US20090054385A1 - Solid inhalation formulations of dehydroepiandrosterone derivatives - Google Patents
Solid inhalation formulations of dehydroepiandrosterone derivatives Download PDFInfo
- Publication number
- US20090054385A1 US20090054385A1 US12/196,233 US19623308A US2009054385A1 US 20090054385 A1 US20090054385 A1 US 20090054385A1 US 19623308 A US19623308 A US 19623308A US 2009054385 A1 US2009054385 A1 US 2009054385A1
- Authority
- US
- United States
- Prior art keywords
- adenosine
- dhea
- pharmaceutical composition
- levels
- administration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 30
- 239000007787 solid Substances 0.000 title claims abstract description 10
- 238000009472 formulation Methods 0.000 title claims abstract description 5
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical class C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 title abstract description 64
- 208000006673 asthma Diseases 0.000 claims abstract description 23
- 238000011282 treatment Methods 0.000 claims abstract description 21
- 206010006482 Bronchospasm Diseases 0.000 claims abstract description 16
- 239000000443 aerosol Substances 0.000 claims abstract description 16
- 230000007885 bronchoconstriction Effects 0.000 claims abstract description 16
- 210000004072 lung Anatomy 0.000 claims abstract description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims description 43
- 150000003839 salts Chemical class 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 206010020751 Hypersensitivity Diseases 0.000 claims description 14
- 206010035664 Pneumonia Diseases 0.000 claims description 13
- 230000007815 allergy Effects 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000004094 surface-active agent Substances 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N lactose group Chemical group OC1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@@H](O)[C@H](O2)CO)[C@H](O1)CO GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 5
- 239000013543 active substance Substances 0.000 claims description 4
- 239000002270 dispersing agent Substances 0.000 claims description 4
- 208000026935 allergic disease Diseases 0.000 claims description 3
- 239000008101 lactose Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 229940071648 metered dose inhaler Drugs 0.000 claims 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 124
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 62
- 229960005305 adenosine Drugs 0.000 description 62
- FMGSKLZLMKYGDP-UHFFFAOYSA-N Dehydroepiandrosterone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 FMGSKLZLMKYGDP-UHFFFAOYSA-N 0.000 description 57
- 229960002847 prasterone Drugs 0.000 description 56
- 235000017471 coenzyme Q10 Nutrition 0.000 description 54
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 34
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 29
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 29
- 229940035936 ubiquinone Drugs 0.000 description 29
- 238000000034 method Methods 0.000 description 24
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 20
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 19
- QGXBDMJGAMFCBF-UHFFFAOYSA-N Etiocholanolone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC21 QGXBDMJGAMFCBF-UHFFFAOYSA-N 0.000 description 19
- MPJKWIXIYCLVCU-UHFFFAOYSA-N Folinic acid Natural products NC1=NC2=C(N(C=O)C(CNc3ccc(cc3)C(=O)NC(CCC(=O)O)CC(=O)O)CN2)C(=O)N1 MPJKWIXIYCLVCU-UHFFFAOYSA-N 0.000 description 19
- KVUAALJSMIVURS-ZEDZUCNESA-L calcium folinate Chemical compound [Ca+2].C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 KVUAALJSMIVURS-ZEDZUCNESA-L 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 235000008191 folinic acid Nutrition 0.000 description 19
- 239000011672 folinic acid Substances 0.000 description 19
- 229960001691 leucovorin Drugs 0.000 description 19
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- QGXBDMJGAMFCBF-LUJOEAJASA-N epiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC[C@H]21 QGXBDMJGAMFCBF-LUJOEAJASA-N 0.000 description 16
- 150000003669 ubiquinones Chemical class 0.000 description 13
- 201000010099 disease Diseases 0.000 description 12
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 11
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 11
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 210000002216 heart Anatomy 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 239000003814 drug Substances 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 7
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229960001566 methyltestosterone Drugs 0.000 description 7
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 6
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 6
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 6
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000000241 respiratory effect Effects 0.000 description 6
- 208000023504 respiratory system disease Diseases 0.000 description 6
- 150000003431 steroids Chemical class 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 206010007558 Cardiac failure chronic Diseases 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 235000019152 folic acid Nutrition 0.000 description 3
- 239000011724 folic acid Substances 0.000 description 3
- -1 hexose monophosphate Chemical class 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 3
- 229960004844 lovastatin Drugs 0.000 description 3
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 0 *C1CCC2(C)c(cCC3C4CC(C)C(=O)C4(C)CCC32)C1 Chemical compound *C1CCC2(C)c(cCC3C4CC(C)C(=O)C4(C)CCC32)C1 0.000 description 2
- 241000220479 Acacia Species 0.000 description 2
- QADHLRWLCPCEKT-UHFFFAOYSA-N Androstenediol Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)O)C4C3CC=C21 QADHLRWLCPCEKT-UHFFFAOYSA-N 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- BSTMNHRJEIWVIO-AATRIKPKSA-N [H]/C(C)=C\C1=C(C)C(=O)C(OC)=C(OC)C1=O Chemical compound [H]/C(C)=C\C1=C(C)C(=O)C(OC)=C(OC)C1=O BSTMNHRJEIWVIO-AATRIKPKSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- QADHLRWLCPCEKT-LOVVWNRFSA-N androst-5-ene-3beta,17beta-diol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC=C21 QADHLRWLCPCEKT-LOVVWNRFSA-N 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 230000000949 anxiolytic effect Effects 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000005515 coenzyme Substances 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 230000000779 depleting effect Effects 0.000 description 2
- 150000002031 dolichols Chemical class 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000006122 isoprenylation Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- LRPBXXZUPUBCAP-WOUKDFQISA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-imidazo[2,1-f]purin-3-yloxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CN2C3=NC=C2)=C3N=C1 LRPBXXZUPUBCAP-WOUKDFQISA-N 0.000 description 1
- CWVMWSZEMZOUPC-JUAXIXHSSA-N (3s,5s,8r,9s,10s,13s,14s,16r)-16-bromo-3-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,14,15,16-tetradecahydrocyclopenta[a]phenanthren-17-one Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C([C@H](Br)C4)=O)[C@@H]4[C@@H]3CC[C@H]21 CWVMWSZEMZOUPC-JUAXIXHSSA-N 0.000 description 1
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 1
- QGXBDMJGAMFCBF-BNSUEQOYSA-N 3alpha-hydroxy-5beta-androstan-17-one Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC[C@@H]21 QGXBDMJGAMFCBF-BNSUEQOYSA-N 0.000 description 1
- GUGSXATYPSGVAY-DHKQUUGRSA-N 5-Androstenetriol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CC=C21 GUGSXATYPSGVAY-DHKQUUGRSA-N 0.000 description 1
- 102000009346 Adenosine receptors Human genes 0.000 description 1
- 108050000203 Adenosine receptors Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 206010057654 Breast cancer female Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- GTGMWHOTTYXFPJ-UHFFFAOYSA-N CC1OC(C(=O)O)C(C)(O)C(O)C1C Chemical compound CC1OC(C(=O)O)C(C)(O)C(O)C1C GTGMWHOTTYXFPJ-UHFFFAOYSA-N 0.000 description 1
- XEBKMODWQYIDCD-UHFFFAOYSA-N CCOS(C)(=O)=O.CC[PH](C)(=O)=O Chemical compound CCOS(C)(=O)=O.CC[PH](C)(=O)=O XEBKMODWQYIDCD-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010016880 Folate deficiency Diseases 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- GVVPGTZRZFNKDS-YFHOEESVSA-N Geranyl diphosphate Natural products CC(C)=CCC\C(C)=C/COP(O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-YFHOEESVSA-N 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 206010020112 Hirsutism Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 206010024421 Libido increased Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010027304 Menopausal symptoms Diseases 0.000 description 1
- XJLXINKUBYWONI-NNYOXOHSSA-N NADP zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-N 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010036618 Premenstrual syndrome Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 239000003470 adrenal cortex hormone Substances 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 210000005091 airway smooth muscle Anatomy 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 230000001548 androgenic effect Effects 0.000 description 1
- 229950009148 androstenediol Drugs 0.000 description 1
- 230000000567 anti-anemic effect Effects 0.000 description 1
- 230000003217 anti-cancerogenic effect Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000729 antidote Substances 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003126 arrythmogenic effect Effects 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 208000028683 bipolar I disease Diseases 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 210000002318 cardia Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000004098 cellular respiration Effects 0.000 description 1
- 230000001767 chemoprotection Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- CZWCKYRVOZZJNM-USOAJAOKSA-N dehydroepiandrosterone sulfate Chemical compound C1[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 CZWCKYRVOZZJNM-USOAJAOKSA-N 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 201000005577 familial hyperlipidemia Diseases 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- 239000004052 folic acid antagonist Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000023266 generation of precursor metabolites and energy Effects 0.000 description 1
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 1
- 229930182480 glucuronide Natural products 0.000 description 1
- 150000008134 glucuronides Chemical class 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000007999 glycylglycine buffer Substances 0.000 description 1
- 230000002710 gonadal effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 231100000183 lymphotoxic Toxicity 0.000 description 1
- 230000001917 lymphotoxic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003758 neuroeffector junction Anatomy 0.000 description 1
- 230000008062 neuronal firing Effects 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229950009829 prasterone sulfate Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000006967 uncompetitive inhibition Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000006442 vascular tone Effects 0.000 description 1
- 229940099259 vaseline Drugs 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 206010047302 ventricular tachycardia Diseases 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
- A61K31/568—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
- A61K31/5685—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone having an oxo group in position 17, e.g. androsterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- This invention concerns itself with a method of treating bronchoconstriction, lung inflammation and allergies, asthma, and cancer by administering an epiandrosterone, analogs thereof, a ubiquinone, and/or their pharmaceutically acceptable salts.
- This invention also concerns itself with a method of treating adenosine depletion by administration of folinic acid or a pharmaceutically acceptable salt thereof.
- Adenosine is a purine that contributes to intermediary metabolism and participates in the regulation of physiological activity in a variety of mammalian tissues. Adenosine participates in many local regulatory mechanisms, such as those occurring in synapses in the central nervous system (CNS) and at neuroeffector junctions in the peripheral nervous system. In the CNS, adenosine inhibits the release of a variety of neurotransmitters, such as acetylcholine, noradrenaline, dopamine, serotonin, glutamate, and GABA; depresses neurotransmission, reduces neuronal firing to induce spinal analgesia and possesses anxiolytic properties.
- neurotransmitters such as acetylcholine, noradrenaline, dopamine, serotonin, glutamate, and GABA
- adenosine suppresses pacemaker activity, slows AV conduction possesses antiarrhythymic and arrhythmogenic effects, modulates autonomic control and triggers the synthesis and release of prostaglandins.
- adenosine has potent vasodilatory effects and modulates vascular tone.
- Adenosine is currently being used clinically for the treatment of super ventricular tachycardia and other cardia anomalies.
- Adenosine analogues also are being investigated for use as anticonvulsant, anxiolytic and neuro protective agents.
- Adenosine has also been implicated as a primary determinant underlying the symptoms of bronchial asthma and other respiratory diseases, the induction of bronchoconstriction and the contraction of airway smooth muscle. Moreover, adenosine causes bronchoconstriction in asthmatics but not in non-asthmatics. Other experimental data suggest the possibility that adenosine receptors may also be involved in allergic and inflammatory responses. It has been postulated that the modulation of signal transduction at the surface of inflammatory cells influences acute inflammation. Adenosine is said to inhibit the production of super-oxide by stimulated neutrophils. Moreover, the treatment of experimental allergic uveitis produced a marked reduction in inflammation. Adenosine may attenuate this behavior by reducing the hyperactivity of the central dopaminergic system.
- DHEA Dehydroepiandrosterone
- G6PDH glucose 6-phosphate dehydrogenase
- Ribose-5 phosphate is a necessary substrate for the synthesis of both ribo- and deoxyribonucleotides required for the synthesis of RNA and DNA.
- NADPH is a cofactor also involved in nucleic acid biosynthesis and the synthesis of hydroxmethylglutaryl Coenzyme A reductase (HMG CoA reductase).
- HMG CoA reductase is an unusual enzyme that requires two moles of NADPH for each mole of product, mevalonate, produced. Thus, it appears that HMG CoA reductase would be ultra sensitive to DHEA-mediated NADPH depletion, and that DHEA-treated cells would rapidly show the depletion of intracellular pools of mevalonate.
- Mevalonate is required for DNA synthesis, and DHEA arrests human cells in the G1 phase of the cell cycle in a manner closely resembling that of the direct HMG CoA.
- G6PDH produces mevalonic acid used in cellular processes such as protein isoprenylation and the synthesis of dolichol, a precursor for glycoprotein biosynthesis, DHEA inhibits carcinogenesis by depleting mevalonic acid and thereby inhibiting protein isoprenylation and glycoprotein synthesis.
- Mevalonate is the central precursor for the synthesis of cholesterol, as well as for the synthesis of a variety of non-sterol compounds involved in post-translational modification of proteins such as farnesyl pyrophosphate and geranyl-pyrophosphate; for dolichol, which is required for the synthesis of glycoproteins involved in cell-to-cell communication and cell structure; and for ubiquinone, an anti-oxidant with an established role in cellular respiration. It has long been known that patients receiving steroid hormones of adrenocortical origin at pharmacologically appropriate doses show increased incidence of infectious disease.
- DHEA also known as 3 ⁇ -hydroxyandrost-5-en-17-one or dehydroiso-androsterone, is a 17-ketosteroid which is quantitatively one of the major adrenocortical steroid hormones found in mammals.
- DHEA appears to serve as an intermediary in gonadal steroid synthesis, the primary physiological function of DHEA has not been fully understood. It has been known, however, that levels of this hormone begin to decline in the second decade of life, reaching 5% of the original level in the elderly.)
- DHEA has been used systemically and/or topically for treating patients suffering from psoriasis, gout, hyperlipemia, and it has been administered to post-coronary patients.
- DHEA has been shown to have weight optimizing and anti-carcinogenic effects, and it has been used clinically in Europe in conjunction with estrogen as an agent to reverse menopausal symptoms and also has been used in the treatment of manic depression, schizophrenia, and Alzheimer's disease. DHEA has also been used clinically at 40 mg/kg/day in the treatment of advanced cancer and multiple sclerosis. Mild androgenic effects, hirsutism, and increased libido were the side effects observed. These side effects can be overcome by monitoring the dose and/or by using analogues.
- the subcutaneous or oral administration of DHEA to improve the host's response to infections is known, as is the use of a patch to deliver DHEA.
- DHEA is also known as a precursor in a metabolic pathway which ultimately leads to more powerful agents that increase immune response in mammals. That is, DHEA acts as a biphasic compound: it acts as an immuno-modulator when converted to androstenediol or androst-5-ene-3 ⁇ ,17 ⁇ -diol ( ⁇ AED), or androstenetriol or androst-5-ene-3 ⁇ ,7 ⁇ ,17 ⁇ -triol ( ⁇ AET).
- ⁇ AED androstenediol or androst-5-ene-3 ⁇ ,17 ⁇ -diol
- ⁇ AET androstenetriol or androst-5-ene-3 ⁇ ,7 ⁇ ,17 ⁇ -triol
- Adequate ubiquinone levels have been found to be essential for maintaining proper cardiac function, and the administration of exogenous ubiquinone has recently been shown to have beneficial effect in patients with chronic heart failure.
- Ubiquinone depletion has been observed in humans and animals treated with lovastatin, a direct HMG CoA reductase inhibitor.
- lovastatin a direct HMG CoA reductase inhibitor.
- Such lovastatin-induced depletion of ubiquinone has been shown to lead to chronic heart failure, or to a shift from low heart failure into life-threatening high grade heart failure.
- DHEA unlike lovastatin, inhibits HMG CoA reductase indirectly by inhibiting G6PDH and depleting NADPH, a required cofactor for HMG CoA reductase.
- DHEA's indirect inhibition of HMG CoA reductase suffices to deplete intracellular mevalonate. This effect adds to the depletion of ubiquinone, and may result in chronic heart failure following long term usage.
- DHEA was once considered a safe drug, it is now predicted that with long term administration of DHEA or its analogues, chronic heart failure may occurs as a complicating side effect.
- some analogues of DHEA produce this side effect to a greater extent because, in general, they are more potent inhibitors of G6PDH than DHEA.
- Folinic acid is an intermediate product of the metabolism of folic acid; the active form into which that acid is converted in the body. Ascorbic acid is required as a necessary factor in the conversion process. Folinic acid has been used therapeutically as an antidote to folic acid antagonists such as methotrexate which block the conversion of folic acid into folinic acid. Additionally, folinic acid has been used as an anti-anemic (combating folate deficiency). The use of folinic acid in patients afflicted with adenosine depletion, or in a method to therapeutically elevate adenosine levels in the brain or other organ, has heretofore neither been suggested nor described.
- adenosine depletion may be useful in treating respiratory and airway conditions such as asthma, surfactant depletion, bronchoconstriction, lung inflammation, and allergies; and (ii) adenosine depletion may lead to a broad variety of deleterious conditions, and that methods of treating adenosine depletion and those conditions may be an extremely useful means of therapeutic intervention.
- asthma and cancers such as leukemias, lymphomas, carcinomas, and the like, including colon cancer, breast cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, etc., as well as all types of cancers which may metastasize or have metastasized, for instance, to the lung(s), breast, liver and prostate
- a composition and method which are suitable for regular administration during a subject's daily routine, and that may be effectively administered preventatively, prophylactically and therapeutically, in conjunction with other therapies, or by itself for conditions without known therapies or as a substitute for therapies that have significant negative side effects is also of immediate clinical application.
- the present invention relates to the use of an epiandrosterone, analogues thereof, a ubiquinone, and/or pharmaceutically or veterinarily acceptable salts thereof, for the manufacture of a medicament for treating asthma and its associated symptoms.
- the present invention also relates to a method of treating asthma and symptoms associated with it, such as bronchoconstriction, lung inflammation and allergies, and cancer in a subject in need of treatment by administering to the subject an epiandrosterone, an analog thereof, a ubiquinone, or a pharmaceutically or veterinarily acceptable salt thereof, in an amount effective to treat asthma or its associated symptoms.
- the present invention relates to the use of folinic acid or a pharmaceutically or veterinarily acceptable salt thereof for the preparation of a medicament for treating adenosine depletion in a subject in need of such treatment, as set forth above.
- the present invention also relates to a method of treating adenosine depletion in a subject in need of treatment, which comprises administering to the subject folinic acid or a pharmaceutically acceptable salt thereof in an amount effective to treat the adenosine depletion or to increase adenosine levels in certain tissues.
- the method may be applied to subjects afflicted with various diseases and conditions including steroid-induced adenosine depletion, anxiety, wasting disorder or weight loss, or subjects afflicted with any other disorder associated with adenosine depletion, or where an increase in adenosine levels would be therapeutically beneficial.
- This invention arose from a desire of the inventor to provide never before available prophylactic and therapeutic treatments for certain respiratory and lung diseases and conditions, or treatments that are a substantial improvement over those presently available.
- EA epiandrosterone
- a ubiquinone a ubiquinone
- a pharmaceutically or veterinarily acceptable salt thereof a pharmaceutically or veterinarily acceptable salt thereof
- R comprises hydrogen or halogen
- R 1 comprises hydrogen or SO 2 OM, wherein M comprises H, Na, sulfatide
- R 2 and R 3 which may be the same or different, are straight or branched (C 1 -C 14 ) alkyl or glucuronide
- ubiquinone or pharmaceutically or veterinarily acceptable salt thereof, wherein the ubiquinone has the chemical formula
- the hydrogen atom at position 5 of the formula (I) may be present in the alpha or beta configuration, or the compound may comprise a mixture of both configurations.
- Compounds illustrative of formula (I) above include DHEA, wherein R and R 1 are each hydrogen and the double bond is present; 16-alpha bromoepiandrosterone, where R is Br, R1 is H, and the double bond is present; 16-alpha-fluoro epiandrosterone, wherein R is F, R1 is H and double bond is present; Etiocholanolone, where R and R1 are each hydrogen and the double bond is absent; and Dehydroepiandrosterone sulphate, wherein R is H, R1 is SO 2 OM and M is a sulfatide group as defined above, and the double bond is absent, among others.
- R may be halogen e.g., bromo, chloro, or fluoro
- R1 comprises hydrogen
- the double bond is present.
- the compound of formula (I) comprises 16-alpha-fluoro epiandrosterone.
- the ubiquinone may be administered by itself or concurrently with the DHEA or analog thereof in the methods of treating asthma described above.
- concurrently administering means that the DHEA or the DHEA analog are administered either (a) simultaneously in time, preferably by formulating the two together in a common pharmaceutical carrier, or (b) at different times during the course of a common treatment schedule. In the latter case, the two compounds are administered at times sufficiently close for the ubiquinone to have as one of its effects to offset ubiquinone depletion in the subject's tissues, e.g. lungs and heart, and thereby counter-balance any deterioration of the tissue, e.g.
- ubiquinone refers to a family of compounds having structures based on a w,3-dimethoxy-5-methyl benzoquinone nucleus with a variable terpenoid acid chain containing one to twelve mono-unsaturated trans-isoprenoid units. Such compounds are known in the art as “Coenzyme Q n ,” in which n equals 1 to 12. These compounds may be referred to herein as compounds represented by the formula
- the ubiquinone is a compound according to formula given above, where n is 6 to 10, i.e., Coenzyme Q 6-10 , and most preferably wherein n7-10, i.e. Coenzyme Q 10 .
- the ubiquinone is formulated with a pharmaceutically acceptable carrier separately from the DHEA, analog thereof or salt thereof (e.g., where the DHEA, analog thereof or salt thereof is administered to the lungs of the subject, and the ubiquinone is administered systemically) it may be formulated by any of the techniques set forth above.
- the compounds used to treat asthma may be administered per se or in the form of pharmaceutically or veterinarily acceptable salts, as discussed above (the two together again being referred to as “active compounds”).
- the active compounds and their salts may be administered either systemically or topically, as discussed below.
- the ubiquinone is administered in an amount effective to increase ubiquinone levels, to offset ubiquinone depletion in the lungs and heart of the subject induced by the EA, analog thereof, or salt thereof, or to treat respiratory or lung symptoms of asthma, such as bronchoconstriction, lung inflammation and allergies, or cancer.
- the dosage will vary depending upon the condition of the subject and route of administration.
- the ubiquinone is preferably administered in a total amount per day of about 0.1, about 1, about 5, about 10, about 15, about 30 to about 50, about 100, about 150, about 300, about 600, about 900, about 1200 mg/kg body weight per day. More preferred are about 1 to about 150 mg/kg, about 30 to about 100 mg/kg, and most preferred about 5 to about 50 mg/kg.
- the ubiquinone may be administered once or several times a day.
- the epiandrosterones and their salts are administered in a dosage of about 0.01, about 0.1, about 0.4, about 1, about 5, about 10, about 20 to about 4, about 30, about 70, about 100, about 300, about 600, about 1000, about 2000, about 3600 mg/kg body weight.
- the active compounds may be administered once or several times a day.
- the method of treating adenosine depletion disclosed herein may be used to treat steroid-induced adenosine depletion, to stimulate adenosine synthesis, to treat or control anxiety, e.g., in treating premenstrual syndrome, to increase weight gain or treat wasting disorders, and to treat other adenosine-related pathologies, by administering folinic acid or its salts.
- the term “adenosine depletion” is intended to encompass conditions where adenosine levels are depleted in the subject as compared to previous adenosine levels in that subject, and conditions where adenosine levels are essentially the same as previous adenosine levels in that subject but, because of some other condition or alteration in that patient, a therapeutic benefit would be achieved in the patient by increased adenosine levels as compared to previous levels.
- the method is carried out preferably on patients where adenosine levels are depleted as compared to previous adenosine levels in the subject.
- the present invention is concerned primarily with the treatment of human subjects but may also be employed for the treatment of other mammalian subject, such as dogs and cats, for veterinary purpose.
- Folinic acid and the pharmaceutically acceptable salts thereof are known, and may be made in accordance with known procedures. See, generally The Merck Index, Monograph No. 4141 (11th Ed. 1989); U.S. Pat. No. 2,741,608.
- Such pharmaceutically acceptable salts should be both pharmacologically and pharmaceutically or veterinarily acceptable and may be prepared as alkaline metal or alkaline earth salts, e.g., sodium, potassium or calcium salts, of the carboxylic acid group of folinic acid.
- the calcium salt of folinic acid is a preferred pharmaceutically or veterinarily acceptable salt.
- the dosage of folinic acid or salt will vary depending on age, weight, and condition of the subject. Treatment may be initiated with small dosages less than optimum dose and increased until the optimum effect under the circumstances is reached. In general, the dosage will be from about 1, about 5, about 10 or about 20 mg/kg subject body weight, up to about 100, about 200, about 500, or about 1000 mg/kg subject body weight. Currently, dosages of from about 5 to about 500 mg/kg are preferred, dosages of from about 10 to about 200 mg/kg are more preferred, and dosages of from about 20 to about 100 mg/kg are most preferred.
- the active compounds are preferably administered at a concentration that will afford effective results without causing any unduly harmful or deleterious side effects, and may be administered either as a single unit dose, or if desired in convenient subunits administered at suitable times throughout the day.
- compositions for use in the present invention include those suitable for inhalation, and nasal, intrapulmonary, respirable, oral, topical (including buccal, sublingual, dermal and intraocular), parenteral (including subcutaneous, intradermal, intramuscular, intravenous and intraarticular), rectal, vaginal, implantable, and transdermal administration.
- compositions may conveniently be presented in bulk or in single or multiple unit dosage forms and may be prepared by any of the methods that are well known in the art.
- compositions suitable for oral administration may be presented in discrete units, such as capsules, cachets, lozenges, or tablets, each containing a predetermined amount of the active compound; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion.
- Such compositions may be prepared by any suitable method of pharmacy that includes the step of bringing into association the active compound and a suitable carrier.
- the compositions of the invention are prepared by uniformly and intimately admixing the active compound with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the resulting mixture.
- a table may be prepared by compressing or molding a power or granules containing the active compound, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing, in a suitable machine, the compound in a free-lowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent, and/or surface active/dispensing agent(s) or surfactant(s). Molded tablets may be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid binder.
- Compositions for oral administration may optionally include enteric coatings known in the art to prevent degradation of the compositions in the stomach and provide release of the drug in the small intestine.
- compositions suitable for buccal or sub-lingual administration include lozenges comprising the active compound in a flavored base, usually sucrose and acacia or tragacanth, and pastilles comprising the compound in an inert base such as gelation and glycerin or sucrose and acacia.
- compositions suitable for parenteral administration comprise sterile aqueous and non-aqueous injection solutions, suspensions and emulsions of the active compound, which preparations are preferably isotonic with the blood of the intended recipient.
- preparations may contain anti-oxidants, surfactants, buffers, bacteriostats, solutes that render the compositions isotonic with the blood of the intended recipient, and other formulation components known in the art.
- Aqueous and non-aqueous sterile suspensions may include suspending agents and thickening agents.
- compositions may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored freeze-dried or lyophilized, requiring only the addition of the sterile liquid carrier, for example, saline or water-for-injection immediately prior to their use.
- sterile liquid carrier for example, saline or water-for-injection immediately prior to their use.
- Extemporaneous injection solutions, suspensions and emulsions may be prepared from sterile powders, granules and tablets of the kind previously described.
- compositions suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil, although other forms are also suitable.
- Carriers which may be used include vaseline, lanoline, polyethylene glycols, alcohols, transdermal enhancers, and combinations of two or more thereof.
- compositions suitable for rectal or vaginal administration are also included, and may be prepared by methods known in the art.
- compositions suitable for transdermal administration may be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time.
- Compositions suitable for transdermal administration may also be delivered by iontophoresis. See, e.g. Pharmaceutical Research 3:318 (1986), and typically take the form of an optionally buffered aqueous solution of the active compound.
- the active compounds disclosed herein may be administered to the lungs of a subject by any suitable means, but are preferably administered by generating an aerosol or spray comprised of respirable, inhalable, nasal or intrapulmonarily delivered particles comprising the active compound, which particles the subject inhales, i.e. by inhalation administration.
- the respirable particles may be liquid or solid.
- Particles comprising the active compound for practicing the present invention should include particles of respirable or inhalable size; that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs.
- particles ranging from about 0.05, about 0.1, about 0.5, about 1, about 1.5 to about 5, about 6, about 7, about 8, about 10 microns in size, more particularly particles about 0.5 to less than about 5 microns in size are respirable or inhalable.
- particles of nonrespirable size When particles of nonrespirable size are included in the aerosol or spray, they tend to deposit in the throat and be swallowed.
- the quantity of non-respirable particles in the aerosol or spray is preferably minimized when intended for respirable administration or by inhalation.
- a particle size in the range of about 10, about 11, about 15, about 20 to about 25, about 30, about 40, about 50, and sometimes even up to about 100 and about 500 microns is preferred to ensure retention in the nasal or pulmonary cavity. Pulmonary instillation is particularly useful for treating newborns.
- Liquid pharmaceutical compositions of the active compound for producing an aerosol or spray may be prepared by combining the active compound with a stable vehicle, such as sterile pyrogen free water.
- Solid particulate compositions containing respirable dry particles of micronized active compound may be prepared by grinding dry active compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate out large agglomerates.
- a solid particulate composition comprised of the active compound may optional contain a dispersant which serves to facilitate the formation of an aerosol.
- a suitable dispersant is lactose, which may be blended with the active compound in any suitable ratio, e.g. a 1 to 1 ratio by weight.
- other therapeutic and formulation compounds may also be included, such as a surfactant to improve the sate of surfactant in the lung and help with the absorption of the active agent.
- Aerosols of liquid particles comprising the active compound may be produced by any suitable means, such as with a nebulizer. See, e.g., U.S. Pat. No. 4,501,729.
- Nebulizers are commercially available devices which transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation.
- compositions for use in nebulizer consist of the active ingredient in liquid carrier, the active ingredient comprising up to 40% w/w of the compositions, but preferably less than 20% w/w the carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic with body fluids by the addition of, for example sodium chloride.
- Optional additives include preservatives if the compositions is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile oils, buffering agents and surfactants.
- Aerosols of solid particles comprising the active compound may likewise be produced with any sold particulate medicament aerosol generator.
- EA means an epiandrosterone
- DHEA dehydroepiandrosterone
- s means seconds
- mg means milligrams
- kg means kilograms
- kw means kilowatts
- Mhz means megahertz
- CoQ means ubiquinone
- nmol means nanomoles.
- Young adult male Fischer 344 rats (120 grams) were administered dehydroepiandrosterone (DHEA) (300 mg/kg) or methyltestosterone (40 mg/kg) in carboxymethylcellulose by gavage once daily for fourteen days.
- Folinic acid 50 mg/kg was administered intraperitoneally once daily for fourteen days.
- the animals were sacrificed by microwave pulse (1.33 kw, 2450 MHZ, 6.5 s) to the cranium, which instantly denatures all brain protein and prevents further metabolism of adenosine.
- Hearts were removed from animals and flash frozen in liquid nitrogen with 10 seconds of death. Liver and lungs were removed en bloc and flash frozen with 30 seconds of death. Brain tissue was subsequently dissected.
- Tissue adenosine was extracted, derivatized to 1, N6-ethenoadenosine and analyzed by high performance liquid chromatography (HPLC) using spectrofluorometric detection according to the method of Clark and Dar (J. of Neuroscience Methods 25:243 (1988)). Results of these experiments are summarized in Table 1 below.
- Results are expressed as the mean ⁇ SEM, with ⁇ p ⁇ 0.05 compared to control group and ⁇ p ⁇ 0.05 compared to DHEA or methyltestosterone-treated groups.
- Glocose-6-Phosphate Dehydrogenase is an important enzyme that is widespread in mammals, and is involved in the conversion of NADP to NADPH, thereby increasing NADPH levels.
- An inhibition of the G6PD enzyme thus, will be expected to result in a reduction of cellular NADPH levels, which event, in turn, will be expected to inhibit pathways that are heavily dependent on NADPH.
- One-Carbon-Pool pathway also known as the Folate Pathway
- the inhibition of this pathway will lead to adenosine depletion.
- the present invention is broadly applicable to Epiandrosterones (EAs) and Ubiquinones (CoQs).
- EAs Epiandrosterones
- CoQs Ubiquinones
- both Epiandrosterones and Ubiquinones decrease levels of adenosine and, therefore, are useful as medicaments for use in the treatment of diseases where a decrease of adenosine levels or its depletion is desirable, including respiratory diseases such as asthma, bronchoconstriction, lung inflammation and allergies and the like.
- Both Ubiquinones and DHEA inhibit NADPH levels in a statistically significant manner, when compared to a control.
- the Ubiquinone inhibits NADPH levels to a similar extent as DHEA.
- the present invention is broadly applicable to the use of Epiandrosterones (EAs) and Ubiquinones (CoQs) to the treatment of respiratory and lung diseases, and other diseases associated with varying levels of adenosine, adenosine hypersensitivity, asthma, bronchoconstriction, and/or lung inflammation and allergies.
- EAs Epiandrosterones
- Ubiquinones Ubiquinones
- the DHEA and Ubiquinones employed in the present experiments are equivalent to those described and exemplified above.
- the reaction mixture contained 50 mM glycyl glycine buffer, pH 7.4, 2 mM D-glucose-6-phosphate, 0.67 mM Beta-NADP, 10 mM MgCL2 and 0.0125 units of G6PDH in a final volume of 3.0 ml. All experiments were repeated 4 times.
- the control group contained 3 samples that were added no DHEA or Ubiquinone.
- the experimental group contained a similar number of samples (3) for each concentration of DHEA or Ubiquinone.
- One group was added DHEA (in triplicate) at different concentrations.
- a second group was added different concentrations of a CoQ of long side chain (in triplicate), and a third group received a CoQ of short side chain (in triplicate), both at various doses in the ⁇ M range.
- the reaction was started by addition of the enzyme, and the increase in absorbance at 340 nm was measured for 5 minutes. Each data point was conducted in triplicate, and the full experiment was repeated 4 times.
- DHEA and the Ubiquinones inhibited the enzyme activity in a statistically significant manner when compared to controls.
- DHEA was found to inhibit by 72% in vitro the activity of purified G6PDH when compared to control.
- Both Ubiquinones inhibited the activity of purified G6PDH in vitro by an amount that was not statistically significantly different from that of DHEA.
- Both DHEA and the Ubiquinones inhibited the enzyme in a statistically significant manner when compared to controls.
- Both long chain and short chain CoQs were found to be effective inhibitors of G6PDH.
- both Epiandrosterones and Ubiquinones decrease levels of adenosine and are, therefore, useful in the therapy of diseases and conditions where a decrease of adenosine levels or its depletion are desirable, including respiratory and airway diseases such as asthma, bronchoconstriction, lung inflammation and allergies, and the like.
Landscapes
- Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
- Medicinal Preparation (AREA)
- Steroid Compounds (AREA)
Abstract
Solid pharmaceutical compositions and kits for administration to the lungs comprise a carrier and an agent for the treatment of bronchoconstriction and asthma, wherein the agent comprises a derivative of dehydroepiandrosterone having an SO2H or SO2Na group. The solid formulations can be administered as an aerosol.
Description
- This application is a continuation application of Ser. No. 10/072,010, filed Oct. 25, 2001, which is a divisional patent application of Ser. No. 09/841,426, filed Apr. 24, 2001, now abandoned, which is a continuation-in-part of Ser. No. 09/488,236, filed Jan. 20, 2000, now U.S. Pat. No. 6,670,349, which is a divisional of Ser. No. 08/861,962, filed May 22, 1977, now U.S. Pat. No. 6,087,351, which is a divisional of Ser. No. 08/393,863, filed Feb. 24, 1995, U.S. Pat. No. 5,660,835, all incorporated herein by reference in their entirety.
- The work leading to this invention was made at least in part with U.S. Government support under National Cancer Institute Grant No. CA7217. The U.S. Government may have certain rights in the invention.
- 1. Field of the Invention
- This invention concerns itself with a method of treating bronchoconstriction, lung inflammation and allergies, asthma, and cancer by administering an epiandrosterone, analogs thereof, a ubiquinone, and/or their pharmaceutically acceptable salts. This invention also concerns itself with a method of treating adenosine depletion by administration of folinic acid or a pharmaceutically acceptable salt thereof.
- 2. Description of the Background
- Adenosine is a purine that contributes to intermediary metabolism and participates in the regulation of physiological activity in a variety of mammalian tissues. Adenosine participates in many local regulatory mechanisms, such as those occurring in synapses in the central nervous system (CNS) and at neuroeffector junctions in the peripheral nervous system. In the CNS, adenosine inhibits the release of a variety of neurotransmitters, such as acetylcholine, noradrenaline, dopamine, serotonin, glutamate, and GABA; depresses neurotransmission, reduces neuronal firing to induce spinal analgesia and possesses anxiolytic properties. In the heart adenosine suppresses pacemaker activity, slows AV conduction possesses antiarrhythymic and arrhythmogenic effects, modulates autonomic control and triggers the synthesis and release of prostaglandins. In addition, adenosine has potent vasodilatory effects and modulates vascular tone. Adenosine is currently being used clinically for the treatment of super ventricular tachycardia and other cardia anomalies. Adenosine analogues also are being investigated for use as anticonvulsant, anxiolytic and neuro protective agents. Adenosine has also been implicated as a primary determinant underlying the symptoms of bronchial asthma and other respiratory diseases, the induction of bronchoconstriction and the contraction of airway smooth muscle. Moreover, adenosine causes bronchoconstriction in asthmatics but not in non-asthmatics. Other experimental data suggest the possibility that adenosine receptors may also be involved in allergic and inflammatory responses. It has been postulated that the modulation of signal transduction at the surface of inflammatory cells influences acute inflammation. Adenosine is said to inhibit the production of super-oxide by stimulated neutrophils. Moreover, the treatment of experimental allergic uveitis produced a marked reduction in inflammation. Adenosine may attenuate this behavior by reducing the hyperactivity of the central dopaminergic system.
- Diseases and conditions, such as asthma, are common diseases in industrialized countries, and in the United States alone account for extremely high health care costs. These diseases or conditions have recently been increasing at an alarming rate, both in terms of prevalence, morbidity and mortality. In spite of this, their underlying causes still remain poorly understood.
- Dehydroepiandrosterone (DHEA) is a naturally occurring steroid secreted by the adrenal cortex with apparent chemoprotective properties. Epidemiological studies have shown that low endogenous levels of DHEA correlate with increased risk of developing some forms of cancer, such as pre-menopausal breast cancer in women and bladder cancer in both sexes. The ability of DHEA, DHEA analogues and their salts to inhibit carcinogenesis is believed to result from their uncompetitive inhibition of the activity of the enzyme glucose 6-phosphate dehydrogenase (G6PDH). G6PDH is the rate limiting enzyme of the hexose monophosphate pathway, a major source of intracellular ribose-5-phosphate and NADPH. Ribose-5 phosphate is a necessary substrate for the synthesis of both ribo- and deoxyribonucleotides required for the synthesis of RNA and DNA. NADPH is a cofactor also involved in nucleic acid biosynthesis and the synthesis of hydroxmethylglutaryl Coenzyme A reductase (HMG CoA reductase). HMG CoA reductase is an unusual enzyme that requires two moles of NADPH for each mole of product, mevalonate, produced. Thus, it appears that HMG CoA reductase would be ultra sensitive to DHEA-mediated NADPH depletion, and that DHEA-treated cells would rapidly show the depletion of intracellular pools of mevalonate. Mevalonate is required for DNA synthesis, and DHEA arrests human cells in the G1 phase of the cell cycle in a manner closely resembling that of the direct HMG CoA. Because G6PDH produces mevalonic acid used in cellular processes such as protein isoprenylation and the synthesis of dolichol, a precursor for glycoprotein biosynthesis, DHEA inhibits carcinogenesis by depleting mevalonic acid and thereby inhibiting protein isoprenylation and glycoprotein synthesis. Mevalonate is the central precursor for the synthesis of cholesterol, as well as for the synthesis of a variety of non-sterol compounds involved in post-translational modification of proteins such as farnesyl pyrophosphate and geranyl-pyrophosphate; for dolichol, which is required for the synthesis of glycoproteins involved in cell-to-cell communication and cell structure; and for ubiquinone, an anti-oxidant with an established role in cellular respiration. It has long been known that patients receiving steroid hormones of adrenocortical origin at pharmacologically appropriate doses show increased incidence of infectious disease.
- DHEA, also known as 3β-hydroxyandrost-5-en-17-one or dehydroiso-androsterone, is a 17-ketosteroid which is quantitatively one of the major adrenocortical steroid hormones found in mammals. Although DHEA appears to serve as an intermediary in gonadal steroid synthesis, the primary physiological function of DHEA has not been fully understood. It has been known, however, that levels of this hormone begin to decline in the second decade of life, reaching 5% of the original level in the elderly.) Clinically, DHEA has been used systemically and/or topically for treating patients suffering from psoriasis, gout, hyperlipemia, and it has been administered to post-coronary patients. In mammals, DHEA has been shown to have weight optimizing and anti-carcinogenic effects, and it has been used clinically in Europe in conjunction with estrogen as an agent to reverse menopausal symptoms and also has been used in the treatment of manic depression, schizophrenia, and Alzheimer's disease. DHEA has also been used clinically at 40 mg/kg/day in the treatment of advanced cancer and multiple sclerosis. Mild androgenic effects, hirsutism, and increased libido were the side effects observed. These side effects can be overcome by monitoring the dose and/or by using analogues. The subcutaneous or oral administration of DHEA to improve the host's response to infections is known, as is the use of a patch to deliver DHEA. DHEA is also known as a precursor in a metabolic pathway which ultimately leads to more powerful agents that increase immune response in mammals. That is, DHEA acts as a biphasic compound: it acts as an immuno-modulator when converted to androstenediol or androst-5-ene-3β,17β-diol (βAED), or androstenetriol or androst-5-ene-3β,7β,17β-triol (βAET). However, in vitro DHEA has certain lymphotoxic and suppressive effects on cell proliferation prior to its conversion to βAED and/or βAET. It is, therefore, believed that the superior immunity enhancing properties obtained by administration of DHEA result from its conversion to more active metabolites.
- Adequate ubiquinone levels have been found to be essential for maintaining proper cardiac function, and the administration of exogenous ubiquinone has recently been shown to have beneficial effect in patients with chronic heart failure. Ubiquinone depletion has been observed in humans and animals treated with lovastatin, a direct HMG CoA reductase inhibitor. Such lovastatin-induced depletion of ubiquinone has been shown to lead to chronic heart failure, or to a shift from low heart failure into life-threatening high grade heart failure. DHEA, unlike lovastatin, inhibits HMG CoA reductase indirectly by inhibiting G6PDH and depleting NADPH, a required cofactor for HMG CoA reductase. However, DHEA's indirect inhibition of HMG CoA reductase suffices to deplete intracellular mevalonate. This effect adds to the depletion of ubiquinone, and may result in chronic heart failure following long term usage. Thus, although DHEA was once considered a safe drug, it is now predicted that with long term administration of DHEA or its analogues, chronic heart failure may occurs as a complicating side effect. Further, some analogues of DHEA produce this side effect to a greater extent because, in general, they are more potent inhibitors of G6PDH than DHEA.
- Folinic acid is an intermediate product of the metabolism of folic acid; the active form into which that acid is converted in the body. Ascorbic acid is required as a necessary factor in the conversion process. Folinic acid has been used therapeutically as an antidote to folic acid antagonists such as methotrexate which block the conversion of folic acid into folinic acid. Additionally, folinic acid has been used as an anti-anemic (combating folate deficiency). The use of folinic acid in patients afflicted with adenosine depletion, or in a method to therapeutically elevate adenosine levels in the brain or other organ, has heretofore neither been suggested nor described.
- In view of the foregoing, it is readily apparent that (i) methods of inducing adenosine depletion may be useful in treating respiratory and airway conditions such as asthma, surfactant depletion, bronchoconstriction, lung inflammation, and allergies; and (ii) adenosine depletion may lead to a broad variety of deleterious conditions, and that methods of treating adenosine depletion and those conditions may be an extremely useful means of therapeutic intervention.
- The population of the U.S. and of the world in general living longer lives, many of these diseases and conditions have become more prevalent given the more advanced age of this segment of the population, and would benefit from new products and preventative and therapeutic treatments. The availability of a novel strategy to prevent and/or treat disorders such as bronchoconstriction, impeded respiration, asthma, and lung inflammation and allergies, among others, is of great practical importance. Such technology is clearly applicable to the treatment of heart, brain, lung, kidney, skin and other conditions, e.g. asthma and cancers such as leukemias, lymphomas, carcinomas, and the like, including colon cancer, breast cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, etc., as well as all types of cancers which may metastasize or have metastasized, for instance, to the lung(s), breast, liver and prostate Similarly, a composition and method which are suitable for regular administration during a subject's daily routine, and that may be effectively administered preventatively, prophylactically and therapeutically, in conjunction with other therapies, or by itself for conditions without known therapies or as a substitute for therapies that have significant negative side effects is also of immediate clinical application.
- Accordingly, there is still a need for improved treatments for respiratory, diseases associated with asthma, bronchoconstriction, and lung inflammation and allergies, whether or not accompanied by adenosine depletion, which are effective and easy to administer while being substantially non-toxic and cost effective.
- The present invention relates to the use of an epiandrosterone, analogues thereof, a ubiquinone, and/or pharmaceutically or veterinarily acceptable salts thereof, for the manufacture of a medicament for treating asthma and its associated symptoms.
- The present invention also relates to a method of treating asthma and symptoms associated with it, such as bronchoconstriction, lung inflammation and allergies, and cancer in a subject in need of treatment by administering to the subject an epiandrosterone, an analog thereof, a ubiquinone, or a pharmaceutically or veterinarily acceptable salt thereof, in an amount effective to treat asthma or its associated symptoms.
- The present invention relates to the use of folinic acid or a pharmaceutically or veterinarily acceptable salt thereof for the preparation of a medicament for treating adenosine depletion in a subject in need of such treatment, as set forth above.
- The present invention also relates to a method of treating adenosine depletion in a subject in need of treatment, which comprises administering to the subject folinic acid or a pharmaceutically acceptable salt thereof in an amount effective to treat the adenosine depletion or to increase adenosine levels in certain tissues. The method may be applied to subjects afflicted with various diseases and conditions including steroid-induced adenosine depletion, anxiety, wasting disorder or weight loss, or subjects afflicted with any other disorder associated with adenosine depletion, or where an increase in adenosine levels would be therapeutically beneficial.
- This invention arose from a desire of the inventor to provide never before available prophylactic and therapeutic treatments for certain respiratory and lung diseases and conditions, or treatments that are a substantial improvement over those presently available. The availability of a novel strategy to prevent and/or treat disorders and conditions associated with symptoms such as pulmonary bronchoconstriction, impeded respiration, lung inflammation and allergy(ies), among others, is of great practical importance.
- Disclosed herein is a method of reducing adenosine levels, particularly in the lung, liver, heart and brain and, therefore, of treating asthma and its associated symptoms (bronchoconstriction, lung inflammation and allergies and difficult breathing), particularly non-steroid responding asthma, by administering to a subject in need of treatment an epiandrosterone (EA), analog thereof, a ubiquinone, or a pharmaceutically or veterinarily acceptable salt thereof, in an amount effective to inhibit or control asthma and/or its symptoms. Examples of EA and analogs thereof that may be used to carry out this method are represented by the chemical formula
- wherein the broken line represents an optional double bond; R comprises hydrogen or halogen; R1 comprises hydrogen or SO2OM, wherein M comprises H, Na, sulfatide
- wherein R2 and R3, which may be the same or different, are straight or branched (C1-C14) alkyl or glucuronide
- and/or
- a ubiquinone or pharmaceutically or veterinarily acceptable salt thereof, wherein the ubiquinone has the chemical formula
- wherein n=1 to 12, the agent being present in an amount effective for altering levels of, or sensitivity to, adenosine in a subject's tissue (s), or treating bronchoconstriction, lung inflammation or allergies or a disease associated with either of them.
- The hydrogen atom at position 5 of the formula (I) may be present in the alpha or beta configuration, or the compound may comprise a mixture of both configurations. Compounds illustrative of formula (I) above include DHEA, wherein R and R1 are each hydrogen and the double bond is present; 16-alpha bromoepiandrosterone, where R is Br, R1 is H, and the double bond is present; 16-alpha-fluoro epiandrosterone, wherein R is F, R1 is H and double bond is present; Etiocholanolone, where R and R1 are each hydrogen and the double bond is absent; and Dehydroepiandrosterone sulphate, wherein R is H, R1 is SO2OM and M is a sulfatide group as defined above, and the double bond is absent, among others.
- Preferably, in the compound of formula I, R may be halogen e.g., bromo, chloro, or fluoro), R1 comprises hydrogen, and the double bond is present. Most preferably, the compound of formula (I) comprises 16-alpha-fluoro epiandrosterone.
- The compounds of formula (I) are made in accordance with known procedures, or variations thereof, that will be apparent to those skilled in the art. See, U.S. Pat. No. 4,956,355, UK Patent No. 2,240,472, EPO Patent Application No. 429,187, PCT Patent Publication WO 91/04030; see also M. Abou-Gharbia et al., J. Pharm. Sci. 70:1154-1157 (1981), Merck Index Monograph No. 7710, 11th Ed., (1989).
- The ubiquinone may be administered by itself or concurrently with the DHEA or analog thereof in the methods of treating asthma described above. The phrase “concurrently administering” as used herein, means that the DHEA or the DHEA analog are administered either (a) simultaneously in time, preferably by formulating the two together in a common pharmaceutical carrier, or (b) at different times during the course of a common treatment schedule. In the latter case, the two compounds are administered at times sufficiently close for the ubiquinone to have as one of its effects to offset ubiquinone depletion in the subject's tissues, e.g. lungs and heart, and thereby counter-balance any deterioration of the tissue, e.g. lung and heart, function that may result from the administration of the DHEA or the analog thereof. The term “ubiquinone,” as used herein, refers to a family of compounds having structures based on a w,3-dimethoxy-5-methyl benzoquinone nucleus with a variable terpenoid acid chain containing one to twelve mono-unsaturated trans-isoprenoid units. Such compounds are known in the art as “Coenzyme Qn,” in which n equals 1 to 12. These compounds may be referred to herein as compounds represented by the formula
- wherein n=1 to 10. Preferably, in the method of the invention, the ubiquinone is a compound according to formula given above, where n is 6 to 10, i.e., Coenzyme Q6-10, and most preferably wherein n7-10, i.e. Coenzyme Q10.
- Where the ubiquinone is formulated with a pharmaceutically acceptable carrier separately from the DHEA, analog thereof or salt thereof (e.g., where the DHEA, analog thereof or salt thereof is administered to the lungs of the subject, and the ubiquinone is administered systemically) it may be formulated by any of the techniques set forth above.
- The compounds used to treat asthma, that is, the EA and ubiquinone or their salts, may be administered per se or in the form of pharmaceutically or veterinarily acceptable salts, as discussed above (the two together again being referred to as “active compounds”). The active compounds and their salts may be administered either systemically or topically, as discussed below. Generally, the ubiquinone is administered in an amount effective to increase ubiquinone levels, to offset ubiquinone depletion in the lungs and heart of the subject induced by the EA, analog thereof, or salt thereof, or to treat respiratory or lung symptoms of asthma, such as bronchoconstriction, lung inflammation and allergies, or cancer. The dosage will vary depending upon the condition of the subject and route of administration. The ubiquinone is preferably administered in a total amount per day of about 0.1, about 1, about 5, about 10, about 15, about 30 to about 50, about 100, about 150, about 300, about 600, about 900, about 1200 mg/kg body weight per day. More preferred are about 1 to about 150 mg/kg, about 30 to about 100 mg/kg, and most preferred about 5 to about 50 mg/kg. The ubiquinone may be administered once or several times a day. In general, the epiandrosterones and their salts are administered in a dosage of about 0.01, about 0.1, about 0.4, about 1, about 5, about 10, about 20 to about 4, about 30, about 70, about 100, about 300, about 600, about 1000, about 2000, about 3600 mg/kg body weight. The active compounds may be administered once or several times a day.
- The method of treating adenosine depletion disclosed herein may be used to treat steroid-induced adenosine depletion, to stimulate adenosine synthesis, to treat or control anxiety, e.g., in treating premenstrual syndrome, to increase weight gain or treat wasting disorders, and to treat other adenosine-related pathologies, by administering folinic acid or its salts. Thus, the term “adenosine depletion” is intended to encompass conditions where adenosine levels are depleted in the subject as compared to previous adenosine levels in that subject, and conditions where adenosine levels are essentially the same as previous adenosine levels in that subject but, because of some other condition or alteration in that patient, a therapeutic benefit would be achieved in the patient by increased adenosine levels as compared to previous levels. The method is carried out preferably on patients where adenosine levels are depleted as compared to previous adenosine levels in the subject. The present invention is concerned primarily with the treatment of human subjects but may also be employed for the treatment of other mammalian subject, such as dogs and cats, for veterinary purpose.
- Folinic acid and the pharmaceutically acceptable salts thereof, hereafter sometimes referred to as “active compounds”) are known, and may be made in accordance with known procedures. See, generally The Merck Index, Monograph No. 4141 (11th Ed. 1989); U.S. Pat. No. 2,741,608. Such pharmaceutically acceptable salts should be both pharmacologically and pharmaceutically or veterinarily acceptable and may be prepared as alkaline metal or alkaline earth salts, e.g., sodium, potassium or calcium salts, of the carboxylic acid group of folinic acid. The calcium salt of folinic acid is a preferred pharmaceutically or veterinarily acceptable salt.
- The dosage of folinic acid or salt will vary depending on age, weight, and condition of the subject. Treatment may be initiated with small dosages less than optimum dose and increased until the optimum effect under the circumstances is reached. In general, the dosage will be from about 1, about 5, about 10 or about 20 mg/kg subject body weight, up to about 100, about 200, about 500, or about 1000 mg/kg subject body weight. Currently, dosages of from about 5 to about 500 mg/kg are preferred, dosages of from about 10 to about 200 mg/kg are more preferred, and dosages of from about 20 to about 100 mg/kg are most preferred. In general, the active compounds are preferably administered at a concentration that will afford effective results without causing any unduly harmful or deleterious side effects, and may be administered either as a single unit dose, or if desired in convenient subunits administered at suitable times throughout the day.
- The active compounds are preferably administered to the subject as a pharmaceutical or veterinary composition. Pharmaceutical compositions for use in the present invention include those suitable for inhalation, and nasal, intrapulmonary, respirable, oral, topical (including buccal, sublingual, dermal and intraocular), parenteral (including subcutaneous, intradermal, intramuscular, intravenous and intraarticular), rectal, vaginal, implantable, and transdermal administration. The compositions may conveniently be presented in bulk or in single or multiple unit dosage forms and may be prepared by any of the methods that are well known in the art.
- Compositions suitable for oral administration may be presented in discrete units, such as capsules, cachets, lozenges, or tablets, each containing a predetermined amount of the active compound; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion. Such compositions may be prepared by any suitable method of pharmacy that includes the step of bringing into association the active compound and a suitable carrier. In general, the compositions of the invention are prepared by uniformly and intimately admixing the active compound with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the resulting mixture. For example, a table may be prepared by compressing or molding a power or granules containing the active compound, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable machine, the compound in a free-lowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent, and/or surface active/dispensing agent(s) or surfactant(s). Molded tablets may be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid binder. Compositions for oral administration may optionally include enteric coatings known in the art to prevent degradation of the compositions in the stomach and provide release of the drug in the small intestine.
- Compositions suitable for buccal or sub-lingual administration include lozenges comprising the active compound in a flavored base, usually sucrose and acacia or tragacanth, and pastilles comprising the compound in an inert base such as gelation and glycerin or sucrose and acacia.
- Compositions suitable for parenteral administration comprise sterile aqueous and non-aqueous injection solutions, suspensions and emulsions of the active compound, which preparations are preferably isotonic with the blood of the intended recipient. These preparations may contain anti-oxidants, surfactants, buffers, bacteriostats, solutes that render the compositions isotonic with the blood of the intended recipient, and other formulation components known in the art. Aqueous and non-aqueous sterile suspensions may include suspending agents and thickening agents. The compositions may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored freeze-dried or lyophilized, requiring only the addition of the sterile liquid carrier, for example, saline or water-for-injection immediately prior to their use. Extemporaneous injection solutions, suspensions and emulsions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Compositions suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil, although other forms are also suitable. Carriers which may be used include vaseline, lanoline, polyethylene glycols, alcohols, transdermal enhancers, and combinations of two or more thereof.
- Compositions suitable for rectal or vaginal administration are also included, and may be prepared by methods known in the art.
- Compositions suitable for transdermal administration may be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Compositions suitable for transdermal administration may also be delivered by iontophoresis. See, e.g. Pharmaceutical Research 3:318 (1986), and typically take the form of an optionally buffered aqueous solution of the active compound.
- The active compounds disclosed herein may be administered to the lungs of a subject by any suitable means, but are preferably administered by generating an aerosol or spray comprised of respirable, inhalable, nasal or intrapulmonarily delivered particles comprising the active compound, which particles the subject inhales, i.e. by inhalation administration. The respirable particles may be liquid or solid. Particles comprising the active compound for practicing the present invention should include particles of respirable or inhalable size; that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. In general, particles ranging from about 0.05, about 0.1, about 0.5, about 1, about 1.5 to about 5, about 6, about 7, about 8, about 10 microns in size, more particularly particles about 0.5 to less than about 5 microns in size, are respirable or inhalable. When particles of nonrespirable size are included in the aerosol or spray, they tend to deposit in the throat and be swallowed. Thus, the quantity of non-respirable particles in the aerosol or spray is preferably minimized when intended for respirable administration or by inhalation. For nasal or intrapulmonary administration, a particle size in the range of about 10, about 11, about 15, about 20 to about 25, about 30, about 40, about 50, and sometimes even up to about 100 and about 500 microns is preferred to ensure retention in the nasal or pulmonary cavity. Pulmonary instillation is particularly useful for treating newborns.
- Liquid pharmaceutical compositions of the active compound for producing an aerosol or spray may be prepared by combining the active compound with a stable vehicle, such as sterile pyrogen free water. Solid particulate compositions containing respirable dry particles of micronized active compound may be prepared by grinding dry active compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate out large agglomerates. A solid particulate composition comprised of the active compound may optional contain a dispersant which serves to facilitate the formation of an aerosol. A suitable dispersant is lactose, which may be blended with the active compound in any suitable ratio, e.g. a 1 to 1 ratio by weight. Again, other therapeutic and formulation compounds may also be included, such as a surfactant to improve the sate of surfactant in the lung and help with the absorption of the active agent.
- Aerosols of liquid particles comprising the active compound may be produced by any suitable means, such as with a nebulizer. See, e.g., U.S. Pat. No. 4,501,729. Nebulizers are commercially available devices which transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation. Suitable compositions for use in nebulizer consist of the active ingredient in liquid carrier, the active ingredient comprising up to 40% w/w of the compositions, but preferably less than 20% w/w the carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic with body fluids by the addition of, for example sodium chloride. Optional additives include preservatives if the compositions is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile oils, buffering agents and surfactants.
- Aerosols of solid particles comprising the active compound may likewise be produced with any sold particulate medicament aerosol generator. Aerosol generators for administering solid particulate medicaments to a subject product particles which are respirable, as explained above, and they generate a volume of aerosol containing a predetermined metered dose of a medicament at a rate suitable for human administration. Examples of such aerosol generators include metered dose inhalers and insufflators.
- The following examples are provided to more fully illustrate the present invention and should not be construed as restrictive thereof. In the examples provided below, EA means an epiandrosterone, DHEA means dehydroepiandrosterone, s means seconds, mg means milligrams, kg means kilograms, kw means kilowatts, Mhz means megahertz, CoQ means ubiquinone, and nmol means nanomoles.
- Young adult male Fischer 344 rats (120 grams) were administered dehydroepiandrosterone (DHEA) (300 mg/kg) or methyltestosterone (40 mg/kg) in carboxymethylcellulose by gavage once daily for fourteen days. Folinic acid (50 mg/kg) was administered intraperitoneally once daily for fourteen days. On the fifteenth day, the animals were sacrificed by microwave pulse (1.33 kw, 2450 MHZ, 6.5 s) to the cranium, which instantly denatures all brain protein and prevents further metabolism of adenosine. Hearts were removed from animals and flash frozen in liquid nitrogen with 10 seconds of death. Liver and lungs were removed en bloc and flash frozen with 30 seconds of death. Brain tissue was subsequently dissected. Tissue adenosine was extracted, derivatized to 1, N6-ethenoadenosine and analyzed by high performance liquid chromatography (HPLC) using spectrofluorometric detection according to the method of Clark and Dar (J. of Neuroscience Methods 25:243 (1988)). Results of these experiments are summarized in Table 1 below.
- Results are expressed as the mean±SEM, with κp<0.05 compared to control group and φp<0.05 compared to DHEA or methyltestosterone-treated groups.
-
TABLE 1 In Vivo Effect of DHEA, δ-1-methyltestosterone & Folinic Acid on Adenosine Levels in Various Rat Tissues Intracellular Adenosine (nmol/mg protein) Heart Lung Brain Control 10.6 ± 0.6 3.1 ± 0. 0.5 ± 0.04 (n = 12) (n = 6) (n = 12) DHEA 6.7 ± 0.5 2.3 ± 0.3 0.19 ± 0.01 (300 mg/kg) (n = 12) (n = 6) (n = 12) Methyltestosterone 8.3 ± 1.0 N.D. 0.42 ± 0.06 (40 mg/kg) (n = 6) (n = 6) Methyltestost. (M) 6.0 ± 0.4 N.D. 0.32 ± 0.03 (120 mg/kg) (n = 6) (n = 6) Folinic Acid (F.A.) 12.4 ± 2.1 N.D. 0.72 ± 0.09 (50 mg/kg) (n = 5) (n = 5) DHEA + F.A. 11.1 ± 0.6 N.D. 0.55 ± 0.09 (300 mg/kg; 50 mg/kg) (n = 5) (n = 5) M + F.A. 9.1 ± 0.4 N.D. 0.60 ± 0.06 (120 mg/kg; 50 mg/kg) (n = 6) N.D. = Not Determined - The results of these experiments indicate that rats administered DHEA or methyltestosterone daily for two weeks showed multi-organ depletion of adenosine. Depletion was dramatic in brain (60% depletion for DHEA, 34% for high dose methyltestosterone) and heart (37% depletion for DHEA, 22% depletion for high dose methyltestosterone). Co-administration of folinic acid completely abrogated steroid-mediated adenosine depletion. Folinic acid administered alone induce increase in adenosine levels for all organs studied.
- Glocose-6-Phosphate Dehydrogenase (G6PD) is an important enzyme that is widespread in mammals, and is involved in the conversion of NADP to NADPH, thereby increasing NADPH levels. An inhibition of the G6PD enzyme, thus, will be expected to result in a reduction of cellular NADPH levels, which event, in turn, will be expected to inhibit pathways that are heavily dependent on NADPH. One such pathway, the so-called One-Carbon-Pool pathway, also known as the Folate Pathway, is directly involved in the production of adenosine by addition of the C2 and C8 carbon atoms of the purine ring. Consequently, the inhibition of this pathway will lead to adenosine depletion.
- The present invention is broadly applicable to Epiandrosterones (EAs) and Ubiquinones (CoQs). The description of the pathways involved in the present invention are described in the Background section. The present experiment was designed to show that one EA and two CoQs inhibit NADPH levels. DHEA, an Epiandrosterone, has already been shown to decrease levels of adenosine in various tissues. See, Examples 1 and 2 above. The fact that two CoQs are shown to lower NADPH levels to a similar extent as an Epiandrosterone, let alone to a similar extent ensures that the NADPH reduction caused by the CoQs will also result in lower cellular adenosine levels or in adenosine cell depletion. Thus, in accordance with the invention, both Epiandrosterones and Ubiquinones decrease levels of adenosine and, therefore, are useful as medicaments for use in the treatment of diseases where a decrease of adenosine levels or its depletion is desirable, including respiratory diseases such as asthma, bronchoconstriction, lung inflammation and allergies and the like. Both Ubiquinones and DHEA inhibit NADPH levels in a statistically significant manner, when compared to a control. Moreover, the Ubiquinone inhibits NADPH levels to a similar extent as DHEA. The present invention is broadly applicable to the use of Epiandrosterones (EAs) and Ubiquinones (CoQs) to the treatment of respiratory and lung diseases, and other diseases associated with varying levels of adenosine, adenosine hypersensitivity, asthma, bronchoconstriction, and/or lung inflammation and allergies. The DHEA and Ubiquinones employed in the present experiments are equivalent to those described and exemplified above.
- The reaction mixture contained 50 mM glycyl glycine buffer, pH 7.4, 2 mM D-glucose-6-phosphate, 0.67 mM Beta-NADP, 10 mM MgCL2 and 0.0125 units of G6PDH in a final volume of 3.0 ml. All experiments were repeated 4 times.
- The control group contained 3 samples that were added no DHEA or Ubiquinone. The experimental group contained a similar number of samples (3) for each concentration of DHEA or Ubiquinone. One group was added DHEA (in triplicate) at different concentrations. A second group was added different concentrations of a CoQ of long side chain (in triplicate), and a third group received a CoQ of short side chain (in triplicate), both at various doses in the μM range.
- The reaction was started by addition of the enzyme, and the increase in absorbance at 340 nm was measured for 5 minutes. Each data point was conducted in triplicate, and the full experiment was repeated 4 times.
- Both DHEA and the Ubiquinones inhibited the enzyme activity in a statistically significant manner when compared to controls. DHEA was found to inhibit by 72% in vitro the activity of purified G6PDH when compared to control. Both Ubiquinones inhibited the activity of purified G6PDH in vitro by an amount that was not statistically significantly different from that of DHEA. Both DHEA and the Ubiquinones inhibited the enzyme in a statistically significant manner when compared to controls. Both long chain and short chain CoQs were found to be effective inhibitors of G6PDH.
- The above results clearly indicate that CoQ reduced cellular levels of NADPH to an extent similar to DHEA and consequently cellular adenosine levels, and has a therapeutic effect on diseases and conditions associated with them. The present results show that CoQs have a therapeutic effect similar to that of epiandrosterones. The pathways involved in the present invention, as described above, show the criticality of the results reported here, showing that an Epiandrosterone (DHEA) and two Ubiquinones inhibit NADPH levels in a statistically significant manner. The same epiandrosterone (DHEA) was shown in Examples 1 and 2 to decrease levels of adenosine in various tissues. The two different Ubiquinones employed lowered NADPH levels to a similar extent as DHEA. The NADPH reduction caused by the Ubiquinones will, in the case of DHEA, result in lower cellular adenosine levels or adenosine depletion. Thus, in accordance with the invention, both Epiandrosterones and Ubiquinones decrease levels of adenosine and are, therefore, useful in the therapy of diseases and conditions where a decrease of adenosine levels or its depletion are desirable, including respiratory and airway diseases such as asthma, bronchoconstriction, lung inflammation and allergies, and the like.
- These are clearly superior results, which could not have been expected based on the knowledge of the art at the time of this invention. The experimental data and results provided are clearly enabling of the effect of Ubiquinones on adenosine cellular levels and, therefore, on its therapeutic affect on diseases and conditions associated with them, as described and claimed in this patent.
- The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.
Claims (10)
1. A pharmaceutical composition for administration to the lungs, comprising a carrier and an amount of an active agent effective for treatment of bronchoconstriction, lung inflammation, lung allergy, or asthma wherein the active agent comprises a compound of formula (I), or pharmaceutically or veterinarily acceptable salts thereof,
wherein the broken line represents a single or double bond; R is hydrogen; and R1 is SO2OM, wherein M is H or Na.
wherein the pharmaceutical composition comprises respirable dry solid particles formulated for administration as an aerosol.
2. The pharmaceutical composition of claim 1 wherein particles are prepared by grinding the active agent and passing composition through a filter screen.
3. The pharmaceutical composition of claim 2 wherein the particles are micronized.
4. The pharmaceutical composition of claim 2 wherein the filter screen is a 400 mesh screen.
5. The pharmaceutical composition of claim 1 further comprising a dispersant which serves to facilitate the formation of the aerosol.
6. The pharmaceutical composition of claim 5 wherein the dispersant is lactose.
7. The pharmaceutical composition of claim 1 wherein the active compound and the lactose are present at a ratio by weight of about 1 to 1.
8. The pharmaceutical composition of claim 1 further comprising a surfactant.
9. A kit comprising the formulation of claims 1 and a delivery device.
10. The kit of claim 9 wherein the delivery device comprises a metered dose inhaler or an insufflator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/196,233 US20090054385A1 (en) | 1995-02-24 | 2008-08-21 | Solid inhalation formulations of dehydroepiandrosterone derivatives |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/393,863 US5660835A (en) | 1995-02-24 | 1995-02-24 | Method of treating adenosine depletion |
US08/861,962 US6087351A (en) | 1995-02-24 | 1997-05-22 | Method for reducing adenosine levels with a dehydroepiandrosterone and optionally a ubiquinone |
US09/488,236 US6670349B1 (en) | 1995-02-24 | 2000-01-20 | Composition & method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone &/or a ubiquinone |
US09/841,426 US20020032160A1 (en) | 1995-02-24 | 2001-04-24 | Compositions & formulations with an epiandrosterone or a ubiquinone & kits & their use for treatment of asthma symptoms & for reducing adenosine/adenosine receptor levels |
US10/072,010 US20020119936A1 (en) | 1995-02-24 | 2001-10-25 | Composition & method for reducing adenosine levels with a ubiquinone and optionally a dehydroepiandrosterone |
US12/196,233 US20090054385A1 (en) | 1995-02-24 | 2008-08-21 | Solid inhalation formulations of dehydroepiandrosterone derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/072,010 Continuation US20020119936A1 (en) | 1995-02-24 | 2001-10-25 | Composition & method for reducing adenosine levels with a ubiquinone and optionally a dehydroepiandrosterone |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090054385A1 true US20090054385A1 (en) | 2009-02-26 |
Family
ID=23556551
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/393,863 Expired - Lifetime US5660835A (en) | 1995-02-24 | 1995-02-24 | Method of treating adenosine depletion |
US08/861,962 Expired - Fee Related US6087351A (en) | 1995-02-24 | 1997-05-22 | Method for reducing adenosine levels with a dehydroepiandrosterone and optionally a ubiquinone |
US09/488,236 Expired - Fee Related US6670349B1 (en) | 1995-02-24 | 2000-01-20 | Composition & method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone &/or a ubiquinone |
US10/410,955 Abandoned US20040034029A1 (en) | 1995-02-24 | 2003-04-09 | Composition and method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone |
US12/196,223 Abandoned US20090053143A1 (en) | 1995-02-24 | 2008-08-21 | Liquid inhalation formulations of dehydroepiandrosterone derivatives |
US12/196,233 Abandoned US20090054385A1 (en) | 1995-02-24 | 2008-08-21 | Solid inhalation formulations of dehydroepiandrosterone derivatives |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/393,863 Expired - Lifetime US5660835A (en) | 1995-02-24 | 1995-02-24 | Method of treating adenosine depletion |
US08/861,962 Expired - Fee Related US6087351A (en) | 1995-02-24 | 1997-05-22 | Method for reducing adenosine levels with a dehydroepiandrosterone and optionally a ubiquinone |
US09/488,236 Expired - Fee Related US6670349B1 (en) | 1995-02-24 | 2000-01-20 | Composition & method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone &/or a ubiquinone |
US10/410,955 Abandoned US20040034029A1 (en) | 1995-02-24 | 2003-04-09 | Composition and method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone |
US12/196,223 Abandoned US20090053143A1 (en) | 1995-02-24 | 2008-08-21 | Liquid inhalation formulations of dehydroepiandrosterone derivatives |
Country Status (10)
Country | Link |
---|---|
US (6) | US5660835A (en) |
EP (2) | EP0810863A4 (en) |
JP (2) | JP3725158B2 (en) |
KR (2) | KR100368803B1 (en) |
CN (1) | CN1227011C (en) |
AU (1) | AU699917C (en) |
CA (1) | CA2213339C (en) |
NZ (1) | NZ302592A (en) |
SG (1) | SG79237A1 (en) |
WO (1) | WO1996025935A1 (en) |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020032160A1 (en) * | 1995-02-24 | 2002-03-14 | Nyce Jonathan W. | Compositions & formulations with an epiandrosterone or a ubiquinone & kits & their use for treatment of asthma symptoms & for reducing adenosine/adenosine receptor levels |
US5660835A (en) * | 1995-02-24 | 1997-08-26 | East Carolina University | Method of treating adenosine depletion |
US5859000A (en) * | 1995-06-07 | 1999-01-12 | University Of Utah Research Foundation | Method for reducing mast cell mediated allergic reactions |
CA2260584C (en) * | 1998-02-04 | 2007-07-31 | Charlotte-Mecklenburg Hospital D/B/A Carolinas Medical Center | Androsterone derivatives for inhibiting dna binding of ap-1 and airway smooth muscle proliferation |
WO2000007566A1 (en) * | 1998-08-03 | 2000-02-17 | Epigenesis Pharmaceuticals, Inc. | A new analgesic, anti-inflammatory and wound healing agent |
US6667299B1 (en) | 2000-03-16 | 2003-12-23 | Hollis-Eden Pharmaceuticals, Inc. | Pharmaceutical compositions and treatment methods |
US20030083231A1 (en) * | 1998-11-24 | 2003-05-01 | Ahlem Clarence N. | Blood cell deficiency treatment method |
CA2356368A1 (en) * | 1999-01-05 | 2000-07-13 | Jonathan W. Nyce | Composition and formulations and their use as nociceptic, anti-anxiolytic and anabolic agents |
DE19905880A1 (en) * | 1999-02-11 | 2000-08-17 | Mse Pharmazeutika Gmbh | Spray containing ubiquinone Qn |
US20050019268A1 (en) * | 1999-02-11 | 2005-01-27 | Mse Pharmazeutika Gmbh | Spray containing ubiquinone Qn |
US9006175B2 (en) | 1999-06-29 | 2015-04-14 | Mannkind Corporation | Potentiation of glucose elimination |
DK1955700T3 (en) | 1999-09-30 | 2011-05-23 | Harbor Biosciences Inc | Therapeutic treatment of androgen receptor-related disorders |
AU2002303425A1 (en) * | 2001-04-24 | 2002-11-05 | Epigenesis Pharmaceuticals, Inc. | Composition, formulations and kit for treatment of respiratory and lung disease with non-glucocorticoid steroids and/or ubiquinone and a bronchodilating agent |
AU2002303427A1 (en) * | 2001-04-24 | 2002-11-05 | East Carolina University | Compositions and formulations with a non-glucocorticoid steroid and/or a ubiquinone and kit for treatment of respiratory and lung disease |
US20030216329A1 (en) * | 2001-04-24 | 2003-11-20 | Robinson Cynthia B. | Composition, formulations & kit for treatment of respiratory & lung disease with dehydroepiandrosterone(s) steroid & an anti-muscarinic agent(s) |
WO2002085308A2 (en) * | 2001-04-24 | 2002-10-31 | Epigenesis Pharmaceuticals, Inc. | Antisense and anti-inflammatory based compositions to treat respiratory disorders |
ATE480231T1 (en) * | 2001-05-10 | 2010-09-15 | Kaneka Corp | COMPOSITIONS FOR TRANSMUCOSAL ADMINISTRATION WITH COENZYME Q AS THE ACTIVE INGREDIENT |
WO2003053292A1 (en) * | 2001-12-20 | 2003-07-03 | Femmepharma, Inc. | Vaginal delivery of drugs |
AU2003218718A1 (en) * | 2002-03-09 | 2003-09-22 | Mse Pharmazeutika Gmbh | Utilization of ubiquinones for influencing the effect of histamine |
DE60318938T2 (en) | 2002-03-20 | 2009-01-22 | Mannkind Corp., Valencia | INHALER |
EP1511500A4 (en) * | 2002-06-12 | 2009-04-29 | Epigenesis Pharmaceuticals Llc | Combination of anti-muscarinic agents and non-glucocorticoid steroids |
EP1553954A4 (en) * | 2002-06-17 | 2009-12-23 | Epigenesis Pharmaceuticals Llc | Dihydrate dehydroepiandrosterone and methods of treating asthma or chronic obstructive pulmonary disease using compostions thereof |
US20040121991A1 (en) * | 2002-12-20 | 2004-06-24 | Araneo Barbara A. | Dehydroepiandrosterone (DHEA) congeners for prevention and/or treatment of ulcers |
WO2004060322A2 (en) * | 2003-01-02 | 2004-07-22 | Femmepharma Holding Company, Inc. | Pharmaceutical preparations for treatments of diseases and disorders of the breast |
US9173836B2 (en) | 2003-01-02 | 2015-11-03 | FemmeParma Holding Company, Inc. | Pharmaceutical preparations for treatments of diseases and disorders of the breast |
US20090285899A1 (en) * | 2003-07-31 | 2009-11-19 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a methylxanthine derivative for treatment of asthma or chronic obstructive pulmonary disease |
US20050101545A1 (en) * | 2003-07-31 | 2005-05-12 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anticholinergic bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20050026879A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a tyrosine kinase inhibitor, delta opioid receptor antagonist, neurokinin receptor antagonist, or VCAM inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20050085430A1 (en) * | 2003-07-31 | 2005-04-21 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a PDE-4 inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20050026883A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a PDE-4 inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20090317476A1 (en) * | 2003-07-31 | 2009-12-24 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a leukotriene receptor antagonist for treatment of asthma or chronic obstructive pulmonary disease |
US20050026848A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a methylxanthine derivative for treatment of asthma or chronic obstructive pulmonary disease |
US20090285900A1 (en) * | 2003-07-31 | 2009-11-19 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a beta-agonist bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20110209699A1 (en) * | 2003-07-31 | 2011-09-01 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a lipoxygenase inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20090274676A1 (en) * | 2003-07-31 | 2009-11-05 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a pde-4 inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20050043282A1 (en) * | 2003-07-31 | 2005-02-24 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a lipoxygenase inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20050026881A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anti-IgE antibody for treatment of asthma or chronic obstructive pulmonary disease |
US20050038004A1 (en) * | 2003-07-31 | 2005-02-17 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anticholinergic bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20050026890A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an antihistamine for treatment of asthma or chronic obstructive pulmonary disease |
US20090263381A1 (en) * | 2003-07-31 | 2009-10-22 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anti-ige antibody for treatment of asthma or chronic obstructive pulmonary disease |
US20050026880A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a cromone for treatment of asthma or chronic obstructive pulmonary disease |
US20050026882A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a leukotriene receptor antagonist for treatment of asthma or chronic obstructive pulmonary disease |
US20050113318A1 (en) * | 2003-07-31 | 2005-05-26 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a beta-agonist bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20050026884A1 (en) * | 2003-07-31 | 2005-02-03 | Robinson Cynthia B. | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a beta-agonist bronchodilator for treatment of asthma or chronic obstructive pulmonary disease |
US20090297611A1 (en) * | 2003-07-31 | 2009-12-03 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a tyrosine kinase inhibitor, delta opioid receptor antagonist, neurokinin receptor antagonist, or vcam inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
US20050222049A1 (en) * | 2004-03-31 | 2005-10-06 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a glucocorticosteroid for treatment of asthma, chronic obstructive pulmonary disease or allergic rhinitis |
US20090317477A1 (en) * | 2004-03-31 | 2009-12-24 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a glucocorticosteroid for treatment of asthma, chronic obstructive pulmonary disease or allergic rhinitis |
US20050227927A1 (en) * | 2004-03-31 | 2005-10-13 | Robinson Cynthia B | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a glucocorticosteroid for treatment of asthma, chronic obstructive pulmonary disease or allergic rhinitis |
CA2575692C (en) | 2004-08-20 | 2014-10-14 | Mannkind Corporation | Catalysis of diketopiperazine synthesis |
US7820676B2 (en) | 2004-08-23 | 2010-10-26 | Mannkind Corporation | Diketopiperazine salts for drug delivery and related methods |
AU2005297367B2 (en) * | 2004-10-20 | 2010-02-04 | Myriel Pharmaceuticals, Llc | Sex steroid precursors alone or in combination with a selective estrogen receptor modulator and/or with estrogens and/or a type 5 CGMP phosphodiesterase inhibitor for the prevention and treatment of vaginal dryness and sexual dysfunction in postmenopausal women |
CN104324366B (en) | 2005-09-14 | 2016-10-05 | 曼金德公司 | Method for preparation of drug based on improving the active agent affinity to crystalline microparticle surfaces |
US8039431B2 (en) | 2006-02-22 | 2011-10-18 | Mannkind Corporation | Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent |
EP2526774A3 (en) | 2006-07-21 | 2013-03-06 | California Institute of Technology | Targeted gene delivery for dendritic cell vaccination |
WO2008042814A2 (en) | 2006-09-29 | 2008-04-10 | California Institute Of Technology | Mart-1 t cell receptors |
EP2104489A2 (en) * | 2006-12-26 | 2009-09-30 | FemmePharma Holding Company, Inc. | Topical administration of danazol |
US8268806B2 (en) | 2007-08-10 | 2012-09-18 | Endorecherche, Inc. | Pharmaceutical compositions |
US8485180B2 (en) | 2008-06-13 | 2013-07-16 | Mannkind Corporation | Dry powder drug delivery system |
IL303019B2 (en) | 2008-06-13 | 2024-11-01 | Mannkind Corp | Dry powder inhaler and drug delivery system |
US9364619B2 (en) | 2008-06-20 | 2016-06-14 | Mannkind Corporation | Interactive apparatus and method for real-time profiling of inhalation efforts |
TWI532497B (en) | 2008-08-11 | 2016-05-11 | 曼凱公司 | Ultra-fast use of insulin |
US8314106B2 (en) | 2008-12-29 | 2012-11-20 | Mannkind Corporation | Substituted diketopiperazine analogs for use as drug delivery agents |
WO2010105094A1 (en) | 2009-03-11 | 2010-09-16 | Mannkind Corporation | Apparatus, system and method for measuring resistance of an inhaler |
KR101875969B1 (en) | 2009-06-12 | 2018-07-06 | 맨카인드 코포레이션 | Diketopiperazine microparticles with defined specific surface areas |
US20110003000A1 (en) * | 2009-07-06 | 2011-01-06 | Femmepharma Holding Company, Inc. | Transvaginal Delivery of Drugs |
ES2702274T3 (en) | 2009-07-24 | 2019-02-28 | Immune Design Corp | Non-integrating lentiviral vectors |
JP5784622B2 (en) | 2009-11-03 | 2015-09-24 | マンカインド コーポレ−ション | Apparatus and method for simulating inhalation activity |
RU2531455C2 (en) | 2010-06-21 | 2014-10-20 | Маннкайнд Корпорейшн | Systems and methods for dry powder drugs delivery |
DK2694402T3 (en) | 2011-04-01 | 2017-07-03 | Mannkind Corp | BLISTER PACKAGE FOR PHARMACEUTICAL CYLINDER AMPULS |
WO2012174472A1 (en) | 2011-06-17 | 2012-12-20 | Mannkind Corporation | High capacity diketopiperazine microparticles |
KR20140095483A (en) | 2011-10-24 | 2014-08-01 | 맨카인드 코포레이션 | Methods and compositions for treating pain |
KR102070472B1 (en) | 2012-03-30 | 2020-01-29 | 이뮨 디자인 코포레이션 | Lentiviral vector particles having improved transduction efficiency for cells expressing dc-sign |
AU2013289957B2 (en) | 2012-07-12 | 2017-02-23 | Mannkind Corporation | Dry powder drug delivery systems and methods |
US10159644B2 (en) | 2012-10-26 | 2018-12-25 | Mannkind Corporation | Inhalable vaccine compositions and methods |
CN105102436B (en) | 2013-03-15 | 2018-06-12 | 曼金德公司 | Crystallite diketopiperazine composition and method |
KR102465025B1 (en) | 2013-07-18 | 2022-11-09 | 맨카인드 코포레이션 | Heat-stable dry powder pharmaceutical compositions and methods |
JP2016530930A (en) | 2013-08-05 | 2016-10-06 | マンカインド コーポレイション | Ventilation device and method |
US10307464B2 (en) | 2014-03-28 | 2019-06-04 | Mannkind Corporation | Use of ultrarapid acting insulin |
US10561806B2 (en) | 2014-10-02 | 2020-02-18 | Mannkind Corporation | Mouthpiece cover for an inhaler |
US20180177722A1 (en) | 2015-06-26 | 2018-06-28 | Stc.Unm | Coenzyme Q10 Aerosol |
EP3374373B1 (en) | 2015-11-09 | 2022-12-21 | Immune Design Corp. | A retroviral vector for the administration and expression of replicon rna expressing heterologous nucleic acids |
BR112018008911A2 (en) | 2015-11-09 | 2018-11-27 | Immune Design Corp | compositions comprising lentiviral vectors expressing il-12 and methods of use thereof |
KR20180111874A (en) | 2016-02-23 | 2018-10-11 | 이뮨 디자인 코포레이션 | Multi-genome retroviral vector preparations and methods and systems for producing and using them |
WO2018148180A2 (en) | 2017-02-07 | 2018-08-16 | Immune Design Corp. | Materials and methods for identifying and treating cancer patients |
GB202101299D0 (en) | 2020-06-09 | 2021-03-17 | Avacta Life Sciences Ltd | Diagnostic polypetides and methods |
Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338931A (en) * | 1979-04-27 | 1982-07-13 | Claudio Cavazza | Device for the quick inhalation of drugs in powder form by humans suffering from asthma |
US4393066A (en) * | 1981-06-05 | 1983-07-12 | Garrett David M | Method for treatment of herpetic lesions |
US4499064A (en) * | 1982-06-03 | 1985-02-12 | Clayton Foundation For Research | Assessment of nutritional status of individuals |
US4559177A (en) * | 1979-06-28 | 1985-12-17 | Takeda Chemical Industries, Ltd. | Quinone derivatives |
US4575498A (en) * | 1983-07-21 | 1986-03-11 | Duke University | Method for restoring depleted purine nucleotide pools |
US4628052A (en) * | 1985-05-28 | 1986-12-09 | Peat Raymond F | Pharmaceutical compositions containing dehydroepiandrosterone and other anesthetic steroids in the treatment of arthritis and other joint disabilities |
US4654373A (en) * | 1982-03-19 | 1987-03-31 | Italfarmaco S.A. | Pharmaceutical formulations containing coenzyme Q10 suitable for topic administration |
US4778798A (en) * | 1985-08-02 | 1988-10-18 | Seuref A.G. | Pharmaceutical compositions having vasodilating and antianoxic activities |
US4920115A (en) * | 1988-12-28 | 1990-04-24 | Virginia Commonwealth University | Method of lowering LDL cholesterol in blood |
US4931441A (en) * | 1988-11-09 | 1990-06-05 | Luitpold Pharmaceuticals, Inc. | Stabilized aqueous leucovorin calcium compositions |
US4956355A (en) * | 1987-04-16 | 1990-09-11 | Colthurst Limited | Agents for the arrest and therapy of retroviral infections |
US4985443A (en) * | 1989-08-04 | 1991-01-15 | Montes Leopoldo F | Method and composition for treating vitiligo |
US5011858A (en) * | 1987-03-30 | 1991-04-30 | The Board Of Regents, The University Of Texas System | Therapy with coenzyme Q10 of patients having AIDS or other retroviral diseases |
US5021417A (en) * | 1988-05-27 | 1991-06-04 | Spiral Recherche Et Developpement | Use of a folinic acid substance as a platelet aggregation inhibitor |
US5059595A (en) * | 1989-03-22 | 1991-10-22 | Bioresearch, S.P.A. | Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances |
US5077284A (en) * | 1988-12-30 | 1991-12-31 | Loria Roger M | Use of dehydroepiandrosterone to improve immune response |
US5110810A (en) * | 1991-02-08 | 1992-05-05 | Virginia Commonwealth University | Method of using dehydroepiandrosterone and dehydroepiandrosterone-sulfate as inhibitors of platelet aggregation |
US5118505A (en) * | 1988-01-28 | 1992-06-02 | Koeltringer Peter | Combination preparation for the treatment of nerve cell and nerve fibre diseases and injury |
US5162198A (en) * | 1991-02-08 | 1992-11-10 | Virginia Commonwealth University | Method of using dehydroepiandrosterone and dehydroepiandrosterone-sulfate as inhibitors of thrombuxane production and platelet aggregation |
US5173488A (en) * | 1989-08-21 | 1992-12-22 | American Cyanamid Company | Stable injectable pharmaceutical formulation for folic acid and leucovorin salts and method |
US5177076A (en) * | 1989-06-06 | 1993-01-05 | Pharmachemie Bv | Aqueous folinate solution stable at refrigerator temperature, as well as process for its preparation |
US5266312A (en) * | 1992-01-07 | 1993-11-30 | National Jewis Center For Immunology And Respiratory Medicine | Method for treating a steroid resistant condition via administration of gamma interferon |
US5270305A (en) * | 1989-09-08 | 1993-12-14 | Glaxo Group Limited | Medicaments |
US5284133A (en) * | 1992-07-23 | 1994-02-08 | Armstrong Pharmaceuticals, Inc. | Inhalation device with a dose-timer, an actuator mechanism, and patient compliance monitoring means |
US5347005A (en) * | 1987-05-15 | 1994-09-13 | Eprova Ag | Pharmaceutical compositions containing (65)-folinic acid and salts thereof |
US5384133A (en) * | 1986-08-11 | 1995-01-24 | Innovata Biomed Limited | Pharmaceutical formulations comprising microcapsules |
US5407927A (en) * | 1993-04-16 | 1995-04-18 | The Regents Of The University Of California | Treatment of mild depression and restoration of IGF-I levels in aging by dehydroepiandrosterone |
US5407684A (en) * | 1988-12-30 | 1995-04-18 | Virginia Commonwealth University | Use of DHEA as a medicinal |
US5428015A (en) * | 1990-06-26 | 1995-06-27 | Sana Kagaku Kenkyusho Co., Ltd. | Vasoactive intestinal polypeptide analogues and use thereof |
US5489581A (en) * | 1993-03-09 | 1996-02-06 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5510339A (en) * | 1993-02-02 | 1996-04-23 | Mayo Foundation For Medical Education And Research | Method for the treatment of bronchial asthma by administration of topical anesthetics |
US5527789A (en) * | 1992-02-24 | 1996-06-18 | East Carolina University | Method of inhibiting carcinogenesis by treatment with dehydroepiandrosterone and analogs thereof |
US5538734A (en) * | 1989-01-31 | 1996-07-23 | Bioresearch S.P.A. | 5-methyltetrahydrofolic acid, 5-formyl-tetrahydrofolic acid and their pharmaceutically acceptable salts for use in the therapy of depressive disturbances |
US5635496A (en) * | 1993-03-09 | 1997-06-03 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5660835A (en) * | 1995-02-24 | 1997-08-26 | East Carolina University | Method of treating adenosine depletion |
US5686438A (en) * | 1993-03-09 | 1997-11-11 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5703063A (en) * | 1994-11-30 | 1997-12-30 | Amur Research Corp. | Phosphocholine drug derivatives |
US5767278A (en) * | 1995-10-06 | 1998-06-16 | Geron Corporation | Telomerase inhibitors |
US5811418A (en) * | 1993-03-09 | 1998-09-22 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5859000A (en) * | 1995-06-07 | 1999-01-12 | University Of Utah Research Foundation | Method for reducing mast cell mediated allergic reactions |
US5948434A (en) * | 1993-01-19 | 1999-09-07 | Endorecherche, Inc. | Therapeutic methods and delivery systems utilizing sex steroid precursors |
US6093706A (en) * | 1992-03-04 | 2000-07-25 | Bioresponse, L.L.C. | Combined dehydroepiandrosterone and retinoid therapy for epithelial disorders |
US20020032160A1 (en) * | 1995-02-24 | 2002-03-14 | Nyce Jonathan W. | Compositions & formulations with an epiandrosterone or a ubiquinone & kits & their use for treatment of asthma symptoms & for reducing adenosine/adenosine receptor levels |
US20020042401A1 (en) * | 1996-07-22 | 2002-04-11 | The Victoria University Of Manchester | Use of sex steroids function modulators to treat wounds and fibrotic disorders |
US20030013772A1 (en) * | 2000-02-23 | 2003-01-16 | Murphy Michael A. | Composition, synthesis and therapeutic applications of polyamines |
US20030138434A1 (en) * | 2001-08-13 | 2003-07-24 | Campbell Robert L. | Agents for enhancing the immune response |
US20030139331A1 (en) * | 2000-12-04 | 2003-07-24 | Martin Daniel S. | Treatment of cancer by reduction of intracellular energy and pyrimidines |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938206B2 (en) * | 1976-08-11 | 1984-09-14 | エーザイ株式会社 | Bronchial asthma treatment whose main ingredient is coenzyme Q |
US4542129A (en) * | 1982-08-16 | 1985-09-17 | Norman Orentreich | DHEA Formulations and methods for treating dry skin |
US4978532A (en) * | 1989-08-11 | 1990-12-18 | Pharmedic Co. | Dosage form for administration of dehydroepiandrosterone |
IE900306A1 (en) * | 1990-01-29 | 1991-07-31 | Elan Corp | Agent for use in the prevention, control or reversal of¹hypertension |
DE69121551T2 (en) * | 1990-09-07 | 1997-01-02 | Taiho Pharmaceutical Co Ltd | ANTINEOPLASTICALLY ACTIVE AND STRENGTHENING ANTINEOPLASTIC EFFECT |
IT1243859B (en) * | 1990-10-23 | 1994-06-28 | Bioresearch Spa | PHARMACEUTICAL COMPOSITIONS INCLUDING ASSOCIATIONS BETWEEN S-ADENOSYL-L-METHIONINE SALTS AND 5-METHYL (OR 5-FORMYL) -TETHYDROPHOLIC ACID FOR THE TREATMENT OF NEUROLOGICAL COMPLICATIONS IN AIDS SICKS. |
-
1995
- 1995-02-24 US US08/393,863 patent/US5660835A/en not_active Expired - Lifetime
-
1996
- 1996-02-15 NZ NZ302592A patent/NZ302592A/en not_active IP Right Cessation
- 1996-02-15 CN CNB961920963A patent/CN1227011C/en not_active Expired - Fee Related
- 1996-02-15 KR KR1019970705842A patent/KR100368803B1/en not_active Expired - Fee Related
- 1996-02-15 WO PCT/US1996/001933 patent/WO1996025935A1/en not_active Application Discontinuation
- 1996-02-15 JP JP52572896A patent/JP3725158B2/en not_active Expired - Fee Related
- 1996-02-15 AU AU48677/96A patent/AU699917C/en not_active Ceased
- 1996-02-15 KR KR10-2000-7003343A patent/KR100374393B1/en not_active Expired - Fee Related
- 1996-02-15 CA CA002213339A patent/CA2213339C/en not_active Expired - Fee Related
- 1996-02-15 SG SG9803281A patent/SG79237A1/en unknown
- 1996-02-15 EP EP96904622A patent/EP0810863A4/en not_active Withdrawn
- 1996-02-15 EP EP05004694A patent/EP1555025A3/en not_active Withdrawn
-
1997
- 1997-05-22 US US08/861,962 patent/US6087351A/en not_active Expired - Fee Related
-
2000
- 2000-01-20 US US09/488,236 patent/US6670349B1/en not_active Expired - Fee Related
-
2003
- 2003-04-09 US US10/410,955 patent/US20040034029A1/en not_active Abandoned
-
2005
- 2005-06-02 JP JP2005162494A patent/JP2005306880A/en active Pending
-
2008
- 2008-08-21 US US12/196,223 patent/US20090053143A1/en not_active Abandoned
- 2008-08-21 US US12/196,233 patent/US20090054385A1/en not_active Abandoned
Patent Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338931A (en) * | 1979-04-27 | 1982-07-13 | Claudio Cavazza | Device for the quick inhalation of drugs in powder form by humans suffering from asthma |
US4559177A (en) * | 1979-06-28 | 1985-12-17 | Takeda Chemical Industries, Ltd. | Quinone derivatives |
US4393066A (en) * | 1981-06-05 | 1983-07-12 | Garrett David M | Method for treatment of herpetic lesions |
US4654373A (en) * | 1982-03-19 | 1987-03-31 | Italfarmaco S.A. | Pharmaceutical formulations containing coenzyme Q10 suitable for topic administration |
US4499064A (en) * | 1982-06-03 | 1985-02-12 | Clayton Foundation For Research | Assessment of nutritional status of individuals |
US4575498A (en) * | 1983-07-21 | 1986-03-11 | Duke University | Method for restoring depleted purine nucleotide pools |
US4628052A (en) * | 1985-05-28 | 1986-12-09 | Peat Raymond F | Pharmaceutical compositions containing dehydroepiandrosterone and other anesthetic steroids in the treatment of arthritis and other joint disabilities |
US4778798A (en) * | 1985-08-02 | 1988-10-18 | Seuref A.G. | Pharmaceutical compositions having vasodilating and antianoxic activities |
US5384133A (en) * | 1986-08-11 | 1995-01-24 | Innovata Biomed Limited | Pharmaceutical formulations comprising microcapsules |
US5011858A (en) * | 1987-03-30 | 1991-04-30 | The Board Of Regents, The University Of Texas System | Therapy with coenzyme Q10 of patients having AIDS or other retroviral diseases |
US4956355A (en) * | 1987-04-16 | 1990-09-11 | Colthurst Limited | Agents for the arrest and therapy of retroviral infections |
US5347005A (en) * | 1987-05-15 | 1994-09-13 | Eprova Ag | Pharmaceutical compositions containing (65)-folinic acid and salts thereof |
US5118505A (en) * | 1988-01-28 | 1992-06-02 | Koeltringer Peter | Combination preparation for the treatment of nerve cell and nerve fibre diseases and injury |
US5021417A (en) * | 1988-05-27 | 1991-06-04 | Spiral Recherche Et Developpement | Use of a folinic acid substance as a platelet aggregation inhibitor |
US4931441A (en) * | 1988-11-09 | 1990-06-05 | Luitpold Pharmaceuticals, Inc. | Stabilized aqueous leucovorin calcium compositions |
US4920115A (en) * | 1988-12-28 | 1990-04-24 | Virginia Commonwealth University | Method of lowering LDL cholesterol in blood |
US5407684A (en) * | 1988-12-30 | 1995-04-18 | Virginia Commonwealth University | Use of DHEA as a medicinal |
US5077284A (en) * | 1988-12-30 | 1991-12-31 | Loria Roger M | Use of dehydroepiandrosterone to improve immune response |
US5538734A (en) * | 1989-01-31 | 1996-07-23 | Bioresearch S.P.A. | 5-methyltetrahydrofolic acid, 5-formyl-tetrahydrofolic acid and their pharmaceutically acceptable salts for use in the therapy of depressive disturbances |
US5059595A (en) * | 1989-03-22 | 1991-10-22 | Bioresearch, S.P.A. | Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances |
US5177076A (en) * | 1989-06-06 | 1993-01-05 | Pharmachemie Bv | Aqueous folinate solution stable at refrigerator temperature, as well as process for its preparation |
US4985443A (en) * | 1989-08-04 | 1991-01-15 | Montes Leopoldo F | Method and composition for treating vitiligo |
US5173488A (en) * | 1989-08-21 | 1992-12-22 | American Cyanamid Company | Stable injectable pharmaceutical formulation for folic acid and leucovorin salts and method |
US5270305A (en) * | 1989-09-08 | 1993-12-14 | Glaxo Group Limited | Medicaments |
US5428015A (en) * | 1990-06-26 | 1995-06-27 | Sana Kagaku Kenkyusho Co., Ltd. | Vasoactive intestinal polypeptide analogues and use thereof |
US5162198A (en) * | 1991-02-08 | 1992-11-10 | Virginia Commonwealth University | Method of using dehydroepiandrosterone and dehydroepiandrosterone-sulfate as inhibitors of thrombuxane production and platelet aggregation |
US5110810A (en) * | 1991-02-08 | 1992-05-05 | Virginia Commonwealth University | Method of using dehydroepiandrosterone and dehydroepiandrosterone-sulfate as inhibitors of platelet aggregation |
US5266312A (en) * | 1992-01-07 | 1993-11-30 | National Jewis Center For Immunology And Respiratory Medicine | Method for treating a steroid resistant condition via administration of gamma interferon |
US5527789A (en) * | 1992-02-24 | 1996-06-18 | East Carolina University | Method of inhibiting carcinogenesis by treatment with dehydroepiandrosterone and analogs thereof |
US6093706A (en) * | 1992-03-04 | 2000-07-25 | Bioresponse, L.L.C. | Combined dehydroepiandrosterone and retinoid therapy for epithelial disorders |
US5284133A (en) * | 1992-07-23 | 1994-02-08 | Armstrong Pharmaceuticals, Inc. | Inhalation device with a dose-timer, an actuator mechanism, and patient compliance monitoring means |
US5948434A (en) * | 1993-01-19 | 1999-09-07 | Endorecherche, Inc. | Therapeutic methods and delivery systems utilizing sex steroid precursors |
US5510339A (en) * | 1993-02-02 | 1996-04-23 | Mayo Foundation For Medical Education And Research | Method for the treatment of bronchial asthma by administration of topical anesthetics |
US5635496A (en) * | 1993-03-09 | 1997-06-03 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5811418A (en) * | 1993-03-09 | 1998-09-22 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5532230A (en) * | 1993-03-09 | 1996-07-02 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5686438A (en) * | 1993-03-09 | 1997-11-11 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5489581A (en) * | 1993-03-09 | 1996-02-06 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5583126A (en) * | 1993-03-09 | 1996-12-10 | University Of Utah Research Foundation | Methods for preventing progressive tissue necrosis, reperfusion injury, bacterial translocation and adult respiratory distress syndrome |
US5407927A (en) * | 1993-04-16 | 1995-04-18 | The Regents Of The University Of California | Treatment of mild depression and restoration of IGF-I levels in aging by dehydroepiandrosterone |
US5703063A (en) * | 1994-11-30 | 1997-12-30 | Amur Research Corp. | Phosphocholine drug derivatives |
US6670349B1 (en) * | 1995-02-24 | 2003-12-30 | East Carolina University | Composition & method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone &/or a ubiquinone |
US6087351A (en) * | 1995-02-24 | 2000-07-11 | East Carolina University | Method for reducing adenosine levels with a dehydroepiandrosterone and optionally a ubiquinone |
US5660835A (en) * | 1995-02-24 | 1997-08-26 | East Carolina University | Method of treating adenosine depletion |
US20020032160A1 (en) * | 1995-02-24 | 2002-03-14 | Nyce Jonathan W. | Compositions & formulations with an epiandrosterone or a ubiquinone & kits & their use for treatment of asthma symptoms & for reducing adenosine/adenosine receptor levels |
US20090053143A1 (en) * | 1995-02-24 | 2009-02-26 | East Carolina University | Liquid inhalation formulations of dehydroepiandrosterone derivatives |
US20020119936A1 (en) * | 1995-02-24 | 2002-08-29 | Nyce Jonathan W. | Composition & method for reducing adenosine levels with a ubiquinone and optionally a dehydroepiandrosterone |
US20060111306A1 (en) * | 1995-02-24 | 2006-05-25 | Nyce Jonathan W | Dehydroephiandrosterone and ubiquinone compositions for treating asthma and bronoconstriction |
US20040034029A1 (en) * | 1995-02-24 | 2004-02-19 | Nyce Jonathan W. | Composition and method for altering levels of or sensitivity to adenosine with a dehydroepiandrosterone |
US5859000A (en) * | 1995-06-07 | 1999-01-12 | University Of Utah Research Foundation | Method for reducing mast cell mediated allergic reactions |
US5767278A (en) * | 1995-10-06 | 1998-06-16 | Geron Corporation | Telomerase inhibitors |
US20020042401A1 (en) * | 1996-07-22 | 2002-04-11 | The Victoria University Of Manchester | Use of sex steroids function modulators to treat wounds and fibrotic disorders |
US20030013772A1 (en) * | 2000-02-23 | 2003-01-16 | Murphy Michael A. | Composition, synthesis and therapeutic applications of polyamines |
US20030139331A1 (en) * | 2000-12-04 | 2003-07-24 | Martin Daniel S. | Treatment of cancer by reduction of intracellular energy and pyrimidines |
US20030138434A1 (en) * | 2001-08-13 | 2003-07-24 | Campbell Robert L. | Agents for enhancing the immune response |
Also Published As
Publication number | Publication date |
---|---|
US20090053143A1 (en) | 2009-02-26 |
EP0810863A4 (en) | 2002-10-23 |
EP1555025A3 (en) | 2005-08-03 |
AU699917C (en) | 2001-08-16 |
MX9706404A (en) | 1998-08-30 |
CN1175903A (en) | 1998-03-11 |
SG79237A1 (en) | 2001-03-20 |
US5660835A (en) | 1997-08-26 |
KR100374393B1 (en) | 2003-03-04 |
CA2213339A1 (en) | 1996-08-29 |
US6670349B1 (en) | 2003-12-30 |
EP0810863A1 (en) | 1997-12-10 |
EP1555025A2 (en) | 2005-07-20 |
US20040034029A1 (en) | 2004-02-19 |
AU699917B2 (en) | 1998-12-17 |
KR19980702443A (en) | 1998-07-15 |
JP3725158B2 (en) | 2005-12-07 |
US6087351A (en) | 2000-07-11 |
KR100368803B1 (en) | 2003-05-16 |
WO1996025935A1 (en) | 1996-08-29 |
JPH11501620A (en) | 1999-02-09 |
JP2005306880A (en) | 2005-11-04 |
CN1227011C (en) | 2005-11-16 |
AU4867796A (en) | 1996-09-11 |
CA2213339C (en) | 2005-06-21 |
NZ302592A (en) | 2001-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090054385A1 (en) | Solid inhalation formulations of dehydroepiandrosterone derivatives | |
US20060111306A1 (en) | Dehydroephiandrosterone and ubiquinone compositions for treating asthma and bronoconstriction | |
US7456161B2 (en) | Use of DHEA and DHEA-sulfate for the treatment of chronic obstructive pulmonary disease | |
US20090258046A1 (en) | Composition, formulations and kit for treatment of respiratory and lung disease with non-glucocorticoid steroids and/or ubiquinone and a bronchodilating agent | |
WO2005011594A2 (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a tyrosine kinase inhibitor, delta opioid receptor antagonist, neurokinin receptor antagonist, or vcam inhibitor for treatment of asthma or chronic obstructive pulmonary disease | |
US20050026848A1 (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a methylxanthine derivative for treatment of asthma or chronic obstructive pulmonary disease | |
KR20060011783A (en) | Compositions, formulations and kits for treating respiratory and lung diseases, in addition to dehydroepiandrosterone steroids and anti-muscarinic agents | |
MXPA06001162A (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a pde-4 inhibitor for treatment of asthma or chronic obstructive pulmonary disease. | |
JP2007509839A (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone sulfate and an anticholinergic bronchodilator for the treatment of asthma or chronic obstructive pulmonary disease | |
US20050043282A1 (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a lipoxygenase inhibitor for treatment of asthma or chronic obstructive pulmonary disease | |
US7893044B2 (en) | Composition and method for altering levels of or sensitivity to adenosine with analogs of dehydroepiandrosterone | |
JP2007512224A (en) | Treatment of asthma or chronic obstructive pulmonary disease combining dehydroepiandrosterone or dehydroepiandrosterone sulfate with a beta-agonist-containing bronchodilator | |
AU730453B2 (en) | 'Composition and use for reducing adenosine levels and treating asthma and other diseases and conditions afflicting the airways with an epiandrosterone, a ubiquinone, or both.' | |
MXPA97006404A (en) | Method for dealing adenos | |
US20090297611A1 (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a tyrosine kinase inhibitor, delta opioid receptor antagonist, neurokinin receptor antagonist, or vcam inhibitor for treatment of asthma or chronic obstructive pulmonary disease | |
US20090285898A1 (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an anticholinergic bronchodilator for treatment of asthma or chronic obstructive pulmonary disease | |
US20110209699A1 (en) | Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with a lipoxygenase inhibitor for treatment of asthma or chronic obstructive pulmonary disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EAST CAROLINA UNIVERSITY, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NYCE, JONATHAN W.;REEL/FRAME:021792/0375 Effective date: 20010419 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |