US20090078414A1 - Chemically enhanced thermal recovery of heavy oil - Google Patents
Chemically enhanced thermal recovery of heavy oil Download PDFInfo
- Publication number
- US20090078414A1 US20090078414A1 US11/860,698 US86069807A US2009078414A1 US 20090078414 A1 US20090078414 A1 US 20090078414A1 US 86069807 A US86069807 A US 86069807A US 2009078414 A1 US2009078414 A1 US 2009078414A1
- Authority
- US
- United States
- Prior art keywords
- reservoir
- steam
- oil
- acid
- heavy oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000295 fuel oil Substances 0.000 title claims abstract description 46
- 238000011084 recovery Methods 0.000 title description 22
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000003921 oil Substances 0.000 claims description 26
- -1 alkyl naphthalene sulfonate Chemical compound 0.000 claims description 20
- 239000004094 surface-active agent Substances 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002563 ionic surfactant Substances 0.000 claims description 11
- 239000002736 nonionic surfactant Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 6
- DIORMHZUUKOISG-UHFFFAOYSA-N sulfoformic acid Chemical compound OC(=O)S(O)(=O)=O DIORMHZUUKOISG-UHFFFAOYSA-N 0.000 claims description 5
- 239000003945 anionic surfactant Substances 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 claims description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 claims description 2
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 claims description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 31
- 239000000654 additive Substances 0.000 description 47
- 150000001875 compounds Chemical class 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000002253 acid Substances 0.000 description 12
- 239000004530 micro-emulsion Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 239000002738 chelating agent Substances 0.000 description 7
- 239000000443 aerosol Substances 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 239000010426 asphalt Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 229960003237 betaine Drugs 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 150000003871 sulfonates Chemical class 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 238000010796 Steam-assisted gravity drainage Methods 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 150000008040 ionic compounds Chemical class 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 239000011275 tar sand Substances 0.000 description 3
- 239000002569 water oil cream Substances 0.000 description 3
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 241000446313 Lamella Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000010795 Steam Flooding Methods 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229960003403 betaine hydrochloride Drugs 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- ZDQIZHVGQJZVOZ-RKQHYHRCSA-N (2r,3s,4r,5r,6r)-2-(hydroxymethyl)-6-octyloxane-3,4,5-triol Chemical compound CCCCCCCC[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O ZDQIZHVGQJZVOZ-RKQHYHRCSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- PGPYBYDBFPLBRJ-UHFFFAOYSA-N 1-decylsulfinylethanol Chemical compound CCCCCCCCCCS(=O)C(C)O PGPYBYDBFPLBRJ-UHFFFAOYSA-N 0.000 description 1
- GKQHIYSTBXDYNQ-UHFFFAOYSA-M 1-dodecylpyridin-1-ium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+]1=CC=CC=C1 GKQHIYSTBXDYNQ-UHFFFAOYSA-M 0.000 description 1
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- QOPUBSBYMCLLKW-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]-4-hydroxybutanoic acid Chemical compound OCCC(C(O)=O)N(CC(O)=O)CCN(CC(O)=O)CC(O)=O QOPUBSBYMCLLKW-UHFFFAOYSA-N 0.000 description 1
- BMYCCWYAFNPAQC-UHFFFAOYSA-N 2-[dodecyl(methyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCN(C)CC(O)=O BMYCCWYAFNPAQC-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- 229910014572 C—O—P Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910001964 alkaline earth metal nitrate Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GSVLCKASFMVUSW-UHFFFAOYSA-N decyl(dimethyl)phosphine oxide Chemical compound CCCCCCCCCCP(C)(C)=O GSVLCKASFMVUSW-UHFFFAOYSA-N 0.000 description 1
- ZRKZFNZPJKEWPC-UHFFFAOYSA-N decylamine-N,N-dimethyl-N-oxide Chemical compound CCCCCCCCCC[N+](C)(C)[O-] ZRKZFNZPJKEWPC-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229960005102 foscarnet Drugs 0.000 description 1
- 150000002334 glycols Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- HEGSGKPQLMEBJL-UHFFFAOYSA-N n-octyl beta-D-glucopyranoside Natural products CCCCCCCCOC1OC(CO)C(O)C(O)C1O HEGSGKPQLMEBJL-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000004391 petroleum recovery Methods 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229940071089 sarcosinate Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- ZUFONQSOSYEWCN-UHFFFAOYSA-M sodium;2-(methylamino)acetate Chemical compound [Na+].CNCC([O-])=O ZUFONQSOSYEWCN-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- MCVUKOYZUCWLQQ-UHFFFAOYSA-N tridecylbenzene Chemical class CCCCCCCCCCCCCC1=CC=CC=C1 MCVUKOYZUCWLQQ-UHFFFAOYSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
Definitions
- Heavy oil sand such as tar sand
- Heavy oil-containing reservoirs contain crude petroleum or bitumen of such high viscosity that it cannot be recovered by conventional petroleum recovery techniques.
- surface-milling processes can separate the bitumen from sand.
- the separated bitumen may be converted to light hydrocarbons using conventional refinery methods.
- EOR enhanced oil recovery
- Described herein are methods for removing heavy oils from underground reservoirs.
- the methods involve the use of chemical compositions in combination with steam techniques for the efficient removal of heavy oils.
- FIGS. 1A-1D are schematics of different capillary phenomena in reservoirs.
- FIGS. 2A and 2B show steam flux driven liquid flow (SFDLF) in a reservoir capillary, where there is a coupling between the steam and liquid flow.
- SFDLF steam flux driven liquid flow
- FIG. 3 shows another form of SFDLF in a reservoir capillary.
- a source of heavy oil includes tar sand.
- Tar sand also referred to as oil sand or bituminous sand, is a combination of clay, sand, water, and bitumen.
- the thermal recovery of heavy oils is based on the viscosity decrease of fluids with increasing temperature. Once the viscosity is reduced, the mobilization of fluids by steam, hot water flooding, or gravity is possible. The reduced viscosity makes the drainage quicker and therefore directly contributes to the recovery rate.
- the recovery rate is dependent on the drainage rate, which is controlled by the characteristics of multiphase flow (heavy oil and hot water) in porous media. Emulsion formation can severely limit the drainage rate when the droplet size is comparable to the pore size.
- One way to avoid this problem involves the formation of microemulsions having a droplet size is much smaller (20 nanometers) than the characteristic pore size of heavy oil reservoirs.
- a microemulsions phase can be in equilibrium with an organic phase, an aqueous phase, or simultaneously both an organic and an aqueous phase.
- the latter type of microemulsion phase which can be found in Winsor III type systems, is known as a middle phase microemulsion. It has low viscosity, and is therefore beneficial for EOR or steam-assisted heavy oil recovery.
- the contributing factors reducing recovery of heavy oils at elevated temperatures involve unfavorable wetting properties of the solid matrix and the high interfacial tension between the organic and aqueous phases. This is depicted in FIG. 1 .
- the oil 10 is trapped in a narrow capillary 11 when the gravitational and hydrodynamic driving forces of water 12 cannot overcome the resisting capillary forces (see FIG. 1A ).
- the Laplace pressure difference keeps the oil phase trapped in the capillaries.
- most of the trapped oil can be removed (see FIG. 1B ).
- the oil can also be trapped (due to the Laplace pressure difference) when there are narrow passes in the capillaries, even in the case of water-wet reservoir 13 (see FIGS. 1C and 1D ).
- High oil-water inter-facial tension can also prevent the release of the organic phase from dead capillary ends. Additionally, variable permeability distribution (most of the McMurray formation in Alberta, Canada) also affects the trapping forces.
- the methods described herein facilitate the recovery of heavy oils. For example, the methods reduce the oil-water interfacial tension and improve the mobility of heavy oils due to either microemulsion formation or the formation of emulsions having low interfacial tension using steam techniques (e.g., SAGD or CSS operations). Additionally, the methods described herein alter the wetting properties of the solid matrix that entraps the heavy oil. By reducing the viscosity and increasing the mobility of heavy oils, several advantages can be achieved, including, but not limited to, increased oil production rate, increased steam chamber dimensions resulting in reduced well density, reduced life cycle, and a reduction in residual oil after the total life cycle of the operation.
- the method comprises: injecting into the reservoir (i) steam, (ii) an alkaline compound, (iii) a nonionic surfactant, and, optionally, (iv) an alcohol; and removing the oil from the reservoir.
- the method comprises: injecting into the reservoir (i) steam, (ii) an alkaline compound, (iii) an acid, and, optionally, (iv) an alcohol; and removing the oil from the reservoir.
- the method comprises: injecting into the reservoir (i) steam, (ii) an ionic surfactant, and, optionally, (iii) an alcohol; and removing the oil from the reservoir.
- the method comprises: injecting into the reservoir (i) steam, (ii) a mixture comprising an ionic surfactant and a nonionic surfactant, and, optionally, (iii) an alcohol; and removing the oil from the reservoir.
- the method comprises: injecting into the reservoir (i) steam, (ii) an alcohol, and, optionally, (iii) an alkaline compound.
- Steam techniques known in the art for removing heavy oils can be used herein.
- steam is injected into the underground reservoir thereby heating the reservoir to mobilize and recover at least a fraction of reservoir hydrocarbons and to form a steam chamber in the reservoir.
- the condensation heat increases the temperature resulting in a viscosity drop of the heavy oil trapped in the reservoir.
- chemical additives are introduced into the injection well, which is the input point to the steam chamber, either periodically or continuously.
- the injection can be made at the surface wellhead or deep in the reservoir with additional tubing (e.g., coiled tubing) inserted into the injection well.
- the oil may be recovered in a production well separate from the injection well.
- the elevated temperatures used in the steam processes must be considered.
- the temperature can reach as high as 350° C. using SAGD, although this temperature can vary depending on the crude oil and reservoir properties.
- the residence time of the applied chemicals in the different temperature zones of the reservoir has a major influence on the selection as well, because the temperature and the residence time together determine the thermal strain. Since the residence time in the reservoir is orders of magnitude longer than that in the injection well, the reservoir conditions must be primarily considered.
- reservoir temperatures measured in observation wells for three different fields in California, USA were 120, 160, and 180° C., (K. C. Hong, Steamflood Reservoir Management, PenWell, 1994, pages 386, 387, and 390).
- the temperature begins at 345° C., but after a period of time the temperature can be decreased from 85 to 100° C. Therefore, the thermal stability of the chemical additives can be relaxed to some extent when CSS is employed.
- the chemical additives are stable at temperatures greater than 200° C.
- the chemical additives generally possess high vapor pressures. The high vapor pressure facilitates the delivery of the additives into the reservoir.
- additives that do not possess high vapor pressures can be formed in situ from high vapor pressure compounds.
- additives that are thermally stable and have a sufficiently high vapor pressure are “compatible” with the steam and useful herein. In cases where the vapor pressure of additives is low and not “compatible” with steam, the additives can be injected in the form of a liquid, aerosol, or suspension.
- the chemical additives injected into the reservoir comprise an alkaline compound, a nonionic surfactant, and, optionally, an alcohol.
- the alkaline compound is any compound that can increase the pH of the steam and the reservoir. An increase in pH facilitates the release of natural surfactants present in heavy oils. These surfactants can reduce the oil-water interfacial tension. Additionally, reduced viscoelasticity of the oil-water interfaces has been observed at high pH which may be due to the released, naturally-occurring, surfactants.
- the alkaline compound comprises an amine, such as a primary amine, a secondary amine, or a tertiary amine that is compatible with steam, or any combination of such amines.
- the steam-compatible alkaline compound is ammonia.
- the alkaline compound is an alkaline metal hydroxide, alkaline metal carbonate, alkaline metal hydrocarbonate, or ammonium carbonate, or any combination thereof, which compounds are not compatible with steam.
- the amount of alkaline compound is sufficient to raise the pH of the steam to greater than 7, greater than 8, greater than 9, greater than 10, greater than 11, or greater than 12.
- the compound can be introduced into the steam as a gas, a liquid, or a liquid solution of either gas, liquid, or solid.
- the alkaline compound can be introduced into the steam as a liquid, a suspension of a solid, or as an aerosol.
- the compound can be introduced in the form of a supercritical fluid where either the compound itself forms the supercritical fluid or the compound is one of the components of the supercritical fluid.
- nonionic surfactants which generally have a higher vapor pressure than ionic surfactants (e.g., low molecular weight acetylenic surfactants), alter the wetting properties of the solid matrix.
- ionic surfactants e.g., low molecular weight acetylenic surfactants
- the nonionic surfactant when used in combination with an alcohol, which is a co-surfactant, the oil-water interfacial tension can approach zero. In this situation, microemulsions can be formed. Salts are often used in these formulations to achieve minimum interfacial tension. As described above, microemulsions can facilitate the removal of heavy oil.
- nonionic surfactants useful herein include, but are not limited to, an alkyl, aryl, or alkylaryl(ethylene oxide); an alkyl, aryl, or alkylaryl poly(propylene oxide); an alkyl, aryl, or alkylaryl poly(propylene and ethylene oxide) block polymer; an alkoxylated amine or diamine; a polyethepolyol; a block polymer of carbonyldiamide polyoxyalkylated glycol; an alkylarylpolyethoxyethanol; an N-betaine (e.g., dodecyl N-betaine); a C-betaine (e.g., dodecyl C-betaine); an amine oxide (e.g., decyl dimethyl amine oxide); a phosphine oxide (e.g., decyl dimethyl phosphine oxide); a sulfinil-ol (e.g., decyl sulf
- Nonionic surfactants or amines can typically be dissolved in aliphatic or aromatic hydrocarbons or in their mixtures, so these organic solvents are included in the delivered composition. The presence of these organic solvents can have an additional synergetic effect on oil recovery.
- the chemical additives comprise an alkaline compound, an acid, and, optionally, an alcohol.
- an ionic surfactant is produced in situ when the alkaline compound reacts with the acid.
- the alkaline compound and the acid may be alternately injected into the reservoir.
- the alkaline compounds described above can be used in this aspect.
- the acid is an organic acid, which includes alkyl carboxylic acids, aryl carboxylic acids, cycloalkyl carboxylic acids, and aromatic and alicyclic carboxylic acids, or any combination thereof.
- organic acid also includes compounds possessing groups that can be converted to carboxylic acids.
- Examples of such compounds include, but are not limited to, amides, anhydrides, nitrites, and alcohols that can be converted to a carboxylic acid in situ during injection into the reservoir with the steam.
- the organic acid can be a polymer possessing a plurality of carboxylic acid groups.
- the organic acid comprises a saturated fatty acid, an unsaturated fatty acid, or a combination thereof
- fatty acids useful herein include, but are not limited to, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha-linolenic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, arachidonic acid, or any combination thereof.
- acids useful herein include, but are not limited to, an alkyl sulfonic acid, an aryl sulfonic acid, an alkylaryl sulfonic acid, a sulfo carboxylic acid, an alkyl naphthalene sulfonic acid, an olefinic sulfonic acid, a polycarboxylic acid, a sulfo carboxylic acid, a phosphono carboxylic acid, a thiosulfonic acid, or any combination thereof.
- the chemical additives comprise an ionic surfactant and, optionally, an alcohol.
- a mechanism that can transport ionic compounds in the steam chamber despite their negligible vapor pressure is described below and depicted in FIG. 2 .
- a water film 20 forms on the surface of the pores (depicted as solid matrix 21 in FIG. 2 ).
- the steam transport 22 launches a liquid transport in the water film 20 ( FIG. 2A ).
- a multiphase flow of water 20 and steam 22 can occur ( FIG. 2B ). Therefore, ionic compounds can have a finite transport rate within the steam chamber via moving wetting liquid films on the capillary surfaces.
- aqueous lamellas 31 formed from the water-film 20 can occur.
- the lamellas will travel with the speed of the steam 22 , which increases the steam flux driven liquid flow (SFDLF) considerably.
- SFDLF steam flux driven liquid flow
- ionic compounds can travel through the pores of the solid matrix in the form of a steam foam and remove heavy oils from the matrix.
- the ionic surfactant comprises an anionic, cationic, amphoteric, or polymeric surfactant(s).
- anionic surfactants include, but are not limited to, sulfates, sulfonates, and carboxylates.
- the ionic surfactants can be naturally-occurring or synthetic. Sulfonates containing the C—S bond are more stable chemically than the C—O—S bond of the sulfates or the C—O—P bond of the phosphates. Thus, sulfonates and carboxylates are more stable to hydrolysis and extreme pH levels compared to sulfates and phosphates.
- the anionic surfactant comprises an alkyl sulfate salt (e.g., sodium dodecyl sulfate, ammonium lauryl sulfate), an alkyl ether sulfate (e.g., sodium lauryl ether sulfate), an alkyl benzene sulfonate, or any combination thereof.
- an alkyl sulfate salt e.g., sodium dodecyl sulfate, ammonium lauryl sulfate
- an alkyl ether sulfate e.g., sodium lauryl ether sulfate
- an alkyl benzene sulfonate e.g., sodium lauryl ether sulfate
- the sulfonate comprises sulfonates of petroleum, oil and fatty acids, alkylaryls, ⁇ -olefins, benzene, toluene, xylene, condensed naphtolenes, dodecyl and tridecylbenzenes, naphthalene, and alkyl napthalenes.
- the anionic surfactant comprises sulfosuccinates, sulfo carboxylates, alkyl naphthalene sulfonates, olefinic sulfonates, fatty acid sulfonates, polycarboxylates, sulfo carboxylates, phosphono carboxylates, thiosulfates.
- Examples of useful cationic surfactants include, but are not limited to, a quaternary ammonium salt, an amine salt, an imidazoline salt, a betaine (e.g., octyl C-betaine hydrochloride or dodecyl N-betaine hydrochloride), a pyridinium derivative (e.g., dodecyl pyridinium chloride), or any combination thereof.
- a variety of different counterions can be used with the ionic surfactants, including alkali metal ions, alkaline earth metal ions, halides, nitrates, and carboxylates. Generally, the counterions are soluble in water.
- alcohols are considered to be co-surfactants, which enhance the performance of surfactants.
- co-surfactants One application of co-surfactants is the application of alcohols in microemulsion systems where the zero interfacial tension condition is often approached.
- a manifestation of the beneficial contribution of alcohol presence in microemulsion systems is the formation of highly flexible interfaces. This is one of the targeted areas of enhanced recovery of heavy oils by steam assisted techniques. Due to these beneficial effects, alcohols can be considered as part of surfactant-containing additives.
- the application of alcohols as additives to enhance recovery can also be beneficial, even in cases when no artificial surfactant is added. In these cases, the alcohol behaves as the co-surfactant of natural surfactants.
- the chemical additives described above can be injected into the reservoir in any sequence, concurrently with, or separate from, the steam.
- the chemical additives can be admixed prior to injection into the steam.
- the additives can be simultaneously injected with the steam in order to ensure or maximize the amount of additives moving with the steam. In some instances it may be desirable to precede or follow a steam-additive injection stream with a steam-only injection stream.
- the additives can be introduced into the steam sequentially.
- the additives are introduced alternatively into the steam.
- the organic acid and alkaline compound e.g., ammonia
- the additives can be introduced continuously or periodically into the steam. The particular steam temperature and pressure actually used in the process will depend on such specific reservoir characteristics as depth, temperature, and oil viscosity, and thus will be worked out for each reservoir.
- the chemical additives are carried into the reservoir rock containing heavy oils by the steam.
- the chemical additives are pushed deep into the pores of the reservoir rock, which ultimately facilitates the release and isolation of heavy oils.
- aerosols prevents the chemical additives from being directed toward the production well instead of the tipper walls of the steam chamber, which is desired.
- Techniques known in the art for producing and delivering aerosol formulations can be used herein.
- carbon dioxide can be used to make the aerosol spray. Carbon dioxide can condition the reservoir and increase the effectiveness of the methods described herein for removing heavy oils from the reservoir.
- Carbon dioxide also lowers the minimum miscibility pressure of the reservoir, which can enhance the recovery of heavy oil.
- the use of carbon dioxide to facilitate the removal of oil is disclosed in U.S. Pat. No. 5,358,052; 6,988,552; and 4,513,821, which are incorporated herein by reference.
- a chelating agent can be used.
- Chelating agents known in the art can be used to dissolve carbonates, minerals, and clays in order to create wormholes and other passageways without compromising the structure of the reservoir. The formation of these passageways can facilitate the injection of steam and the chemical additives into the reservoir, which will increase heavy oil removal.
- chelating acid includes a polycarboxylic acid, maleic acid, tartaric acid, citric acid, NTA (nitrilotriacetic acid), HETDA (hydroxyethyliminodiacetic acid), HEDTA (hydroxyethylethylenediaminetetraacetic acid), EDTA (ethylenediaminetetraacetic acid), CyDTA (cyclohexylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), ammonium salts thereof, lithium salts thereof, sodium salts thereof, and/or mixtures of these acids and/or their partially or completely neutralized salts, with the same or different metal ions.
- NTA nitrilotriacetic acid
- HETDA hydroxyethyliminodiacetic acid
- HEDTA hydroxyethylethylenediaminetetraacetic acid
- EDTA ethylenediaminetetraacetic acid
- CyDTA cyclohexylenediamine
- the concentration of the chelating agent can vary depending upon the selection of chemical additives and the nature of the heavy oil reservoir. In one aspect, the concentration of the chelating agent is up to 50 percent by weight of the chemical additives injected into the reservoir.
- the chelating agent can be injected into the reservoir as needed in order to increase the permeability and heat conductivity of the reservoir. Thus, the chelating agent can be injected periodically or continuously.
- one or more polymers that prevent water blocks in the injection and production lines can be used.
- examples of such polymers include, but are not limited to, fluoropolymers, telomers, and fluorosilanes.
- the additional additives can be added at different stages of the process.
- the additives can be injected into the reservoir prior to injection of the other chemical additives.
- the additives can be added concurrently while the chemical additives and steam are introduced into the reservoir.
- the amounts of the additional additives can vary depending upon processing conditions.
- the amount of chemical additives used to remove the heavy oil can vary depending upon the selection of the additives, processing conditions (e.g., rates of injection and temperature of steam), and the depth and composition of the reservoir.
- the amount of chemical additives e.g., surfactant
- the chemical additives are present in a sufficient amount to produce a microemulsion of heavy oil, where the droplet size is less than 20 nanometers.
- the chemical additives can be in the form of a microemulsion prior to injection into the reservoir.
- organic solvent is needed.
- Aliphatic or aromatic hydrocarbons or their mixtures can be used as organic solvents.
- the presence of these organic solvents can have an additional synergetic effect on oil recovery.
- the chemical additives comprise a combination of ionic and nonionic surfactant and, optionally, an alcohol, the amount of additives is sufficient to increase the SFDLF delivery mechanism described above.
- steam, an alcohol, and, optionally, an alkaline compound are injected into the reservoir.
- the emulsion is demulsified to isolate the heavy oil.
- Any conventional method may be used above ground for demulsifying the heavy oil-water emulsion and separating the heavy oil from water and sand. Demulsification can occur at or below the earth's surface.
- the heavy oil-water emulsion may be processed by settling to remove sand; dehydration, chemical, thermal, or electrical treatment; filtration, centrifuging, and various combinations thereof.
- the separated heavy oil serves as a raw material for the production of various petroleum products including heavy crude, asphalt, tar, solvents, and gases.
- the separated water stream can be upgraded by conventional methods, heated, and recycled to the injection well as wet steam or hot water.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Described herein are methods for removing heavy oils from underground reservoirs. The methods involve the use of chemical compositions in combination with steam techniques for the efficient removal of heavy oils.
Description
- Heavy oil sand, such as tar sand, is a major source of petroleum. Heavy oil-containing reservoirs, however, contain crude petroleum or bitumen of such high viscosity that it cannot be recovered by conventional petroleum recovery techniques. However, once the crude petroleum or bitumen is recovered, surface-milling processes can separate the bitumen from sand. The separated bitumen may be converted to light hydrocarbons using conventional refinery methods.
- Steam has long been used in the recovery of oil from these heavy oil-containing reservoirs. For example, thermal recovery techniques such as cyclic steam simulation (CSS), Huff and Puff, and Steam Assisted Gravity Drainage (SAGD) have been used. Although these techniques have high recovery yields, their energy efficiency is poor.
- Another approach involves enhanced oil recovery (EOR) techniques. These processes involve the use of surfactants in the presence of alkali solutions and salts to reduce the oil-water interfacial tension and alter the wettability of the reservoir rock, which ultimately results in enhanced recovery. In these processes, the temperature is usually below 80° C., which can limit the recovery of the heavy oils due to their high viscosity. The main objective of thermal recovery techniques is to reduce the heavy oil viscosity by increasing the temperature.
- Thus, what is needed are enhanced oil recovery techniques that can be performed at the elevated temperatures typically used in steam applications to further increase or maintain the recovery yields by chemical means, but reduce the energy spent on recovery of heavy oils.
- Described herein are methods for removing heavy oils from underground reservoirs. The methods involve the use of chemical compositions in combination with steam techniques for the efficient removal of heavy oils. The advantages of the materials, methods, and articles described herein will be set forth in part in the description which follows, or may be learned by practice of the aspects described below. The advantages described below will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive.
- The accompanying Figures, which are incorporated in and constitute a part of this specification, illustrate several aspects described below.
-
FIGS. 1A-1D are schematics of different capillary phenomena in reservoirs. -
FIGS. 2A and 2B show steam flux driven liquid flow (SFDLF) in a reservoir capillary, where there is a coupling between the steam and liquid flow. -
FIG. 3 shows another form of SFDLF in a reservoir capillary. - Before the present materials, articles, and/or methods are disclosed and described, it is to be understood that the aspects described below are not limited to specific compounds, synthetic methods, or uses, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
- In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:
- Throughout this specification, unless the context requires otherwise, the word “comprise,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
- It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” an and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an oil” includes a single oil or mixtures of two or more oils.
- “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
- Described herein are methods for removal of heavy oils from underground reservoirs. The term “heavy oil” is any source or form of viscous oil. For example, a source of heavy oil includes tar sand. Tar sand, also referred to as oil sand or bituminous sand, is a combination of clay, sand, water, and bitumen. The thermal recovery of heavy oils is based on the viscosity decrease of fluids with increasing temperature. Once the viscosity is reduced, the mobilization of fluids by steam, hot water flooding, or gravity is possible. The reduced viscosity makes the drainage quicker and therefore directly contributes to the recovery rate.
- The recovery rate is dependent on the drainage rate, which is controlled by the characteristics of multiphase flow (heavy oil and hot water) in porous media. Emulsion formation can severely limit the drainage rate when the droplet size is comparable to the pore size. One way to avoid this problem involves the formation of microemulsions having a droplet size is much smaller (20 nanometers) than the characteristic pore size of heavy oil reservoirs. A microemulsions phase can be in equilibrium with an organic phase, an aqueous phase, or simultaneously both an organic and an aqueous phase. The latter type of microemulsion phase, which can be found in Winsor III type systems, is known as a middle phase microemulsion. It has low viscosity, and is therefore beneficial for EOR or steam-assisted heavy oil recovery.
- The contributing factors reducing recovery of heavy oils at elevated temperatures involve unfavorable wetting properties of the solid matrix and the high interfacial tension between the organic and aqueous phases. This is depicted in
FIG. 1 . Theoil 10 is trapped in a narrow capillary 11 when the gravitational and hydrodynamic driving forces ofwater 12 cannot overcome the resisting capillary forces (seeFIG. 1A ). The Laplace pressure difference keeps the oil phase trapped in the capillaries. When the oil-water interfacial tension is sufficiently reduced, most of the trapped oil can be removed (seeFIG. 1B ). The oil can also be trapped (due to the Laplace pressure difference) when there are narrow passes in the capillaries, even in the case of water-wet reservoir 13 (seeFIGS. 1C and 1D ). High oil-water inter-facial tension can also prevent the release of the organic phase from dead capillary ends. Additionally, variable permeability distribution (most of the McMurray formation in Alberta, Canada) also affects the trapping forces. - The methods described herein facilitate the recovery of heavy oils. For example, the methods reduce the oil-water interfacial tension and improve the mobility of heavy oils due to either microemulsion formation or the formation of emulsions having low interfacial tension using steam techniques (e.g., SAGD or CSS operations). Additionally, the methods described herein alter the wetting properties of the solid matrix that entraps the heavy oil. By reducing the viscosity and increasing the mobility of heavy oils, several advantages can be achieved, including, but not limited to, increased oil production rate, increased steam chamber dimensions resulting in reduced well density, reduced life cycle, and a reduction in residual oil after the total life cycle of the operation.
- In one aspect, the method comprises: injecting into the reservoir (i) steam, (ii) an alkaline compound, (iii) a nonionic surfactant, and, optionally, (iv) an alcohol; and removing the oil from the reservoir.
- In another aspect, the method comprises: injecting into the reservoir (i) steam, (ii) an alkaline compound, (iii) an acid, and, optionally, (iv) an alcohol; and removing the oil from the reservoir.
- In a further aspect, the method comprises: injecting into the reservoir (i) steam, (ii) an ionic surfactant, and, optionally, (iii) an alcohol; and removing the oil from the reservoir.
- In a further aspect, the method comprises: injecting into the reservoir (i) steam, (ii) a mixture comprising an ionic surfactant and a nonionic surfactant, and, optionally, (iii) an alcohol; and removing the oil from the reservoir.
- In a further aspect, the method comprises: injecting into the reservoir (i) steam, (ii) an alcohol, and, optionally, (iii) an alkaline compound.
- Steam techniques known in the art for removing heavy oils can be used herein. In general, steam is injected into the underground reservoir thereby heating the reservoir to mobilize and recover at least a fraction of reservoir hydrocarbons and to form a steam chamber in the reservoir. There is continuous steam condensation on the steam chamber boundaries. The condensation heat increases the temperature resulting in a viscosity drop of the heavy oil trapped in the reservoir. Next, chemical additives are introduced into the injection well, which is the input point to the steam chamber, either periodically or continuously. The injection can be made at the surface wellhead or deep in the reservoir with additional tubing (e.g., coiled tubing) inserted into the injection well. The oil may be recovered in a production well separate from the injection well.
- When selecting chemical additives, the elevated temperatures used in the steam processes must be considered. For example, the temperature can reach as high as 350° C. using SAGD, although this temperature can vary depending on the crude oil and reservoir properties. The residence time of the applied chemicals in the different temperature zones of the reservoir has a major influence on the selection as well, because the temperature and the residence time together determine the thermal strain. Since the residence time in the reservoir is orders of magnitude longer than that in the injection well, the reservoir conditions must be primarily considered. At steam flooding, reservoir temperatures measured in observation wells for three different fields in California, USA were 120, 160, and 180° C., (K. C. Hong, Steamflood Reservoir Management, PenWell, 1994, pages 386, 387, and 390). In the case of CSS, the temperature begins at 345° C., but after a period of time the temperature can be decreased from 85 to 100° C. Therefore, the thermal stability of the chemical additives can be relaxed to some extent when CSS is employed. In one aspect, the chemical additives are stable at temperatures greater than 200° C. Additionally, the chemical additives generally possess high vapor pressures. The high vapor pressure facilitates the delivery of the additives into the reservoir. As will be discussed below, additives that do not possess high vapor pressures can be formed in situ from high vapor pressure compounds. Thus, additives that are thermally stable and have a sufficiently high vapor pressure are “compatible” with the steam and useful herein. In cases where the vapor pressure of additives is low and not “compatible” with steam, the additives can be injected in the form of a liquid, aerosol, or suspension.
- In one aspect, the chemical additives injected into the reservoir comprise an alkaline compound, a nonionic surfactant, and, optionally, an alcohol. The alkaline compound is any compound that can increase the pH of the steam and the reservoir. An increase in pH facilitates the release of natural surfactants present in heavy oils. These surfactants can reduce the oil-water interfacial tension. Additionally, reduced viscoelasticity of the oil-water interfaces has been observed at high pH which may be due to the released, naturally-occurring, surfactants.
- In one aspect, the alkaline compound comprises an amine, such as a primary amine, a secondary amine, or a tertiary amine that is compatible with steam, or any combination of such amines. In another aspect, the steam-compatible alkaline compound is ammonia. In yet another aspect, the alkaline compound is an alkaline metal hydroxide, alkaline metal carbonate, alkaline metal hydrocarbonate, or ammonium carbonate, or any combination thereof, which compounds are not compatible with steam.
- The amount of alkaline compound is sufficient to raise the pH of the steam to greater than 7, greater than 8, greater than 9, greater than 10, greater than 11, or greater than 12. Depending upon the selection of the alkaline compound, the compound can be introduced into the steam as a gas, a liquid, or a liquid solution of either gas, liquid, or solid. As well, the alkaline compound can be introduced into the steam as a liquid, a suspension of a solid, or as an aerosol. Additionally, the compound can be introduced in the form of a supercritical fluid where either the compound itself forms the supercritical fluid or the compound is one of the components of the supercritical fluid.
- The nonionic surfactants, which generally have a higher vapor pressure than ionic surfactants (e.g., low molecular weight acetylenic surfactants), alter the wetting properties of the solid matrix. In certain aspects, when the nonionic surfactant is used in combination with an alcohol, which is a co-surfactant, the oil-water interfacial tension can approach zero. In this situation, microemulsions can be formed. Salts are often used in these formulations to achieve minimum interfacial tension. As described above, microemulsions can facilitate the removal of heavy oil. Examples of nonionic surfactants useful herein include, but are not limited to, an alkyl, aryl, or alkylaryl(ethylene oxide); an alkyl, aryl, or alkylaryl poly(propylene oxide); an alkyl, aryl, or alkylaryl poly(propylene and ethylene oxide) block polymer; an alkoxylated amine or diamine; a polyethepolyol; a block polymer of carbonyldiamide polyoxyalkylated glycol; an alkylarylpolyethoxyethanol; an N-betaine (e.g., dodecyl N-betaine); a C-betaine (e.g., dodecyl C-betaine); an amine oxide (e.g., decyl dimethyl amine oxide); a phosphine oxide (e.g., decyl dimethyl phosphine oxide); a sulfinil-ol (e.g., decyl sulfinylethanol); an ammonio carboxylate or sulfoniate (e.g., decyl dimetlhylammoniopropane sulfonate); a sugar alkylate (e.g., alpha-D-glucosyl octane); a polyol ether (e.g., octyl beta D glucoside); an oxyethylene sorbitan; a sarcosinate (e.g., lauryl sarcosine); an acetylenic surfactant; an ethoxylated alkanolamide; an alkyl amine; an alkyl imidazoline; a poloxamer; an alkyl polyglucoside; a fatty alcohol, or any combination thereof. With respect to the alcohol, the alcohol comprises a C4 to C9 alcohol. The alcohol can be branched or straight chain.
- Nonionic surfactants or amines can typically be dissolved in aliphatic or aromatic hydrocarbons or in their mixtures, so these organic solvents are included in the delivered composition. The presence of these organic solvents can have an additional synergetic effect on oil recovery.
- In another aspect, the chemical additives comprise an alkaline compound, an acid, and, optionally, an alcohol. In this aspect, an ionic surfactant is produced in situ when the alkaline compound reacts with the acid. The alkaline compound and the acid may be alternately injected into the reservoir. The alkaline compounds described above can be used in this aspect. In one aspect, the acid is an organic acid, which includes alkyl carboxylic acids, aryl carboxylic acids, cycloalkyl carboxylic acids, and aromatic and alicyclic carboxylic acids, or any combination thereof. The term organic acid also includes compounds possessing groups that can be converted to carboxylic acids. Examples of such compounds include, but are not limited to, amides, anhydrides, nitrites, and alcohols that can be converted to a carboxylic acid in situ during injection into the reservoir with the steam. Alternatively, the organic acid can be a polymer possessing a plurality of carboxylic acid groups.
- In one aspect, the organic acid comprises a saturated fatty acid, an unsaturated fatty acid, or a combination thereof Examples of fatty acids useful herein include, but are not limited to, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha-linolenic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, arachidonic acid, or any combination thereof. Other examples of acids useful herein include, but are not limited to, an alkyl sulfonic acid, an aryl sulfonic acid, an alkylaryl sulfonic acid, a sulfo carboxylic acid, an alkyl naphthalene sulfonic acid, an olefinic sulfonic acid, a polycarboxylic acid, a sulfo carboxylic acid, a phosphono carboxylic acid, a thiosulfonic acid, or any combination thereof.
- In another aspect, the chemical additives comprise an ionic surfactant and, optionally, an alcohol. A mechanism that can transport ionic compounds in the steam chamber despite their negligible vapor pressure is described below and depicted in
FIG. 2 . When saturated steam passes through the pores, awater film 20 forms on the surface of the pores (depicted assolid matrix 21 inFIG. 2 ). Thesteam transport 22 launches a liquid transport in the water film 20 (FIG. 2A ). As the path narrows (i.e., constriction of the solid matrix 21), a multiphase flow ofwater 20 andsteam 22 can occur (FIG. 2B ). Therefore, ionic compounds can have a finite transport rate within the steam chamber via moving wetting liquid films on the capillary surfaces. - Turning to
FIG. 3 , in the presence of surface-active additives, the wettability of thesolid matrix 21 increases and the formation ofaqueous lamellas 31 formed from the water-film 20 can occur. The lamellas will travel with the speed of thesteam 22, which increases the steam flux driven liquid flow (SFDLF) considerably. Thus, ionic compounds can travel through the pores of the solid matrix in the form of a steam foam and remove heavy oils from the matrix. - The alcohols described above can be used in this aspect. In one aspect, the ionic surfactant comprises an anionic, cationic, amphoteric, or polymeric surfactant(s). Examples of anionic surfactants include, but are not limited to, sulfates, sulfonates, and carboxylates. The ionic surfactants can be naturally-occurring or synthetic. Sulfonates containing the C—S bond are more stable chemically than the C—O—S bond of the sulfates or the C—O—P bond of the phosphates. Thus, sulfonates and carboxylates are more stable to hydrolysis and extreme pH levels compared to sulfates and phosphates.
- In one aspect, the anionic surfactant comprises an alkyl sulfate salt (e.g., sodium dodecyl sulfate, ammonium lauryl sulfate), an alkyl ether sulfate (e.g., sodium lauryl ether sulfate), an alkyl benzene sulfonate, or any combination thereof. In another aspect, the sulfonate comprises sulfonates of petroleum, oil and fatty acids, alkylaryls, α-olefins, benzene, toluene, xylene, condensed naphtolenes, dodecyl and tridecylbenzenes, naphthalene, and alkyl napthalenes. In yet another aspect, the anionic surfactant comprises sulfosuccinates, sulfo carboxylates, alkyl naphthalene sulfonates, olefinic sulfonates, fatty acid sulfonates, polycarboxylates, sulfo carboxylates, phosphono carboxylates, thiosulfates.
- Examples of useful cationic surfactants include, but are not limited to, a quaternary ammonium salt, an amine salt, an imidazoline salt, a betaine (e.g., octyl C-betaine hydrochloride or dodecyl N-betaine hydrochloride), a pyridinium derivative (e.g., dodecyl pyridinium chloride), or any combination thereof. A variety of different counterions can be used with the ionic surfactants, including alkali metal ions, alkaline earth metal ions, halides, nitrates, and carboxylates. Generally, the counterions are soluble in water.
- In surfactant-containing, systems, alcohols are considered to be co-surfactants, which enhance the performance of surfactants. One application of co-surfactants is the application of alcohols in microemulsion systems where the zero interfacial tension condition is often approached. A manifestation of the beneficial contribution of alcohol presence in microemulsion systems is the formation of highly flexible interfaces. This is one of the targeted areas of enhanced recovery of heavy oils by steam assisted techniques. Due to these beneficial effects, alcohols can be considered as part of surfactant-containing additives. For heavy oil systems, in which the concentration of natural surfactants could be considerable, the application of alcohols as additives to enhance recovery can also be beneficial, even in cases when no artificial surfactant is added. In these cases, the alcohol behaves as the co-surfactant of natural surfactants.
- The chemical additives described above can be injected into the reservoir in any sequence, concurrently with, or separate from, the steam. For example, the chemical additives can be admixed prior to injection into the steam. In one aspect, the additives can be simultaneously injected with the steam in order to ensure or maximize the amount of additives moving with the steam. In some instances it may be desirable to precede or follow a steam-additive injection stream with a steam-only injection stream. Alternatively, the additives can be introduced into the steam sequentially. In certain aspects, the additives are introduced alternatively into the steam. For example, the organic acid and alkaline compound (e.g., ammonia) can be alternatively introduced into the steam. The additives can be introduced continuously or periodically into the steam. The particular steam temperature and pressure actually used in the process will depend on such specific reservoir characteristics as depth, temperature, and oil viscosity, and thus will be worked out for each reservoir.
- In certain aspects, it is desirable to inject the chemical additives as an aerosol or spray so that the chemicals do not remain at the bottom of the injection well. In this aspect, the chemical additives are carried into the reservoir rock containing heavy oils by the steam. Thus, the chemical additives are pushed deep into the pores of the reservoir rock, which ultimately facilitates the release and isolation of heavy oils. The use of aerosols prevents the chemical additives from being directed toward the production well instead of the tipper walls of the steam chamber, which is desired. Techniques known in the art for producing and delivering aerosol formulations can be used herein. In one aspect, carbon dioxide can be used to make the aerosol spray. Carbon dioxide can condition the reservoir and increase the effectiveness of the methods described herein for removing heavy oils from the reservoir. Carbon dioxide also lowers the minimum miscibility pressure of the reservoir, which can enhance the recovery of heavy oil. The use of carbon dioxide to facilitate the removal of oil is disclosed in U.S. Pat. No. 5,358,052; 6,988,552; and 4,513,821, which are incorporated herein by reference.
- Other additives can be used in combination with any of the additives described above. In one aspect, a chelating agent can be used. Chelating agents known in the art can be used to dissolve carbonates, minerals, and clays in order to create wormholes and other passageways without compromising the structure of the reservoir. The formation of these passageways can facilitate the injection of steam and the chemical additives into the reservoir, which will increase heavy oil removal. In one aspect, chelating acid includes a polycarboxylic acid, maleic acid, tartaric acid, citric acid, NTA (nitrilotriacetic acid), HETDA (hydroxyethyliminodiacetic acid), HEDTA (hydroxyethylethylenediaminetetraacetic acid), EDTA (ethylenediaminetetraacetic acid), CyDTA (cyclohexylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), ammonium salts thereof, lithium salts thereof, sodium salts thereof, and/or mixtures of these acids and/or their partially or completely neutralized salts, with the same or different metal ions. The use of these chelating agents is disclosed in U.S. Pat. No. 6,911,418 and 6,436,880, which are incorporated herein by reference. The concentration of the chelating agent can vary depending upon the selection of chemical additives and the nature of the heavy oil reservoir. In one aspect, the concentration of the chelating agent is up to 50 percent by weight of the chemical additives injected into the reservoir. The chelating agent can be injected into the reservoir as needed in order to increase the permeability and heat conductivity of the reservoir. Thus, the chelating agent can be injected periodically or continuously.
- In another aspect, one or more polymers that prevent water blocks in the injection and production lines can be used. Examples of such polymers include, but are not limited to, fluoropolymers, telomers, and fluorosilanes. By preventing water blocks in the lines, increased injection rates of steam and chemical additives are possible.
- The additional additives can be added at different stages of the process. For example, the additives can be injected into the reservoir prior to injection of the other chemical additives. Alternatively, the additives can be added concurrently while the chemical additives and steam are introduced into the reservoir. The amounts of the additional additives can vary depending upon processing conditions.
- The amount of chemical additives used to remove the heavy oil can vary depending upon the selection of the additives, processing conditions (e.g., rates of injection and temperature of steam), and the depth and composition of the reservoir. In one aspect, the amount of chemical additives (e.g., surfactant) is sufficient to produce an oil/water interfacial tension less than 0.3 milliNewton/meter, less than 0.2 milliNewton/meter, or less than 0.1 milliNewton/meter. In another aspect, the chemical additives are present in a sufficient amount to produce a microemulsion of heavy oil, where the droplet size is less than 20 nanometers. In other aspects, the chemical additives can be in the form of a microemulsion prior to injection into the reservoir. At this application the addition of organic solvent is needed. Aliphatic or aromatic hydrocarbons or their mixtures can be used as organic solvents. As described above, the presence of these organic solvents can have an additional synergetic effect on oil recovery. In a further aspect, when the chemical additives comprise a combination of ionic and nonionic surfactant and, optionally, an alcohol, the amount of additives is sufficient to increase the SFDLF delivery mechanism described above.
- In a further aspect, steam, an alcohol, and, optionally, an alkaline compound are injected into the reservoir.
- After the heavy oil is removed from the reservoir as an oil-ill-water or water-in-oil emulsion (e.g., a microemulsion), the emulsion is demulsified to isolate the heavy oil. Any conventional method may be used above ground for demulsifying the heavy oil-water emulsion and separating the heavy oil from water and sand. Demulsification can occur at or below the earth's surface. For example, the heavy oil-water emulsion may be processed by settling to remove sand; dehydration, chemical, thermal, or electrical treatment; filtration, centrifuging, and various combinations thereof. The separated heavy oil serves as a raw material for the production of various petroleum products including heavy crude, asphalt, tar, solvents, and gases. The separated water stream can be upgraded by conventional methods, heated, and recycled to the injection well as wet steam or hot water.
- Throughout this application, various publications are referenced. The disclosures of these publications are incorporated in their entireties by reference into this application in order to more fully describe the compounds, compositions, and methods described herein.
- Various modifications and variations can be made to the compounds, compositions, and methods described herein. Other aspects of the compounds, compositions, and methods described herein will be apparent from consideration of the specification and practice of the compounds, compositions, and methods disclosed herein. It is intended that the specification and examples be considered as exemplary.
Claims (4)
1-18. (canceled)
19. A process for removing heavy oil from an underground heavy oil reservoir, comprising:
injecting into the reservoir (i) steam, (ii) a mixture comprising an ionic surfactant and a nonionic surfactant, wherein the anionic surfactant is selected from the group consisting of a sulfosuccinate, an alkyl naphthalene sulfonate, an olefinic sulfonate, a fatty acid sulfonate, a sulfo carboxylate, a phosphono carboxylate, a thiosulfate, or any combination thereof, and (iii) an alcohol; and
removing the oil from the reservoir.
20-25. (canceled)
26. A process for removing heavy oil from an underground heavy oil reservoir, comprising:
injecting into the reservoir (i) steam, (ii) a mixture comprising an ionic surfactant and a nonionic surfactant, wherein the nonionic surfactant is selected from the group consisting of an amine oxide; a phosphine oxide; a sugar alkylate; an acetylenic surfactant; an alkyl polyglucoside, or any combination thereof, and (iii) an alcohol; and
removing the oil from the reservoir.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/860,698 US20090078414A1 (en) | 2007-09-25 | 2007-09-25 | Chemically enhanced thermal recovery of heavy oil |
PCT/US2008/070768 WO2009042284A1 (en) | 2007-09-25 | 2008-07-22 | Methods for producing fuels and solvents |
US12/379,622 US20090159288A1 (en) | 2007-09-25 | 2009-02-26 | Chemically enhanced thermal recovery of heavy oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/860,698 US20090078414A1 (en) | 2007-09-25 | 2007-09-25 | Chemically enhanced thermal recovery of heavy oil |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/379,622 Division US20090159288A1 (en) | 2007-09-25 | 2009-02-26 | Chemically enhanced thermal recovery of heavy oil |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090078414A1 true US20090078414A1 (en) | 2009-03-26 |
Family
ID=40470404
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/860,698 Abandoned US20090078414A1 (en) | 2007-09-25 | 2007-09-25 | Chemically enhanced thermal recovery of heavy oil |
US12/379,622 Abandoned US20090159288A1 (en) | 2007-09-25 | 2009-02-26 | Chemically enhanced thermal recovery of heavy oil |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/379,622 Abandoned US20090159288A1 (en) | 2007-09-25 | 2009-02-26 | Chemically enhanced thermal recovery of heavy oil |
Country Status (2)
Country | Link |
---|---|
US (2) | US20090078414A1 (en) |
WO (1) | WO2009042284A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090194278A1 (en) * | 2008-02-06 | 2009-08-06 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Enhanced Oil Recovery In Oxygen Based In Situ Combustion Using Foaming Agents |
US20090218099A1 (en) * | 2008-02-28 | 2009-09-03 | Baker Hughes Incorporated | Method for Enhancing Heavy Hydrocarbon Recovery |
US20110220364A1 (en) * | 2010-03-10 | 2011-09-15 | Basf Se | Process for mineral oil production using cationic surfactants having a hydrophobic block with a chain length of 6 to 10 carbon atoms |
WO2016048637A1 (en) * | 2014-09-22 | 2016-03-31 | Dow Global Technologies Llc | Thermally unstable ammonium carboxylates for enhanced oil recovery |
WO2016099847A1 (en) * | 2014-12-16 | 2016-06-23 | Huntsman Petrochemical Llc | Ultra-high salinity surfactant formulation |
US9845669B2 (en) | 2014-04-04 | 2017-12-19 | Cenovus Energy Inc. | Hydrocarbon recovery with multi-function agent |
WO2018013488A1 (en) | 2016-07-12 | 2018-01-18 | Dow Global Technologies Llc | Foam-forming composition for steam assisted oil recovery |
US10214683B2 (en) | 2015-01-13 | 2019-02-26 | Bp Corporation North America Inc | Systems and methods for producing hydrocarbons from hydrocarbon bearing rock via combined treatment of the rock and subsequent waterflooding |
US10400564B2 (en) | 2014-03-21 | 2019-09-03 | Dow Global Technologies Llc | Staged steam extraction of in situ bitumen |
US10435608B2 (en) * | 2015-06-08 | 2019-10-08 | Halliburton Energy Services, Inc. | Betaines for shale stabilization |
US10941347B2 (en) | 2016-06-21 | 2021-03-09 | Dow Global Technologies Llc | Composition for steam extraction of bitumen |
US11001747B2 (en) | 2017-10-06 | 2021-05-11 | Dow Global Technologies Llc | Alkanolamine and glycol ether composition for enhanced extraction of bitumen |
CN113153209A (en) * | 2020-01-07 | 2021-07-23 | 中国石油天然气股份有限公司 | Multi-medium composite huff and puff development method for heavy oil reservoir |
US12043795B2 (en) | 2019-10-10 | 2024-07-23 | Dow Global Technologies Llc | Enhanced oil recovery methods and compositions |
US12091609B2 (en) | 2019-08-15 | 2024-09-17 | Dow Global Technologies Llc | Additive for enhanced oil recovery |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9096805B2 (en) * | 2008-06-04 | 2015-08-04 | Nalco Company | Anhydride demulsifier formulations for resolving emulsions of water and oil |
US9222013B1 (en) | 2008-11-13 | 2015-12-29 | Cesi Chemical, Inc. | Water-in-oil microemulsions for oilfield applications |
EA023089B1 (en) * | 2010-03-10 | 2016-04-29 | Басф Се | Use of surfactant mixtures of polycarboxylates for microemulsion flooding |
US9879512B2 (en) | 2011-06-13 | 2018-01-30 | Ecolab Usa Inc. | Additives for improving hydrocarbon recovery |
US9150776B2 (en) | 2011-06-13 | 2015-10-06 | Nalco Company | Additives for improving hydrocarbon recovery |
US8939208B2 (en) | 2011-06-13 | 2015-01-27 | Nalco Company | Additives for improving hydrocarbon recovery |
US20130292121A1 (en) | 2012-04-15 | 2013-11-07 | Cesi Chemical, Inc. | Surfactant formulations for foam flooding |
WO2013155679A1 (en) * | 2012-04-18 | 2013-10-24 | General Electric Company | A method to treat flushing liquor systems in coke plants |
US11407930B2 (en) | 2012-05-08 | 2022-08-09 | Flotek Chemistry, Llc | Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons |
US9200192B2 (en) | 2012-05-08 | 2015-12-01 | Cesi Chemical, Inc. | Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons |
US9976417B2 (en) | 2012-07-16 | 2018-05-22 | Schlumberger Technology Corporation | Capillary electrophoresis for reservoir fluid analysis at wellsite and laboratory |
US20140174735A1 (en) * | 2012-12-26 | 2014-06-26 | Shell Oil Company | Method, system, and composition for producing oil |
CA2896311A1 (en) | 2013-01-16 | 2014-07-24 | Shell Internationale Research Maatschappij B.V. | Method, system, and composition for producing oil |
US9068108B2 (en) | 2013-03-14 | 2015-06-30 | Cesi Chemical, Inc. | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US11180690B2 (en) | 2013-03-14 | 2021-11-23 | Flotek Chemistry, Llc | Diluted microemulsions with low surface tensions |
US10053619B2 (en) | 2013-03-14 | 2018-08-21 | Flotek Chemistry, Llc | Siloxane surfactant additives for oil and gas applications |
US10590332B2 (en) | 2013-03-14 | 2020-03-17 | Flotek Chemistry, Llc | Siloxane surfactant additives for oil and gas applications |
US9428683B2 (en) | 2013-03-14 | 2016-08-30 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US10000693B2 (en) | 2013-03-14 | 2018-06-19 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10287483B2 (en) | 2013-03-14 | 2019-05-14 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol |
US10941106B2 (en) | 2013-03-14 | 2021-03-09 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
US10421707B2 (en) | 2013-03-14 | 2019-09-24 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
US9884988B2 (en) | 2013-03-14 | 2018-02-06 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US11254856B2 (en) | 2013-03-14 | 2022-02-22 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US9868893B2 (en) | 2013-03-14 | 2018-01-16 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10577531B2 (en) | 2013-03-14 | 2020-03-03 | Flotek Chemistry, Llc | Polymers and emulsions for use in oil and/or gas wells |
US9464223B2 (en) | 2013-03-14 | 2016-10-11 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10717919B2 (en) | 2013-03-14 | 2020-07-21 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US9321955B2 (en) | 2013-06-14 | 2016-04-26 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US10018590B2 (en) | 2013-08-15 | 2018-07-10 | Schlumberger Technology Corporation | Capillary electrophoresis for subterranean applications |
CN103480424B (en) * | 2013-09-22 | 2016-09-14 | 东北石油大学 | A kind of for the upgrading viscosity reduction preparation method and applications of ultra-dispersed catalyst |
US9890625B2 (en) | 2014-02-28 | 2018-02-13 | Eclipse Ior Services, Llc | Systems and methods for the treatment of oil and/or gas wells with an obstruction material |
US9890624B2 (en) | 2014-02-28 | 2018-02-13 | Eclipse Ior Services, Llc | Systems and methods for the treatment of oil and/or gas wells with a polymeric material |
CA2891278C (en) | 2014-05-14 | 2018-11-06 | Cesi Chemical, Inc. | Methods and compositions for use in oil and / or gas wells |
US10294757B2 (en) | 2014-07-28 | 2019-05-21 | Flotek Chemistry, Llc | Methods and compositions related to gelled layers in oil and/or gas wells |
WO2017099709A1 (en) * | 2015-12-07 | 2017-06-15 | Halliburton Energy Services, Inc. | Surfactant compositions for treatment of subterranean formations and produced oil |
US10934472B2 (en) | 2017-08-18 | 2021-03-02 | Flotek Chemistry, Llc | Compositions comprising non-halogenated solvents for use in oil and/or gas wells and related methods |
WO2019108971A1 (en) | 2017-12-01 | 2019-06-06 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US10889752B2 (en) | 2019-02-05 | 2021-01-12 | Saudi Arabian Oil Company | Foaming mixtures and methods of use thereof |
CN110358516A (en) * | 2019-07-19 | 2019-10-22 | 新疆肯迪能源科技有限公司 | Based on constant temperature catalyzing chain rupture viscous crude pitch prill colloid de-plugging thinner and preparation method thereof |
US11104843B2 (en) | 2019-10-10 | 2021-08-31 | Flotek Chemistry, Llc | Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency |
US11512243B2 (en) | 2020-10-23 | 2022-11-29 | Flotek Chemistry, Llc | Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods |
Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2718514A (en) * | 1954-07-29 | 1955-09-20 | Monsanto Chemicals | Process for preparing salts of sulfonated polystyrene |
US3254714A (en) * | 1965-11-05 | 1966-06-07 | Marathon Oil Co | Use of microemulsions in miscible-type oil recovery procedure |
US3454095A (en) * | 1968-01-08 | 1969-07-08 | Mobil Oil Corp | Oil recovery method using steam stimulation of subterranean formation |
US3664419A (en) * | 1970-07-22 | 1972-05-23 | Union Oil Co | Oil recovery method using crude oil base soluble oil compositions |
US3885928A (en) * | 1973-06-18 | 1975-05-27 | Standard Oil Co Ohio | Acrylonitrile and methacrylonitrile recovery and purification system |
US3946812A (en) * | 1974-01-02 | 1976-03-30 | Exxon Production Research Company | Use of materials as waterflood additives |
US3954627A (en) * | 1973-06-29 | 1976-05-04 | Marathon Oil Company | Lamellar micelle containing compositions which exhibit retro-viscous properties |
US3977471A (en) * | 1975-09-26 | 1976-08-31 | Exxon Production Research Company | Oil recovery method using a surfactant |
US3981361A (en) * | 1975-07-31 | 1976-09-21 | Exxon Production Research Company | Oil recovery method using microemulsions |
US3997451A (en) * | 1973-08-10 | 1976-12-14 | Marathon Oil Company | Sulfonate blends useful for improved oil recovery |
US4006779A (en) * | 1975-06-30 | 1977-02-08 | Texaco Inc. | Lignosulfonates as sacrificial agents in oil recovery processes |
US4008769A (en) * | 1975-04-30 | 1977-02-22 | Mobil Oil Corporation | Oil recovery by microemulsion injection |
US4079785A (en) * | 1976-02-09 | 1978-03-21 | Phillips Petroleum Company | Oil recovery method using in situ-partitioning surfactant flood systems |
US4175618A (en) * | 1978-05-10 | 1979-11-27 | Texaco Inc. | High vertical and horizontal conformance thermal oil recovery process |
US4240504A (en) * | 1978-12-21 | 1980-12-23 | Exxon Production Research Company | Simultaneous microemulsion-aqueous phase flooding process |
US4258789A (en) * | 1979-08-31 | 1981-03-31 | Phillips Petroleum Company | Cosurfactant blends for oil recovery surfactant system |
US4266610A (en) * | 1978-11-28 | 1981-05-12 | Phillips Petroleum Company | Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations |
US4269271A (en) * | 1978-05-01 | 1981-05-26 | Texaco Inc. | Emulsion oil recovery process usable in high temperature, high salinity formations |
US4271907A (en) * | 1979-07-02 | 1981-06-09 | Exxon Production Research Company | Microemulsions which compatibly incorporate viscosifiers and their use in enhanced oil recovery |
US4274488A (en) * | 1979-08-31 | 1981-06-23 | Phillips Petroleum Company | Cosurfactant in preflush for surfactant flood system |
US4293428A (en) * | 1978-01-18 | 1981-10-06 | Exxon Production Research Company | Propoxylated ethoxylated surfactants and method of recovering oil therewith |
US4360061A (en) * | 1980-04-03 | 1982-11-23 | Exxon Research And Engineering Co. | Oil recovery process using polymer microemulsion complexes |
US4391719A (en) * | 1978-11-28 | 1983-07-05 | Phillips Petroleum Company | Ethoxylated sulfosuccinate additives for stabilizing solutions of petroleum sulfonates in hard brine |
US4452708A (en) * | 1982-02-18 | 1984-06-05 | Exxon Production Research Co. | Oil recovery method using sulfonate surfactants derived from extracted aromatic feedstocks |
US4458759A (en) * | 1982-04-29 | 1984-07-10 | Alberta Oil Sands Technology And Research Authority | Use of surfactants to improve oil recovery during steamflooding |
US4473118A (en) * | 1981-02-02 | 1984-09-25 | Institut Francais Du Petrole | Enhanced oil recovery using oxidized crude oil |
US4475592A (en) * | 1982-10-28 | 1984-10-09 | Texaco Canada Inc. | In situ recovery process for heavy oil sands |
US4479542A (en) * | 1982-11-22 | 1984-10-30 | Exxon Production Research Co. | Enhanced oil recovery process utilizing a lignosulfonate as a _solubilizing agent in an afterflush |
US4487162A (en) * | 1980-11-25 | 1984-12-11 | Cann Gordon L | Magnetoplasmadynamic apparatus for the separation and deposition of materials |
US4494604A (en) * | 1983-06-28 | 1985-01-22 | Phillips Petroleum Company | Extraction of acidic materials from organic liquids and use thereof in enhanced oil recovery |
US4502540A (en) * | 1981-06-01 | 1985-03-05 | Mobil Oil Corporation | Tertiary oil recovery |
US4513821A (en) * | 1984-02-03 | 1985-04-30 | Mobil Oil Corporation | Lowering CO2 MMP and recovering oil using carbon dioxide |
US4686053A (en) * | 1984-04-20 | 1987-08-11 | Institut Francais Du Petrole | Micellar systems containing N-acyl N-alkyl α-amino-carboxylic compounds, particularly useful in enhanced hydrocarbon recovery |
US5013462A (en) * | 1985-10-24 | 1991-05-07 | Pfizer Inc. | Method for improving production of viscous crude oil |
US5083613A (en) * | 1989-02-14 | 1992-01-28 | Canadian Occidental Petroleum, Ltd. | Process for producing bitumen |
US5318124A (en) * | 1991-11-14 | 1994-06-07 | Pecten International Company | Recovering hydrocarbons from tar sand or heavy oil reservoirs |
US5358052A (en) * | 1990-12-20 | 1994-10-25 | John L. Gidley & Associates, Inc. | Conditioning of formation for sandstone acidizing |
US6050335A (en) * | 1997-10-31 | 2000-04-18 | Shell Oil Company | In-situ production of bitumen |
US6257334B1 (en) * | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6436880B1 (en) * | 2000-05-03 | 2002-08-20 | Schlumberger Technology Corporation | Well treatment fluids comprising chelating agents |
US6631761B2 (en) * | 2001-12-10 | 2003-10-14 | Alberta Science And Research Authority | Wet electric heating process |
US6662872B2 (en) * | 2000-11-10 | 2003-12-16 | Exxonmobil Upstream Research Company | Combined steam and vapor extraction process (SAVEX) for in situ bitumen and heavy oil production |
US6814141B2 (en) * | 2001-06-01 | 2004-11-09 | Exxonmobil Upstream Research Company | Method for improving oil recovery by delivering vibrational energy in a well fracture |
US20050072567A1 (en) * | 2003-10-06 | 2005-04-07 | Steele David Joe | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US6911418B2 (en) * | 2001-05-17 | 2005-06-28 | Schlumberger Technology Corporation | Method for treating a subterranean formation |
US20050224230A1 (en) * | 2004-04-13 | 2005-10-13 | Coriba Technologies, L.L.C. | Composition and process for enhanced oil recovery |
US6988549B1 (en) * | 2003-11-14 | 2006-01-24 | John A Babcock | SAGD-plus |
US6988552B2 (en) * | 2003-06-19 | 2006-01-24 | Conocophillips Company | Liquid carbon dioxide cleaning of wellbores and near-wellbore areas |
US7073577B2 (en) * | 2003-08-29 | 2006-07-11 | Applied Geotech, Inc. | Array of wells with connected permeable zones for hydrocarbon recovery |
US7077199B2 (en) * | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7086465B2 (en) * | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US20060243448A1 (en) * | 2005-04-28 | 2006-11-02 | Steve Kresnyak | Flue gas injection for heavy oil recovery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3344858A (en) * | 1965-09-02 | 1967-10-03 | Phillips Petroleum Co | Production of oil by aqueous drive with surfactant formed in situ |
US4010006A (en) * | 1969-05-09 | 1977-03-01 | Exxon Research And Engineering Company | Flow improvers |
US4609044A (en) * | 1985-05-20 | 1986-09-02 | Shell Oil Company | Alkali-enhanced steam foam oil recovery process |
US5145002A (en) * | 1988-02-05 | 1992-09-08 | Alberta Oil Sands Technology And Research Authority | Recovery of heavy crude oil or tar sand oil or bitumen from underground formations |
US6022834A (en) * | 1996-05-24 | 2000-02-08 | Oil Chem Technologies, Inc. | Alkaline surfactant polymer flooding composition and process |
US7615516B2 (en) * | 2005-01-21 | 2009-11-10 | Baker Hughes Incorporated | Microemulsion containing oil field chemicals useful for oil and gas field applications |
CA2494391C (en) * | 2005-01-26 | 2010-06-29 | Nexen, Inc. | Methods of improving heavy oil production |
-
2007
- 2007-09-25 US US11/860,698 patent/US20090078414A1/en not_active Abandoned
-
2008
- 2008-07-22 WO PCT/US2008/070768 patent/WO2009042284A1/en active Application Filing
-
2009
- 2009-02-26 US US12/379,622 patent/US20090159288A1/en not_active Abandoned
Patent Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2718514A (en) * | 1954-07-29 | 1955-09-20 | Monsanto Chemicals | Process for preparing salts of sulfonated polystyrene |
US3254714A (en) * | 1965-11-05 | 1966-06-07 | Marathon Oil Co | Use of microemulsions in miscible-type oil recovery procedure |
US3454095A (en) * | 1968-01-08 | 1969-07-08 | Mobil Oil Corp | Oil recovery method using steam stimulation of subterranean formation |
US3664419A (en) * | 1970-07-22 | 1972-05-23 | Union Oil Co | Oil recovery method using crude oil base soluble oil compositions |
US3885928A (en) * | 1973-06-18 | 1975-05-27 | Standard Oil Co Ohio | Acrylonitrile and methacrylonitrile recovery and purification system |
US3954627A (en) * | 1973-06-29 | 1976-05-04 | Marathon Oil Company | Lamellar micelle containing compositions which exhibit retro-viscous properties |
US3997451A (en) * | 1973-08-10 | 1976-12-14 | Marathon Oil Company | Sulfonate blends useful for improved oil recovery |
US3946812A (en) * | 1974-01-02 | 1976-03-30 | Exxon Production Research Company | Use of materials as waterflood additives |
US4008769A (en) * | 1975-04-30 | 1977-02-22 | Mobil Oil Corporation | Oil recovery by microemulsion injection |
US4006779A (en) * | 1975-06-30 | 1977-02-08 | Texaco Inc. | Lignosulfonates as sacrificial agents in oil recovery processes |
US3981361A (en) * | 1975-07-31 | 1976-09-21 | Exxon Production Research Company | Oil recovery method using microemulsions |
US3977471A (en) * | 1975-09-26 | 1976-08-31 | Exxon Production Research Company | Oil recovery method using a surfactant |
US4079785A (en) * | 1976-02-09 | 1978-03-21 | Phillips Petroleum Company | Oil recovery method using in situ-partitioning surfactant flood systems |
US4293428A (en) * | 1978-01-18 | 1981-10-06 | Exxon Production Research Company | Propoxylated ethoxylated surfactants and method of recovering oil therewith |
US4269271A (en) * | 1978-05-01 | 1981-05-26 | Texaco Inc. | Emulsion oil recovery process usable in high temperature, high salinity formations |
US4175618A (en) * | 1978-05-10 | 1979-11-27 | Texaco Inc. | High vertical and horizontal conformance thermal oil recovery process |
US4391719A (en) * | 1978-11-28 | 1983-07-05 | Phillips Petroleum Company | Ethoxylated sulfosuccinate additives for stabilizing solutions of petroleum sulfonates in hard brine |
US4266610A (en) * | 1978-11-28 | 1981-05-12 | Phillips Petroleum Company | Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations |
US4240504A (en) * | 1978-12-21 | 1980-12-23 | Exxon Production Research Company | Simultaneous microemulsion-aqueous phase flooding process |
US4271907A (en) * | 1979-07-02 | 1981-06-09 | Exxon Production Research Company | Microemulsions which compatibly incorporate viscosifiers and their use in enhanced oil recovery |
US4274488A (en) * | 1979-08-31 | 1981-06-23 | Phillips Petroleum Company | Cosurfactant in preflush for surfactant flood system |
US4258789A (en) * | 1979-08-31 | 1981-03-31 | Phillips Petroleum Company | Cosurfactant blends for oil recovery surfactant system |
US4360061A (en) * | 1980-04-03 | 1982-11-23 | Exxon Research And Engineering Co. | Oil recovery process using polymer microemulsion complexes |
US4487162A (en) * | 1980-11-25 | 1984-12-11 | Cann Gordon L | Magnetoplasmadynamic apparatus for the separation and deposition of materials |
US4473118A (en) * | 1981-02-02 | 1984-09-25 | Institut Francais Du Petrole | Enhanced oil recovery using oxidized crude oil |
US4502540A (en) * | 1981-06-01 | 1985-03-05 | Mobil Oil Corporation | Tertiary oil recovery |
US4452708A (en) * | 1982-02-18 | 1984-06-05 | Exxon Production Research Co. | Oil recovery method using sulfonate surfactants derived from extracted aromatic feedstocks |
US4458759A (en) * | 1982-04-29 | 1984-07-10 | Alberta Oil Sands Technology And Research Authority | Use of surfactants to improve oil recovery during steamflooding |
US4475592A (en) * | 1982-10-28 | 1984-10-09 | Texaco Canada Inc. | In situ recovery process for heavy oil sands |
US4479542A (en) * | 1982-11-22 | 1984-10-30 | Exxon Production Research Co. | Enhanced oil recovery process utilizing a lignosulfonate as a _solubilizing agent in an afterflush |
US4494604A (en) * | 1983-06-28 | 1985-01-22 | Phillips Petroleum Company | Extraction of acidic materials from organic liquids and use thereof in enhanced oil recovery |
US4513821A (en) * | 1984-02-03 | 1985-04-30 | Mobil Oil Corporation | Lowering CO2 MMP and recovering oil using carbon dioxide |
US4686053A (en) * | 1984-04-20 | 1987-08-11 | Institut Francais Du Petrole | Micellar systems containing N-acyl N-alkyl α-amino-carboxylic compounds, particularly useful in enhanced hydrocarbon recovery |
US5013462A (en) * | 1985-10-24 | 1991-05-07 | Pfizer Inc. | Method for improving production of viscous crude oil |
US5083613A (en) * | 1989-02-14 | 1992-01-28 | Canadian Occidental Petroleum, Ltd. | Process for producing bitumen |
US5358052A (en) * | 1990-12-20 | 1994-10-25 | John L. Gidley & Associates, Inc. | Conditioning of formation for sandstone acidizing |
US5318124A (en) * | 1991-11-14 | 1994-06-07 | Pecten International Company | Recovering hydrocarbons from tar sand or heavy oil reservoirs |
US6050335A (en) * | 1997-10-31 | 2000-04-18 | Shell Oil Company | In-situ production of bitumen |
US6257334B1 (en) * | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6436880B1 (en) * | 2000-05-03 | 2002-08-20 | Schlumberger Technology Corporation | Well treatment fluids comprising chelating agents |
US6662872B2 (en) * | 2000-11-10 | 2003-12-16 | Exxonmobil Upstream Research Company | Combined steam and vapor extraction process (SAVEX) for in situ bitumen and heavy oil production |
US6911418B2 (en) * | 2001-05-17 | 2005-06-28 | Schlumberger Technology Corporation | Method for treating a subterranean formation |
US6814141B2 (en) * | 2001-06-01 | 2004-11-09 | Exxonmobil Upstream Research Company | Method for improving oil recovery by delivering vibrational energy in a well fracture |
US7114566B2 (en) * | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US7077199B2 (en) * | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7086465B2 (en) * | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US7156176B2 (en) * | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US6631761B2 (en) * | 2001-12-10 | 2003-10-14 | Alberta Science And Research Authority | Wet electric heating process |
US6988552B2 (en) * | 2003-06-19 | 2006-01-24 | Conocophillips Company | Liquid carbon dioxide cleaning of wellbores and near-wellbore areas |
US7073577B2 (en) * | 2003-08-29 | 2006-07-11 | Applied Geotech, Inc. | Array of wells with connected permeable zones for hydrocarbon recovery |
US20060207799A1 (en) * | 2003-08-29 | 2006-09-21 | Applied Geotech, Inc. | Drilling tool for drilling web of channels for hydrocarbon recovery |
US20050072567A1 (en) * | 2003-10-06 | 2005-04-07 | Steele David Joe | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US7147057B2 (en) * | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US6988549B1 (en) * | 2003-11-14 | 2006-01-24 | John A Babcock | SAGD-plus |
US20050224230A1 (en) * | 2004-04-13 | 2005-10-13 | Coriba Technologies, L.L.C. | Composition and process for enhanced oil recovery |
US20060243448A1 (en) * | 2005-04-28 | 2006-11-02 | Steve Kresnyak | Flue gas injection for heavy oil recovery |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090194278A1 (en) * | 2008-02-06 | 2009-08-06 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Enhanced Oil Recovery In Oxygen Based In Situ Combustion Using Foaming Agents |
US20090218099A1 (en) * | 2008-02-28 | 2009-09-03 | Baker Hughes Incorporated | Method for Enhancing Heavy Hydrocarbon Recovery |
US7938183B2 (en) * | 2008-02-28 | 2011-05-10 | Baker Hughes Incorporated | Method for enhancing heavy hydrocarbon recovery |
US20110220364A1 (en) * | 2010-03-10 | 2011-09-15 | Basf Se | Process for mineral oil production using cationic surfactants having a hydrophobic block with a chain length of 6 to 10 carbon atoms |
US10400564B2 (en) | 2014-03-21 | 2019-09-03 | Dow Global Technologies Llc | Staged steam extraction of in situ bitumen |
US9845669B2 (en) | 2014-04-04 | 2017-12-19 | Cenovus Energy Inc. | Hydrocarbon recovery with multi-function agent |
WO2016048637A1 (en) * | 2014-09-22 | 2016-03-31 | Dow Global Technologies Llc | Thermally unstable ammonium carboxylates for enhanced oil recovery |
CN106715641A (en) * | 2014-09-22 | 2017-05-24 | 陶氏环球技术有限责任公司 | Thermally unstable ammonium carboxylates for enhanced oil recovery |
WO2016099847A1 (en) * | 2014-12-16 | 2016-06-23 | Huntsman Petrochemical Llc | Ultra-high salinity surfactant formulation |
CN106795051A (en) * | 2014-12-16 | 2017-05-31 | 亨斯迈石油化学有限责任公司 | Superelevation salinity surfactant formulation |
US10519363B2 (en) | 2014-12-16 | 2019-12-31 | Huntsman Petrochemical Llc | Ultra-high salinity surfactant formulation |
US10214683B2 (en) | 2015-01-13 | 2019-02-26 | Bp Corporation North America Inc | Systems and methods for producing hydrocarbons from hydrocarbon bearing rock via combined treatment of the rock and subsequent waterflooding |
US10435608B2 (en) * | 2015-06-08 | 2019-10-08 | Halliburton Energy Services, Inc. | Betaines for shale stabilization |
US20190375975A1 (en) * | 2015-06-08 | 2019-12-12 | Halliburton Energy Services, Inc. | Betaines for Shale Stabilization |
AU2015397928B2 (en) * | 2015-06-08 | 2020-01-02 | Halliburton Energy Services, Inc. | Betaines for shale stabilization |
US10669467B2 (en) * | 2015-06-08 | 2020-06-02 | Halliburton Energy Services, Inc. | Betaines for shale stabilization |
US10941347B2 (en) | 2016-06-21 | 2021-03-09 | Dow Global Technologies Llc | Composition for steam extraction of bitumen |
WO2018013488A1 (en) | 2016-07-12 | 2018-01-18 | Dow Global Technologies Llc | Foam-forming composition for steam assisted oil recovery |
EA036631B1 (en) * | 2016-07-12 | 2020-12-02 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Foam-forming composition for steam assisted oil recovery |
US11001744B2 (en) | 2016-07-12 | 2021-05-11 | Dow Global Technologies Llc | Foam-forming composition for steam assisted oil recovery |
US11001747B2 (en) | 2017-10-06 | 2021-05-11 | Dow Global Technologies Llc | Alkanolamine and glycol ether composition for enhanced extraction of bitumen |
US12091609B2 (en) | 2019-08-15 | 2024-09-17 | Dow Global Technologies Llc | Additive for enhanced oil recovery |
US12043795B2 (en) | 2019-10-10 | 2024-07-23 | Dow Global Technologies Llc | Enhanced oil recovery methods and compositions |
CN113153209A (en) * | 2020-01-07 | 2021-07-23 | 中国石油天然气股份有限公司 | Multi-medium composite huff and puff development method for heavy oil reservoir |
Also Published As
Publication number | Publication date |
---|---|
WO2009042284A1 (en) | 2009-04-02 |
US20090159288A1 (en) | 2009-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090078414A1 (en) | Chemically enhanced thermal recovery of heavy oil | |
US7730958B2 (en) | Method and apparatus to enhance hydrocarbon production from wells | |
CA2713261C (en) | Method for enhancing heavy hydrocarbon recovery | |
CN107532077B (en) | Co-surfactant foam-forming composition for enhanced oil recovery | |
US8869892B2 (en) | Low salinity reservoir environment | |
US20180002595A1 (en) | Systems and methods for producing hydrocarbons from hydocarbon bearing rock via combined treatment of the rock and subsequent waterflooding | |
CA2886934A1 (en) | Establishing fluid communication for hydrocarbon recovery using surfactant | |
CN105026514A (en) | Internal olefin sulfonate composition | |
CA2979842A1 (en) | Electrolytic system and method for processing a hydrocarbon source | |
US11001744B2 (en) | Foam-forming composition for steam assisted oil recovery | |
US3490532A (en) | Recovery of low-gravity viscous hydrocarbons | |
US20140262241A1 (en) | Systems and Methods for the Production of a Subterranean Reservoir Containing Viscous Hydrocarbons | |
CN111621281A (en) | In-situ self-steering WAG method | |
US20140353250A1 (en) | Use of long chain internal olefin sulfonates | |
US20140262242A1 (en) | Systems and Methods for the Production of a Subterranean Reservoir Containing Viscous Hydrocarbons | |
Ahearn | Surfactants for oil recovery | |
Tunio et al. | Recovery enhancement with application of FAWAG for a Malaysian field | |
CA2958449C (en) | Methods for accelerating recovery of heavy hydrocarbons with co-injection of steam and volatile agent | |
CA2599553C (en) | Method and apparatus to enhance hydrocarbon production from wells | |
US11427749B2 (en) | Wax deposit removal using aqueous surfactant | |
RU2554651C1 (en) | Acid composition for treatment of bottom-hole zone of carbonate reservoir | |
CA3063394A1 (en) | Method for steam extraction of bitumen | |
US11001745B2 (en) | Hydrocarbon recovery composition, method, and system | |
AU2020301038C1 (en) | Wax deposit removal using aqueous surfactant | |
Chaalal et al. | Innovation in Oil: A sustainable EOR technique for high salinity and high temperature formations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SZABO, GEZA HORVATH;PEATS, ALLAN;FELIX, JOAO;AND OTHERS;REEL/FRAME:020070/0918;SIGNING DATES FROM 20070925 TO 20071012 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |