US20090088084A1 - Multi-level point-to-point transmission system and transmitter circuit and receiver circuit thereof - Google Patents
Multi-level point-to-point transmission system and transmitter circuit and receiver circuit thereof Download PDFInfo
- Publication number
- US20090088084A1 US20090088084A1 US11/952,151 US95215107A US2009088084A1 US 20090088084 A1 US20090088084 A1 US 20090088084A1 US 95215107 A US95215107 A US 95215107A US 2009088084 A1 US2009088084 A1 US 2009088084A1
- Authority
- US
- United States
- Prior art keywords
- terminal
- coupled
- voltage
- current
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 94
- 230000008054 signal transmission Effects 0.000 claims description 14
- 230000005669 field effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 102220029901 rs140332992 Human genes 0.000 description 1
- 102220017114 rs150867836 Human genes 0.000 description 1
- 102220110933 rs151253274 Human genes 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2092—Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
- G09G3/2096—Details of the interface to the display terminal specific for a flat panel
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0289—Details of voltage level shifters arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0291—Details of output amplifiers or buffers arranged for use in a driving circuit
Definitions
- the present invention generally relates to a multi-level point-to-point transmission system and a transmitter circuit and a receiver circuit thereof, in particular, to a multi-level point-to-point transmission system and a transmitter circuit and a receiver circuit thereof applied in a large-sized display panel.
- a conventional transmission system in a display panel has to be disposed with a plurality of pairs of transmission lines such that it is almost impossible to make all the transmission lines to have similar electrical characteristics in a high-frequency ambient.
- no effective correction mechanism for correcting foregoing problem can be provided at a receiving terminal and accordingly the bit error rate of the transmission system cannot be reduced.
- additional cost is incurred for resolving foregoing problem in the transmission system so that product competitiveness cannot be improved.
- FIG. 1A is a diagram of a conventional transmission system in a liquid crystal display (LCD) panel.
- the transmission system includes a timing controller TCON and a plurality of drive ICs SD 1 , SD 2 . . . , and SDN.
- the timing controller TCON transmits a video data to the drive ICs SD 1 ⁇ SDN in the LCD panel through a pair of clock transmission lines and a plurality of pairs of transmission lines. Each pair of transmission lines is coupled to the input terminals of all the drive ICs SD 1 ⁇ SDN.
- FIG. 1B is a detailed circuit diagram of the transmission system in FIG. 1A .
- the timing controller TCON serves as a transmitter circuit
- the drive ICs SD 1 ⁇ SDN serve as receiver circuits.
- the timing controller TCON and the drive ICs SD 1 ⁇ SDN form the transmission system.
- the single to differential converters TX 1 , TX 2 , TX 3 , . . . , TXN, and TXCK output the input data DI_ 1 , DI_ 2 , DI_ 3 , . . . , and DI_N and an input clock signal CKI to the comparators RX 1 , RX 2 , RX 3 , . . . , RXN, and RXCK at the receiving terminals of the drive ICs SD 1 ⁇ SDN.
- a conventional transmission system in a display panel includes a plurality of pairs of transmission lines, wherein a data received by a receiving terminal can be easily decoded by using a simple comparator.
- a multi-level point-to-point transmission mechanism has to be adopted in the transmission system of a display panel in order to reduce the transmission frequency and accordingly the transmission line effect.
- a receiving terminal in the multi-level point-to-point transmission system a set of precise level comparators instead of a simple comparator is required for decoding a received data.
- all the drive ICs are controlled by the same control IC, thus, a reference voltage level at the receiving terminal of each drive IC has to be consistent with a reference voltage level at the transmitting terminal thereof in order to prevent decoding error.
- a receiving terminal in a multi-level point-to-point transmission system has to generate a reference voltage level as same as that at a transmitting terminal in order to decode a transmission data correctly, which is very difficult to be achieved due to the difference between processes.
- a built-in fine tune mechanism is usually adopted for offsetting the difference between processes.
- how to provide a same fine tune mechanism to each of the drive ICs in a display panel is to be resolved by today's display manufacturers.
- the present invention is directed to a multi-level point-to-point transmission system, wherein a receiver circuit generates a reference voltage at each receiver thereof according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- the present invention is directed to a transmitter circuit suitable for a multi-level point-to-point transmission system, wherein the pattern in which the transmitter circuit generates an output current or a signal level can be easily copied and is not affected by any ambient factor such as process, temperature, or voltage.
- the present invention is directed to a receiver circuit suitable for a multi-level point-to-point transmission system, wherein the receiver circuit generates a reference voltage according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- the present invention is also directed to a point-to-point signal transmission system, wherein a receiver circuit generates a reference voltage at each receiver thereof according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- the present invention provides a multi-level point-to-point transmission system including at least one terminal resistor, a transmitter circuit, and a receiver circuit.
- the transmitter circuit includes a first external resistor and a transmitter.
- the transmitter has a first reference terminal and at least one output terminal, wherein the first reference terminal is coupled to the first external resistor, and the output terminal is coupled to the terminal resistor.
- the transmitter generates a first reference current according to the first external resistor and determines a current flowed through the output terminal according to a transmission data and the first reference current.
- the receiver circuit includes a second external resistor, a third external resistor, and at least one receiver.
- the receiver has a second reference terminal, a third reference terminal, and a receiving terminal, wherein the second reference terminal is coupled to the second external resistor, the third reference terminal is coupled to the third external resistor, and the receiving terminal is coupled to the output terminal of the transmitter.
- the receiver generates a second reference current according to the second external resistor and generates a reference voltage difference according to the second reference current and the third external resistor.
- the receiver judges the voltage at the receiving terminal according to the reference voltage difference so as to receive the transmission data correctly.
- the transmitter includes a transmitting-end current generator and a plurality of pulse intensity modulators.
- the transmitting-end current generator is coupled to the first reference terminal and generates the first reference current according to the first external resistor.
- the pulse intensity modulators are coupled to the transmitting-end current generator and the output terminal of the transmitter.
- the pulse intensity modulators determines a ratio between the current flowed through the output terminal of the transmitter and the first reference current according to the bit code of the transmission data and operates with the terminal resistor to generate a plurality of different voltage levels at the output terminal of the transmitter.
- the receiver includes a receiving-end current tracking circuit, a second voltage dividing circuit, a plurality of intensity comparators, and a plurality of thermal code decoders.
- the receiving-end current tracking circuit is coupled to the second reference terminal and the third reference terminal.
- the receiving-end current tracking circuit generates the second reference current according to the second external resistor and generates the reference voltage difference according to the second reference current and the third external resistor.
- the first voltage dividing circuit generates a plurality of sub-reference voltage differences according to the reference voltage difference and a second predetermined ratio.
- the intensity comparators are coupled to the second voltage dividing circuit and the receiving terminal and compare the voltage at the receiving terminal and some of the sub-reference voltage differences to obtain a plurality of thermal codes.
- the thermal code decoders are coupled to the intensity comparators for decoding the thermal codes into the transmission data.
- the present invention provides a transmitter circuit suitable for a multi-level point-to-point transmission system.
- the transmitter circuit is coupled to at least one terminal resistor.
- the transmitter circuit includes a first external resistor and a transmitter.
- the transmitter has a first reference terminal and at least one output terminal, wherein the first reference terminal is coupled to the first external resistor, and the output terminal is coupled to the terminal resistor.
- the transmitter includes a transmitting-end current generator and a plurality of pulse intensity modulators.
- the transmitting-end current generator is coupled to the first reference terminal and generates a first reference current according to the first external resistor.
- the pulse intensity modulators are coupled to the transmitting-end current generator and the output terminal of the transmitter.
- the pulse intensity modulators determines a ratio between a current flowed through the output terminal of the transmitter and the first reference current according to the bit code of a transmission data and operates with the terminal resistor to generate a plurality of different voltage levels at the output terminal of the transmitter.
- the transmitting-end current generator includes a first voltage dividing circuit, an operational amplifier, and a current mirror.
- the first voltage dividing circuit generates a first reference voltage according to an input voltage and a first predetermined ratio.
- the operational amplifier has a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal is coupled to the first voltage dividing circuit, and the second input terminal is coupled to the first reference terminal.
- the current mirror is coupled to the output terminal of the operational amplifier and the first reference terminal for copying and outputting the first reference current.
- the first reference current can be generated according to the first reference voltage and the first external resistor through foregoing couplings.
- the present invention provides a receiver circuit suitable for a multi-level point-to-point transmission system.
- the receiver circuit includes a second external resistor, a third external resistor, and at least one receiver.
- the receiver has a second reference terminal, a third reference terminal, and a receiving terminal, wherein the second reference terminal is coupled to the second external resistor, and the third reference terminal is coupled to the third external resistor.
- the receiver includes a receiving-end current tracking circuit, a second voltage dividing circuit, a plurality of intensity comparators, and a plurality of thermal code decoders.
- the receiving-end current tracking circuit is coupled to the second reference terminal and the third reference terminal.
- the receiving-end current tracking circuit generates a second reference current according to the second external resistor and generates a reference voltage difference according to the second reference current and the third external resistor.
- the second voltage dividing circuit generates a plurality of sub-reference voltage differences according to the reference voltage difference and a second predetermined ratio.
- the intensity comparators are coupled to the second voltage dividing circuit and the receiving terminal of the receiver and compare a voltage at the receiving terminal of the receiver and some of the sub-reference voltage differences to obtain a plurality of thermal codes.
- the thermal code decoders are coupled to the intensity comparators for decoding the thermal codes into the transmission data.
- the receiving-end current tracking circuit includes a third voltage dividing circuit, an operational amplifier, and a switch circuit.
- the third voltage dividing circuit generates a second reference voltage according to the input voltage and a third predetermined ratio.
- the operational amplifier has a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal is coupled to the third voltage dividing circuit, and the second input terminal is coupled to the second reference terminal.
- the switch circuit has an enabling signal receiving terminal, a current input terminal, and a current output terminal, wherein the current input terminal is coupled to the second reference terminal, the current output terminal is coupled to the third reference terminal, and the enabling signal receiving terminal receives an input enabling signal in order to control whether to output the second reference current to the current output terminal of the switch circuit.
- the second reference current can be generated according to the second reference voltage and the second external resistor through foregoing couplings.
- the present invention provides a point-to-point signal transmission system including a transmitter circuit and a receiver circuit, wherein the receiver circuit is coupled to the transmitter circuit.
- the transmitter circuit outputs at least one current signal according to a transmission data.
- the receiver circuit includes a plurality of receiving units and at least one reference unit, wherein the reference unit is coupled to the receiving units.
- the receiver circuit receives the current signal from the transmitter circuit and converts the current signal into a received voltage signal.
- the reference unit generates a reference voltage difference and transmits the reference voltage difference to the receiving units, wherein the receiving units generate a plurality of sub-reference voltage differences according to the reference voltage difference and compare the received voltage signal and the sub-reference voltage differences to obtain a digital data.
- the transmitter circuit includes a first external resistor, a first reference terminal, a transmitting-end current generator, and a pulse intensity modulator.
- the first reference terminal is coupled to the first external resistor
- the transmitting-end current generator is coupled to the first reference terminal
- the pulse intensity modulator is coupled to the transmitting-end current generator.
- the transmitting-end current generator generates a first reference current according to the first external resistor.
- the pulse intensity modulator determines a ratio between the current signal and the first reference current according to the bit code of the transmission data.
- the reference unit includes a second external resistor, a third external resistor, a second reference terminal, a third reference terminal, and a receiving-end current tracking circuit.
- the second reference terminal is coupled to the second external resistor
- the third reference terminal is coupled to the third external resistor
- the receiving-end current tracking circuit is coupled to the second reference terminal and the third reference terminal.
- the receiving-end current tracking circuit generates a second reference current according to the second external resistor and generates the reference voltage difference according to the second reference current and the third external resistor.
- the present invention provides a multi-level point-to-point transmission system and a transmitter circuit and a receiver circuit thereof.
- the receiver circuit generates a reference voltage at each receiver of the receiver circuit according to how the transmitter circuit generates an output current or a signal level.
- the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- FIG. 1A is a diagram of a conventional transmission system in a liquid crystal display (LCD) panel.
- LCD liquid crystal display
- FIG. 1B is a detailed circuit diagram of the transmission system in FIG. 1A .
- FIG. 2 illustrates a multi-level point-to-point transmission system according to an embodiment of the present invention.
- FIG. 3 is a circuit diagram of a transmitter 211 in FIG. 2 .
- FIG. 4 is a detailed circuit diagram of a transmitting-end current generator 30 in FIG. 3 .
- FIG. 5 is a circuit diagram of a receiver 222 .
- FIG. 6 is a detailed circuit diagram of a receiving-end current tracking circuit 50 .
- FIG. 7 illustrates a common mode feed back circuit infrastructure of a plurality of pulse intensity modulators 31 in FIG. 3 .
- the present invention provides a multi-level point-to-point transmission system, wherein a receiver circuit can generate a reference voltage at each receiver thereof according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- the multi-level point-to-point transmission system is suitable for a large-sized liquid crystal display (LCD) panel.
- LCD liquid crystal display
- FIG. 2 illustrates a multi-level point-to-point transmission system according to an embodiment of the present invention.
- the multi-level point-to-point transmission system includes a plurality of terminal resistors RT, a transmitter circuit 21 , and a receiver circuit 22 .
- the transmitter circuit 21 includes a first external resistor RS 1 and a transmitter 211 .
- the transmitter 211 has a first reference terminal 211 REF 1 and a plurality of output terminals 211 OUT, wherein the first reference terminal 211 REF 1 is coupled to the first external resistor RS 1 , and the output terminals 211 OUT are coupled to the terminal resistors RT.
- the transmitter 211 generates a first reference current IREF 1 according to the first external resistor RS 1 and determines the currents flowed through all the output terminals 211 OUT according to a transmission data to be transmitted by the transmitter 211 and the first reference current IREF 1 .
- the receiver circuit 22 includes a second external resistor RS 2 , a third external resistor RS 3 , and a plurality of receivers 222 .
- Each of the receivers 222 has a second reference terminal 222 REF 2 , a third reference terminal 222 REF 3 , and a plurality of receiving terminals IP&IN, wherein the second reference terminal 222 REF 2 is coupled to the second external resistor RS 2 , the third reference terminal 222 REF 3 is coupled to the third external resistor RS 3 , and the receiving terminals IP&IN are coupled to the output terminals 211 OUT of the transmitter 211 .
- the receivers 222 generates a second reference current IREF 2 according to the second external resistor RS 2 and generates a reference voltage difference VCC ⁇ VRTS according to the second reference current IREF 2 and the third external resistor RS 3 .
- the receivers 222 judge the voltages at the receiving terminals IP&IN according to the reference voltage difference VCC ⁇ VRTS so as to receive the transmission data from the transmitter 211 correctly.
- FIG. 3 is a circuit diagram of the transmitter 211 in FIG. 2 .
- the transmitter 211 includes a transmitting-end current generator 30 and a plurality of 4-level pulse intensity modulators 31 (only one 4-level pulse intensity modulator 31 is demonstratively illustrated in FIG. 3 ).
- the transmitting-end current generator 30 is coupled to the first reference terminal 211 REF 1 and generates the first reference current IREF 1 according to the first external resistor RS 1 .
- the pulse intensity modulator 31 is coupled to the transmitting-end current generator 30 and the output terminals 211 OUT.
- the 4-level pulse intensity modulator 31 determines the ratios between the currents flowed through the output terminals 211 OUT and the first reference current IREF 1 according to the bit code of the transmission data transmitted by the transmitter 211 and operates with the terminal resistors RT to generate a plurality of different voltage levels at the output terminals 211 OUT.
- the 4-level pulse intensity modulator 31 determines all the currents flowed through the output terminals 211 OUT according to the first reference current IREF 1 and the transmission data D 1 and D 2 to be transmitted by the transmitter 211 . A plurality of different voltage levels are produced when these currents pass through the terminal resistors RT.
- FIG. 4 is a detailed circuit diagram of the transmitting-end current generator 30 in FIG. 3 .
- the transmitting-end current generator 30 includes a first voltage dividing circuit 40 , an operational amplifier 41 , and a current mirror 42 .
- the operational amplifier 41 has a first input terminal 41 I 1 , a second input terminal 41 I 2 , and an output terminal 41 O, wherein the first input terminal 41 I 1 is coupled to the first voltage dividing circuit 40 , and the second input terminal 41 I 2 is coupled to the first reference terminal 211 REF 1 .
- the current mirror 42 is coupled to the output terminal 41 O of the operational amplifier 41 and the first reference terminal 211 REF 1 .
- the transistors PB 0 and PB 1 and the transistors NB 0 and NB 1 of the current mirror 42 have the same size proportion so that the current mirror 42 can copy and output the first reference current IREF 1 .
- the current I 0 is flowed through the terminal resistors RT coupled to the transistors M 1 and M 2 of the 4-level pulse intensity modulator 31 so that the voltage level Vamp is generated at the terminal resistors RT.
- a current which is two times of the current I 0 is flowed through the terminal resistors RT coupled to the transistors M 1 and M 2 of the 4-level pulse intensity modulator 31 so that a voltage level which is two times of the voltage level Vamp is generated at these terminal resistors RT.
- Foregoing current mirror 42 may also be a current mirror of other types, and foregoing 4-level pulse intensity modulator 31 may also be a modulator having different number of levels, such as an 8-level pulse intensity modulator.
- Foregoing resistors and assumptions are only used for describing the present invention but not for restricting the scope thereof, thus, any other resistors and assumptions which meet the requirements of the present invention may also be applied.
- the transmitter 211 has a first reference current IREF 1 which can be determined according to the first external resistor RS 1 . Thereby, the transmitter 211 can determine the currents flowed through the output terminals 211 OUT according to the first reference current IREF 1 and the transmission data D 1 and D 2 to be transmitted by the transmitter 211 .
- FIG. 5 is a circuit diagram of a receiver 222 .
- the receiver 222 includes a receiving-end current tracking circuit 50 , a second voltage dividing circuit 51 , a plurality of 4-level intensity comparators 52 (only one 4-level intensity comparator 52 is illustrated demonstratively in FIG. 5 ), a plurality of thermal code decoders 53 (only one thermal code decoder 53 is illustrated demonstratively in FIG. 5 ), and a voltage converter 54 .
- the receiving-end current tracking circuit 50 is coupled to the second reference terminal 222 REF 2 and the third reference terminal 222 REF 3 .
- the 4-level intensity comparator 52 is coupled to the second voltage dividing circuit 51 and the receiving terminals IP and IN of the receiver 222 .
- the voltage converter 54 has an output terminal 54 O and an input terminal 54 I, wherein the input terminal 54 I is coupled to the third reference terminal 222 REF 3 , and the output terminal 54 O is coupled to the second voltage dividing circuit 51 .
- the thermal code decoder 53 is coupled to the 4-level intensity comparator 52 .
- the second voltage dividing circuit 51 generates a plurality of sub-reference voltage differences according to the reference voltage difference and a second predetermined ratio, wherein one of the sub-reference voltage differences is VREF 3 .
- the voltage converter 54 converts the voltage VRTS at the third reference terminal 222 REF 3 to the output terminal 54 O.
- the 4-level intensity comparator 52 compares the voltage at the receiving terminals IP and IN and the sub-reference voltage difference VREF 3 to obtain a thermal code.
- the thermal code decoder 53 decodes the thermal code into the transmission data.
- the voltage converter 54 includes an operational amplifier OP 2 and a field effect transistor (FET) N 11 .
- the first input terminal of the operational amplifier OP 2 serves as the input terminal 54 I of the voltage converter 54
- the second input terminal of the operational amplifier OP 2 serves as the output terminal 54 O of the voltage converter 54 .
- the gate of the FET N 11 and the output terminal of the operational amplifier OP 2 are coupled to each other, the drain of the FET N 11 and the output terminal 54 O of the voltage converter 54 are coupled to each other, and the source of the FET N 11 is grounded.
- the voltage converter 54 can copy the voltage at the input terminal 54 I to the output terminal 54 O.
- the voltage converter 54 may also be embodied differently without departing the scope and spirit of the present invention.
- FIG. 6 is a detailed circuit diagram of the receiving-end current tracking circuit 50 .
- the receiving-end current tracking circuit 50 includes a third voltage dividing circuit 60 , an operational amplifier 61 , and a switch circuit 62 .
- the operational amplifier 61 has a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal is coupled to the third voltage dividing circuit 60 , and the second input terminal is coupled to the second reference terminal 222 REF 2 .
- the switch circuit 62 has an enabling signal receiving terminal EN, a current input terminal 62 I, and a current output terminal 62 O, wherein the current input terminal 62 I is coupled to the second reference terminal 222 REF 2 , the current output terminal 62 O is coupled to the third reference terminal 222 REF 3 , and the enabling signal receiving terminal EN receives an input enabling signal so as to control whether to output the second reference current IREF 2 to the current output terminal 62 O.
- the switch circuit 62 includes an inverter INV and two FETs N 12 and Nclp 2 .
- the input terminal of the inverter INV is coupled to the enabling signal receiving terminal EN.
- the inverter INV outputs an inverted enabling signal.
- the drain of the FET N 12 and the gate of the FET Nclp 2 are coupled to each other, the gate of the FET N 12 and the output terminal of the inverter INV are coupled to each other, and the source of the FET N 12 is grounded.
- the gate of the FET Nclp 2 and the output terminal of the operational amplifier 61 are coupled to each other, the drain of the FET Nclp 2 serves as the current output terminal 62 O of the switch circuit 62 , and the source of the FET Nclp 2 serves as the current input terminal 62 I of the switch circuit 62 .
- the thermal codes are ⁇ 0,1,1 ⁇
- VCC ⁇ VRTS (VREF 2 /RS 2 )*RS 3
- Foregoing 4-level intensity comparator 52 and thermal code decoder 53 are embodied corresponding to the 4-level pulse intensity modulator 31 . If the 4-level pulse intensity modulator 31 is a pulse intensity modulator having other number of levels (for example, an 8-level pulse intensity modulator), the intensity comparator and the thermal code decoder should be embodied correspondingly. In short, foregoing implementations are not intended for restricting the present invention, and any other implements which meet the requirements of the present invention may also be applied.
- FIG. 7 illustrates another implementation of the 4-level pulse intensity modulator 31 in FIG. 3 .
- the 4-level pulse intensity modulator 31 illustrated in FIG. 3 has a single input circuit infrastructure, while the pulse intensity modulators 31 in FIG. 7 have a common mode feed back circuit infrastructure.
- the terminal resistors RT can be connected in series to the positive and negative common mode output terminals of these pulse intensity modulators 31 in order to reduce the interference of noises.
- the pulse intensity modulators 31 illustrated in FIG. 3 and FIG. 7 have the same function, and the only difference between the two is that the pulse intensity modulator 31 in FIG. 3 has single input and output while the pulse intensity modulators 31 in FIG. 7 have common mode input and output.
- the single input includes only D 1 and D 2
- the common mode voltage input includes D 1 +, D 1 ⁇ , D 2 +, and D 2 ⁇ , wherein D 1 + is D 1 , D 1 ⁇ is the negative value of D 1 , D 2 + is D 2 , and D 2 ⁇ is the negative value of D 2 .
- the present invention provides a multi-level point-to-point transmission system.
- a receiver circuit of the transmission system generates reference voltages according to how a transmitter circuit of the transmission system generates an output current or a signal level, and the reference voltages are not affected by any ambient factor such as process, temperature, or voltage.
- the present invention provides a transmitter circuit suitable for foregoing multi-level point-to-point transmission system.
- the pattern in which the transmitter circuit generates an output current or a signal level is easily copied and is not affected by any ambient factor such as process, temperature, or voltage.
- the present invention provides a receiver circuit suitable for foregoing multi-level point-to-point transmission system.
- the receiver circuit generates reference voltages according to how the transmitter circuit generates an output current or a signal level, and the reference voltages are not affected by any ambient factor such as process, temperature, or voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Dc Digital Transmission (AREA)
- Logic Circuits (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
- This application claims the priority benefit of Taiwan application serial no. 96136234, filed on Sep. 28, 2007. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
- 1. Field of the Invention
- The present invention generally relates to a multi-level point-to-point transmission system and a transmitter circuit and a receiver circuit thereof, in particular, to a multi-level point-to-point transmission system and a transmitter circuit and a receiver circuit thereof applied in a large-sized display panel.
- 2. Description of Related Art
- The techniques for fabricating display panels have gradually reached their maturity in recently years. However, the sizes and resolutions of display panels have been increased constantly in order to meet customers' requirement. However, the operation frequency inside a display panel will be increased along with the increases in the resolution and size of the display panel. A conventional transmission system in a display panel has to be disposed with a plurality of pairs of transmission lines such that it is almost impossible to make all the transmission lines to have similar electrical characteristics in a high-frequency ambient. Thus, no effective correction mechanism for correcting foregoing problem can be provided at a receiving terminal and accordingly the bit error rate of the transmission system cannot be reduced. In particular, additional cost is incurred for resolving foregoing problem in the transmission system so that product competitiveness cannot be improved.
-
FIG. 1A is a diagram of a conventional transmission system in a liquid crystal display (LCD) panel. The transmission system includes a timing controller TCON and a plurality of drive ICs SD1, SD2 . . . , and SDN. The timing controller TCON transmits a video data to the drive ICs SD1˜SDN in the LCD panel through a pair of clock transmission lines and a plurality of pairs of transmission lines. Each pair of transmission lines is coupled to the input terminals of all the drive ICs SD1˜SDN.FIG. 1B is a detailed circuit diagram of the transmission system inFIG. 1A . The timing controller TCON serves as a transmitter circuit, and the drive ICs SD1˜SDN serve as receiver circuits. The timing controller TCON and the drive ICs SD1˜SDN form the transmission system. The single to differential converters TX1, TX2, TX3, . . . , TXN, and TXCK output the input data DI_1, DI_2, DI_3, . . . , and DI_N and an input clock signal CKI to the comparators RX1, RX2, RX3, . . . , RXN, and RXCK at the receiving terminals of the drive ICs SD1˜SDN. The comparators RX1, RX2, RX3, . . . , RXN, and RXCK at the receiving terminals of the drive ICs SD1˜SDN compare the signed signals to obtain correspondingdigital values - Generally, a conventional transmission system in a display panel includes a plurality of pairs of transmission lines, wherein a data received by a receiving terminal can be easily decoded by using a simple comparator.
- Along with the increase in the sizes of display panels, a multi-level point-to-point transmission mechanism has to be adopted in the transmission system of a display panel in order to reduce the transmission frequency and accordingly the transmission line effect. However, as to a receiving terminal in the multi-level point-to-point transmission system, a set of precise level comparators instead of a simple comparator is required for decoding a received data. Moreover, in a medium or large-sized display panel, all the drive ICs are controlled by the same control IC, thus, a reference voltage level at the receiving terminal of each drive IC has to be consistent with a reference voltage level at the transmitting terminal thereof in order to prevent decoding error.
- As described above, by adopting a multi-level point-to-point transmission system in a large-sized display panel, the design complexity of the large-sized display panel can be greatly reduced. However, a receiving terminal in a multi-level point-to-point transmission system has to generate a reference voltage level as same as that at a transmitting terminal in order to decode a transmission data correctly, which is very difficult to be achieved due to the difference between processes. Thus, a built-in fine tune mechanism is usually adopted for offsetting the difference between processes. In addition, how to provide a same fine tune mechanism to each of the drive ICs in a display panel is to be resolved by today's display manufacturers.
- The present invention is directed to a multi-level point-to-point transmission system, wherein a receiver circuit generates a reference voltage at each receiver thereof according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- The present invention is directed to a transmitter circuit suitable for a multi-level point-to-point transmission system, wherein the pattern in which the transmitter circuit generates an output current or a signal level can be easily copied and is not affected by any ambient factor such as process, temperature, or voltage.
- The present invention is directed to a receiver circuit suitable for a multi-level point-to-point transmission system, wherein the receiver circuit generates a reference voltage according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- The present invention is also directed to a point-to-point signal transmission system, wherein a receiver circuit generates a reference voltage at each receiver thereof according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- The present invention provides a multi-level point-to-point transmission system including at least one terminal resistor, a transmitter circuit, and a receiver circuit. The transmitter circuit includes a first external resistor and a transmitter. The transmitter has a first reference terminal and at least one output terminal, wherein the first reference terminal is coupled to the first external resistor, and the output terminal is coupled to the terminal resistor. The transmitter generates a first reference current according to the first external resistor and determines a current flowed through the output terminal according to a transmission data and the first reference current. The receiver circuit includes a second external resistor, a third external resistor, and at least one receiver. The receiver has a second reference terminal, a third reference terminal, and a receiving terminal, wherein the second reference terminal is coupled to the second external resistor, the third reference terminal is coupled to the third external resistor, and the receiving terminal is coupled to the output terminal of the transmitter. The receiver generates a second reference current according to the second external resistor and generates a reference voltage difference according to the second reference current and the third external resistor. The receiver judges the voltage at the receiving terminal according to the reference voltage difference so as to receive the transmission data correctly.
- According to an embodiment of the present invention, the transmitter includes a transmitting-end current generator and a plurality of pulse intensity modulators. The transmitting-end current generator is coupled to the first reference terminal and generates the first reference current according to the first external resistor. The pulse intensity modulators are coupled to the transmitting-end current generator and the output terminal of the transmitter. The pulse intensity modulators determines a ratio between the current flowed through the output terminal of the transmitter and the first reference current according to the bit code of the transmission data and operates with the terminal resistor to generate a plurality of different voltage levels at the output terminal of the transmitter.
- According to an embodiment of the present invention, the receiver includes a receiving-end current tracking circuit, a second voltage dividing circuit, a plurality of intensity comparators, and a plurality of thermal code decoders. The receiving-end current tracking circuit is coupled to the second reference terminal and the third reference terminal. The receiving-end current tracking circuit generates the second reference current according to the second external resistor and generates the reference voltage difference according to the second reference current and the third external resistor. The first voltage dividing circuit generates a plurality of sub-reference voltage differences according to the reference voltage difference and a second predetermined ratio. The intensity comparators are coupled to the second voltage dividing circuit and the receiving terminal and compare the voltage at the receiving terminal and some of the sub-reference voltage differences to obtain a plurality of thermal codes. The thermal code decoders are coupled to the intensity comparators for decoding the thermal codes into the transmission data.
- The present invention provides a transmitter circuit suitable for a multi-level point-to-point transmission system. The transmitter circuit is coupled to at least one terminal resistor. The transmitter circuit includes a first external resistor and a transmitter. The transmitter has a first reference terminal and at least one output terminal, wherein the first reference terminal is coupled to the first external resistor, and the output terminal is coupled to the terminal resistor. The transmitter includes a transmitting-end current generator and a plurality of pulse intensity modulators. The transmitting-end current generator is coupled to the first reference terminal and generates a first reference current according to the first external resistor. The pulse intensity modulators are coupled to the transmitting-end current generator and the output terminal of the transmitter. The pulse intensity modulators determines a ratio between a current flowed through the output terminal of the transmitter and the first reference current according to the bit code of a transmission data and operates with the terminal resistor to generate a plurality of different voltage levels at the output terminal of the transmitter.
- According to an embodiment of the present invention, the transmitting-end current generator includes a first voltage dividing circuit, an operational amplifier, and a current mirror. The first voltage dividing circuit generates a first reference voltage according to an input voltage and a first predetermined ratio. The operational amplifier has a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal is coupled to the first voltage dividing circuit, and the second input terminal is coupled to the first reference terminal. The current mirror is coupled to the output terminal of the operational amplifier and the first reference terminal for copying and outputting the first reference current. The first reference current can be generated according to the first reference voltage and the first external resistor through foregoing couplings.
- The present invention provides a receiver circuit suitable for a multi-level point-to-point transmission system. The receiver circuit includes a second external resistor, a third external resistor, and at least one receiver. The receiver has a second reference terminal, a third reference terminal, and a receiving terminal, wherein the second reference terminal is coupled to the second external resistor, and the third reference terminal is coupled to the third external resistor. The receiver includes a receiving-end current tracking circuit, a second voltage dividing circuit, a plurality of intensity comparators, and a plurality of thermal code decoders. The receiving-end current tracking circuit is coupled to the second reference terminal and the third reference terminal. The receiving-end current tracking circuit generates a second reference current according to the second external resistor and generates a reference voltage difference according to the second reference current and the third external resistor. The second voltage dividing circuit generates a plurality of sub-reference voltage differences according to the reference voltage difference and a second predetermined ratio. The intensity comparators are coupled to the second voltage dividing circuit and the receiving terminal of the receiver and compare a voltage at the receiving terminal of the receiver and some of the sub-reference voltage differences to obtain a plurality of thermal codes. The thermal code decoders are coupled to the intensity comparators for decoding the thermal codes into the transmission data.
- According to an embodiment of the present invention, the receiving-end current tracking circuit includes a third voltage dividing circuit, an operational amplifier, and a switch circuit. The third voltage dividing circuit generates a second reference voltage according to the input voltage and a third predetermined ratio. The operational amplifier has a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal is coupled to the third voltage dividing circuit, and the second input terminal is coupled to the second reference terminal. The switch circuit has an enabling signal receiving terminal, a current input terminal, and a current output terminal, wherein the current input terminal is coupled to the second reference terminal, the current output terminal is coupled to the third reference terminal, and the enabling signal receiving terminal receives an input enabling signal in order to control whether to output the second reference current to the current output terminal of the switch circuit. The second reference current can be generated according to the second reference voltage and the second external resistor through foregoing couplings.
- The present invention provides a point-to-point signal transmission system including a transmitter circuit and a receiver circuit, wherein the receiver circuit is coupled to the transmitter circuit. The transmitter circuit outputs at least one current signal according to a transmission data. The receiver circuit includes a plurality of receiving units and at least one reference unit, wherein the reference unit is coupled to the receiving units. The receiver circuit receives the current signal from the transmitter circuit and converts the current signal into a received voltage signal. The reference unit generates a reference voltage difference and transmits the reference voltage difference to the receiving units, wherein the receiving units generate a plurality of sub-reference voltage differences according to the reference voltage difference and compare the received voltage signal and the sub-reference voltage differences to obtain a digital data.
- According to an embodiment of the present invention, the transmitter circuit includes a first external resistor, a first reference terminal, a transmitting-end current generator, and a pulse intensity modulator. The first reference terminal is coupled to the first external resistor, the transmitting-end current generator is coupled to the first reference terminal, and the pulse intensity modulator is coupled to the transmitting-end current generator. The transmitting-end current generator generates a first reference current according to the first external resistor. The pulse intensity modulator determines a ratio between the current signal and the first reference current according to the bit code of the transmission data. The reference unit includes a second external resistor, a third external resistor, a second reference terminal, a third reference terminal, and a receiving-end current tracking circuit. The second reference terminal is coupled to the second external resistor, the third reference terminal is coupled to the third external resistor, and the receiving-end current tracking circuit is coupled to the second reference terminal and the third reference terminal. The receiving-end current tracking circuit generates a second reference current according to the second external resistor and generates the reference voltage difference according to the second reference current and the third external resistor.
- The present invention provides a multi-level point-to-point transmission system and a transmitter circuit and a receiver circuit thereof. As described above, the receiver circuit generates a reference voltage at each receiver of the receiver circuit according to how the transmitter circuit generates an output current or a signal level. Thereby the reference voltage is not affected by any ambient factor such as process, temperature, or voltage.
- The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
-
FIG. 1A is a diagram of a conventional transmission system in a liquid crystal display (LCD) panel. -
FIG. 1B is a detailed circuit diagram of the transmission system inFIG. 1A . -
FIG. 2 illustrates a multi-level point-to-point transmission system according to an embodiment of the present invention. -
FIG. 3 is a circuit diagram of atransmitter 211 inFIG. 2 . -
FIG. 4 is a detailed circuit diagram of a transmitting-endcurrent generator 30 inFIG. 3 . -
FIG. 5 is a circuit diagram of areceiver 222. -
FIG. 6 is a detailed circuit diagram of a receiving-endcurrent tracking circuit 50. -
FIG. 7 illustrates a common mode feed back circuit infrastructure of a plurality of pulse intensity modulators 31 inFIG. 3 . - Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
- The present invention provides a multi-level point-to-point transmission system, wherein a receiver circuit can generate a reference voltage at each receiver thereof according to how a transmitter circuit generates an output current or a signal level, and the reference voltage is not affected by any ambient factor such as process, temperature, or voltage. Moreover, the multi-level point-to-point transmission system is suitable for a large-sized liquid crystal display (LCD) panel.
-
FIG. 2 illustrates a multi-level point-to-point transmission system according to an embodiment of the present invention. Referring toFIG. 2 , the multi-level point-to-point transmission system includes a plurality of terminal resistors RT, atransmitter circuit 21, and areceiver circuit 22. Thetransmitter circuit 21 includes a first external resistor RS1 and atransmitter 211. Thetransmitter 211 has a first reference terminal 211REF1 and a plurality of output terminals 211OUT, wherein the first reference terminal 211REF1 is coupled to the first external resistor RS1, and the output terminals 211OUT are coupled to the terminal resistors RT. Thetransmitter 211 generates a first reference current IREF1 according to the first external resistor RS1 and determines the currents flowed through all the output terminals 211OUT according to a transmission data to be transmitted by thetransmitter 211 and the first reference current IREF1. Thereceiver circuit 22 includes a second external resistor RS2, a third external resistor RS3, and a plurality ofreceivers 222. Each of thereceivers 222 has a second reference terminal 222REF2, a third reference terminal 222REF3, and a plurality of receiving terminals IP&IN, wherein the second reference terminal 222REF2 is coupled to the second external resistor RS2, the third reference terminal 222REF3 is coupled to the third external resistor RS3, and the receiving terminals IP&IN are coupled to the output terminals 211OUT of thetransmitter 211. Thereceivers 222 generates a second reference current IREF2 according to the second external resistor RS2 and generates a reference voltage difference VCC−VRTS according to the second reference current IREF2 and the third external resistor RS3. Thereceivers 222 judge the voltages at the receiving terminals IP&IN according to the reference voltage difference VCC−VRTS so as to receive the transmission data from thetransmitter 211 correctly. -
FIG. 3 is a circuit diagram of thetransmitter 211 inFIG. 2 . Referring toFIG. 3 , thetransmitter 211 includes a transmitting-endcurrent generator 30 and a plurality of 4-level pulse intensity modulators 31 (only one 4-levelpulse intensity modulator 31 is demonstratively illustrated inFIG. 3 ). The transmitting-endcurrent generator 30 is coupled to the first reference terminal 211REF1 and generates the first reference current IREF1 according to the first external resistor RS1. Thepulse intensity modulator 31 is coupled to the transmitting-endcurrent generator 30 and the output terminals 211OUT. The 4-levelpulse intensity modulator 31 determines the ratios between the currents flowed through the output terminals 211OUT and the first reference current IREF1 according to the bit code of the transmission data transmitted by thetransmitter 211 and operates with the terminal resistors RT to generate a plurality of different voltage levels at the output terminals 211OUT. - Assuming that in
FIG. 3 , the size of the transistor P01 is K times of that of the transistor P00, and the size of the transistor P02 is two times of that of the transistor P01, then the current I0=K*IREF1 and the current I0′=2*I0=2K*IREF1. Accordingly, the 4-levelpulse intensity modulator 31 determines all the currents flowed through the output terminals 211OUT according to the first reference current IREF1 and the transmission data D1 and D2 to be transmitted by thetransmitter 211. A plurality of different voltage levels are produced when these currents pass through the terminal resistors RT. -
FIG. 4 is a detailed circuit diagram of the transmitting-endcurrent generator 30 inFIG. 3 . Referring toFIG. 4 , the transmitting-endcurrent generator 30 includes a firstvoltage dividing circuit 40, anoperational amplifier 41, and acurrent mirror 42. Theoperational amplifier 41 has a first input terminal 41I1, a second input terminal 41I2, and an output terminal 41O, wherein the first input terminal 41I1 is coupled to the firstvoltage dividing circuit 40, and the second input terminal 41I2 is coupled to the first reference terminal 211REF1. Thecurrent mirror 42 is coupled to the output terminal 41O of theoperational amplifier 41 and the first reference terminal 211REF1. The firstvoltage dividing circuit 40 generates a first reference voltage VREF1=(VCC*R11)/(R11+R12) according to an input voltage VCC and a first predetermined ratio R1/(R11+R12). The transistors PB0 and PB1 and the transistors NB0 and NB1 of thecurrent mirror 42 have the same size proportion so that thecurrent mirror 42 can copy and output the first reference current IREF1. The first reference current IREF1 can be generated according to the first reference voltage VREF1 and the first external resistor RS1 through foregoing couplings, namely, the first reference current IREF1 is obtained by dividing the first reference voltage VREF1 by the first reference resistor RS1 (IREF1=VREF1/RS1). - Referring to
FIG. 3 andFIG. 4 again, through foregoing assumptions and couplings, when the 4-levelpulse intensity modulator 31 allow a current I0 to pass through the terminal resistors RT coupled to the 4-levelpulse intensity modulator 31, the terminal resistors RT generate a voltage level. As shown inFIG. 3 , if the transmission data D1=1 and D2=0, a current I0 is flowed through the terminal resistors RT coupled to the transistors M1B and M2B of the 4-levelpulse intensity modulator 31 so that a voltage level Vamp=I0*RT is generated at the terminal resistors RT. A current which is two times of the current I0 is flowed through the terminal resistors RT coupled to the transistors M1 and M2 of the 4-levelpulse intensity modulator 31 so that a voltage level which is two times of the voltage level Vamp is generated at these terminal resistors RT. If the transmission data D1=1 and D2=1, a current which is three times of the current I0 is flowed through the terminal resistors RT coupled to the transistors M1 and M2 of the 4-levelpulse intensity modulator 31 so that a voltage level which is three times of the voltage level Vamp is generated at these terminal resistors RT. If the transmission data D1=0 and D2=1, the current I0 is flowed through the terminal resistors RT coupled to the transistors M1 and M2 of the 4-levelpulse intensity modulator 31 so that the voltage level Vamp is generated at the terminal resistors RT. A current which is two times of the current I0 is flowed through the terminal resistors RT coupled to the transistors M1 and M2 of the 4-levelpulse intensity modulator 31 so that a voltage level which is two times of the voltage level Vamp is generated at these terminal resistors RT. If the transmission data D1=0 and D2=0, a current which is three times of I0 is flowed through the terminal resistors RT coupled to the transistors M1B and M2B of the 4-levelpulse intensity modulator 31 so that a voltage level which is three times of the voltage level Vamp is generated at these terminal resistors RT. - Foregoing
current mirror 42 may also be a current mirror of other types, and foregoing 4-levelpulse intensity modulator 31 may also be a modulator having different number of levels, such as an 8-level pulse intensity modulator. Foregoing resistors and assumptions are only used for describing the present invention but not for restricting the scope thereof, thus, any other resistors and assumptions which meet the requirements of the present invention may also be applied. - As described above, the
transmitter 211 has a first reference current IREF1 which can be determined according to the first external resistor RS1. Thereby, thetransmitter 211 can determine the currents flowed through the output terminals 211OUT according to the first reference current IREF1 and the transmission data D1 and D2 to be transmitted by thetransmitter 211. -
FIG. 5 is a circuit diagram of areceiver 222. Referring toFIG. 5 , thereceiver 222 includes a receiving-endcurrent tracking circuit 50, a secondvoltage dividing circuit 51, a plurality of 4-level intensity comparators 52 (only one 4-level intensity comparator 52 is illustrated demonstratively inFIG. 5 ), a plurality of thermal code decoders 53 (only onethermal code decoder 53 is illustrated demonstratively inFIG. 5 ), and avoltage converter 54. The receiving-endcurrent tracking circuit 50 is coupled to the second reference terminal 222REF2 and the third reference terminal 222REF3. The 4-level intensity comparator 52 is coupled to the secondvoltage dividing circuit 51 and the receiving terminals IP and IN of thereceiver 222. Thevoltage converter 54 has an output terminal 54O and aninput terminal 54I, wherein theinput terminal 54I is coupled to the third reference terminal 222REF3, and the output terminal 54O is coupled to the secondvoltage dividing circuit 51. Thethermal code decoder 53 is coupled to the 4-level intensity comparator 52. The receiving-endcurrent tracking circuit 50 generates the second reference current IREF2 according to the second external resistor RS2 and generates a reference voltage difference (the reference voltage difference is equal to VCC−VRTS, wherein VRTS=VCC−RS3*IREF2) according to the second reference current IREF2 and the third external resistor RS3. The secondvoltage dividing circuit 51 generates a plurality of sub-reference voltage differences according to the reference voltage difference and a second predetermined ratio, wherein one of the sub-reference voltage differences is VREF3. Thevoltage converter 54 converts the voltage VRTS at the third reference terminal 222REF3 to the output terminal 54O. The 4-level intensity comparator 52 compares the voltage at the receiving terminals IP and IN and the sub-reference voltage difference VREF3 to obtain a thermal code. Thethermal code decoder 53 decodes the thermal code into the transmission data. - As described above, the
voltage converter 54 includes an operational amplifier OP2 and a field effect transistor (FET) N11. The first input terminal of the operational amplifier OP2 serves as theinput terminal 54I of thevoltage converter 54, and the second input terminal of the operational amplifier OP2 serves as the output terminal 54O of thevoltage converter 54. The gate of the FET N11 and the output terminal of the operational amplifier OP2 are coupled to each other, the drain of the FET N11 and the output terminal 54O of thevoltage converter 54 are coupled to each other, and the source of the FET N11 is grounded. Through foregoing components and the couplings thereof, thevoltage converter 54 can copy the voltage at theinput terminal 54I to the output terminal 54O. However, foregoing embodiment is not intended for restricting the present invention; instead, thevoltage converter 54 may also be embodied differently without departing the scope and spirit of the present invention. -
FIG. 6 is a detailed circuit diagram of the receiving-endcurrent tracking circuit 50. Referring toFIG. 6 , the receiving-endcurrent tracking circuit 50 includes a thirdvoltage dividing circuit 60, anoperational amplifier 61, and aswitch circuit 62. The thirdvoltage dividing circuit 60 generates a second reference voltage VREF2 (VREF2=(VCC*R21)/(R21+R22)) according to an input voltage VCC and a third predetermined ratio R21/(R21+R22). Theoperational amplifier 61 has a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal is coupled to the thirdvoltage dividing circuit 60, and the second input terminal is coupled to the second reference terminal 222REF2. Theswitch circuit 62 has an enabling signal receiving terminal EN, a current input terminal 62I, and a current output terminal 62O, wherein the current input terminal 62I is coupled to the second reference terminal 222REF2, the current output terminal 62O is coupled to the third reference terminal 222REF3, and the enabling signal receiving terminal EN receives an input enabling signal so as to control whether to output the second reference current IREF2 to the current output terminal 62O. The second reference current IREF2 can be generated according to the second reference voltage VREF2 and the second external resistor RS2 (IREF2=VREF2/RS2) through foregoing couplings. - The
switch circuit 62 includes an inverter INV and two FETs N12 and Nclp2. The input terminal of the inverter INV is coupled to the enabling signal receiving terminal EN. The inverter INV outputs an inverted enabling signal. The drain of the FET N12 and the gate of the FET Nclp2 are coupled to each other, the gate of the FET N12 and the output terminal of the inverter INV are coupled to each other, and the source of the FET N12 is grounded. The gate of the FET Nclp2 and the output terminal of theoperational amplifier 61 are coupled to each other, the drain of the FET Nclp2 serves as the current output terminal 62O of theswitch circuit 62, and the source of the FET Nclp2 serves as the current input terminal 62I of theswitch circuit 62. Through foregoing components and the couplings thereof, the function of theswitch circuit 62 described above can be achieved. However, theswitch circuit 62 may also be implemented differently without departing the scope and spirit of the present invention. - Referring to
FIG. 5 , when a differential voltage received by the 4-level intensity comparator 52 is higher than the sub-reference voltage difference VREF3 provided by the secondvoltage dividing circuit 51, the 4-level intensity comparator 52 outputs a group of thermal codes {Hi,Mid,Lo}={1,1,1}. When the differential voltage received by the 4-level intensity comparator 52 is lower than the negative value of the sub-reference voltage difference VREF3 provided by the secondvoltage dividing circuit 51, the 4-level intensity comparator 52 outputs a group of thermal codes {Hi,Mid,Lo}={0,0,0}. When the differential voltage received by the 4-level intensity comparator 52 is lower than the sub-reference voltage difference VREF3 provided by the secondvoltage dividing circuit 51 and higher thanvoltage level 0, the 4-level intensity comparator 52 outputs a group of thermal codes {Hi,Mid,Lo}={0,1,1}. When the differential voltage received by the 4-level intensity comparator 52 is higher than the negative value of the sub-reference voltage difference VREF3 provided by the secondvoltage dividing circuit 51 and lower thanvoltage level 0, the 4-level intensity comparator 52 outputs a group of thermal codes {Hi,Mid,Lo}={0,0,1}. In the present embodiment, thethermal code decoders 53 decode the thermal codes into the transmission data. When the thermal codes are {1,1,1}, the transmission data is obtained as {D1,D2}={1,1}. When the thermal codes are {0,1,1}, the obtained transmission is obtained as {D1,D2}={1,0}. When the thermal codes are {0,0,1}, the transmission data is obtained as {D1,D2}={0,1}. When the thermal codes are {0,0,0}, the transmission data is obtained as {D1,D2}={0,0}. - Referring to
FIGS. 3 , 4, 5, and 6, in order to allow thereceiver circuit 22 inFIG. 5 to generate a sub-reference voltage difference VREF3 which is two times of the voltage level Vamp, the proportion between the internal resistors of the secondvoltage dividing circuit 51 can be adjusted to R3=R31=R32=R33= . . . =R3M during the fabrication process. Accordingly, the sub-reference voltage difference VREF3 generated by the secondvoltage dividing circuit 51 is VREF3=(VCC−VRTS)/M. As described above, VCC−VRTS=(VREF2/RS2)*RS3, and to allow the sub-reference voltage difference VREF3 to be exactly two times of the voltage level Vamp, VREF3=(VREF2/RS2)*RS3/M=2*K*RT*VREF1/RS1). The proportion between the internal resistors R11 and R12 of the firstvoltage dividing circuit 40 and the proportion between the internal resistors R21 and R22 of the thirdvoltage dividing circuit 60 are adjusted to make the first reference voltage VREF1 to be equal to the second reference voltage VREF2 (VREF1=VREF2). The resistances of the first external resistor RS1 and the second external resistor RS2 are also made the same (RS1=RS2). Based on foregoing mathematical expressions, the sub-reference voltage difference VREF3 is two times of the voltage level Vamp as long as the resistance of the third external resistor RS3 is 2*K*M*RT(RS3=2*K*M*RT). Taking K=20, M=5, and RT=50 as example, the resistance of the third external resistor RS3 is 2*20*5*50=10000Ω. Accordingly, thereceiver circuit 22 can judge the voltage at the receiving terminal according to the reference voltage difference VCC−VRTS so as to receive the transmission data from thetransmitter 211 correctly. - Foregoing resistors and assumptions are only used for describing the present invention but not for restricting the scope thereof, and any other resistors and assumptions which meet the requirements of the present invention may also be applied.
- Foregoing 4-
level intensity comparator 52 andthermal code decoder 53 are embodied corresponding to the 4-levelpulse intensity modulator 31. If the 4-levelpulse intensity modulator 31 is a pulse intensity modulator having other number of levels (for example, an 8-level pulse intensity modulator), the intensity comparator and the thermal code decoder should be embodied correspondingly. In short, foregoing implementations are not intended for restricting the present invention, and any other implements which meet the requirements of the present invention may also be applied. -
FIG. 7 illustrates another implementation of the 4-levelpulse intensity modulator 31 inFIG. 3 . The 4-levelpulse intensity modulator 31 illustrated inFIG. 3 has a single input circuit infrastructure, while the pulse intensity modulators 31 inFIG. 7 have a common mode feed back circuit infrastructure. The terminal resistors RT can be connected in series to the positive and negative common mode output terminals of these pulse intensity modulators 31 in order to reduce the interference of noises. The pulse intensity modulators 31 illustrated inFIG. 3 andFIG. 7 have the same function, and the only difference between the two is that thepulse intensity modulator 31 in FIG. 3 has single input and output while the pulse intensity modulators 31 inFIG. 7 have common mode input and output. The single input includes only D1 and D2, while the common mode voltage input includes D1+, D1−, D2+, and D2−, wherein D1+ is D1, D1− is the negative value of D1, D2+ is D2, and D2− is the negative value of D2. - In summary, the present invention provides a multi-level point-to-point transmission system. A receiver circuit of the transmission system generates reference voltages according to how a transmitter circuit of the transmission system generates an output current or a signal level, and the reference voltages are not affected by any ambient factor such as process, temperature, or voltage.
- Moreover, the present invention provides a transmitter circuit suitable for foregoing multi-level point-to-point transmission system. The pattern in which the transmitter circuit generates an output current or a signal level is easily copied and is not affected by any ambient factor such as process, temperature, or voltage.
- Furthermore, the present invention provides a receiver circuit suitable for foregoing multi-level point-to-point transmission system. The receiver circuit generates reference voltages according to how the transmitter circuit generates an output current or a signal level, and the reference voltages are not affected by any ambient factor such as process, temperature, or voltage.
- It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Claims (32)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96136234A | 2007-09-28 | ||
TW096136234A TWI378437B (en) | 2007-09-28 | 2007-09-28 | Multi-level point-to-point transmission system and transmitter circuit and receiver circuit thereof |
TW96136234 | 2007-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090088084A1 true US20090088084A1 (en) | 2009-04-02 |
US8373686B2 US8373686B2 (en) | 2013-02-12 |
Family
ID=40508922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/952,151 Expired - Fee Related US8373686B2 (en) | 2007-09-28 | 2007-12-07 | Multi-level point-to-point transmission system and transmitter circuit and receiver circuit thereof |
Country Status (4)
Country | Link |
---|---|
US (1) | US8373686B2 (en) |
JP (1) | JP4591930B2 (en) |
KR (1) | KR100988007B1 (en) |
TW (1) | TWI378437B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102346720A (en) * | 2011-09-22 | 2012-02-08 | 四川和芯微电子股份有限公司 | Transmission system and method of serial data |
CN102981991A (en) * | 2012-11-13 | 2013-03-20 | 四川和芯微电子股份有限公司 | Serial data transmission system and serial data transmission method |
CN103544928A (en) * | 2012-07-10 | 2014-01-29 | 联咏科技股份有限公司 | Multi-branch interface flat panel display |
TWI779981B (en) * | 2022-01-03 | 2022-10-01 | 瑞昱半導體股份有限公司 | Transmitter circuit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI466083B (en) * | 2012-07-05 | 2014-12-21 | Novatek Microelectronics Corp | Flat panel display with multi-drop interface |
TWI485678B (en) * | 2012-09-17 | 2015-05-21 | Novatek Microelectronics Corp | Panel display apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020158667A1 (en) * | 2000-11-08 | 2002-10-31 | Fujitsu Limited | Input/output interfacing circuit, input/output interface, and semiconductor device having input/out interfacing circuit |
US6477205B1 (en) * | 1999-06-03 | 2002-11-05 | Sun Microsystems, Inc. | Digital data transmission via multi-valued logic signals generated using multiple drive states each causing a different amount of current to flow through a termination resistor |
US20050047511A1 (en) * | 2003-08-28 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd | Data receiver and data transmission system |
US7012597B2 (en) * | 2001-08-02 | 2006-03-14 | Seiko Epson Corporation | Supply of a programming current to a pixel |
US20060227124A1 (en) * | 2002-02-21 | 2006-10-12 | Jong-Seon Kim | Flat panel display including transceiver circuit for digital interface |
US20070176911A1 (en) * | 2003-07-11 | 2007-08-02 | Toshiaki Inoue | Data transmission method, data transmission circuit, output circuit, input circuit, semiconductor device, and electronic device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06178008A (en) * | 1992-12-09 | 1994-06-24 | Fujitsu Ltd | Semiconductor device |
JP2000183981A (en) * | 1998-12-16 | 2000-06-30 | Nec Corp | Data transmission system |
JP2000349605A (en) * | 1999-03-26 | 2000-12-15 | Matsushita Electric Ind Co Ltd | Identification circuit |
JP2003233347A (en) * | 2001-08-02 | 2003-08-22 | Seiko Epson Corp | Supply programming current to pixels |
JP2005079633A (en) * | 2003-08-28 | 2005-03-24 | Seiko Epson Corp | Digital / analog conversion circuit, electro-optical device and electronic equipment |
KR100763603B1 (en) | 2004-07-02 | 2007-10-04 | 충북대학교 산학협력단 | Improved low voltage differential signal transmission circuit |
KR100773746B1 (en) | 2006-01-31 | 2007-11-09 | 삼성전자주식회사 | Device to adjust transmission signal level according to channel load |
-
2007
- 2007-09-28 TW TW096136234A patent/TWI378437B/en active
- 2007-12-07 US US11/952,151 patent/US8373686B2/en not_active Expired - Fee Related
- 2007-12-12 JP JP2007320338A patent/JP4591930B2/en not_active Expired - Fee Related
-
2008
- 2008-01-21 KR KR1020080006195A patent/KR100988007B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6477205B1 (en) * | 1999-06-03 | 2002-11-05 | Sun Microsystems, Inc. | Digital data transmission via multi-valued logic signals generated using multiple drive states each causing a different amount of current to flow through a termination resistor |
US20020158667A1 (en) * | 2000-11-08 | 2002-10-31 | Fujitsu Limited | Input/output interfacing circuit, input/output interface, and semiconductor device having input/out interfacing circuit |
US6525570B2 (en) * | 2000-11-08 | 2003-02-25 | Fujitsu Limited | Input/output interfacing circuit, input/output interface, and semiconductor device having input/output interfacing circuit |
US7012597B2 (en) * | 2001-08-02 | 2006-03-14 | Seiko Epson Corporation | Supply of a programming current to a pixel |
US20060227124A1 (en) * | 2002-02-21 | 2006-10-12 | Jong-Seon Kim | Flat panel display including transceiver circuit for digital interface |
US20070176911A1 (en) * | 2003-07-11 | 2007-08-02 | Toshiaki Inoue | Data transmission method, data transmission circuit, output circuit, input circuit, semiconductor device, and electronic device |
US20050047511A1 (en) * | 2003-08-28 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd | Data receiver and data transmission system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102346720A (en) * | 2011-09-22 | 2012-02-08 | 四川和芯微电子股份有限公司 | Transmission system and method of serial data |
CN103544928A (en) * | 2012-07-10 | 2014-01-29 | 联咏科技股份有限公司 | Multi-branch interface flat panel display |
CN102981991A (en) * | 2012-11-13 | 2013-03-20 | 四川和芯微电子股份有限公司 | Serial data transmission system and serial data transmission method |
TWI779981B (en) * | 2022-01-03 | 2022-10-01 | 瑞昱半導體股份有限公司 | Transmitter circuit |
Also Published As
Publication number | Publication date |
---|---|
US8373686B2 (en) | 2013-02-12 |
KR20090032912A (en) | 2009-04-01 |
JP2009089344A (en) | 2009-04-23 |
KR100988007B1 (en) | 2010-10-18 |
JP4591930B2 (en) | 2010-12-01 |
TW200915282A (en) | 2009-04-01 |
TWI378437B (en) | 2012-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8373686B2 (en) | Multi-level point-to-point transmission system and transmitter circuit and receiver circuit thereof | |
US7256625B2 (en) | Combined output driver | |
US7167523B2 (en) | Spacial derivative bus encoder and decoder | |
US7570714B2 (en) | Data transfer apparatus for low voltage differential signaling | |
US7528636B2 (en) | Low differential output voltage circuit | |
US9048814B2 (en) | Resistance adjusting circuit and resistance adjusting method | |
KR102715777B1 (en) | Impedance correction circuit and method | |
US6339622B1 (en) | Data transmission device | |
CN109426645B (en) | Transmission circuit, integrated circuit device, and electronic apparatus | |
US10848151B1 (en) | Driving systems | |
KR20010051033A (en) | Current driver circuit | |
CN214205481U (en) | Impedance Calibration Circuit | |
US7888962B1 (en) | Impedance matching circuit | |
US11031936B1 (en) | Hybrid transmitter | |
US20050047511A1 (en) | Data receiver and data transmission system | |
CN101409036B (en) | Multi-level point-to-point transmission system and transmission end circuit and receiving end circuit thereof | |
US12155743B2 (en) | Clock data recovery circuit and apparatus including the same | |
WO2005006552A1 (en) | Data transmission method, data transmission circuit, output circuit, input circuit, semiconductor device, and electronic device | |
US7436214B2 (en) | Pseudo differential current mode receiver | |
WO2022130880A1 (en) | Transmission apparatus, and electronic device | |
US11489524B2 (en) | Semiconductor device | |
KR100493055B1 (en) | Current mode receiving device for display system | |
US20240097945A1 (en) | Signal transmission device | |
JP2010212752A (en) | Lvds driver, lvds circuit, and resistance value adjusting method and current value adjusting method for lvds circuit | |
US20040108880A1 (en) | Semiconductor device and data transfer system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVATEK MICROELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, CHUN-YI;REEL/FRAME:020286/0433 Effective date: 20071123 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20250212 |