dissolution.
- the reducing agent solution is blended with the copper chloride solution with different ratios. An ultrasonic vibrator is used while the reaction takes place for 15 minutes. Thus, the solution containing copper nano-scale metal particles is obtained.
- N,N-dimethyl-acetamide (DMAC) is used as the solvent for the reducing agent and the metal salt, the copper nano-scale metal particles with the particle diameter of 30 ⁇ 60 nm can be formed.
- the TEM pictures of the copper nano-scale metal particles are shown in FIGS. 3A and 3B .
- the magnification ratio in FIG. 3A is 50,000 while the magnification ratio in FIG. 3B is 100,000.
- N,N-dimethyl-acetamide (DMAC) is used as the solvent for copper chloride and dimethyl-sulfoxide (DMSO) is used as the solvent for the reducing agent, the copper nano-scale metal particles with the particle diameter of 15 ⁇ 30 nm can be formed.
- the TEM pictures of the copper nano-scale metal particles are shown in FIGS. 4A and 4B .
- the magnification ratio in FIGS. 4A and 4B is 100,000.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
A method for forming nano-scale metal particles by a novel reducing agent is described. The method can be carried out at room temperature and under an atmospheric environment by relatively simple processes to prepare nano-scale metal particles with a diameter less than 20 nm. This method comprises the following steps. At first, a first blending process is performed to blend a metal salt and a first solvent together to form a first solution. Then, a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution. The reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon. Following that, a third blending process is performed to blend the first solution and the second solution together to form a third solution. Finally, the reducing agent is used to reduce the metal salt in the third solution to form the nano-scale metal particles. In addition, if a dispersing agent is added after the nano-scale metal particles are formed, the nano-scale metal particles can have a particle diameter less than 10 nm.
Description
- 1. Field of the Invention
- The present invention is generally related to a method for forming nano-scale particles and more particularly to a method for forming nano-scale particles by a novel reducing agent.
- 2. Description of the Prior Art
- A nano-scale metal material means a material containing nano-scale metal particles or having the nano-scale structure in the matrix thereof. As the diameter of metal particles is within the nano scale, the surface area of particles becomes very large and new electrical, magnetic, optical, and chemical characteristics different from the bulk material thereof are appeared due to the particle diameter being less than the light wavelength so that these nano-scale particles can be applied in various fields, such as electrode materials, conducting films, biochemical sensing, drug delivery, optical sensing, catalyzed reaction, and electrical engineering.
- Nano-scale metal materials can be categorized into nano-scale metal particles, nano-wires, nano-membranes, nano bulk materials. The later three forms can be derived from the first one, that is, nano-scale particles. Therefore, the preparation and development of nano-scale metal particles are more important than that of the rest forms of nano-scale metal materials. A method for forming nano-scale metal particles to effectively control the particle diameter, the distribution of the particle diameters, particle types, and crystal structures, etc., is the current research target.
- Currently, the chemical reduction method is commonly used to prepare nano-scale metal particles. The chemical reduction method uses a reducing agent or an electrochemical system to reduce metal oxide into metal in a free space or confined space.
- In the above chemical reduction method, the reducing agent in use can easily react with oxygen or moisture to result in burning or an explosion. Base on safety consideration, it should take place under an inactive environment (without oxygen). By doing so, the production cost will be increased.
- In light of the above description, a method under mild reaction conditions, such as at room temperature and under an atmospheric environment, to form nano-scale metal particles with shorter reaction time is an important technical development topic for the industry.
- In light of the above background, in order to fulfill the industrial requirements, the invention provides a method for forming nano-scale metal particles.
- The invention discloses a method for forming nano-scale metal particles by a novel reducing agent. The method can be carried out at room temperature and under an atmospheric environment by relatively simple processes to prepare nano-scale metal particles with a diameter less than 20 nm. This method comprises the following steps. At first, a first blending process is performed to blend a metal salt and a first solvent together to form a first solution. Then, a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution. The reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon. Following that, a third blending process is performed to blend the first solution and the second solution together to form a third solution. Finally, the reducing agent is used to reduce the metal salt in the third solution to form the nano-scale metal particles. In addition, if a dispersing agent is added after the nano-scale metal particles are formed, the nano-scale metal particles can have a particle diameter less than 10 nm.
-
FIG. 1A andFIG. 1B are particle size spectra of tin-containing nano-scale metal particles; -
FIG. 2 shows TEM images of tin-containing nano-scale metal particles; -
FIG. 3A andFIG. 3B show TEM images of copper nano-scale metal particles. Image analysis of 30 nm to 60 nm; and -
FIG. 4A andFIG. 4B show TEM images of nano-scale metal particles. Image analysis of 30 nm to 60 nm. - In a first embodiment of the invention, a method for forming nano-scale metal particles at room temperature is disclosed. At first, a first blending process is performed to blend a metal salt and a first solvent together to form a first solution. Then, a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution. The reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon. Finally, a third blending process is performed to blend the first solution and the second solution together to form a third solution. The reducing agent is used to reduce the metal salt in the third solution to form the nano-scale metal particles.
- The temperature of the first, second, and third blending processes is less than or equal to 40° C. In addition, the processes are carried out under an atmospheric environment. Preferably, the processes are carried out under an inactive environment.
- Moreover, in the first solution, the molar concentration of the metal salt is less than or equal to 10−4M while in the second solution the molar concentration of the reducing agent is less than or equal to 10−4M.
- Besides, the reducing agent is tetraethylammonium borohydride. The metal salt has a general formula: MX where M is selected from the group consisting of the following: tin, copper, silver, and gold; and X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
- In a preferred example of this embodiment, the nano-scale metal particles are dispersed in solution by a dispersing agent after formed where the dispersing agent is selected from the group consisting of the following: water, alcohol, n-hexane, toluene, and tetrahydrofuran. In addition, the first solvent and the second solvent are independently selected from the group consisting of the following or combination thereof: water, alcohol, and a polar solvent. On the other hand, the molar ratio of the reducing agent to the metal salt is 60˜300. The particle diameter of the formed nano-scale metal particles is 5˜70 nm and preferably less than 10 nm.
- In another preferred example of this embodiment, no additional additive or dispersing agent is needed after the nano-scale metal particles are formed. Furthermore, the first solvent and the second solvent are independently selected from the group consisting of the following: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP). On the other hand, the molar ratio of the reducing agent to the metal salt is 5˜25. The particle diameter of the formed nano-scale metal particles is 15˜60 nm and preferably less than 20 nm.
- In a second embodiment of the invention, a method for forming tin-containing nano-scale metal particles at room temperature is disclosed. At first, a blending process is performed to blend a tin salt, a reducing agent, and a solvent together to form a mixture solution. The reducing agent is used to reduce the metal salt in the mixture solution to form the tin-containing nano-scale metal particles. The mixture solution selectively comprises other metal salts and the reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon.
- The blending process is carried out under an atmospheric environment. The temperature of the blending processes is less than or equal to 40° C. In addition, the nano-scale metal particles are dispersed in solution by a dispersing agent after formed where the dispersing agent is selected from the group consisting of the following: water, alcohol, n-hexane, toluene, and tetrahydrofuran.
- The reducing agent is tetraethylammonium borohydride. The solvent is selected from the group consisting of the following or combination thereof: water, alcohol, and a polar solvent. The tin salt has a general formula: SnX where X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion. On the other hand, the other metal salt is selected from the group consisting of the following or combination thereof: silver salt, copper salt, and gold salt. In addition, the molar ratio of the reducing agent to all of the metal salts is 60˜300. The particle diameter of the tin-containing nano-scale metal particles formed in this embodiment is 5˜70 nm and preferably less than 10 nm.
- In a third embodiment of the invention, a method for forming copper nano-scale metal particles is disclosed. At first, a first blending process is performed to blend a copper salt and a first solvent together to form a first solution. Then, a second blending process is performed to blend a reducing agent and a second solvent together to form a second solution. The reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon. The second solvent is independently selected from the group consisting of the following: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP). Finally, a third blending process is performed to blend the first solution and the second solution together to form a third solution. The reducing agent is used to reduce the copper salt in the third solution to form dispersed copper nano-scale metal particles.
- The first, second, and third blending processes are carried out under a nitrogen environment. The temperature of the first, second, and third blending processes is less than or equal to 40° C. Moreover, in the first solution, the molar concentration of the metal salt is preferably less than or equal to 10−4M while in the second solution the molar concentration of the reducing agent is preferably less than or equal to 10−4M. In addition, the molar ratio of the reducing agent to the copper-containing metal salts is 5˜25.
- The reducing agent is tetraethylammonium borohydride. The copper salt has a general formula: CuX where X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
- On the other hand, the first solvent is independently selected from the group consisting of the following or combination thereof: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP). In a preferred example of this embodiment, the first solvent is N,N-dimethyl-acetamide (DMAC) while the second solvent is dimethyl-sulfoxide (DMSO).
- The particle diameter of the copper nano-scale metal particles formed in this embodiment is 15˜60 nm and preferably less than 20 nm.
- is example is to prepare and investigate the tin-containing nano-scale metal particles according to the invention. The chemical equation is shown as the following:
-
SnCl2+2N(Et)4(BH4)→Sn+2N(Et)4Cl+B2H6+H2. - e detailed steps are given in the following. At room temperature and under an atmospheric environment, a certain amount of the reducing agent and a certain amount of SnCl2 are weighted and placed in a 50 ml graduate cylinder, separately. A magnet is placed in the graduate cylinder for stirring beforehand. Then, a septum is used to seal the container and the septum is then wrapped with paraffin for air-tight. Nitrogen gas is introduced into the graduate cylinder to expel the moisture in air. 20 ml of solvent is added by a syringe and then the mixture is stirred for 30 minutes to ensure completely dissolving in the solvent. Thus, the reducing agent solution and the SnCl2 solution are prepared. The reducing agent solution and the SnCl2 solution with different quantities are taken and mixed under a nitrogen environment. After being stirred, the mixture solution is tested by instruments.
- this example, water, alcohols (such as methanol, ethanol, butanol, ethylene glycol), and polar solvents (such as DMAC and NMP) are used as the solvent. It is found that the samples using DMAC and NMP as the solvent have better results and the particle diameter can be controlled easily as well. Besides, according the test results, the added quantity of the SnCl2 solution has great influence on the particle diameter. If a small quantity of the reducing agent solution is added into a large quantity of the SnCl2 solution, the particle diameter of the obtained particles is relatively large after analyzed and can not be nano-scale. If a small quantity of the SnCl2 solution is added into a large quantity of the reducing agent solution, the particle diameter of the obtained particles is clearly relatively small.
- According to the above results, this example uses DMAC as the solvent to form tin-containing nano-scale metal particles. As shown in
FIGS. 1A and 1B , when less than 1000 μl of tin chloride is added, the particle diameter of the formed tin nano-scale metal particles is less than 50 nm. When 400 μl and 600 μl of tin chloride are added, the average particle diameters are 16 nm and 34 nm, respectively. Since the data show the average particle diameter, the particle diameter being less than 10 nm can also be seen in the figure. This example also tests the same sample by transmission electron microscopy (TEM). The sample is dripped on copper gauze coated with carbon film. The excess liquid is removed and the sample is dried and ready for investigation. The result is shown inFIG. 2 . - The chemical equation for forming copper nano-scale metal particles according to the invention is shown as the following:
-
CuCl2+2N(C2H5)4BH4→Cu+2N(C2H5)4Cl+B2H6+H2. - The detailed steps are given in the following. At room temperature and under a nitrogen environment, a proper quantity of the reducing agent is weighted. The reducing agent is tetraethylammonium borohydride. The reducing agent dissolves in the solvent to form 20 ml of 0.01M reducing agent solution. Then, at room temperature and under a nitrogen environment, a proper quantity of copper chloride is weighted and dissolves in the solvent to form 20 ml of 0.005M copper chloride solution. These solutions are separately stirred by magnets for over 20 minutes to ensure completely dissolution. Finally, under a nitrogen environment, the reducing agent solution is blended with the copper chloride solution with different ratios. An ultrasonic vibrator is used while the reaction takes place for 15 minutes. Thus, the solution containing copper nano-scale metal particles is obtained.
- N,N-dimethyl-acetamide (DMAC) is used as the solvent for the reducing agent and the metal salt, the copper nano-scale metal particles with the particle diameter of 30˜60 nm can be formed. The TEM pictures of the copper nano-scale metal particles are shown in
FIGS. 3A and 3B . The magnification ratio inFIG. 3A is 50,000 while the magnification ratio inFIG. 3B is 100,000. - N,N-dimethyl-acetamide (DMAC) is used as the solvent for copper chloride and dimethyl-sulfoxide (DMSO) is used as the solvent for the reducing agent, the copper nano-scale metal particles with the particle diameter of 15˜30 nm can be formed. The TEM pictures of the copper nano-scale metal particles are shown in
FIGS. 4A and 4B . The magnification ratio inFIGS. 4A and 4B is 100,000. - Obviously many modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the present invention can be practiced otherwise than as specifically described herein. Although specific embodiments have been illustrated and described herein, it is obvious to those skilled in the art that many modifications of the present invention may be made without departing from what is intended to be limited solely by the appended claims.
Claims (34)
1. A method for forming nano-scale metal particles, comprising:
performing a first blending process to blend a metal salt and a first solvent together to form a first solution;
performing a second blending process to blend a reducing agent and a second solvent together to form a second solution wherein said reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon;
performing a third blending process to blend said first solution and said second solution together to form a third solution; and
using said reducing agent to reduce said metal salt in said third solution to form said nano-scale metal particles.
2. The method according to claim 1 , wherein the temperature in said first, second, and third blending processes is less than or equal to 40° C.
3. The method according to claim 1 , wherein in said first solution the molar concentration of said metal salt is less than or equal to 10−4M.
4. The method according to claim 1 , wherein in said second solution the molar concentration of said reducing agent is less than or equal to 10−4M.
5. The method according to claim 1 , wherein said reducing agent is tetraethylammonium borohydride.
6. The method according to claim 1 , wherein said metal salt has a general formula: MX where M is selected from the group consisting of the following: tin, copper, silver, and gold; and X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
7. The method according to claim 1 , wherein said first solvent and said second solvent are independently selected from the group consisting of the following or combination thereof: water, alcohol, and a polar solvent.
8. The method according to claim 7 , wherein said nano-scale metal particles are dispersed in solution by a dispersing agent after formed where said dispersing agent is selected from the group consisting of the following: water, alcohol, n-hexane, toluene, and tetrahydrofuran.
9. The method according to claim 7 , wherein the molar ratio of said reducing agent to said metal salt is between 60 and 300.
10. The method according to claim 7 , wherein the particle diameter of said formed nano-scale metal particles is 5˜70 nm.
11. The method according to claim 1 , wherein said first solvent and said second solvent are independently selected from the group consisting of the following or combination thereof: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP).
12. The method according to claim 11 , wherein the molar ratio of said reducing agent to said metal salt is between 5 and 25.
13. The method according to claim 11 , wherein the particle diameter of said formed nano-scale metal particles is 15˜60 nm.
14. A method for forming tin-containing nano-scale metal particles, comprising:
performing a blending process to blend a tin salt, a reducing agent, and a solvent together to form a mixture solution wherein said mixture solution selectively comprises other metal salts and said reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon; and
using said reducing agent to reduce said metal salt in said mixture solution to form said tin-containing nano-scale metal particles.
15. The method according to claim 14 , wherein the temperature in said blending processes is less than or equal to 40° C.
16. The method according to claim 14 , wherein said blending process is performed under an atmospheric environment.
17. The method according to claim 14 , wherein said reducing agent is tetraethylammonium borohydride.
18. The method according to claim 14 , wherein said solvent is selected from the group consisting of the following or combination thereof: water, alcohol, a polar solvent.
19. The method according to claim 14 , wherein said tin salt has a general formula: SnX where and X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
20. The method according to claim 14 , wherein said other metal salt is selected from the group consisting of the following or combination thereof: silver salt, copper salt, and gold salt.
21. The method according to claim 14 , wherein said nano-scale metal particles are dispersed in solution by a dispersing agent after formed where said dispersing agent is selected from the group consisting of the following: water, alcohol, n-hexane, toluene, and tetrahydrofuran.
22. The method according to claim 14 , wherein the molar ratio of said reducing agent to all of said metal salts is between 60 and 300.
23. The method according to claim 14 , wherein the particle diameter of said formed tin-containing nano-scale metal particles is 5˜70 nm.
24. A method for forming copper nano-scale metal particles, comprising:
performing a first blending process to blend a copper salt and a first solvent together to form a first solution;
performing a second blending process to blend a reducing agent and a second solvent together to form a second solution wherein said reducing agent comprises one compound selected from the group consisting of the following or combination thereof: boron-containing hydride and boron-containing hydrocarbon and said second solvent is selected from the group consisting of the following: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP);
performing a third blending process to blend said first solution and said second solution together to form a third solution and using said reducing agent to reduce said copper salt in said third solution to form dispersed copper nano-scale metal particles.
25. The method according to claim 24 , wherein the temperature of said first, second, and third blending processes is less than or equal to 40° C.
26. The method according to claim 24 , wherein said first, and second, and third blending processes are performed under a nitrogen environment.
27. The method according to claim 24 , wherein in said first solution the molar concentration of said metal salt is less than or equal to 10−4M.
28. The method according to claim 24 , wherein in said second solution the molar concentration of said reducing agent is less than or equal to 10−4M.
29. The method according to claim 24 , wherein said reducing agent is tetraethylammonium borohydride.
30. The method according to claim 24 , wherein said first solvent is independently selected from the group consisting of the following or combination thereof: N,N-dimethyl-acetamide (DMAC), dimethyl-sulfoxide (DMSO), and 1-methyl-2-pyrrolidinone (NMP).
31. The method according to claim 24 , wherein said first solvent is N,N-dimethyl-acetamide (DMAC) and said second solvent is dimethyl-sulfoxide (DMSO).
32. The method according to claim 24 , wherein said copper salt has a general formula: CuX where and X is selected from the group consisting of the following: halogen, sulfate ion, phosphate ion, sulfonate ion, nitrate ion, and carboxylate ion.
33. The method according to claim 24 , wherein the molar ratio of said reducing agent to said copper-containing metal salts is between 5 and 25.
34. The method according to claim 14 , wherein the particle diameter of said formed copper nano-scale metal particles is 15˜60 nm.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096137204A TWI417247B (en) | 2007-10-04 | 2007-10-04 | A method for forming nano-scale metal particles with sn |
TW096137204 | 2007-10-04 | ||
TW097134981A TWI366489B (en) | 2008-09-12 | 2008-09-12 | A method for forming nano-scale metal particles |
TW097134981 | 2008-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090090214A1 true US20090090214A1 (en) | 2009-04-09 |
Family
ID=40522152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/244,849 Abandoned US20090090214A1 (en) | 2007-10-04 | 2008-10-03 | Method for forming nano-scale metal particles |
Country Status (1)
Country | Link |
---|---|
US (1) | US20090090214A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150099117A1 (en) * | 2013-10-04 | 2015-04-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Synthesis of metal alloy nanoparticles via a new reagent |
US9296043B2 (en) | 2013-10-04 | 2016-03-29 | Toyota Motor Engineering & Manufacturing North America, Inc. | Synthesis of metal nanoparticles |
US9546192B2 (en) | 2015-01-09 | 2017-01-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ligated anionic-element reagent complexes (LAERCs) as novel reagents |
US20170028476A1 (en) * | 2015-07-30 | 2017-02-02 | Belenos Clean Power Holding Ag | Method for the production of msnx nanoparticles as anode materials for a rechargeable battery |
US9643254B2 (en) | 2013-10-04 | 2017-05-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Anionic reagent element complexes, their variations, and their uses |
US9650248B2 (en) | 2013-10-04 | 2017-05-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Multi-element anionic reagent complexes |
US9738536B2 (en) | 2013-10-04 | 2017-08-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Allotrope-specific anionic element reagent complexes |
US9847157B1 (en) | 2016-09-23 | 2017-12-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ferromagnetic β-MnBi alloy |
CN107983341A (en) * | 2016-10-27 | 2018-05-04 | 武汉大学 | It is adsorbed with noble metal nano particles of borane clusters and its preparation method and application |
US10023595B2 (en) | 2015-01-09 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ligated anionic-element reagent complexes as novel reagents formed with metal, metalloid, and non-metal elements |
US10125429B2 (en) | 2013-10-04 | 2018-11-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water |
US10774196B2 (en) | 2016-09-22 | 2020-09-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Light weight composite of steel and polymer |
US10814397B2 (en) | 2016-03-21 | 2020-10-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Textured-crystal nanoparticles from ligated anionic element reagent complex |
US11447608B2 (en) | 2019-03-21 | 2022-09-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Woven carbon fiber reinforced steel matrix composite with unreinforced regions |
US11788175B2 (en) | 2019-03-21 | 2023-10-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Chemically bonded amorphous interface between phases in carbon fiber and steel composite |
US11911995B2 (en) | 2016-09-22 | 2024-02-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Light weight composite of steel and aramid with fully penetrated reinforcement |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389535A (en) * | 1987-11-17 | 1995-02-14 | Brown University Research Foundation | Method of encapsulating cells in a tubular extrudate |
US5517532A (en) * | 1993-10-26 | 1996-05-14 | General Datacomm, Inc. | Standing sine wave clock bus for clock distribution systems |
US5515681A (en) * | 1993-05-26 | 1996-05-14 | Simmonds Precision Engine Systems | Commonly housed electrostatic fuel atomizer and igniter apparatus for combustors |
US5550050A (en) * | 1994-04-15 | 1996-08-27 | Cytotherapeutics, Inc. | Method for implanting encapsulated cells in a host |
US5573528A (en) * | 1987-11-17 | 1996-11-12 | Brown University Research Foundation | Implanting devices for the focal release of neuroinhibitory compounds |
US5762926A (en) * | 1988-12-15 | 1998-06-09 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage of the central nervous system |
US5849285A (en) * | 1994-04-13 | 1998-12-15 | Research Corporation Technologies, Inc. | Autoimmune disease treatment with sertoli cells and in vitro co-culture of mammal cells with sertoli cells |
US5853385A (en) * | 1994-08-26 | 1998-12-29 | Cytotherapeutics, Inc. | Encapsulated PC12 cell transplants for treatment of Parkinson's disease |
US5869463A (en) * | 1993-04-13 | 1999-02-09 | The United States Of America As Represented By The Department Of Health And Human Services | Use of neuro-glial cell lines for transplantation therapy |
US5871767A (en) * | 1991-04-25 | 1999-02-16 | Brown University Research Foundation | Methods for treatment or prevention of neurodegenerative conditions using immunoisolatory implantable vehicles with a biocompatible jacket and a biocompatible matrix core |
US5898066A (en) * | 1994-08-26 | 1999-04-27 | Children's Medical Center Corporation | Trophic factors for central nervous system regeneration |
US5968829A (en) * | 1997-09-05 | 1999-10-19 | Cytotherapeutics, Inc. | Human CNS neural stem cells |
US6001647A (en) * | 1994-04-28 | 1999-12-14 | Ixion Biotechnology, Inc. | In vitro growth of functional islets of Langerhans and in vivo uses thereof |
US6057724A (en) * | 1998-07-13 | 2000-05-02 | International Business Machines Corp. | Method and apparatus for synchronized clock distribution |
US6231881B1 (en) * | 1992-02-24 | 2001-05-15 | Anton-Lewis Usala | Medium and matrix for long-term proliferation of cells |
US20040131538A1 (en) * | 2002-09-30 | 2004-07-08 | Fuji Photo Film Co., Ltd. | Method of producing metal particles, and metal oxide obtained from the particles |
US20050042746A1 (en) * | 2001-09-28 | 2005-02-24 | Olga Garkavenko | Growing xenotransplant material in culture |
US20050235776A1 (en) * | 2004-04-22 | 2005-10-27 | Ting He | Metal and alloy nanoparticles and synthesis methods thereof |
US20050265977A1 (en) * | 1999-04-30 | 2005-12-01 | Elliott Robert B | Xenotransplant for CNS therapy |
US20060042415A1 (en) * | 2004-08-30 | 2006-03-02 | Jeng-Gong Duh | Method for making nano-scale lead-free solder |
US20070180954A1 (en) * | 2006-02-07 | 2007-08-09 | Samsung Electronics, Co. Ltd. | Copper nano-particles, method of preparing the same, and method of forming copper coating film using the same |
US20070275259A1 (en) * | 2006-05-25 | 2007-11-29 | Samsung Electro-Mechanics Co., Ltd. | Method of producing metal nanoparticles and metal nanoparticles produced thereby |
-
2008
- 2008-10-03 US US12/244,849 patent/US20090090214A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573528A (en) * | 1987-11-17 | 1996-11-12 | Brown University Research Foundation | Implanting devices for the focal release of neuroinhibitory compounds |
US5389535A (en) * | 1987-11-17 | 1995-02-14 | Brown University Research Foundation | Method of encapsulating cells in a tubular extrudate |
US5762926A (en) * | 1988-12-15 | 1998-06-09 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage of the central nervous system |
US5871767A (en) * | 1991-04-25 | 1999-02-16 | Brown University Research Foundation | Methods for treatment or prevention of neurodegenerative conditions using immunoisolatory implantable vehicles with a biocompatible jacket and a biocompatible matrix core |
US6231881B1 (en) * | 1992-02-24 | 2001-05-15 | Anton-Lewis Usala | Medium and matrix for long-term proliferation of cells |
US5869463A (en) * | 1993-04-13 | 1999-02-09 | The United States Of America As Represented By The Department Of Health And Human Services | Use of neuro-glial cell lines for transplantation therapy |
US5515681A (en) * | 1993-05-26 | 1996-05-14 | Simmonds Precision Engine Systems | Commonly housed electrostatic fuel atomizer and igniter apparatus for combustors |
US5517532A (en) * | 1993-10-26 | 1996-05-14 | General Datacomm, Inc. | Standing sine wave clock bus for clock distribution systems |
US5849285A (en) * | 1994-04-13 | 1998-12-15 | Research Corporation Technologies, Inc. | Autoimmune disease treatment with sertoli cells and in vitro co-culture of mammal cells with sertoli cells |
US5550050A (en) * | 1994-04-15 | 1996-08-27 | Cytotherapeutics, Inc. | Method for implanting encapsulated cells in a host |
US6001647A (en) * | 1994-04-28 | 1999-12-14 | Ixion Biotechnology, Inc. | In vitro growth of functional islets of Langerhans and in vivo uses thereof |
US5898066A (en) * | 1994-08-26 | 1999-04-27 | Children's Medical Center Corporation | Trophic factors for central nervous system regeneration |
US5853385A (en) * | 1994-08-26 | 1998-12-29 | Cytotherapeutics, Inc. | Encapsulated PC12 cell transplants for treatment of Parkinson's disease |
US5968829A (en) * | 1997-09-05 | 1999-10-19 | Cytotherapeutics, Inc. | Human CNS neural stem cells |
US6057724A (en) * | 1998-07-13 | 2000-05-02 | International Business Machines Corp. | Method and apparatus for synchronized clock distribution |
US20050265977A1 (en) * | 1999-04-30 | 2005-12-01 | Elliott Robert B | Xenotransplant for CNS therapy |
US20050042746A1 (en) * | 2001-09-28 | 2005-02-24 | Olga Garkavenko | Growing xenotransplant material in culture |
US20040131538A1 (en) * | 2002-09-30 | 2004-07-08 | Fuji Photo Film Co., Ltd. | Method of producing metal particles, and metal oxide obtained from the particles |
US20050235776A1 (en) * | 2004-04-22 | 2005-10-27 | Ting He | Metal and alloy nanoparticles and synthesis methods thereof |
US20060042415A1 (en) * | 2004-08-30 | 2006-03-02 | Jeng-Gong Duh | Method for making nano-scale lead-free solder |
US20070180954A1 (en) * | 2006-02-07 | 2007-08-09 | Samsung Electronics, Co. Ltd. | Copper nano-particles, method of preparing the same, and method of forming copper coating film using the same |
US20070275259A1 (en) * | 2006-05-25 | 2007-11-29 | Samsung Electro-Mechanics Co., Ltd. | Method of producing metal nanoparticles and metal nanoparticles produced thereby |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9738536B2 (en) | 2013-10-04 | 2017-08-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Allotrope-specific anionic element reagent complexes |
US9278392B2 (en) * | 2013-10-04 | 2016-03-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Synthesis of metal alloy nanoparticles via a new reagent |
US9296043B2 (en) | 2013-10-04 | 2016-03-29 | Toyota Motor Engineering & Manufacturing North America, Inc. | Synthesis of metal nanoparticles |
US10125429B2 (en) | 2013-10-04 | 2018-11-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water |
US20150099117A1 (en) * | 2013-10-04 | 2015-04-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Synthesis of metal alloy nanoparticles via a new reagent |
US9643254B2 (en) | 2013-10-04 | 2017-05-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Anionic reagent element complexes, their variations, and their uses |
US9650248B2 (en) | 2013-10-04 | 2017-05-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Multi-element anionic reagent complexes |
US10023595B2 (en) | 2015-01-09 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ligated anionic-element reagent complexes as novel reagents formed with metal, metalloid, and non-metal elements |
US9546192B2 (en) | 2015-01-09 | 2017-01-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ligated anionic-element reagent complexes (LAERCs) as novel reagents |
US10259046B2 (en) * | 2015-07-30 | 2019-04-16 | Belenos Clean Power Holding Ag | Method for the production of MSnx nanoparticles as anode materials for a rechargeable battery |
US20170028476A1 (en) * | 2015-07-30 | 2017-02-02 | Belenos Clean Power Holding Ag | Method for the production of msnx nanoparticles as anode materials for a rechargeable battery |
US10814397B2 (en) | 2016-03-21 | 2020-10-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Textured-crystal nanoparticles from ligated anionic element reagent complex |
US10774196B2 (en) | 2016-09-22 | 2020-09-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Light weight composite of steel and polymer |
US11597811B2 (en) | 2016-09-22 | 2023-03-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Methods for making polymer-reinforced steel matrix composites |
US11603449B2 (en) | 2016-09-22 | 2023-03-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Light weight composite of steel and polymer |
US11608424B2 (en) | 2016-09-22 | 2023-03-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Light weight composite of steel and polymer |
US11911995B2 (en) | 2016-09-22 | 2024-02-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Light weight composite of steel and aramid with fully penetrated reinforcement |
US9847157B1 (en) | 2016-09-23 | 2017-12-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ferromagnetic β-MnBi alloy |
CN107983341A (en) * | 2016-10-27 | 2018-05-04 | 武汉大学 | It is adsorbed with noble metal nano particles of borane clusters and its preparation method and application |
US11447608B2 (en) | 2019-03-21 | 2022-09-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Woven carbon fiber reinforced steel matrix composite with unreinforced regions |
US11447607B2 (en) | 2019-03-21 | 2022-09-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Woven carbon fiber reinforced steel matrix composite with fully penetrated reinforcement |
US11713499B2 (en) | 2019-03-21 | 2023-08-01 | Toyota Motor Engineering & Manufacturing North America, Inc. | Woven carbon fiber reinforced steel matrix composite |
US11788175B2 (en) | 2019-03-21 | 2023-10-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Chemically bonded amorphous interface between phases in carbon fiber and steel composite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090090214A1 (en) | Method for forming nano-scale metal particles | |
Lim et al. | A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis | |
Li et al. | Essential role of lattice oxygen in hydrogen sensing reaction | |
Hu et al. | Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters | |
Baikeli et al. | Electrochemical determination of metronidazole using a glassy carbon electrode modified with nanoporous bimetallic carbon derived from a ZnCo-based metal-organic framework | |
Zou et al. | A high sensitivity strategy of nitrite detection based on CoFe@ NC nanocubes modified glassy carbon electrode | |
Shokrollahi et al. | In situ electrosynthesis of a copper-based metal–organic framework as nanosorbent for headspace solid-phase microextraction of methamphetamine in urine with GC-FID analysis | |
Zhang et al. | Highly sensitive and selective electrochemical determination of 4-aminophenol based on flower-like Ag-Au nanocomposites modified glassy carbon electrode | |
Ehsan et al. | Aerosol-assisted chemical vapor deposition of silver thin film electrodes for electrochemical detection of 2-nitrophenol | |
Jońca et al. | SnO2 “Russian Doll” Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub‐ppm CO Detection | |
Wang et al. | Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol A | |
Park et al. | Mitigating Pt loss in polymer electrolyte membrane fuel cell cathode catalysts using graphene nanoplatelet pickering emulsion processing | |
Zou et al. | Boron nitride nanosheet modified electrode: preparation and application to direct electrochemistry of myoglobin | |
Shi et al. | Reduced graphene/polydopamine-supported Au@ Pt/Au nanoparticles for electrochemical detection of acetaminophen | |
Liu et al. | The Preparation and Application of Bismuth (III) Ion‐Selective Electrode Based on Nanoparticles of Bismuth Sulfide | |
Zhao et al. | Synthesis of Accordion‐like Ti3CN MXene and its Structural Stability in Aqueous Solutions and Organic Solvents | |
Nehru et al. | Sonochemically synthesized rod-like bismuth phosphate and carbon black hybrid electrocatalyst for electrochemical monitoring of hazardous sulfamethazine | |
Ganjali et al. | Bio-mimetic cadmium ion imprinted polymer based potentiometric nano-composite sensor | |
Polat et al. | ZnO@ Polypyrrole-P (VSANa) on flexible and wearable carbon felt as electrodes for nonenzymatic H2O2 sensor and supercapacitor applications | |
Yeh et al. | Electrochemical Sensing of nitrofurazone and semicarbazide on an Au-Ag film fabricating from a deep eutectic solvent | |
Amra et al. | Nanostructured modified carbon paste electrode as voltrammetric sensor for isoproturon trace analysis in water | |
He et al. | A novel nonenzymatic hydrogen peroxide electrochemical sensor based on facile synthesis of copper oxide nanoparticles dopping into graphene sheets@ cerium oxide nanocomposites sensitized screen printed electrode | |
Wang et al. | Potentiometric microsensor based on ion-imprinted polymer for the trace determination of cesium (I) ions | |
Sugae et al. | Electrochemical reduction and re‐oxidation behavior of α, β, and γ‐iron oxy‐hydroxide films on electrodes | |
Skogvold et al. | Electrochemical properties of silver–copper alloy microelectrodes for use in voltammetric field apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHUNG YUAN CHRISTIAN UNIVERSITY, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHENG, CHUN-LIN;REEL/FRAME:021627/0161 Effective date: 20080918 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |