US20090053115A1 - Continuous production of aligned carbon nanotubes - Google Patents
Continuous production of aligned carbon nanotubes Download PDFInfo
- Publication number
- US20090053115A1 US20090053115A1 US11/617,779 US61777906A US2009053115A1 US 20090053115 A1 US20090053115 A1 US 20090053115A1 US 61777906 A US61777906 A US 61777906A US 2009053115 A1 US2009053115 A1 US 2009053115A1
- Authority
- US
- United States
- Prior art keywords
- reactor
- inert
- carbon nanotubes
- injector
- carrier gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 61
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 61
- 238000010924 continuous production Methods 0.000 title claims abstract description 15
- 239000012527 feed solution Substances 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000002071 nanotube Substances 0.000 claims abstract description 10
- 239000012159 carrier gas Substances 0.000 claims description 35
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 239000006185 dispersion Substances 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 239000012080 ambient air Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 238000010926 purge Methods 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910001120 nichrome Inorganic materials 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 2
- -1 manganocene Chemical compound 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 2
- 239000012255 powdered metal Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 238000007233 catalytic pyrolysis Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- ILZSSCVGGYJLOG-UHFFFAOYSA-N cobaltocene Chemical compound [Co+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 ILZSSCVGGYJLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- KZPXREABEBSAQM-UHFFFAOYSA-N cyclopenta-1,3-diene;nickel(2+) Chemical compound [Ni+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KZPXREABEBSAQM-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- FZHCFNGSGGGXEH-UHFFFAOYSA-N ruthenocene Chemical compound [Ru+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 FZHCFNGSGGGXEH-UHFFFAOYSA-N 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/164—Preparation involving continuous processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
Definitions
- the present invention relates to apparatus for producing aligned carbon nanotubes, and more particularly to apparatus for continuous production of aligned carbon nanotubes.
- the invention further relates to apparatus for continuous production of aligned carbon nanotubes which do not require patterned substrates, and which further produce quantities of high quality, homogenous populations of aligned carbon nanotubes.
- Aligned carbon nanotubes have application in numerous areas of composite materials, such as for use in separation media, as catalysts, as catalyst supports, in energy storage and transfer, in electronics applications such as in electron guns for use, e.g., in flat panel television picture technology, for EMI and RF shielding such as in the cellular telephone industry, as sensors or sensor components, and for use in electronically conductive plastics.
- Currently utilized technologies for production of aligned carbon nanotubes are labor intensive, costly, inefficient, and are not amenable to scale-up for industrial applicability.
- aligned carbon nanotubes such as for example aligned multi-walled carbon nanotubes
- hydrocarbons hydrocarbons
- Most of the known methodology for such synthesis requires use of patterned or preformed substrates to provide support to the growing nanotubes, allowing growth in an aligned pattern.
- the presently utilized methods for synthesis of aligned carbon nanotubes rely on batch processes. While effective, batch processing methods for production of carbon nanotubes, particularly aligned carbon nanotubes, are labor intensive, costly, inefficient, and generally limited in production capacity at the industrial scale. Further, batch processing techniques may result in significant batch to batch variation in the quality of the nanotubes produced.
- an apparatus for continuous production of aligned carbon nanotubes comprising a reactor, a conveyor for continuously passing a substrate through the reactor at a predetermined rate of travel, and an injector for delivering a feed solution dispersed in an inert carrier gas into the hollow interior of the reactor whereby aligned carbon nanotubes are formed on the substrate.
- the reactor and conveyor may be fabricated from any suitably inert material which substantially prevents carbon nanotube growth thereon. In that way, nanotube formation and growth is substantially restricted to the substrate passing through the reactor. Any suitably non-reactive metal or ceramic may be utilized, such as alumina, silicon carbide, Nichrome, and any combination.
- the conveyor may be controlled to pass the substrate through the reactor at a predetermined rate of travel. In one embodiment of the present invention, the conveyor passes the substrate through the reactor to provide a substrate residence time of from about 10 minutes to about 120 minutes.
- the injector of the present invention comprises a tube-within-a-tube design configured for improved flow characteristics and feed consistency of the feed solution/carrier gas stream entering the reactor.
- the injector comprises a first hollow tube for delivering the feed solution and a second hollow tube for delivering an inert carrier gas.
- the first hollow tube is disposed in the interior of the second hollow tube, thereby defining an annulus between the first and second hollow tubes through which the inert carrier gas may be delivered.
- the end of the second tube extends beyond the corresponding end of the first tube, thereby defining a dispersion chamber wherein the feed solution is dispersed into the inert carrier gas prior to entry into the reactor.
- the first hollow tube has an outer cross-sectional area of from about 50 percent to about 90 percent of the internal cross-sectional area of the second hollow tube.
- the carrier gas is delivered through the annulus between the tubes at a Reynold's number of between about 1 and about 2000. In a particularly preferred embodiment, the carrier gas is delivered through the annulus at a Reynold's number of between about 50 and about 200.
- the dimensions of the first and second tubes, and their orientation relative to one another, are configured such that the dispersion chamber formed thereby preferably has a length of from about 1 to about 15 times its diameter. In a particularly preferred embodiment, the length of the dispersion chamber is from about 8 to about 10 times its diameter.
- the apparatus may further include an inert, porous medium through which the feed solution/carrier gas dispersion may be passed prior to entry into the reactor.
- an inert, porous medium through which the feed solution/carrier gas dispersion may be passed prior to entry into the reactor.
- the apparatus of the present invention preferably includes such an inert, porous medium terminal to the injector, in the form of a sinter fabricated from materials including, but not limited to, transition metals and their alloys, alumina, zirconia, silicon carbide, or silica ceramics. Specific examples include ceramic, alumina, steel, stainless steel, titanium, and any combination thereof.
- the sinter is typically selected to include a poresize of from about 0.1 ⁇ m to about 1 ⁇ m in diameter.
- the injector of the present invention may be adapted to be selectively displaced within the reactor. As will be appreciated by those skilled in the art and farther described below, this feature obviates the need for multiple reactors providing different temperatures, such as for example a preheater followed by a primary reactor providing the desired reaction temperature. Rather, the selectively displaceable injector of the present design allows use of a single reactor, in which the feed solution/carrier gas may be delivered at any desired temperature zone. Thus, if the injector is maintained at a lower temperature zone of the reactor, the preheating step is accomplished. Moving the injector to a higher temperature zone of the reactor will allow the desired volatilization and nanotube-growing steps to occur.
- an actuator for moving the injector such as for example along a longitudinal axis of the reactor, maybe included in the apparatus of this invention.
- any suitable actuator capable of moving the injector in a controlled fashion may be employed, such as a hydraulic or pneumatic cylinder, a rod-type electric cylinder, a belt-driven actuator, a ball screw-driven actuator, a robotic arm, or the like.
- the actuator may be coupled to a controller for remote operation.
- the injector may be supported by any suitable support, such as a linear guide having rollers.
- the apparatus of the present invention may also include a means for excluding ambient air from the interior of the reactor. This feature may be accomplished by known devices, such as a nitrogen purge box or gas curtain adjacent the opening where the conveyor belt enters the reactor. Still further, a temperature controller may be provided for selectively controlling a temperature of the reactor interior.
- the apparatus of the present invention may be used for continuous production of aligned carbon nanotubes, such as by the method of copending U.S. application Ser. No. 10/141,423.
- production of aligned carbon nanotubes begins with dissolving a metal catalyst in a liquid hydrocarbon source to form a feed solution and dispersing the feed solution into a stream of an inert carrier gas.
- metal catalyst is admixed with said liquid hydrocarbon to yield a metal to carbon ratio of from about 0.075 atomic percent to about 1.25 atomic percent.
- metal catalyst is admixed with said liquid hydrocarbon to yield a metal to carbon ratio of 0.75 atomic percent.
- Suitable metal catalysts include the group consisting of ferrocene, nickelocene, cobaltocene, manganocene, ruthenocene, iron napthenate, nickel napthenate, cobalt napthenate and any mixture thereof.
- liquid hydrocarbon capable of being vaporized at a temperature of from about 150 C. to about 600 C. and having a solubility of at least 0.5 weight percent for the metal catalyst selected may be used in the method of the present invention. Accordingly it will be appreciated that the method for producing aligned carbon nanotubes of the present invention may be conducted at relatively moderate temperatures, and at atmospheric pressure, thereby reducing energy consumption and production costs and further enhancing the commercial utility thereof.
- Suitable liquid hydrocarbons include aromatic hydrocarbons, aliphatic hydrocarbons, or nitrogen-containing hydrocarbons.
- the liquid hydrocarbon may be xylene, toluene, benzene, hexane, pyridine, acetonitrile, or any combination thereof.
- the carrier gas may be selected from the noble (Group VIII) gases, nitrogen, or mixtures thereof. Typical examples include argon, helium, nitrogen, and any combination thereof. It is preferred to include hydrogen in the inert carrier gas at a concentration of up to 30 volume percent. In a particularly preferred embodiment, hydrogen is included in the carrier gas stream at a concentration of 10 volume percent.
- the dispersed feed solution is then continuously introduced into the reactor and volatilized.
- the reactor should be maintained at a temperature of from about 500 C. to about 900 C. In an especially preferred embodiment, the reactor is maintained at a temperature of from about 650 C. to about 850 C.
- the optimal reactor temperature will depend on the volatilization temperature of the metal catalyst/liquid hydrocarbon feed solution of choice.
- the rate at which the feed solution is delivered into the reactor is dependant on the metal catalyst concentration, reactor temperature, and gas flow rate. However, for optimal production of aligned carbon nanotubes, it is desirable to deliver the feed solution below a partial pressure (carbon) that elicits the co-generation of amorphous or pyrolytic carbon.
- An oxygen- and ambient air-free environment may be maintained within the reactor. This may be accomplished by any known means, such as for example a nitrogen purge box or a gas curtain placed at an opening of the reactor.
- a suitable substrate is continuously passed through the reactor via the conveyer to allow formation and growth of aligned carbon nanotubes thereon.
- Substrate materials which do not have substantial carbon solubility at temperatures below 900 C. are preferred.
- Any suitable substrate for promoting the growth of carbon nanotubes may be employed, preferably an inert glass or metal with thermal stability at a temperature of from about 500 C. to about 900 C.
- Suitable substrates include quartz, silicon, n-doped silicon, p-doped silicon, titanium nitride, and any combination thereof.
- the residence time of the substrate within the reactor is from about 10 minutes to about 120 minutes.
- the present apparatus allows continuous production of aligned carbon nanotubes with a tightly controlled range of external diameters, although it will be appreciated that control of the external diameter of carbon nanotubes grown in traditional batch procedures is also possible.
- the external diameter of aligned carbon nanotubes produced in accordance with the method and using the apparatus of the present invention may be controlled by passing the metal catalyst/liquid hydrocarbon feed solution dispersed in the inert carrier gas through an injector comprising a tubing of a particular inner diameter, followed by passing the feed solution through an inert, porous medium prior to delivery into the reactor.
- the inert, porous medium may be fabricated from any suitable inert powdered metal or ceramic, including any of the transition element metals or alloys thereof, as well as alumina, zirconia, silicon carbide, or silica ceramics. Specific examples include, but are not limited to, ceramic, alumina, steel, stainless steel, nickel, titanium, nickel-chromium alloys, or mixtures thereof.
- the inert, porous medium contains pores of from about 0.1 ⁇ m to about 1 ⁇ m in diameter. In accordance with the injector tubing and pore size of the porous medium selected, growth of aligned carbon nanotubes having external diameters of from about 4 nm to about 300 nm is possible.
- the aligned carbon nanotubes may then be recovered from the substrate, for example by mechanical means such as scraping, brushing, or ultrasonic cleaning.
- Process gases may be vented, or in a preferred embodiment are recycled through the reactor to preserve the concentration of hydrogen in the carrier gas.
- FIG. 1 is a schematic representation of the apparatus of the present invention for continuously producing aligned carbon nanotubes
- FIG. 2 is a schematic cross-sectional view of the injector of the present invention.
- FIGS. 3 a and 3 b are scanning electron micrograph (SEM) images showing aligned carbon nanotubes produced according to the present invention.
- FIG. 4 shows the cumulative percent diameter distribution of aligned carbon nanotubes produced according to the present invention.
- the metal catalyst/liquid hydrogen feed solution was passed through stainless steel sinters having pore sizes of 0.5 ⁇ m and 0.2 ⁇ m for comparison to a control feed solution sample which was not passed through a sinter.
- the present invention relates to novel apparatus for continuous production of aligned carbon nanotubes.
- the embodiments of the present invention may be practiced by various means which are illustrated in the examples below. These examples are intended to be illustrative only, as numerous modifications and variations will be apparent to those skilled in the art.
- an apparatus 10 for continuous production of aligned carbon nanotubes comprising a reactor 20 , an injector 21 for delivering a feed solution 22 dispersed in an inert carrier gas 24 into the hollow interior 26 of the reactor 20 , and a conveyer 28 , in the depicted example being an endless conveyor belt, for continuously passing a substrate 30 through the reactor 20 at a controlled speed. It should be appreciated that the direction in which the conveyor 28 passes the substrate 30 through the reactor 20 is not critical.
- a temperature controller 31 maybe provided, for creating predetermined temperatures or temperature zones within the reactor 20 .
- the apparatus 10 may further include an actuator, shown for purposes of demonstration as a rod-type electric cylinder 23 coupled to a controller 25 , for axially moving the injector 21 within the reactor 20 .
- an actuator shown for purposes of demonstration as a rod-type electric cylinder 23 coupled to a controller 25 , for axially moving the injector 21 within the reactor 20 .
- the reactor 20 and conveyor 28 may be fabricated from any suitably inert material which substantially prevents carbon nanotube formation and growth thereon. In that way, nanotube formation and growth is substantially restricted to the substrate 30 as it passes through the reactor 20 .
- Any suitably non-reactive metal or ceramic may be utilized, such as alumina, silicon carbide, Nichrome, and any combination.
- the conveyor 28 is configured to pass the substrate 30 through the reactor 20 at a rate of travel which reduces formation of amorphous or pyrolytic carbon species.
- the conveyer 28 passes the substrate 30 through the reactor 20 to provide a substrate residence time in the reactor 20 of from about 10 minutes to about 120 minutes, thereby optimizing growth conditions.
- the optimal substrate residence time will depend on variables such as the physical dimensions and temperature of the reactor 20 , on the volatilization characteristics of the feed solution of choice, and the like.
- An insert (not shown), generally having the shape of an inverted “D”, may be included within the hollow interior 26 of the reactor 20 to provide support for the conveyor 28 .
- any support means for the conveyor 28 may be adapted, such as a roller and track system (not shown) attached to the interior 26 of the reactor 20 , or alternatively rollers 33 exterior of the reactor 20 as depicted in FIG. 1 , around which conveyer 28 passes.
- the reactor 20 further includes a nitrogen purge box 32 located at the entry point 34 of the conveyor 28 for excluding ambient air/oxygen. It should be appreciated that any means for excluding ambient air, such as a gas curtain, is suitable for the method and apparatus 10 of this invention.
- Soft seals (not shown for convenience) of a known design may be included at the entry point 34 and the exit point 35 of the reactor 20 to further reduce entry of ambient air, contaminants, and the like into the interior 26 of the reactor 20 .
- the injector 21 of the present invention comprises a tube-within-a-tube design configured to improve the flow characteristics and feed consistency of the feed solution/carrier gas stream entering the reactor 20 .
- the injector 21 comprises a first hollow tube 36 for delivering the feed solution as described supra and a second hollow tube 38 for delivering the inert carrier gas.
- the first hollow tube 36 is disposed in the interior of the second hollow tube 38 , thereby defining an annulus 40 between the first and second hollow tubes 36 , 38 through which the inert carrier gas may be delivered.
- the distal or delivery end 39 of the second tube 38 extends beyond the corresponding end 37 of the first tube 36 , thereby defining a dispersion chamber 42 wherein the feed solution is dispersed into the inert carrier gas prior to entry into the reactor 20 .
- the first hollow tube 36 has an outer cross-sectional area of from about 50 percent to about 90 percent of the internal cross-sectional area of the second hollow tube 38 .
- the carrier gas is delivered through the annulus 40 at a flow rate resulting in a Reynold's number of between about 1 and about 2000.
- the carrier gas is delivered through the annulus 40 at a flow rate providing a Reynold's number of between about 50 and about 200.
- the dimensions of the first and second tubes 36 , 38 , and their relative orientation will primarily be determined by the size of reactor 20 employed. In general, the dimensions of the first and second tubes 36 , 38 , and their relative orientation are configured such that the dispersion chamber 42 formed thereby has a length of from about 1 to about 15 times its diameter. In a particularly preferred embodiment, the length of the dispersion 42 chamber is from about 8 to about 10 times its diameter. While the injector 21 as described is suitable for accomplishing the method of continuous production of aligned carbon nanotubes of the present invention as described, it will be appreciated that the injector 21 is also suitable for traditional batch processes for the growth of carbon nanotubes.
- a single temperature controller 31 may be provided as shown in FIG. 1 , or alternatively multiple temperature controllers 31 (embodiment not shown) may be provided. Accordingly, the injector 21 of the present invention may be adapted to be selectively displaced within the reactor 20 , as is depicted in FIG. 1 . As will be appreciated by those skilled in the art and further described below, this feature obviates the need for multiple reactors providing different temperatures, such as for example a preheater (not shown) in sequence with a primary reactor 20 providing the desired reaction temperature for formation and growth of nanotubes. In one embodiment as shown in FIG.
- the injector 21 may be selectively displaced along a longitudinal axis of the reactor 20 , such as by the actuator 23 .
- the axially movable injector 21 of the present design conveniently allows use of a single reactor 20 , in which the feed solution/carrier gas may be delivered to any desired temperature zone within the reactor 20 .
- placing the injector 21 in a lower temperature zone of the reactor 20 accomplishes the preheating and volatilization steps in an optimal manner without requiring a secondary furnace. In this manner, the required equipment for the process is minimized, resulting in lowered production costs and complexity.
- An apparatus 10 for continuous production of aligned carbon nanotubes was constructed in accordance with the foregoing disclosure, and is schematically depicted in FIG. 1 .
- a furnace of known design having the dimensions of 2 inches by 3 feet, with 3 heating zones including a 2 foot long reaction zone was utilized as the reactor 20 .
- the final temperature in the reaction zone was brought to 800 C. using a temperature controller 31 .
- a feed solution of ferrocene (2.3 g) and xylene (20 g) was prepared.
- the feed solution was injected into the reactor 20 through an injector 21 as described herein, having a first (feed solution delivering) tube 36 with an outer diameter of 3.12 mm and a second (carrier gas delivering) tube 38 with an inner diameter of 3.75 mm, defining a dispersion chamber 42 having a length of 1.5 inches.
- Argon/hydrogen carrier gas 24 flow was initiated and brought to 1200 sccm (1080 sccm Ar, 120 sccm H 2 ).
- Feed solution 22 was delivered into the reaction zone at a flow rate of 2.70 ml/h ⁇ 1 .
- a conveyor 28 was activated, and passed a series of plain (unpatterned) quartz slide substrates 30 through the reactor 20 at a rate of travel providing a substrate 30 residence time within the reactor 20 of 34 minutes.
- Ambient air and oxygen were excluded from the interior of the reactor 20 using a nitrogen purge box 32 located at the entry point 34 of the reactor 20 .
- the apparatus 10 of this invention produced aligned carbon nanotubes of high quality. It is important to note that the aligned carbon nanotubes were produced using the apparatus 10 of this invention without need for utilizing a patterned or etched substrate 30 . Accordingly, unlike prior art methods requiring treatment of substrates to produce aligned carbon nanotubes, the method of this invention allows use of either patterned or unpatterned substrates as desired.
- the apparatus 10 may be used for continuous production of aligned carbon nanotubes having a tightly controlled range of external diameters.
- the external diameter of aligned carbon nanotubes produced in accordance with the method of the present invention may be controlled by regulating the inner diameter of the injector 21 tubing through which the feed solution 22 dispersed in the inert carrier gas 24 is passed to improve yield and selectivity, followed by passing the feed solution 22 through an inert, porous medium prior to delivery into the reactor.
- FIG. 2 an embodiment of the injector 21 of this invention is depicted, including a terminally (to the injector)-located sinter 44 , comprising an inert, porous medium of selected pore size dimensions.
- the inert, porous medium may be fabricated from any suitable inert powdered metal or ceramic, including the transition element metals and alloys thereof, as well as alumina, zirconia, silicon carbide, or silica ceramics. Specific examples include, but are not limited to, ceramic, alumina, steel, stainless steel, nickel, titanium, nickel-chromium alloys, and any mixture thereof.
- the inert, porous medium contains pores of from about 0.1 ⁇ m to about 1 ⁇ m in diameter.
- the method of controlling the external diameter of carbon nanotubes of this invention therefore comprises the steps of: (1) dissolving a metal catalyst in a liquid hydrocarbon source to form a feed solution 22 ; (2) dispersing the feed solution in an inert carrier gas 24 in a dispersion chamber 42 ; (3) passing the feed solution 22 /inert carrier gas 24 dispersion through an inert, porous medium of the disclosed poresizes, in the depicted embodiment being a sinter 44 ; (4) volatilizing the feed solution 22 in a reactor 20 ; (5) continuously passing a substrate 30 through the reactor 20 to allow formation and growth of aligned carbon nanotubes thereon; and (6) recovering aligned carbon nanotubes having a narrower overall diameter size distribution from the substrate 30 .
- Suitable dimensions and materials for fabrication of components necessary for restricting external diameter of aligned carbon nanotubes grown in the continuous process of the present invention are as disclosed supra. However, it should be appreciated that it is also possible to restrict external diameter of carbon nanotubes grown in traditional batch procedures. In accordance with the pore size of the porous medium selected, growth of aligned carbon nanotubes having homogenous external diameters of from about 4 nm to about 300 nm is made possible.
- Example 1 An apparatus 10 was prepared substantially as described in Example 1, with the exception that the apparatus 10 was adapted for a batch procedure for production of aligned carbon nanotubes rather than the continuous procedure described in Example 1. All other conditions were maintained as in Example 1.
- the feed solution 22 as disclosed in Example 1 was passed through stainless steel sinters 44 as described herein, placed terminally on the injector 21 adjacent the dispersion chamber 42 . Sinters 44 having poresizes of 0.2 ⁇ m and 0.5 ⁇ m were compared to negative controls (no sinter). Feed solution 22 composition and run conditions were as described for Example 1, with the exception of use of a batch procedure.
- the present invention provides a relatively simple means for controlling the external diameter and the range of external diameters of carbon nanotubes produced, providing a more uniform, higher quality product.
- the present invention provides numerous advantages over currently employed batch processing methods.
- the labor required is significantly reduced, and synthesis of aligned carbon nanotubes is possible without need for use of specially patterned substrates.
- batch to batch variation in quality is reduced.
- the ability to narrowly restrict the range of external diameters of the carbon nanotube population further improves the quality of the product.
- the apparatus of the present invention provides a viable, low cost route for large scale production of high quality, homogenous, aligned carbon nanotubes for use in a variety of applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
An apparatus for continuous production of aligned carbon nanotubes is disclosed. The apparatus includes a reactor, an injector for delivering a feed solution into the reactor, and a conveyor for passing through the reactor a substrate on which nanotubes may be formed and grown. The apparatus further may include an inert, porous medium through which the feed solution may be passed. The apparatus produces aligned carbon nanotubes of a predetermined external diameter, and is suitable for large scale production of aligned carbon nanotubes in an industrial setting.
Description
- This application is a divisional of U.S. application Ser. No. 10/141,423 filed May 8, 2002 entitled “Process for the Continuous Production of Aligned Carbon Nanotubes,” the disclosure of which is incorporated herein in its entirety by reference, which in turn claims the benefit of U.S. Provisional Patent Application Ser. Nos. 60/289,415 filed May 8, 2001, 60/289,745 filed May 9, 2001, and 60/356,272 filed Feb. 11, 2002, the disclosures of each of which are incorporated herein in their entirety by reference. This invention was made with Government support under NSF-MRSEC grant DMR-9809606. The Government may have certain rights in this invention.
- The present invention relates to apparatus for producing aligned carbon nanotubes, and more particularly to apparatus for continuous production of aligned carbon nanotubes. The invention further relates to apparatus for continuous production of aligned carbon nanotubes which do not require patterned substrates, and which further produce quantities of high quality, homogenous populations of aligned carbon nanotubes.
- Aligned carbon nanotubes have application in numerous areas of composite materials, such as for use in separation media, as catalysts, as catalyst supports, in energy storage and transfer, in electronics applications such as in electron guns for use, e.g., in flat panel television picture technology, for EMI and RF shielding such as in the cellular telephone industry, as sensors or sensor components, and for use in electronically conductive plastics. Currently utilized technologies for production of aligned carbon nanotubes are labor intensive, costly, inefficient, and are not amenable to scale-up for industrial applicability.
- The synthesis of aligned carbon nanotubes, such as for example aligned multi-walled carbon nanotubes, via catalytic pyrolysis of hydrocarbons is known. Most of the known methodology for such synthesis requires use of patterned or preformed substrates to provide support to the growing nanotubes, allowing growth in an aligned pattern. Further, the presently utilized methods for synthesis of aligned carbon nanotubes rely on batch processes. While effective, batch processing methods for production of carbon nanotubes, particularly aligned carbon nanotubes, are labor intensive, costly, inefficient, and generally limited in production capacity at the industrial scale. Further, batch processing techniques may result in significant batch to batch variation in the quality of the nanotubes produced.
- Accordingly, there is a need in the art for methods and apparatus for production of carbon nanotubes which result in a high quality, homogenous population of aligned nanotubes. There is further a need in the art for such apparatus which do not require specialized patterned substrates. The apparatus should reduce the labor required, and be amenable to scale-up for use in industrial applications requiring reproducibility low cost, high volume, and a high quality product.
- In accordance with the purposes of the present invention as described herein, an apparatus for continuous production of aligned carbon nanotubes is taught, comprising a reactor, a conveyor for continuously passing a substrate through the reactor at a predetermined rate of travel, and an injector for delivering a feed solution dispersed in an inert carrier gas into the hollow interior of the reactor whereby aligned carbon nanotubes are formed on the substrate. Those of skill in the art will appreciate that the reactor and conveyor may be fabricated from any suitably inert material which substantially prevents carbon nanotube growth thereon. In that way, nanotube formation and growth is substantially restricted to the substrate passing through the reactor. Any suitably non-reactive metal or ceramic may be utilized, such as alumina, silicon carbide, Nichrome, and any combination. The conveyor may be controlled to pass the substrate through the reactor at a predetermined rate of travel. In one embodiment of the present invention, the conveyor passes the substrate through the reactor to provide a substrate residence time of from about 10 minutes to about 120 minutes.
- The injector of the present invention comprises a tube-within-a-tube design configured for improved flow characteristics and feed consistency of the feed solution/carrier gas stream entering the reactor. In a presently preferred embodiment, the injector comprises a first hollow tube for delivering the feed solution and a second hollow tube for delivering an inert carrier gas. The first hollow tube is disposed in the interior of the second hollow tube, thereby defining an annulus between the first and second hollow tubes through which the inert carrier gas may be delivered. The end of the second tube extends beyond the corresponding end of the first tube, thereby defining a dispersion chamber wherein the feed solution is dispersed into the inert carrier gas prior to entry into the reactor.
- Preferably, the first hollow tube has an outer cross-sectional area of from about 50 percent to about 90 percent of the internal cross-sectional area of the second hollow tube. In a preferred embodiment, the carrier gas is delivered through the annulus between the tubes at a Reynold's number of between about 1 and about 2000. In a particularly preferred embodiment, the carrier gas is delivered through the annulus at a Reynold's number of between about 50 and about 200. The dimensions of the first and second tubes, and their orientation relative to one another, are configured such that the dispersion chamber formed thereby preferably has a length of from about 1 to about 15 times its diameter. In a particularly preferred embodiment, the length of the dispersion chamber is from about 8 to about 10 times its diameter.
- The apparatus may further include an inert, porous medium through which the feed solution/carrier gas dispersion may be passed prior to entry into the reactor. As described in the present inventor's own U.S. patent application Ser. No. 10/141,423, this provides a mechanism to control the external diameter of nanotubes formed thereby. Accordingly, the apparatus of the present invention preferably includes such an inert, porous medium terminal to the injector, in the form of a sinter fabricated from materials including, but not limited to, transition metals and their alloys, alumina, zirconia, silicon carbide, or silica ceramics. Specific examples include ceramic, alumina, steel, stainless steel, titanium, and any combination thereof. The sinter is typically selected to include a poresize of from about 0.1 μm to about 1 μm in diameter.
- The injector of the present invention may be adapted to be selectively displaced within the reactor. As will be appreciated by those skilled in the art and farther described below, this feature obviates the need for multiple reactors providing different temperatures, such as for example a preheater followed by a primary reactor providing the desired reaction temperature. Rather, the selectively displaceable injector of the present design allows use of a single reactor, in which the feed solution/carrier gas may be delivered at any desired temperature zone. Thus, if the injector is maintained at a lower temperature zone of the reactor, the preheating step is accomplished. Moving the injector to a higher temperature zone of the reactor will allow the desired volatilization and nanotube-growing steps to occur. Accordingly, an actuator for moving the injector, such as for example along a longitudinal axis of the reactor, maybe included in the apparatus of this invention. It will be appreciated that any suitable actuator capable of moving the injector in a controlled fashion may be employed, such as a hydraulic or pneumatic cylinder, a rod-type electric cylinder, a belt-driven actuator, a ball screw-driven actuator, a robotic arm, or the like. The actuator may be coupled to a controller for remote operation. The injector may be supported by any suitable support, such as a linear guide having rollers.
- It is known that the reactions by which carbon nanotubes are formed are optimal in the absence of ambient air and oxygen. Accordingly, the apparatus of the present invention may also include a means for excluding ambient air from the interior of the reactor. This feature may be accomplished by known devices, such as a nitrogen purge box or gas curtain adjacent the opening where the conveyor belt enters the reactor. Still further, a temperature controller may be provided for selectively controlling a temperature of the reactor interior.
- The apparatus of the present invention may be used for continuous production of aligned carbon nanotubes, such as by the method of copending U.S. application Ser. No. 10/141,423. As described therein, production of aligned carbon nanotubes begins with dissolving a metal catalyst in a liquid hydrocarbon source to form a feed solution and dispersing the feed solution into a stream of an inert carrier gas. In a preferred embodiment, metal catalyst is admixed with said liquid hydrocarbon to yield a metal to carbon ratio of from about 0.075 atomic percent to about 1.25 atomic percent. In an especially preferred embodiment, metal catalyst is admixed with said liquid hydrocarbon to yield a metal to carbon ratio of 0.75 atomic percent. Suitable metal catalysts include the group consisting of ferrocene, nickelocene, cobaltocene, manganocene, ruthenocene, iron napthenate, nickel napthenate, cobalt napthenate and any mixture thereof.
- Any liquid hydrocarbon capable of being vaporized at a temperature of from about 150 C. to about 600 C. and having a solubility of at least 0.5 weight percent for the metal catalyst selected may be used in the method of the present invention. Accordingly it will be appreciated that the method for producing aligned carbon nanotubes of the present invention may be conducted at relatively moderate temperatures, and at atmospheric pressure, thereby reducing energy consumption and production costs and further enhancing the commercial utility thereof. Suitable liquid hydrocarbons include aromatic hydrocarbons, aliphatic hydrocarbons, or nitrogen-containing hydrocarbons. In a preferred embodiment, the liquid hydrocarbon may be xylene, toluene, benzene, hexane, pyridine, acetonitrile, or any combination thereof. The carrier gas may be selected from the noble (Group VIII) gases, nitrogen, or mixtures thereof. Typical examples include argon, helium, nitrogen, and any combination thereof. It is preferred to include hydrogen in the inert carrier gas at a concentration of up to 30 volume percent. In a particularly preferred embodiment, hydrogen is included in the carrier gas stream at a concentration of 10 volume percent.
- The dispersed feed solution is then continuously introduced into the reactor and volatilized. In a preferred embodiment, the reactor should be maintained at a temperature of from about 500 C. to about 900 C. In an especially preferred embodiment, the reactor is maintained at a temperature of from about 650 C. to about 850 C. Of course, those of skill in the art will realize that the optimal reactor temperature will depend on the volatilization temperature of the metal catalyst/liquid hydrocarbon feed solution of choice.
- The rate at which the feed solution is delivered into the reactor is dependant on the metal catalyst concentration, reactor temperature, and gas flow rate. However, for optimal production of aligned carbon nanotubes, it is desirable to deliver the feed solution below a partial pressure (carbon) that elicits the co-generation of amorphous or pyrolytic carbon. An oxygen- and ambient air-free environment may be maintained within the reactor. This may be accomplished by any known means, such as for example a nitrogen purge box or a gas curtain placed at an opening of the reactor.
- Concurrently therewith, a suitable substrate is continuously passed through the reactor via the conveyer to allow formation and growth of aligned carbon nanotubes thereon. Substrate materials which do not have substantial carbon solubility at temperatures below 900 C. are preferred. Any suitable substrate for promoting the growth of carbon nanotubes may be employed, preferably an inert glass or metal with thermal stability at a temperature of from about 500 C. to about 900 C. Suitable substrates include quartz, silicon, n-doped silicon, p-doped silicon, titanium nitride, and any combination thereof. In a preferred embodiment of the present invention, the residence time of the substrate within the reactor is from about 10 minutes to about 120 minutes.
- The present apparatus allows continuous production of aligned carbon nanotubes with a tightly controlled range of external diameters, although it will be appreciated that control of the external diameter of carbon nanotubes grown in traditional batch procedures is also possible. Specifically, it has been discovered that the external diameter of aligned carbon nanotubes produced in accordance with the method and using the apparatus of the present invention may be controlled by passing the metal catalyst/liquid hydrocarbon feed solution dispersed in the inert carrier gas through an injector comprising a tubing of a particular inner diameter, followed by passing the feed solution through an inert, porous medium prior to delivery into the reactor. The inert, porous medium may be fabricated from any suitable inert powdered metal or ceramic, including any of the transition element metals or alloys thereof, as well as alumina, zirconia, silicon carbide, or silica ceramics. Specific examples include, but are not limited to, ceramic, alumina, steel, stainless steel, nickel, titanium, nickel-chromium alloys, or mixtures thereof. In a preferred embodiment, the inert, porous medium contains pores of from about 0.1 ∥m to about 1 μm in diameter. In accordance with the injector tubing and pore size of the porous medium selected, growth of aligned carbon nanotubes having external diameters of from about 4 nm to about 300 nm is possible.
- The aligned carbon nanotubes may then be recovered from the substrate, for example by mechanical means such as scraping, brushing, or ultrasonic cleaning. Process gases may be vented, or in a preferred embodiment are recycled through the reactor to preserve the concentration of hydrogen in the carrier gas.
- Other objects and applications of the present invention will become apparent to those skilled in this art from the following description wherein there is shown and described a preferred embodiment of this invention, simply by way of illustration of the modes currently best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
- The accompanying drawing incorporated in and forming a part of the specification illustrates several aspects of the present invention and, together with the description, serves to explain the principles of the invention. In the drawing:
-
FIG. 1 is a schematic representation of the apparatus of the present invention for continuously producing aligned carbon nanotubes; -
FIG. 2 is a schematic cross-sectional view of the injector of the present invention; -
FIGS. 3 a and 3 b are scanning electron micrograph (SEM) images showing aligned carbon nanotubes produced according to the present invention; and -
FIG. 4 shows the cumulative percent diameter distribution of aligned carbon nanotubes produced according to the present invention. The metal catalyst/liquid hydrogen feed solution was passed through stainless steel sinters having pore sizes of 0.5 μm and 0.2 μm for comparison to a control feed solution sample which was not passed through a sinter. - Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawing.
- As summarized above, the present invention relates to novel apparatus for continuous production of aligned carbon nanotubes. The embodiments of the present invention may be practiced by various means which are illustrated in the examples below. These examples are intended to be illustrative only, as numerous modifications and variations will be apparent to those skilled in the art.
- Referring now to
FIG. 1 , anapparatus 10 for continuous production of aligned carbon nanotubes is provided, comprising areactor 20, aninjector 21 for delivering afeed solution 22 dispersed in aninert carrier gas 24 into thehollow interior 26 of thereactor 20, and aconveyer 28, in the depicted example being an endless conveyor belt, for continuously passing asubstrate 30 through thereactor 20 at a controlled speed. It should be appreciated that the direction in which theconveyor 28 passes thesubstrate 30 through thereactor 20 is not critical. Atemperature controller 31 maybe provided, for creating predetermined temperatures or temperature zones within thereactor 20. Theapparatus 10 may further include an actuator, shown for purposes of demonstration as a rod-typeelectric cylinder 23 coupled to acontroller 25, for axially moving theinjector 21 within thereactor 20. Those of skill in the art will appreciate that thereactor 20 andconveyor 28 may be fabricated from any suitably inert material which substantially prevents carbon nanotube formation and growth thereon. In that way, nanotube formation and growth is substantially restricted to thesubstrate 30 as it passes through thereactor 20. Any suitably non-reactive metal or ceramic may be utilized, such as alumina, silicon carbide, Nichrome, and any combination. - It will be appreciated that the
conveyor 28 is configured to pass thesubstrate 30 through thereactor 20 at a rate of travel which reduces formation of amorphous or pyrolytic carbon species. In one embodiment, theconveyer 28 passes thesubstrate 30 through thereactor 20 to provide a substrate residence time in thereactor 20 of from about 10 minutes to about 120 minutes, thereby optimizing growth conditions. The optimal substrate residence time, of course, will depend on variables such as the physical dimensions and temperature of thereactor 20, on the volatilization characteristics of the feed solution of choice, and the like. - An insert (not shown), generally having the shape of an inverted “D”, may be included within the
hollow interior 26 of thereactor 20 to provide support for theconveyor 28. However, it will be appreciated that any support means for theconveyor 28 may be adapted, such as a roller and track system (not shown) attached to the interior 26 of thereactor 20, or alternativelyrollers 33 exterior of thereactor 20 as depicted inFIG. 1 , around which conveyer 28 passes. Thereactor 20 further includes anitrogen purge box 32 located at theentry point 34 of theconveyor 28 for excluding ambient air/oxygen. It should be appreciated that any means for excluding ambient air, such as a gas curtain, is suitable for the method andapparatus 10 of this invention. Soft seals (not shown for convenience) of a known design may be included at theentry point 34 and theexit point 35 of thereactor 20 to further reduce entry of ambient air, contaminants, and the like into the interior 26 of thereactor 20. - The
injector 21 of the present invention, shown in isolation inFIG. 2 , comprises a tube-within-a-tube design configured to improve the flow characteristics and feed consistency of the feed solution/carrier gas stream entering thereactor 20. In a presently preferred embodiment, theinjector 21 comprises a firsthollow tube 36 for delivering the feed solution as described supra and a secondhollow tube 38 for delivering the inert carrier gas. The firsthollow tube 36 is disposed in the interior of the secondhollow tube 38, thereby defining anannulus 40 between the first and secondhollow tubes delivery end 39 of thesecond tube 38 extends beyond thecorresponding end 37 of thefirst tube 36, thereby defining adispersion chamber 42 wherein the feed solution is dispersed into the inert carrier gas prior to entry into thereactor 20. - Preferably, the first
hollow tube 36 has an outer cross-sectional area of from about 50 percent to about 90 percent of the internal cross-sectional area of the secondhollow tube 38. To assure laminar flow characteristics of the feed solution/carrier gas entering thereactor 20, the carrier gas is delivered through theannulus 40 at a flow rate resulting in a Reynold's number of between about 1 and about 2000. In a particularly preferred embodiment, the carrier gas is delivered through theannulus 40 at a flow rate providing a Reynold's number of between about 50 and about 200. - The dimensions of the first and
second tubes reactor 20 employed. In general, the dimensions of the first andsecond tubes dispersion chamber 42 formed thereby has a length of from about 1 to about 15 times its diameter. In a particularly preferred embodiment, the length of thedispersion 42 chamber is from about 8 to about 10 times its diameter. While theinjector 21 as described is suitable for accomplishing the method of continuous production of aligned carbon nanotubes of the present invention as described, it will be appreciated that theinjector 21 is also suitable for traditional batch processes for the growth of carbon nanotubes. - It is known to provide internal temperature zones having differing temperatures in standard reactors for use in production of carbon nanotubes by chemical vapor deposition. To provide such temperature zones, a
single temperature controller 31 may be provided as shown inFIG. 1 , or alternatively multiple temperature controllers 31 (embodiment not shown) may be provided. Accordingly, theinjector 21 of the present invention may be adapted to be selectively displaced within thereactor 20, as is depicted inFIG. 1 . As will be appreciated by those skilled in the art and further described below, this feature obviates the need for multiple reactors providing different temperatures, such as for example a preheater (not shown) in sequence with aprimary reactor 20 providing the desired reaction temperature for formation and growth of nanotubes. In one embodiment as shown inFIG. 1 , theinjector 21 may be selectively displaced along a longitudinal axis of thereactor 20, such as by theactuator 23. The axiallymovable injector 21 of the present design conveniently allows use of asingle reactor 20, in which the feed solution/carrier gas may be delivered to any desired temperature zone within thereactor 20. Thus, placing theinjector 21 in a lower temperature zone of thereactor 20 accomplishes the preheating and volatilization steps in an optimal manner without requiring a secondary furnace. In this manner, the required equipment for the process is minimized, resulting in lowered production costs and complexity. - An
apparatus 10 for continuous production of aligned carbon nanotubes was constructed in accordance with the foregoing disclosure, and is schematically depicted inFIG. 1 . A furnace of known design having the dimensions of 2 inches by 3 feet, with 3 heating zones including a 2 foot long reaction zone was utilized as thereactor 20. The final temperature in the reaction zone was brought to 800 C. using atemperature controller 31. A feed solution of ferrocene (2.3 g) and xylene (20 g) was prepared. The feed solution was injected into thereactor 20 through aninjector 21 as described herein, having a first (feed solution delivering)tube 36 with an outer diameter of 3.12 mm and a second (carrier gas delivering)tube 38 with an inner diameter of 3.75 mm, defining adispersion chamber 42 having a length of 1.5 inches. - Argon/
hydrogen carrier gas 24 flow was initiated and brought to 1200 sccm (1080 sccm Ar, 120 sccm H2).Feed solution 22 was delivered into the reaction zone at a flow rate of 2.70 ml/h−1. Aconveyor 28 was activated, and passed a series of plain (unpatterned)quartz slide substrates 30 through thereactor 20 at a rate of travel providing asubstrate 30 residence time within thereactor 20 of 34 minutes. Ambient air and oxygen were excluded from the interior of thereactor 20 using anitrogen purge box 32 located at theentry point 34 of thereactor 20. - As seen in
FIGS. 3 a and 3 b, theapparatus 10 of this invention produced aligned carbon nanotubes of high quality. It is important to note that the aligned carbon nanotubes were produced using theapparatus 10 of this invention without need for utilizing a patterned or etchedsubstrate 30. Accordingly, unlike prior art methods requiring treatment of substrates to produce aligned carbon nanotubes, the method of this invention allows use of either patterned or unpatterned substrates as desired. - As described above, in another aspect of the present invention, the
apparatus 10 may be used for continuous production of aligned carbon nanotubes having a tightly controlled range of external diameters. Surprisingly, it has been discovered that the external diameter of aligned carbon nanotubes produced in accordance with the method of the present invention may be controlled by regulating the inner diameter of theinjector 21 tubing through which thefeed solution 22 dispersed in theinert carrier gas 24 is passed to improve yield and selectivity, followed by passing thefeed solution 22 through an inert, porous medium prior to delivery into the reactor. Referring toFIG. 2 , an embodiment of theinjector 21 of this invention is depicted, including a terminally (to the injector)-locatedsinter 44, comprising an inert, porous medium of selected pore size dimensions. - The inert, porous medium may be fabricated from any suitable inert powdered metal or ceramic, including the transition element metals and alloys thereof, as well as alumina, zirconia, silicon carbide, or silica ceramics. Specific examples include, but are not limited to, ceramic, alumina, steel, stainless steel, nickel, titanium, nickel-chromium alloys, and any mixture thereof. In a preferred embodiment, the inert, porous medium contains pores of from about 0.1 μm to about 1 μm in diameter.
- The method of controlling the external diameter of carbon nanotubes of this invention therefore comprises the steps of: (1) dissolving a metal catalyst in a liquid hydrocarbon source to form a
feed solution 22; (2) dispersing the feed solution in aninert carrier gas 24 in adispersion chamber 42; (3) passing thefeed solution 22/inert carrier gas 24 dispersion through an inert, porous medium of the disclosed poresizes, in the depicted embodiment being asinter 44; (4) volatilizing thefeed solution 22 in areactor 20; (5) continuously passing asubstrate 30 through thereactor 20 to allow formation and growth of aligned carbon nanotubes thereon; and (6) recovering aligned carbon nanotubes having a narrower overall diameter size distribution from thesubstrate 30. - Suitable dimensions and materials for fabrication of components necessary for restricting external diameter of aligned carbon nanotubes grown in the continuous process of the present invention are as disclosed supra. However, it should be appreciated that it is also possible to restrict external diameter of carbon nanotubes grown in traditional batch procedures. In accordance with the pore size of the porous medium selected, growth of aligned carbon nanotubes having homogenous external diameters of from about 4 nm to about 300 nm is made possible.
- To test the
injector 21 of the present invention, anapparatus 10 was prepared substantially as described in Example 1, with the exception that theapparatus 10 was adapted for a batch procedure for production of aligned carbon nanotubes rather than the continuous procedure described in Example 1. All other conditions were maintained as in Example 1. Thefeed solution 22 as disclosed in Example 1 was passed through stainless steel sinters 44 as described herein, placed terminally on theinjector 21 adjacent thedispersion chamber 42.Sinters 44 having poresizes of 0.2 μm and 0.5 μm were compared to negative controls (no sinter).Feed solution 22 composition and run conditions were as described for Example 1, with the exception of use of a batch procedure. - As seen in
FIG. 4 , passing the feed solution throughsinters 44 having successively smaller pore sizes reduced both the maximum diameter and the average diameter of carbon nanotubes produced. Similarly, assinter 44 pore size was reduced, the overall diameter size distribution of the carbon nanotubes produced became narrower. Accordingly, the present invention provides a relatively simple means for controlling the external diameter and the range of external diameters of carbon nanotubes produced, providing a more uniform, higher quality product. - As described herein and demonstrated in the foregoing examples, the present invention provides numerous advantages over currently employed batch processing methods. The labor required is significantly reduced, and synthesis of aligned carbon nanotubes is possible without need for use of specially patterned substrates. In contrast to batch processing techniques, batch to batch variation in quality is reduced. The ability to narrowly restrict the range of external diameters of the carbon nanotube population further improves the quality of the product. Accordingly, the apparatus of the present invention provides a viable, low cost route for large scale production of high quality, homogenous, aligned carbon nanotubes for use in a variety of applications.
- The foregoing description of preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
Claims (20)
1. An apparatus for continuous production of aligned carbon nanotubes, comprising:
a reactor defining a hollow interior;
a conveyor for continuously passing a substrate through the hollow interior of the reactor at a predetermined rate of travel; and
an injector for delivering a feed solution dispersed in an inert carrier gas into the hollow interior of the reactor;
whereby aligned carbon nanotubes are formed on the substrate.
2. The apparatus of claim 1 , wherein the reactor and conveyer are fabricated from an inert material which substantially inhibits nanotube growth thereon.
3. The apparatus of claim 2 , wherein the inert material is any non-reactive metal or ceramic which substantially inhibits nanotube growth thereon.
4. The apparatus of claim 3 , wherein the inert material is selected from the group consisting of alumina, silicon carbide, Nichrome, and any mixture thereof.
5. The apparatus of claim 1 , wherein the conveyor passes the substrate through the hollow interior of the reactor at a rate of travel providing a substrate residence time within the reactor of from about 10 minutes to about 120 minutes.
6. The apparatus of claim 1 , wherein the injector comprises:
a first hollow tube for delivering a feed solution; and
a second hollow tube for delivering an inert carrier gas;
wherein the first hollow tube is disposed in an interior of the second hollow tube, thereby defining an annulus between the first hollow tube and the second hollow tube; and
wherein an end of the second tube extends beyond a corresponding end of the first tube to define a dispersion chamber having a length and a diameter for dispersing the feed solution into the inert carrier gas.
7. The apparatus of claim 6 , wherein the first hollow tube has an outer cross-sectional area of from about 50 percent to about 90 percent of an internal cross-sectional area of the second hollow tube
8. The apparatus of claim 7 , wherein the injector is adapted whereby the inert carrier gas is delivered through the annulus at a Reynold's number of between about 1 and about 2000.
9. The apparatus of claim 8 , wherein the injector is adapted whereby the inert carrier gas is delivered through the annulus at a Reynold's number of between about 50 and about 200.
10. The apparatus of claim 6 , wherein the dispersion chamber has a length of from about 1 to about 15 times the diameter of the dispersion chamber.
11. The apparatus of claim 10 , wherein the dispersion chamber has a length of from about 8 to about 10 times the diameter of the dispersion chamber.
12. The apparatus of claim 1 , further comprising an inert, porous medium through which the feed solution dispersed in the inert carrier gas is passed prior to entry into the reactor.
13. The apparatus of claim 12 , wherein the inert, porous medium is fabricated from the group consisting of transition metal elements, transition metal element alloys, zirconia, silicon carbide, silica ceramics, and combinations thereof.
14. The apparatus of claim 12 , wherein the inert, porous medium is a sinter fabricated from the group of materials consisting of ceramic, alumina, steel, stainless steel, titanium, and any mixture thereof.
15. The apparatus of claim 12 , wherein the inert, porous medium contains a plurality of pores having a diameter of from about 0.1 μm to about 1 μm.
16. The apparatus of claim 1 , further including a temperature controller for selectively controlling a temperature of the hollow interior of the reactor.
17. The apparatus of claim 1 , further including an actuator for selectively displacing an end of the injector within the hollow interior of the reactor.
18. The apparatus of claim 1 , further including means for excluding ambient air from the hollow interior.
19. The apparatus of claim 18 , wherein the means for excluding ambient air from the interior of the reactor comprises a purge box adjacent an opening of the reactor.
20. The apparatus of claim 18 , wherein the means for excluding ambient air from the interior of the reactor comprises a gas curtain adjacent an opening of the reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/617,779 US7504078B1 (en) | 2001-05-08 | 2006-12-29 | Continuous production of aligned carbon nanotubes |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28941501P | 2001-05-08 | 2001-05-08 | |
US28974501P | 2001-05-09 | 2001-05-09 | |
US35627202P | 2002-02-11 | 2002-02-11 | |
US10/141,423 US7160531B1 (en) | 2001-05-08 | 2002-05-08 | Process for the continuous production of aligned carbon nanotubes |
US11/617,779 US7504078B1 (en) | 2001-05-08 | 2006-12-29 | Continuous production of aligned carbon nanotubes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/141,423 Division US7160531B1 (en) | 2001-05-08 | 2002-05-08 | Process for the continuous production of aligned carbon nanotubes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090053115A1 true US20090053115A1 (en) | 2009-02-26 |
US7504078B1 US7504078B1 (en) | 2009-03-17 |
Family
ID=37633430
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/141,423 Expired - Lifetime US7160531B1 (en) | 2001-05-08 | 2002-05-08 | Process for the continuous production of aligned carbon nanotubes |
US11/617,779 Expired - Fee Related US7504078B1 (en) | 2001-05-08 | 2006-12-29 | Continuous production of aligned carbon nanotubes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/141,423 Expired - Lifetime US7160531B1 (en) | 2001-05-08 | 2002-05-08 | Process for the continuous production of aligned carbon nanotubes |
Country Status (1)
Country | Link |
---|---|
US (2) | US7160531B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090269257A1 (en) * | 2005-08-19 | 2009-10-29 | Tsinghua University | Apparatus for synthesizing a single-wall carbon nanotube array |
US20120301663A1 (en) * | 2010-03-26 | 2012-11-29 | Aisin Seiki Kabushiki Kaisha | Carbon nanotube composite and method for making the same |
FR3013061A1 (en) * | 2013-11-14 | 2015-05-15 | Commissariat Energie Atomique | METHOD OF MANUFACTURING ALIGNED NANOSTRUCTURES ON A SCREW AND CONTINUOUSLY AND ASSOCIATED DEVICE |
JP2015520717A (en) * | 2012-04-16 | 2015-07-23 | シーアストーン リミテッド ライアビリティ カンパニー | Method for using a metal catalyst in a carbon oxide catalytic converter |
DE102015100062A1 (en) | 2015-01-06 | 2016-07-07 | Universität Paderborn | Apparatus and method for producing silicon carbide |
US9731970B2 (en) | 2012-04-16 | 2017-08-15 | Seerstone Llc | Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides |
US20170292208A1 (en) * | 2014-10-28 | 2017-10-12 | Lg Chem, Ltd. | Device for producing carbon nanotube fibers and method for producing carbon nanotube fibers using same |
US9796591B2 (en) | 2012-04-16 | 2017-10-24 | Seerstone Llc | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products |
US10106416B2 (en) | 2012-04-16 | 2018-10-23 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
DE102018100679A1 (en) | 2018-01-12 | 2019-07-18 | Universität Paderborn | Apparatus and method for producing silicon carbide |
Families Citing this family (157)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6723299B1 (en) * | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US20040034177A1 (en) * | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
WO2004106420A2 (en) * | 2003-05-22 | 2004-12-09 | Zyvex Corporation | Nanocomposites and method for production |
GB0316367D0 (en) * | 2003-07-11 | 2003-08-13 | Univ Cambridge Tech | Production of agglomerates from gas phase |
EP1740655A1 (en) * | 2004-04-13 | 2007-01-10 | Zyvex Corporation | Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
US7296576B2 (en) * | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
JP5350635B2 (en) * | 2004-11-09 | 2013-11-27 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | Production and application of nanofiber ribbons and sheets and nanofiber twisted and untwisted yarns |
US7754183B2 (en) * | 2005-05-20 | 2010-07-13 | Clemson University Research Foundation | Process for preparing carbon nanostructures with tailored properties and products utilizing same |
US8033501B2 (en) * | 2005-06-10 | 2011-10-11 | The Boeing Company | Method and apparatus for attaching electrically powered seat track cover to through hole seat track design |
US7439731B2 (en) | 2005-06-24 | 2008-10-21 | Crafts Douglas E | Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures |
WO2008054379A2 (en) * | 2005-10-25 | 2008-05-08 | Massachusetts Institute Of Technology | Shape controlled growth of nanostructured films and objects |
US9771264B2 (en) * | 2005-10-25 | 2017-09-26 | Massachusetts Institute Of Technology | Controlled-orientation films and nanocomposites including nanotubes or other nanostructures |
US8394664B2 (en) | 2006-02-02 | 2013-03-12 | William Marsh Rice University | Electrical device fabrication from nanotube formations |
EP2441729B1 (en) | 2006-05-19 | 2017-04-05 | Massachusetts Institute Of Technology | Method of forming a composite article |
US8337979B2 (en) | 2006-05-19 | 2012-12-25 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
US20080279755A1 (en) * | 2006-07-06 | 2008-11-13 | Syracuse University | Carbon Nanotube, Nanorod, Nanosphere, and Related Nanostructure Formation Using Metal Boride Catalysts |
US8207658B2 (en) * | 2006-08-25 | 2012-06-26 | Rensselaer Polytechnic Institute | Carbon nanotube growth on metallic substrate using vapor phase catalyst delivery |
US8354855B2 (en) * | 2006-10-16 | 2013-01-15 | Formfactor, Inc. | Carbon nanotube columns and methods of making and using carbon nanotube columns as probes |
US8130007B2 (en) | 2006-10-16 | 2012-03-06 | Formfactor, Inc. | Probe card assembly with carbon nanotube probes having a spring mechanism therein |
US20110168631A1 (en) * | 2006-12-15 | 2011-07-14 | General Electric Company | Methods and apparatuses for water filtration using polyarylether membranes |
US8458262B2 (en) * | 2006-12-22 | 2013-06-04 | At&T Mobility Ii Llc | Filtering spam messages across a communication network |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US8158217B2 (en) * | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US20100279569A1 (en) * | 2007-01-03 | 2010-11-04 | Lockheed Martin Corporation | Cnt-infused glass fiber materials and process therefor |
US8951632B2 (en) * | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8951631B2 (en) * | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US20120189846A1 (en) * | 2007-01-03 | 2012-07-26 | Lockheed Martin Corporation | Cnt-infused ceramic fiber materials and process therefor |
US8709374B2 (en) * | 2007-02-07 | 2014-04-29 | Seldon Technologies, Llc | Methods for the production of aligned carbon nanotubes and nanostructured material containing the same |
CN100443404C (en) * | 2007-02-14 | 2008-12-17 | 天津大学 | A method for preparing carbon nanotubes comprising double injection of ethylenediamine |
JP2008247621A (en) * | 2007-03-29 | 2008-10-16 | Shonan Plastic Mfg Co Ltd | Continuous atmospheric high temperature furnace equipment, continuous manufacturing method of nano-carbon and burning and graphitizing method of nano-material |
US20090081441A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Fiber Tow Comprising Carbon-Nanotube-Infused Fibers |
US20090081383A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Carbon Nanotube Infused Composites via Plasma Processing |
US8149007B2 (en) * | 2007-10-13 | 2012-04-03 | Formfactor, Inc. | Carbon nanotube spring contact structures with mechanical and electrical components |
US20090227460A1 (en) * | 2008-03-07 | 2009-09-10 | Dow Agrosciences Llc | Stabilized oil-in-water emulsions including meptyl dinocap |
WO2009126602A1 (en) * | 2008-04-09 | 2009-10-15 | Riehl Bill L | Method for production of carbon nanostructures |
KR101073768B1 (en) * | 2008-04-16 | 2011-10-13 | 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 | Equipment and method for producing orientated carbon nano-tube aggregates |
US10358535B2 (en) | 2008-04-25 | 2019-07-23 | The University Of Kentucky Research Foundation | Thermal interface material |
US8632879B2 (en) * | 2008-04-25 | 2014-01-21 | The University Of Kentucky Research Foundation | Lightweight thermal management material for enhancement of through-thickness thermal conductivity |
US8097081B2 (en) * | 2008-06-05 | 2012-01-17 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US9157167B1 (en) | 2008-06-05 | 2015-10-13 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US20090301388A1 (en) * | 2008-06-05 | 2009-12-10 | Soraa Inc. | Capsule for high pressure processing and method of use for supercritical fluids |
US8871024B2 (en) | 2008-06-05 | 2014-10-28 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US8303710B2 (en) * | 2008-06-18 | 2012-11-06 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US20090320745A1 (en) * | 2008-06-25 | 2009-12-31 | Soraa, Inc. | Heater device and method for high pressure processing of crystalline materials |
US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
US20100003492A1 (en) * | 2008-07-07 | 2010-01-07 | Soraa, Inc. | High quality large area bulk non-polar or semipolar gallium based substrates and methods |
WO2011044554A1 (en) | 2009-10-09 | 2011-04-14 | Soraa, Inc. | Method for synthesis of high quality large area bulk gallium based crystals |
US9404197B2 (en) | 2008-07-07 | 2016-08-02 | Soraa, Inc. | Large area, low-defect gallium-containing nitride crystals, method of making, and method of use |
US8284810B1 (en) | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
EP2319086A4 (en) | 2008-08-04 | 2014-08-27 | Soraa Inc | WHITE LIGHT DEVICES USING NON-POLAR OR SEMI-POLAR GALLIUM CONTAINING MATERIALS AND FLUORESCENT SUBSTANCES |
US8979999B2 (en) * | 2008-08-07 | 2015-03-17 | Soraa, Inc. | Process for large-scale ammonothermal manufacturing of gallium nitride boules |
US10036099B2 (en) | 2008-08-07 | 2018-07-31 | Slt Technologies, Inc. | Process for large-scale ammonothermal manufacturing of gallium nitride boules |
US8323405B2 (en) * | 2008-08-07 | 2012-12-04 | Soraa, Inc. | Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer |
US8430958B2 (en) * | 2008-08-07 | 2013-04-30 | Soraa, Inc. | Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride |
US8021481B2 (en) | 2008-08-07 | 2011-09-20 | Soraa, Inc. | Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride |
US20100031873A1 (en) * | 2008-08-07 | 2010-02-11 | Soraa, Inc. | Basket process and apparatus for crystalline gallium-containing nitride |
US8148801B2 (en) | 2008-08-25 | 2012-04-03 | Soraa, Inc. | Nitride crystal with removable surface layer and methods of manufacture |
US7976630B2 (en) | 2008-09-11 | 2011-07-12 | Soraa, Inc. | Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture |
US20100295088A1 (en) * | 2008-10-02 | 2010-11-25 | Soraa, Inc. | Textured-surface light emitting diode and method of manufacture |
US8354679B1 (en) | 2008-10-02 | 2013-01-15 | Soraa, Inc. | Microcavity light emitting diode method of manufacture |
BRPI0806065B1 (en) | 2008-10-16 | 2021-05-18 | Petroleo Brasileiro S. A. - Petrobras | method for producing carbon nanospheres |
US8455894B1 (en) | 2008-10-17 | 2013-06-04 | Soraa, Inc. | Photonic-crystal light emitting diode and method of manufacture |
US20100126849A1 (en) * | 2008-11-24 | 2010-05-27 | Applied Materials, Inc. | Apparatus and method for forming 3d nanostructure electrode for electrochemical battery and capacitor |
US8878230B2 (en) * | 2010-03-11 | 2014-11-04 | Soraa, Inc. | Semi-insulating group III metal nitride and method of manufacture |
US8461071B2 (en) * | 2008-12-12 | 2013-06-11 | Soraa, Inc. | Polycrystalline group III metal nitride with getter and method of making |
US9589792B2 (en) | 2012-11-26 | 2017-03-07 | Soraa, Inc. | High quality group-III metal nitride crystals, methods of making, and methods of use |
US9543392B1 (en) | 2008-12-12 | 2017-01-10 | Soraa, Inc. | Transparent group III metal nitride and method of manufacture |
USRE47114E1 (en) | 2008-12-12 | 2018-11-06 | Slt Technologies, Inc. | Polycrystalline group III metal nitride with getter and method of making |
US8987156B2 (en) | 2008-12-12 | 2015-03-24 | Soraa, Inc. | Polycrystalline group III metal nitride with getter and method of making |
US8119074B2 (en) * | 2008-12-17 | 2012-02-21 | Centro de Investigacion en Materiales Avanzados, S.C | Method and apparatus for the continuous production of carbon nanotubes |
US20110100291A1 (en) * | 2009-01-29 | 2011-05-05 | Soraa, Inc. | Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules |
US8486562B2 (en) * | 2009-02-25 | 2013-07-16 | Applied Materials, Inc. | Thin film electrochemical energy storage device with three-dimensional anodic structure |
US8206569B2 (en) * | 2009-02-04 | 2012-06-26 | Applied Materials, Inc. | Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors |
US20100203391A1 (en) * | 2009-02-09 | 2010-08-12 | Applied Materials, Inc. | Mesoporous carbon material for energy storage |
US8192605B2 (en) * | 2009-02-09 | 2012-06-05 | Applied Materials, Inc. | Metrology methods and apparatus for nanomaterial characterization of energy storage electrode structures |
AU2010259234B2 (en) * | 2009-02-17 | 2014-11-20 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
CA2752525C (en) * | 2009-02-27 | 2017-05-16 | Applied Nanostructured Solutions, Llc | Low temperature cnt growth using gas-preheat method |
US20100227134A1 (en) | 2009-03-03 | 2010-09-09 | Lockheed Martin Corporation | Method for the prevention of nanoparticle agglomeration at high temperatures |
US20100252317A1 (en) * | 2009-04-03 | 2010-10-07 | Formfactor, Inc. | Carbon nanotube contact structures for use with semiconductor dies and other electronic devices |
US8272124B2 (en) * | 2009-04-03 | 2012-09-25 | Formfactor, Inc. | Anchoring carbon nanotube columns |
US8299473B1 (en) | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
US20100260998A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Fiber sizing comprising nanoparticles |
US20100260931A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber |
US20100272891A1 (en) * | 2009-04-10 | 2010-10-28 | Lockheed Martin Corporation | Apparatus and method for the production of carbon nanotubes on a continuously moving substrate |
AU2010235123A1 (en) * | 2009-04-10 | 2011-10-06 | Applied Nanostructured Solutions Llc | Apparatus and method for the production of carbon nanotubes on a continuously moving substrate |
KR101763583B1 (en) * | 2009-04-24 | 2017-08-01 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Cnt-infused emi shielding composition and coating |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
KR101696207B1 (en) * | 2009-04-27 | 2017-01-13 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Cnt-based resistive heating for deicing composite structures |
CN102421704A (en) * | 2009-04-30 | 2012-04-18 | 应用纳米结构方案公司 | Method and system for close proximity catalysis for carbon nanotube synthesis |
US8306081B1 (en) | 2009-05-27 | 2012-11-06 | Soraa, Inc. | High indium containing InGaN substrates for long wavelength optical devices |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
CN102471065B (en) * | 2009-07-01 | 2014-03-26 | 日本瑞翁株式会社 | Device for manufacturing aligned carbon nanotube assembly |
CA2765460A1 (en) * | 2009-08-03 | 2011-02-10 | Applied Nanostructured Solutions, Llc | Incorporation of nanoparticles in composite fibers |
US8526167B2 (en) | 2009-09-03 | 2013-09-03 | Applied Materials, Inc. | Porous amorphous silicon-carbon nanotube composite based electrodes for battery applications |
US8435347B2 (en) | 2009-09-29 | 2013-05-07 | Soraa, Inc. | High pressure apparatus with stackable rings |
KR20120099690A (en) * | 2009-11-02 | 2012-09-11 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Cnt-infused aramid fiber materials and process therefor |
US9950926B2 (en) * | 2009-11-09 | 2018-04-24 | The University Of Kentucky Research Foundation | Method for production of germanium nanowires encapsulated within multi-walled carbon nanotubes |
JP2013511655A (en) * | 2009-11-23 | 2013-04-04 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | CNT-based land-based composite structure |
US20110123735A1 (en) * | 2009-11-23 | 2011-05-26 | Applied Nanostructured Solutions, Llc | Cnt-infused fibers in thermoset matrices |
CA2775619A1 (en) * | 2009-11-23 | 2011-05-26 | Applied Nanostructured Solutions, Llc | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
KR20120104600A (en) * | 2009-12-14 | 2012-09-21 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US9167736B2 (en) * | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US9163354B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
CA2785803A1 (en) * | 2010-02-02 | 2011-11-24 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US20110223343A1 (en) * | 2010-03-01 | 2011-09-15 | Auburn University, Office Of Technology Transfer | Novel nanocomposite for sustainability of infrastructure |
US8787001B2 (en) * | 2010-03-02 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
EP2543099A4 (en) | 2010-03-02 | 2018-03-28 | Applied NanoStructured Solutions, LLC | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
KR101713283B1 (en) * | 2010-05-10 | 2017-03-23 | 삼성전자주식회사 | Apparatus and Method of continuously manufacturing carbon nanotube fiber |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US9564320B2 (en) | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
BR112013005802A2 (en) | 2010-09-14 | 2016-05-10 | Applied Nanostructured Sols | glass substrates with carbon nanotubes grown on them and methods for their production |
CN104591123A (en) | 2010-09-22 | 2015-05-06 | 应用奈米结构公司 | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
US8591741B2 (en) | 2010-09-30 | 2013-11-26 | General Electric Company | Thin film composite membranes incorporating carbon nanotubes |
US8872176B2 (en) | 2010-10-06 | 2014-10-28 | Formfactor, Inc. | Elastic encapsulated carbon nanotube based electrical contacts |
US8729559B2 (en) | 2010-10-13 | 2014-05-20 | Soraa, Inc. | Method of making bulk InGaN substrates and devices thereon |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
US9533883B2 (en) | 2011-03-10 | 2017-01-03 | University Of Kentucky Research Foundation | Apparatus and method for harvesting carbon nanotube arrays |
US20120234240A1 (en) * | 2011-03-17 | 2012-09-20 | Nps Corporation | Graphene synthesis chamber and method of synthesizing graphene by using the same |
US8492185B1 (en) | 2011-07-14 | 2013-07-23 | Soraa, Inc. | Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices |
CN102423671B (en) * | 2011-08-26 | 2015-12-09 | 浙江师范大学 | The in-situ preparation method of novel iron/carbon nano-tube grading nano-composite material |
US9694158B2 (en) | 2011-10-21 | 2017-07-04 | Ahmad Mohamad Slim | Torque for incrementally advancing a catheter during right heart catheterization |
US10029955B1 (en) | 2011-10-24 | 2018-07-24 | Slt Technologies, Inc. | Capsule for high pressure, high temperature processing of materials and methods of use |
US8482104B2 (en) | 2012-01-09 | 2013-07-09 | Soraa, Inc. | Method for growth of indium-containing nitride films |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
US10145026B2 (en) | 2012-06-04 | 2018-12-04 | Slt Technologies, Inc. | Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules |
US9365426B2 (en) | 2012-07-30 | 2016-06-14 | Scnte, Llc | Process for the production of nanostructured carbon materials |
US9275912B1 (en) | 2012-08-30 | 2016-03-01 | Soraa, Inc. | Method for quantification of extended defects in gallium-containing nitride crystals |
US9299555B1 (en) | 2012-09-28 | 2016-03-29 | Soraa, Inc. | Ultrapure mineralizers and methods for nitride crystal growth |
EP2961535B1 (en) * | 2013-02-28 | 2018-01-17 | N12 Technologies, Inc. | Cartridge-based dispensing of nanostructure films |
US9650723B1 (en) | 2013-04-11 | 2017-05-16 | Soraa, Inc. | Large area seed crystal for ammonothermal crystal growth and method of making |
US10209136B2 (en) | 2013-10-23 | 2019-02-19 | Applied Materials, Inc. | Filament temperature derivation in hotwire semiconductor process |
JP6374513B2 (en) | 2013-12-30 | 2018-08-15 | インディアン オイル コーポレーション リミテッド | Method for simultaneous production of carbon nanotubes and product gas from crude oil and its products |
US20170144133A1 (en) | 2014-07-02 | 2017-05-25 | General Nano Llc | Method for making a catalyst metal substrate for growth of carbon nanotubes |
US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
FR3050449B1 (en) * | 2016-04-25 | 2018-05-11 | Nawatechnologies | INSTALLATION FOR MANUFACTURING COMPOSITE MATERIAL COMPRISING CARBON NANOTUBES, AND METHOD FOR IMPLEMENTING SAID INSTALLATION |
EP3463826B1 (en) | 2016-05-31 | 2023-07-05 | Massachusetts Institute of Technology | Composite articles comprising non-linear elongated nanostructures and associated methods |
CN107057278B (en) * | 2016-11-25 | 2023-07-14 | 深圳前海量子翼纳米碳科技有限公司 | Preparation device and preparation method for preparing carbon nano tube film composite material in one step |
US10174438B2 (en) | 2017-03-30 | 2019-01-08 | Slt Technologies, Inc. | Apparatus for high pressure reaction |
WO2019040597A1 (en) | 2017-08-22 | 2019-02-28 | Ntherma Corporation | Graphene nanoribbons, graphene nanoplatelets and mixtures thereof and methods of synthesis |
US10640382B2 (en) | 2017-08-22 | 2020-05-05 | Ntherma Corporation | Vertically aligned multi-walled carbon nanotubes |
EP3681942B1 (en) | 2017-09-15 | 2024-10-02 | Massachusetts Institute of Technology | Low-defect fabrication of composite materials |
JP7184328B2 (en) * | 2017-09-27 | 2022-12-06 | 杉田電線株式会社 | Carbon nanotube array manufacturing method, carbon nanotube array, and carbon nanotube yarn |
EP3718157A4 (en) | 2017-11-28 | 2021-09-29 | Massachusetts Institute of Technology | SEPARATORS WITH ELONGATED NANOSTRUCTURES AND ASSOCIATED DEVICES AND METHODS FOR ENERGY STORAGE AND / OR USE |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US11466384B2 (en) | 2019-01-08 | 2022-10-11 | Slt Technologies, Inc. | Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
US12152742B2 (en) | 2019-01-18 | 2024-11-26 | Kyocera Sld Laser, Inc. | Laser-based light guide-coupled wide-spectrum light system |
US11705322B2 (en) | 2020-02-11 | 2023-07-18 | Slt Technologies, Inc. | Group III nitride substrate, method of making, and method of use |
US12091771B2 (en) | 2020-02-11 | 2024-09-17 | Slt Technologies, Inc. | Large area group III nitride crystals and substrates, methods of making, and methods of use |
US11721549B2 (en) | 2020-02-11 | 2023-08-08 | Slt Technologies, Inc. | Large area group III nitride crystals and substrates, methods of making, and methods of use |
CN116375001A (en) * | 2023-03-01 | 2023-07-04 | 佛山市格瑞芬新能源有限公司 | Carbon nano tube with high conductivity vertical array structure and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010009693A1 (en) * | 2000-01-26 | 2001-07-26 | Lee Cheol-Jin | Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same |
US20050238810A1 (en) * | 2004-04-26 | 2005-10-27 | Mainstream Engineering Corp. | Nanotube/metal substrate composites and methods for producing such composites |
US20050287064A1 (en) * | 2002-06-24 | 2005-12-29 | Martine Mayne | Method and device for depositing carbon nanotubes or nitrogen-doped carbon nanotubes by means of pyrolysis |
US7250148B2 (en) * | 2002-07-31 | 2007-07-31 | Carbon Nanotechnologies, Inc. | Method for making single-wall carbon nanotubes using supported catalysts |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227142A (en) * | 1990-07-30 | 1993-07-13 | Nikkiso Co., Ltd. | Production apparatus for vapor-grown fine fibers |
-
2002
- 2002-05-08 US US10/141,423 patent/US7160531B1/en not_active Expired - Lifetime
-
2006
- 2006-12-29 US US11/617,779 patent/US7504078B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010009693A1 (en) * | 2000-01-26 | 2001-07-26 | Lee Cheol-Jin | Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same |
US20050287064A1 (en) * | 2002-06-24 | 2005-12-29 | Martine Mayne | Method and device for depositing carbon nanotubes or nitrogen-doped carbon nanotubes by means of pyrolysis |
US7250148B2 (en) * | 2002-07-31 | 2007-07-31 | Carbon Nanotechnologies, Inc. | Method for making single-wall carbon nanotubes using supported catalysts |
US20050238810A1 (en) * | 2004-04-26 | 2005-10-27 | Mainstream Engineering Corp. | Nanotube/metal substrate composites and methods for producing such composites |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8142568B2 (en) * | 2005-08-19 | 2012-03-27 | Tsinghua University | Apparatus for synthesizing a single-wall carbon nanotube array |
US20090269257A1 (en) * | 2005-08-19 | 2009-10-29 | Tsinghua University | Apparatus for synthesizing a single-wall carbon nanotube array |
US20120301663A1 (en) * | 2010-03-26 | 2012-11-29 | Aisin Seiki Kabushiki Kaisha | Carbon nanotube composite and method for making the same |
US9731970B2 (en) | 2012-04-16 | 2017-08-15 | Seerstone Llc | Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides |
US10106416B2 (en) | 2012-04-16 | 2018-10-23 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
JP2015520717A (en) * | 2012-04-16 | 2015-07-23 | シーアストーン リミテッド ライアビリティ カンパニー | Method for using a metal catalyst in a carbon oxide catalytic converter |
US9796591B2 (en) | 2012-04-16 | 2017-10-24 | Seerstone Llc | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products |
FR3013061A1 (en) * | 2013-11-14 | 2015-05-15 | Commissariat Energie Atomique | METHOD OF MANUFACTURING ALIGNED NANOSTRUCTURES ON A SCREW AND CONTINUOUSLY AND ASSOCIATED DEVICE |
WO2015071408A1 (en) * | 2013-11-14 | 2015-05-21 | Commissariat à l'énergie atomique et aux énergies alternatives | Method for continuous, travelling production of nanostructures aligned on a substrate and related device |
US20170292208A1 (en) * | 2014-10-28 | 2017-10-12 | Lg Chem, Ltd. | Device for producing carbon nanotube fibers and method for producing carbon nanotube fibers using same |
US10774449B2 (en) * | 2014-10-28 | 2020-09-15 | Lg Chem, Ltd. | Device for producing carbon nanotube fibers and method for producing carbon nanotube fibers using same |
DE102015100062A1 (en) | 2015-01-06 | 2016-07-07 | Universität Paderborn | Apparatus and method for producing silicon carbide |
DE102018100679A1 (en) | 2018-01-12 | 2019-07-18 | Universität Paderborn | Apparatus and method for producing silicon carbide |
WO2019137942A1 (en) | 2018-01-12 | 2019-07-18 | Universität Paderborn | Device and method for producing silicon carbide |
Also Published As
Publication number | Publication date |
---|---|
US7160531B1 (en) | 2007-01-09 |
US7504078B1 (en) | 2009-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7504078B1 (en) | Continuous production of aligned carbon nanotubes | |
EP1373130B1 (en) | Process and apparatus for the production of carbon nanotubes | |
EP1618234B1 (en) | Method of producing vapor-grown carbon fibers | |
EP1874685B1 (en) | Method and apparatus for the continuous production and functionalization of single-waled carbon nanotubes using a high frequency plasma torch | |
Yoon et al. | Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition | |
US20100272891A1 (en) | Apparatus and method for the production of carbon nanotubes on a continuously moving substrate | |
RU2338686C1 (en) | Method of obtaining carbon nanotubes | |
US8057778B2 (en) | Method and apparatus for forming carbon nanotube array | |
CA2756852A1 (en) | Apparatus and method for the production of carbon nanotubes on a continuously moving substrate | |
WO1981003133A1 (en) | High pressure plasma deposition of silicon | |
US11286163B2 (en) | Method for making carbon nanotube arrays | |
US20100279009A1 (en) | Process for the continuous production of aligned carbon nanotubes | |
US5102689A (en) | Method of depositing microcrystalline solid particles from the gas phase by means of chemical vapor deposition | |
US7797966B2 (en) | Hot substrate deposition of fused silica | |
US6613198B2 (en) | Pulsed arc molecular beam process | |
CN1618733A (en) | Preparation method of carbon nano-pipe | |
US20050013762A1 (en) | Carbon nanotube manufacturing method | |
US7632093B2 (en) | Pyrolysis furnace having gas flowing path controller | |
US20160348235A1 (en) | Compact Thermal Reactor for Rapid Growth of High Quality Carbon Nanotubes (CNTs) Produced by Chemical Process with Low Power Consumption | |
JPS60252721A (en) | Production of carbon fiber | |
JP4838990B2 (en) | Method for producing carbon nanotube | |
AU2002245939B2 (en) | Process and apparatus for the production of carbon nanotubes | |
JPH05222618A (en) | Device for thick growth of gaseous phase grown fine fiber | |
JP6372285B2 (en) | Equipment for producing aligned carbon nanotubes | |
JPH0372075A (en) | Apparatus for producing silicon carbide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210317 |