US20090060775A1 - Cr-Mn-N austenitic stainless steel - Google Patents
Cr-Mn-N austenitic stainless steel Download PDFInfo
- Publication number
- US20090060775A1 US20090060775A1 US11/905,922 US90592207A US2009060775A1 US 20090060775 A1 US20090060775 A1 US 20090060775A1 US 90592207 A US90592207 A US 90592207A US 2009060775 A1 US2009060775 A1 US 2009060775A1
- Authority
- US
- United States
- Prior art keywords
- weight
- stainless steel
- manganese
- nickel
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to an austenitic stainless steel, in particular to an austenitic stainless steel in which manganese and nitrogen are used in substitution for nickel.
- the ordinary stainless steel has the properties of the pleasing white luster on the surface and the stainless tendency.
- stainless steel that is popular among the consumers and widely used in, for example, stainless steel kitchenware, water tank, mechanical components, sports gear, aerospace materials, medical instruments, and 3C industry etc., in which the most widely and frequently used is the 304 stainless steel.
- the standard composition thereof includes 18% chromium plus 8% nickel i.e., the commonly called 18-8 stainless steel.
- the characteristics of such stainless steel include good mechanical properties, magnetism free, stable metallographic grain structure unable to be changed by heat treatment, good durability, good processability, and superior corrosion resistance due to the higher content of nickel.
- the 304 stainless steel is at a stiff price because of the worldwide shortage of nickel caused by war. Accordingly, it is an important issue to reduce the nickel content in the aforementioned Cr—Ni stainless steel and to use other elements in the composition thereof to maintain or even enhance the inherent mechanical properties and corrosion resistance, whereby saving the resource of nickel and reducing the cost of materials.
- an object of the present invention is to provide a novel steel of single austenitic structure with less nickel, and the corrosion resistance, strength, elongation of which in the marine atmosphere and the acid atmosphere are at the same level as or even better than those of the 304 stainless steel.
- the present invention disposes a technique using moderate manganese (Mn) and nitrogen (N) in substitution for the costly nickel to produce a novel Cr—Mn—N steel, whereby providing a Cr—Mn—N austenitic stainless steel comprising: 0.005% to 0.08% carbon by weight; 0.3% to 0.9% silicon by weight; 12.1% to 14.8% manganese by weight; 0.001% to 0.04% phosphorus by weight; 0.001% to 0.03% sulfur by weight; 16% to 19% chromium by weight; 0.5% to 1.8% nickel by weight; 0.2% to 0.45% nitrogen by weight; 0.001% to 0.3% molybdenum by weight; 0.001% to 0.3% copper by weight; and trace elements unavoidable in most manufacturing processes.
- Mn moderate manganese
- N nitrogen
- the present invention employs the formation mechanism of austenitic (or ⁇ ) steel, substituting moderate manganese and nitrogen for the costly nickel to produce a novel Cr—Mn—N steel of single austenitic structure, while maintaining the corrosion resistance, strength, elongation thereof in the marine atmosphere and the acid atmosphere at the same level as or even better than those of the 304 stainless steel, so as to achieve the purpose of reducing the cost of materials.
- the present invention adopts the method of substituting manganese and nitrogen for nickel to produce the pure magnetism-free austenitic stainless steel, the mechanical property UTS of which is approximately 200 MPa higher than that of the 304 stainless steel, the Y.S of which is approximately one time higher than that of the 304 stainless steel, the elongation reaches 50%, and the corrosion resistance is equal. And the most important is that the unit price thereof is less than half of the 304 stainless steel.
- the characteristics of this novel steel include excellent fluidity, superior casting properties, and good resistance to high temperature oxidation.
- FIG. 1 is a Schaeffler diagram showing the Ni—Cr equivalent of the Cr—Mn—N austenitic stainless steel according to one embodiment of the present invention.
- FIGS. 2A and 2B are metallographs showing different parts of the Cr—Mn—N austenitic stainless steel according to one embodiment of the present invention.
- the present invention essentially includes a Cr—Mn—N stainless steel of austenitic metallographic structure, which is melted by electric arc furnace or vacuum induction furnace.
- the composition of the Cr—Mn—N austenitic stainless steel includes by weight: 0.005% to 0.08% carbon; 0.3% to 0.9% silicon; 12.1% to 14.8% manganese; 0.001% to 0.04% phosphorus; 0.001% to 0.03% sulfur, 16% to 19% chromium; 0.5% to 1.8% nickel; 0.2% to 0.45% nitrogen; 0.001% to 0.3% molybdenum; 0.001% to 0.3% copper, and trace elements unavoidable in most manufacturing processes.
- Ni equivalent % Ni+30 ⁇ % C+0.5 ⁇ % Mn+30% N
- the shadowed area in FIG. 1 shows the major austenitic composition.
- composition analysis of the test samples is shown in table 2.
- the point falls in the austenitic area, which satisfies the requirements.
- the present invention essentially employs manganese and nitrogen in partial or complete substitution for nickel.
- the characteristics of manganese and nitrogen are analyzed below.
- the influence of manganese on grain structure includes:
- the content of manganese should be 2% or less when used as deoxidizer.
- the content of manganese may be up to 20% when used as an alloy element.
- the influence of manganese on mechanical properties includes:
- the influence of manganese on corrosion resistance includes:
- MnS inclusion causes decreases in corrosion resistance and interstitial corrodibility
- the influence of nitrogen on grain structure includes:
- the influence of nitrogen on mechanical properties includes:
- manganese and nitrogen may partially or completely substitute for nickel in ⁇ stainless steel, whereby enhancing strength and maintaining elongation as that of the 304 stainless steel without changing the structure of the steel.
- Harmful elements such as phosphorus and sulfur tend to be generated by the melted iron in the furnace during smelting, where the content of phosphorus should be controlled under 0.04% or less, and the content of sulfur should be controlled under 0.04% or less.
- compositions of the embodiments of the present invention and the contrast material are shown in table 3 below.
- the steel is a completely ⁇ stainless steel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
A Cr—Mn—N austenitic stainless steel, in which moderate manganese (Mn) and nitrogen (N) are essentially substituted for the costly nickel to produce a novel Cr—Mn—N steel, is provided, whereby reducing the cost of materials while maintaining the original physical and mechanical properties. The composition thereof includes by weight: 0.005% to 0.08% carbon, 0.3% to 0.9% silicon, 12.1% to 14.8% manganese, 0.001% to 0.04% phosphorus, 0.001% to 0.03% sulfur, 16% to 19% chromium, 0.5% to 1.8% nickel, 0.2% to 0.45% nitrogen, 0.001% to 0.3% molybdenum, 0.001% to 0.3% copper, and trace elements unavoidable in most manufacturing processes.
Description
- 1. Field of the Invention
- The present invention relates to an austenitic stainless steel, in particular to an austenitic stainless steel in which manganese and nitrogen are used in substitution for nickel.
- 2. Related Art
- The ordinary stainless steel has the properties of the pleasing white luster on the surface and the stainless tendency. There is a variety of stainless steel that is popular among the consumers and widely used in, for example, stainless steel kitchenware, water tank, mechanical components, sports gear, aerospace materials, medical instruments, and 3C industry etc., in which the most widely and frequently used is the 304 stainless steel. The standard composition thereof includes 18% chromium plus 8% nickel i.e., the commonly called 18-8 stainless steel. The characteristics of such stainless steel include good mechanical properties, magnetism free, stable metallographic grain structure unable to be changed by heat treatment, good durability, good processability, and superior corrosion resistance due to the higher content of nickel. However, the 304 stainless steel is at a stiff price because of the worldwide shortage of nickel caused by war. Accordingly, it is an important issue to reduce the nickel content in the aforementioned Cr—Ni stainless steel and to use other elements in the composition thereof to maintain or even enhance the inherent mechanical properties and corrosion resistance, whereby saving the resource of nickel and reducing the cost of materials.
- In view of the foregoing, an object of the present invention is to provide a novel steel of single austenitic structure with less nickel, and the corrosion resistance, strength, elongation of which in the marine atmosphere and the acid atmosphere are at the same level as or even better than those of the 304 stainless steel.
- To solve the aforementioned problem, the present invention disposes a technique using moderate manganese (Mn) and nitrogen (N) in substitution for the costly nickel to produce a novel Cr—Mn—N steel, whereby providing a Cr—Mn—N austenitic stainless steel comprising: 0.005% to 0.08% carbon by weight; 0.3% to 0.9% silicon by weight; 12.1% to 14.8% manganese by weight; 0.001% to 0.04% phosphorus by weight; 0.001% to 0.03% sulfur by weight; 16% to 19% chromium by weight; 0.5% to 1.8% nickel by weight; 0.2% to 0.45% nitrogen by weight; 0.001% to 0.3% molybdenum by weight; 0.001% to 0.3% copper by weight; and trace elements unavoidable in most manufacturing processes.
- The effects obtained by practice of the present invention lie in: the present invention employs the formation mechanism of austenitic (or γ) steel, substituting moderate manganese and nitrogen for the costly nickel to produce a novel Cr—Mn—N steel of single austenitic structure, while maintaining the corrosion resistance, strength, elongation thereof in the marine atmosphere and the acid atmosphere at the same level as or even better than those of the 304 stainless steel, so as to achieve the purpose of reducing the cost of materials. The present invention adopts the method of substituting manganese and nitrogen for nickel to produce the pure magnetism-free austenitic stainless steel, the mechanical property UTS of which is approximately 200 MPa higher than that of the 304 stainless steel, the Y.S of which is approximately one time higher than that of the 304 stainless steel, the elongation reaches 50%, and the corrosion resistance is equal. And the most important is that the unit price thereof is less than half of the 304 stainless steel. The characteristics of this novel steel include excellent fluidity, superior casting properties, and good resistance to high temperature oxidation.
- The present invention will become more fully understood from the detailed description given herein below for illustration only, and which thus is not limitative of the present invention, and wherein:
-
FIG. 1 is a Schaeffler diagram showing the Ni—Cr equivalent of the Cr—Mn—N austenitic stainless steel according to one embodiment of the present invention; and -
FIGS. 2A and 2B are metallographs showing different parts of the Cr—Mn—N austenitic stainless steel according to one embodiment of the present invention. - The contents of the present invention are described in details through specific embodiments with reference to the figures. The reference numerals mentioned in the specification correspond to equivalent reference numerals in the figures.
- The present invention essentially includes a Cr—Mn—N stainless steel of austenitic metallographic structure, which is melted by electric arc furnace or vacuum induction furnace. The composition of the Cr—Mn—N austenitic stainless steel includes by weight: 0.005% to 0.08% carbon; 0.3% to 0.9% silicon; 12.1% to 14.8% manganese; 0.001% to 0.04% phosphorus; 0.001% to 0.03% sulfur, 16% to 19% chromium; 0.5% to 1.8% nickel; 0.2% to 0.45% nitrogen; 0.001% to 0.3% molybdenum; 0.001% to 0.3% copper, and trace elements unavoidable in most manufacturing processes.
- The equations of the composition of the above elements are:
- Ni equivalent=% Ni+30×% C+0.5×% Mn+30% N
- Cr equivalent=% Cr+% Mo+1.5×% Si+0.5×% Cb
- Referring to the phase diagram shown in
FIG. 1 , where the ordinate is Ni equivalent and the abscissa is Cr equivalent, if the point falls in the austenitic area according to computation, then the requirements in table 1 are satisfied. -
TABLE 1 Composition % C % Si % Mn % P % S % Cr % Ni % N % Mo % Cu Mass Percentage 0.002 0.3 to 12.1 to <0.04 <0.03 16 to 0.5 to 0.2 to <0.3 <0.3 to 0.08 0.9 14.8 19 1.8 0.45 Maximum 0.002 0.3 12.1 16 0.5 0.1 0 Minimum 0.08 0.9 14.8 19 1.3 0.45 0.3 - Minimum Ni equivalent=0.5+30×0.002+0.5×12.1+30×0.2=12.61
- Maximum Ni equivalent=1.8+30×0.08+0.5×14.8+30×0.45=25.1
- Minimum Cr equivalent=16+0+1.5×0.3+0.5×0=16.45
- Maximum Cr equivalent 19+0.3+1.5×0.9+0.5×0=20.65
- The shadowed area in
FIG. 1 shows the major austenitic composition. - Composition analysis of the test samples is shown in table 2.
-
TABLE 2 Composition % % C % Si % Mn % P % S % Cr % Ni % N Mass 0.0079 0.65 12.27 17.06 1.68 0.42 Percentage - Maximum Ni equivalent=1.68+30×0.0079+0.5×12.27+30×0.42=20.652
- Minimum Cr equivalent=17.06+0+1.5×0.65+0.5×0=18.035
- Further referring to the phase diagram shown in
FIG. 1 , the point falls in the austenitic area, which satisfies the requirements. - The present invention essentially employs manganese and nitrogen in partial or complete substitution for nickel. The characteristics of manganese and nitrogen are analyzed below.
- The influence of manganese on grain structure includes:
- a. The content of manganese should be 2% or less when used as deoxidizer.
- b. The content of manganese may be up to 20% when used as an alloy element.
- c. The substitution of manganese for nickel increases solubility of nitrogen, achieving the effects of saving nickel and enhancing strength.
- The influence of manganese on mechanical properties includes:
- a. When the content of manganese is 2% or less, hardness is not affected but tensile strength and yield strength decrease.
- b. The high-temperature thermoplasticity of high Ni—Cr γS.S is improved.
- The influence of manganese on corrosion resistance includes:
- MnS inclusion causes decreases in corrosion resistance and interstitial corrodibility
- The influence of nitrogen on grain structure includes:
- a. Nitrogen dramatically forms and broadens the γ phase area, thereby enhancing the γ stability.
- b. Carbide precipitation is suppressed and the precipitation of a phase is delayed, which benefits the anti-sensitization of intergranular corrosion and toughness of the steel.
- The influence of nitrogen on mechanical properties includes:
- a. By means of solid solution strengthening (which forms interstitial solid solution), strength of the steel significantly increases while plasticity and toughness decrease.
- b. Excess of nitrogen (≧0.84%) results in plastic-brittle transition.
- According to the Schaeffler diagram of the Ni—Cr equivalent in
FIG. 1 , manganese and nitrogen may partially or completely substitute for nickel in γ stainless steel, whereby enhancing strength and maintaining elongation as that of the 304 stainless steel without changing the structure of the steel. - Harmful elements such as phosphorus and sulfur tend to be generated by the melted iron in the furnace during smelting, where the content of phosphorus should be controlled under 0.04% or less, and the content of sulfur should be controlled under 0.04% or less.
- The compositions of the embodiments of the present invention and the contrast material are shown in table 3 below.
-
TABLE 3 Specimens Composition Content % Element C Si Mn P S Cr Ni N Mo Cu 304 Stainless <0.08 <1.0 <2.0 <0.045 <0.03 17 to 8 to 10 / <0.6 / Steel 19 (Contrast Material) Embodiment 1 0.0642 0.69 12.43 0.031 0.012 16.87 1.21 0.45 0.026 0.106 Embodiment 20.0547 0.81 13.92 0.01 0.001 16.71 0.82 0.24 0.025 0.104 Embodiment 3 0.0432 0.85 12.12 0.012 0.005 16.38 0.5 0.35 0.027 0.109 - The mechanical properties in the aforementioned embodiments in table 3 are shown in table 4 below.
-
TABLE 4 Mechanical Property Density σb σs δ Hardness P Salt Spray Test Specimens Mpa Mpa % HRB HB kg/cm3 36H 48H 304 Stainless Steel 520 206 40-50 ≦90 ≦187 7.85 No rust No rust (Contrast Material) Embodiment 1 700 400 40-50 86-92 ≦187 7.77 No rust No rust Embodiment 2 751 425.9 51.5 89 180 7.76 No rust No rust Embodiment 3 706.4 426.7 47.6 88 175 7.77 No rust No rust - Referring to the metallographs of different parts shown in
FIGS. 2A and 2B , it is observed that the structure thereof is γ before heat treatment. Therefore, the steel is a completely γ stainless steel. - To sum up, the present invention is not restricted to the particular details described herein. Indeed, those skilled in the art having the benefit of this disclosure will appreciate that many other variations from the foregoing description and drawings may be made within the scope of the present invention. Accordingly, it is the following claims including any amendments thereto that define the scope of the invention.
Claims (4)
1. A Cr—Mn—N austenitic stainless steel, comprising:
0.005% to 0.08% carbon by weight;
0.3% to 0.9% silicon by weight;
12.1% to 14.8% manganese by weight;
0.001% to 0.04% phosphorus by weight;
0.001% to 0.03% sulfur by weight;
16% to 19% chromium by weight;
0.5% to 1.8% nickel by weight;
0.2% to 0.45% nitrogen by weight;
0.001% to 0.3% molybdenum by weight;
0.001% to 0.3% copper by weight; and
trace elements unavoidable in most manufacturing processes.
2. The Cr—Mn—N austenitic stainless steel according to claim 1 , comprising:
0.0642% carbon by weight;
0.69% silicon by weight;
12.43% manganese by weight;
0.031% phosphorus by weight;
0.012% sulfur by weight;
16.87% chromium by weight;
1.21% nickel by weight;
0.45% nitrogen by weight;
0.026% molybdenum by weight;
0.106% copper by weight; and
trace elements unavoidable in most manufacturing processes.
3. The Cr—Mn—N austenitic stainless steel according to claim 1 , comprising:
0.0547% carbon by weight;
0.81% silicon by weight;
13.92% manganese by weight;
0.01% phosphorus by weight;
0.001% sulfur by weight;
16.71% chromium by weight;
0.82% nickel by weight;
0.24% nitrogen by weight;
0.025% molybdenum by weight;
0.104% copper by weight; and
trace elements unavoidable in most manufacturing processes.
4. The Cr—Mn—N austenitic stainless steel according to claim 1 , comprising:
0.0432% carbon by weight;
0.85% silicon by weight;
12.12% manganese by weight;
0.012% phosphorus by weight;
0.005% sulfur by weight;
16.38% chromium by weight;
0.5% nickel by weight;
0.35% nitrogen by weight;
0.027% molybdenum by weight;
0.109% copper by weight; and
trace elements unavoidable in most manufacturing processes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/727,136 US20100189589A1 (en) | 2007-08-29 | 2010-03-18 | Sports gear apparatus made from cr-mn-n austenitic stainless steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096132137A TW200909593A (en) | 2007-08-29 | 2007-08-29 | Chromium-manganese-nitrogen austenite series stainless steel |
TW096132137 | 2007-08-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/727,136 Continuation-In-Part US20100189589A1 (en) | 2007-08-29 | 2010-03-18 | Sports gear apparatus made from cr-mn-n austenitic stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090060775A1 true US20090060775A1 (en) | 2009-03-05 |
Family
ID=40407842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/905,922 Abandoned US20090060775A1 (en) | 2007-08-29 | 2007-10-05 | Cr-Mn-N austenitic stainless steel |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090060775A1 (en) |
JP (1) | JP4653149B2 (en) |
TW (1) | TW200909593A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102728801A (en) * | 2012-07-12 | 2012-10-17 | 屈志 | Production technology of base stock for stainless steel precision casting |
EP2728028A1 (en) * | 2012-11-02 | 2014-05-07 | The Swatch Group Research and Development Ltd. | Edelstahllegierung ohne Nickel |
CN104611643A (en) * | 2015-01-21 | 2015-05-13 | 内蒙古科技大学 | 316 austenitic stainless steel with nitrogen increased and nickel decreased and preparation method thereof |
US9816163B2 (en) | 2012-04-02 | 2017-11-14 | Ak Steel Properties, Inc. | Cost-effective ferritic stainless steel |
CN107448627A (en) * | 2016-05-31 | 2017-12-08 | 爱三工业株式会社 | Welding method between valve gear and valve shaft and valve element in the valve gear |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3112195A (en) * | 1959-06-04 | 1963-11-26 | Schoeller Bleckmann Stahlwerke | Drill stems for deep-well drill rods from non-magnetizable austenitic manganese-chromium alloy steels |
US3904401A (en) * | 1974-03-21 | 1975-09-09 | Carpenter Technology Corp | Corrosion resistant austenitic stainless steel |
US4822556A (en) * | 1987-02-26 | 1989-04-18 | Baltimore Specialty Steels Corporation | Austenitic stainless steel combining strength and resistance to intergranular corrosion |
US4957700A (en) * | 1984-03-20 | 1990-09-18 | Aichi Steel Works, Ltd. | High strength non-magnetic stainless steel |
US5308577A (en) * | 1990-04-12 | 1994-05-03 | Crs Holdings, Inc. | Austenitic, non-magnetic, stainless steel alloy and articles made therefrom |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331811B2 (en) * | 1971-08-18 | 1978-09-05 | ||
JPS605669B2 (en) * | 1977-03-02 | 1985-02-13 | 日本冶金工業株式会社 | Austenitic stainless steel with excellent cold formability and aging cracking resistance |
JPS61563A (en) * | 1984-06-12 | 1986-01-06 | Sumitomo Metal Ind Ltd | Non-magnetic drill collar steel and its manufacturing method |
JPH064891B2 (en) * | 1984-07-31 | 1994-01-19 | 住友金属工業株式会社 | Method for manufacturing non-magnetic steel wire rod |
JPH02240241A (en) * | 1989-03-14 | 1990-09-25 | Rokko Kinzoku Kk | Non-magnetic steel nail material for driving into steel sheet and its manufacture |
JPH09195007A (en) * | 1996-01-19 | 1997-07-29 | Kawasaki Steel Corp | Chromium-manganese-nitrogen base austenitic stainless steel excellent in corrosion resistance |
-
2007
- 2007-08-29 TW TW096132137A patent/TW200909593A/en unknown
- 2007-09-26 JP JP2007249166A patent/JP4653149B2/en not_active Expired - Fee Related
- 2007-10-05 US US11/905,922 patent/US20090060775A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3112195A (en) * | 1959-06-04 | 1963-11-26 | Schoeller Bleckmann Stahlwerke | Drill stems for deep-well drill rods from non-magnetizable austenitic manganese-chromium alloy steels |
US3904401A (en) * | 1974-03-21 | 1975-09-09 | Carpenter Technology Corp | Corrosion resistant austenitic stainless steel |
US4957700A (en) * | 1984-03-20 | 1990-09-18 | Aichi Steel Works, Ltd. | High strength non-magnetic stainless steel |
US4822556A (en) * | 1987-02-26 | 1989-04-18 | Baltimore Specialty Steels Corporation | Austenitic stainless steel combining strength and resistance to intergranular corrosion |
US5308577A (en) * | 1990-04-12 | 1994-05-03 | Crs Holdings, Inc. | Austenitic, non-magnetic, stainless steel alloy and articles made therefrom |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9816163B2 (en) | 2012-04-02 | 2017-11-14 | Ak Steel Properties, Inc. | Cost-effective ferritic stainless steel |
CN102728801A (en) * | 2012-07-12 | 2012-10-17 | 屈志 | Production technology of base stock for stainless steel precision casting |
CN102728801B (en) * | 2012-07-12 | 2014-06-04 | 屈志 | Production technology of base stock for stainless steel precision casting |
EP2728028A1 (en) * | 2012-11-02 | 2014-05-07 | The Swatch Group Research and Development Ltd. | Edelstahllegierung ohne Nickel |
WO2014067795A1 (en) * | 2012-11-02 | 2014-05-08 | The Swatch Group Research And Development Ltd | Nickel-free stainless steel alloy |
CN104769145A (en) * | 2012-11-02 | 2015-07-08 | 斯沃奇集团研究和开发有限公司 | Nickel-free stainless steel alloy |
CN104611643A (en) * | 2015-01-21 | 2015-05-13 | 内蒙古科技大学 | 316 austenitic stainless steel with nitrogen increased and nickel decreased and preparation method thereof |
CN107448627A (en) * | 2016-05-31 | 2017-12-08 | 爱三工业株式会社 | Welding method between valve gear and valve shaft and valve element in the valve gear |
Also Published As
Publication number | Publication date |
---|---|
JP4653149B2 (en) | 2011-03-16 |
JP2009057626A (en) | 2009-03-19 |
TW200909593A (en) | 2009-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100545301B1 (en) | Ferritic-Austenitic Steel Alloys | |
JP5072285B2 (en) | Duplex stainless steel | |
JP3817105B2 (en) | High strength steel with excellent fatigue characteristics and method for producing the same | |
KR20100113642A (en) | Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness | |
US20090060775A1 (en) | Cr-Mn-N austenitic stainless steel | |
JP3246733B2 (en) | High strength spring steel | |
JP5046398B2 (en) | High nitrogen martensitic stainless steel | |
CN101381852A (en) | Chromium manganese nitrogen austenitic stainless steel | |
US20190010573A1 (en) | Lean duplex stainless steel having improved corrosion resistance and machinability, and manufacturing method therefor | |
KR20150074697A (en) | Low-nickel containing stainless steels | |
US20100189589A1 (en) | Sports gear apparatus made from cr-mn-n austenitic stainless steel | |
JP5035831B2 (en) | High nitrogen austenitic stainless steel | |
US4561890A (en) | Two-phase stainless cast steel having high corrosion fatigue strength | |
RU2576773C1 (en) | High-corrosion-resistant steels of the transition class | |
KR100552545B1 (en) | Austenitic Stainless Steel Having Excellent Corrosion Resistance and Workability | |
CN107083524A (en) | A kind of two phase stainless steel and preparation method thereof | |
TW201325664A (en) | Alloy for a golf club | |
JPS60152661A (en) | Free-cutting austenitic stainless steel | |
CN113293335B (en) | Low-nickel precipitation hardening austenitic heat-resistant steel material and application thereof | |
JP3525014B2 (en) | Austenitic stainless steel with excellent stress corrosion cracking resistance | |
JPS6123750A (en) | Nonmagnetic steel | |
WO2001079576A1 (en) | High-strength precipitation-hardenable stainless steel suitable for casting in air | |
JP2022095157A (en) | Steel for bolts and bolt | |
JP2008179844A (en) | Two-phase stainless steel and casting of two-phase stainless steel | |
JPS59222558A (en) | Corrosion resistant steel with high strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED INTERNATIONAL MULTITECH CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, WEI-MING;REEL/FRAME:019983/0559 Effective date: 20070815 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |