US20090076660A1 - PC-Programmed Irrigation Control System - Google Patents
PC-Programmed Irrigation Control System Download PDFInfo
- Publication number
- US20090076660A1 US20090076660A1 US12/240,859 US24085908A US2009076660A1 US 20090076660 A1 US20090076660 A1 US 20090076660A1 US 24085908 A US24085908 A US 24085908A US 2009076660 A1 US2009076660 A1 US 2009076660A1
- Authority
- US
- United States
- Prior art keywords
- irrigation
- computer
- irrigation controller
- controller
- schedule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002262 irrigation Effects 0.000 title claims abstract description 84
- 238000003973 irrigation Methods 0.000 title claims abstract description 70
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 12
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 abstract description 5
- 238000012423 maintenance Methods 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 241000948319 Lasius flavus Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 101100540614 Caenorhabditis elegans vps-52 gene Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/22—Improving land use; Improving water use or availability; Controlling erosion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S715/00—Data processing: presentation processing of document, operator interface processing, and screen saver display processing
- Y10S715/961—Operator interface with visual structure or function dictated by intended use
- Y10S715/965—Operator interface with visual structure or function dictated by intended use for process control and configuration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
Definitions
- This invention relates to irrigation control systems, and more particularly to a system using a free-standing field controller programmed by a conventional personal computer with the aid of a novel interactive graphic interface.
- Irrigation controllers are used in irrigation systems to electrically operate valves that deliver water under pressure to sprinklers or other distribution devices for watering turf or plants. Controllers are normally installed and programmed after the irrigation system has been designed. Technical skills and experience relating to such installations vary greatly from first-time do-it-yourselfers to professional landscaping crews. Furthermore, once the watering schedules are set on initial installation, they need to be changed or adjusted from time to time to adapt the system to climate or seasonal changes, growth of plants, or unanticipated conditions of soil or topography that result in inadequate or excessive watering in some areas of the system.
- the system is divided into zones, each of which irrigates an area of turf or plants having similar growth characteristics and consequently similar water needs.
- the amount and frequency of watering can be controlled uniformly and individually for any given grouping of vegetation in the system.
- the number and frequency of the periodic adjustments that need to be made to the system depends on the complexity of the landscaping and the changes in the variable water requirements.
- controllers currently available on the market offer a wide array of features and options. These are typically accessed by dials, knobs, buttons and switches, while information is primarily displayed by alphanumeric displays and/or indicator lights. Thus, altering the watering schedule of a controller can be a bewildering, frustrating experience for users, such as homeowners, who seldom find it necessary to make schedule changes.
- PCs personal computers
- irrigation control systems have been sold to homeowners and other users who are not very sophisticated in manually programming complex controllers, but who do own a PC.
- Such users are likely to be quite familiar with standard methods of interactively manipulating graphics. For example, most PC users intuitively know how to drag and drop icons by moving and clicking a mouse.
- the present invention provides a centrally operated irrigation control system with an intuitive, interactive graphic operator interface by presenting to the operator a two-dimensional time-date chart on a PC screen.
- Color-coded icons representing the different zones of the system can be placed on the chart and manipulated so as to present to the operator a graphic picture of which zone will be watering how long, at what time and on which days. Clicking on other icons can shut off watering on selected days, start a manual watering cycle, or cause a selected setting to repeat at selected intervals or on selected days of the week or month.
- the schedule and run time settings created by the operator on the PC screen are transmitted to a field controller when desired, and the PC polls the field controller to assure reliable communications by radio or other electronic means at frequent intervals, e.g. once per second, as long as the control program of this invention is running on the PC.
- the field controller's clock is synchronized with the PC's clock whenever a schedule is uploaded from, or downloaded to, the field controller. This prevents unintentional resetting of the field controller's clock e.g. between daylight saving and standard time.
- the field controller's transceiver acknowledges each transmission back to the PC.
- the transmitted schedules and settings for the field controller are stored in that controller and remain in effect until altered by the PC, even if the PC goes off line.
- the field controller is a free-standing unit; i.e. it does not depend on the PC for its operation. Once it has been programmed by the PC, it continues to function on its own, with or without the PC, until its operation is purposely disabled or modified. This is important for several reasons. Firstly, the system of this invention does not tie up the PC unnecessarily. Secondly, a PC or radio link failure does not impede the scheduled functioning of the system. Thirdly, a landscape maintenance technician can (with an appropriate radio access code) download and/or modify the field controller's schedule and settings from his truck. This is useful for diagnostic purposes and for correcting inappropriately selected watering parameters without the homeowner having to be present. The homeowner receives the new schedule when he activates the inventive program or chooses, within the program, the menu option to upload the schedule from the field controller.
- a handheld remote is provided to send water-off, manual-watering, and resume-operation radio signals to the field controller without changing its stored parameters. This is useful for maintenance personnel when checking the proper operation of the sprinkler heads.
- FIG. 1 is a block diagram of the system of this invention
- FIG. 2 a is a front view of a typical field controller in the system of the invention.
- FIG. 2 b is a block diagram of the field controller of FIG. 2 a;
- FIG. 3 is a block diagram of a handheld remote optionally used with the system of the invention.
- FIG. 4 shows the start-up screen of the control program
- FIG. 5 shows the zones selection box
- FIG. 6 a shows the screen of FIG. 5 with zone schedules inserted
- FIG. 6 b shows the label produced by positioning the cursor over a schedule box
- FIG. 7 shows the schedule dialog box
- FIG. 8 shows the screen of FIG. 4 with alternate-days watering schedules entered thereon;
- FIG. 9 shows a magnifying box on the screen of FIG. 8 ;
- FIG. 10 shows a magnified section of the screen of FIG. 4 with a new-lawn schedule inserted
- FIG. 11 shows an odd-days watering schedule
- FIG. 12 shows an interval schedule screen
- FIG. 13 shows an enlarged section of the screen of FIG. 8 with a global adjustment of 100%
- FIG. 14 shows the screen section of FIG. 13 with a global adjustment of 150%
- FIG. 15 shows the water cost calculator of the invention
- FIG. 16 shows the Station On-Off subscreen of the manual operations screen
- FIG. 17 shows the screen of FIG. 16 with manual operations entered
- FIG. 18 shows the Stations Enabled/Disabled subscreen of the manual operations screen
- FIG. 19 shows the Cycle and System subscreen of the manual operations screen.
- the system 10 of this invention is composed of a PC 12 , a field controller 14 , zone valves or stations 16 a through 16 h (collectively referred to herein as stations 16 ), and optionally a handheld remote 18 .
- Radio transceiver 20 connected to an appropriate USB or modem port of the PC 12 , and transceiver 22 at the field controller 14 , exchange schedule, setting and clock data between the PC 12 and the field controller 14 .
- a transceiver 24 in the remote 18 allows the remote 18 to access the field controller 14 for limited purposes.
- Each of the stations 16 turns the water from a main 26 on or off, under the control of the field controller 14 , to a set of sprinklers 28 .
- Zone Status LEDs 40 a through 40 h indicate the current status of the valves 16 a through 16 h , respectively, which control water flow to the sprinklers 28 in zones 1 through 8 , respectively.
- Manual Start pushbutton 42 is provided to start a manual watering sequence and to switch from one zone to the next.
- Enable/Disable button 44 toggles between inhibiting and restoring all watering.
- Water-Off LED 56 is connected to the power supply 46 ( FIG. 2 b ) in such a manner as to light steadily when watering is disabled, and to flash at intervals of e.g. four seconds under the power of a backup battery (not shown) in the power supply 46 to indicate an AC line power failure.
- FIG. 2 b shows the details of the free-standing field controller 14 .
- Irrigation parameter and clock synchronization signals from the PC 12 of FIG. 1 are received by the transceiver 22 and decoded by the encoder/decoder 30 .
- An access code may be embodied in the signals to assure that the field controller 14 responds only to its owner's PC.
- the received irrigation settings and schedules are stored in the non-volatile memory 32 by the microprocessor 34 .
- the microprocessor 34 acknowledges receipt and execution of the transmission from the PC 12 by transmitting a status signal back to the PC 12 .
- a status signal is also transmitted back to the PC 12 when the field controller 14 is polled by the PC 12 (typically about once per second while the PC program is running.
- the communications monitor LED 36 blinks whenever a good signal is received so that the proper operation of the communications link can be observed.
- the microprocessor 34 Under the control of its clock 38 , and solely in response to the scheduling and setting data stored in memory 32 , the microprocessor 34 turns power to the water valves or stations 16 a through 16 h on and off as the watering schedule stored in memory 32 dictates. Whenever power is on to one of the stations 16 , the microprocessor 34 illuminates the corresponding one of the station LEDs 40 a through 40 h . When no watering is in progress, the microprocessor 34 scrolls the station LEDs 40 a through 40 h to indicate that the system is functional and standing by. No intervention by the PC 12 is required for the free-standing field controller 14 to perform these operations.
- the controller 14 has two controls which may be in the form of the Manual Start pushbutton 42 and the Enable/Disable pushbutton 44 .
- the Manual Start button 42 triggers the microprocessor 34 to energize station 16 a for its run time as stored in the memory 32 .
- a second push turns off station 16 a and starts station 16 b .
- a third push turns station 16 b off and starts station 16 c .
- the ninth push turns off station 16 h and returns the microprocessor 34 to its automatic operation. If button 42 is pushed only once, each station will water in numerical sequence for its designated run time, and then return to automatic operation.
- the Enable/Disable button 44 shuts all watering off by removing the operating power from the stations 16 , while keeping the microprocessor 34 and radio transceiver 22 in operation.
- the Enable/Disable button can be physically pushed by an operator in the field, or actuated by a radio command signal from the PC 12 or the handheld remote 18 .
- the optional remote 18 has a Manual Start button 70 and an Enable/Disable button 72 .
- An encoder 78 translates a button actuation into an appropriate code for transmission.
- the transceiver 24 is equipped with an LED 80 that lights when a signal is being transmitted or received.
- the LED 80 is programmed to blink twice if the addressed controller 14 is operational and acknowledges the transmission, once if the controller 14 is disabled, and not at all if the controller 14 is out of service and does not respond, or if a bad transmission is received.
- FIGS. 4 through 19 illustrate the establishment and manipulation of watering schedules and settings in the system of the invention.
- the inventive control program When the inventive control program is first opened on the PC 12 , the start-up or main graphic or screen 100 ( FIG. 4 ) is initially presented to the user.
- the first two lines 102 a and 102 b of the menu bar 102 contain the standard operational icons of the Windows® operating system, adding only the Communications menu 104 and the Irrigation Tools menu 106 .
- the Communications menu 104 allows the selection of ports for the connection of the transceiver 20 and the initiation of a data transfer to or from the field controller 14 .
- the Irrigation Tools menu 106 allows the selection of the various types of screens discussed below.
- the third line 102 c of the menu bar 102 contains the special icons that activate the features of the inventive system.
- the Zone Display icon 108 brings up a Zones box or list 130 of all separately controllable zones.
- the No. Watering icon 109 toggles the field controller 14 of FIG. 2 a on/off in the same manner as the enable/disable buttons 44 and 72 described above.
- the Communications icon 110 monitors the functioning of the radio link by showing radiating green circles when transmissions to the field controller 14 are being acknowledged, and red ones when they are not.
- the Percent icon 111 brings up the global adjustment bar of FIGS. 13 and 14 for globally increasing or decreasing all the watering times of all the zones in response to climatic changes or water conservation requirements.
- the Manual icon 112 brings up a set of screens which handle a variety of manual operations.
- the Plus and Minus icons 113 , 115 enlarge and reduce, respectively, selected portions of the screen as described below.
- Undo and Redo icons 114 and 116 carry out standard editing functions of the Windows® operating system.
- the “100%” notation 119 indicates that the global adjustment (discussed below in conjunction with FIGS. 13 and 14 ) is set to 100%.
- the Send icon 118 is normally grayed out.
- the program of this invention is opened on the PC 12 , the current schedule and settings stored in the field controller 14 are immediately uploaded for display on the PC 12 .
- the Send icon 118 becomes active.
- the PC 12 begins sending the selected or modified watering schedule and settings to the field controller 14 .
- the Send icon 118 will momentarily change to “OK”, after which the Send icon 118 grays out, the PC 12 resumes its continual polling of the field controller 14 , and the screen again displays the status of the field controller 14 .
- Pop-up reminder boxes (not shown) warn the operator if a modification has been made but not sent to the field controller 14 within a reasonable time.
- the body of the start-up screen 100 displays horizontal time bands 120 arranged in a vertical series of days.
- the first day 122 of the series is always the current day as determined by the computer's internal clock.
- the screen 100 preferably displays seven time bands to form a repeating one-week setup.
- Two-week or four-week setups i.e. setups that repeat every two or four weeks
- weeks preceding or following the displayed week can be accessed by clicking the up arrow 124 or the down arrow 126 .
- a vertical line 128 shows the current time, in accordance with the computer's clock, on the midnight-to-midnight scale of the time bands 120 .
- Zone Display icon 108 In order to set up a watering schedule, the Zone Display icon 108 is clicked. This brings up the Zones box 130 ( FIG. 5 ) which displays a valve icon 132 and an editable description box 134 for each of the separately programmable zones.
- a watering schedule is begun by dragging and dropping, in accordance with standard Windows® practice, a selected valve icon 132 onto a selected time band 120 at approximately the time position at which a watering cycle is selected to begin. (Note that in FIG. 5 , the down arrow 126 has been clicked until the time bands 120 on the screen represent the sixth through twelfth days of a two-week setup).
- valve or zone icons 132 are color-coded, and the schedule boxes 135 are correspondingly color-coded in addition to being numbered. It will thus be seen in FIG. 6 that the flower beds and parkway lawn get watered on Tuesday at about 7:15 am and 8:15 am, respectively; the rear lawn, front lawn and front shrubs get watered on Wednesday at about 5:55 am, 7:05 am and 7:55, respectively; and the rose garden gets watered at 8:00 am on Thursday. The side yard and rear shrubs get watered, one immediately after the other, beginning at 9:00 am on Thursday.
- schedule box 136 Because only one zone can normally be on at any given time, an attempt to drag schedule box 136 onto schedule box 138 causes schedule box 136 to jump back to a position immediately adjacent schedule box 138 .
- Positioning the cursor 135 over a schedule box such as 133 brings up an information label 137 ( FIG. 6 b ) that identifies the zone and shows its start time, run time and end time.
- Right-clicking a schedule box such as 136 brings up a dialog box 139 ( FIG. 7 ) in which the user can modify the start time and run time, or delete the schedule box entirely.
- Incompatible selections chosen in the dialog box, such as overlapping run times, are rejected with an advisory pop-up box (not shown) indicating the inappropriate choice.
- a schedule box can be dragged to a different start time, and its right edge can be dragged to increase or decrease its run time.
- FIG. 8 illustrates a method of building a one-week schedule that waters alternate sets of zones on alternate weekdays.
- the Tuesday schedule of zones 3 , 7 , 4 and 8 and the Wednesday schedule of zones 6 , 5 , 1 and 2 are first established in the manner discussed above in connection with FIG. 5 .
- the Tuesday time band 140 is selected and highlighted by double-clicking on it. Positioning the cursor over the thus selected time band produces a 4-way arrow.
- the highlighted time band can now be dragged to the desired day with the left mouse button. A copy of the time band 140 will thus be produced on the desired day.
- the Wednesday band 142 is copied to the Friday band.
- the Saturday and Sunday bands 144 , 146 are left blank. It will be noted that as the top band rotates to the bottom of the screen (with next week's date) at the end of the day, Monday's and Tuesday's schedules will not alternate but be the same. This can be avoided by setting up a two-week schedule.
- each time band is a large X 148 . Clicking that X highlights the time band and the X, and disables watering for that day only. This would be useful if the forecast for that day calls for rain. If an error is made in scheduling a given day, the error can be corrected by a conventional Edit-delete or Undo and reentry operation.
- FIGS. 9 and 10 illustrate the magnification of any desired area of the screen so that settings may be observed and manipulated more exactly.
- Clicking the Plus icon 113 magnifies the whole screen. Because this may move a desired portion of the screen out of view, a portion of the screen can alternatively be selected for magnification by dragging the mouse with the left button. This places a shaded box 150 over the image on the screen. The box 150 can be moved and sized by its handles 152 in accordance with standard Windows® drawing practice. When it has been placed and sized as desired, clicking the Plus icon 113 enlarges the area encompassed by the box 150 to fill the screen ( FIG. 10 ).
- watering can be scheduled for odd or even days of the month by selecting, e.g., “Odd Days” from the Irrigation Tools menu 106 .
- This brings up the screen of FIG. 11 in which all even days are blocked out, but in which watering on odd days can be scheduled at will, as described above. It should be noted that if the last day of the month is odd, it is also blocked out so that watering cannot occur two days in a row.
- double-clicking the arrows 124 , 126 moves the display to the first seven or last seven days of the month, respectively.
- single-clicking the arrows 124 , 126 moves the display up or down by one day.
- FIG. 12 shows an Interval Schedule screen 154 which can also be selected from the Irrigation Tools menu 106 .
- the screen 154 contains only one time band 120 for the current day.
- a schedule set up for that day will repeat at the intervals selected in the window 156 , starting on the day selected in window 158 .
- the selections in windows 156 , 158 cause a water drop icon 160 to appear on the selected days in the calendar 162 .
- Right-clicking on an icon 160 on the calendar 162 causes a Cancelled icon 164 to appear in its place, and watering will not take place on that day unless the Cancelled icon 164 is removed by right-clicking on it.
- FIGS. 13 and 14 illustrate the operation of the Percent icon 111 .
- Clicking that icon brings up the global adjustment screen 166 under the enlarged screen section 168 .
- the user can move the slider 170 or click the bar 171 or the arrows 172 , 174 to vary the percentage of run time from the normal 100% to anywhere from 0% to 200%.
- Each click on the bar 171 on either side of the slider 170 increases or decreases the run time by 10%, while each click on one of the arrows 172 , 174 increases or reduces it by 1%.
- FIG. 14 The effect of a global adjustment to 150% of the original settings is shown in FIG. 14 . Comparing the schedules of FIG. 14 to those of FIG. 13 , it will be seen that the width (i.e. run time) of each schedule box has been increased by 50%, but that the intervals 175 between the schedule boxes remain the same. It is conceivable, therefore, that for late-evening waterings, a 50% run time increase may push schedule boxes partly or wholly past midnight. If that is the case, any schedule portion past midnight is deleted. It is, however, stored in the PC's memory and is restored by the PC when the global adjustment is returned to 100%.
- a water cost calculator shown in FIG. 15 , can be called up from the Irrigation Tools menu 106 ( FIG. 4 ).
- the white spaces such as 176 are selectable (as for example space 178 ) and changeable, while the grey spaces such as 180 are automatically calculated.
- the flow rate in gallons per minute for each zone is first entered in the corresponding spaces 176 .
- the user enters the number of gallons in a water company billing unit (usually a ccf, which equals about 750 gallons).
- the user consults his latest water bill and enters the number of billing units used and the charge for that amount of water.
- the spreadsheet of FIG. 15 continuously calculates the water cost per gallon, the total number of gallons scheduled to be consumed that month, and the total cost of that water. This is particularly useful in conjunction with the global adjustment feature of FIGS. 13 and 14 , as it permits an instant assessment of the cost effectiveness of any particular adjustment.
- the “Cycle and System” tab 202 brings up the screen of FIG. 19 .
- Each of the indicators 204 representing zones 1 through 8 is bright green when its zone is running, dark green when it is not, or red when it is disabled.
- a communication failure condition is indicated in box 205 .
- Clicking button 206 stops any manual cycle previously programmed in FIG. 16 .
- Button 208 stops the currently running zone and advances the cycle to the next selected zone.
- Button 220 is provided to completely disable the field controller 14 as, e.g., for performing system maintenance.
- Button 220 has the same function as the No-Watering icon 109 on the menu bar 102 .
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Stored Programmes (AREA)
Abstract
A free-standing field irrigation controller is selectively programmed by a personal computer over a radio link. The computer is equipped with software that displays a screen with seven horizontal time bands representing one day each, arranged vertically to display one week's time. Box icons representing watering settings for a plurality of zones can be dragged and dropped onto the time bands, copied and modified thereon as desired, to form a freely selectable watering schedule. Other selectable screens allow odd-days or even-days watering, sophisticated interval watering, global watering time adjustment, and a variety of manual functions. Selectable portions of the main screen can be enlarged as desired. Based on the selected schedule, the computer calculates and displays the monthly cost of water. Selected zones can be temporarily disabled to deal with weather or maintenance issues. A handheld global shut-off and manual watering remote and/or a separate radio-linked computer may be used in field maintenance.
Description
- This invention relates to irrigation control systems, and more particularly to a system using a free-standing field controller programmed by a conventional personal computer with the aid of a novel interactive graphic interface.
- Irrigation controllers are used in irrigation systems to electrically operate valves that deliver water under pressure to sprinklers or other distribution devices for watering turf or plants. Controllers are normally installed and programmed after the irrigation system has been designed. Technical skills and experience relating to such installations vary greatly from first-time do-it-yourselfers to professional landscaping crews. Furthermore, once the watering schedules are set on initial installation, they need to be changed or adjusted from time to time to adapt the system to climate or seasonal changes, growth of plants, or unanticipated conditions of soil or topography that result in inadequate or excessive watering in some areas of the system.
- During the design and installation of the irrigation system, the system is divided into zones, each of which irrigates an area of turf or plants having similar growth characteristics and consequently similar water needs. Thus, the amount and frequency of watering can be controlled uniformly and individually for any given grouping of vegetation in the system. The number and frequency of the periodic adjustments that need to be made to the system depends on the complexity of the landscaping and the changes in the variable water requirements.
- Many of the controllers currently available on the market offer a wide array of features and options. These are typically accessed by dials, knobs, buttons and switches, while information is primarily displayed by alphanumeric displays and/or indicator lights. Thus, altering the watering schedule of a controller can be a bewildering, frustrating experience for users, such as homeowners, who seldom find it necessary to make schedule changes. The typical lack of intuitive controls, the often obscure instructions in manuals, and an installer's reluctance to spend time training the user exacerbate that problem.
- Worse yet is the not uncommon situation where the 24V AC power fails when the back-up battery that retains data in memory during power failures has been allowed to wear out. In that case, all program information may be lost, and the user has to reprogram the whole system without the original installer's guidance.
- As personal computers (PCs) have become more and more commonplace in homes, fairly complex irrigation control systems have been sold to homeowners and other users who are not very sophisticated in manually programming complex controllers, but who do own a PC. Such users are likely to be quite familiar with standard methods of interactively manipulating graphics. For example, most PC users intuitively know how to drag and drop icons by moving and clicking a mouse.
- For such users, it is highly desirable to provide a user-friendly graphic interface which allows an operator to manipulate the settings of the field controller with a mouse, and visually observe the effect of his manipulations. In addition, it would be advantageous for users to have a means of allowing repair personnel in the field to perform diagnostic downloads and/or basic control functions, such as turning the water on and off at desired locations, without having to physically access the field controller or the PC. Also, it would be advantageous for users to see how different selections of watering settings would affect the cost of operating the irrigation system.
- The present invention provides a centrally operated irrigation control system with an intuitive, interactive graphic operator interface by presenting to the operator a two-dimensional time-date chart on a PC screen. Color-coded icons representing the different zones of the system can be placed on the chart and manipulated so as to present to the operator a graphic picture of which zone will be watering how long, at what time and on which days. Clicking on other icons can shut off watering on selected days, start a manual watering cycle, or cause a selected setting to repeat at selected intervals or on selected days of the week or month.
- Other screens, dialog boxes or icons provide more detailed information about individual zones, calculate the anticipated monthly or yearly cost of the water expended by the system as a result of the chosen settings, or selectively temporarily disable one or more malfunctioning zones.
- The schedule and run time settings created by the operator on the PC screen are transmitted to a field controller when desired, and the PC polls the field controller to assure reliable communications by radio or other electronic means at frequent intervals, e.g. once per second, as long as the control program of this invention is running on the PC. The field controller's clock is synchronized with the PC's clock whenever a schedule is uploaded from, or downloaded to, the field controller. This prevents unintentional resetting of the field controller's clock e.g. between daylight saving and standard time. The field controller's transceiver acknowledges each transmission back to the PC. The transmitted schedules and settings for the field controller are stored in that controller and remain in effect until altered by the PC, even if the PC goes off line.
- Thus, a significant aspect of the invention is that the field controller is a free-standing unit; i.e. it does not depend on the PC for its operation. Once it has been programmed by the PC, it continues to function on its own, with or without the PC, until its operation is purposely disabled or modified. This is important for several reasons. Firstly, the system of this invention does not tie up the PC unnecessarily. Secondly, a PC or radio link failure does not impede the scheduled functioning of the system. Thirdly, a landscape maintenance technician can (with an appropriate radio access code) download and/or modify the field controller's schedule and settings from his truck. This is useful for diagnostic purposes and for correcting inappropriately selected watering parameters without the homeowner having to be present. The homeowner receives the new schedule when he activates the inventive program or chooses, within the program, the menu option to upload the schedule from the field controller.
- In one aspect of the invention, a handheld remote is provided to send water-off, manual-watering, and resume-operation radio signals to the field controller without changing its stored parameters. This is useful for maintenance personnel when checking the proper operation of the sprinkler heads.
-
FIG. 1 is a block diagram of the system of this invention; -
FIG. 2 a is a front view of a typical field controller in the system of the invention; -
FIG. 2 b is a block diagram of the field controller ofFIG. 2 a; -
FIG. 3 is a block diagram of a handheld remote optionally used with the system of the invention; -
FIG. 4 shows the start-up screen of the control program; -
FIG. 5 shows the zones selection box; -
FIG. 6 a shows the screen ofFIG. 5 with zone schedules inserted; -
FIG. 6 b shows the label produced by positioning the cursor over a schedule box; -
FIG. 7 shows the schedule dialog box; -
FIG. 8 shows the screen ofFIG. 4 with alternate-days watering schedules entered thereon; -
FIG. 9 shows a magnifying box on the screen ofFIG. 8 ; -
FIG. 10 shows a magnified section of the screen ofFIG. 4 with a new-lawn schedule inserted; -
FIG. 11 shows an odd-days watering schedule; -
FIG. 12 shows an interval schedule screen; -
FIG. 13 shows an enlarged section of the screen ofFIG. 8 with a global adjustment of 100%; -
FIG. 14 shows the screen section ofFIG. 13 with a global adjustment of 150%; -
FIG. 15 shows the water cost calculator of the invention; -
FIG. 16 shows the Station On-Off subscreen of the manual operations screen; -
FIG. 17 shows the screen ofFIG. 16 with manual operations entered; -
FIG. 18 shows the Stations Enabled/Disabled subscreen of the manual operations screen; and -
FIG. 19 shows the Cycle and System subscreen of the manual operations screen. - As shown in
FIG. 1 , thesystem 10 of this invention is composed of aPC 12, afield controller 14, zone valves orstations 16 a through 16 h (collectively referred to herein as stations 16), and optionally a handheld remote 18.Radio transceiver 20 connected to an appropriate USB or modem port of thePC 12, andtransceiver 22 at thefield controller 14, exchange schedule, setting and clock data between thePC 12 and thefield controller 14. Atransceiver 24 in the remote 18 allows the remote 18 to access thefield controller 14 for limited purposes. Each of thestations 16 turns the water from a main 26 on or off, under the control of thefield controller 14, to a set ofsprinklers 28. - The face plate of a
typical field controller 14 in accordance with the invention is shown inFIG. 2 a. A communications monitorLED 36 indicates operation of the radio link between thefield controller 14 and thePC 12 and/or the remote 18.Zone Status LEDs 40 a through 40 h indicate the current status of thevalves 16 a through 16 h, respectively, which control water flow to thesprinklers 28 inzones 1 through 8, respectively.Manual Start pushbutton 42 is provided to start a manual watering sequence and to switch from one zone to the next. Enable/Disablebutton 44 toggles between inhibiting and restoring all watering. Water-Off LED 56 is connected to the power supply 46 (FIG. 2 b) in such a manner as to light steadily when watering is disabled, and to flash at intervals of e.g. four seconds under the power of a backup battery (not shown) in thepower supply 46 to indicate an AC line power failure. -
FIG. 2 b shows the details of the free-standingfield controller 14. Irrigation parameter and clock synchronization signals from thePC 12 ofFIG. 1 are received by thetransceiver 22 and decoded by the encoder/decoder 30. An access code may be embodied in the signals to assure that thefield controller 14 responds only to its owner's PC. The received irrigation settings and schedules are stored in thenon-volatile memory 32 by themicroprocessor 34. Themicroprocessor 34 acknowledges receipt and execution of the transmission from thePC 12 by transmitting a status signal back to thePC 12. A status signal is also transmitted back to thePC 12 when thefield controller 14 is polled by the PC 12 (typically about once per second while the PC program is running. The communications monitorLED 36 blinks whenever a good signal is received so that the proper operation of the communications link can be observed. - Under the control of its
clock 38, and solely in response to the scheduling and setting data stored inmemory 32, themicroprocessor 34 turns power to the water valves orstations 16 a through 16 h on and off as the watering schedule stored inmemory 32 dictates. Whenever power is on to one of thestations 16, themicroprocessor 34 illuminates the corresponding one of thestation LEDs 40 a through 40 h. When no watering is in progress, themicroprocessor 34 scrolls thestation LEDs 40 a through 40 h to indicate that the system is functional and standing by. No intervention by thePC 12 is required for the free-standingfield controller 14 to perform these operations. - The
controller 14 has two controls which may be in the form of theManual Start pushbutton 42 and the Enable/Disablepushbutton 44. TheManual Start button 42 triggers themicroprocessor 34 to energizestation 16 a for its run time as stored in thememory 32. A second push turns offstation 16 a and startsstation 16 b. A third push turnsstation 16 b off and starts station 16 c. Finally, the ninth push turns offstation 16 h and returns themicroprocessor 34 to its automatic operation. Ifbutton 42 is pushed only once, each station will water in numerical sequence for its designated run time, and then return to automatic operation. - The Enable/Disable
button 44 shuts all watering off by removing the operating power from thestations 16, while keeping themicroprocessor 34 andradio transceiver 22 in operation. The Enable/Disable button can be physically pushed by an operator in the field, or actuated by a radio command signal from thePC 12 or the handheld remote 18. - Referring now to
FIG. 3 , the optional remote 18 has aManual Start button 70 and an Enable/Disablebutton 72. Anencoder 78 translates a button actuation into an appropriate code for transmission. Thetransceiver 24 is equipped with anLED 80 that lights when a signal is being transmitted or received. TheLED 80 is programmed to blink twice if the addressedcontroller 14 is operational and acknowledges the transmission, once if thecontroller 14 is disabled, and not at all if thecontroller 14 is out of service and does not respond, or if a bad transmission is received. -
FIGS. 4 through 19 illustrate the establishment and manipulation of watering schedules and settings in the system of the invention. When the inventive control program is first opened on thePC 12, the start-up or main graphic or screen 100 (FIG. 4 ) is initially presented to the user. The first twolines Communications menu 104 and theIrrigation Tools menu 106. TheCommunications menu 104 allows the selection of ports for the connection of thetransceiver 20 and the initiation of a data transfer to or from thefield controller 14. TheIrrigation Tools menu 106 allows the selection of the various types of screens discussed below. - The
third line 102 c of the menu bar 102 contains the special icons that activate the features of the inventive system. As described in more detail below, theZone Display icon 108 brings up a Zones box orlist 130 of all separately controllable zones. The No. Wateringicon 109 toggles thefield controller 14 ofFIG. 2 a on/off in the same manner as the enable/disablebuttons Communications icon 110 monitors the functioning of the radio link by showing radiating green circles when transmissions to thefield controller 14 are being acknowledged, and red ones when they are not. ThePercent icon 111 brings up the global adjustment bar ofFIGS. 13 and 14 for globally increasing or decreasing all the watering times of all the zones in response to climatic changes or water conservation requirements. TheManual icon 112 brings up a set of screens which handle a variety of manual operations. The Plus andMinus icons icons notation 119 indicates that the global adjustment (discussed below in conjunction withFIGS. 13 and 14 ) is set to 100%. - The
Send icon 118 is normally grayed out. When the program of this invention is opened on thePC 12, the current schedule and settings stored in thefield controller 14 are immediately uploaded for display on thePC 12. When any change is made to the uploaded information, theSend icon 118 becomes active. When it is then clicked, thePC 12 begins sending the selected or modified watering schedule and settings to thefield controller 14. When the modified parameters have been successfully transmitted to thefield controller 14, theSend icon 118 will momentarily change to “OK”, after which theSend icon 118 grays out, thePC 12 resumes its continual polling of thefield controller 14, and the screen again displays the status of thefield controller 14. Pop-up reminder boxes (not shown) warn the operator if a modification has been made but not sent to thefield controller 14 within a reasonable time. - The body of the start-up
screen 100 displayshorizontal time bands 120 arranged in a vertical series of days. Thefirst day 122 of the series is always the current day as determined by the computer's internal clock. Thescreen 100 preferably displays seven time bands to form a repeating one-week setup. Two-week or four-week setups (i.e. setups that repeat every two or four weeks) can be chosen from theIrrigation Tools menu 106, in which case weeks preceding or following the displayed week can be accessed by clicking the uparrow 124 or thedown arrow 126. Avertical line 128 shows the current time, in accordance with the computer's clock, on the midnight-to-midnight scale of thetime bands 120. - In order to set up a watering schedule, the
Zone Display icon 108 is clicked. This brings up the Zones box 130 (FIG. 5 ) which displays avalve icon 132 and aneditable description box 134 for each of the separately programmable zones. A watering schedule is begun by dragging and dropping, in accordance with standard Windows® practice, a selectedvalve icon 132 onto a selectedtime band 120 at approximately the time position at which a watering cycle is selected to begin. (Note that inFIG. 5 , thedown arrow 126 has been clicked until thetime bands 120 on the screen represent the sixth through twelfth days of a two-week setup). - Repeated dragging and dropping produces the screen of
FIG. 6 (the uparrow 124 having been clicked to go back to a display of the first seven days of the two-week setup). Preferably, the valve orzone icons 132 are color-coded, and theschedule boxes 135 are correspondingly color-coded in addition to being numbered. It will thus be seen inFIG. 6 that the flower beds and parkway lawn get watered on Tuesday at about 7:15 am and 8:15 am, respectively; the rear lawn, front lawn and front shrubs get watered on Wednesday at about 5:55 am, 7:05 am and 7:55, respectively; and the rose garden gets watered at 8:00 am on Thursday. The side yard and rear shrubs get watered, one immediately after the other, beginning at 9:00 am on Thursday. - Because only one zone can normally be on at any given time, an attempt to drag
schedule box 136 ontoschedule box 138 causesschedule box 136 to jump back to a position immediatelyadjacent schedule box 138. Positioning thecursor 135 over a schedule box such as 133 brings up an information label 137 (FIG. 6 b) that identifies the zone and shows its start time, run time and end time. Right-clicking a schedule box such as 136 brings up a dialog box 139 (FIG. 7 ) in which the user can modify the start time and run time, or delete the schedule box entirely. Incompatible selections chosen in the dialog box, such as overlapping run times, are rejected with an advisory pop-up box (not shown) indicating the inappropriate choice. Alternatively, a schedule box can be dragged to a different start time, and its right edge can be dragged to increase or decrease its run time. -
FIG. 8 (with theZones box 130 now hidden by clicking Zone Display icon 108) illustrates a method of building a one-week schedule that waters alternate sets of zones on alternate weekdays. In that figure, the Tuesday schedule ofzones zones FIG. 5 . Next, theTuesday time band 140 is selected and highlighted by double-clicking on it. Positioning the cursor over the thus selected time band produces a 4-way arrow. The highlighted time band can now be dragged to the desired day with the left mouse button. A copy of thetime band 140 will thus be produced on the desired day. In like manner, theWednesday band 142 is copied to the Friday band. The Saturday andSunday bands - To the right of each time band is a
large X 148. Clicking that X highlights the time band and the X, and disables watering for that day only. This would be useful if the forecast for that day calls for rain. If an error is made in scheduling a given day, the error can be corrected by a conventional Edit-delete or Undo and reentry operation. -
FIGS. 9 and 10 illustrate the magnification of any desired area of the screen so that settings may be observed and manipulated more exactly. Clicking thePlus icon 113 magnifies the whole screen. Because this may move a desired portion of the screen out of view, a portion of the screen can alternatively be selected for magnification by dragging the mouse with the left button. This places ashaded box 150 over the image on the screen. Thebox 150 can be moved and sized by itshandles 152 in accordance with standard Windows® drawing practice. When it has been placed and sized as desired, clicking thePlus icon 113 enlarges the area encompassed by thebox 150 to fill the screen (FIG. 10 ). This is convenient, for example, when it is desired to schedule, by copying and pasting, a number of short, spacedwaterings 151 as would be beneficial on a new lawn. The process of clicking thePlus icon 113 and/or creating abox 150 can be repeated as desired for increasing the magnification of the screen image. Clicking theMinus icon 115 reverses the process step by step. - When local ordinances or other watering restrictions so provide, watering can be scheduled for odd or even days of the month by selecting, e.g., “Odd Days” from the
Irrigation Tools menu 106. This brings up the screen ofFIG. 11 , in which all even days are blocked out, but in which watering on odd days can be scheduled at will, as described above. It should be noted that if the last day of the month is odd, it is also blocked out so that watering cannot occur two days in a row. In the screen ofFIG. 11 , double-clicking thearrows arrows -
FIG. 12 shows an Interval Schedule screen 154 which can also be selected from theIrrigation Tools menu 106. The screen 154 contains only onetime band 120 for the current day. A schedule set up for that day will repeat at the intervals selected in thewindow 156, starting on the day selected inwindow 158. The selections inwindows water drop icon 160 to appear on the selected days in thecalendar 162. Right-clicking on anicon 160 on thecalendar 162 causes aCancelled icon 164 to appear in its place, and watering will not take place on that day unless theCancelled icon 164 is removed by right-clicking on it. -
FIGS. 13 and 14 illustrate the operation of thePercent icon 111. Clicking that icon brings up theglobal adjustment screen 166 under theenlarged screen section 168. In order to globally adjust all the run time settings of the watering schedules entered into the system (e.g. in order to cope with an unseasonal hot or cold spell), the user can move the slider 170 or click thebar 171 or thearrows bar 171 on either side of the slider 170 increases or decreases the run time by 10%, while each click on one of thearrows - The effect of a global adjustment to 150% of the original settings is shown in
FIG. 14 . Comparing the schedules ofFIG. 14 to those ofFIG. 13 , it will be seen that the width (i.e. run time) of each schedule box has been increased by 50%, but that theintervals 175 between the schedule boxes remain the same. It is conceivable, therefore, that for late-evening waterings, a 50% run time increase may push schedule boxes partly or wholly past midnight. If that is the case, any schedule portion past midnight is deleted. It is, however, stored in the PC's memory and is restored by the PC when the global adjustment is returned to 100%. - A water cost calculator, shown in
FIG. 15 , can be called up from the Irrigation Tools menu 106 (FIG. 4 ). In the screen ofFIG. 15 , which is essentially a dedicated spreadsheet, the white spaces such as 176 are selectable (as for example space 178) and changeable, while the grey spaces such as 180 are automatically calculated. In using the calculator ofFIG. 15 , the flow rate in gallons per minute for each zone (known from the number of sprinklers in the zone and the manufacturer's specifications for the type of sprinkler involved) is first entered in the correspondingspaces 176. Next, the user enters the number of gallons in a water company billing unit (usually a ccf, which equals about 750 gallons). Finally, the user consults his latest water bill and enters the number of billing units used and the charge for that amount of water. Based on the total run time, during the current month, of the schedules programmed into the system for each zone, the spreadsheet ofFIG. 15 continuously calculates the water cost per gallon, the total number of gallons scheduled to be consumed that month, and the total cost of that water. This is particularly useful in conjunction with the global adjustment feature ofFIGS. 13 and 14 , as it permits an instant assessment of the cost effectiveness of any particular adjustment. - Clicking the Manual icon 112 (
FIG. 4 ) brings up the three-tab screen ofFIG. 16 . All of theindicators 182 through 196 are initially dark green. If the “Rose Garden”tag 197 is clicked,indicator 194 turns brignt green, and the system sends out a signal to fieldcontroller 14 to turnzone 7 on for the twenty minutes currently entered into the Run Time box 198. Subsequent clicking on “Rear Lawn” and “Front Shrubs” (FIG. 17 ) causeszones zone 7, in the order in which they were clicked, and each for the time entered in box 198. Theindicators - Clicking the “Stations Enable/Disable”
tab 200 brings up the screen ofFIG. 18 . In this screen, all of theindicators 182 through 196 are originally bright green. If, for example, sprinkler heads break off in the rear lawn and the flower beds, those zones can be selectively shut off, pending repairs, by clicking on the labels “Flower Beds” and “Rear Lawn”, and then clicking the “Stations Enable/Disable”tab 200. This causesindicators field controller 14 to inhibit operation ofzones - The “Cycle and System”
tab 202 brings up the screen ofFIG. 19 . Each of theindicators 204 representingzones 1 through 8 is bright green when its zone is running, dark green when it is not, or red when it is disabled. A communication failure condition is indicated inbox 205. Clickingbutton 206 stops any manual cycle previously programmed inFIG. 16 .Button 208 stops the currently running zone and advances the cycle to the next selected zone.Button 220 is provided to completely disable thefield controller 14 as, e.g., for performing system maintenance.Button 220 has the same function as the No-Watering icon 109 on the menu bar 102. - It will be understood that the foregoing description is only one example of a system according to the invention, and that the described system may be modified to cover a variety of situations and requirements within the ambit of the following claims.
Claims (21)
1-18. (canceled)
19. A method of operating an irrigation system comprising:
providing a computer at a first location;
providing an irrigation controller at a second location; said irrigation controller coupled to at least one water valve for controlling passage of water to at least one sprinkler; said irrigation controller further configured to wirelessly receive, store and execute an irrigation schedule transmitted from said computer; said irrigation controller further configured to execute an irrigation schedule regardless of whether said irrigation controller is linked to said computer;
wirelessly transmitting a polling message from said computer to said irrigation controller;
wirelessly transmitting a status message in response to said polling message from said irrigation controller to said computer; and,
determining a status of said irrigation controller.
20. The method of claim 19 , further comprising displaying a status of said irrigation controller with irrigation software stored on and executed by said computer.
21. The method of claim 20 , further comprising displaying an icon with said computer; said icon communicating a status of said irrigation controller.
22. The method of claim 21 , wherein said icon is displayed within a graphical display directed to modifying an irrigation schedule.
23. The method of claim 22 , further comprising a communications status indicator on said irrigation controller; said communications status indicator indicating a status of a communication link between said irrigation controller and said computer.
24. The method of claim 23 , further comprising wirelessly transmitting a clock synchronization message from said computer to said irrigation controller.
25. The method of claim 19 , further comprising wirelessly transmitting a clock synchronization message from said computer to said irrigation controller.
26. A method of operating an irrigation system comprising:
executing irrigation software on a computer;
initiating a wireless connection with said irrigation software between said computer and an irrigation controller;
wirelessly transmitting a polling message with said irrigation software between said computer and said irrigation controller;
wirelessly transmitting a status message with said irrigation controller between said irrigation controller and said computer;
determining a status of said irrigation controller by said irrigation software;
determining an irrigation schedule with said irrigation software;
wirelessly transmitting said irrigation schedule to said irrigation controller; and,
executing said irrigation schedule with said irrigation controller.
27. The method of claim 26 , further comprising displaying a status of said irrigation controller with said irrigation software.
28. The method of claim 27 , wherein said icon is displayed within a graphical display directed to modifying an irrigation schedule.
29. The method of claim 28 , wherein said status of said irrigation controller is a communications status of said irrigation controller.
30. The method of claim 28 , further comprising wirelessly transmitting a clock synchronization message from said computer to said irrigation controller.
31. The method of claim 26 , further comprising providing a user interface for said irrigation software.
32. The method of claim 31 , wherein said user interface comprises a user-selectable control for globally adjusting said irrigation schedule.
33. The method of claim 31 , wherein said user interface comprises a user-selectable control for calculating the cost of water used by said irrigation controller.
34. A method of operating an irrigation system comprising:
executing irrigation software on a computer;
initiating a wireless connection with said irrigation software between said computer and an irrigation controller;
wirelessly transmitting a polling message with said irrigation software between said computer and said irrigation controller;
wirelessly transmitting a time synchronization message from said computer to said irrigation controller;
updating a clock circuit within said irrigation controller;
determining an irrigation schedule with said irrigation software;
wirelessly transmitting said irrigation schedule to said irrigation controller; and,
executing said irrigation schedule with said irrigation controller; said irrigation schedule being executed according to a time of said clock circuit.
35. The method of claim 34 , further comprising wirelessly transmitting a status message with said irrigation controller between said irrigation controller and said computer; and determining a status of said irrigation controller by said irrigation software.
36. The method of claim 35 , further comprising displaying a status of said irrigation controller with said irrigation software.
37. The method of claim 36 , wherein said displaying a status of said irrigation controller further comprises displaying an icon.
38. The method of claim 37 , wherein said displaying an icon further comprises changing an appearance of said icon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/240,859 US20090076660A1 (en) | 2003-01-06 | 2008-09-29 | PC-Programmed Irrigation Control System |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43827503P | 2003-01-06 | 2003-01-06 | |
US10/748,445 US7010395B1 (en) | 2003-01-06 | 2003-12-30 | PC-programmed irrigation control system |
US11/329,821 US20060122735A1 (en) | 2003-01-06 | 2006-01-10 | PC-programmed irrigation control system |
US12/240,859 US20090076660A1 (en) | 2003-01-06 | 2008-09-29 | PC-Programmed Irrigation Control System |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/329,821 Continuation US20060122735A1 (en) | 2003-01-06 | 2006-01-10 | PC-programmed irrigation control system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090076660A1 true US20090076660A1 (en) | 2009-03-19 |
Family
ID=35966351
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/748,445 Expired - Lifetime US7010395B1 (en) | 2003-01-06 | 2003-12-30 | PC-programmed irrigation control system |
US11/329,821 Abandoned US20060122735A1 (en) | 2003-01-06 | 2006-01-10 | PC-programmed irrigation control system |
US12/240,859 Abandoned US20090076660A1 (en) | 2003-01-06 | 2008-09-29 | PC-Programmed Irrigation Control System |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/748,445 Expired - Lifetime US7010395B1 (en) | 2003-01-06 | 2003-12-30 | PC-programmed irrigation control system |
US11/329,821 Abandoned US20060122735A1 (en) | 2003-01-06 | 2006-01-10 | PC-programmed irrigation control system |
Country Status (1)
Country | Link |
---|---|
US (3) | US7010395B1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090222141A1 (en) * | 2005-07-19 | 2009-09-03 | Rain Bird Corporation | Wireless extension to an irrigation control system and related methods |
US20100248644A1 (en) * | 2009-03-24 | 2010-09-30 | Toyota Infotechnology Center Co., Ltd. | Wireless device |
US20110015793A1 (en) * | 2009-07-17 | 2011-01-20 | Rain Bird Corporation | Variable Initialization Time in the Charging of Energy Reserves in an Irrigation Control System |
US20110017845A1 (en) * | 2009-07-27 | 2011-01-27 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US20110106320A1 (en) * | 2009-10-30 | 2011-05-05 | Rain Bird Corporation | Method and apparatus for generating an irrigation schedule |
US20110194630A1 (en) * | 2010-02-10 | 2011-08-11 | Yang Hua-Lung | Systems and methods for reporting radio link failure |
US8630743B2 (en) | 2011-09-01 | 2014-01-14 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US20140129039A1 (en) * | 2012-11-07 | 2014-05-08 | Rain Bird Corporation | Irrigation Control Systems and Methods |
US8793025B2 (en) | 2005-09-15 | 2014-07-29 | Rain Bird Corporation | Irrigation control device for decoder-based irrigation system |
US8851447B2 (en) | 2005-09-15 | 2014-10-07 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US8909381B2 (en) | 2009-07-17 | 2014-12-09 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
US20150032272A1 (en) * | 2013-07-23 | 2015-01-29 | Lindsay Corporation | Control system for an irrigation system |
WO2015002791A3 (en) * | 2013-07-01 | 2015-03-19 | Skydrop, Llc | Water reduction optimizing irrigation protocols |
US9244449B2 (en) | 2011-11-29 | 2016-01-26 | Rain Bird Corporation | Wireless irrigation control |
US9468162B2 (en) | 2012-08-01 | 2016-10-18 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US20180084741A1 (en) * | 2015-04-10 | 2018-03-29 | Husqvarna Ab | Simplified interface and operation in a watering system |
US10188049B1 (en) * | 2008-08-06 | 2019-01-29 | Cropmetrics Llc | Customized crop modeling |
EP3364747A4 (en) * | 2015-10-20 | 2019-05-22 | Bookleaf Pty Ltd. | Irrigation system |
US10609878B2 (en) | 2016-07-15 | 2020-04-07 | Rain Bird Corporation | Wireless remote irrigation control |
US10980120B2 (en) | 2017-06-15 | 2021-04-13 | Rain Bird Corporation | Compact printed circuit board |
US11503782B2 (en) | 2018-04-11 | 2022-11-22 | Rain Bird Corporation | Smart drip irrigation emitter |
US12295296B2 (en) | 2023-08-21 | 2025-05-13 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7010395B1 (en) * | 2003-01-06 | 2006-03-07 | The Toro Company | PC-programmed irrigation control system |
US20110301767A1 (en) * | 2003-04-25 | 2011-12-08 | George Alexanian | Automated landscape watering restrictions |
US8620480B2 (en) | 2003-04-25 | 2013-12-31 | George Alexanian | Irrigation water conservation with automated water budgeting and time of use technology |
US7962244B2 (en) * | 2003-04-25 | 2011-06-14 | George Alexanian | Landscape irrigation time of use scheduling |
US8538592B2 (en) | 2003-04-25 | 2013-09-17 | George Alexanian | Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions |
US7844368B2 (en) | 2003-04-25 | 2010-11-30 | George Alexanian | Irrigation water conservation with temperature budgeting and time of use technology |
US7349763B2 (en) * | 2004-10-30 | 2008-03-25 | Norman Ivans | System and method for systematically irrigating subregions of an irrigation region |
US8160750B2 (en) | 2005-06-17 | 2012-04-17 | Rain Bird Corporation | Programmable irrigation controller having user interface |
ITMI20051167A1 (en) * | 2005-06-21 | 2006-12-22 | Claber Spa | "MULTIPLE ELECTRONIC CONTROL UNIT FOR DIFFERENT COMMAND OF SOLENOID VALVES IN IRRIGATION SYSTEMS" |
EP2005271A2 (en) * | 2005-10-24 | 2008-12-24 | The Toro Company | Computer-operated landscape irrigation and lighting system |
US20070185621A1 (en) * | 2006-02-07 | 2007-08-09 | Dan Gilmore | System and method for controlling injection into an irrigation system |
US7584023B1 (en) | 2006-02-10 | 2009-09-01 | The Toro Company | Electronic irrigation system software |
US20130099022A9 (en) * | 2006-02-10 | 2013-04-25 | Doug Palmer | Electronic Irrigation System Software |
US9144204B2 (en) | 2006-06-20 | 2015-09-29 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
WO2007149949A1 (en) | 2006-06-20 | 2007-12-27 | Rain Bird Corporation | Sensor device for interrupting irrigation |
WO2008061833A1 (en) * | 2006-11-20 | 2008-05-29 | Quadrat | Electronic whiteboard for appointment management |
US20090008472A1 (en) * | 2007-07-02 | 2009-01-08 | Chadwick Loring Wilson | Control Devices For Irrigation Systems And Methods For Programming |
US20090008471A1 (en) * | 2007-07-02 | 2009-01-08 | Chadwick Loring Wilson | Control Devices For Irrigation Systems |
US20090150002A1 (en) * | 2007-12-05 | 2009-06-11 | Daniel Joseph Fekete | Wireless irrigation control server for monitoring and controlling a field module matrix |
US8700222B1 (en) * | 2008-03-04 | 2014-04-15 | Hunter Industries, Inc. | Irrigation controller with selectable watering restrictions |
US7930069B2 (en) * | 2008-04-24 | 2011-04-19 | Telsco Industries, Inc. | Irrigation flow converter, monitoring system and intelligent water management system |
US8219935B2 (en) * | 2008-06-24 | 2012-07-10 | Signature Control Systems, Inc. | Method and system for providing isolated detail information about stations which are simultaneously active in an irrigation system |
TR200805998A2 (en) | 2008-08-12 | 2009-12-21 | Kodalfa B�Lg� Ve �Let���M Teknoloj�Ler� Sanay� Ve T�Caret A.�. | Remote wireless climate monitoring and control system for greenhouses |
US10716269B2 (en) | 2008-08-12 | 2020-07-21 | Rain Bird Corporation | Methods and systems for irrigation control |
KR101520348B1 (en) * | 2008-11-04 | 2015-05-14 | 삼성전자주식회사 | Method and apparatus for schedule setting in portable communication system |
US8565904B2 (en) | 2009-09-03 | 2013-10-22 | Bruce Allen Bragg | Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve |
US8234014B1 (en) | 2009-11-02 | 2012-07-31 | Eco-Precise Irrigation Controls, LLC | Irrigation control system and method |
US9192110B2 (en) * | 2010-08-11 | 2015-11-24 | The Toro Company | Central irrigation control system |
US9872445B2 (en) * | 2010-09-30 | 2018-01-23 | The Toro Company | Turf management |
US9301460B2 (en) * | 2011-02-25 | 2016-04-05 | The Toro Company | Irrigation controller with weather station |
JP5760178B2 (en) * | 2011-05-24 | 2015-08-05 | パナソニックIpマネジメント株式会社 | Device management system, display device, and program |
US9829869B2 (en) | 2011-06-23 | 2017-11-28 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
US9703275B2 (en) | 2011-06-23 | 2017-07-11 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
US20130110293A1 (en) * | 2011-10-31 | 2013-05-02 | Harald Illig | Remotely-controlled water sprinkling system and method |
US9297839B2 (en) | 2013-07-01 | 2016-03-29 | Skydrop Holdings, Llc | Automatic detection of expansion component irrigation controller |
US20150032273A1 (en) * | 2013-07-01 | 2015-01-29 | Skydrop, Llc | Addition of new irrigation zone and operable components within an irrigation system |
US9912732B2 (en) | 2013-07-01 | 2018-03-06 | Skydrop Holdings, Llc | Automatic detection and configuration of faults within an irrigation system |
GB2593987C (en) * | 2015-05-18 | 2024-08-07 | Exel Industries Sa | Garden watering controllers |
US10871242B2 (en) | 2016-06-23 | 2020-12-22 | Rain Bird Corporation | Solenoid and method of manufacture |
US10499572B2 (en) * | 2017-01-04 | 2019-12-10 | Lindsay Corporation | Control system for controlling operation of an irrigation system |
US10444769B2 (en) | 2017-04-24 | 2019-10-15 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US10757873B2 (en) | 2017-04-24 | 2020-09-01 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
WO2019133273A1 (en) | 2017-12-29 | 2019-07-04 | Rain Bird Corporation | Weather override irrigation control systems and methods |
US20190271137A1 (en) * | 2018-03-01 | 2019-09-05 | Armando Garcia Viveros | Home protection and control system |
US11721465B2 (en) | 2020-04-24 | 2023-08-08 | Rain Bird Corporation | Solenoid apparatus and methods of assembly |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4165532A (en) * | 1977-12-30 | 1979-08-21 | The Toro Company | Automatic irrigation sprinkler system controller |
US4209131A (en) * | 1978-05-12 | 1980-06-24 | Motorola, Inc. | Computer-controlled irrigation system |
US4244022A (en) * | 1979-02-05 | 1981-01-06 | The Toro Company | Irrigation control system |
US4304989A (en) * | 1979-09-05 | 1981-12-08 | Vos H Johannes | Digital control system |
US4626984A (en) * | 1984-08-29 | 1986-12-02 | Valmont Industries, Inc. | Remote computer control for irrigation systems |
US5097861A (en) * | 1988-09-08 | 1992-03-24 | Hunter Industries | Irrigation method and control system |
US5331619A (en) * | 1992-02-19 | 1994-07-19 | Bradley Corporation | Programmable control system for gas and liquid dispensing devices |
US5363290A (en) * | 1990-07-18 | 1994-11-08 | The Toro Company | Irrigation controller |
US5444611A (en) * | 1993-10-28 | 1995-08-22 | Hunter Industries, Inc. | Lawn and garden irrigation controller |
US5682604A (en) * | 1994-10-04 | 1997-10-28 | Motorola, Inc. | Communications system with priority scheme for reduced access delay |
US5921280A (en) * | 1997-10-31 | 1999-07-13 | Pro-Mark, Inc. | Remotely controllable programmable controller for irrigation |
US6088621A (en) * | 1996-06-21 | 2000-07-11 | Hunter Industries, Inc. | Portable apparatus for rapid re-programming of irrigation controllers |
US6227220B1 (en) * | 2000-06-22 | 2001-05-08 | John W. Addink | Irrigation controller |
US6236332B1 (en) * | 1997-10-22 | 2001-05-22 | Profile Systems, Llc | Control and monitoring system |
US6259970B1 (en) * | 1997-09-15 | 2001-07-10 | Claber S.P.A. | Electronic interface associable with an electronic control unit for an automatic watering system for remote controlled management of the system |
US20020002425A1 (en) * | 1999-11-30 | 2002-01-03 | Dossey James F. | Computer controlled irrigation and environment management system |
US20020060631A1 (en) * | 1998-10-07 | 2002-05-23 | Thomas Henry Runge | Wireless environmental sensor system |
US20020100814A1 (en) * | 2001-01-31 | 2002-08-01 | Ron Pollak | Method and means for controlling the functions of an irrigation system and ancillary equipment |
US20030179102A1 (en) * | 2001-12-26 | 2003-09-25 | Andrew Barnes | System for controlling irrigation applications |
US6694195B1 (en) * | 2001-02-14 | 2004-02-17 | The Turo Company | Diagnostic system for irrigation controllers |
US20040039813A1 (en) * | 2002-08-22 | 2004-02-26 | Clark Todd A. | Scalable wireless remote control and monitoring system with automatic registration and automatic time synchronization |
US20040090345A1 (en) * | 2002-10-28 | 2004-05-13 | Hitt Dale K. | Scheduled transmission in a wireless sensor system |
US6782310B2 (en) * | 2001-12-20 | 2004-08-24 | Rain Bird Corporation | Wireless irrigation control device and related method |
US6823239B2 (en) * | 2001-11-05 | 2004-11-23 | Rain Master Irrigation Systems, Inc. | Internet-enabled central irrigation control |
US6853883B2 (en) * | 2001-02-07 | 2005-02-08 | Valmont Industries, Inc. | Method and means for reading the status of and controlling irrigation components |
US6898467B1 (en) * | 2000-03-29 | 2005-05-24 | Signature Control Systems, Inc. | Distributed control network for irrigation management |
US6950728B1 (en) * | 2000-08-17 | 2005-09-27 | Aqua Conservation Systems, Inc. | Interactive irrigation system |
US7010395B1 (en) * | 2003-01-06 | 2006-03-07 | The Toro Company | PC-programmed irrigation control system |
US20060158438A1 (en) * | 2002-03-08 | 2006-07-20 | Nearmedia, Inc. | Dynamic software control interface and method |
US7103511B2 (en) * | 1998-10-14 | 2006-09-05 | Statsignal Ipc, Llc | Wireless communication networks for providing remote monitoring of devices |
US7133800B2 (en) * | 2002-10-09 | 2006-11-07 | California Institute Of Technology | Sensor web |
US7146254B1 (en) * | 2002-07-05 | 2006-12-05 | Matsushita Electric Works, Ltd. | Systems and methods for optimizing the efficiency of a watering system through use of a computer network |
US7182272B1 (en) * | 2001-09-28 | 2007-02-27 | Hydropoint Data Systems, Inc. | System and method for facilitating control of irrigation systems |
US20070127429A1 (en) * | 2002-04-23 | 2007-06-07 | Bryan Roland F | Self coordinated machine network |
US7257465B2 (en) * | 2002-10-15 | 2007-08-14 | Rain Bird Corporation | Open architecture modularity for irrigation controllers |
US7363113B2 (en) * | 2002-10-24 | 2008-04-22 | The Toro Company | Intelligent environmental sensor for irrigation systems |
US7400944B2 (en) * | 2001-12-20 | 2008-07-15 | Rain Bird Corporation | Wireless irrigation control device and related method |
US20080186166A1 (en) * | 2000-06-30 | 2008-08-07 | Zhou Peter Y | Systems and Methods For Monitoring and Tracking |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4569020A (en) | 1983-05-26 | 1986-02-04 | Telsco Industries, Inc. | Irrigation controller |
US4646224A (en) | 1983-12-05 | 1987-02-24 | L. R. Nelson Corporation | Sprinkler controller which computes sprinkler cycles based on inputted data |
US4852051A (en) * | 1986-07-18 | 1989-07-25 | The Toro Company | Flexible irrigation controller |
US4827155A (en) | 1986-11-24 | 1989-05-02 | Richdel Div. Of Gardenamerica Corporation | Solid state electronic irrigation controller |
US5187797A (en) * | 1988-09-28 | 1993-02-16 | Solatrol, Inc. | Machine interface system with hierarchal menus allowing user sequencing and selection of menu items by actuation of three switches |
US5251153A (en) * | 1988-09-28 | 1993-10-05 | Solatrol, Inc. | Flexibly programmable irrigation system controller |
US5038268A (en) | 1989-05-12 | 1991-08-06 | Aquametrics, Inc. | Irrigation system controller apparatus |
US5278749A (en) | 1990-01-03 | 1994-01-11 | Heiko De Man | Sprinkler flow control method and apparatus |
KR0157097B1 (en) | 1992-08-19 | 1999-02-18 | 로타르 뮐러 | Electro-pneumatic control device |
US5956248A (en) | 1994-09-23 | 1999-09-21 | The Toro Company | Irrigation controller with removable station modules |
US5742500A (en) * | 1995-08-23 | 1998-04-21 | Irvin; William A. | Pump station control system and method |
AUPN784596A0 (en) * | 1996-02-02 | 1996-02-22 | Irrigation Control Networks Pty Ltd | Externally supported control system and operational method |
US5746250A (en) | 1996-03-08 | 1998-05-05 | Wick; John Leslie | Portable automatic sprinkling system |
US6073110A (en) * | 1997-07-22 | 2000-06-06 | Siemens Building Technologies, Inc. | Activity based equipment scheduling method and system |
JP3219042B2 (en) * | 1998-01-07 | 2001-10-15 | 株式会社日立製作所 | Schedule management system |
AUPP247598A0 (en) * | 1998-03-20 | 1998-04-09 | Irrigation Control Networks Pty Ltd | Improved irrigation control system |
US6102061A (en) | 1998-05-20 | 2000-08-15 | Addink; John W. | Irrigation controller |
WO2000025003A2 (en) * | 1998-10-23 | 2000-05-04 | Tiefenbach Bergbautechnik Gmbh | Extraction controller for mining - extraction machines |
US6098898A (en) | 1999-04-02 | 2000-08-08 | Storch; Paul | Master control system for conserving water by sprinkler systems within a geographical region |
US6490505B1 (en) * | 1999-11-17 | 2002-12-03 | Tim Simon, Inc. | Irrigation timer with multiplexing watering mode |
US6298285B1 (en) | 2000-01-04 | 2001-10-02 | Aqua Conservation Systems, Inc. | Irrigation accumulation controller |
US20020059005A1 (en) * | 2000-06-02 | 2002-05-16 | Sarver Larry C. | Method of controlling irrigation systems using smart cards |
US20030182022A1 (en) * | 2002-03-21 | 2003-09-25 | John Addink | Interactive irrigation system |
US20040015270A1 (en) * | 2002-03-21 | 2004-01-22 | Addink John W. | Interactive irrigation system |
US7123993B1 (en) * | 2002-08-28 | 2006-10-17 | Aaron Lloyd Freeman | Irrigation controller |
AU2003296510A1 (en) * | 2002-12-10 | 2004-06-30 | Et Water Systems, Llc | Irrigation system |
-
2003
- 2003-12-30 US US10/748,445 patent/US7010395B1/en not_active Expired - Lifetime
-
2006
- 2006-01-10 US US11/329,821 patent/US20060122735A1/en not_active Abandoned
-
2008
- 2008-09-29 US US12/240,859 patent/US20090076660A1/en not_active Abandoned
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4165532A (en) * | 1977-12-30 | 1979-08-21 | The Toro Company | Automatic irrigation sprinkler system controller |
US4209131A (en) * | 1978-05-12 | 1980-06-24 | Motorola, Inc. | Computer-controlled irrigation system |
US4244022A (en) * | 1979-02-05 | 1981-01-06 | The Toro Company | Irrigation control system |
US4304989A (en) * | 1979-09-05 | 1981-12-08 | Vos H Johannes | Digital control system |
US4626984A (en) * | 1984-08-29 | 1986-12-02 | Valmont Industries, Inc. | Remote computer control for irrigation systems |
US5097861A (en) * | 1988-09-08 | 1992-03-24 | Hunter Industries | Irrigation method and control system |
US5363290A (en) * | 1990-07-18 | 1994-11-08 | The Toro Company | Irrigation controller |
US5331619A (en) * | 1992-02-19 | 1994-07-19 | Bradley Corporation | Programmable control system for gas and liquid dispensing devices |
US5444611A (en) * | 1993-10-28 | 1995-08-22 | Hunter Industries, Inc. | Lawn and garden irrigation controller |
US5682604A (en) * | 1994-10-04 | 1997-10-28 | Motorola, Inc. | Communications system with priority scheme for reduced access delay |
US6088621A (en) * | 1996-06-21 | 2000-07-11 | Hunter Industries, Inc. | Portable apparatus for rapid re-programming of irrigation controllers |
US6259970B1 (en) * | 1997-09-15 | 2001-07-10 | Claber S.P.A. | Electronic interface associable with an electronic control unit for an automatic watering system for remote controlled management of the system |
US6236332B1 (en) * | 1997-10-22 | 2001-05-22 | Profile Systems, Llc | Control and monitoring system |
US5921280A (en) * | 1997-10-31 | 1999-07-13 | Pro-Mark, Inc. | Remotely controllable programmable controller for irrigation |
US20020060631A1 (en) * | 1998-10-07 | 2002-05-23 | Thomas Henry Runge | Wireless environmental sensor system |
US7103511B2 (en) * | 1998-10-14 | 2006-09-05 | Statsignal Ipc, Llc | Wireless communication networks for providing remote monitoring of devices |
US20020002425A1 (en) * | 1999-11-30 | 2002-01-03 | Dossey James F. | Computer controlled irrigation and environment management system |
US6898467B1 (en) * | 2000-03-29 | 2005-05-24 | Signature Control Systems, Inc. | Distributed control network for irrigation management |
US6227220B1 (en) * | 2000-06-22 | 2001-05-08 | John W. Addink | Irrigation controller |
US20080186166A1 (en) * | 2000-06-30 | 2008-08-07 | Zhou Peter Y | Systems and Methods For Monitoring and Tracking |
US6950728B1 (en) * | 2000-08-17 | 2005-09-27 | Aqua Conservation Systems, Inc. | Interactive irrigation system |
US20020100814A1 (en) * | 2001-01-31 | 2002-08-01 | Ron Pollak | Method and means for controlling the functions of an irrigation system and ancillary equipment |
US7003357B1 (en) * | 2001-02-07 | 2006-02-21 | Valmont Industries, Inc. | Method and means for reading the status of and controlling irrigation components |
US6853883B2 (en) * | 2001-02-07 | 2005-02-08 | Valmont Industries, Inc. | Method and means for reading the status of and controlling irrigation components |
US6694195B1 (en) * | 2001-02-14 | 2004-02-17 | The Turo Company | Diagnostic system for irrigation controllers |
US7182272B1 (en) * | 2001-09-28 | 2007-02-27 | Hydropoint Data Systems, Inc. | System and method for facilitating control of irrigation systems |
US6823239B2 (en) * | 2001-11-05 | 2004-11-23 | Rain Master Irrigation Systems, Inc. | Internet-enabled central irrigation control |
US6782310B2 (en) * | 2001-12-20 | 2004-08-24 | Rain Bird Corporation | Wireless irrigation control device and related method |
US7400944B2 (en) * | 2001-12-20 | 2008-07-15 | Rain Bird Corporation | Wireless irrigation control device and related method |
US20030179102A1 (en) * | 2001-12-26 | 2003-09-25 | Andrew Barnes | System for controlling irrigation applications |
US20060158438A1 (en) * | 2002-03-08 | 2006-07-20 | Nearmedia, Inc. | Dynamic software control interface and method |
US20070127429A1 (en) * | 2002-04-23 | 2007-06-07 | Bryan Roland F | Self coordinated machine network |
US7146254B1 (en) * | 2002-07-05 | 2006-12-05 | Matsushita Electric Works, Ltd. | Systems and methods for optimizing the efficiency of a watering system through use of a computer network |
US20040039813A1 (en) * | 2002-08-22 | 2004-02-26 | Clark Todd A. | Scalable wireless remote control and monitoring system with automatic registration and automatic time synchronization |
US7133800B2 (en) * | 2002-10-09 | 2006-11-07 | California Institute Of Technology | Sensor web |
US7257465B2 (en) * | 2002-10-15 | 2007-08-14 | Rain Bird Corporation | Open architecture modularity for irrigation controllers |
US7363113B2 (en) * | 2002-10-24 | 2008-04-22 | The Toro Company | Intelligent environmental sensor for irrigation systems |
US20040090345A1 (en) * | 2002-10-28 | 2004-05-13 | Hitt Dale K. | Scheduled transmission in a wireless sensor system |
US7010395B1 (en) * | 2003-01-06 | 2006-03-07 | The Toro Company | PC-programmed irrigation control system |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8868246B2 (en) | 2005-07-19 | 2014-10-21 | Rain Bird Corporation | Wireless irrigation control |
US10863682B2 (en) | 2005-07-19 | 2020-12-15 | Rain Bird Corporation | Wireless irrigation control |
US20090222141A1 (en) * | 2005-07-19 | 2009-09-03 | Rain Bird Corporation | Wireless extension to an irrigation control system and related methods |
US10194599B2 (en) | 2005-07-19 | 2019-02-05 | Rain Bird Corporation | Wireless irrigation control |
US11540458B2 (en) | 2005-07-19 | 2023-01-03 | Rain Bird Corporation | Wireless irrigation control |
US9320205B2 (en) | 2005-07-19 | 2016-04-26 | Rain Bird Corporation | Wireless irrigation control |
US8185248B2 (en) * | 2005-07-19 | 2012-05-22 | Rain Bird Corporation | Wireless extension to an irrigation control system and related methods |
US8504210B2 (en) | 2005-07-19 | 2013-08-06 | Rain Bird Corporation | Wireless extension to an irrigation control system and related methods |
US11185023B2 (en) * | 2005-09-15 | 2021-11-30 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US9665106B2 (en) * | 2005-09-15 | 2017-05-30 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US10390502B2 (en) * | 2005-09-15 | 2019-08-27 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US10842092B2 (en) | 2005-09-15 | 2020-11-24 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US8793025B2 (en) | 2005-09-15 | 2014-07-29 | Rain Bird Corporation | Irrigation control device for decoder-based irrigation system |
US10070596B2 (en) | 2005-09-15 | 2018-09-11 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US20140297049A1 (en) * | 2005-09-15 | 2014-10-02 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US8851447B2 (en) | 2005-09-15 | 2014-10-07 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US20220078981A1 (en) * | 2005-09-15 | 2022-03-17 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US11337385B2 (en) | 2005-09-15 | 2022-05-24 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US9681610B2 (en) | 2005-09-15 | 2017-06-20 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US11805739B2 (en) * | 2005-09-15 | 2023-11-07 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US10188049B1 (en) * | 2008-08-06 | 2019-01-29 | Cropmetrics Llc | Customized crop modeling |
US20100248644A1 (en) * | 2009-03-24 | 2010-09-30 | Toyota Infotechnology Center Co., Ltd. | Wireless device |
US8768285B2 (en) * | 2009-03-24 | 2014-07-01 | Toyota Jidosha Kabushiki Kaisha | Synchronization of front-end and baseband units in wireless communications device by wirelessly transmitting clock signal therebetween |
US8909381B2 (en) | 2009-07-17 | 2014-12-09 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
US20110015793A1 (en) * | 2009-07-17 | 2011-01-20 | Rain Bird Corporation | Variable Initialization Time in the Charging of Energy Reserves in an Irrigation Control System |
US8659183B2 (en) | 2009-07-17 | 2014-02-25 | Rain Bird Corporation | Variable initialization time in the charging of energy reserves in an irrigation control system |
US10058042B2 (en) | 2009-07-27 | 2018-08-28 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US10842091B2 (en) | 2009-07-27 | 2020-11-24 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US12161072B2 (en) | 2009-07-27 | 2024-12-10 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US20110017845A1 (en) * | 2009-07-27 | 2011-01-27 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US11330770B2 (en) | 2009-07-27 | 2022-05-17 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US8840084B2 (en) | 2009-07-27 | 2014-09-23 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US20110106320A1 (en) * | 2009-10-30 | 2011-05-05 | Rain Bird Corporation | Method and apparatus for generating an irrigation schedule |
US20110194630A1 (en) * | 2010-02-10 | 2011-08-11 | Yang Hua-Lung | Systems and methods for reporting radio link failure |
US11234379B2 (en) | 2011-09-01 | 2022-02-01 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US8630743B2 (en) | 2011-09-01 | 2014-01-14 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US11730095B2 (en) | 2011-09-01 | 2023-08-22 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US9445556B2 (en) | 2011-09-01 | 2016-09-20 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US8989908B2 (en) | 2011-09-01 | 2015-03-24 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US10420295B2 (en) | 2011-09-01 | 2019-09-24 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
US12137639B2 (en) | 2011-11-29 | 2024-11-12 | Rain Bird Corporation | Wireless irrigation control |
US10201133B2 (en) | 2011-11-29 | 2019-02-12 | Rain Bird Corporation | Wireless irrigation control |
US10772267B2 (en) | 2011-11-29 | 2020-09-15 | Rain Bird Corporation | Wireless irrigation control |
US9244449B2 (en) | 2011-11-29 | 2016-01-26 | Rain Bird Corporation | Wireless irrigation control |
US11547068B2 (en) | 2011-11-29 | 2023-01-10 | Rain Bird Corporation | Wireless irrigation control |
US11109546B2 (en) | 2012-08-01 | 2021-09-07 | Walmart Apollo, Llc | Irrigation controller wireless network adapter and networked remote service |
US9468162B2 (en) | 2012-08-01 | 2016-10-18 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US12171172B2 (en) | 2012-08-01 | 2024-12-24 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US10292343B2 (en) | 2012-08-01 | 2019-05-21 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US11744195B2 (en) | 2012-08-01 | 2023-09-05 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US11937557B2 (en) | 2012-11-07 | 2024-03-26 | Rain Bird Corporation | Irrigation control systems and methods |
US10327397B2 (en) * | 2012-11-07 | 2019-06-25 | Rain Bird Corporation | Irrigation control systems and methods |
US11570956B2 (en) | 2012-11-07 | 2023-02-07 | Rain Bird Corporation | Irrigation control systems and methods |
US20140129039A1 (en) * | 2012-11-07 | 2014-05-08 | Rain Bird Corporation | Irrigation Control Systems and Methods |
WO2015002791A3 (en) * | 2013-07-01 | 2015-03-19 | Skydrop, Llc | Water reduction optimizing irrigation protocols |
US9717191B2 (en) | 2013-07-01 | 2017-08-01 | Skydrop Holdings, Llc | Compensating for municipal restrictions within irrigation protocols |
US9924644B2 (en) | 2013-07-01 | 2018-03-27 | Skydrop Holdings, Llc | Watering instructions and irrigation protocols sent over a network |
US9907238B2 (en) | 2013-07-01 | 2018-03-06 | Skydrop Holdings, Llc | Water reduction optimizing irrigation protocols |
US9901042B2 (en) | 2013-07-01 | 2018-02-27 | Skydrop Holdings, Llc | Generating and optimizing protocols |
US9763396B2 (en) | 2013-07-01 | 2017-09-19 | Skydrop Holdings, Llc | Duration control within irrigation protocols |
US9408353B2 (en) * | 2013-07-23 | 2016-08-09 | Lindsay Corporation | Control system for an irrigation system |
US20150032272A1 (en) * | 2013-07-23 | 2015-01-29 | Lindsay Corporation | Control system for an irrigation system |
US10368506B2 (en) * | 2013-07-23 | 2019-08-06 | Lindsay Corporation | Control system for an irrigation system |
US20190335689A1 (en) * | 2013-07-23 | 2019-11-07 | Lindsay Corporation | Control system for an irrigation system |
US20180084741A1 (en) * | 2015-04-10 | 2018-03-29 | Husqvarna Ab | Simplified interface and operation in a watering system |
US11039582B2 (en) * | 2015-04-10 | 2021-06-22 | Husqvarna Ab | Simplified interface and operation in a watering system |
EP3364747A4 (en) * | 2015-10-20 | 2019-05-22 | Bookleaf Pty Ltd. | Irrigation system |
US11089746B2 (en) | 2016-07-15 | 2021-08-17 | Rain Bird Corporation | Wireless remote irrigation control |
US10609878B2 (en) | 2016-07-15 | 2020-04-07 | Rain Bird Corporation | Wireless remote irrigation control |
US10980120B2 (en) | 2017-06-15 | 2021-04-13 | Rain Bird Corporation | Compact printed circuit board |
US11503782B2 (en) | 2018-04-11 | 2022-11-22 | Rain Bird Corporation | Smart drip irrigation emitter |
US11917956B2 (en) | 2018-04-11 | 2024-03-05 | Rain Bird Corporation | Smart drip irrigation emitter |
US12295296B2 (en) | 2023-08-21 | 2025-05-13 | Rain Bird Corporation | Methods and systems for use in controlling irrigation |
Also Published As
Publication number | Publication date |
---|---|
US7010395B1 (en) | 2006-03-07 |
US20060122735A1 (en) | 2006-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7010395B1 (en) | PC-programmed irrigation control system | |
US11676261B2 (en) | Image data for improving and diagnosing sprinkler controller performance | |
US8209061B2 (en) | Computer-operated landscape irrigation and lighting system | |
US10743482B2 (en) | Central irrigation control system | |
US20120036091A1 (en) | System and method for automated, range-based irrigation | |
US20140236868A1 (en) | System and method for automated, range-based irrigation | |
US6298285B1 (en) | Irrigation accumulation controller | |
US7203576B1 (en) | Moisture sensor timer | |
US7711454B2 (en) | Water savings system | |
US7761189B2 (en) | Virtual dial irrigation controller | |
US20170118929A1 (en) | Modular Irrigation Controller | |
US8145359B2 (en) | Systems and methods of reducing peak water usage | |
US20150105921A1 (en) | System and method for wireless irrigation control with a remote application | |
US20040206395A1 (en) | Device that modifies irrigation schedules of existing irrigation controllers | |
US20090008472A1 (en) | Control Devices For Irrigation Systems And Methods For Programming | |
US20040011880A1 (en) | Device that modifies irrigation schedules of existing irrigation controllers | |
US20060157580A1 (en) | System and method for controlling irrigation | |
US20100230510A1 (en) | Peripheral dial sprinkler controller | |
US20220151169A1 (en) | Landscaper integration | |
US20250010321A1 (en) | Irrigation control based on a user entered number of watering passes | |
US20230315273A1 (en) | Irrigation control systems and user interfaces | |
JPH06141710A (en) | Putting green controlling system | |
US20170339852A1 (en) | Watering system | |
WO2003085473A1 (en) | Irrigation 'watering reduction value' | |
US20240330803A1 (en) | Hierarchal scheduling for multiple site building management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |