US20090077894A1 - Reinforced louver blade - Google Patents
Reinforced louver blade Download PDFInfo
- Publication number
- US20090077894A1 US20090077894A1 US11/724,315 US72431507A US2009077894A1 US 20090077894 A1 US20090077894 A1 US 20090077894A1 US 72431507 A US72431507 A US 72431507A US 2009077894 A1 US2009077894 A1 US 2009077894A1
- Authority
- US
- United States
- Prior art keywords
- louver blade
- strips
- plastic
- die
- extruded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
Definitions
- the present invention relates to a louver blade used for shutters for windows, doors or similar architectural openings and in particular to a reinforced louver blade made from plastic materials.
- louver blades are used in making shutters, where the blades are either fixed or movable. In each case, the blades are supported only at either end. In a movable shutter, pins are provided at either end along the longitudinal axis to allow pivoting.
- Prior art louver blades made from plastic materials have limited span lengths. When used for wider openings, these louver blades tend to sag, making them less desirable. There is, therefore, a need for a plastic louver blade that is more rigid and thus able to span a wider distance without noticeable sagging.
- the present invention provides a louver blade, comprising an elongated body made of extruded plastic having first and second plastic strips disposed within and off-center from the longitudinal axis of the body.
- the present invention also provides a method for making a louver blade, comprising: extruding plastic in a shape of a louver blade into a die; feeding first and second plastic strips through a cavity of the die; cooling the extruded louver blade; and cutting the extruded louver blade into desired length.
- FIG. 1 is a fragmentary, perspective view of louver blade made in accordance with the present invention, with portions shown in cross-section.
- FIG. 2 is a schematic diagram of an extrusion process used in making the louver blade of FIG. 1 .
- FIG. 3 is a schematic side elevational view of FIG. 2 , with portions shown in cross-section.
- FIG. 4 is a perspective view of a die used in the present invention, showing entry slots for the reinforcement strips.
- FIG. 5 is a cross-sectional view taken along line 5 - 5 of FIG. 4 , showing the internal passageways for the hot plastic melt.
- FIG. 6 is a cross-sectional view taken along line 6 - 6 of FIG. 5 .
- FIG. 7 is the same view as FIG. 6 , showing the reinforcement strips and the hot plastic melt filling up the internal passageways.
- FIG. 8 is a cross-sectional view taken along line 8 - 8 of FIG. 5 .
- FIG. 9 is the same view as FIG. 8 , showing the passageways filled with hot plastic melt and the reinforcement strips supported within the die.
- FIG. 10 is a cross-sectional view taken along line 10 - 10 of FIG. 5 .
- FIG. 11 is the same view as FIG. 10 , showing the hot plastic melt filling up the die cavity and enclosing the reinforcement strips.
- louver blade 2 made in accordance with the present invention is disclosed in FIG. 1 .
- the louver blade 2 is an elongated body made of extruded plastic material, such as cellular PVC.
- a hard skin 4 shown in dashed lines, is preferably formed around the body by rapid cooling of the profile during the extrusion process.
- Longitudinal reinforcement plastic strips 8 and 9 made of glass fibers in a PVC resin are fed into the extrusion die thereby to be embedded within the body of the blade 2 during the extrusion process.
- the louver blade 2 is preferably oblong in cross-section, having a longitudinal axis 10 . Other profile shapes may be used.
- the louver blade 2 may have a horizontal plane of symmetry containing the axis 10 .
- the louver blade 2 in cross-section has thicker middle portion 12 and thinner end portions 14 .
- the fiberglass-reinforced strips 8 and 9 are preferably disposed in the middle portion 12 offset from each other horizontally and vertically, such that both strips are vertically and horizontally apart from each other.
- the upper strip 8 is disposed closer to a top surface of the louver blade 2 , while the lower strip 9 is disposed nearer to a bottom surface of the blade.
- the upper strip 8 is offset towards to the left, while the lower strip 9 is offset towards the right.
- the strips in cross-section said first and second strips in cross-section have wider than taller dimensions and the wider dimensions are disposed horizontally within the body of the louver blade.
- the strips are advantageously packaged in a spool in lengths of 1,500 feet or more, thereby providing for continuous extrusion process without interruption, except for replacing a spent spool.
- the strips 8 and 9 advantageously provide reinforcement and rigidity to louver blade 2 , which is typically supported at opposite ends with pins, as for example in a shutter application. With the inclusion of the fiberglass strips 8 and 9 , the typical span is substantially increased from about 20-22 inches to about 28-30 inches without noticeable sagging.
- the strips 8 and 9 advantageously counteract each other to provide rigidity. When the louver blade 2 is hung, the top fiberglass strip 8 will be under compression while the bottom fiberglass strip 9 will be under tension. The compressive and tensile forces thus generated in the strips would tend to counteract each other, thereby providing a more rigid louver blade.
- the strips are available from Strongwell, Bristol, Va.
- an extrusion system used in making the louver blade 2 is disclosed.
- the system includes an extruder 18 extruding foam or cellular PVC plastic into a die 20 .
- a spool 22 carries the glass fiber reinforcement strips, which are fed into an embosser 24 that roughens the top and bottom surfaces of the strips before they are fed into the die 20 .
- the die 20 provides the desired shape to the louver blade 2 .
- a shaper 26 cools the hot, extruded plastic and provides a hard skin around the body of the blade.
- the shaper 26 includes a passageway made in the same cross-sectional shape as the die.
- the shaper 26 is immediately next to the cavity of the die in which the hot extruded plastic takes its profile.
- the shaper 26 includes cooling passageways through which chilled water is circulated, thereby cooling the outer surface of the hot extruded plastic to form the hard skin 4 as it passes through the chilled shaper.
- the extruded louver blade then passes to a sizer 28 where further cooling is accomplished.
- the sizer 28 has a passageway in the same shape and size as the cross-sectional shape of the blade 2 .
- the sizer 28 is immersed in chilled water inside a cooling tank 30 , which is kept at a vacuum to keep the shape of extruded plastic profile and keep it from collapsing onto itself as it cools down.
- the extruded blade emerges from the cooling tank 30 into a puller 32 , which pulls the extruded blade through the extrusion system.
- a saw 34 cuts the extruded blade into the desired length pieces, as generally shown at 36 . With the use of longer length strips, there is assurance that the reinforcement strips will be continuous in each cut length.
- the strip embosser 24 includes upper and lower rolls 38 that provide an embossed pattern on the upper and lower surfaces of the strips 8 and 9 .
- the pattern provides a rough texture, such as a cross-hatching pattern, on the surfaces of the strips onto which the extruded plastic can attach itself.
- the rolls 38 initially drive the strips 8 and 9 into the die 20 . Once the hot plastic is pushed into the die 20 the forces of the moving molten plastic pulls the strips along.
- the shaper 26 has an inlet 40 for chilled water to cool the outer surface of the extruded plastic to provide the hard skin 4 around the body of the louver blade.
- An outlet 42 draws the chilled water back to the chiller (not shown).
- the extruded plastic passes through the sizer 28 , which has the same cross-sectional cavity shape as the shaper 26 in the die 20 .
- the sizer 28 is submerged in chilled water inside the cooling tank 30 .
- the chilled water circulates through inlet 44 and outlet 46 through a chiller (not shown).
- the chilled water temperature is approximately 55°-60° F.
- the tank 30 is maintained in a vacuum, preferably ranging from 1-5 inches of mercury.
- An outlet 47 is connected to a vacuum pump (not shown).
- the vacuum advantageously keeps the hot extruded plastic from collapsing at it cools.
- the sizer 28 thus keeps the shape of the extrusion at it continues to cool down.
- the extruded plastic blade 2 after exiting the cooling tank 30 , is gripped between upper and lower endless tracks 48 that pull the extruded plastic blade along the extrusion system.
- the tracks are equipped with rubber treads adapted to grip the plastic blade.
- the cutter 34 cuts the extruded blade into the desired lengths.
- the die 20 includes upper and lower slots 50 and 52 through which the strips 8 and 9 are inserted.
- the slots 50 and 52 are entry ways into passageways 54 and 56 that guide the strips through the die 20 .
- the passageways 54 and 56 maintain the placement of the strips in relation to the body of the louver blade.
- the passageways end at the entrance to a die cavity 58 which has the desired cross-sectional or profile shape for the louver blade 2 to be extruded.
- the hot molten plastic is fed from the extruder 18 through an oblong, doughnut shaped, tapering passageway 60 that extends through the die and ends at the entrance to the cavity 58 .
- the direction of the plastic flow from the extruder 18 is transverse to the direction of flow of the plastic through the die 20 to advantageously clear the front area of the die where the strips are inserted.
- the passageway 60 narrows down as it approaches the entrance to the cavity 58 , as shown in FIG. 8 .
- FIGS. 7 and 9 show the passageway 60 filled with melted plastic as it flows through the passageway and into the cavity 58 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
- The present invention relates to a louver blade used for shutters for windows, doors or similar architectural openings and in particular to a reinforced louver blade made from plastic materials.
- Typical louver blades are used in making shutters, where the blades are either fixed or movable. In each case, the blades are supported only at either end. In a movable shutter, pins are provided at either end along the longitudinal axis to allow pivoting. Prior art louver blades made from plastic materials have limited span lengths. When used for wider openings, these louver blades tend to sag, making them less desirable. There is, therefore, a need for a plastic louver blade that is more rigid and thus able to span a wider distance without noticeable sagging.
- It is an object of the present invention to provide a reinforced plastic louver blade with greater rigidity than non-reinforced louver blades, thereby allowing for wider spans without noticeable sagging.
- It is another object of the present invention to provide a reinforced plastic louver blade that can be extruded in a continuous process.
- In summary, the present invention provides a louver blade, comprising an elongated body made of extruded plastic having first and second plastic strips disposed within and off-center from the longitudinal axis of the body.
- The present invention also provides a method for making a louver blade, comprising: extruding plastic in a shape of a louver blade into a die; feeding first and second plastic strips through a cavity of the die; cooling the extruded louver blade; and cutting the extruded louver blade into desired length.
- These and other objects of the present invention will become apparent from the following detailed description.
-
FIG. 1 is a fragmentary, perspective view of louver blade made in accordance with the present invention, with portions shown in cross-section. -
FIG. 2 is a schematic diagram of an extrusion process used in making the louver blade ofFIG. 1 . -
FIG. 3 is a schematic side elevational view ofFIG. 2 , with portions shown in cross-section. -
FIG. 4 is a perspective view of a die used in the present invention, showing entry slots for the reinforcement strips. -
FIG. 5 is a cross-sectional view taken along line 5-5 ofFIG. 4 , showing the internal passageways for the hot plastic melt. -
FIG. 6 is a cross-sectional view taken along line 6-6 ofFIG. 5 . -
FIG. 7 is the same view asFIG. 6 , showing the reinforcement strips and the hot plastic melt filling up the internal passageways. -
FIG. 8 is a cross-sectional view taken along line 8-8 ofFIG. 5 . -
FIG. 9 is the same view asFIG. 8 , showing the passageways filled with hot plastic melt and the reinforcement strips supported within the die. -
FIG. 10 is a cross-sectional view taken along line 10-10 ofFIG. 5 . -
FIG. 11 is the same view asFIG. 10 , showing the hot plastic melt filling up the die cavity and enclosing the reinforcement strips. - A
louver blade 2 made in accordance with the present invention is disclosed inFIG. 1 . Thelouver blade 2 is an elongated body made of extruded plastic material, such as cellular PVC. A hard skin 4, shown in dashed lines, is preferably formed around the body by rapid cooling of the profile during the extrusion process. Longitudinal reinforcementplastic strips blade 2 during the extrusion process. - The
louver blade 2 is preferably oblong in cross-section, having alongitudinal axis 10. Other profile shapes may be used. Thelouver blade 2 may have a horizontal plane of symmetry containing theaxis 10. Thelouver blade 2 in cross-section hasthicker middle portion 12 andthinner end portions 14. The fiberglass-reinforcedstrips middle portion 12 offset from each other horizontally and vertically, such that both strips are vertically and horizontally apart from each other. Theupper strip 8 is disposed closer to a top surface of thelouver blade 2, while thelower strip 9 is disposed nearer to a bottom surface of the blade. Theupper strip 8 is offset towards to the left, while thelower strip 9 is offset towards the right. The strips in cross-section said first and second strips in cross-section have wider than taller dimensions and the wider dimensions are disposed horizontally within the body of the louver blade. - The strips are advantageously packaged in a spool in lengths of 1,500 feet or more, thereby providing for continuous extrusion process without interruption, except for replacing a spent spool. The
strips louver blade 2, which is typically supported at opposite ends with pins, as for example in a shutter application. With the inclusion of thefiberglass strips strips louver blade 2 is hung, thetop fiberglass strip 8 will be under compression while thebottom fiberglass strip 9 will be under tension. The compressive and tensile forces thus generated in the strips would tend to counteract each other, thereby providing a more rigid louver blade. The strips are available from Strongwell, Bristol, Va. - Referring to
FIG. 2 , an extrusion system used in making thelouver blade 2 is disclosed. The system includes anextruder 18 extruding foam or cellular PVC plastic into a die 20. Aspool 22 carries the glass fiber reinforcement strips, which are fed into anembosser 24 that roughens the top and bottom surfaces of the strips before they are fed into thedie 20. The die 20 provides the desired shape to thelouver blade 2. - A
shaper 26 cools the hot, extruded plastic and provides a hard skin around the body of the blade. Theshaper 26 includes a passageway made in the same cross-sectional shape as the die. Theshaper 26 is immediately next to the cavity of the die in which the hot extruded plastic takes its profile. Theshaper 26 includes cooling passageways through which chilled water is circulated, thereby cooling the outer surface of the hot extruded plastic to form the hard skin 4 as it passes through the chilled shaper. - The extruded louver blade then passes to a
sizer 28 where further cooling is accomplished. Thesizer 28 has a passageway in the same shape and size as the cross-sectional shape of theblade 2. Thesizer 28 is immersed in chilled water inside acooling tank 30, which is kept at a vacuum to keep the shape of extruded plastic profile and keep it from collapsing onto itself as it cools down. - The extruded blade emerges from the
cooling tank 30 into apuller 32, which pulls the extruded blade through the extrusion system. Asaw 34 cuts the extruded blade into the desired length pieces, as generally shown at 36. With the use of longer length strips, there is assurance that the reinforcement strips will be continuous in each cut length. - Referring to
FIG. 3 , thestrip embosser 24 includes upper andlower rolls 38 that provide an embossed pattern on the upper and lower surfaces of thestrips rolls 38 initially drive thestrips die 20 the forces of the moving molten plastic pulls the strips along. - The
shaper 26 has aninlet 40 for chilled water to cool the outer surface of the extruded plastic to provide the hard skin 4 around the body of the louver blade. Anoutlet 42 draws the chilled water back to the chiller (not shown). - From the
shaper 26, the extruded plastic passes through thesizer 28, which has the same cross-sectional cavity shape as theshaper 26 in thedie 20. Thesizer 28 is submerged in chilled water inside thecooling tank 30. The chilled water circulates throughinlet 44 andoutlet 46 through a chiller (not shown). The chilled water temperature is approximately 55°-60° F. Thetank 30 is maintained in a vacuum, preferably ranging from 1-5 inches of mercury. Anoutlet 47 is connected to a vacuum pump (not shown). The vacuum advantageously keeps the hot extruded plastic from collapsing at it cools. Thesizer 28 thus keeps the shape of the extrusion at it continues to cool down. - The extruded
plastic blade 2, after exiting thecooling tank 30, is gripped between upper and lowerendless tracks 48 that pull the extruded plastic blade along the extrusion system. The tracks are equipped with rubber treads adapted to grip the plastic blade. Thecutter 34 cuts the extruded blade into the desired lengths. - Referring to
FIG. 4 , thedie 20 includes upper andlower slots strips slots passageways die 20. It will be seen that thepassageways die cavity 58 which has the desired cross-sectional or profile shape for thelouver blade 2 to be extruded. The hot molten plastic is fed from theextruder 18 through an oblong, doughnut shaped, taperingpassageway 60 that extends through the die and ends at the entrance to thecavity 58. The direction of the plastic flow from theextruder 18 is transverse to the direction of flow of the plastic through the die 20 to advantageously clear the front area of the die where the strips are inserted. Thepassageway 60 narrows down as it approaches the entrance to thecavity 58, as shown inFIG. 8 .FIGS. 7 and 9 show thepassageway 60 filled with melted plastic as it flows through the passageway and into thecavity 58. - While this invention has been described as having preferred design, it is understood that it is capable of further modification, uses and/or adaptations following in general the principle of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains, and as may be applied to the essential features set forth, and fall within the scope of the invention or the limits of the appended claims.
Claims (18)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/724,315 US20090077894A1 (en) | 2007-03-15 | 2007-03-15 | Reinforced louver blade |
CA002625180A CA2625180A1 (en) | 2007-03-15 | 2008-03-11 | Reinforced louver blade |
CA2892313A CA2892313C (en) | 2007-03-15 | 2008-03-11 | Reinforced louver blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/724,315 US20090077894A1 (en) | 2007-03-15 | 2007-03-15 | Reinforced louver blade |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090077894A1 true US20090077894A1 (en) | 2009-03-26 |
Family
ID=39764640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/724,315 Abandoned US20090077894A1 (en) | 2007-03-15 | 2007-03-15 | Reinforced louver blade |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090077894A1 (en) |
CA (2) | CA2625180A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110078955A1 (en) * | 2009-10-07 | 2011-04-07 | Tai-Long Huang | Louver blade including a reinforcing plate |
US20120042570A1 (en) * | 2010-08-18 | 2012-02-23 | Marocco Mario M | Shutter with removable louvres |
US20120110909A1 (en) * | 2009-07-21 | 2012-05-10 | Magna International Inc. | Carrier with integrated ducting |
CN103776141A (en) * | 2012-10-25 | 2014-05-07 | 珠海格力电器股份有限公司 | Wind sweeping blade and production method thereof |
US20140259932A1 (en) * | 2013-03-14 | 2014-09-18 | Royal Group, Inc. | Wide-span louver |
US9528002B2 (en) | 2011-04-11 | 2016-12-27 | Solvay Sa | Manufacture and use of a composite material comprising fibres and at least one vinyl chloride polymer |
IT201700034695A1 (en) * | 2017-03-29 | 2018-09-29 | Veris S R L | Listello for furnishing elements including recycled polyvinyl chloride |
FR3066152A1 (en) * | 2017-05-15 | 2018-11-16 | Valeo Systemes Thermiques | SHUTTER FOR FRONT FASTENING DEVICE |
US11655997B2 (en) | 2019-12-20 | 2023-05-23 | Johnson Controls Tyco IP Holdings LLP | Damper blade assembly for HVAC system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2748048A (en) * | 1954-03-30 | 1956-05-29 | Russell Refinforced Plastics C | Plastic structural member |
US3764642A (en) * | 1966-09-07 | 1973-10-09 | Ugine Kuhlmann | Method for extruding profiled sections of expanded thermo plastic material having an integral skin |
US5096645A (en) * | 1990-10-09 | 1992-03-17 | Plastigage Corporation | Method of forming reinforced thermoplastic members |
US5303507A (en) * | 1992-11-02 | 1994-04-19 | Fashion Fold Products Inc | Adjustable shutters and slats therefor |
US5941021A (en) * | 1996-11-06 | 1999-08-24 | Vassallo Research & Development Corporation | Louver-type window and slat therefor |
US6083601A (en) * | 1997-03-19 | 2000-07-04 | Royal Wood, Inc. | Foam wood extrusion product |
US6109006A (en) * | 1998-07-14 | 2000-08-29 | Advanced Plastics Technologies, Ltd. | Process for making extruded pet containers |
US20040003903A1 (en) * | 2002-07-08 | 2004-01-08 | Creative Extruded Products, Inc. | Extruded rigid plastic storm shutter slat having a co-extruded rigid foam core |
US20060060311A1 (en) * | 2004-09-22 | 2006-03-23 | Ching Feng Blinds Ind. Co., Ltd. | Slat structure for venetian blinds |
US20060113046A1 (en) * | 2004-05-12 | 2006-06-01 | Prince Kendall W | Stiffened parts for window covering and methods for making the same |
US20080093036A1 (en) * | 2006-10-20 | 2008-04-24 | Ya-Yin Lin | Slat for a window blind |
-
2007
- 2007-03-15 US US11/724,315 patent/US20090077894A1/en not_active Abandoned
-
2008
- 2008-03-11 CA CA002625180A patent/CA2625180A1/en not_active Abandoned
- 2008-03-11 CA CA2892313A patent/CA2892313C/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2748048A (en) * | 1954-03-30 | 1956-05-29 | Russell Refinforced Plastics C | Plastic structural member |
US3764642A (en) * | 1966-09-07 | 1973-10-09 | Ugine Kuhlmann | Method for extruding profiled sections of expanded thermo plastic material having an integral skin |
US5096645A (en) * | 1990-10-09 | 1992-03-17 | Plastigage Corporation | Method of forming reinforced thermoplastic members |
US5303507A (en) * | 1992-11-02 | 1994-04-19 | Fashion Fold Products Inc | Adjustable shutters and slats therefor |
US5941021A (en) * | 1996-11-06 | 1999-08-24 | Vassallo Research & Development Corporation | Louver-type window and slat therefor |
US6083601A (en) * | 1997-03-19 | 2000-07-04 | Royal Wood, Inc. | Foam wood extrusion product |
US6109006A (en) * | 1998-07-14 | 2000-08-29 | Advanced Plastics Technologies, Ltd. | Process for making extruded pet containers |
US20040003903A1 (en) * | 2002-07-08 | 2004-01-08 | Creative Extruded Products, Inc. | Extruded rigid plastic storm shutter slat having a co-extruded rigid foam core |
US20060113046A1 (en) * | 2004-05-12 | 2006-06-01 | Prince Kendall W | Stiffened parts for window covering and methods for making the same |
US20060060311A1 (en) * | 2004-09-22 | 2006-03-23 | Ching Feng Blinds Ind. Co., Ltd. | Slat structure for venetian blinds |
US20080093036A1 (en) * | 2006-10-20 | 2008-04-24 | Ya-Yin Lin | Slat for a window blind |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120110909A1 (en) * | 2009-07-21 | 2012-05-10 | Magna International Inc. | Carrier with integrated ducting |
US9586625B2 (en) * | 2009-07-21 | 2017-03-07 | Magna International Inc. | Vehicle engine compartment louver carrier with integrated ducting |
US11046172B2 (en) | 2009-07-21 | 2021-06-29 | Magna International Inc | Vehicle compartment louver carrier with integrated ducting |
US20110078955A1 (en) * | 2009-10-07 | 2011-04-07 | Tai-Long Huang | Louver blade including a reinforcing plate |
US20120042570A1 (en) * | 2010-08-18 | 2012-02-23 | Marocco Mario M | Shutter with removable louvres |
US8474187B2 (en) * | 2010-08-18 | 2013-07-02 | Maxxmar Inc. | Shutter with removable louvres |
US9528002B2 (en) | 2011-04-11 | 2016-12-27 | Solvay Sa | Manufacture and use of a composite material comprising fibres and at least one vinyl chloride polymer |
CN103776141A (en) * | 2012-10-25 | 2014-05-07 | 珠海格力电器股份有限公司 | Wind sweeping blade and production method thereof |
US20140259932A1 (en) * | 2013-03-14 | 2014-09-18 | Royal Group, Inc. | Wide-span louver |
IT201700034695A1 (en) * | 2017-03-29 | 2018-09-29 | Veris S R L | Listello for furnishing elements including recycled polyvinyl chloride |
FR3066152A1 (en) * | 2017-05-15 | 2018-11-16 | Valeo Systemes Thermiques | SHUTTER FOR FRONT FASTENING DEVICE |
US11655997B2 (en) | 2019-12-20 | 2023-05-23 | Johnson Controls Tyco IP Holdings LLP | Damper blade assembly for HVAC system |
Also Published As
Publication number | Publication date |
---|---|
CA2892313A1 (en) | 2008-09-15 |
CA2892313C (en) | 2017-07-04 |
CA2625180A1 (en) | 2008-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2892313C (en) | Reinforced louver blade | |
EP0846543A1 (en) | Weatherstrip product formed by sequential extrusion of cellular and non-cellular plastic resins | |
KR910005183B1 (en) | Process for forming plasticized polyuinyl butryal sheet | |
CA1241165A (en) | Integral composite profile of cellular and non- cellular resins | |
DE3314682A1 (en) | PROFILE BAR, IN PARTICULAR FOR VEHICLES, AND METHOD FOR PRODUCING THE SAME AND DEVICE FOR CARRYING OUT THE METHOD | |
KR20160109523A (en) | Aluminum Sash Manufacturing Systems | |
US8747714B2 (en) | Method of manufacturing mesh-reinforced thermoplastic membranes | |
DE10107211A1 (en) | Extruding and cooling of hollow profile is followed by insertion of further material into open cavity, which is then closed at region of connection | |
US20120104647A1 (en) | Process and apparatus for producing a strand-like extrudate | |
CN210998914U (en) | Crosscut device of production extruded polystyrene cystosepiment equipment | |
CN210940356U (en) | Device for producing PLA (polylactic acid) filter tip heat insulation section | |
KR101746212B1 (en) | Device for producing short fibers and manufacturing method thereof | |
RU2534537C2 (en) | Device for sizing of sections | |
JPS59127742A (en) | Method for continuously preparaing solid thermoplastic resin rod shaped body at high speed | |
CN110744605A (en) | Crosscut device of production extruded polystyrene cystosepiment equipment | |
CN218748731U (en) | Cutting device of plastic particle extruder | |
CN222645296U (en) | Extrusion head for cable pipe production | |
WO2007144070A1 (en) | Manufacturing procedure for tubular products obtained by continuous assembly of extruded profiles of plastic material with expanding polymers | |
KR102457076B1 (en) | Manufacturing method of pad for caterpillar of extrusion molding device | |
EP2632688B1 (en) | Wetted type calibrator for manufacturing window frame and manufacturing device including the calibrator | |
US20070108669A1 (en) | Method for producing plastic rods | |
KR100747753B1 (en) | Synthetic resin pipe and manufacturing method | |
GB2576141A (en) | Porous plastic drainage profiles from recycled thermoplastic | |
CN215397044U (en) | Tunnel self-adhesive type waterproof board/prevent that bonding tape production equipment for drain bar | |
WO2007132225A2 (en) | A method and an apparatus for the extrusion of a plastic profile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROYAL MOULDINGS LIMITED, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KING, NOEL;PAULEY, ROBERT;STAFFORD, BRIAN;REEL/FRAME:019150/0708 Effective date: 20070410 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS ADMINISTR Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:ROYAL MOULDINGS LIMITED;ROYAL OUTDOOR PRODUCTS, INC.;PLASTIC TRENDS, INC;REEL/FRAME:023699/0229 Effective date: 20091222 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS NOTES COLLATERA Free format text: SECURITY AGREEMENT;ASSIGNORS:PLASTIC TRENDS, INC.;ROYAL MOULDINGS LIMITED;ROYAL OUTDOOR PRODUCTS, INC.;REEL/FRAME:023774/0966 Effective date: 20091222 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: PLASTIC TRENDS, INC., GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:035114/0984 Effective date: 20150227 Owner name: ROYAL MOULDINGS LIMITED, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:035114/0984 Effective date: 20150227 Owner name: ROYAL OUTDOOR PRODUCTS, INC., GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:035114/0984 Effective date: 20150227 |
|
AS | Assignment |
Owner name: PLASTIC TRENDS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO CAPITAL FINANCE, LLC;REEL/FRAME:039765/0332 Effective date: 20160830 Owner name: ROYAL OUTDOOR PRODUCTS, INC., INDIANA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO CAPITAL FINANCE, LLC;REEL/FRAME:039765/0332 Effective date: 20160830 Owner name: ROYAL MOULDINGS LIMITED, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO CAPITAL FINANCE, LLC;REEL/FRAME:039765/0332 Effective date: 20160830 Owner name: WELLS FARGO CAPITAL FINANCE, LLC, AS ADMINISTRATIV Free format text: SUBSTITUTION OF ADMINISTRATIVE AGENT & ASSIGNMENT OF RIGHTS UNDER CREDIT AGREEMENT AND LOAN DOCUMENTS;ASSIGNOR:GENERAL ELECTRIC COMPANY, AS ADMINISTRATIVE AGENT;REEL/FRAME:040054/0920 Effective date: 20160829 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, ADMINISTRATIVE AGENT AS Free format text: SUBSTITUTION OF ADMINISTRATIVE AGENT AS SUCCESSOR BY MERGER;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT;REEL/FRAME:040090/0459 Effective date: 20151202 |