US20090081065A1 - Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor - Google Patents
Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor Download PDFInfo
- Publication number
- US20090081065A1 US20090081065A1 US12/326,162 US32616208A US2009081065A1 US 20090081065 A1 US20090081065 A1 US 20090081065A1 US 32616208 A US32616208 A US 32616208A US 2009081065 A1 US2009081065 A1 US 2009081065A1
- Authority
- US
- United States
- Prior art keywords
- working
- rotator
- cylindrical
- cam
- cylindrical rotator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005096 rolling process Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000013011 mating Effects 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 abstract description 28
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000006837 decompression Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/40—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
- F01C1/46—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/20—Rotors
Definitions
- This invention relates to a rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor, consisting of a stator with a controlling cam and of a surrounding cylindrical rotator, with which are connected working elements, rotating with the rotator, driven by the cam and forming, together with an inner surface of the rotator and an outer surface of the cam, working chambers with periodically variable volume, connected with an intake and an outlet of a medium being compressed.
- a compressor consisting of a stator with a controlling cam and of a surrounding cylindrical rotator, with which are connected working elements, rotating with the rotator, driven by the cam and forming, together with an inner surface of the rotator and an outer surface of the cam, working chambers with periodically variable volume, connected with an intake and an outlet of a medium being compressed.
- a blade-type working machine employed particularly as a compressor, consisting of a rotor, eccentrically supported inside a stationary block and of a set of blades, slidable in grooves of the rotor. Rotation of the rotor causes the blades moving in and out, which are controlled by an inner surface of the cylindrical block, thus permitting formation of working chambers with periodically variable volume, enabling intake and compression of a medium.
- a disadvantage of the blade-type working machines is in energy losses due to a friction of the rotating blades against walls of the cylindrical block, negatively affecting an efficiency and a durability of such machines, particularly at higher speeds.
- U.S. Pat. No. 5,379,736 discloses a combustion engine consisting of an air compressor, a similarly designed exhaust gas decompressor and a combustion chamber positioned between the compressor and the decompressor.
- the compressor is provided with two rotating cylinders: an outer cylinder and an inner cylinder, respectively, interconnected and fixed on a common driveshaft, eccentric both in relation to the driveshaft's axis and between themselves.
- a stationary intermediate unit provided with blades, swivelling on pivots fitted around an axis of the unit, wherein the blades during rotation of the eccentric cylinders take positions forming, between neighbouring blades and surfaces of the cylinders, chambers with periodically variable volume.
- a movement of the blades is forced by planetary gears, connecting the driveshaft with the pivots, being axes for the blades' rotation.
- the intermediate unit is provided with inlet and outlet flanges with valves, controlled by cams fixed on the driveshaft.
- the blades are rotating in the same direction as the driveshaft, but at half of the driveshafts' angular speed.
- German Patent DE 1 551 101 describes a rotary combustion engine, featuring oscillating working elements, set on pivots in a rotating ring and controlled by specially shaped two- or four-lobe cams, located on both sides of the ring.
- Working elements have, in a section, a shape of triangles with convex sides, the tops of which slide on surfaces of both cams, forming working chambers with periodically variable volume, causing intake and compression of a medium.
- each oscillating working element is pressed by a centrifugal force against an inner surface of one cam, and at the same time tightened in relation to the central cam's outer surface by means of sealing strips, pressed against it.
- a disadvantage of such engine is in considerable energy losses, due to friction of numerous working elements against surfaces of cams, and in a difficulty of sealing the extremities of working elements in relation to the cams' working surfaces.
- Polish Patent PL 109 449 and its German equivalent DE 1526408 disclose a rotary combustion engine, featuring an elliptic cylinder, inside which is moving a system of five pistons, connected by joints to create a closed chain, while between inner concave surfaces of the pistons and the elliptic surface of the cylinder, working chambers with periodically variable volume are formed.
- Pistons being approximately triangular in section, are interconnected by sealed setting pins, placed in recesses in neighbouring pistons and provided with sealing strips, pressed against the elliptic surface of the engine's cylinder.
- a movement of the pistons is controlled by two rotors or discs, formed by joint-connected five segments with axes constituting extensions of axes of setting pins, located on both sides of the engine and transmitting torque to the engine's driveshaft.
- a disadvantage of such design is in considerable friction forces, generated between the concave surface of pistons and the semicircular projections on the rotor, in connection with important mutual pressures between mating surfaces. Considerable frictional losses arise also on the thrust elements of pistons, driven in a slot between the two cams.
- the invention provides a rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor, being characterized in that in that the assembly of working elements, forming a working unit, or separate working elements, are connected with the cylindrical rotator in a way enabling their oscillating motion, while points of contact of the working elements are simultaneously driven by a cam.
- Outline of the cam constitutes a line equidistant from a Radziwill curve, being a locus of points constituting a closed trajectory described, on an immobile plane perpendicular to the axis of the cylindrical rotator, by a vertex point of a working element, moving in relation to the rotator in an oscillation at a resonance frequency during one full revolution of the cylindrical rotator.
- Inertia moment I O1 of the working unit, or the working element has a value ensuring a resonance frequency of proper vibration of the working unit, or working element, wherein a ratio of the frequency of resonance vibrations to a frequency of rotating motion of the cylindrical rotator is expressed by a natural number v.
- the working element of the compressor is shaped as a blade with a section of concave-convex lens and is connected with a pivot, swivel mounted in the cylindrical rotator, while the compressor's working unit consists of at least two working elements, symmetrically located in relation to the pivot.
- the working unit consists of three working elements, while the middle working element constitutes a blade with a width twice larger than that of border blades and is equally distant from them, wherein pivots of the working unit are swivel mounted in rolling bearings, fitted in sockets in the cylindrical rotator, symmetrically on both sides of the middle blade and at the same distance from its axis of rotation, while the cams, mating with the working elements, are mounted on a common camshaft, while the middle cam is twice wider than the border cams, and each of the working elements has a vertex point surrounded by a cylindrical surface, constituting a set of points of contact with the corresponding cam's surface.
- the compressor's camshaft is made hollow, while its central aperture is used to introduce and evacuate a medium, being compressed, and is connected with working chambers formed inside the cylindrical rotator, by means of intake and outlet slots of the cams.
- a pipe Inside the central aperture of the camshaft is preferably fitted a pipe, the interior of which forms an internal manifold, introducing a medium being compressed, through the intake slots of the cams, to the working chambers formed in the interior the cylindrical rotator, while a slot between an outer surface of the pipe and an inner surface of the camshaft's aperture is connected, by the outlet slots of the cams, with the working chambers formed in the interior of the cylindrical rotator.
- Cylindrical rotator of the compressor is provided with at least five, preferably seven, symmetrically located around its axis of rotation, cylindrical apertures, in which are fitted rolling bearings with swivel mounted working units, and also it is provided on its inner surface with the same number of cylindrical recesses, coaxial in relation to axes of the apertures for bearings.
- the compressor is advantageously provided with a stationary block, encasing the cylindrical rotator and being closed by an outside manifold, connected with the stationary camshaft and provided with an intake aperture, introducing a medium, being compressed, to the internal manifold, and with an outlet aperture, evacuating the compressed medium from the annular slot, wherein the cylindrical rotator is on its other extremity connected with a flange of a coupling, through which is transmitted a drive from a power source of the compressor.
- the compressor is provided with an assembly of working elements in the form of cradles, limited on one side by a cylindrical surface with a curvature radius equal to half of a curvature radius of an inner surface of the cylindrical rotator, and on the other side provided with a projection, a vertex point of which is surrounded by a cylindrical surface, constituting a set of points of contact with the cam's surface.
- the cylindrical rotator of the compressor is provided on its inner surface with radial projections, directed towards its interior, while lateral surfaces of the projections are convergent towards an axis of the cylindrical rotor.
- the cylindrical rotator in this variation of the compressor has on its inner surface at least four, preferably eight radial projections.
- the stationary cam of this variation of the compressor having an outline corresponding to a line equidistant from a Radziwill curve, is provided with at least one, and preferably two transverse intake apertures, connected by intake slots of the cam with working chambers, formed in the interior of the cylindrical rotator, and with at least one, preferably two outlet apertures, connected by outlet slots of the cam with the working chambers formed in the interior of the cylindrical rotator.
- Rotary working machine in particular a compressor according to the invention, is characterized by a compactness of its design, expressed in that a ratio of total change of the chambers' volume (equivalent of a displacement volume) to a volume of inner outline of the machine's moving part is close to one.
- an implementation of the compressor has proven, that thanks to elimination of losses to overcome friction forces and motion resistance, prevailing in known similar machines, it achieves an efficiency in an order of 90%. It is important for the ratio of the working elements' resonance oscillation frequency to the frequency of the rotator's revolutions to remain, in the conditions of steady movement, constant for all speeds of the rotator. This means that the machine is characterized by a high efficiency independent on the rotator's rotational speed.
- FIG. 1 is a perspective and sectional view of a compressor provided with three sets of working chambers, each one of which has seven blade-shaped working elements;
- FIG. 2 is a sectional view of the compressor taken on the line A-A of FIG. 1 ;
- FIG. 3 is a sectional view of the compressor taken on the line B-B of FIG. 1 ;
- FIG. 4 is a perspective view of a working unit of the compressor shown in FIG. 1 , in the form of a shaft provided with three blade-shaped working elements;
- FIG. 5 is a Radziwill curve constituting a basis for an outline of a cam in the compressor of FIG. 1 ;
- FIG. 6 is a perspective view of a stationary camshaft with three cams of the compressor of FIG. 1 ;
- FIGS. 7 a , 7 b , 7 c and 7 d are sectional views of the compressor of FIG. 1 : a) in a position of suction in a chamber A, b) in a position of compression in the chamber A c) in a position of isobaric pressout from the chamber A, and d) in a position of decompression in the chamber A;
- FIG. 8 is a perspective view of a cradle-shaped working unit of another embodiment of the compressor according to the invention.
- FIG. 9 is a perspective view of another embodiment of a cam according to the invention, the outline of which corresponds to a Radziwill curve adapted to oscillation of cradle-shaped working units, and
- FIGS. 10 a , 10 b , 10 c and 10 d are sectional views of the compressor featuring the cradle-shaped working units and the cam of FIG. 9 : a) in a position of suction in the chambers B, b) in a position of compression in the chambers B, c) in a position of pressout from the chambers B, and d) in a position of decompression in the chambers B.
- the rotary compressor according to the invention provided with three sets of working chambers, consists of following principal components: a stationary block 1 in the form of a cylinder with flanges 2 , closed on one side by an outside manifold 3 , a stationary camshaft 4 fixed to the outside manifold 3 and having attached three cams 5 , 6 , and 7 , a cylindrical rotator 8 surrounding the camshaft 4 , and seven identical working units 9 , each featuring three blade-shaped working elements 10 , 11 , 12 —set in the cylindrical rotator 8 , on bearings around its axis.
- the cylindrical rotator 8 is connected on the other side, opposite to the outside manifold 3 , with a flange of a coupling 20 , transmitting the compressor's drive from a power source (not shown in the drawings).
- Working element 10 , 11 , 12 ( FIGS. 2 , 3 and 4 ) performs a function of lateral limitation of the working chambers with periodically variable volume, formed between the inner surface of the cylindrical rotator 8 and the surface of the cam 5 , 6 , 7 , wherein in a majority of patent descriptions concerning rotary working machines, similar element is called a piston.
- a function being performed by the working element according to the invention is somewhat different to that of a classic piston, in the present description it is called “working element”.
- the working element 10 , 11 , 12 has, in a section, a shape of concave-convex lens, while its rounded tip, constituting a set of points 23 of contact surrounding a vertex C, is driven by an outer surface of the cam 5 , 6 , or 7 ( FIGS. 2 and 3 ).
- the working units 9 ( FIG. 4 ) are provided with cylindrical pivots 13 , 14 , set in needle-type rolling bearings 15 , 16 ( FIG. 1 ), fitted in the cylindrical rotator 8 in such a way that axes of the individual working units form identical central angles around the axis 17 of the rotator 8 , and a distance of the axes from the axis 17 of the rotator 8 is the same for all the working units 9 ( FIGS. 2 and 3 ).
- Individual elements of the working unit 9 namely the blade-shaped working elements 10 , 11 , 12 and the pivots 13 , 14 are advantageously connected by means of screws 18 ( FIG. 4 ).
- each of the working elements 9 particularly its shape and dimensions, density of materials used and a distance of the working unit's 9 axis from the axis 17 of the cylindrical rotator 8 should be so selected, that a ratio of the period of rotation of this rotator 8 to the period of resonance oscillation of the working unit 9 for a certain, determined amplitude of oscillation, would be expressed by a natural number close to one, for example 1, 2 or 3.
- I O ⁇ ⁇ 1 [ ⁇ 2 ⁇ vK ( ⁇ 0 2 ) ] 2 ⁇ l ⁇ s ⁇ m
- FIG. 6 shows a stationary camshaft 4 of a compressor according to the invention, provided with three cams 5 , 6 , and 7 , and connected with an outside manifold 3 .
- the camshaft 4 is provided with a pipe 19 ( FIG. 1 ) fixed inside it, an interior of which form an internal manifold 25 for an intake of a medium being compressed. Between an outer surface of the pipe 19 and an inner surface of the camshaft's 4 axial aperture is situated an annular slot 21 , evacuating the compressed medium from the compressor.
- Individual cams 5 , 6 and 7 set on the camshaft 4 are provided with intake apertures 33 , perpendicular to the axis of the shaft and connected with the interior of the pipe 19 being connected with the intake aperture 26 , and also with outlet apertures 34 , situated on the opposite side of the cam and connected with an evacuation slot 21 , the outlet aperture 27 of which is connected by a conduit with a vessel for the compressed medium (not shown in the drawing).
- the cams 5 , 6 and 7 have, in a section perpendicular to the axis of the stationary camshaft 4 , a shape of curves equidistant from a Radziwill curve.
- the Radziwill curve shown in FIG. 5 , is a locus of points constituting a closed trajectory described, on an immobile plane, by a vertex C of a working element 10 , 11 , 12 in an oscillation with a resonance frequency of the working unit's 9 motion, during one revolution of the cylindrical rotator 8 .
- the Radziwill curve is described by a set of parametric equations:
- ⁇ is a rotation angle of the rotator 8 from a position of minimum potential energy, that is from a position, in which points O, O 1 , S are on a single straight line determining an axis OY in FIG. 5 ;
- X( ⁇ ) denotes an abscissa of a position of a vertex C of each of the working elements 10 , 11 , 12 of the working unit 9 in a co-ordinate system having a centre in the point O being the cylindrical rotator's 8 axis of rotation, after its rotation through the angle ⁇ ;
- Y( ⁇ ) denotes an ordinate of a position of a vertex C of each of the working elements 10 , 11 , 12 of the working unit 9 in a co-ordinate system having a centre in the point O being the cylindrical rotator's 8 axis of rotation, after its rotation through the angle ⁇ ;
- l is a distance (OO 1 ) of the working unit's 9 oscillation axis from the cylindrical rot
- ⁇ ⁇ ( ⁇ ) 2 ⁇ ⁇ arc ⁇ ⁇ sin ⁇ ( sin ⁇ ⁇ ⁇ 0 2 ⁇ sin ⁇ ⁇ ⁇ ⁇ ( ⁇ ) )
- the above form of parametric equations describing the Radziwill curve relates to such a case of working element's 10 , 11 , 12 oscillation, in which the working unit's 9 oscillation axis is immovably bound with the cylindrical rotator 8 .
- the oscillation axis of the working element is variable, so that the working element oscillates by a cradle movement, in which the axis of oscillation is not immovably bound with the rotator 8 ′, (see FIGS. 8 to 10 )
- the equations describing the Radziwill curve must be accordingly modified.
- a condition for closing the trajectory of the vertex point C of the working element 10 , 11 , 12 , moving in relation to the cylindrical rotator 8 in an oscillating movement with a resonance frequency is that a ratio of a period of full revolution of the cylindrical rotator 8 to the period of proper vibrations of the working unit 9 for a determined value of the oscillations' amplitude, is expressed by a natural number, preferably 1 or 2.
- the trajectory analysed on an immovable plane, perpendicular to the axis of the cylindrical rotator 8 relates not to the vertex point C of the working element 10 , 11 , 12 but to a set of points 23 of contact with the surface of the cam 5 , 6 , 7 and being equidistant from the vertex point C, also the external outline of the cams 5 , 6 , 7 constitutes a curve being equidistant from the Radziwill curve.
- the working unit 9 when the working unit 9 would be provided with a single working element, for example working element 10 , while the camshaft would include only a single cam 5 , additional movements of the working unit 9 , interfering with its resonance oscillations, would be possible.
- the working unit 9 is provided with at least two symmetric working elements 10 and 11 , symmetrically located on a plane perpendicular to the axis of the cylindrical rotator 8 , and driven by two, similarly symmetrical cams.
- More preferred design include a working unit 9 shown in FIG. 4 , consisting of two pairs of symmetrical working elements 10 , 11 and 12 , 11 , while the middle working elements 11 are connected together to form a double working element 11 . Thanks to this, inertia moments of the border working elements 10 and 12 are counterbalanced by an inertia moment of the middle working element 11 , which eliminates torsion moments in the working unit 9 , thus contributing to the compressor's steady operation.
- the cylindrical rotator 8 is provided with seven cylindrical apertures being symmetrically disposed around its internal outline and swivel mounted into which are working units 9 , by means of needle bearings 15 , 16 . Furthermore, the rotator 8 , in an area where working elements 10 , 11 , 12 of the working units are located, is provided with cylindrical recesses 22 , coaxial in relation to the bearing apertures. The recesses 22 form sockets, in which the working elements 10 , 11 , 12 oscillate.
- the working unit 9 is provided with an assembly of three working elements 10 , 11 , 12 , in any time at least one of the working elements mates with a corresponding cam 5 , 6 , 7 .
- each of the sets is controlled by one of the cams 5 , 6 , 7 .
- each of the sets exist seven working chambers, symmetrically located around the rotator's axis.
- Each working chamber is limited on the outside by an inner wall 24 of the cylindrical rotator 8 and, at least partly, by a cylindrical recess 22 , on both sides by an inner and an outer surface of the mutually neighbouring working elements 10 , 11 , 12 , respectively, and on the inside, by a lateral surface of the cam 5 , 6 or 7 .
- consecutive periodical volume changes of the working chambers take place. Since the working chambers are symmetrical and identical in dimensions, changes of volume and functioning of one of the chambers A will be described hereafter ( FIGS. 7 a , 7 b , 7 c and 7 d ).
- the working chamber A expands its volume and a resulting underpressure causes a suction of a medium being compressed, through an intake slot 33 of the cam 5 , 6 , 7 , from the internal manifold 25 arranged inside the pipe 19 and connected with the intake aperture 26 .
- the chamber A After consequent rotation of the cylindrical rotator by a next approximately 1 ⁇ 4 of a turn to a position shown in FIG. 7 c , the chamber A has achieved an almost minimal volume, and at the same time gained connection with an outlet slot 34 , implementing a cycle of isobaric pressout, where the compressed medium passes through a slot 21 between an outer surface of the pipe 19 and an inner surface of an axial aperture of the camshaft 4 and is evacuated through the compressor's outlet aperture into a vessel (not shown in the drawing).
- the rotator upon completion by of a next approximately 1 ⁇ 4 of a turn takes the position shown in FIG. 7 a and the compressor's working cycle repeats. Cumulative operation of the compressor is a sum of effects of individual chamber sets' functioning, similar to that of the chamber A presented above.
- FIG. 8 shows a working element 10 ′ of another embodiment of the compressor according to the invention, having a shape of a cradle, swivel mounted in a socket of a cylindrical rotator 8 ′, located between its inner surface 24 ′ and inner, convergent to the centre, surfaces of two neighbouring radial projections 28 of the rotator 8 ′. Lateral surfaces of the projections 28 are (being radial) mutually convergent in a direction of an axis 17 ′ of the rotator 8 ′.
- An outline of the cradle of the working element 10 ′ is a cylindrical surface 30 , a radius of curvature of which is twice less than a radius of the rotator's 8 ′ inner surface 24 ′.
- a vertex point C′ of the working element 10 ′ is surrounded by a cylindrical surface constituting a set of points 23 ′ of contact and forming a tip of a projection 29 ′.
- the set of points 23 ′ of contact of the working element 10 ′ mates with a surface of a cam 5 ′, providing for the motion of the vertex point C′ a trajectory being a Radziwill curve on a stationary plane.
- the Radziwill curve constituting a line equidistant from an outline of the cam 5 ′, is determined for this variation of the compressor by appropriately modified parametric equations.
- the cam 5 ′ is further provided with two intake apertures 31 and two outlet apertures 32 , connected with slots 33 and 34 , respectively, having outlets on a lateral surface of the cam 5 ′ and destined to introduce and evacuate a medium, being compressed, into and out of the working chambers, formed inside the rotator 8 ′.
- each working chamber is limited on the outside by an inner and outer surfaces of neighbouring working chambers 10 ′ and by a part of outside surfaces of the radial projection 28 , while on the inside by a lateral surface of the cam 5 ′.
- the working elements oscillate, the outer cylindrical surface of the cradle 30 rolling without a slip on the inner surface 24 ′ of the cylindrical rotator 8 ′, which causes consecutive periodic changes of the working chambers' volume.
- volume changes of two identical chambers B ( FIGS. 7 a , 7 b , 7 c , 7 d ), symmetrically located in relation to the axis 17 ′ on opposite sides of the cylindrical rotator 8 ′ and functioning of the compressor, resulting of these changes, will now be described.
- the working chamber B expands its volume, and a resulting underpressure causes suction of a medium, being compressed, through the slot 33 ′ of the cam 5 ′ and the intake aperture 31 connected with it.
- the working chamber B After a next turn of the rotator 8 ′ by approximately 1 ⁇ 8 of a full revolution, to a position shown in FIG. 10 c , the working chamber B, which has achieved a minimal volume and at the same time gained connection to the slot 34 of the cam 5 ′ and to the outlet aperture 32 , performs a cycle of isobaric pressout, in which the compressed medium is evacuated by the slot 34 , the outlet aperture 32 and an attached conduit to a vessel (not shown in the drawing).
- the working chamber B Upon covering by the rotator 8 ′ of a next approximately 1 ⁇ 8 of a full revolution, to a position shown in the FIG. 10 d , the working chamber B, has increased its volume in comparison to the position in FIG. 10 c , as a result of which a cycle of decompression of remainders of the medium in the chamber takes place.
- the rotator After a next 1 ⁇ 8 of a turn, the rotator assumes a position shown in FIG. 10 a , in which the working chamber B increases its volume and the compressor's working cycle repeats. Cumulative operation of the compressor is a sum of its individual chambers functioning, similar to that of the chamber B in the example described above.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Soil Working Implements (AREA)
- Reciprocating Pumps (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor, consisting of a stator with a controlling cam and a surrounding cylindrical rotator, with which are connected working elements, rotating together with it, driven by the cam and forming, together with an inner surface of the rotator and an outer surface of the cam, working chambers with variable volume, connected during the rotator's rotation with an intake and an outlet, respectively, of a medium being compressed. The compressor is characterized in that the assembly of working elements (10, 11, 12), forming a working unit (9) or separate working elements (10′), are connected with the cylindrical rotator (8, 8′) in a way enabling their oscillating motion. Points (23, 23′) of contact of the working elements (10, 11, 12, 10′) are simultaneously driven by the cam (5, 6, 7, 5′), the outline of which constitutes a line equidistant from a Radziwill curve, constituting a locus of points forming a closed trajectory being described, on an immobile plane perpendicular to the axis of the cylindrical rotator (8, 8′), by a vertex point (C, C′) of the working element (10, 11, 12, 10′), moving in relation to the rotator (8,8′) in an oscillation with a resonance frequency during one full revolution of the cylindrical rotator (8, 8′). Inertia moment Io, of the working unit (9), or the working element (10′), has a value ensuring the resonance frequency of proper vibration of the working unit (9), or the working element (10′), wherein a ratio of the resonance oscillation frequency to a frequency of the cylindrical rotator's (8, 8′) revolution is expressed by a natural number v.
Description
- This invention relates to a rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor, consisting of a stator with a controlling cam and of a surrounding cylindrical rotator, with which are connected working elements, rotating with the rotator, driven by the cam and forming, together with an inner surface of the rotator and an outer surface of the cam, working chambers with periodically variable volume, connected with an intake and an outlet of a medium being compressed.
- Since 1908 is known a blade-type working machine, employed particularly as a compressor, consisting of a rotor, eccentrically supported inside a stationary block and of a set of blades, slidable in grooves of the rotor. Rotation of the rotor causes the blades moving in and out, which are controlled by an inner surface of the cylindrical block, thus permitting formation of working chambers with periodically variable volume, enabling intake and compression of a medium.
- A disadvantage of the blade-type working machines is in energy losses due to a friction of the rotating blades against walls of the cylindrical block, negatively affecting an efficiency and a durability of such machines, particularly at higher speeds.
- Since 1927 is known a Pneumaphore type blade compressor, working on a principle of oil injection into a compressed air, permitting a partial reduction of energy losses and a blade wear. Similar purposes had a construction of compressors featuring blades made of light aluminium and, since 1964, even lighter plastics. Blade compressors of such design exclude, however, application of high speeds, limitation being in considerably lower strength of the blades.
- U.S. Pat. No. 5,379,736 discloses a combustion engine consisting of an air compressor, a similarly designed exhaust gas decompressor and a combustion chamber positioned between the compressor and the decompressor. The compressor is provided with two rotating cylinders: an outer cylinder and an inner cylinder, respectively, interconnected and fixed on a common driveshaft, eccentric both in relation to the driveshaft's axis and between themselves. Between the rotating cylinders is situated a stationary intermediate unit provided with blades, swivelling on pivots fitted around an axis of the unit, wherein the blades during rotation of the eccentric cylinders take positions forming, between neighbouring blades and surfaces of the cylinders, chambers with periodically variable volume. A movement of the blades is forced by planetary gears, connecting the driveshaft with the pivots, being axes for the blades' rotation. Furthermore, the intermediate unit is provided with inlet and outlet flanges with valves, controlled by cams fixed on the driveshaft. The blades are rotating in the same direction as the driveshaft, but at half of the driveshafts' angular speed. Such design reduces considerably the expenditure of energy to overcome friction, but a certain energy is consumed to overcome inertia moments of the numerous moving parts of the machine.
-
German Patent DE 1 551 101 describes a rotary combustion engine, featuring oscillating working elements, set on pivots in a rotating ring and controlled by specially shaped two- or four-lobe cams, located on both sides of the ring. Working elements have, in a section, a shape of triangles with convex sides, the tops of which slide on surfaces of both cams, forming working chambers with periodically variable volume, causing intake and compression of a medium. During a rotation of the driveshaft, each oscillating working element is pressed by a centrifugal force against an inner surface of one cam, and at the same time tightened in relation to the central cam's outer surface by means of sealing strips, pressed against it. - A disadvantage of such engine, prevailing in other rotary engines, is in considerable energy losses, due to friction of numerous working elements against surfaces of cams, and in a difficulty of sealing the extremities of working elements in relation to the cams' working surfaces.
- Polish Patent PL 109 449 and its German equivalent DE 1526408 disclose a rotary combustion engine, featuring an elliptic cylinder, inside which is moving a system of five pistons, connected by joints to create a closed chain, while between inner concave surfaces of the pistons and the elliptic surface of the cylinder, working chambers with periodically variable volume are formed. Pistons, being approximately triangular in section, are interconnected by sealed setting pins, placed in recesses in neighbouring pistons and provided with sealing strips, pressed against the elliptic surface of the engine's cylinder. A movement of the pistons is controlled by two rotors or discs, formed by joint-connected five segments with axes constituting extensions of axes of setting pins, located on both sides of the engine and transmitting torque to the engine's driveshaft.
- A disadvantage of such construction, and other similar designs of working machines, in which kinematically connected working elements form a closed chain, is in a presence of variable moments of inertia, increasing friction losses, and thus reducing efficiency of the machines.
- International Patent Application WO 00/42290 describes a rotary combustion engine, consisting of an engine block and of a rotor, located inside it and featuring four movable pistons, in the form of double-arm levers, oscillating around axes parallel to a central axis of the block and at the same time revolving together with the rotor. The pistons are provided with thrust rolls, which during movement along a circumference of the engine block, are driven by a system of cams, consisting of an outer cam and an inner cam. Mating of the thrust elements of the pistons with cam surfaces forces, during the common rotation, oscillating of the pistons around semicircular projections on the rotor. The pistons are sealed against each other by means of toothed contact surfaces, while between their working surfaces and an inner cylindrical surface of the engine block are formed chambers with periodically variable volume, enabling intake and compression of a medium.
- A disadvantage of such design is in considerable friction forces, generated between the concave surface of pistons and the semicircular projections on the rotor, in connection with important mutual pressures between mating surfaces. Considerable frictional losses arise also on the thrust elements of pistons, driven in a slot between the two cams.
- It is an object of the invention to provide a rotary working machine, provided with an assembly of variable volume working chambers, in particular a compressor, which provides a considerable reduction of losses, caused by friction, and thus, accordingly improves efficiency of the machine.
- Research work, which led to the invention, has proven that it is possible to considerably limit the energetic losses, which result in known rotary machines of forces acting on individual components of these, by such a correlation of kinematic connection system of the working elements with distribution of their masses, as to reduce, for any rotation speed of the machine, movements of the working elements to resonance oscillations in the field of centrifugal force. The resonance character of the working elements' oscillations enables maintaining the motion by solely overcoming a minor resistance of the working elements replacement in relation to the rotor.
- The invention provides a rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor, being characterized in that in that the assembly of working elements, forming a working unit, or separate working elements, are connected with the cylindrical rotator in a way enabling their oscillating motion, while points of contact of the working elements are simultaneously driven by a cam. Outline of the cam constitutes a line equidistant from a Radziwill curve, being a locus of points constituting a closed trajectory described, on an immobile plane perpendicular to the axis of the cylindrical rotator, by a vertex point of a working element, moving in relation to the rotator in an oscillation at a resonance frequency during one full revolution of the cylindrical rotator. Inertia moment IO1 of the working unit, or the working element, has a value ensuring a resonance frequency of proper vibration of the working unit, or working element, wherein a ratio of the frequency of resonance vibrations to a frequency of rotating motion of the cylindrical rotator is expressed by a natural number v.
- In a preferred embodiment, the working element of the compressor is shaped as a blade with a section of concave-convex lens and is connected with a pivot, swivel mounted in the cylindrical rotator, while the compressor's working unit consists of at least two working elements, symmetrically located in relation to the pivot.
- Preferably, the working unit consists of three working elements, while the middle working element constitutes a blade with a width twice larger than that of border blades and is equally distant from them, wherein pivots of the working unit are swivel mounted in rolling bearings, fitted in sockets in the cylindrical rotator, symmetrically on both sides of the middle blade and at the same distance from its axis of rotation, while the cams, mating with the working elements, are mounted on a common camshaft, while the middle cam is twice wider than the border cams, and each of the working elements has a vertex point surrounded by a cylindrical surface, constituting a set of points of contact with the corresponding cam's surface.
- Advantageously, the compressor's camshaft is made hollow, while its central aperture is used to introduce and evacuate a medium, being compressed, and is connected with working chambers formed inside the cylindrical rotator, by means of intake and outlet slots of the cams.
- Inside the central aperture of the camshaft is preferably fitted a pipe, the interior of which forms an internal manifold, introducing a medium being compressed, through the intake slots of the cams, to the working chambers formed in the interior the cylindrical rotator, while a slot between an outer surface of the pipe and an inner surface of the camshaft's aperture is connected, by the outlet slots of the cams, with the working chambers formed in the interior of the cylindrical rotator.
- Cylindrical rotator of the compressor is provided with at least five, preferably seven, symmetrically located around its axis of rotation, cylindrical apertures, in which are fitted rolling bearings with swivel mounted working units, and also it is provided on its inner surface with the same number of cylindrical recesses, coaxial in relation to axes of the apertures for bearings.
- The compressor is advantageously provided with a stationary block, encasing the cylindrical rotator and being closed by an outside manifold, connected with the stationary camshaft and provided with an intake aperture, introducing a medium, being compressed, to the internal manifold, and with an outlet aperture, evacuating the compressed medium from the annular slot, wherein the cylindrical rotator is on its other extremity connected with a flange of a coupling, through which is transmitted a drive from a power source of the compressor.
- In accordance with another embodiment of the invention, the compressor is provided with an assembly of working elements in the form of cradles, limited on one side by a cylindrical surface with a curvature radius equal to half of a curvature radius of an inner surface of the cylindrical rotator, and on the other side provided with a projection, a vertex point of which is surrounded by a cylindrical surface, constituting a set of points of contact with the cam's surface.
- Preferably, the cylindrical rotator of the compressor is provided on its inner surface with radial projections, directed towards its interior, while lateral surfaces of the projections are convergent towards an axis of the cylindrical rotor.
- The cylindrical rotator in this variation of the compressor has on its inner surface at least four, preferably eight radial projections.
- Advantageously, the stationary cam of this variation of the compressor, having an outline corresponding to a line equidistant from a Radziwill curve, is provided with at least one, and preferably two transverse intake apertures, connected by intake slots of the cam with working chambers, formed in the interior of the cylindrical rotator, and with at least one, preferably two outlet apertures, connected by outlet slots of the cam with the working chambers formed in the interior of the cylindrical rotator.
- Rotary working machine, in particular a compressor according to the invention, is characterized by a compactness of its design, expressed in that a ratio of total change of the chambers' volume (equivalent of a displacement volume) to a volume of inner outline of the machine's moving part is close to one. Furthermore, an implementation of the compressor has proven, that thanks to elimination of losses to overcome friction forces and motion resistance, prevailing in known similar machines, it achieves an efficiency in an order of 90%. It is important for the ratio of the working elements' resonance oscillation frequency to the frequency of the rotator's revolutions to remain, in the conditions of steady movement, constant for all speeds of the rotator. This means that the machine is characterized by a high efficiency independent on the rotator's rotational speed.
- A rotary working machine according to the invention, provided with a system of working chambers with periodically variable volume, constituting a compressor, will now further be explained with reference to exemplary embodiments in the accompanying drawings, in which:
-
FIG. 1 is a perspective and sectional view of a compressor provided with three sets of working chambers, each one of which has seven blade-shaped working elements; -
FIG. 2 is a sectional view of the compressor taken on the line A-A ofFIG. 1 ; -
FIG. 3 is a sectional view of the compressor taken on the line B-B ofFIG. 1 ; -
FIG. 4 is a perspective view of a working unit of the compressor shown inFIG. 1 , in the form of a shaft provided with three blade-shaped working elements; -
FIG. 5 is a Radziwill curve constituting a basis for an outline of a cam in the compressor ofFIG. 1 ; -
FIG. 6 is a perspective view of a stationary camshaft with three cams of the compressor ofFIG. 1 ; -
FIGS. 7 a, 7 b, 7 c and 7 d are sectional views of the compressor ofFIG. 1 : a) in a position of suction in a chamber A, b) in a position of compression in the chamber A c) in a position of isobaric pressout from the chamber A, and d) in a position of decompression in the chamber A; -
FIG. 8 is a perspective view of a cradle-shaped working unit of another embodiment of the compressor according to the invention; -
FIG. 9 is a perspective view of another embodiment of a cam according to the invention, the outline of which corresponds to a Radziwill curve adapted to oscillation of cradle-shaped working units, and -
FIGS. 10 a, 10 b, 10 c and 10 d are sectional views of the compressor featuring the cradle-shaped working units and the cam ofFIG. 9 : a) in a position of suction in the chambers B, b) in a position of compression in the chambers B, c) in a position of pressout from the chambers B, and d) in a position of decompression in the chambers B. - As can be seen in
FIGS. 1 , 2 and 3, the rotary compressor according to the invention, provided with three sets of working chambers, consists of following principal components: astationary block 1 in the form of a cylinder withflanges 2, closed on one side by anoutside manifold 3, astationary camshaft 4 fixed to theoutside manifold 3 and having attached threecams cylindrical rotator 8 surrounding thecamshaft 4, and sevenidentical working units 9, each featuring three blade-shaped working elements cylindrical rotator 8, on bearings around its axis. - The
cylindrical rotator 8 is connected on the other side, opposite to theoutside manifold 3, with a flange of acoupling 20, transmitting the compressor's drive from a power source (not shown in the drawings). - Working
element FIGS. 2 , 3 and 4) performs a function of lateral limitation of the working chambers with periodically variable volume, formed between the inner surface of thecylindrical rotator 8 and the surface of thecam - The working
element points 23 of contact surrounding a vertex C, is driven by an outer surface of thecam FIGS. 2 and 3 ). - The working units 9 (
FIG. 4 ) are provided withcylindrical pivots type rolling bearings 15, 16 (FIG. 1 ), fitted in thecylindrical rotator 8 in such a way that axes of the individual working units form identical central angles around theaxis 17 of therotator 8, and a distance of the axes from theaxis 17 of therotator 8 is the same for all the working units 9 (FIGS. 2 and 3 ). Individual elements of the workingunit 9, namely the blade-shaped workingelements pivots FIG. 4 ). - Configuration of each of the working
elements 9, particularly its shape and dimensions, density of materials used and a distance of the working unit's 9 axis from theaxis 17 of thecylindrical rotator 8 should be so selected, that a ratio of the period of rotation of thisrotator 8 to the period of resonance oscillation of the workingunit 9 for a certain, determined amplitude of oscillation, would be expressed by a natural number close to one, for example 1, 2 or 3. - This condition is fulfilled, when an inertia moment IO1 of the working
unit 9 in relation to the oscillation axis O1 satisfies an equation: -
- where:
- v is a natural number expressing a ratio of rotation period of the
cylindrical rotator 8 to a resonance oscillation period of the workingunit 9, v=1, 2, 3 . . . ; - l is a distance of the working unit's 9 oscillation axis from the cylindrical rotator's 8 rotation axis;
s is a distance of a mass centre of the workingunit 9 from an oscillation axis of the working unit;
m is a working unit's mass;
θ0 is an angle corresponding to an amplitude of the working unit's oscillation in relation to the rotator; and
K (θ0/7) is a tabulated elliptic complete integral of first kind corresponding to the oscillation amplitude θ0. -
FIG. 6 shows astationary camshaft 4 of a compressor according to the invention, provided with threecams outside manifold 3. Thecamshaft 4 is provided with a pipe 19 (FIG. 1 ) fixed inside it, an interior of which form aninternal manifold 25 for an intake of a medium being compressed. Between an outer surface of thepipe 19 and an inner surface of the camshaft's 4 axial aperture is situated anannular slot 21, evacuating the compressed medium from the compressor. -
Individual cams camshaft 4, are provided withintake apertures 33, perpendicular to the axis of the shaft and connected with the interior of thepipe 19 being connected with theintake aperture 26, and also withoutlet apertures 34, situated on the opposite side of the cam and connected with anevacuation slot 21, theoutlet aperture 27 of which is connected by a conduit with a vessel for the compressed medium (not shown in the drawing). - The
cams stationary camshaft 4, a shape of curves equidistant from a Radziwill curve. - The Radziwill curve, shown in
FIG. 5 , is a locus of points constituting a closed trajectory described, on an immobile plane, by a vertex C of a workingelement cylindrical rotator 8. - The Radziwill curve is described by a set of parametric equations:
-
X(φ)=l·sin φ+r·sin(φ+γ+θ(φ)) -
Y(φ)=l·cos φ+r·sin(φ+γ+θ(φ)) - where:
φ is a rotation angle of therotator 8 from a position of minimum potential energy, that is from a position, in which points O, O1, S are on a single straight line determining an axis OY inFIG. 5 ;
X(φ) denotes an abscissa of a position of a vertex C of each of the workingelements unit 9 in a co-ordinate system having a centre in the point O being the cylindrical rotator's 8 axis of rotation, after its rotation through the angle φ;
Y(φ) denotes an ordinate of a position of a vertex C of each of the workingelements unit 9 in a co-ordinate system having a centre in the point O being the cylindrical rotator's 8 axis of rotation, after its rotation through the angle φ;
l is a distance (OO1) of the working unit's 9 oscillation axis from the cylindrical rotator's 8 axis of rotation;
r is a distance of the vertex point C from the oscillation axis of the working unit 9 (O1C);
γ is a constant angle formed between the axes O1S and O1C, where S is a mass centre of the workingunit 9;
θ (φ) is an angle by which the O1S axis deflects during the rotator's movement through the angle φ,
wherein a relation between the rotation angle φ of thecylindrical rotator 8 and the deflexion angle θ of the axis O1S of each of the workingelements unit 9 is expressed by an equation: -
- where a relation between the angles φ and T is described by tabulated values of elliptic integrals.
- The above form of parametric equations describing the Radziwill curve relates to such a case of working element's 10, 11, 12 oscillation, in which the working unit's 9 oscillation axis is immovably bound with the
cylindrical rotator 8. In a case of such design of a compressor, where the oscillation axis of the working element is variable, so that the working element oscillates by a cradle movement, in which the axis of oscillation is not immovably bound with therotator 8′, (seeFIGS. 8 to 10 ), the equations describing the Radziwill curve must be accordingly modified. - A condition for closing the trajectory of the vertex point C of the working
element cylindrical rotator 8 in an oscillating movement with a resonance frequency, is that a ratio of a period of full revolution of thecylindrical rotator 8 to the period of proper vibrations of the workingunit 9 for a determined value of the oscillations' amplitude, is expressed by a natural number, preferably 1 or 2. - Since in the actual design of the compressor, the trajectory analysed on an immovable plane, perpendicular to the axis of the
cylindrical rotator 8, relates not to the vertex point C of the workingelement points 23 of contact with the surface of thecam cams - In a case, when the working
unit 9 would be provided with a single working element, forexample working element 10, while the camshaft would include only asingle cam 5, additional movements of the workingunit 9, interfering with its resonance oscillations, would be possible. To avoid such situation, it is advantageous that the workingunit 9 is provided with at least two symmetric workingelements cylindrical rotator 8, and driven by two, similarly symmetrical cams. - More preferred design include a working
unit 9 shown inFIG. 4 , consisting of two pairs of symmetrical workingelements middle working elements 11 are connected together to form a double workingelement 11. Thanks to this, inertia moments of theborder working elements middle working element 11, which eliminates torsion moments in the workingunit 9, thus contributing to the compressor's steady operation. - In a construction of a compressor shown in
FIG. 2 , thecylindrical rotator 8 is provided with seven cylindrical apertures being symmetrically disposed around its internal outline and swivel mounted into which are workingunits 9, by means ofneedle bearings rotator 8, in an area where workingelements cylindrical recesses 22, coaxial in relation to the bearing apertures. Therecesses 22 form sockets, in which the workingelements - Because the working
unit 9 is provided with an assembly of three workingelements corresponding cam - Operation of the compressor described above and shown schematically in a
FIG. 7 is as follows. - Inside the
cylindrical rotator 8 are formed three sets of working chambers, wherein each of the sets is controlled by one of thecams cylindrical rotator 8 and, at least partly, by acylindrical recess 22, on both sides by an inner and an outer surface of the mutually neighbouring workingelements cam cylindrical rotator 8 around itsaxis 17 consecutive periodical volume changes of the working chambers take place. Since the working chambers are symmetrical and identical in dimensions, changes of volume and functioning of one of the chambers A will be described hereafter (FIGS. 7 a, 7 b, 7 c and 7 d). - In a position shown in
FIG. 7 a, the working chamber A expands its volume and a resulting underpressure causes a suction of a medium being compressed, through anintake slot 33 of thecam internal manifold 25 arranged inside thepipe 19 and connected with theintake aperture 26. - When the cylindrical rotator has covered approximately a quarter of full revolution to a position shown in
FIG. 7 b, the chamber A became completely closed, and its volume reduced in comparison to that position shown inFIG. 7 a, implementing a compression cycle. - After consequent rotation of the cylindrical rotator by a next approximately ¼ of a turn to a position shown in
FIG. 7 c, the chamber A has achieved an almost minimal volume, and at the same time gained connection with anoutlet slot 34, implementing a cycle of isobaric pressout, where the compressed medium passes through aslot 21 between an outer surface of thepipe 19 and an inner surface of an axial aperture of thecamshaft 4 and is evacuated through the compressor's outlet aperture into a vessel (not shown in the drawing). - After next quarter turn of the cylindrical rotator to a position shown in
FIG. 7 d, the volume of the working chamber A has expanded in comparison to the position shown inFIG. 7 c, therefore a cycle of decompression of the medium still remaining in the chamber A follows. - The rotator upon completion by of a next approximately ¼ of a turn takes the position shown in
FIG. 7 a and the compressor's working cycle repeats. Cumulative operation of the compressor is a sum of effects of individual chamber sets' functioning, similar to that of the chamber A presented above. - Due to an appropriate mass distribution of the working
unit 9 and coincident driving of a set ofpoints 23 of contact of the workingelements cam unit 9 is equal to the rotator's revolution frequency (v=1), as a result of which the motion of individual workingunits 9 has a character of resonance oscillations in a centrifugal force field, supported by the cam. Thanks to this, considerable losses of energy prevailing in rotary machines known hitherto, have been eliminated. -
FIG. 8 shows a workingelement 10′ of another embodiment of the compressor according to the invention, having a shape of a cradle, swivel mounted in a socket of acylindrical rotator 8′, located between its inner surface 24′ and inner, convergent to the centre, surfaces of two neighbouring radial projections 28 of therotator 8′. Lateral surfaces of the projections 28 are (being radial) mutually convergent in a direction of anaxis 17′ of therotator 8′. - An outline of the cradle of the working
element 10′ is acylindrical surface 30, a radius of curvature of which is twice less than a radius of the rotator's 8′ inner surface 24′. - A vertex point C′ of the working
element 10′ is surrounded by a cylindrical surface constituting a set ofpoints 23′ of contact and forming a tip of aprojection 29′. The set ofpoints 23′ of contact of the workingelement 10′ mates with a surface of acam 5′, providing for the motion of the vertex point C′ a trajectory being a Radziwill curve on a stationary plane. The Radziwill curve, constituting a line equidistant from an outline of thecam 5′, is determined for this variation of the compressor by appropriately modified parametric equations. - The
cam 5′ is further provided with twointake apertures 31 and twooutlet apertures 32, connected withslots cam 5′ and destined to introduce and evacuate a medium, being compressed, into and out of the working chambers, formed inside therotator 8′. - Operation of the compressor's variation, shown schematically in
FIG. 10 is as follows: - Inside the
cylindrical rotator 8′ is created a single assembly of working chambers, controlled by thecam 5′ and including eight chambers, symmetrically located around an axis of thecylindrical rotator 8′. Each working chamber is limited on the outside by an inner and outer surfaces of neighbouring workingchambers 10′ and by a part of outside surfaces of the radial projection 28, while on the inside by a lateral surface of thecam 5′. During the rotation of the cylindrical rotator around itsaxis 17′, the working elements oscillate, the outer cylindrical surface of thecradle 30 rolling without a slip on the inner surface 24′ of thecylindrical rotator 8′, which causes consecutive periodic changes of the working chambers' volume. - Bearing in mind a symmetry and identical dimensions of the working chambers, volume changes of two identical chambers B (
FIGS. 7 a, 7 b, 7 c, 7 d), symmetrically located in relation to theaxis 17′ on opposite sides of thecylindrical rotator 8′ and functioning of the compressor, resulting of these changes, will now be described. - In a position shown in
FIG. 10 a, the working chamber B expands its volume, and a resulting underpressure causes suction of a medium, being compressed, through theslot 33′ of thecam 5′ and theintake aperture 31 connected with it. - When the cylindrical rotator has covered approximately ⅛ of a full revolution to a position shown in
FIG. 10 b, the working chamber B became completely closed and its volume reduced in comparison to that shown inFIG. 7 a, a cycle of compression has taken place. - After a next turn of the
rotator 8′ by approximately ⅛ of a full revolution, to a position shown inFIG. 10 c, the working chamber B, which has achieved a minimal volume and at the same time gained connection to theslot 34 of thecam 5′ and to theoutlet aperture 32, performs a cycle of isobaric pressout, in which the compressed medium is evacuated by theslot 34, theoutlet aperture 32 and an attached conduit to a vessel (not shown in the drawing). - Upon covering by the
rotator 8′ of a next approximately ⅛ of a full revolution, to a position shown in theFIG. 10 d, the working chamber B, has increased its volume in comparison to the position inFIG. 10 c, as a result of which a cycle of decompression of remainders of the medium in the chamber takes place. - After a next ⅛ of a turn, the rotator assumes a position shown in
FIG. 10 a, in which the working chamber B increases its volume and the compressor's working cycle repeats. Cumulative operation of the compressor is a sum of its individual chambers functioning, similar to that of the chamber B in the example described above. - Due to an appropriate mass distribution of the working
unit 10′ and coincident driving of a set ofpoints 23′ of contact along thecam 5′ with an outline equidistant from a Radziwill curve, a trajectory of vertex point C′ corresponds to the Radziwill curve and a frequency of oscillations of the workingunit 10′ is equal to a half of the rotator's revolution frequency (v=2). Thanks to this, a motion of individual workingunits 10′ in relation to the rotator is reduced to resonance oscillations in a centrifugal force field, supported by thecam 5′, thus minimizing the considerable losses of energy prevailing in rotary machines known hitherto. - It will therefore be understood by those skilled in the art that the present invention is not limited to the embodiments shown and that many additions and modifications are possible without departing from the scope of the present invention as defined in the appending claims.
-
- 1 block
- 2 flange of the
block 1 - 3 outside manifold
- 4 camshaft
- 5, 5′ 6, 7 cam
- 8, 8′ cylindrical rotator
- 9 working unit with three working elements
- 10 blade-type working element
- 10′ cradle-type working element
- 11 double blade-type working element
- 12 working element
- 13 pivot of the working
unit 9 - 14 pivot of the working
unit 9′ - 15, 16 needle-type rolling bearing of the working
unit 9 - 17 axis of the
cylindrical rotator 8 - 17′ axis of the
cylindrical rotator 8′ - 18 screw connecting elements of the working
unit 9 - 19 inside pipe of the
camshaft 4 - 20 coupling
- 21 annular slot evacuating compressed medium
- 22 cylindrical sockets on the cylindrical rotator's 8 inner surface 24
- 23 set of contact points of working
elements - 23′ set of contact point of working
element 10′ - 24 inner surface of the
cylindrical rotator 8 - 24′ inner surface of the
cylindrical rotator 8′ - 25 internal manifold introducing medium, arranged inside the
pipe 19 - 26 intake aperture of the manifold 25
- 27 outlet aperture of the
evacuation slot 21 - 28′ radial inner projections of the
cylindrical rotator 8′ - 29′ projection of cradle-
type working element 10′ - 30′ cylindrical surface of the working
element 10′ - 31′ intake apertures of the
cam 5′ - 32′ outlet aperture of the
cam 5′ - 33 intake slot of the
cam - 33′ intake slot of the
cam 5′ - 34 outlet slot of the
cam - 34′ outlet slot of the
cam 5′ - A working chamber formed by the working
element cam cylindrical rotator 8 - B working chamber formed by the working
element 10′, thecam 5′, and thecylindrical rotator 8′ - C vertex point of the working
element - C′ vertex point of the working
element 10′
Claims (12)
1. A rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor, consisting of a stator with a controlling cam and a surrounding cylindrical rotator, with which are connected working elements, rotating together with it, driven by the cam and forming, together with an inner surface of the rotator and an outer surface of the cam, working chambers with variable volume, connected during the rotator's rotation with an intake and an outlet, respectively, of a medium being compressed, characterized in that the assembly of working elements (10, 11, 12), forming a working unit (9), or separate working elements (10′), are connected with the cylindrical rotator (8, 8′) in a way enabling their oscillating motion, while points (23, 23′) of contacts of the working elements (10, 11, 12, 10′) are simultaneously driven by the cam (5, 6, 7, 5′), the outline of which constitutes a line equidistant from a Radziwill curve, constituting a locus of points forming a closed trajectory being described, on an immobile plane perpendicular to the axis of the cylindrical rotator (8, 8′), by a vertex point (C, C′) of the working element (10, 11, 12, 10′) moving in relation to the rotator (8, 8′) by an oscillating motion with a resonance frequency during one full revolution of the cylindrical rotator (8, 8′), while an inertia moment IO1 of the working unit (9), or the working element (10′), has a value ensuring a resonance frequency of proper vibration of the working unit (9), or working element (10′), wherein a ratio of the frequency of resonance vibrations to a frequency of rotating motion of the cylindrical rotator (8, 8′) is expressed by a natural number v.
2. A machine according to claim 1 , characterized in that the working element (10, 11, 12) has a shape of a blade with a section of concave-convex lens and is connected with a pivot (13, 14) swivel mounted in the cylindrical rotator (8) of the compressor.
3. A machine according to claim 1 or 2 , characterized in that the working unit (9) consists of at least two working elements (10, 12), symmetrically located in relation to the pivot (13, 14).
4. A machine according to claim 2 , characterized in that its working unit (9) consists of three working elements (10, 11, 12), while a middle working element (11) constitutes a blade with a width twice larger than a width of border blades (10, 12) and is located in equal distance from them, wherein pivots (13, 14) of the working unit (9) are swivel mounted in rolling bearings (15, 16), fitted in sockets of the cylindrical rotator (8), symmetrically on both sides of the middle blade (11) and in an equal distance from an axis (17) of its rotation, while the cams (5, 6, 7), mating with working elements (10, 11, 12), are set on a common camshaft (4), while the middle cam is twice wider than the border cams (5, 7), and each of the working elements (10, 11, 12) has a vertex point (C) surrounded by a cylindrical surface, constituting a set of points (23) of contact with a surface of the corresponding cam (5, 6, 7).
5. A machine according to claim 4 , characterized in that the camshaft (4) is made hollow, while its central aperture is used for introduction and evacuation of a medium, being compressed, and is connected, by means of intake slots (33, 33′) and outlet slots (34, 34′) of the cams (5, 6, 7, 5′), with the working chambers (A, B) formed inside the cylindrical rotator (8, 8′).
6. A machine according to claim 4 , characterized in that inside the axial aperture of the camshaft (4) is fitted a pipe (19), the interior of which constitutes an internal manifold (25), introducing a medium being compressed, by means of intake slots (23) of the cams (5, 6, 7), to the working chambers formed in the interior of the cylindrical rotator (8), while a slot (21) between an outer surface of this pipe (19) and an inner surface of the aperture in the camshaft (4) is connected, by means of outlet slots (34) of the cams (5, 6, 7), with working chambers (A, B) formed in the interior of the cylindrical rotator (8, 8′).
7. A machine according to claim 2 , characterized in that its cylindrical rotator (8) is provided with at least five, preferably seven, symmetrically located around its rotation axis (17), cylindrical apertures, in which are fitted rolling bearings (15, 16) with swivel mounted working units (9), and also is provided on its inner surface with the same number of cylindrical recesses (22), coaxial in relation to axes of the apertures for bearings.
8. A machine according to claim 2 , characterized in that it is provided with a stationary block (1), surrounding the cylindrical rotator (8) and being closed by an outside manifold (3), connected with the stationary camshaft (4) and provided with an intake aperture (26) introducing a medium, being compressed, to the internal manifold (25), and with an outlet aperture (27), evacuating a compressed medium from the annular slot (21), wherein the cylindrical rotator (8) is on its other extremity connected with a flange of a coupling (20), through which is transmitted a drive from a power source of the compressor.
9. A machine according to claim 1 , characterized in that it is provided with an assembly of working elements (10′) in a form of cradles, limited on one side by a cylindrical surface (30′) with a curvature radius equal to half of a curvature radius of an inner surface of the cylindrical rotator (8′), and on the other side provided with a projection (29′), a vertex point (C′) of which is surrounded by a cylindrical surface, constituting a set of points (23′) of contact with the surface of the cam (5′).
10. A machine according to claim 9 , characterized in that its cylindrical rotator (8′) is provided on its inner surface (24′) with radial projections (28) directed towards its interior, while lateral surfaces of the projections (28) are convergent towards an axis (17′) of the cylindrical rotator (8′).
11. A machine according to claim 9 , characterized in that its cylindrical rotator (8′) is provided on its inner surface (24′) with at least four, preferably eight radial projections (28).
12. A machine according to claim 9 , characterized in that its stationary cam (5′), having an outline corresponding to a line equidistant from the Radziwill curve, is provided with at least one, preferably two transverse intake apertures (31′), connected by intake slots (33′) of the cam (5′) with the working chambers, formed in the interior of the cylindrical rotator (8′), and with at least one, preferably two outlet apertures (32′), connected by outlet slots (34′) of the cam (5′) with the working chambers formed in the interior of the cylindrical rotator (8′).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/326,162 US20090081065A1 (en) | 2004-03-09 | 2008-12-02 | Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor |
US12/607,370 US20100143174A1 (en) | 2004-03-09 | 2009-10-28 | Rotary Working Machine Provided with an Assembly of Working Chambers and Periodically Variable Volume, In Particular a Compressor |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04460001A EP1574664B1 (en) | 2004-03-09 | 2004-03-09 | Rotary and oscillating vane machine |
EP04460001.3 | 2004-03-09 | ||
PCT/PL2005/000014 WO2005085598A1 (en) | 2004-03-09 | 2005-03-08 | Rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor |
US10/592,455 US7458791B2 (en) | 2004-03-09 | 2005-03-08 | Rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor |
US12/326,162 US20090081065A1 (en) | 2004-03-09 | 2008-12-02 | Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/PL2005/000014 Continuation WO2005085598A1 (en) | 2004-03-09 | 2005-03-08 | Rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor |
US11/592,455 Continuation US7390682B2 (en) | 2003-09-24 | 2006-11-03 | Method for testing metal-insulator-metal capacitor structures under high temperature at wafer level |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/607,370 Continuation-In-Part US20100143174A1 (en) | 2004-03-09 | 2009-10-28 | Rotary Working Machine Provided with an Assembly of Working Chambers and Periodically Variable Volume, In Particular a Compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090081065A1 true US20090081065A1 (en) | 2009-03-26 |
Family
ID=34814481
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/592,455 Expired - Fee Related US7458791B2 (en) | 2004-03-09 | 2005-03-08 | Rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor |
US12/326,162 Abandoned US20090081065A1 (en) | 2004-03-09 | 2008-12-02 | Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/592,455 Expired - Fee Related US7458791B2 (en) | 2004-03-09 | 2005-03-08 | Rotary working machine provided with an assembly of working chambers with periodically variable volume, in particular a compressor |
Country Status (7)
Country | Link |
---|---|
US (2) | US7458791B2 (en) |
EP (1) | EP1574664B1 (en) |
JP (1) | JP5118481B2 (en) |
AT (1) | ATE428844T1 (en) |
DE (1) | DE602004020578D1 (en) |
PL (1) | PL1574664T3 (en) |
WO (1) | WO2005085598A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10683755B2 (en) | 2017-06-26 | 2020-06-16 | Pdt, Llc | Continuously variable turbine |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009016244A2 (en) * | 2007-08-01 | 2009-02-05 | Georg Albersinger | Force/thermal-coupling apparatus |
US8079343B2 (en) * | 2007-09-17 | 2011-12-20 | John Howard Seagrave | Positive-displacement turbine engine |
AU2008302026A1 (en) * | 2007-09-21 | 2009-03-26 | Mechanology, Inc. | Peripherally pivoted oscillating vane machine |
CN101864991A (en) * | 2010-06-10 | 2010-10-20 | 姚镇 | Vortex fluid motors or engines and compressors and pumps |
US9267504B2 (en) | 2010-08-30 | 2016-02-23 | Hicor Technologies, Inc. | Compressor with liquid injection cooling |
CA2809945C (en) | 2010-08-30 | 2018-10-16 | Oscomp Systems Inc. | Compressor with liquid injection cooling |
JP5724785B2 (en) * | 2011-09-21 | 2015-05-27 | 株式会社豊田自動織機 | Compressor |
US9309765B2 (en) | 2012-03-14 | 2016-04-12 | Lumenium Llc | Rotary machine |
CN103511710B (en) * | 2012-06-18 | 2017-02-08 | 上海融德机电工程设备有限公司 | Actuator for straight stroke type valve with threaded rod |
CN104100299B (en) * | 2013-04-12 | 2016-05-25 | 北京星旋世纪科技有限公司 | Tumbler and apply its fluid motor, engine, compressor and pump |
EP3055505A4 (en) * | 2013-09-18 | 2017-08-30 | Lumenium Llc | Rotary machine |
US10077772B2 (en) * | 2016-03-08 | 2018-09-18 | Jon Trip | Rotary compressor/pump |
GB201614971D0 (en) * | 2016-09-02 | 2016-10-19 | Lontra Ltd | Rotary piston and cylinder device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE19772E (en) * | 1935-12-03 | Rotary pump or motor | ||
US2719513A (en) * | 1951-03-15 | 1955-10-04 | Dezell James Elton | Rotary engine |
US3050012A (en) * | 1958-05-21 | 1962-08-21 | Arnold E Biermann | Fluid pump |
US3253583A (en) * | 1962-04-24 | 1966-05-31 | Isuzu Motors Ltd | Rotary internal combustion engine |
US3260248A (en) * | 1963-08-21 | 1966-07-12 | Samuel P Lyle | Rotary engine and method of operating same |
US3387596A (en) * | 1965-06-09 | 1968-06-11 | Politechnika Warszawska | Combustion engine with revoluting pistons forming a closed kinematic chain |
US3426694A (en) * | 1966-03-25 | 1969-02-11 | Rockwell Mfg Co | Hydraulic mechanism |
US5379736A (en) * | 1994-07-25 | 1995-01-10 | Anderson; Stanley R. | Gas compressor/expander |
US6868822B1 (en) * | 1999-07-15 | 2005-03-22 | Engineair Pty Ltd | Rotary piston engine |
US6939117B2 (en) * | 1999-12-21 | 2005-09-06 | Merlin Corporation Pty Ltd | Rotary apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE622554C (en) | 1934-07-20 | 1935-11-30 | Alfred Schneemilch | Rotating work and power machine with sickle-shaped work space and oscillating piston |
DE898697C (en) | 1944-11-10 | 1953-12-03 | Emile Franciscus Joha Schnabel | Rotary piston machine with rotary abutment |
DE1551101A1 (en) | 1967-05-09 | 1970-07-16 | Horst Dierolf | Centrifugal piston internal combustion engine |
DE19901110C2 (en) | 1999-01-14 | 2002-06-06 | Herbert Huettlin | Oscillating piston engine |
-
2004
- 2004-03-09 EP EP04460001A patent/EP1574664B1/en not_active Expired - Lifetime
- 2004-03-09 DE DE602004020578T patent/DE602004020578D1/en not_active Expired - Lifetime
- 2004-03-09 AT AT04460001T patent/ATE428844T1/en not_active IP Right Cessation
- 2004-03-09 PL PL04460001T patent/PL1574664T3/en unknown
-
2005
- 2005-03-08 JP JP2007502748A patent/JP5118481B2/en not_active Expired - Fee Related
- 2005-03-08 WO PCT/PL2005/000014 patent/WO2005085598A1/en not_active Application Discontinuation
- 2005-03-08 US US10/592,455 patent/US7458791B2/en not_active Expired - Fee Related
-
2008
- 2008-12-02 US US12/326,162 patent/US20090081065A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE19772E (en) * | 1935-12-03 | Rotary pump or motor | ||
US2719513A (en) * | 1951-03-15 | 1955-10-04 | Dezell James Elton | Rotary engine |
US3050012A (en) * | 1958-05-21 | 1962-08-21 | Arnold E Biermann | Fluid pump |
US3253583A (en) * | 1962-04-24 | 1966-05-31 | Isuzu Motors Ltd | Rotary internal combustion engine |
US3260248A (en) * | 1963-08-21 | 1966-07-12 | Samuel P Lyle | Rotary engine and method of operating same |
US3387596A (en) * | 1965-06-09 | 1968-06-11 | Politechnika Warszawska | Combustion engine with revoluting pistons forming a closed kinematic chain |
US3426694A (en) * | 1966-03-25 | 1969-02-11 | Rockwell Mfg Co | Hydraulic mechanism |
US5379736A (en) * | 1994-07-25 | 1995-01-10 | Anderson; Stanley R. | Gas compressor/expander |
US6868822B1 (en) * | 1999-07-15 | 2005-03-22 | Engineair Pty Ltd | Rotary piston engine |
US6939117B2 (en) * | 1999-12-21 | 2005-09-06 | Merlin Corporation Pty Ltd | Rotary apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10683755B2 (en) | 2017-06-26 | 2020-06-16 | Pdt, Llc | Continuously variable turbine |
Also Published As
Publication number | Publication date |
---|---|
JP5118481B2 (en) | 2013-01-16 |
JP2007528466A (en) | 2007-10-11 |
US20070201998A1 (en) | 2007-08-30 |
PL1574664T3 (en) | 2009-09-30 |
US7458791B2 (en) | 2008-12-02 |
DE602004020578D1 (en) | 2009-05-28 |
EP1574664A1 (en) | 2005-09-14 |
ATE428844T1 (en) | 2009-05-15 |
EP1574664B1 (en) | 2009-04-15 |
WO2005085598A1 (en) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090081065A1 (en) | Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor | |
US6036463A (en) | Rotary positive displacement engine | |
US5431551A (en) | Rotary positive displacement device | |
US6659744B1 (en) | Rotary two axis expansible chamber pump with pivotal link | |
US4844708A (en) | Elliptical-drive oscillating compressor and pump | |
EP1869317B1 (en) | Radial axis, spherical based rotary machines | |
JP4523152B2 (en) | Rotary piston machine | |
WO2009094862A1 (en) | A rotary compressor | |
US20100143174A1 (en) | Rotary Working Machine Provided with an Assembly of Working Chambers and Periodically Variable Volume, In Particular a Compressor | |
EP2240695B1 (en) | Variable-volume rotary device, an efficient two-stroke spherical engine | |
MXPA04001235A (en) | Rotary piston engine. | |
WO2016095757A1 (en) | Rotary piston type working machine | |
JP3488430B2 (en) | Rotary axial engine | |
US20090038581A1 (en) | Oscillating Piston Engine | |
US3966371A (en) | Rotary, positive displacement progressing cavity device | |
US7185625B1 (en) | Rotary piston power system | |
US6799955B1 (en) | Two-lobe rotary machine | |
US20080264379A1 (en) | Rotary Engine | |
CN100513748C (en) | Piston device with rotary blade | |
US7080623B1 (en) | Rotor for an axial vane rotary device | |
US11492907B2 (en) | Cartiodal rotary machine with two-lobe rotor | |
RU2242624C2 (en) | Rotary engine | |
US11143028B2 (en) | Composite piston machine combining rotary oscillating and pendular movements | |
JPH0230901A (en) | Rotary piston engine | |
RU1775009C (en) | Positive-displacement rotor machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |