US20090078741A1 - Method of manufacturing vehicle body and welding facility - Google Patents
Method of manufacturing vehicle body and welding facility Download PDFInfo
- Publication number
- US20090078741A1 US20090078741A1 US12/284,681 US28468108A US2009078741A1 US 20090078741 A1 US20090078741 A1 US 20090078741A1 US 28468108 A US28468108 A US 28468108A US 2009078741 A1 US2009078741 A1 US 2009078741A1
- Authority
- US
- United States
- Prior art keywords
- welding
- panel
- frame
- assembly
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P21/00—Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
- B23P21/004—Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the units passing two or more work-stations whilst being composed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P2700/00—Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
- B23P2700/50—Other automobile vehicle parts, i.e. manufactured in assembly lines
Definitions
- the present invention relates to a welding facility and a method of manufacturing a vehicle body in which a sub-welding line and a main welding into which the sub-welding line merges are provided and different types of the product can be assembled.
- JP 2001-47328 A Japanese Patent Application Laid-Open Publication No. 2001-47328
- the welding facility disclosed in JP 2001-47328 A is shown in FIG. 23 hereof.
- a welding facility 200 is composed of a main welding line 201 and a sub-welding line 202 that merges with the main welding line 201 .
- the sub-welding line 202 is composed of a front floor assembly line 203 , a rear floor assembly line 204 , and an engine compartment assembly line 205 .
- a workpiece assembled using the assembly lines 203 to 205 is supplied to the main welding line 201 , and welded to assemble a vehicle body.
- the front floor assembly line 203 constituting the sub-welding line 202 is provided with first and second manufacturing facilities 206 a , 206 b .
- the rear floor assembly line 204 is provided with first and second manufacturing facilities 207 a , 207 b .
- the engine compartment assembly line 205 is provided with first and second manufacturing facilities 208 a , 208 b .
- Different types of products are assembled using the assembly lines 203 , 204 , 205 .
- An object of the present invention is to allow a welding facility to be used flexibly and effectively, to reduce the surface area needed for the welding facility, and to allow vehicle types whose structures are entirely different from one another to be manufactured together on a single manufacturing line; i.e., to improve the efficiency of mixed model manufacturing.
- a method for welding different types of vehicle body parts and manufacturing a vehicle body using a welding line that is provided with a plurality of welding stages for different welding tasks wherein the method for manufacturing a vehicle body comprises a step for manufacturing a flame member assembly by welding a different type of flame member on the welding stages, and a step for welding on different welding stages according to the type of vehicle to be manufactured, when the panel member assemblies of the vehicle body are joined with the flame member assemblies.
- the above manufacturing method includes a step for welding on different welding stages according to the type of vehicle to be manufactured when the panel member assemblies of the vehicle body are joined with the frame member assemblies, a different welding stage is thus used according to the type of vehicle to be manufactured, and different types of vehicle bodies can be manufactured. Accordingly, in a case where a plurality of types of vehicle bodies is used, the shared usability of a welding facility can be increased. Increasing the shareability of the welding facility enables an expensive welding facility to be used flexibly and effectively.
- the welding stages that differ according to the vehicle type preferably have at least two change locations. Accordingly, for example, even if different vehicle body types are used, the welding facility can be readily adapted, and can be used more universally.
- the panel members are preferably floor panels of the vehicle body or wheel houses. Accordingly, a plurality of types of vehicle bodies having completely different structures can be effectively manufactured in a mixed model flow manufacturing line with a variety of part types.
- a method for manufacturing a vehicle body in which a sub-welding line for manufacturing an assembly of panel members merges with a main welding line for manufacturing an assembly of frame members; and the panel members are joined with the frame member assembly at a part where merging occurs, comprising a frame welding step for welding a different type of frame member in order to manufacture the frame member assembly on the main welding line; a panel welding step for welding a different type of panel member in order to manufacture the panel member assembly on the sub-welding line; a frame-panel combining step for combining the panel member assembly with the frame member assembly on the main welding line at a location where the frame welding step concludes; and a frame-panel welding step for welding the panel member assembly to the frame member assembly.
- the frame member assembly and the panel member assembly are welded on different lines, thereafter integrated, and a vehicle body is manufactured.
- a plurality of stages are provided in the same welding line, whereby the primary welding and the secondary welding can be performed on adjacent welding stages in the same welding line.
- the primary welding and secondary welding can be performed in the same welding line, then even if vehicle bodies having completely different structures are used, it is possible for the vehicle bodies to be manufactured together on a single main welding line; i.e., it is possible for mixed model manufacturing to be carried out. Since mixed model manufacturing can be performed on a plurality of vehicle types using a single welding line, the surface area of the facility can be reduced, and the costs of the facility can be considerably reduced.
- the fact that the primary welding and the secondary welding can be performed together in each of the welding lines makes it possible for a flexible approach to be adopted by allocating members having different numbers of welding points to different welding stages, even when the vehicle body structures are different and the number of welding points is different.
- the primary welding and the secondary welding are allocated to different welding stages in the panel welding line, and allocated to different welding stages when the frame and panel are integrated, no concerns will be presented that the manufacturing capability of the sub-welding line will be compromised when the type of vehicle body is changed. Accordingly, a plurality of types of vehicle bodies having completely different structures can be efficiently manufactured in a mixed model manufacturing line with a variety of part types.
- a welding facility comprising a main welding line for manufacturing an assembly of frame members; and a sub-welding line for manufacturing an assembly of panel members, the sub-welding line merging with the main welding line; wherein the main welding line is composed of a plurality of welding stages provided with a welding robot, the sub-welding line is provided at the end with a transfer mechanism for transferring the panel member assembly to the desired welding stage, and the merging parts can change according to the type of product to be welded.
- a transfer mechanism that allows the merging part to be changed is provided to address this issue; therefore, individual transfer mechanisms do not have to be provided for each product.
- the transfer mechanism can be shared. The ability for the transfer mechanism to be shared makes it possible to reduce the surface area required for the facility, and reduce the facility costs.
- Providing a transfer mechanism also makes it possible to adjust any unbalance in load between the welding lines occurring when the type of vehicle body to be welded is changed, and line balancing can be performed in a uniform manner.
- the first main welding line transfer mechanism preferably comprises a rail established parallel to the main welding line, a truck that moves along the rail, and a transport robot provided on the truck.
- the rail and the truck thus allow the transport robot to be moveably provided parallel to the main welding line; therefore, instances such as when the location of the merging part needs to be changed due to a change in the type of vehicle body, or when the number of locations of the merging part is increased as a result of an increase in the number of product types or another reason can be addressed merely by changing the length of the rail or making an otherwise minor reconfiguration.
- the facility costs can accordingly be minimized even when mixed model manufacturing using a variety of part types is performed.
- the welding facility is preferably provided with at least two or more sub-welding lines to which a transfer mechanism for transferring a workpiece to a desired welding stage has been affixed, and which merge with the main welding line. Accordingly, the surface area needed for the welding facility can be reduced, and the facility costs can be reduced.
- FIG. 1 is a schematic view of a welding line provided in a welding facility according to the present invention
- FIG. 2 is an enlarged view of part 2 of FIG. 1 ;
- FIG. 3 is a view as seen in the direction of arrow 3 - 3 of FIG. 2 ;
- FIG. 4 is a view as seen in the direction of arrow 4 - 4 of FIG. 1 ;
- FIG. 5 is a view showing flow of a workpiece according to a first vehicle type in a welding line according to the present embodiment
- FIGS. 6A and 6B show a panel welding step for welding a plurality of types of panel members according to the first vehicle type using a sub-welding line;
- FIGS. 7A and 7B show a frame welding step for welding a plurality of types of frame members according to the first vehicle type using a main welding line;
- FIG. 8 shows a frame-panel combining step for combining a panel member and a frame member according to the first vehicle type
- FIG. 9 shows a frame-panel welding step for welding a panel member on a frame member according to the first vehicle type
- FIG. 10 is a view showing the flow of a workpiece according to the manufacture of a second vehicle type in a welding line of the present embodiment
- FIGS. 11A and 11B show a panel welding step for welding several types of panel members according to the second vehicle type using a sub-welding line
- FIG. 12 shows a frame welding step for welding a plurality of types of frame members according to the second vehicle type using a main welding line
- FIG. 13 shows a frame-panel combining step for combining a panel member and a frame member according to the second vehicle type
- FIG. 14 shows a frame-panel welding step for welding a panel member on a frame member according to the second vehicle type
- FIGS. 15A and 15B show a step for attaching left and right wheel house members on a second frame panel assembly according to the second vehicle type
- FIGS. 16A and 16B show a step for attaching a crossbeam member between the left and right wheel house members
- FIG. 17 is a view showing the flow of a workpiece according to the manufacture of a third vehicle type in a welding line of the present embodiment
- FIG. 18 shows a panel welding step for welding a panel member according to the third vehicle type using a sub-welding line
- FIGS. 19A and 19B show a frame welding step for welding a plurality of types of frame members according to the third vehicle type using a main welding line;
- FIG. 20 shows a frame-panel combining step for combining a panel member and a frame member according to the third vehicle type
- FIG. 21 shows a frame-panel welding step for welding a panel member on a frame member according to the third vehicle type
- FIGS. 22A and 22B show a step for attaching left and right wheel house members on a third frame panel assembly according to the third vehicle type
- FIG. 23 is a schematic view showing a welding line composed of a conventional main welding line and a sub-welding line.
- FIG. 1 showing the layout of a welding line 11 for assembling a rear floor part of a four-wheeled vehicle.
- the welding line 11 which is provided in a welding facility 10 , has a sub-welding line 12 for welding together panel members that constitute a rear floor, a main welding line 13 for welding and completing a rear floor part, and a panel supply part 14 for causing the sub-welding line 12 to merge with the main welding line 13 and supplying a panel member to a frame member.
- the panel supply part 14 has a first panel supply part 15 and a second panel supply part 16 .
- the sub-welding line 12 is provided with a first sub-welding line 17 and a second sub-welding line 18 .
- the first sub-welding line 17 is connected to the main welding line 13 via the first panel supply part 15 .
- the second sub-welding line 18 is connected to the main welding line 13 via the second panel supply part 16 .
- the first sub-welding line 17 is provided with a plurality of part-accommodating pallets 21 a to 21 e ; left and right first retrieving robots 22 L, 22 R; left and right welding robots 23 L, 23 R; left and right first delivery robots 25 L, 25 R; a first transfer robot 28 ; a first parts transfer mechanism 29 ; a first welding stage 31 ; a second transfer robot 32 ; a second welding stage 33 ; a third transfer robot 34 ; and a plurality of welding robots 35 L, 35 R respectively disposed on the left and right.
- Each of the plurality of part placement pallets 21 a to 21 e holds a panel member.
- the first retrieving robots 22 L, 22 R retrieve necessary parts from each of the plurality of part placement pallets 21 a to 21 e.
- the welding robots 23 L, 23 R weld a nut or the like on the retrieved parts as needed.
- the first delivery robots 25 L, 25 R take the parts from the first retrieving robots 22 L, 22 R and deliver them to a first temporary placement part 24 .
- the first transfer robot 28 transfers parts from the first temporary placement part 24 to a subsequent stage.
- the first parts transfer mechanism 29 has the first transfer robot 28 .
- the first welding stage 31 is located next to the first parts transfer mechanism 29 , and is where the transferred parts are subjected to a primary welding (also referred to as “temporary welding” hereinbelow).
- the second transfer robot 32 is disposed rearward of the first welding stage 31 .
- a secondary welding (“additional welding” below) is performed rearward of the second transfer robot 32 , on the second welding stage 33 .
- the third transfer robot 34 transfers an assembled panel member assembly from the second welding stage 33 to the first panel supply part 15 .
- the welding robots 35 L, 35 R are disposed on the left and right of the first and second welding stages 31 , 33 .
- the second sub-welding line 18 is provided with a plurality of part-accommodating pallets 36 a to 36 c for holding parts, a second retrieving robot 38 for retrieving necessary parts from the part-accommodating pallets 36 a to 36 c to a retrieval stage 37 , and welding robots 39 F, 39 R disposed laterally with respect to the retrieval stage 37 , the welding robots 39 F, 39 R used for welding a nut or the like on the retrieved parts as needed.
- the main welding line 13 is provided with accommodating pallets 41 a to 41 d for holding frame members; a third retrieving robot 42 for retrieving the required frame members from the accommodating pallets 41 a , 41 b , which are one portion of the accommodating pallets 41 a to 41 d ; welding robots 43 L, 43 R for welding a nut or the like on the retrieved parts as needed; delivery robots 45 L, 45 R for taking parts from the third retrieving robot 42 , and for taking parts from the accommodating pallets 41 c , 41 d and delivering them to a second temporary placement part 44 ; a second parts transfer mechanism 49 which has a third transfer robot 48 for transferring parts from the second temporary placement part 48 to the next stage; a third welding stage 51 adjacent to the second parts transfer mechanism 49 , the third welding stage 51 being where the primary welding is performed on the transferred frame members; a third component transfer mechanism 54 provided on the rear side of the third welding stage 51 which has a fourth transfer robot 53 ; a fourth welding stage 55 provided rearward of the third parts transfer mechanism
- the main welding line 13 is composed of a plurality of welding stages provided with left and right welding robots 69 L, 69 R.
- An end stage 68 is provided rearward of the ninth welding stage 60 , and is where a completed rear floor arrives via the tenth transfer robot 67 .
- the first panel supply part 15 is composed of a panel assembly retrieval stage 71 for retrieving a panel member assembly in which panel members have been assembled on the first sub-welding line 17 ; first front and rear receiving stages 72 , 73 disposed laterally with respect to the main welding line 13 ; and a first main welding line transfer mechanism 74 for transferring a panel member assembly to the first front receiving stage 72 or the first rear receiving stage 73 .
- a panel parts assembly transferred to the first front receiving stage 72 can be transferred to the fourth welding stage 55 of the main welding line using the fourth transfer robot 53 .
- a panel parts assembly transferred to the first rear receiving stage 73 can be transferred to the fifth welding stage 56 of the main welding line using the fifth transfer robot 62 .
- the first main welding line transfer mechanism 74 which is a transfer mechanism 70 for transferring the panel member assembly to a desired welding stage, is disposed at the end of the sub-welding line 12 .
- the first main welding line transfer mechanism 74 shall be described further below.
- a jig transport conveyor 77 is established in a substantially L-shaped form from a jig storage area E to the first welding stage 31 .
- a raised frame 78 is provided so as to span the jig transport conveyor 77 .
- the raised frame 78 comprises the first parts transfer mechanism 29 .
- An upper rail 79 is established on the raised frame 78 , and a first transfer robot 28 is moveably provided on the upper rail 79 .
- the first parts transfer mechanism 29 comprises the first transfer robot 28 , which is moveably attached via an upper truck 81 and the upper rail 79 disposed on the raised frame 78 .
- the raised frame 78 is composed of four pillar parts 44 extending in the vertical direction and a floor part 83 attached on an upper end part of the pillar parts 44 .
- a first jig truck 84 and a second jig truck 85 are moveably provided between the jig storage area E and the first welding stage 31 .
- the first jig truck 84 moves on the jig transport conveyor 77 to the first welding stage 31 in the direction of arrow a in the drawing.
- the first transfer robot 28 is provided on top of the raised frame 78 , and accordingly grasps the parts from the first temporary placement part 24 ( FIG. 1 ), moves along the upper rail 79 , and transfers the parts to a predetermined location on the first jig provided on the first jig truck 84 .
- the action of the first jig truck 84 is performed simultaneously with the action of the first transfer robot 28 ; therefore, the manufacturing ability of the facility is greatly increased.
- the second parts transfer mechanism 49 and the third parts transfer mechanism 54 perform the same function as the first parts transfer mechanism 29 ; therefore, an associated description is not given.
- the first main welding line transfer mechanism 74 provided on the first panel supply part 15 shown in FIG. 4 takes the panel parts assembly on the panel assembly retrieval stage 71 shown in FIG. 1 , and transfers the assembly to the first front receiving stage 72 and the rear receiving stage 73 , which are disposed laterally with respect to the main welding line 13 .
- the first main welding line transfer mechanism 74 is composed of a rail 86 established parallel to the main welding line 13 , a truck 87 that moves along the rail 86 , and a transport robot 88 provided on the truck 87 .
- the rail 86 and the truck 87 allow the transport robot 88 to be moveably provided parallel to the main welding line 13 ; therefore, in instances such as when a change in the type of product causes the location of the panel supply part 14 to be changed, or when an increase in the number of types of product causes the number of locations of the panel assembly part 14 to increase, it is possible to respond merely by changing the length of the rail 86 or by making an otherwise minor reconfiguration. The facility costs incurred when a change is made to the model of the product can accordingly be reduced.
- the second main welding line 89 shown in FIG. 1 has the same basic configuration as the first main welding line parts transfer mechanism 74 , with the sole exception being that the parts that are transferred are different. An associated description has accordingly not been provided.
- a step for welding a rear floor part of the first vehicle type will be described below with reference to FIGS. 5 to 9 .
- FIG. 5 shows the flow of a workpiece according to a first vehicle type in a welding line of the present embodiment, and a description is provided with reference to FIG. 1 .
- a frame member is assembled on the third welding stage 51 .
- the fourth welding stage 55 is a merging part 75 in the case of the first vehicle type.
- a vehicle body transferred from the fourth welding stage 55 to the fifth welding stage 56 is subjected to additional welding on the fifth welding stage 56 .
- Each step is described in detail in order below.
- FIGS. 6A and 6B show a panel welding step for welding a plurality of types of panel members according to the first vehicle type on the sub-welding line.
- the panel welding step is described with reference to FIG. 5 .
- the sub-welding line 12 has a panel welding step for welding different types of panel members. A specific description is given below.
- a first rear floor rear 92 is positioned rearward of a first rear floor front 91
- left and right first sub-rails 93 L, 93 R are positioned on an upper surface of the first rear floor front 91
- a first cross sub-rail 94 is positioned so as to span between the left and right first sub-rails 93 L, 93 R.
- a member obtained by integrating the first rear floor front 91 , the first rear floor rear 92 , the left and right first sub-rails 93 L, 93 R, and the first cross sub-rail 94 is referred to below as a first panel member assembly 95 .
- the first panel member assembly 95 is transferred from the first welding stage 31 to the second welding stage 33 , and the first panel member assembly 95 is subjected to additional welding on the second welding stage 33 , according to FIG. 6B .
- FIGS. 7A and 7B show a frame welding step for welding different types of frame members according to the first vehicle type on the main welding line, and a description is provided with reference to FIG. 5 .
- the main welding line 13 has a frame welding step for welding a plurality of types of frame members.
- first left and right rails 90 L, 90 R are positioned on a predetermined jig, a first rear cross member 96 is positioned between the front end parts of the first left and right rails 90 L, 90 R, and a first sub-cross member 97 is positioned between center parts of the first left and right rails 90 L, 90 R.
- the parts are temporarily welded together and integrated, according to FIG. 7A .
- a member obtained by integrating the first left and right rails 90 L, 90 R, the first rear cross member 96 , and the first sub-cross member 97 is referred to below as a first frame member assembly 98 .
- FIG. 7B A temporarily welded first frame member assembly 98 is shown in FIG. 7B .
- FIG. 8 shows a frame-panel combining step for combining a panel member according to the first vehicle type. The step is described with reference to FIG. 5 .
- the main welding line 13 has a frame-panel combining step for combining the first panel member assembly 95 , which is the panel member, with the first frame member assembly 98 , which is the frame member.
- the first frame member assembly 98 is transferred from the third welding stage 51 to the fourth welding stage 55 , and, subsequently, the first panel member assembly 95 is transferred from the second welding stage 33 to the fourth welding stage 55 via the first panel supply part 15 .
- the first panel member assembly 95 used as a panel member is combined with the first frame member assembly 98 used as a frame member, and temporarily welded in the fourth welding stage 55 .
- the combined member is referred to below as a first frame panel assembly 99 .
- FIG. 9 shows a frame-panel welding step for welding a panel member to a frame member. A description is provided with reference to FIG. 5 .
- the main welding line 13 has a frame-panel welding step for welding the first panel member assembly 95 to the first frame member assembly 98 .
- the combined first frame panel assembly 99 is subjected to additional welding, and the assembling of a rear floor part according to the first vehicle type is completed in the fifth welding stage 56 .
- the first frame panel assembly 99 having been completely assembled passes through the fifth welding stage 56 to the ninth welding stage 60 in the stated order, and reaches an end stage 68 .
- the method of manufacturing a vehicle body according to the first vehicle type comprises a frame welding step for welding a plurality of types of frame members according to the first vehicle type on the main welding line 13 , a panel welding step for welding a plurality of types of panel members according to the first vehicle type on the sub-welding line 12 , a frame-panel combining step for combining a panel member with a frame member on the main welding line 13 at a location where the frame welding step ends, and a frame-panel welding step for welding a panel member to a frame member.
- a step for welding a rear floor part of a second vehicle type shall now be described with reference to FIGS. 10 to 16 .
- FIG. 10 shows the flow of a workpiece according to the manufacture of a second vehicle type in a welding line, and a description is provided with reference to FIG. 1 .
- a panel member assembly according to the second vehicle type which is the workpiece, passes through the first welding stage 31 and the second welding stage 33 disposed on the sub-welding line 12 ; and arrives at the first front receiving stage 72 via the first main welding line transfer mechanism 74 .
- a frame member is assembled on the third welding stage 51 , and a panel member assembly according to the second vehicle type that is transferred via the first main welding line transfer mechanism 74 is integrated with a frame member using the third parts transfer mechanism 54 on the fourth welding stage 55 .
- the fourth welding stage 55 is a merging part 75 in the case of a second vehicle type.
- a vehicle body transferred from the fourth welding stage 55 to the fifth welding stage 56 is subjected to additional welding on the fifth welding stage 56 , and other members are attached in the sixth to eighth welding stages 57 to 59 . Each step is described in order below.
- FIGS. 11A and 11B show a panel welding step for welding a plurality of types of panel members according to the second vehicle type on the sub-welding line.
- the panel welding step is described with reference to FIG. 10 .
- a predetermined jig truck is caused to move on a first welding stage 31 .
- left and right reinforcing members 100 L, 100 R are positioned, a second rear floor rear 102 is positioned, a second rear floor front 101 is positioned on a front end part of the second rear floor rear 102 above the left and right reinforcing materials 100 L, 100 R, and a second cross sub-rail 104 is positioned on an upper surface of the second rear floor front 101 .
- Each part above is temporarily welded together and integrated, according to FIG. 11A .
- a member obtained by integrating the left and right reinforcing members 100 L, 100 R, the second rear front 101 , the second rear floor rear 102 , and the second cross sub-rail 104 is referred to as a panel member assembly 105 below.
- the second panel member assembly 105 is transferred from the first welding stage 31 to the second welding stage 33 , and the second panel member assembly 105 is subjected to additional welding in the second welding stage 33 , according to FIG. 11B .
- FIGS. 12A and 12B show a frame welding step for welding a plurality of types of frame members according to the second vehicle type on the main welding line. The step is described with reference to FIG. 10 .
- the main welding line 13 has a frame welding step for welding a plurality of types of frame members.
- a predetermined jig is caused to move on the third welding stage 51 , second left and right rails 110 L, 110 R are positioned on the jig, a second rear cross member 106 is positioned between the second left and right rails 110 L, 110 R, and a second sub-cross member 107 is positioned.
- Each part above is temporarily welded together and integrated, according to FIG. 12A .
- a member obtained by integrating the second rear cross member 106 , the second sub-cross member 107 , and the second left and right rails 110 L, 110 R is referred to as a second frame member assembly 108 below.
- the temporarily welded second frame panel assembly 108 is shown in FIG. 12B .
- FIG. 13 shows a frame-panel combining step for combining a panel member according to the second vehicle type. The step is described with reference to FIG. 10 .
- the main welding line 13 has a frame-panel combining step for combining the second panel member assembly 105 , which is a panel member, and the second frame member assembly 108 , which is a frame member.
- the second frame member assembly 108 is transferred from the third welding stage 51 to the fourth welding stage 55 , and the second panel member assembly 105 is transferred from the second welding stage 33 to the fourth welding stage 55 via the first panel supply part 15 .
- the second panel member assembly 105 that is a panel member is integrated with and welded to the second frame member assembly 108 that is a frame member.
- the combined member is referred to as a second frame panel assembly 109 below.
- FIG. 14 shows a frame-panel welding step for welding a panel member on a frame member according to the second vehicle type, and a description is provided with reference to FIG. 10 .
- the main welding line 13 has a frame-panel welding step for welding the second panel member assembly 105 to the second frame member assembly 108 .
- the second frame member assembly 108 and the second panel member assembly 105 are integrated, and the temporarily welded second frame panel assembly 109 is subjected to additional welding.
- FIGS. 15A and 15B show a step for attaching left and right wheel house members to a second frame panel assembly according to the second vehicle type, and a description is provided with reference to FIG. 10 .
- left and right wheel house members 111 L, 111 R are positioned in, and temporarily welded at, a predetermined location on the left and right end parts of the second panel assembly 109 , according to FIG. 15A .
- FIG. 15B shows a state in which the left and right wheel house members 111 L, 111 R are attached to the second frame panel assembly 109 .
- FIGS. 16A and 16B show a step for attaching a crossbeam member 112 between the left and right wheel house members 111 L, 111 R, and a description is provided with reference to FIG. 10 .
- the crossbeam member 112 is temporarily welded between the left and right wheel house members 111 L, 111 R on the seventh welding stage 58 , house, according to FIG. 16A .
- the crossbeam member 112 is subjected to additional welding, and the assembling of a rear floor part according to the second vehicle type is completed, according to FIG. 16B .
- the fully assembled second frame panel assembly 109 passes through the ninth welding stage 60 , and last reaches the end stage 68 .
- the left and right wheel house members 111 L, 111 R and the cross beam member 112 are supplied to the fifth and sixth welding stages 56 , 57 by the second main welding line transfer mechanism 89 ; however, the structure and function of the second main welding line transfer mechanism 89 are not substantially different from the previously described first main welding line transfer mechanism 74 , and a description has accordingly not been provided.
- a step for welding a rear floor part of a third vehicle type shall now be described with reference to FIGS. 17 to 21 .
- FIG. 17 shows the flow of a workpiece according to the manufacture of a third vehicle type in a welding line, and a description is provided with reference to FIG. 1 .
- a panel member assembly according to the third vehicle type which is the workpiece, passes through the first welding stage 31 and the second welding stage 33 disposed on the sub-welding line 12 , and reaches the first rear receiving stage 73 via the first main welding line transfer mechanism 74 .
- the frame member is transferred to the fifth welding stage by the fifth transfer robot 62 after being assembled on the third welding stage 51 and the fourth welding stage 55 .
- the panel member assembly according to the third vehicle type is transferred from the first rear receiving stage 73 to the fifth welding stage 56 by the fifth transfer robot 62 .
- the panel member assembly and the frame member assembly are subsequently combined.
- the fifth welding stage 56 is a merging stage 75 for the panel member assembly and the frame member assembly of the third vehicle type.
- a vehicle body transferred from the fifth welding stage 56 to the sixth welding stage 57 is subjected to additional welding in the sixth welding stage 57 , and other members are attached in the seventh and eighth welding stages 58 , 59 . Each step is described in order below.
- FIG. 18 shows a panel welding step for welding panel members of different types according to the third vehicle type using the sub-welding line.
- a predetermined jig truck is caused to move to the first welding stage 31 shown in FIG. 17 , and a reinforcing member (not shown) is positioned on the third rear floor 121 in the first welding stage 31 .
- the workpiece obtained from the reinforcing member being welded to the third rear floor 121 is referred to as a third panel member assembly 126 .
- FIGS. 19A and 19B show a frame welding step for welding different types of frame members according to the third vehicle type on the main welding line, and a description is provided with reference to FIG. 17 .
- a predetermined jig is transferred to the third welding stage 51 , and a third left rail 122 L and right rail 122 R are positioned on the jig.
- Third rear cross members 123 a to 123 e of different types and a second sub-cross member 124 are positioned between the first left and right rails 112 L, 112 R. Each part above is temporarily welded together and integrated.
- the member obtained by integrating the left rail 122 L, the right rail 122 R, the third rear cross members 123 a to 123 e , and the second sub-cross member 124 is referred to as the third frame member assembly 125 .
- the third frame member assembly 125 is subjected to additional welding in the fourth welding stage 55 , according to FIG. 19B .
- FIG. 20 shows a frame-panel combining step for combining a panel member according to the third vehicle type, and a description is provided with reference to FIG. 17 .
- the main welding line 13 has a frame-panel combining step for combining the third panel member assembly 126 , which is the panel member, with the third frame member assembly 125 , which is the frame member.
- the third frame member assembly 125 is transferred from the third welding stage 51 to the fourth welding stage 55 , and the third panel member assembly 126 is transferred from the second welding stage 33 to the fifth welding stage 56 via the first panel supply part 15 .
- the third panel member assembly 126 used as the panel member is integrated with and welded to the third frame member assembly 125 used as the frame member.
- the member obtained by integrating the third frame member assembly 125 and the third panel member assembly 126 is referred to below as a third frame panel assembly 127 .
- the third frame panel assembly 127 described above is welded in an increased number of points in the sixth welding stage 57 , as shown in FIG. 21 .
- FIGS. 22A and 22B show a step for attaching left and right second wheel house members 128 L, 128 R to the third frame panel assembly 127 according to the third vehicle type, and a description is provided with reference to FIG. 17 .
- the left and right second wheel house members 128 L, 128 R are temporarily welded on the left and right end parts of the third frame panel assembly 127 on the seventh welding stage 58 , according to FIG. 22A .
- the left and right second wheel house members 128 L, 128 R which are temporarily welded in the lateral direction with respect to the third frame panel assembly 127 , are welded in an increased number of points on the eighth welding stage 59 , according to FIG. 22B .
- a rear frame assembly 129 which is a rear frame of the third vehicle type, is thereby completed.
- the left and right second wheel house members 128 L, 128 R are supplied to the fifth and sixth welding stage 56 , 57 by the second main welding line transfer mechanism 89 ; however, the structure and function of the second main welding line transfer mechanism 89 are not substantially different from the previously described first main welding line transfer mechanism 74 , and a description has accordingly not been provided.
- Table 1 shows the members used on each of the welding stages, indicates whether primary welding or secondary welding was performed, shows the merging parts, and provides associated reference drawings, with all information indicated with respect to the first vehicle type, the second vehicle type, and the third vehicle type.
- WH indicates a wheel house member
- CB indicates a crossbeam member
- FIG. 6 Primary Primary Secondary frame panel + panel + welding frame frame welding welding Reference drawing
- FIG. 7 FIG. 8
- FIG. 9 Second vehicle type Primary Secondary panel panel welding welding Reference drawing
- FIG. 11 Primary Primary Secondary Primary Primary (panel + Secondary (panel + frame panel + panel + (panel + frame + WH) + CB frame + WH + CB) welding frame frame frame) + welding welding welding welding WH welding Reference drawing FIG. 12 FIG. 13 FIG. 14 FIG. 15 FIG. 16 FIG. 16
- Third vehicle type Primary panel welding Reference drawing FIG. 18 Primary Secondary Primary Secondary Primary (panel + Secondary (panel + frame frame panel + panel + frame + WH) + CB frame + WH + CB) welding welding frame frame welding welding welding welding Reference drawing FIG. 19 FIG. 19 FIG. 20 FIG. 21 FIG. 22 FIG. 22
- FIGS. 1 , 4 , 5 , 10 , 17 are used as reference in the following description.
- Panel members of different types are welded on the sub-welding line 12
- frame members of different types are welded on the main welding line 13
- the panel members are thereafter integrated with and welded to the frame members on the main welding line 13 , whereby a vehicle body is manufactured.
- the transfer mechanism 70 for transferring the panel members to a desired welding stage is provided at the end of the sub-welding line 12 , and the merging part 75 can be changed to conform to the number of steps in the welding operation.
- the merging parts 75 are usually different.
- the transfer mechanism 70 that allows the merging part 75 to be changed is provided to address this issue; therefore, individual transfer mechanisms 70 do not have to be provided for each product.
- the transfer mechanism 70 can be shared. The ability for the transfer mechanism 70 to be shared makes it possible to reduce the surface area required for the facility, and reduce the facility costs.
- a frame welding step for welding a frame member a panel welding step for welding panel members, and a frame-panel welding step for welding a panel member to a frame member are provided in the welding line of the present invention.
- the frame members and the panel members are welded using separate lines, thereafter integrated, and a vehicle body is manufactured.
- the primary welding and the secondary welding can be performed on adjacent stages in the same step because a plurality of stages is provided in the same step.
- the primary welding and secondary welding can be performed on the adjacent stages, then even if vehicle bodies having completely different structures are used, it is possible for the vehicle bodies to be manufactured together on a single main welding line; i.e., it is possible for mixed model manufacturing to be carried out. Since mixed model manufacturing can be performed on a plurality of vehicle types using a single welding line, the surface area of the facility can be reduced, and the costs of the facility can be considerably reduced.
- the fact that the primary welding and the secondary welding can be performed together in each of the welding lines makes it possible for a flexible approach to be adopted by allocating members having different numbers of welding points to different welding stages, even when the vehicle body structures are different and the number of welding points is different.
- the primary welding and the secondary welding are allocated to different welding stages in the panel welding line, and allocated to different welding stages when the frame and panel are integrated, no concerns will be presented that the manufacturing capability of the sub-welding line will be compromised when the type of vehicle body is changed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
- Automatic Assembly (AREA)
Abstract
A method is disclosed for manufacturing a plurality of vehicle bodies having different vehicle types using the same manufacturing line. In the method, when a frame member assembly and a panel member assembly of the vehicle body are to be joined, the frame member assembly and the panel member assembly are welded on a different welding stage, enabling the welding stage to be changed according to the vehicle type.
Description
- The present invention relates to a welding facility and a method of manufacturing a vehicle body in which a sub-welding line and a main welding into which the sub-welding line merges are provided and different types of the product can be assembled.
- This type of welding facility is known as disclosed in Japanese Patent Application Laid-Open Publication No. 2001-47328 (JP 2001-47328 A). The welding facility disclosed in JP 2001-47328 A is shown in
FIG. 23 hereof. - Referring to
FIG. 23 , awelding facility 200 is composed of amain welding line 201 and asub-welding line 202 that merges with themain welding line 201. Thesub-welding line 202 is composed of a frontfloor assembly line 203, a rearfloor assembly line 204, and an enginecompartment assembly line 205. A workpiece assembled using theassembly lines 203 to 205 is supplied to themain welding line 201, and welded to assemble a vehicle body. - The front
floor assembly line 203 constituting thesub-welding line 202 is provided with first andsecond manufacturing facilities floor assembly line 204 is provided with first andsecond manufacturing facilities compartment assembly line 205 is provided with first andsecond manufacturing facilities assembly lines - However, a problem is presented when different types of products are welded and assembled in the welding facility disclosed in JP 2001-47328 A in that a plurality of facilities corresponding to the plurality of product types on each sub-welding line is required, and the surface area needed for the facility is increased. Additionally, since the facilities are dedicated to a specific type of product, few of the facilities can be shared, and difficulties are presented in terms of flexibly and effectively using the facilities.
- An object of the present invention is to allow a welding facility to be used flexibly and effectively, to reduce the surface area needed for the welding facility, and to allow vehicle types whose structures are entirely different from one another to be manufactured together on a single manufacturing line; i.e., to improve the efficiency of mixed model manufacturing.
- According to one aspect of the present invention, there is provided a method for welding different types of vehicle body parts and manufacturing a vehicle body using a welding line that is provided with a plurality of welding stages for different welding tasks, wherein the method for manufacturing a vehicle body comprises a step for manufacturing a flame member assembly by welding a different type of flame member on the welding stages, and a step for welding on different welding stages according to the type of vehicle to be manufactured, when the panel member assemblies of the vehicle body are joined with the flame member assemblies.
- Since the above manufacturing method includes a step for welding on different welding stages according to the type of vehicle to be manufactured when the panel member assemblies of the vehicle body are joined with the frame member assemblies, a different welding stage is thus used according to the type of vehicle to be manufactured, and different types of vehicle bodies can be manufactured. Accordingly, in a case where a plurality of types of vehicle bodies is used, the shared usability of a welding facility can be increased. Increasing the shareability of the welding facility enables an expensive welding facility to be used flexibly and effectively.
- The welding stages that differ according to the vehicle type preferably have at least two change locations. Accordingly, for example, even if different vehicle body types are used, the welding facility can be readily adapted, and can be used more universally.
- The panel members are preferably floor panels of the vehicle body or wheel houses. Accordingly, a plurality of types of vehicle bodies having completely different structures can be effectively manufactured in a mixed model flow manufacturing line with a variety of part types.
- According to another aspect of the present invention, there is provided a method for manufacturing a vehicle body, in which a sub-welding line for manufacturing an assembly of panel members merges with a main welding line for manufacturing an assembly of frame members; and the panel members are joined with the frame member assembly at a part where merging occurs, comprising a frame welding step for welding a different type of frame member in order to manufacture the frame member assembly on the main welding line; a panel welding step for welding a different type of panel member in order to manufacture the panel member assembly on the sub-welding line; a frame-panel combining step for combining the panel member assembly with the frame member assembly on the main welding line at a location where the frame welding step concludes; and a frame-panel welding step for welding the panel member assembly to the frame member assembly.
- The frame member assembly and the panel member assembly are welded on different lines, thereafter integrated, and a vehicle body is manufactured. According to the method of the present aspect, for example, a plurality of stages are provided in the same welding line, whereby the primary welding and the secondary welding can be performed on adjacent welding stages in the same welding line.
- If the primary welding and secondary welding can be performed in the same welding line, then even if vehicle bodies having completely different structures are used, it is possible for the vehicle bodies to be manufactured together on a single main welding line; i.e., it is possible for mixed model manufacturing to be carried out. Since mixed model manufacturing can be performed on a plurality of vehicle types using a single welding line, the surface area of the facility can be reduced, and the costs of the facility can be considerably reduced.
- Furthermore, the fact that the primary welding and the secondary welding can be performed together in each of the welding lines makes it possible for a flexible approach to be adopted by allocating members having different numbers of welding points to different welding stages, even when the vehicle body structures are different and the number of welding points is different.
- For example, if the primary welding and the secondary welding are allocated to different welding stages in the panel welding line, and allocated to different welding stages when the frame and panel are integrated, no concerns will be presented that the manufacturing capability of the sub-welding line will be compromised when the type of vehicle body is changed. Accordingly, a plurality of types of vehicle bodies having completely different structures can be efficiently manufactured in a mixed model manufacturing line with a variety of part types.
- According to yet another aspect of the present invention, there is provided a welding facility comprising a main welding line for manufacturing an assembly of frame members; and a sub-welding line for manufacturing an assembly of panel members, the sub-welding line merging with the main welding line; wherein the main welding line is composed of a plurality of welding stages provided with a welding robot, the sub-welding line is provided at the end with a transfer mechanism for transferring the panel member assembly to the desired welding stage, and the merging parts can change according to the type of product to be welded.
- When a plurality of types of products is present in a variety of combinations and manufactured using a single main welding line, the number of steps in the welding tasks differs according to the type of product; therefore, the merging parts are usually different.
- According to the present invention, a transfer mechanism that allows the merging part to be changed is provided to address this issue; therefore, individual transfer mechanisms do not have to be provided for each product. Specifically, the transfer mechanism can be shared. The ability for the transfer mechanism to be shared makes it possible to reduce the surface area required for the facility, and reduce the facility costs.
- Providing a transfer mechanism also makes it possible to adjust any unbalance in load between the welding lines occurring when the type of vehicle body to be welded is changed, and line balancing can be performed in a uniform manner.
- In addition to having a shared transfer mechanism, it is also possible to provide a structure that allows a plurality of types of products to be welded on jigs and facilities disposed on each of the welding lines, whereby the area required for the welding facility can be further reduced.
- The first main welding line transfer mechanism preferably comprises a rail established parallel to the main welding line, a truck that moves along the rail, and a transport robot provided on the truck. The rail and the truck thus allow the transport robot to be moveably provided parallel to the main welding line; therefore, instances such as when the location of the merging part needs to be changed due to a change in the type of vehicle body, or when the number of locations of the merging part is increased as a result of an increase in the number of product types or another reason can be addressed merely by changing the length of the rail or making an otherwise minor reconfiguration. The facility costs can accordingly be minimized even when mixed model manufacturing using a variety of part types is performed.
- The welding facility is preferably provided with at least two or more sub-welding lines to which a transfer mechanism for transferring a workpiece to a desired welding stage has been affixed, and which merge with the main welding line. Accordingly, the surface area needed for the welding facility can be reduced, and the facility costs can be reduced.
- Certain preferred embodiments of the present invention will be described in detail below, by way of example only, with reference to the accompanying drawings, in which:
-
FIG. 1 is a schematic view of a welding line provided in a welding facility according to the present invention; -
FIG. 2 is an enlarged view ofpart 2 ofFIG. 1 ; -
FIG. 3 is a view as seen in the direction of arrow 3-3 ofFIG. 2 ; -
FIG. 4 is a view as seen in the direction of arrow 4-4 ofFIG. 1 ; -
FIG. 5 is a view showing flow of a workpiece according to a first vehicle type in a welding line according to the present embodiment; -
FIGS. 6A and 6B show a panel welding step for welding a plurality of types of panel members according to the first vehicle type using a sub-welding line; -
FIGS. 7A and 7B show a frame welding step for welding a plurality of types of frame members according to the first vehicle type using a main welding line; -
FIG. 8 shows a frame-panel combining step for combining a panel member and a frame member according to the first vehicle type; -
FIG. 9 shows a frame-panel welding step for welding a panel member on a frame member according to the first vehicle type; -
FIG. 10 is a view showing the flow of a workpiece according to the manufacture of a second vehicle type in a welding line of the present embodiment; -
FIGS. 11A and 11B show a panel welding step for welding several types of panel members according to the second vehicle type using a sub-welding line; -
FIG. 12 shows a frame welding step for welding a plurality of types of frame members according to the second vehicle type using a main welding line; -
FIG. 13 shows a frame-panel combining step for combining a panel member and a frame member according to the second vehicle type; -
FIG. 14 shows a frame-panel welding step for welding a panel member on a frame member according to the second vehicle type; -
FIGS. 15A and 15B show a step for attaching left and right wheel house members on a second frame panel assembly according to the second vehicle type; -
FIGS. 16A and 16B show a step for attaching a crossbeam member between the left and right wheel house members; -
FIG. 17 is a view showing the flow of a workpiece according to the manufacture of a third vehicle type in a welding line of the present embodiment; -
FIG. 18 shows a panel welding step for welding a panel member according to the third vehicle type using a sub-welding line; -
FIGS. 19A and 19B show a frame welding step for welding a plurality of types of frame members according to the third vehicle type using a main welding line; -
FIG. 20 shows a frame-panel combining step for combining a panel member and a frame member according to the third vehicle type; -
FIG. 21 shows a frame-panel welding step for welding a panel member on a frame member according to the third vehicle type; -
FIGS. 22A and 22B show a step for attaching left and right wheel house members on a third frame panel assembly according to the third vehicle type; and -
FIG. 23 is a schematic view showing a welding line composed of a conventional main welding line and a sub-welding line. - Reference is now made to
FIG. 1 showing the layout of awelding line 11 for assembling a rear floor part of a four-wheeled vehicle. - The
welding line 11, which is provided in awelding facility 10, has asub-welding line 12 for welding together panel members that constitute a rear floor, amain welding line 13 for welding and completing a rear floor part, and apanel supply part 14 for causing thesub-welding line 12 to merge with themain welding line 13 and supplying a panel member to a frame member. In the present embodiment, thepanel supply part 14 has a firstpanel supply part 15 and a secondpanel supply part 16. - The
sub-welding line 12 is provided with a firstsub-welding line 17 and a secondsub-welding line 18. The firstsub-welding line 17 is connected to themain welding line 13 via the firstpanel supply part 15. The secondsub-welding line 18 is connected to themain welding line 13 via the secondpanel supply part 16. - The first
sub-welding line 17 is provided with a plurality of part-accommodatingpallets 21 a to 21 e; left and right first retrievingrobots right welding robots first delivery robots first transfer robot 28; a firstparts transfer mechanism 29; afirst welding stage 31; asecond transfer robot 32; asecond welding stage 33; athird transfer robot 34; and a plurality ofwelding robots - Each of the plurality of
part placement pallets 21 a to 21 e holds a panel member. - The first retrieving
robots part placement pallets 21 a to 21 e. - The
welding robots - The
first delivery robots robots temporary placement part 24. - The
first transfer robot 28 transfers parts from the firsttemporary placement part 24 to a subsequent stage. - The first
parts transfer mechanism 29 has thefirst transfer robot 28. - The
first welding stage 31 is located next to the firstparts transfer mechanism 29, and is where the transferred parts are subjected to a primary welding (also referred to as “temporary welding” hereinbelow). - The
second transfer robot 32 is disposed rearward of thefirst welding stage 31. - A secondary welding (“additional welding” below) is performed rearward of the
second transfer robot 32, on thesecond welding stage 33. - The
third transfer robot 34 transfers an assembled panel member assembly from thesecond welding stage 33 to the firstpanel supply part 15. - The
welding robots - The second
sub-welding line 18 is provided with a plurality of part-accommodatingpallets 36 a to 36 c for holding parts, a second retrievingrobot 38 for retrieving necessary parts from the part-accommodatingpallets 36 a to 36 c to aretrieval stage 37, andwelding robots retrieval stage 37, thewelding robots - The main welding line 13 is provided with accommodating pallets 41 a to 41 d for holding frame members; a third retrieving robot 42 for retrieving the required frame members from the accommodating pallets 41 a, 41 b, which are one portion of the accommodating pallets 41 a to 41 d; welding robots 43L, 43R for welding a nut or the like on the retrieved parts as needed; delivery robots 45L, 45R for taking parts from the third retrieving robot 42, and for taking parts from the accommodating pallets 41 c, 41 d and delivering them to a second temporary placement part 44; a second parts transfer mechanism 49 which has a third transfer robot 48 for transferring parts from the second temporary placement part 48 to the next stage; a third welding stage 51 adjacent to the second parts transfer mechanism 49, the third welding stage 51 being where the primary welding is performed on the transferred frame members; a third component transfer mechanism 54 provided on the rear side of the third welding stage 51 which has a fourth transfer robot 53; a fourth welding stage 55 provided rearward of the third parts transfer mechanism 54; fifth to ninth welding stages 56 to 60 provided rearward of the fourth welding stage 55 in the stated order; fifth to tenth transfer robots 62 to 67 disposed respectively between the fourth to ninth welding stages 55 to 60; and a plurality of welding robots 69L, 69R provided on the left and right sides of the third to ninth welding stages 51, 55 to 60.
- Specifically, the
main welding line 13 is composed of a plurality of welding stages provided with left andright welding robots end stage 68 is provided rearward of theninth welding stage 60, and is where a completed rear floor arrives via thetenth transfer robot 67. - The first
panel supply part 15 is composed of a panelassembly retrieval stage 71 for retrieving a panel member assembly in which panel members have been assembled on the firstsub-welding line 17; first front and rear receiving stages 72, 73 disposed laterally with respect to themain welding line 13; and a first main weldingline transfer mechanism 74 for transferring a panel member assembly to the firstfront receiving stage 72 or the firstrear receiving stage 73. - A panel parts assembly transferred to the first
front receiving stage 72 can be transferred to thefourth welding stage 55 of the main welding line using thefourth transfer robot 53. - A panel parts assembly transferred to the first
rear receiving stage 73 can be transferred to thefifth welding stage 56 of the main welding line using thefifth transfer robot 62. - Specifically, the first main welding
line transfer mechanism 74, which is a transfer mechanism 70 for transferring the panel member assembly to a desired welding stage, is disposed at the end of thesub-welding line 12. The first main weldingline transfer mechanism 74 shall be described further below. - As shown in
FIGS. 2 and 3 , ajig transport conveyor 77 is established in a substantially L-shaped form from a jig storage area E to thefirst welding stage 31. A raisedframe 78 is provided so as to span thejig transport conveyor 77. The raisedframe 78 comprises the firstparts transfer mechanism 29. Anupper rail 79 is established on the raisedframe 78, and afirst transfer robot 28 is moveably provided on theupper rail 79. - The first
parts transfer mechanism 29 comprises thefirst transfer robot 28, which is moveably attached via anupper truck 81 and theupper rail 79 disposed on the raisedframe 78. - The raised
frame 78 is composed of fourpillar parts 44 extending in the vertical direction and afloor part 83 attached on an upper end part of thepillar parts 44. - A
first jig truck 84 and asecond jig truck 85 are moveably provided between the jig storage area E and thefirst welding stage 31. InFIG. 2 , thefirst jig truck 84 moves on thejig transport conveyor 77 to thefirst welding stage 31 in the direction of arrow a in the drawing. - The
first transfer robot 28 is provided on top of the raisedframe 78, and accordingly grasps the parts from the first temporary placement part 24 (FIG. 1 ), moves along theupper rail 79, and transfers the parts to a predetermined location on the first jig provided on thefirst jig truck 84. Specifically, the action of thefirst jig truck 84 is performed simultaneously with the action of thefirst transfer robot 28; therefore, the manufacturing ability of the facility is greatly increased. - The second
parts transfer mechanism 49 and the thirdparts transfer mechanism 54 perform the same function as the firstparts transfer mechanism 29; therefore, an associated description is not given. - The first main welding
line transfer mechanism 74 provided on the firstpanel supply part 15 shown inFIG. 4 takes the panel parts assembly on the panelassembly retrieval stage 71 shown inFIG. 1 , and transfers the assembly to the firstfront receiving stage 72 and therear receiving stage 73, which are disposed laterally with respect to themain welding line 13. - The first main welding
line transfer mechanism 74 is composed of arail 86 established parallel to themain welding line 13, atruck 87 that moves along therail 86, and atransport robot 88 provided on thetruck 87. - The
rail 86 and thetruck 87 allow thetransport robot 88 to be moveably provided parallel to themain welding line 13; therefore, in instances such as when a change in the type of product causes the location of thepanel supply part 14 to be changed, or when an increase in the number of types of product causes the number of locations of thepanel assembly part 14 to increase, it is possible to respond merely by changing the length of therail 86 or by making an otherwise minor reconfiguration. The facility costs incurred when a change is made to the model of the product can accordingly be reduced. - The second main welding line 89 shown in
FIG. 1 has the same basic configuration as the first main welding lineparts transfer mechanism 74, with the sole exception being that the parts that are transferred are different. An associated description has accordingly not been provided. - A step for welding a rear floor part of the first vehicle type will be described below with reference to
FIGS. 5 to 9 . -
FIG. 5 shows the flow of a workpiece according to a first vehicle type in a welding line of the present embodiment, and a description is provided with reference toFIG. 1 . - A panel member according to the first vehicle type, which is the workpiece, passes through the
first welding stage 31 and thesecond welding stage 33 disposed on thesub-welding line 12; and arrives at the firstfront receiving stage 72 via the first main weldingline transfer mechanism 74. - A frame member is assembled on the
third welding stage 51. A panel member assembly that has been assembled from panel members according to the first vehicle type, which have been transferred from the first main weldingline transfer mechanism 74, is combined with a frame member on thefourth welding stage 55 using a thirdparts transfer mechanism 54. Specifically, thefourth welding stage 55 is a merging part 75 in the case of the first vehicle type. - A vehicle body transferred from the
fourth welding stage 55 to thefifth welding stage 56 is subjected to additional welding on thefifth welding stage 56. Each step is described in detail in order below. -
FIGS. 6A and 6B show a panel welding step for welding a plurality of types of panel members according to the first vehicle type on the sub-welding line. The panel welding step is described with reference toFIG. 5 . - The
sub-welding line 12 has a panel welding step for welding different types of panel members. A specific description is given below. - On the
first welding stage 31, a first rear floor rear 92 is positioned rearward of a firstrear floor front 91, left and right first sub-rails 93L, 93R are positioned on an upper surface of the firstrear floor front 91, and afirst cross sub-rail 94 is positioned so as to span between the left and right first sub-rails 93L, 93R. The parts are temporarily welded together and integrated, according toFIG. 6A . - A member obtained by integrating the first
rear floor front 91, the first rear floor rear 92, the left and right first sub-rails 93L, 93R, and thefirst cross sub-rail 94 is referred to below as a firstpanel member assembly 95. - The first
panel member assembly 95 is transferred from thefirst welding stage 31 to thesecond welding stage 33, and the firstpanel member assembly 95 is subjected to additional welding on thesecond welding stage 33, according toFIG. 6B . -
FIGS. 7A and 7B show a frame welding step for welding different types of frame members according to the first vehicle type on the main welding line, and a description is provided with reference toFIG. 5 . - The
main welding line 13 has a frame welding step for welding a plurality of types of frame members. - On the
third welding stage 51, first left andright rails rear cross member 96 is positioned between the front end parts of the first left andright rails sub-cross member 97 is positioned between center parts of the first left andright rails FIG. 7A . - A member obtained by integrating the first left and
right rails rear cross member 96, and the firstsub-cross member 97 is referred to below as a firstframe member assembly 98. - A temporarily welded first
frame member assembly 98 is shown inFIG. 7B . -
FIG. 8 shows a frame-panel combining step for combining a panel member according to the first vehicle type. The step is described with reference toFIG. 5 . - The
main welding line 13 has a frame-panel combining step for combining the firstpanel member assembly 95, which is the panel member, with the firstframe member assembly 98, which is the frame member. - Specifically, first, the first
frame member assembly 98 is transferred from thethird welding stage 51 to thefourth welding stage 55, and, subsequently, the firstpanel member assembly 95 is transferred from thesecond welding stage 33 to thefourth welding stage 55 via the firstpanel supply part 15. The firstpanel member assembly 95 used as a panel member is combined with the firstframe member assembly 98 used as a frame member, and temporarily welded in thefourth welding stage 55. The combined member is referred to below as a firstframe panel assembly 99. -
FIG. 9 shows a frame-panel welding step for welding a panel member to a frame member. A description is provided with reference toFIG. 5 . - The
main welding line 13 has a frame-panel welding step for welding the firstpanel member assembly 95 to the firstframe member assembly 98. - The combined first
frame panel assembly 99 is subjected to additional welding, and the assembling of a rear floor part according to the first vehicle type is completed in thefifth welding stage 56. The firstframe panel assembly 99 having been completely assembled passes through thefifth welding stage 56 to theninth welding stage 60 in the stated order, and reaches anend stage 68. - Specifically, the method of manufacturing a vehicle body according to the first vehicle type comprises a frame welding step for welding a plurality of types of frame members according to the first vehicle type on the
main welding line 13, a panel welding step for welding a plurality of types of panel members according to the first vehicle type on thesub-welding line 12, a frame-panel combining step for combining a panel member with a frame member on themain welding line 13 at a location where the frame welding step ends, and a frame-panel welding step for welding a panel member to a frame member. - A step for welding a rear floor part of a second vehicle type shall now be described with reference to
FIGS. 10 to 16 . -
FIG. 10 shows the flow of a workpiece according to the manufacture of a second vehicle type in a welding line, and a description is provided with reference toFIG. 1 . - A panel member assembly according to the second vehicle type, which is the workpiece, passes through the
first welding stage 31 and thesecond welding stage 33 disposed on thesub-welding line 12; and arrives at the firstfront receiving stage 72 via the first main weldingline transfer mechanism 74. - A frame member is assembled on the
third welding stage 51, and a panel member assembly according to the second vehicle type that is transferred via the first main weldingline transfer mechanism 74 is integrated with a frame member using the thirdparts transfer mechanism 54 on thefourth welding stage 55. Specifically, thefourth welding stage 55 is a merging part 75 in the case of a second vehicle type. - A vehicle body transferred from the
fourth welding stage 55 to thefifth welding stage 56 is subjected to additional welding on thefifth welding stage 56, and other members are attached in the sixth to eighth welding stages 57 to 59. Each step is described in order below. -
FIGS. 11A and 11B show a panel welding step for welding a plurality of types of panel members according to the second vehicle type on the sub-welding line. The panel welding step is described with reference toFIG. 10 . - A predetermined jig truck is caused to move on a
first welding stage 31. On thefirst welding stage 31, left and right reinforcingmembers 100L, 100R are positioned, a second rear floor rear 102 is positioned, a secondrear floor front 101 is positioned on a front end part of the second rear floor rear 102 above the left and right reinforcingmaterials 100L, 100R, and asecond cross sub-rail 104 is positioned on an upper surface of the secondrear floor front 101. Each part above is temporarily welded together and integrated, according toFIG. 11A . - A member obtained by integrating the left and right reinforcing
members 100L, 100R, the secondrear front 101, the second rear floor rear 102, and thesecond cross sub-rail 104 is referred to as apanel member assembly 105 below. - The second
panel member assembly 105 is transferred from thefirst welding stage 31 to thesecond welding stage 33, and the secondpanel member assembly 105 is subjected to additional welding in thesecond welding stage 33, according toFIG. 11B . -
FIGS. 12A and 12B show a frame welding step for welding a plurality of types of frame members according to the second vehicle type on the main welding line. The step is described with reference toFIG. 10 . - The
main welding line 13 has a frame welding step for welding a plurality of types of frame members. - A predetermined jig is caused to move on the
third welding stage 51, second left andright rails rear cross member 106 is positioned between the second left andright rails sub-cross member 107 is positioned. Each part above is temporarily welded together and integrated, according toFIG. 12A . - A member obtained by integrating the second
rear cross member 106, the secondsub-cross member 107, and the second left andright rails frame member assembly 108 below. - The temporarily welded second
frame panel assembly 108 is shown inFIG. 12B . -
FIG. 13 shows a frame-panel combining step for combining a panel member according to the second vehicle type. The step is described with reference toFIG. 10 . - The
main welding line 13 has a frame-panel combining step for combining the secondpanel member assembly 105, which is a panel member, and the secondframe member assembly 108, which is a frame member. - The second
frame member assembly 108 is transferred from thethird welding stage 51 to thefourth welding stage 55, and the secondpanel member assembly 105 is transferred from thesecond welding stage 33 to thefourth welding stage 55 via the firstpanel supply part 15. The secondpanel member assembly 105 that is a panel member is integrated with and welded to the secondframe member assembly 108 that is a frame member. The combined member is referred to as a secondframe panel assembly 109 below. -
FIG. 14 shows a frame-panel welding step for welding a panel member on a frame member according to the second vehicle type, and a description is provided with reference toFIG. 10 . - The
main welding line 13 has a frame-panel welding step for welding the secondpanel member assembly 105 to the secondframe member assembly 108. - In the
fifth welding stage 56, the secondframe member assembly 108 and the secondpanel member assembly 105 are integrated, and the temporarily welded secondframe panel assembly 109 is subjected to additional welding. -
FIGS. 15A and 15B show a step for attaching left and right wheel house members to a second frame panel assembly according to the second vehicle type, and a description is provided with reference toFIG. 10 . - On the
sixth welding stage 57, left and rightwheel house members second panel assembly 109, according toFIG. 15A . -
FIG. 15B shows a state in which the left and rightwheel house members frame panel assembly 109. -
FIGS. 16A and 16B show a step for attaching acrossbeam member 112 between the left and rightwheel house members FIG. 10 . - The
crossbeam member 112 is temporarily welded between the left and rightwheel house members seventh welding stage 58, house, according toFIG. 16A . - In the
eighth welding stage 59, thecrossbeam member 112 is subjected to additional welding, and the assembling of a rear floor part according to the second vehicle type is completed, according toFIG. 16B . - The fully assembled second
frame panel assembly 109 passes through theninth welding stage 60, and last reaches theend stage 68. - The left and right
wheel house members cross beam member 112 are supplied to the fifth and sixth welding stages 56, 57 by the second main welding line transfer mechanism 89; however, the structure and function of the second main welding line transfer mechanism 89 are not substantially different from the previously described first main weldingline transfer mechanism 74, and a description has accordingly not been provided. - A step for welding a rear floor part of a third vehicle type shall now be described with reference to
FIGS. 17 to 21 . -
FIG. 17 shows the flow of a workpiece according to the manufacture of a third vehicle type in a welding line, and a description is provided with reference toFIG. 1 . - A panel member assembly according to the third vehicle type, which is the workpiece, passes through the
first welding stage 31 and thesecond welding stage 33 disposed on thesub-welding line 12, and reaches the firstrear receiving stage 73 via the first main weldingline transfer mechanism 74. - The frame member is transferred to the fifth welding stage by the
fifth transfer robot 62 after being assembled on thethird welding stage 51 and thefourth welding stage 55. The panel member assembly according to the third vehicle type is transferred from the firstrear receiving stage 73 to thefifth welding stage 56 by thefifth transfer robot 62. The panel member assembly and the frame member assembly are subsequently combined. Specifically, thefifth welding stage 56 is a merging stage 75 for the panel member assembly and the frame member assembly of the third vehicle type. - A vehicle body transferred from the
fifth welding stage 56 to thesixth welding stage 57 is subjected to additional welding in thesixth welding stage 57, and other members are attached in the seventh and eighth welding stages 58, 59. Each step is described in order below. -
FIG. 18 shows a panel welding step for welding panel members of different types according to the third vehicle type using the sub-welding line. - A predetermined jig truck is caused to move to the
first welding stage 31 shown inFIG. 17 , and a reinforcing member (not shown) is positioned on the third rear floor 121 in thefirst welding stage 31. - Welding is not performed on the third rear floor 121 on the
second welding stage 33. The workpiece obtained from the reinforcing member being welded to the third rear floor 121 is referred to as a thirdpanel member assembly 126. -
FIGS. 19A and 19B show a frame welding step for welding different types of frame members according to the third vehicle type on the main welding line, and a description is provided with reference toFIG. 17 . - In
FIG. 19A , a predetermined jig is transferred to thethird welding stage 51, and a thirdleft rail 122L andright rail 122R are positioned on the jig. Thirdrear cross members 123 a to 123 e of different types and a secondsub-cross member 124 are positioned between the first left and right rails 112L, 112R. Each part above is temporarily welded together and integrated. - The member obtained by integrating the
left rail 122L, theright rail 122R, the thirdrear cross members 123 a to 123 e, and the secondsub-cross member 124 is referred to as the thirdframe member assembly 125. - The third
frame member assembly 125 is subjected to additional welding in thefourth welding stage 55, according toFIG. 19B . -
FIG. 20 shows a frame-panel combining step for combining a panel member according to the third vehicle type, and a description is provided with reference toFIG. 17 . - The
main welding line 13 has a frame-panel combining step for combining the thirdpanel member assembly 126, which is the panel member, with the thirdframe member assembly 125, which is the frame member. - The third
frame member assembly 125 is transferred from thethird welding stage 51 to thefourth welding stage 55, and the thirdpanel member assembly 126 is transferred from thesecond welding stage 33 to thefifth welding stage 56 via the firstpanel supply part 15. The thirdpanel member assembly 126 used as the panel member is integrated with and welded to the thirdframe member assembly 125 used as the frame member. - The member obtained by integrating the third
frame member assembly 125 and the thirdpanel member assembly 126 is referred to below as a thirdframe panel assembly 127. - The third
frame panel assembly 127 described above is welded in an increased number of points in thesixth welding stage 57, as shown inFIG. 21 . -
FIGS. 22A and 22B show a step for attaching left and right secondwheel house members frame panel assembly 127 according to the third vehicle type, and a description is provided with reference toFIG. 17 . - The left and right second
wheel house members frame panel assembly 127 on theseventh welding stage 58, according toFIG. 22A . - The left and right second
wheel house members frame panel assembly 127, are welded in an increased number of points on theeighth welding stage 59, according toFIG. 22B . Arear frame assembly 129, which is a rear frame of the third vehicle type, is thereby completed. - The left and right second
wheel house members sixth welding stage line transfer mechanism 74, and a description has accordingly not been provided. - Table 1 shows the members used on each of the welding stages, indicates whether primary welding or secondary welding was performed, shows the merging parts, and provides associated reference drawings, with all information indicated with respect to the first vehicle type, the second vehicle type, and the third vehicle type.
- In the table, WH indicates a wheel house member, and CB indicates a crossbeam member.
-
TABLE 1 Welding stage Model (1) (2) (3) (4) (5) (6) (7) (8) First vehicle type Primary Secondary panel panel welding welding Reference drawing FIG. 6 FIG. 6 Primary Primary Secondary frame panel + panel + welding frame frame welding welding Reference drawing FIG. 7 FIG. 8 FIG. 9 Second vehicle type Primary Secondary panel panel welding welding Reference drawing FIG. 11 FIG. 11 Primary Primary Secondary Primary Primary (panel + Secondary (panel + frame panel + panel + (panel + frame + WH) + CB frame + WH + CB) welding frame frame frame) + welding welding welding welding WH welding Reference drawing FIG. 12 FIG. 13 FIG. 14 FIG. 15 FIG. 16 FIG. 16 Third vehicle type Primary panel welding Reference drawing FIG. 18 Primary Secondary Primary Secondary Primary (panel + Secondary (panel + frame frame panel + panel + frame + WH) + CB frame + WH + CB) welding welding frame frame welding welding welding welding Reference drawing FIG. 19 FIG. 19 FIG. 20 FIG. 21 FIG. 22 FIG. 22 - The action of the welding facility described above and a method for manufacturing a vehicle body using the welding facility is described next.
-
FIGS. 1 , 4, 5, 10, 17 are used as reference in the following description. Panel members of different types are welded on thesub-welding line 12, frame members of different types are welded on themain welding line 13, and the panel members are thereafter integrated with and welded to the frame members on themain welding line 13, whereby a vehicle body is manufactured. - The transfer mechanism 70 for transferring the panel members to a desired welding stage is provided at the end of the
sub-welding line 12, and the merging part 75 can be changed to conform to the number of steps in the welding operation. - When a plurality of types of products is present in a variety of combinations and manufactured using a single main welding line, the number of steps in the welding tasks differs according to the type of product; therefore, the merging parts 75 are usually different.
- According to the present invention, the transfer mechanism 70 that allows the merging part 75 to be changed is provided to address this issue; therefore, individual transfer mechanisms 70 do not have to be provided for each product. Specifically, the transfer mechanism 70 can be shared. The ability for the transfer mechanism 70 to be shared makes it possible to reduce the surface area required for the facility, and reduce the facility costs.
- Furthermore, a frame welding step for welding a frame member, a panel welding step for welding panel members, and a frame-panel welding step for welding a panel member to a frame member are provided in the welding line of the present invention.
- The frame members and the panel members are welded using separate lines, thereafter integrated, and a vehicle body is manufactured. According to this method, for example, the primary welding and the secondary welding can be performed on adjacent stages in the same step because a plurality of stages is provided in the same step.
- If the primary welding and secondary welding can be performed on the adjacent stages, then even if vehicle bodies having completely different structures are used, it is possible for the vehicle bodies to be manufactured together on a single main welding line; i.e., it is possible for mixed model manufacturing to be carried out. Since mixed model manufacturing can be performed on a plurality of vehicle types using a single welding line, the surface area of the facility can be reduced, and the costs of the facility can be considerably reduced.
- Furthermore, the fact that the primary welding and the secondary welding can be performed together in each of the welding lines makes it possible for a flexible approach to be adopted by allocating members having different numbers of welding points to different welding stages, even when the vehicle body structures are different and the number of welding points is different.
- For example, if the primary welding and the secondary welding are allocated to different welding stages in the panel welding line, and allocated to different welding stages when the frame and panel are integrated, no concerns will be presented that the manufacturing capability of the sub-welding line will be compromised when the type of vehicle body is changed.
- Obviously, various minor changes and modifications of the present invention are possible in light of the above teaching. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Claims (10)
1. A method for welding different types of vehicle body parts and manufacturing a vehicle body on a welding line that is provided with a plurality of welding stages used for different welding tasks, comprising the steps of:
manufacturing an assembly of frame members of a vehicle body by welding different types of frame members on the welding stage; and
welding on a welding stage that differs according to the type of vehicle to be produced, when an assembly of panel members of a vehicle body is to be joined with the frame member assembly.
2. The manufacturing method of claim 1 , wherein the welding stage that differs in relation to the vehicle type has at least two change locations.
3. The manufacturing method of claim 1 , wherein the panel member is a floor panel of the vehicle body.
4. The manufacturing method of claim 1 , wherein the panel member is a wheel house member of the vehicle body.
5. A method for manufacturing a vehicle body, in which a sub-welding line for manufacturing an assembly of panel members merges with a main welding line for manufacturing an assembly of frame members; and the panel members are joined with the frame member assembly at a part where merging occurs, the method comprising the steps of:
welding a different type of frame member in order to manufacture the frame member assembly on the main welding line;
welding a different type of panel member in order to manufacture the panel member assembly on the sub-welding line;
combining the panel member assembly with the frame member assembly on the main welding line at a location where the frame welding step concludes; and
welding the panel member assembly to the frame member assembly.
6. The manufacturing method of claim 5 , wherein the panel member comprises a floor panel member of the vehicle body.
7. The manufacturing method of claim 5 , wherein the panel member comprises a wheel house member of the vehicle body.
8. A welding facility comprising:
a main welding line for manufacturing an assembly of frame members; and
a sub-welding line for manufacturing an assembly of panel members, the sub-welding line merging with the main welding line,
wherein the main welding line is comprised of a plurality of welding stages provided with a welding robot, the sub-welding line is provided at the end with a transfer mechanism for transferring the panel member assembly to the desired welding stage, and the merging parts are changeable according to the type of product to be welded.
9. The welding facility of claim 8 , wherein the transfer mechanism comprises a rail established parallel to the main welding line; a truck that moves along the rail; and a transport robot provided on the truck.
10. The welding facility of claim 8 , wherein the welding facility is provided with at least two or more sub-welding lines that merge with the main welding line, and that are provided with a transfer mechanism used for transferring a workpiece to a desired stage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/853,405 US8047419B2 (en) | 2007-09-26 | 2010-08-10 | Method of manufacturing vehicle body and welding facility |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007250096A JP4448875B2 (en) | 2007-09-26 | 2007-09-26 | Welding equipment |
JP2007-250096 | 2007-09-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/853,405 Division US8047419B2 (en) | 2007-09-26 | 2010-08-10 | Method of manufacturing vehicle body and welding facility |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090078741A1 true US20090078741A1 (en) | 2009-03-26 |
Family
ID=40470570
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/284,681 Abandoned US20090078741A1 (en) | 2007-09-26 | 2008-09-24 | Method of manufacturing vehicle body and welding facility |
US12/853,405 Expired - Fee Related US8047419B2 (en) | 2007-09-26 | 2010-08-10 | Method of manufacturing vehicle body and welding facility |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/853,405 Expired - Fee Related US8047419B2 (en) | 2007-09-26 | 2010-08-10 | Method of manufacturing vehicle body and welding facility |
Country Status (2)
Country | Link |
---|---|
US (2) | US20090078741A1 (en) |
JP (1) | JP4448875B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090285666A1 (en) * | 2008-05-13 | 2009-11-19 | Comau, Inc. | High Density Welding Subassembly Machine |
US20100263191A1 (en) * | 2009-04-15 | 2010-10-21 | Comau, Inc. | Vehicle body assembly and sequencing system |
US20120073108A1 (en) * | 2010-09-23 | 2012-03-29 | Magna International Inc. | Flexible Assembly Process |
US20120297614A1 (en) * | 2008-03-12 | 2012-11-29 | Comau, Inc. | Robotic high density welding body shop |
CN103302426A (en) * | 2013-06-17 | 2013-09-18 | 四川成焊宝玛焊接装备工程有限公司 | System and method for automatically changing multi-vehicle type car body positioning fixtures for flexible welding of robot |
US20150034703A1 (en) * | 2013-07-30 | 2015-02-05 | Fuji Jukogyo Kabushiki Kaisha | Method of manufacturing vehicle body |
US10131388B2 (en) | 2014-12-15 | 2018-11-20 | Comau Llc | Modular vehicle assembly system and method |
US10384873B2 (en) | 2016-05-06 | 2019-08-20 | Comau Llc | Inverted carrier lift device system and method |
IT201800004759A1 (en) * | 2018-04-20 | 2019-10-20 | ASSEMBLY LINE OF SUB-ASSEMBLIES OF CAR BODYWORK | |
US10640297B2 (en) | 2017-11-07 | 2020-05-05 | Comau Llc | Transport system and methods |
CN112519637A (en) * | 2019-09-19 | 2021-03-19 | 观致汽车有限公司 | Rear-row seat mounting bracket, rear floor assembly and mounting method thereof |
CN112723024A (en) * | 2020-12-25 | 2021-04-30 | 天津市金桥焊材集团股份有限公司 | Novel spool transferring method |
US11420853B2 (en) | 2019-10-03 | 2022-08-23 | Comau Llc | Assembly material logistics system and methods |
US11905114B2 (en) | 2020-06-08 | 2024-02-20 | Comau Llc | Assembly material logistics system and methods |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090105759A (en) * | 2008-04-03 | 2009-10-07 | 현대자동차주식회사 | Automotive floor production system |
JP5421172B2 (en) * | 2010-03-31 | 2014-02-19 | 日立建機株式会社 | Welding line |
KR101198662B1 (en) | 2010-11-09 | 2012-11-12 | 현대자동차주식회사 | System for manufacturing of side panel of vehicle |
US20150165566A1 (en) * | 2012-05-09 | 2015-06-18 | Abb Technology Ag | Adaptable Facility for Assembling Different Sheet Metal Elements |
US9132872B2 (en) * | 2013-03-14 | 2015-09-15 | Honda Motor Co., Ltd. | System for assembling a vehicle body |
WO2015156354A1 (en) * | 2014-04-09 | 2015-10-15 | 本田技研工業株式会社 | Vehicle body assembly system and vehicle body assembly method |
US11059534B2 (en) * | 2018-12-18 | 2021-07-13 | GM Global Technology Operations LLC | Nondeterministic assembly system and method |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678110A (en) * | 1984-05-26 | 1987-07-07 | Mazda Motor Corporation | Vehicle body assembly system |
US4767046A (en) * | 1985-12-03 | 1988-08-30 | Honda Giken Kogyo Kabushiki Kaisha | Assembly apparatus for motorcar vehicle body |
US4779787A (en) * | 1986-09-01 | 1988-10-25 | Toyota Jidosha Kabushiki Kaisha | Welding system |
US4981252A (en) * | 1988-06-11 | 1991-01-01 | Nissan Motor Co., Ltd. | Method and apparatus for assembling vehicle body |
US5044541A (en) * | 1989-04-21 | 1991-09-03 | Nissan Motor Co., Ltd. | Method and apparatus for assembling vehicle body |
US5111988A (en) * | 1990-04-16 | 1992-05-12 | Saturn Corporation | Flexible automated body assembly system and method |
US5143270A (en) * | 1990-11-28 | 1992-09-01 | Honda Giken Kogyo Kabushiki Kaisha | System for assembling motorcar vehicle body |
US5184766A (en) * | 1990-03-31 | 1993-02-09 | Mazda Motor Corporation | Assembly line construction and method for assembling automotive vehicle bodies |
US5902496A (en) * | 1996-10-08 | 1999-05-11 | Comau S.P.A. | Device for spot welding of structures constituted by metal elements, particularly motor-vehicle bodies or sub-assemblies thereof |
US6193142B1 (en) * | 1996-12-25 | 2001-02-27 | Nissan Motor Co., Ltd. | Assembling apparatus assembling body side of automotive vehicle and assembling method thereof |
US6293454B1 (en) * | 1998-05-06 | 2001-09-25 | Thyssen-Krupp Technologies Ag | Installation for positioning and welding body parts of different types of motor vehicles |
US6336582B1 (en) * | 2000-06-12 | 2002-01-08 | Honda Giken Kogyo Kabushiki Kaisha | Method of manufacturing multiple kinds of products in arbitrarily selected order in one manufacturing line |
US6339874B2 (en) * | 1997-08-28 | 2002-01-22 | Nissan Motor Co., Ltd. | Assembling apparatus assembling body side of automotive vehicle |
US6364817B1 (en) * | 2000-09-08 | 2002-04-02 | Unova Ip Corp. | Automotive framing apparatus |
US20030189085A1 (en) * | 2002-04-08 | 2003-10-09 | Velibor Kilibarda | Vehicle framing system for plurality of vehicle body styles |
US20040056497A1 (en) * | 2002-09-24 | 2004-03-25 | Abid Ghuman | Flexible manufacturing system |
US20050044700A1 (en) * | 2002-09-24 | 2005-03-03 | Ford Motor Company | Manufacturing assembly line and a method of designing a manufacturing assembly line |
US20050103821A1 (en) * | 2001-11-28 | 2005-05-19 | Norbert Bossert | Type-flexible unit for the efficient welding of the essential components of a vehicle chassis on production of the prototype thereof |
US20050230374A1 (en) * | 2004-04-20 | 2005-10-20 | Rapp Kenneth A | Multi-architecture flexible assembly structure and method |
US20050239461A1 (en) * | 2002-06-21 | 2005-10-27 | The Regents Of The Unviersity Of California | Registration of a wlan as a umts routing area for wlan-umts interworking |
US20050269382A1 (en) * | 2004-06-08 | 2005-12-08 | Salvatore Caputo | System for welding motor-vehicle bodies |
US20080061110A1 (en) * | 2006-09-07 | 2008-03-13 | Comau S.P.A. | System For Welding Motor Vehicle Bodies |
US20080084013A1 (en) * | 2006-10-04 | 2008-04-10 | Progressive Tool & Industries, Co. | Motor vehicle body assembly apparatus |
US20080105733A1 (en) * | 2006-11-03 | 2008-05-08 | Comau S.P.A. | System and Method For Assembling Motor-Vehicle Body Structures or Sub Assemblies Thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57100879A (en) * | 1980-12-16 | 1982-06-23 | Nissan Motor Co Ltd | Floor assembly line of car |
JPS62149572A (en) | 1985-12-24 | 1987-07-03 | Nissan Motor Co Ltd | Main body assembly line for automobile |
US5011068A (en) * | 1989-12-05 | 1991-04-30 | Progressive Tool & Industries Co. | Automotive body framing system |
JP2520787B2 (en) * | 1990-11-28 | 1996-07-31 | 本田技研工業株式会社 | Vehicle rear floor processing line |
US5374799A (en) * | 1991-01-30 | 1994-12-20 | Mazda Motor Corporation | Method for the assembly of automotive vehicle bodies and a jig unit therefor |
US5347700A (en) * | 1992-03-19 | 1994-09-20 | Mazda Motor Corporation | Method of assembling vehicle parts |
US5518166A (en) * | 1994-11-09 | 1996-05-21 | Kurata Corporation | Assembling method of products and assembling apparatus of the same |
US6112390A (en) * | 1998-05-25 | 2000-09-05 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for manufacturing hemmed workpieces |
JP4076664B2 (en) * | 1999-03-19 | 2008-04-16 | 本田技研工業株式会社 | Production line for car body components |
US6360421B1 (en) * | 1999-07-16 | 2002-03-26 | Honda Giken Kogyo Kabushiki Kaisha | Automotive manufacturing system for frame component |
JP2001047328A (en) | 1999-08-06 | 2001-02-20 | Nissan Motor Co Ltd | Product assembling device and its remodeling method |
GB2353503B (en) * | 1999-08-27 | 2003-02-05 | Honda Motor Co Ltd | Apparatus for assembling vehicle body |
CA2323114C (en) * | 1999-11-18 | 2007-12-11 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for assembling floor of vehicle |
WO2001083285A1 (en) * | 2000-05-01 | 2001-11-08 | Honda Giken Kogyo Kabushiki Kaisha | Side panel assembly line |
JP4803776B2 (en) * | 2001-02-09 | 2011-10-26 | 株式会社竹中工務店 | Welding equipment |
US6595407B2 (en) * | 2001-10-16 | 2003-07-22 | Unova Ip Corp. | Flexible framing station tool gate changing method and apparatus |
-
2007
- 2007-09-26 JP JP2007250096A patent/JP4448875B2/en not_active Expired - Fee Related
-
2008
- 2008-09-24 US US12/284,681 patent/US20090078741A1/en not_active Abandoned
-
2010
- 2010-08-10 US US12/853,405 patent/US8047419B2/en not_active Expired - Fee Related
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678110A (en) * | 1984-05-26 | 1987-07-07 | Mazda Motor Corporation | Vehicle body assembly system |
US4767046A (en) * | 1985-12-03 | 1988-08-30 | Honda Giken Kogyo Kabushiki Kaisha | Assembly apparatus for motorcar vehicle body |
US4779787A (en) * | 1986-09-01 | 1988-10-25 | Toyota Jidosha Kabushiki Kaisha | Welding system |
US4981252A (en) * | 1988-06-11 | 1991-01-01 | Nissan Motor Co., Ltd. | Method and apparatus for assembling vehicle body |
US5044541A (en) * | 1989-04-21 | 1991-09-03 | Nissan Motor Co., Ltd. | Method and apparatus for assembling vehicle body |
US5184766A (en) * | 1990-03-31 | 1993-02-09 | Mazda Motor Corporation | Assembly line construction and method for assembling automotive vehicle bodies |
US5111988A (en) * | 1990-04-16 | 1992-05-12 | Saturn Corporation | Flexible automated body assembly system and method |
US5143270A (en) * | 1990-11-28 | 1992-09-01 | Honda Giken Kogyo Kabushiki Kaisha | System for assembling motorcar vehicle body |
US5902496A (en) * | 1996-10-08 | 1999-05-11 | Comau S.P.A. | Device for spot welding of structures constituted by metal elements, particularly motor-vehicle bodies or sub-assemblies thereof |
US6193142B1 (en) * | 1996-12-25 | 2001-02-27 | Nissan Motor Co., Ltd. | Assembling apparatus assembling body side of automotive vehicle and assembling method thereof |
US6339874B2 (en) * | 1997-08-28 | 2002-01-22 | Nissan Motor Co., Ltd. | Assembling apparatus assembling body side of automotive vehicle |
US6293454B1 (en) * | 1998-05-06 | 2001-09-25 | Thyssen-Krupp Technologies Ag | Installation for positioning and welding body parts of different types of motor vehicles |
US6336582B1 (en) * | 2000-06-12 | 2002-01-08 | Honda Giken Kogyo Kabushiki Kaisha | Method of manufacturing multiple kinds of products in arbitrarily selected order in one manufacturing line |
US6364817B1 (en) * | 2000-09-08 | 2002-04-02 | Unova Ip Corp. | Automotive framing apparatus |
US20050103821A1 (en) * | 2001-11-28 | 2005-05-19 | Norbert Bossert | Type-flexible unit for the efficient welding of the essential components of a vehicle chassis on production of the prototype thereof |
US20030189085A1 (en) * | 2002-04-08 | 2003-10-09 | Velibor Kilibarda | Vehicle framing system for plurality of vehicle body styles |
US20080295335A1 (en) * | 2002-04-08 | 2008-12-04 | Comau, Inc. | Vehicle framing system for plurality of vehicle body styles |
US20050239461A1 (en) * | 2002-06-21 | 2005-10-27 | The Regents Of The Unviersity Of California | Registration of a wlan as a umts routing area for wlan-umts interworking |
US20050044700A1 (en) * | 2002-09-24 | 2005-03-03 | Ford Motor Company | Manufacturing assembly line and a method of designing a manufacturing assembly line |
US20040056497A1 (en) * | 2002-09-24 | 2004-03-25 | Abid Ghuman | Flexible manufacturing system |
US20050230374A1 (en) * | 2004-04-20 | 2005-10-20 | Rapp Kenneth A | Multi-architecture flexible assembly structure and method |
US20050269382A1 (en) * | 2004-06-08 | 2005-12-08 | Salvatore Caputo | System for welding motor-vehicle bodies |
US20080061110A1 (en) * | 2006-09-07 | 2008-03-13 | Comau S.P.A. | System For Welding Motor Vehicle Bodies |
US20080084013A1 (en) * | 2006-10-04 | 2008-04-10 | Progressive Tool & Industries, Co. | Motor vehicle body assembly apparatus |
US20080105733A1 (en) * | 2006-11-03 | 2008-05-08 | Comau S.P.A. | System and Method For Assembling Motor-Vehicle Body Structures or Sub Assemblies Thereof |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120297614A1 (en) * | 2008-03-12 | 2012-11-29 | Comau, Inc. | Robotic high density welding body shop |
US8733617B2 (en) | 2008-03-12 | 2014-05-27 | Comau, Inc. | Robotic high density welding body shop |
US8474683B2 (en) * | 2008-03-12 | 2013-07-02 | Comau, Inc | Robotic high density welding body shop |
US9802664B2 (en) | 2008-05-13 | 2017-10-31 | Comau Llc | High density welding |
US8713780B2 (en) | 2008-05-13 | 2014-05-06 | Comau, Inc. | High density welding subassembly machine |
US20090285666A1 (en) * | 2008-05-13 | 2009-11-19 | Comau, Inc. | High Density Welding Subassembly Machine |
US8713799B2 (en) | 2009-04-15 | 2014-05-06 | Comau, Inc. | Vehicle body assembly and sequencing method |
US20100263191A1 (en) * | 2009-04-15 | 2010-10-21 | Comau, Inc. | Vehicle body assembly and sequencing system |
US9180566B2 (en) * | 2010-09-23 | 2015-11-10 | Magna International Inc. | Flexible assembly process |
US20120073108A1 (en) * | 2010-09-23 | 2012-03-29 | Magna International Inc. | Flexible Assembly Process |
CN103302426A (en) * | 2013-06-17 | 2013-09-18 | 四川成焊宝玛焊接装备工程有限公司 | System and method for automatically changing multi-vehicle type car body positioning fixtures for flexible welding of robot |
US20150034703A1 (en) * | 2013-07-30 | 2015-02-05 | Fuji Jukogyo Kabushiki Kaisha | Method of manufacturing vehicle body |
US9776286B2 (en) * | 2013-07-30 | 2017-10-03 | Subaru Corporation | Method of manufacturing a vehicle body and a vehicle body |
US11021200B2 (en) | 2014-12-15 | 2021-06-01 | Comau Llc | Modular vehicle assembly system and method |
US10131388B2 (en) | 2014-12-15 | 2018-11-20 | Comau Llc | Modular vehicle assembly system and method |
US10384873B2 (en) | 2016-05-06 | 2019-08-20 | Comau Llc | Inverted carrier lift device system and method |
US10807801B2 (en) | 2016-05-06 | 2020-10-20 | Comau Llc | Inverted carrier lift device system and method |
US10640297B2 (en) | 2017-11-07 | 2020-05-05 | Comau Llc | Transport system and methods |
WO2019202569A1 (en) * | 2018-04-20 | 2019-10-24 | O.L.C.I. Engineering S.R.L. A Socio Unico | Assembly line for assembling vehicle body subassemblies |
CN112041112A (en) * | 2018-04-20 | 2020-12-04 | O·L·C·I·工程有限公司 | Assembly welding or splicing production line for automobile body-in-white components |
IT201800004759A1 (en) * | 2018-04-20 | 2019-10-20 | ASSEMBLY LINE OF SUB-ASSEMBLIES OF CAR BODYWORK | |
CN112519637A (en) * | 2019-09-19 | 2021-03-19 | 观致汽车有限公司 | Rear-row seat mounting bracket, rear floor assembly and mounting method thereof |
US11420853B2 (en) | 2019-10-03 | 2022-08-23 | Comau Llc | Assembly material logistics system and methods |
US11905114B2 (en) | 2020-06-08 | 2024-02-20 | Comau Llc | Assembly material logistics system and methods |
CN112723024A (en) * | 2020-12-25 | 2021-04-30 | 天津市金桥焊材集团股份有限公司 | Novel spool transferring method |
Also Published As
Publication number | Publication date |
---|---|
JP2009078331A (en) | 2009-04-16 |
US20100301099A1 (en) | 2010-12-02 |
JP4448875B2 (en) | 2010-04-14 |
US8047419B2 (en) | 2011-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8047419B2 (en) | Method of manufacturing vehicle body and welding facility | |
US6308496B1 (en) | Computer manufacturing system | |
US6098268A (en) | Assembly workshop, in particular for assembling together sheet metal parts | |
US6336582B1 (en) | Method of manufacturing multiple kinds of products in arbitrarily selected order in one manufacturing line | |
EP1601492B1 (en) | Manufacturing plant for parts, particularly vehicle body parts | |
DE102013000569B4 (en) | Manufacturing plant for the serial production of motor vehicles | |
JP4829874B2 (en) | Body production method | |
US5848747A (en) | Welding line system and method of welding workpieces | |
JP3205659B2 (en) | Vehicle manufacturing method | |
JPH06285687A (en) | Welding equipment for automotive body | |
JPH0265934A (en) | Feed of part in assembly line | |
US8219232B2 (en) | Assembly system assembling a plurality of kinds of automotive parts | |
US5226584A (en) | Parts assembling method | |
JP2017056512A (en) | Assembly line | |
CN212350944U (en) | Automatic change manufacturing automobile body part system | |
JP5917386B2 (en) | Production system and production line with multi-joint double-arm robot | |
CN111975273A (en) | Automatic change manufacturing automobile body part system | |
JP2009096218A (en) | Vehicle body assembling facility and method for manufacturing vehicle body | |
KR100318681B1 (en) | Indoor manufacturing system and manufacturing method of separate room air conditioner | |
JP4598096B2 (en) | Assembly system | |
JPH06277885A (en) | Welding equipment for car body | |
KR102606091B1 (en) | Layout For An Vehicle Body Assembly Process | |
JP7240369B2 (en) | vehicle manufacturing equipment | |
KR101602907B1 (en) | Apparatus for assembling vehicle body using common use main buck | |
JPH06277886A (en) | Welding equipment for car body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONDA MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATA, NORITAKA;OKADA, MASAMI;SUGAHARA, TOSHIO;AND OTHERS;REEL/FRAME:021689/0437 Effective date: 20080919 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |