US20090048331A1 - Methods and formulations for the delivery of pharmacologically active agents - Google Patents
Methods and formulations for the delivery of pharmacologically active agents Download PDFInfo
- Publication number
- US20090048331A1 US20090048331A1 US12/051,782 US5178208A US2009048331A1 US 20090048331 A1 US20090048331 A1 US 20090048331A1 US 5178208 A US5178208 A US 5178208A US 2009048331 A1 US2009048331 A1 US 2009048331A1
- Authority
- US
- United States
- Prior art keywords
- formulation
- agent
- micelle
- forming component
- delivery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0026—Blood substitute; Oxygen transporting formulations; Plasma extender
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/40—Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6925—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/12—Macromolecular compounds
- A61K49/126—Linear polymers, e.g. dextran, inulin, PEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1863—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/223—Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/226—Solutes, emulsions, suspensions, dispersions, semi-solid forms, e.g. hydrogels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5052—Proteins, e.g. albumin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5138—Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5161—Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5169—Proteins, e.g. albumin, gelatin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Definitions
- the present invention relates to novel formulations of pharmacologically active agents and methods for the delivery of such agents to subjects in need thereof.
- cremophor formulation of paclitaxel is associated with significant side-effects including life-threatening allergic reactions requiring the need for steroid pre-treatment for every patient receiving the drug, and severe infections as a result of lowering of white blood cells requiring the need for expensive blood cell growth factors. Ultimately these toxicities result in dose-limitation of cremophor-based paclitaxel formulations, thus limiting the full potential of the very effective paclitaxel molecule.
- cremophor paclitaxel formulations While the above toxic side effects of cremophor paclitaxel formulations are well known, it has not been widely recognized by scientists in the field that the presence of cremophor creates a more serious impediment to realizing the maximal potential of paclitaxel by entrapping paclitaxel within the hydrophobic cores of cremophor micelles within microdroplets in the blood-stream. The entrapment effect of cremophor is dependent on cremophor concentration.
- cremophor solutions of paclitaxel can potentially worsen the entrapment by raising the concentration of cremophor, leading to higher toxcities but none of the potential benefits of higher doses of paclitaxel, since much of the active molecule is unavailable to the intra-cellular space, where it is needed to act.
- inventions have been developed which are much more effective for the delivery of hydrophobic drugs to patients in need thereof than are prior art formulations.
- invention formulations are capable of delivering more drug in shorter periods of time, with reduced side effects caused by the pharmaceutical carrier employed for delivery.
- FIG. 1 collectively compares the plasma kinetics of radiolabelled paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007).
- FIG. 1A indicates plasma radioactivity measured up to 0.5 hours after administration.
- FIG. 1B indicates plasma radioactivity measured up to 24 hours after administration. Inspection of the figure reveals that 2-5 fold higher levels of paclitaxel are retained in the plasma up to 3 hours after administration when paclitaxel is administered in a cremophor-based formulation (Taxol). Due to the reduced rate of metabolism for ABI-007, plasma levels of paclitaxel are higher after 8 hours when administered in an invention formulation, relative to a cremophor-based formulation.
- FIG. 2 compares the partitioning of paclitaxel between red blood cells and plasma when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). Inspection of the figure reveals that the blood/plasma ratio for paclitaxel administered as part of a cremophor-based formulation (Taxol) in the first 3 hours after administration is about 1.5-2, indicating that the majority of paclitaxel is retained in the plasma due to micellar formation with cremophor. In addition, it is seen that paclitaxel in a cremophor-based formulation does not significantly partition into the red blood cells. In contrast, paclitaxel administered as part of an invention formulation readily partitions into the red blood cells.
- FIG. 3 summarizes tumor/plasma partitioning kinetics of paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). It is seen that the tumor/plasma ratio of paclitaxel increases significantly over the first 3 hours when as part of an invention formulation, as opposed to a Taxol formulation.
- FIG. 4 compares the response of mammary carcinoma in a mouse model to exposure to ABI-007 or Taxol.
- FIG. 5 compares the response of ovarian carcinoma in a mouse model to exposure to ABI-007 or Taxol.
- FIG. 6 compares the response of prostate tumors in a mouse model to exposure to ABI-007 or Taxol.
- FIG. 7 compares the response of colon tumors in a mouse model to exposure to ABI-007 or Taxol.
- FIG. 8 compares the response of lung tumors in a mouse model to exposure to ABI-007 or Taxol.
- a substantially water insoluble pharmacologically active agent to a subject in need thereof, said method comprising combining said agent with an effective amount of a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, and administering an effective amount of said combination to said subject.
- pharmacologically active agents are contemplated for use in the practice of the present invention.
- a presently preferred agent contemplated for use herein is paclitaxel.
- compositions contemplated for use in the practice of the present invention are biocompatible materials such as albumin.
- Micelle-forming components which are preferably avoided in the practice of the present invention are surface active materials which are commonly used to assist in solubilizing substantially insoluble compounds in aqueous media, such as, for example, cremophor.
- Invention combination of active agent and pharmaceutically acceptable carrier can be administered in a variety of ways, such as, for example, by oral, intravenous, subcutaneous, intraperitoneal, intrathecal, intramuscular, intracranial, inhalational, topical, transdermal, rectal, or pessary routes of administration, and the like.
- a substantially water insoluble pharmacologically active agent in vehicle employed for delivery thereof comprising combining said agent with a pharmaceutically acceptable carrier which is substantially free of micelle-forming components prior to delivery thereof.
- Presently preferred pharmaceutically acceptable carriers contemplated for use herein are those having substantially lower affinity for said agent than does the micelle-forming component.
- cremophor has the benefit of aiding in the solubilization of agent, it has the disadvantage of having a substantial affinity for the agent, so that release of the agent from the carrier becomes a limitation on the bioavailability of the agent.
- carriers contemplated herein, such as, for example, albumin readily release the active agent to the active site and are thus much more effective for treatment of a variety of conditions.
- a substantially water insoluble pharmacologically active agent upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is(are) substantially free of micelle-forming components prior to delivery thereof.
- a substantially water insoluble pharmacologically active agent across cell membranes upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is(are) substantially free of micelle-forming components prior to delivery thereof.
- a substantially water insoluble pharmacologically active agent into the cellular compartment upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is(are) substantially free of micelle-forming components prior to delivery thereof.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration of said agent in the cellular compartment than a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides increased intra-cellular availability of said agent relative to a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides prolonged activity of said agent relative to a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation facilitates delivery of said agent to red blood cells.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation releases a portion of said agent contained therein to the lipid membrane of a cell.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides reduced levels of said agent in the bloodstream relative to a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation delivers said agent to the bloodstream over an extended period of time relative to a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the rate of metabolism of said agent in said formulation is reduced relative to the rate of metabolism of said agent in a formulation with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said agent has a longer half life in said formulation relative to the half life of said agent in a formulation with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher red blood cell/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher tumor/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the area under the curve for delivery of said agent to a tumor via said formulation is higher than the area under the curve for delivery of said agent to a tumor via a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration maximum (C max ) for said agent in tumor cells than does a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a lower concentration maximum (C max ) for said agent in plasma than does a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides more rapid uptake of said agent by tumor cells than does a formulation of the same agent with a micelle-forming component.
- formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation enhances delivery of said agent to tissue, relative to a formulation of the same agent with a micelle-forming component.
- Tissues contemplated for treatment according to the invention include tumors, peritoneal tissue, bladder tissue, lung tissue, and the like.
- ABI-007 is a proprietary, cremophor-free, albumin-based paclitaxel nanoparticle, 1/100 th the size of a single red blood cell. Based on several Phase I studies, it has been shown that ABI-007 can be administered rapidly without the need for steroid pre-treatment and without the need for G-CSF at a maximum tolerated dose of 300 mg/m 2 given every 3 weeks. This is a significantly higher dose than is approved for cremophor-based paclitaxel formulations (Taxol) of 175 Mg/m 2 .
- ABI-007 acts as a novel biologic nano-transporter for hydrophobic drugs such as paclitaxel, with the capabilities of rapidly releasing paclitaxel to the cellular compartment and increasing intra-cellular availability of the active drug, where it is needed in order to have its chemo-therapeutic effect. Furthermore, through the use of the red blood cell as a secondary storage vehicle it has been discovered that in addition to the rapid and increased availability of paclitaxel at the intra-cellullar level, by the recruitment of circulating red blood cells, ABI-007 further provides a significant prolonged activity of the parent molecule with sustained in-vivo release.
- the drug-bearing albumin nanoparticle (ABI-007) would rapidly release a portion of its hydrophobic paclitaxel cargo to the lipid membrane of a cell.
- the first cell encountered is the red blood cell.
- the red blood cell has been found to rapidly compartmentalize the paclitaxel molecule. Since the red blood cell has no nucleus and hence no microtubulin to which the paclitaxel molecule can bind, nor any degradation machinery within its core, this cell serves as an ideal secondary storage vehicle for the active paclitaxel, accounting in part for the prolonged activity of paclitaxel noted with ABI-007.
- the nanoparticle is carried by the blood-stream to the hypervasular tumor, where paclitaxel is rapidly transferred to the tumor cell-membrane, again due to the differences in binding affinity. It has been well established by other groups that the hydrostatic pressure within these tumor cells is abnormally higher than the surrounding interstitium and vascular space. This abnormally high pressure, together with the fact that the vessels associated with tumors are also abnormally leaky, creates a barrier to the delivery of chemotherapeutic agents to the tumor cell.
- paclitaxel As the nanoparticle depeletes itself of paclitaxel into the cellular compartment within the first 3-8 hours following infusion, the plasma concentartion of paclitaxel diminishes. At this juncture, paclitaxel (still in its active, non-metabolized form) follows the concentration gradient and is now transferred to albumin again, and is again carried to the tumor bed. Thus, a prolonged half-life of paclitaxel has been achieved, with sustained release and ultimately higher tumor concentration of the drug.
- human MX-1 mammary tumor fragments were implanted subcutaneously in female athymic mice. Radiolabelled drug was administered when tumors reached about 500 mm 3 . Tritium-labelled ABI-007 or tritium-labelled Taxol were administered at a dose of 20 mg/kg. Both groups received about 7-10 ⁇ Ci/mouse of tritium-labelled paclitaxel. Saline was used as the diluent for both drugs. At various time points (5 min, 15 min, 30 min, 1 hr, 3 hr, 8 hr and 24 hr), 4 animals were sacrificed, then blood samples and tumor were recovered for radioactivity assessment.
- Radioactivity was determined as nCi/ml of whole blood and plasma, and nCi/g of tumor tissue. Results are presented in FIGS. 1 , 2 and 3 , and are standardized for radioactivity and paclitaxel dose. The data from these studies are also presented in the following tables.
- Toxicity was assessed for Taxol, cremophor and ABI-007.
- ABI-007 was found to be 50-fold less toxic than Taxol, and 30-fold less toxic than the cremophor vehicle alone, as illustrated in the following table:
- Agent LD 50 mg/kg Taxol 9.4 Cremophor 13.7 ABI-007 448.5
- mice Human tumor fragments were implanted subcutaneously in female athymic mice. Treatment was initiated when tumors reached about 150 mm 3 . The mice received either CONTROL (saline), ABI-007 (4 dose levels: 13.4, 20, 30 and 45 mg/kg) or TAXOL (3 dose levels: 13.4, 20, and 30 mg/kg) administered I.V. daily for 5 days. Saline was used as the diluent for both drugs.
- the Equitoxic dose or MTD for each drug was determined by satisfying one of the following criteria:
- cremophor causes a profound alteration of paclitaxel accumulation in erythrocytes in a concentration-dependant manner by reducing the free drug fraction available for cellular partitioning.” He has further found that the drug trapping occurs in micelles and that these micelles act as the principal carrier of paclitaxel in the systemic circulation. Since that publication these findings have been independently confirmed by two other groups.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Acoustics & Sound (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Pediatric Medicine (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Immunology (AREA)
- Dispersion Chemistry (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present application is a continuation of U.S. Ser. No. 11/240,940, filed Sep. 29, 2005, now pending, which is a continuation of U.S. Ser. No. 10/146,706, filed May 14, 2002, now abandoned, which is a continuation-in-part of U.S. Ser. No. 09/628,388, filed Aug. 1, 2000, now issued U.S. Pat. No. 6,506,405, which is a divisional of U.S. Ser. No. 08/926,155, filed Sep. 9, 1997, now issued as U.S. Pat. No. 6,096,331, which is a continuation-in-part of U.S. Ser. No. 08/720,756, filed Oct. 1, 1996, now issued as U.S. Pat. No. 5,916,596, and U.S. Ser. No. 08/485,448, filed Jun. 7, 1995, now U.S. Pat. No. 5,665,382, which is, in turn, a continuation-in-part of U.S. Ser. No. 08/200,235, filed Feb. 22, 1994, now issued as U.S. Pat. No. 5,498,421, which is, in turn, a continuation-in-part of U.S. Ser. No. 08/023,698, filed Feb. 22, 1993, now issued as U.S. Pat. No. 5,439,686 and U.S. Ser. No. 08/035,150, filed Mar. 26, 1993, now issued as U.S. Pat. No. 5,362,478, the content of each of which are hereby incorporated by reference therein in their entirety.
- The present invention relates to novel formulations of pharmacologically active agents and methods for the delivery of such agents to subjects in need thereof.
- In the quest for next generation therapies to treat cancer, scientist often discover promising compounds only to find that the molecule is highly insoluble in water, and hence impossible to deliver intravenously. Such was the problem with paclitaxel, an extremely effective anti-tumor agent discovered over a quarter century ago by the Nation Cancer Institute. Despite almost 30 years of effort, the only method currently approved to address this problem of water-insolubility of paclitaxel is the use of a toxic solvent (cremophor) to dissolve the drug, and administer this solvent-paclitaxel mixture over many hours using specialized intra-venous tubing sets to prevent the leaching of plasticizers. This solvent-drug mixture, currently marketed in branded and generic forms, has become the most widely used anti-cancer agent as it has shown activity in breast, lung and ovarian cancer and is undergoing multiple clinical trials exploring its application in combination with other drugs for other solid tumors.
- The cremophor formulation of paclitaxel is associated with significant side-effects including life-threatening allergic reactions requiring the need for steroid pre-treatment for every patient receiving the drug, and severe infections as a result of lowering of white blood cells requiring the need for expensive blood cell growth factors. Ultimately these toxicities result in dose-limitation of cremophor-based paclitaxel formulations, thus limiting the full potential of the very effective paclitaxel molecule.
- While the above toxic side effects of cremophor paclitaxel formulations are well known, it has not been widely recognized by scientists in the field that the presence of cremophor creates a more serious impediment to realizing the maximal potential of paclitaxel by entrapping paclitaxel within the hydrophobic cores of cremophor micelles within microdroplets in the blood-stream. The entrapment effect of cremophor is dependent on cremophor concentration. Thus, increasing the doses of cremophor solutions of paclitaxel can potentially worsen the entrapment by raising the concentration of cremophor, leading to higher toxcities but none of the potential benefits of higher doses of paclitaxel, since much of the active molecule is unavailable to the intra-cellular space, where it is needed to act.
- This entrapment of paclitaxel by cremophor has a profound effect on the intra-cellular availability of the active molecule and hence may have significant clinical implications in terms of clinical outcome. Accordingly, there is a need in the art for new formulations for the delivery of substantially water insoluble pharmacologically active agents, such as paclitaxel, which do not suffer from the drawbacks of cremophor.
- In accordance with the present invention, novel formulations have been developed which are much more effective for the delivery of hydrophobic drugs to patients in need thereof than are prior art formulations. Invention formulations are capable of delivering more drug in shorter periods of time, with reduced side effects caused by the pharmaceutical carrier employed for delivery.
-
FIG. 1 collectively compares the plasma kinetics of radiolabelled paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007).FIG. 1A indicates plasma radioactivity measured up to 0.5 hours after administration.FIG. 1B indicates plasma radioactivity measured up to 24 hours after administration. Inspection of the figure reveals that 2-5 fold higher levels of paclitaxel are retained in the plasma up to 3 hours after administration when paclitaxel is administered in a cremophor-based formulation (Taxol). Due to the reduced rate of metabolism for ABI-007, plasma levels of paclitaxel are higher after 8 hours when administered in an invention formulation, relative to a cremophor-based formulation. -
FIG. 2 compares the partitioning of paclitaxel between red blood cells and plasma when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). Inspection of the figure reveals that the blood/plasma ratio for paclitaxel administered as part of a cremophor-based formulation (Taxol) in the first 3 hours after administration is about 1.5-2, indicating that the majority of paclitaxel is retained in the plasma due to micellar formation with cremophor. In addition, it is seen that paclitaxel in a cremophor-based formulation does not significantly partition into the red blood cells. In contrast, paclitaxel administered as part of an invention formulation readily partitions into the red blood cells. -
FIG. 3 summarizes tumor/plasma partitioning kinetics of paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). It is seen that the tumor/plasma ratio of paclitaxel increases significantly over the first 3 hours when as part of an invention formulation, as opposed to a Taxol formulation. -
FIG. 4 compares the response of mammary carcinoma in a mouse model to exposure to ABI-007 or Taxol. -
FIG. 5 compares the response of ovarian carcinoma in a mouse model to exposure to ABI-007 or Taxol. -
FIG. 6 compares the response of prostate tumors in a mouse model to exposure to ABI-007 or Taxol. -
FIG. 7 compares the response of colon tumors in a mouse model to exposure to ABI-007 or Taxol. -
FIG. 8 compares the response of lung tumors in a mouse model to exposure to ABI-007 or Taxol. - In accordance with the present invention, there are provided methods for the delivery of a substantially water insoluble pharmacologically active agent to a subject in need thereof, said method comprising combining said agent with an effective amount of a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, and administering an effective amount of said combination to said subject.
- As readily recognized by those of skill in the art, a wide variety of pharmacologically active agents are contemplated for use in the practice of the present invention. A presently preferred agent contemplated for use herein is paclitaxel.
- Pharmaceutically acceptable carriers contemplated for use in the practice of the present invention are biocompatible materials such as albumin.
- Micelle-forming components which are preferably avoided in the practice of the present invention are surface active materials which are commonly used to assist in solubilizing substantially insoluble compounds in aqueous media, such as, for example, cremophor.
- Invention combination of active agent and pharmaceutically acceptable carrier can be administered in a variety of ways, such as, for example, by oral, intravenous, subcutaneous, intraperitoneal, intrathecal, intramuscular, intracranial, inhalational, topical, transdermal, rectal, or pessary routes of administration, and the like.
- In accordance with another embodiment of the present invention, there are provided methods to reduce entrapment of a substantially water insoluble pharmacologically active agent in vehicle employed for delivery thereof, said method comprising combining said agent with a pharmaceutically acceptable carrier which is substantially free of micelle-forming components prior to delivery thereof.
- Presently preferred pharmaceutically acceptable carriers contemplated for use herein are those having substantially lower affinity for said agent than does the micelle-forming component. Thus, for example, while cremophor has the benefit of aiding in the solubilization of agent, it has the disadvantage of having a substantial affinity for the agent, so that release of the agent from the carrier becomes a limitation on the bioavailability of the agent. In contrast, carriers contemplated herein, such as, for example, albumin, readily release the active agent to the active site and are thus much more effective for treatment of a variety of conditions.
- In accordance with yet another embodiment of the present invention, there are provided methods to reduce entrapment of a substantially water insoluble pharmacologically active agent in vehicle employed for delivery thereof, said method comprising employing pharmaceutically acceptable carriers which are substantially free of micelle-forming components in aqueous media as the vehicle for delivery of said agent.
- In accordance with still another embodiment of the present invention, there are provided methods to prolong exposure of a subject to a substantially water insoluble pharmacologically active agent upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is(are) substantially free of micelle-forming components prior to delivery thereof.
- In accordance with a further embodiment of the present invention, there are provided methods to facilitate transport of a substantially water insoluble pharmacologically active agent across cell membranes upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is(are) substantially free of micelle-forming components prior to delivery thereof.
- In accordance with a still further embodiment of the present invention, there are provided methods to facilitate transport of a substantially water insoluble pharmacologically active agent into the cellular compartment upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is(are) substantially free of micelle-forming components prior to delivery thereof.
- In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration of said agent in the cellular compartment than a formulation of the same agent with a micelle-forming component.
- In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides increased intra-cellular availability of said agent relative to a formulation of the same agent with a micelle-forming component.
- In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides prolonged activity of said agent relative to a formulation of the same agent with a micelle-forming component.
- In accordance with a further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation facilitates delivery of said agent to red blood cells.
- In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation releases a portion of said agent contained therein to the lipid membrane of a cell.
- In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides reduced levels of said agent in the bloodstream relative to a formulation of the same agent with a micelle-forming component.
- In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation delivers said agent to the bloodstream over an extended period of time relative to a formulation of the same agent with a micelle-forming component.
- In accordance with a further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the rate of metabolism of said agent in said formulation is reduced relative to the rate of metabolism of said agent in a formulation with a micelle-forming component.
- In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said agent has a longer half life in said formulation relative to the half life of said agent in a formulation with a micelle-forming component.
- In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher red blood cell/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
- In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher tumor/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
- In accordance with a further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the area under the curve for delivery of said agent to a tumor via said formulation is higher than the area under the curve for delivery of said agent to a tumor via a formulation of the same agent with a micelle-forming component.
- In accordance with a still further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration maximum (Cmax) for said agent in tumor cells than does a formulation of the same agent with a micelle-forming component.
- In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a lower concentration maximum (Cmax) for said agent in plasma than does a formulation of the same agent with a micelle-forming component.
- In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides more rapid uptake of said agent by tumor cells than does a formulation of the same agent with a micelle-forming component.
- In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation enhances delivery of said agent to tissue, relative to a formulation of the same agent with a micelle-forming component.
- Tissues contemplated for treatment according to the invention include tumors, peritoneal tissue, bladder tissue, lung tissue, and the like. ABI-007 is a proprietary, cremophor-free, albumin-based paclitaxel nanoparticle, 1/100th the size of a single red blood cell. Based on several Phase I studies, it has been shown that ABI-007 can be administered rapidly without the need for steroid pre-treatment and without the need for G-CSF at a maximum tolerated dose of 300 mg/m2 given every 3 weeks. This is a significantly higher dose than is approved for cremophor-based paclitaxel formulations (Taxol) of 175 Mg/m2.
- In accordance with the present invention, it has been discovered that ABI-007 acts as a novel biologic nano-transporter for hydrophobic drugs such as paclitaxel, with the capabilities of rapidly releasing paclitaxel to the cellular compartment and increasing intra-cellular availability of the active drug, where it is needed in order to have its chemo-therapeutic effect. Furthermore, through the use of the red blood cell as a secondary storage vehicle it has been discovered that in addition to the rapid and increased availability of paclitaxel at the intra-cellullar level, by the recruitment of circulating red blood cells, ABI-007 further provides a significant prolonged activity of the parent molecule with sustained in-vivo release. These novel mechanisms for rapid and increased intra-cellular availability of the drug at the tumor site, together with sustained trafficking of the non-metabolized paclitaxel, has potentially significant implications for the clinical outcome in the treatment of solid tumors. Indeed, the pre-clinical and Phase II clinical data presented below supports this notion.
- By taking advantage of the differences in binding affinities of albumin and the lipid bi-layer of cell membranes for hydrophobic paclitaxel, the drug-bearing albumin nanoparticle (ABI-007) would rapidly release a portion of its hydrophobic paclitaxel cargo to the lipid membrane of a cell.
- In the vascular compartment, the first cell encountered is the red blood cell. In accordance with the present invention, the red blood cell has been found to rapidly compartmentalize the paclitaxel molecule. Since the red blood cell has no nucleus and hence no microtubulin to which the paclitaxel molecule can bind, nor any degradation machinery within its core, this cell serves as an ideal secondary storage vehicle for the active paclitaxel, accounting in part for the prolonged activity of paclitaxel noted with ABI-007.
- Following partitioning of a portion of its paclitaxel payload to the circulating red blood cells, the nanoparticle is carried by the blood-stream to the hypervasular tumor, where paclitaxel is rapidly transferred to the tumor cell-membrane, again due to the differences in binding affinity. It has been well established by other groups that the hydrostatic pressure within these tumor cells is abnormally higher than the surrounding interstitium and vascular space. This abnormally high pressure, together with the fact that the vessels associated with tumors are also abnormally leaky, creates a barrier to the delivery of chemotherapeutic agents to the tumor cell. Thus, under these circumstances it is imperative that the hydrophobic paclitaxel be released rapidly to the lipid cell membrane and be bound by the microtubules within the nuclues before the drug is ejected from the tumor. Evidence presented herein indicates that ABI-007 provides that opportunity by the ability to rapidly release the hydrophobic molecule. In contrast, cremophor-based formulations entrap the paclitaxel, limiting the ability of the drug to partition into cells. This difference may have important clinical implications and may account in part for the positive data noted in the Phase II studies of ABI-007 in metastatic breast cancer and the evidence for responses in patients who had previously failed Taxol therapy
- As the nanoparticle depeletes itself of paclitaxel into the cellular compartment within the first 3-8 hours following infusion, the plasma concentartion of paclitaxel diminishes. At this juncture, paclitaxel (still in its active, non-metabolized form) follows the concentration gradient and is now transferred to albumin again, and is again carried to the tumor bed. Thus, a prolonged half-life of paclitaxel has been achieved, with sustained release and ultimately higher tumor concentration of the drug.
- The invention will now be described in greater detail by reference to the following non-limiting examples.
- Using radio labeled paclitaxel, the enhanced intra-cellular availability of paclitaxel has been confirmed following injection of ABI-007. In addition, the entrapment of Cremophor-bound paclitaxel has also been confirmed. This difference in findings correlates with in-vivo studies in mice bearing human breast cancer, with the finding that ABI-007 at equi-dose to Taxol, resulted in improved outcomes that these 130 nanometer size particles distributed throughout the body.
- Thus, human MX-1 mammary tumor fragments were implanted subcutaneously in female athymic mice. Radiolabelled drug was administered when tumors reached about 500 mm3. Tritium-labelled ABI-007 or tritium-labelled Taxol were administered at a dose of 20 mg/kg. Both groups received about 7-10 μCi/mouse of tritium-labelled paclitaxel. Saline was used as the diluent for both drugs. At various time points (5 min, 15 min, 30 min, 1 hr, 3 hr, 8 hr and 24 hr), 4 animals were sacrificed, then blood samples and tumor were recovered for radioactivity assessment.
- Radioactivity was determined as nCi/ml of whole blood and plasma, and nCi/g of tumor tissue. Results are presented in
FIGS. 1 , 2 and 3, and are standardized for radioactivity and paclitaxel dose. The data from these studies are also presented in the following tables. -
PHARMACOKINETIC PARAMETERS FOR WHOLE-BLOOD, PLASMA AND TUMOR DISTRIBUTION OF 3H-PACLITAXEL IN ABI-007 VS TAXOL New AUC0-inf (nCi hr/mL or g) AUC0-24 (nCi hr/mL or g) Cmax (nCi/mL or g) Blood Plasma Tumor Blood Plasma Tumor Blood Plasma Tumor ABI-007 939 1161 5869 ABI-007 656 836 2156 ABI-007 328 473 144 Taxol 871 1438 3716 Taxol 849 1415 1804 Taxol 752 1427 117 Ratio 1.08 0.81 1.58 Ratio 0.77 0.59 1.20 Ratio 0.44 0.33 1.23 TAXOL: high Plasma AUC-paclitaxel is trapped in ABI-007: Substantially lower Cmax in Plasma, blood cremophor micelles implies rapid distribution into cells and tissues ABI-007: higher Tumor AUC (exposure, pac ABI-007: higher Tumor Cmax-more effective tumor kill distributed into cells/tissues tmax (hours) t½e (hours) Vdss (mL/kg) Blood Plasma Tumor Blood Plasma Tumor Blood Plasma Tumor ABI-007 0 0 0.5 ABI-007 17.1 16.1 40.2 ABI-007 6939 5180 NA Taxol 0 0 3 Taxol 4.0 3.3 24.1 Taxol 1409 692 NA Ratio 4.28 4.88 1.67 Ratio 4.92 7.49 ABI-007: Substantially lower tumor ABI-007: Prolonged half life relative ABI-007: Substantially higher volume tmax indicates rapid uptake of pacli- to Taxol in blood, plasma and tumor of distribution indicating extrensive dis- taxel into tumor relative to taxol may result in higher antitumor activity tribution into tissues relative to Taxol - Further studies demonstrate that after 24 hours, the active ingredient of the parent molecule, paclitaxel, remains present in the bloodstream, at double the concentration of Taxol. In studies comparing radiolabelled paclitaxel in Taxol vs ABI-007, direct measurements reveal increased and prolonged levels of paclitaxel in the tumors of animals receiving ABI-007.
- Toxicity was assessed for Taxol, cremophor and ABI-007. ABI-007 was found to be 50-fold less toxic than Taxol, and 30-fold less toxic than the cremophor vehicle alone, as illustrated in the following table:
-
Agent LD50, mg/kg Taxol 9.4 Cremophor 13.7 ABI-007 448.5 - Human tumor fragments were implanted subcutaneously in female athymic mice. Treatment was initiated when tumors reached about 150 mm3. The mice received either CONTROL (saline), ABI-007 (4 dose levels: 13.4, 20, 30 and 45 mg/kg) or TAXOL (3 dose levels: 13.4, 20, and 30 mg/kg) administered I.V. daily for 5 days. Saline was used as the diluent for both drugs.
- Determination of Equitoxic dose or MTD: The Equitoxic dose or MTD for each drug was determined by satisfying one of the following criteria:
- a) Dose for each drug that resulted in similar body weight loss (<20%) if no deaths were seen;
- b) If body weight loss could not be matched, the highest dose at which no deaths were seen;
- If neither a) nor b) could be satisfied, the lowest dose that resulted in similar death rate. Tumor response to the drugs was compared at the Equitoxic dose or MTD established as above. Results for several different tumor types are presented in
FIGS. 4-8 . - i. Entrapment of Paclitaxel By Cremophor
- Working independently at Rotterdam Cancer Institute, Dr Alex Sparreboom has reported in a series of pharmacokinetic studies involving patients receiving Taxol that cremophor “causes a profound alteration of paclitaxel accumulation in erythrocytes in a concentration-dependant manner by reducing the free drug fraction available for cellular partitioning.” He has further found that the drug trapping occurs in micelles and that these micelles act as the principal carrier of paclitaxel in the systemic circulation. Since that publication these findings have been independently confirmed by two other groups.
- ii. Improved Clinical Activity With ABI-007
- Data from Phase II shows both increased efficacy in metastatic breast cancer patients. When compared to the published literature of response rates to Taxol, the study results showed a dramatic difference in both response rates and time of response as well as evidence of reduced toxicities associated with ABI-007. Further details can be obtained by reviewing the posters presented at ASCO.
- Although the present invention has been described in conjunction with the embodiments above, it is to be noted that various changes and modifications are apparent to those who are skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention defined by the appended claims.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/051,782 US20090048331A1 (en) | 1993-02-22 | 2008-03-19 | Methods and formulations for the delivery of pharmacologically active agents |
US12/713,092 US20110052708A1 (en) | 1993-02-22 | 2010-02-25 | Methods and formulations for the delivery of pharmacologically active agents |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/023,698 US5439686A (en) | 1993-02-22 | 1993-02-22 | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor |
US08/035,150 US5362478A (en) | 1993-03-26 | 1993-03-26 | Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell |
US08/200,235 US5498421A (en) | 1993-02-22 | 1994-02-22 | Composition useful for in vivo delivery of biologics and methods employing same |
US08/485,448 US5665382A (en) | 1993-02-22 | 1995-06-07 | Methods for the preparation of pharmaceutically active agents for in vivo delivery |
US08/720,756 US5916596A (en) | 1993-02-22 | 1996-10-01 | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
US08/926,155 US6096331A (en) | 1993-02-22 | 1997-09-09 | Methods and compositions useful for administration of chemotherapeutic agents |
US09/628,388 US6506405B1 (en) | 1993-02-22 | 2000-08-01 | Methods and formulations of cremophor-free taxanes |
US10/146,706 US20030068362A1 (en) | 1993-02-22 | 2002-05-14 | Methods and formulations for the delivery of pharmacologically active agents |
US11/240,940 US20060073175A1 (en) | 1993-02-22 | 2005-09-29 | Methods and formulations for delivery of pharmacologically active agents |
US12/051,782 US20090048331A1 (en) | 1993-02-22 | 2008-03-19 | Methods and formulations for the delivery of pharmacologically active agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/240,940 Continuation US20060073175A1 (en) | 1993-02-22 | 2005-09-29 | Methods and formulations for delivery of pharmacologically active agents |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/713,092 Continuation US20110052708A1 (en) | 1993-02-22 | 2010-02-25 | Methods and formulations for the delivery of pharmacologically active agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090048331A1 true US20090048331A1 (en) | 2009-02-19 |
Family
ID=26697503
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/200,235 Expired - Lifetime US5498421A (en) | 1993-02-22 | 1994-02-22 | Composition useful for in vivo delivery of biologics and methods employing same |
US08/480,621 Expired - Lifetime US5635207A (en) | 1993-02-22 | 1995-06-07 | Methods for the preparation of blood substitutes for in vivo delivery |
US08/483,295 Expired - Lifetime US5639473A (en) | 1993-02-22 | 1995-06-07 | Methods for the preparation of nucleic acids for in vivo delivery |
US12/051,782 Abandoned US20090048331A1 (en) | 1993-02-22 | 2008-03-19 | Methods and formulations for the delivery of pharmacologically active agents |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/200,235 Expired - Lifetime US5498421A (en) | 1993-02-22 | 1994-02-22 | Composition useful for in vivo delivery of biologics and methods employing same |
US08/480,621 Expired - Lifetime US5635207A (en) | 1993-02-22 | 1995-06-07 | Methods for the preparation of blood substitutes for in vivo delivery |
US08/483,295 Expired - Lifetime US5639473A (en) | 1993-02-22 | 1995-06-07 | Methods for the preparation of nucleic acids for in vivo delivery |
Country Status (16)
Country | Link |
---|---|
US (4) | US5498421A (en) |
EP (1) | EP0693924B2 (en) |
JP (1) | JP3746293B2 (en) |
CN (1) | CN1245156C (en) |
AT (1) | ATE264671T1 (en) |
AU (1) | AU673057B2 (en) |
BR (1) | BR9405798A (en) |
CA (1) | CA2155947C (en) |
DE (1) | DE69433723T3 (en) |
DK (1) | DK0693924T4 (en) |
ES (1) | ES2219646T5 (en) |
HK (1) | HK1097449A1 (en) |
NO (1) | NO314017B1 (en) |
NZ (1) | NZ262679A (en) |
PT (1) | PT693924E (en) |
WO (1) | WO1994018954A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070082838A1 (en) * | 2005-08-31 | 2007-04-12 | Abraxis Bioscience, Inc. | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US20070117744A1 (en) * | 2005-08-31 | 2007-05-24 | Desai Neil P | Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents |
US20080280987A1 (en) * | 2006-08-31 | 2008-11-13 | Desai Neil P | Methods of inhibiting angiogenesis and treating angiogenesis-associated diseases |
US20090098210A1 (en) * | 2005-02-18 | 2009-04-16 | Desai Neil P | Combinations and modes of administration of therapeutic agents and combination therapy |
US20090263483A1 (en) * | 2008-04-10 | 2009-10-22 | Desai Neil P | Nanoparticle formulations and uses thereof |
US20090304805A1 (en) * | 2005-02-18 | 2009-12-10 | Desai Neil P | Combinations and modes of administration of therapeutic agents and combination therapy |
US20100226856A1 (en) * | 2009-03-06 | 2010-09-09 | Franco Vitaliano | Dynamic bio-nanoparticle elements |
US7923536B2 (en) | 2002-12-09 | 2011-04-12 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US11096901B2 (en) | 2009-03-06 | 2021-08-24 | Metaqor Llc | Dynamic bio-nanoparticle platforms |
Families Citing this family (385)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5922304A (en) * | 1989-12-22 | 1999-07-13 | Imarx Pharmaceutical Corp. | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
US5776429A (en) | 1989-12-22 | 1998-07-07 | Imarx Pharmaceutical Corp. | Method of preparing gas-filled microspheres using a lyophilized lipids |
US5656211A (en) | 1989-12-22 | 1997-08-12 | Imarx Pharmaceutical Corp. | Apparatus and method for making gas-filled vesicles of optimal size |
US20020150539A1 (en) * | 1989-12-22 | 2002-10-17 | Unger Evan C. | Ultrasound imaging and treatment |
US6146657A (en) | 1989-12-22 | 2000-11-14 | Imarx Pharmaceutical Corp. | Gas-filled lipid spheres for use in diagnostic and therapeutic applications |
US5585112A (en) | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
US5580575A (en) | 1989-12-22 | 1996-12-03 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US6551576B1 (en) | 1989-12-22 | 2003-04-22 | Bristol-Myers Squibb Medical Imaging, Inc. | Container with multi-phase composition for use in diagnostic and therapeutic applications |
US5305757A (en) | 1989-12-22 | 1994-04-26 | Unger Evan C | Gas filled liposomes and their use as ultrasonic contrast agents |
US5733572A (en) | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
US5542935A (en) | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US6001335A (en) | 1989-12-22 | 1999-12-14 | Imarx Pharmaceutical Corp. | Contrasting agents for ultrasonic imaging and methods for preparing the same |
US6088613A (en) | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US5370901A (en) * | 1991-02-15 | 1994-12-06 | Bracco International B.V. | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
US5874062A (en) | 1991-04-05 | 1999-02-23 | Imarx Pharmaceutical Corp. | Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents |
US5205290A (en) | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
GB9221329D0 (en) * | 1992-10-10 | 1992-11-25 | Delta Biotechnology Ltd | Preparation of further diagnostic agents |
US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US20030133955A1 (en) * | 1993-02-22 | 2003-07-17 | American Bioscience, Inc. | Methods and compositions useful for administration of chemotherapeutic agents |
US6753006B1 (en) | 1993-02-22 | 2004-06-22 | American Bioscience, Inc. | Paclitaxel-containing formulations |
US6528067B1 (en) | 1993-02-22 | 2003-03-04 | American Bioscience, Inc. | Total nutrient admixtures as stable multicomponent liquids or dry powders and methods for the preparation thereof |
US20070116761A1 (en) * | 1993-02-22 | 2007-05-24 | Desai Neil P | Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof |
EP0693924B2 (en) * | 1993-02-22 | 2008-04-09 | Abraxis BioScience, Inc. | Methods for (in vivo) delivery of biologics and compositions useful therefor |
US6749868B1 (en) | 1993-02-22 | 2004-06-15 | American Bioscience, Inc. | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
US20030073642A1 (en) * | 1993-02-22 | 2003-04-17 | American Bioscience, Inc. | Methods and formulations for delivery of pharmacologically active agents |
US6537579B1 (en) | 1993-02-22 | 2003-03-25 | American Bioscience, Inc. | Compositions and methods for administration of pharmacologically active compounds |
US5916596A (en) * | 1993-02-22 | 1999-06-29 | Vivorx Pharmaceuticals, Inc. | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
US5439686A (en) * | 1993-02-22 | 1995-08-08 | Vivorx Pharmaceuticals, Inc. | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor |
US5997904A (en) * | 1993-02-22 | 1999-12-07 | American Bioscience, Inc. | Total nutrient admixtures as stable multicomponent liquids or dry powders and methods for the preparation thereof |
US20030068362A1 (en) * | 1993-02-22 | 2003-04-10 | American Bioscience, Inc. | Methods and formulations for the delivery of pharmacologically active agents |
US5855865A (en) * | 1993-07-02 | 1999-01-05 | Molecular Biosystems, Inc. | Method for making encapsulated gas microspheres from heat denatured protein in the absence of oxygen gas |
US7083572B2 (en) * | 1993-11-30 | 2006-08-01 | Bristol-Myers Squibb Medical Imaging, Inc. | Therapeutic delivery systems |
EP0804249A2 (en) * | 1994-03-15 | 1997-11-05 | Brown University Research Foundation | Polymeric gene delivery system |
US20010055581A1 (en) | 1994-03-18 | 2001-12-27 | Lawrence Tamarkin | Composition and method for delivery of biologically-active factors |
US5736121A (en) | 1994-05-23 | 1998-04-07 | Imarx Pharmaceutical Corp. | Stabilized homogenous suspensions as computed tomography contrast agents |
US6159445A (en) * | 1994-07-20 | 2000-12-12 | Nycomed Imaging As | Light imaging contrast agents |
US5965109A (en) * | 1994-08-02 | 1999-10-12 | Molecular Biosystems, Inc. | Process for making insoluble gas-filled microspheres containing a liquid hydrophobic barrier |
AUPM922594A0 (en) | 1994-11-04 | 1994-11-24 | Commonwealth Scientific And Industrial Research Organisation | Reduction of methane production in animals |
GB9423419D0 (en) | 1994-11-19 | 1995-01-11 | Andaris Ltd | Preparation of hollow microcapsules |
US6333021B1 (en) | 1994-11-22 | 2001-12-25 | Bracco Research S.A. | Microcapsules, method of making and their use |
US6743779B1 (en) | 1994-11-29 | 2004-06-01 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
GB9502065D0 (en) * | 1995-02-02 | 1995-03-22 | Nycomed Imaging As | Contrast media |
US6540981B2 (en) | 1997-12-04 | 2003-04-01 | Amersham Health As | Light imaging contrast agents |
US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
AU705108B2 (en) * | 1995-03-03 | 1999-05-13 | Metabolex, Inc. | Novel encapsulation process by a gelling polymer |
US5916790A (en) * | 1995-03-03 | 1999-06-29 | Metabolex, Inc. | Encapsulation compositions, and methods |
GB9506844D0 (en) * | 1995-04-03 | 1995-05-24 | Armitage Ian M | Pharmaceutical microencapsulation |
AU693354B2 (en) * | 1995-04-10 | 1998-06-25 | Baxter International Inc. | The use of cross-linked hemoglobin in treating subarachnoid hemorrhage |
US5834012A (en) * | 1995-05-03 | 1998-11-10 | Roman Perez-Soler | Lipid complexed topoisomerase I inhibitors |
US5997898A (en) | 1995-06-06 | 1999-12-07 | Imarx Pharmaceutical Corp. | Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery |
US5804162A (en) | 1995-06-07 | 1998-09-08 | Alliance Pharmaceutical Corp. | Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients |
US6139819A (en) | 1995-06-07 | 2000-10-31 | Imarx Pharmaceutical Corp. | Targeted contrast agents for diagnostic and therapeutic use |
US20020119102A1 (en) * | 1996-06-05 | 2002-08-29 | Alexey Kabalnov | Gas emulsions stabilized with fluorinated ethers having low ostwald coefficients |
WO2004073750A1 (en) * | 1995-06-07 | 2004-09-02 | Harald Dugstad | Improvements in or relating to contrast agents |
US6033645A (en) | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
JP2001515458A (en) * | 1995-06-07 | 2001-09-18 | マリンクロッド・インコーポレイテッド | Gaseous ultrasonic contrast agent and imaging method |
US7611533B2 (en) * | 1995-06-07 | 2009-11-03 | Cook Incorporated | Coated implantable medical device |
US6565842B1 (en) | 1995-06-07 | 2003-05-20 | American Bioscience, Inc. | Crosslinkable polypeptide compositions |
US6231834B1 (en) | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
FR2736930B1 (en) * | 1995-07-17 | 1997-09-19 | Biocem | PROCESS FOR THE PRODUCTION, BY PLANT CELLS, OF HEMINIC PROTEINS, PROTEINS THUS OBTAINED AND PRODUCTS CONTAINING THE SAME |
CA2227287A1 (en) | 1995-07-21 | 1997-02-06 | Brown University Research Foundation | A method for gene therapy using nucleic acid loaded polymeric microparticles |
US6143211A (en) * | 1995-07-21 | 2000-11-07 | Brown University Foundation | Process for preparing microparticles through phase inversion phenomena |
US6248720B1 (en) | 1996-07-03 | 2001-06-19 | Brown University Research Foundation | Method for gene therapy using nucleic acid loaded polymeric microparticles |
US5733869A (en) * | 1995-10-06 | 1998-03-31 | Baxter International, Inc. | Therapeutic administration of hemoglobin in cardiac arrest |
EP0862419B2 (en) † | 1995-11-09 | 2010-11-17 | Microbiological Research Authority | Microencapsulated dna for vaccination and gene therapy |
US6270795B1 (en) | 1995-11-09 | 2001-08-07 | Microbiological Research Authority | Method of making microencapsulated DNA for vaccination and gene therapy |
US6368586B1 (en) | 1996-01-26 | 2002-04-09 | Brown University Research Foundation | Methods and compositions for enhancing the bioadhesive properties of polymers |
US5985312A (en) * | 1996-01-26 | 1999-11-16 | Brown University Research Foundation | Methods and compositions for enhancing the bioadhesive properties of polymers |
US5767297A (en) * | 1997-02-05 | 1998-06-16 | Ensuiko Sugar Refining Co., Ltd. | Taxoid derivative and method of producing thereof |
US5753477A (en) * | 1996-03-19 | 1998-05-19 | University Technology Corporation | Magneto-biolistic methods |
US5869539A (en) * | 1996-04-17 | 1999-02-09 | Board Of Regents, The University Of Texas System | Emulsions of perfluoro compounds as solvents for nitric oxide (NO) |
JP2001507207A (en) | 1996-05-01 | 2001-06-05 | イマアーレクス・フアーマシユーチカル・コーポレーシヨン | Methods for delivering compounds to cells |
US6184037B1 (en) * | 1996-05-17 | 2001-02-06 | Genemedicine, Inc. | Chitosan related compositions and methods for delivery of nucleic acids and oligonucleotides into a cell |
US5773461A (en) * | 1996-06-06 | 1998-06-30 | Bristol-Myers Squibb Company | 7-deoxy-6-substituted paclitaxels |
US6383500B1 (en) * | 1996-06-27 | 2002-05-07 | Washington University | Particles comprising amphiphilic copolymers, having a crosslinked shell domain and an interior core domain, useful for pharmaceutical and other applications |
US5849727A (en) * | 1996-06-28 | 1998-12-15 | Board Of Regents Of The University Of Nebraska | Compositions and methods for altering the biodistribution of biological agents |
US5837221A (en) * | 1996-07-29 | 1998-11-17 | Acusphere, Inc. | Polymer-lipid microencapsulated gases for use as imaging agents |
US6414139B1 (en) | 1996-09-03 | 2002-07-02 | Imarx Therapeutics, Inc. | Silicon amphiphilic compounds and the use thereof |
US6017310A (en) * | 1996-09-07 | 2000-01-25 | Andaris Limited | Use of hollow microcapsules |
US5846517A (en) | 1996-09-11 | 1998-12-08 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
ES2189974T3 (en) * | 1996-09-11 | 2003-07-16 | Imarx Pharmaceutical Corp | IMPROVED PROCEDURES FOR OBTAINING DIAGNOSTIC IMAGES USING A CONTRAST AGENT AND A VASODILATATOR. |
US8137684B2 (en) | 1996-10-01 | 2012-03-20 | Abraxis Bioscience, Llc | Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof |
US6083484A (en) * | 1996-10-17 | 2000-07-04 | Molecular Biosystems, Inc. | Microparticles stabilized by polynuclear chromium complexes and their use as ultrasound contrast agents |
BR9712683A (en) * | 1996-10-28 | 1999-10-19 | Nyomed Imaging A S | Diagnostic and / or therapeutically active targetable agent, combined formulation, process for preparing and using it, combined formulation, and processes for generating enhanced images of a human or non-human animal body and for in vitro targeting investigation by an agent. |
US6331289B1 (en) | 1996-10-28 | 2001-12-18 | Nycomed Imaging As | Targeted diagnostic/therapeutic agents having more than one different vectors |
US6413763B1 (en) | 1996-11-12 | 2002-07-02 | The University Of Akron | Method of removing gas from a site using gas vesicles of cells |
US5804551A (en) * | 1996-11-12 | 1998-09-08 | Baxter International Inc. | Pretraumatic use of hemoglobin |
US6036940A (en) * | 1996-11-12 | 2000-03-14 | The University Of Akron | Compositions and methods relating to the production, isolation, and modification of gas vesicles |
US9107949B2 (en) | 1996-11-12 | 2015-08-18 | The University Of Akron | Method for using naturally occurring gas vesicles as ultrasound contrast agent |
WO1998023298A1 (en) * | 1996-11-25 | 1998-06-04 | Imarx Pharmaceutical Corp. | Perfluorinated-ether compositions as diagnostic contrast agents |
US6068600A (en) * | 1996-12-06 | 2000-05-30 | Quadrant Healthcare (Uk) Limited | Use of hollow microcapsules |
US20030105156A1 (en) * | 1997-01-07 | 2003-06-05 | Nagesh Palepu | Method for administration of a taxane/tocopherol formulation to enhance taxane therapeutic utility |
US20020182258A1 (en) * | 1997-01-22 | 2002-12-05 | Zycos Inc., A Delaware Corporation | Microparticles for delivery of nucleic acid |
US6090800A (en) | 1997-05-06 | 2000-07-18 | Imarx Pharmaceutical Corp. | Lipid soluble steroid prodrugs |
US6120751A (en) | 1997-03-21 | 2000-09-19 | Imarx Pharmaceutical Corp. | Charged lipids and uses for the same |
US6143276A (en) * | 1997-03-21 | 2000-11-07 | Imarx Pharmaceutical Corp. | Methods for delivering bioactive agents to regions of elevated temperatures |
US6537246B1 (en) | 1997-06-18 | 2003-03-25 | Imarx Therapeutics, Inc. | Oxygen delivery agents and uses for the same |
US6048551A (en) * | 1997-03-27 | 2000-04-11 | Hilfinger; John M. | Microsphere encapsulation of gene transfer vectors |
ES2226120T3 (en) * | 1997-03-31 | 2005-03-16 | Boston Scientific Limited | THERAPEUTIC CELL INHIBITOR OF THE VASCULAR SMOOTH MUSCLE. |
US7452551B1 (en) | 2000-10-30 | 2008-11-18 | Imarx Therapeutics, Inc. | Targeted compositions for diagnostic and therapeutic use |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
US20020039594A1 (en) * | 1997-05-13 | 2002-04-04 | Evan C. Unger | Solid porous matrices and methods of making and using the same |
DE19720083A1 (en) * | 1997-05-14 | 1998-11-19 | Silvia Zender | Pharmaceutical composition comprises cotton wool seed oil |
US6245318B1 (en) * | 1997-05-27 | 2001-06-12 | Mallinckrodt Inc. | Selectively binding ultrasound contrast agents |
CA2206739C (en) * | 1997-06-03 | 2006-10-10 | Ensuiko Sugar Refining Co., Ltd. | Taxoid derivative and method of producing thereof |
EP3266450A1 (en) * | 1997-06-27 | 2018-01-10 | Abraxis BioScience, LLC | Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof |
KR100923172B1 (en) * | 1997-06-27 | 2009-10-22 | 아브락시스 바이오사이언스, 엘엘씨 | Novel Formulations of Pharmacological Agents |
US20030199425A1 (en) * | 1997-06-27 | 2003-10-23 | Desai Neil P. | Compositions and methods for treatment of hyperplasia |
US8853260B2 (en) * | 1997-06-27 | 2014-10-07 | Abraxis Bioscience, Llc | Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof |
US6045777A (en) * | 1997-06-30 | 2000-04-04 | Acusphere, Inc. | Method for enhancing the echogenicity and decreasing the attenuation of microencapsulated gases |
US6977074B2 (en) | 1997-07-10 | 2005-12-20 | Mannkind Corporation | Method of inducing a CTL response |
US7923250B2 (en) | 1997-07-30 | 2011-04-12 | Warsaw Orthopedic, Inc. | Methods of expressing LIM mineralization protein in non-osseous cells |
ATE417927T1 (en) | 1997-07-30 | 2009-01-15 | Univ Emory | NEW BONE MINERALIZATION PROTEINS, DNA, VECTORS, EXPRESSION SYSTEMS |
US7135191B2 (en) * | 1997-09-04 | 2006-11-14 | Zsolt Istvan Hertelendy | Urogenital or anorectal transmucosal vaccine delivery system |
US6548047B1 (en) | 1997-09-15 | 2003-04-15 | Bristol-Myers Squibb Medical Imaging, Inc. | Thermal preactivation of gaseous precursor filled compositions |
JP2001517686A (en) * | 1997-09-26 | 2001-10-09 | ユーエイビー リサーチ ファンデーション | Blood cells with reduced antigenicity and uses thereof |
US20030220234A1 (en) * | 1998-11-02 | 2003-11-27 | Selvaraj Naicker | Deuterated cyclosporine analogs and their use as immunodulating agents |
US6726934B1 (en) * | 1997-10-09 | 2004-04-27 | Vanderbilt University | Micro-particulate and nano-particulate polymeric delivery system |
US6326028B1 (en) | 1997-10-31 | 2001-12-04 | Monsanto Company | Alginate and gellan gum as tablet coating |
US7229841B2 (en) * | 2001-04-30 | 2007-06-12 | Cytimmune Sciences, Inc. | Colloidal metal compositions and methods |
US6407218B1 (en) * | 1997-11-10 | 2002-06-18 | Cytimmune Sciences, Inc. | Method and compositions for enhancing immune response and for the production of in vitro mabs |
WO1999024016A1 (en) * | 1997-11-10 | 1999-05-20 | Sonus Pharmaceuticals, Inc. | Emulsions for aerosolization and drug delivery |
US5851544A (en) * | 1997-12-18 | 1998-12-22 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Cosmetic skin or hair care compositions containing fluorocarbons infused with carbon dioxide |
US6123923A (en) | 1997-12-18 | 2000-09-26 | Imarx Pharmaceutical Corp. | Optoacoustic contrast agents and methods for their use |
US20010003580A1 (en) | 1998-01-14 | 2001-06-14 | Poh K. Hui | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US6979456B1 (en) | 1998-04-01 | 2005-12-27 | Jagotec Ag | Anticancer compositions |
US20030059465A1 (en) * | 1998-05-11 | 2003-03-27 | Unger Evan C. | Stabilized nanoparticle formulations of camptotheca derivatives |
AU3895499A (en) * | 1998-05-11 | 1999-11-29 | Purdue Research Foundation | Methods and compositions for nucleic acid delivery |
US6169078B1 (en) * | 1998-05-12 | 2001-01-02 | University Of Florida | Materials and methods for the intracellular delivery of substances |
US7427602B1 (en) * | 1998-05-13 | 2008-09-23 | The Regents Of The University Of Michigan | Sustained DNA delivery from structural matrices |
GB9810236D0 (en) | 1998-05-13 | 1998-07-08 | Microbiological Res Authority | Improvements relating to encapsulation of bioactive agents |
US6406719B1 (en) | 1998-05-13 | 2002-06-18 | Microbiological Research Authority | Encapsulation of bioactive agents |
AU3969099A (en) * | 1998-05-13 | 1999-11-29 | Light Sciences Limited Partnership | Controlled activation of targeted radionuclides |
CN1253480C (en) * | 1998-06-04 | 2006-04-26 | 花王株式会社 | Polymer emulsion and process for producing the same |
US6103275A (en) * | 1998-06-10 | 2000-08-15 | Nitric Oxide Solutions | Systems and methods for topical treatment with nitric oxide |
US20020022588A1 (en) * | 1998-06-23 | 2002-02-21 | James Wilkie | Methods and compositions for sealing tissue leaks |
KR100777647B1 (en) * | 1998-08-19 | 2007-11-19 | 스키에파마 캐나다 인코포레이티드 | Aqueous Injectable Dispersion of Propofol |
US6485747B1 (en) | 1998-10-30 | 2002-11-26 | Monsanto Company | Coated active tablet(s) |
US7521068B2 (en) | 1998-11-12 | 2009-04-21 | Elan Pharma International Ltd. | Dry powder aerosols of nanoparticulate drugs |
DE19852928C1 (en) * | 1998-11-17 | 2000-08-03 | Steffen Panzner | Structures in the form of hollow spheres |
US6864301B2 (en) * | 1998-11-30 | 2005-03-08 | The Regents Of The University Of Colorado | Preparation and use of photopolymerized microparticles |
US6040330A (en) * | 1999-01-08 | 2000-03-21 | Bionumerik Pharmaceuticals, Inc. | Pharmaceutical formulations of taxanes |
US6958212B1 (en) * | 1999-02-01 | 2005-10-25 | Eidgenossische Technische Hochschule Zurich | Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds |
AU773914B2 (en) | 1999-02-01 | 2004-06-10 | Eidgenossische Technische Hochschule Zurich | Biomaterials formed by nucleophilic addition reaction to conjugated unsaturated groups |
US6500807B1 (en) | 1999-02-02 | 2002-12-31 | Safescience, Inc. | Modified pectin and nucleic acid composition |
US6444192B1 (en) * | 1999-02-05 | 2002-09-03 | The Regents Of The University Of California | Diagnostic imaging of lymph structures |
AU3243300A (en) * | 1999-02-23 | 2000-09-14 | Isis Pharmaceuticals, Inc. | Multiparticulate formulation |
DK1163018T3 (en) * | 1999-03-19 | 2003-09-29 | Univ Michigan Technology Man W | Mineralization and cellular patterning on biomaterial surfaces |
US6767928B1 (en) * | 1999-03-19 | 2004-07-27 | The Regents Of The University Of Michigan | Mineralization and biological modification of biomaterial surfaces |
US6398772B1 (en) * | 1999-03-26 | 2002-06-04 | Coraje, Inc. | Method and apparatus for emergency treatment of patients experiencing a thrombotic vascular occlusion |
US7678390B2 (en) * | 1999-04-01 | 2010-03-16 | Yale University | Carbon monoxide as a biomarker and therapeutic agent |
US6852334B1 (en) * | 1999-04-20 | 2005-02-08 | The University Of British Columbia | Cationic peg-lipids and methods of use |
US6426145B1 (en) | 1999-05-20 | 2002-07-30 | Scimed Life Systems, Inc. | Radiopaque compositions for visualization of medical devices |
EP1102784A4 (en) * | 1999-06-07 | 2009-12-30 | Mirus Bio Corp | A compound containing a labile disulfide bond |
EP1218096B1 (en) * | 1999-09-10 | 2004-03-17 | Syngenta Limited | Variable release microcapsules |
WO2001024705A1 (en) * | 1999-10-06 | 2001-04-12 | Imarx Therapeutics, Inc. | Improved methods for delivering bioactive agents |
JP4198357B2 (en) * | 1999-10-08 | 2008-12-17 | コティ ビー.ヴィ. | A cosmetic active substance formulation containing a synergistically increased radical protection factor |
US20050037086A1 (en) * | 1999-11-19 | 2005-02-17 | Zycos Inc., A Delaware Corporation | Continuous-flow method for preparing microparticles |
US7129329B1 (en) * | 1999-12-06 | 2006-10-31 | University Of Hawaii | Heme proteins hemAT-Hs and hemAT-Bs and their use in medicine and microsensors |
AU2001238346A1 (en) * | 2000-02-15 | 2001-08-27 | Genzyme Corporation | Modification of biopolymers for improved drug delivery |
US6749865B2 (en) * | 2000-02-15 | 2004-06-15 | Genzyme Corporation | Modification of biopolymers for improved drug delivery |
CA2400172C (en) | 2000-02-28 | 2010-04-20 | Genesegues, Inc. | Nanocapsule encapsulation system and method |
DE10010264A1 (en) | 2000-03-02 | 2001-09-13 | Novosom Gmbh | Production of nano- or micro-capsules used in the production of liposomes coated with polyelectrolytes comprises electrically recharging template particles with polyelectrolytes |
US7189705B2 (en) * | 2000-04-20 | 2007-03-13 | The University Of British Columbia | Methods of enhancing SPLP-mediated transfection using endosomal membrane destabilizers |
ITMI20001107A1 (en) | 2000-05-18 | 2001-11-18 | Acs Dobfar Spa | METHOD FOR TREATMENT OF SOLIC TUMORS BY INCORPORATING PACLITAXEL MICROPARTICLES OF ALBUMIN |
US7291673B2 (en) * | 2000-06-02 | 2007-11-06 | Eidgenossiche Technische Hochschule Zurich | Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds |
AU6815901A (en) * | 2000-06-02 | 2001-12-17 | Zycos Inc | Delivery systems for bioactive agents |
US20020076443A1 (en) * | 2000-06-19 | 2002-06-20 | Stanley Stein | Multiple phase cross-linked compositions and uses thereof |
WO2002055185A2 (en) * | 2000-10-19 | 2002-07-18 | Eidgenoess Tech Hochschule | Block copolymers for multifunctional self-assembled systems |
US20060280724A1 (en) * | 2000-11-04 | 2006-12-14 | Ferguson Ian A | Identification of ligands that enable endocytosis, using in vivo manipulation of neuronal fibers |
DE10108799A1 (en) * | 2001-02-19 | 2002-09-05 | Laser & Med Tech Gmbh | Method and device for the ultrasonic vaccination of biological cell material |
JP2004527291A (en) * | 2001-03-20 | 2004-09-09 | アイトゲノッシスシェ・テヒニッシュ・ホーホシューレ・ツューリヒ | Two-step processing of thermosensitive polymers for use as biomaterials |
WO2002087509A2 (en) * | 2001-04-30 | 2002-11-07 | Cytimmune Sciences, Inc. | Colloidal metal compositions and methods |
US6613083B2 (en) | 2001-05-02 | 2003-09-02 | Eckhard Alt | Stent device and method |
KR20040032115A (en) * | 2001-06-21 | 2004-04-14 | 베쓰 이스라엘 디코니스 메디칼 센터 인크 | Carbon monoxide improves outcomes in tissue and organ transplants and suppresses apoptosis |
EP1408932A4 (en) * | 2001-06-23 | 2009-02-25 | Lyotropic Therapeutics Inc | Particles with improved solubilization capacity |
US6797257B2 (en) * | 2001-06-26 | 2004-09-28 | The Board Of Trustees Of The University Of Illinois | Paramagnetic polymerized protein microspheres and methods of preparation thereof |
TWI297335B (en) | 2001-07-10 | 2008-06-01 | Synta Pharmaceuticals Corp | Taxol enhancer compounds |
JP4426288B2 (en) * | 2001-07-10 | 2010-03-03 | ソノジーン,リミテッド ライアビリティー カンパニー | Enhanced transfection of liver DNA |
TWI252847B (en) * | 2001-07-10 | 2006-04-11 | Synta Pharmaceuticals Corp | Synthesis of taxol enhancers |
TWI332943B (en) * | 2001-07-10 | 2010-11-11 | Synta Pharmaceuticals Corp | Taxol enhancer compounds |
US6746635B2 (en) * | 2001-08-08 | 2004-06-08 | Brown University Research Foundation | Methods for micronization of hydrophobic drugs |
CN1335182A (en) * | 2001-08-08 | 2002-02-13 | 华中科技大学 | Insulin spray for oral cavity and its prepn process |
US20030054042A1 (en) * | 2001-09-14 | 2003-03-20 | Elaine Liversidge | Stabilization of chemical compounds using nanoparticulate formulations |
US20060051424A1 (en) * | 2001-10-03 | 2006-03-09 | Johns Hopkins University | Compositions of oral gene therapy and methods of using same |
NZ531944A (en) * | 2001-10-19 | 2006-03-31 | Isotechnika Inc | Synthesis of cyclosporin analogs |
AU2002360549A1 (en) * | 2001-12-10 | 2003-06-23 | Spherics, Inc. | Methods and products useful in the formation and isolation of microparticles |
US20030147812A1 (en) | 2001-12-11 | 2003-08-07 | Friedrich Ueberle | Device and methods for initiating chemical reactions and for the targeted delivery of drugs or other agents |
JP3816809B2 (en) * | 2002-01-30 | 2006-08-30 | 株式会社日立製作所 | Drug, drug carrier, drug production method and tumor treatment method |
SG148850A1 (en) * | 2002-02-13 | 2009-01-29 | Beth Israel Hospital | Methods of treating vascular disease |
IL148299A (en) * | 2002-02-21 | 2014-04-30 | Technion Res & Dev Foundation | Ultrasound cardiac stimulator |
DE10211886B4 (en) * | 2002-03-18 | 2004-07-15 | Dornier Medtech Gmbh | Method and device for generating bipolar acoustic pulses |
US20030179692A1 (en) * | 2002-03-19 | 2003-09-25 | Yoshitaka Ohotomo | Storage medium |
JP4842514B2 (en) * | 2002-03-20 | 2011-12-21 | エラン ファーマ インターナショナル,リミティド | Nanoparticle composition of angiogenesis inhibitor |
US20080220075A1 (en) * | 2002-03-20 | 2008-09-11 | Elan Pharma International Ltd. | Nanoparticulate compositions of angiogenesis inhibitors |
US8282912B2 (en) * | 2002-03-22 | 2012-10-09 | Kuros Biosurgery, AG | Compositions for tissue augmentation |
ITMI20020680A1 (en) * | 2002-03-29 | 2003-09-29 | Acs Dobfar Spa | IMPROVED ANTI-TUMOR COMPOSITION BASED ON PACLITAXEL AND METHOD FOR ITS OBTAINING |
ITMI20020681A1 (en) * | 2002-03-29 | 2003-09-29 | Acs Dobfar Spa | PROCEDURE FOR THE PRODUCTION OF PACLITAXEL AND ALBUMINA NANOPARTICLES |
US20040038303A1 (en) * | 2002-04-08 | 2004-02-26 | Unger Gretchen M. | Biologic modulations with nanoparticles |
CN1652802A (en) * | 2002-04-15 | 2005-08-10 | 联邦高等教育系统匹兹堡大学 | Methods of treating necrotizing enterocolitis |
JP2005522521A (en) | 2002-04-15 | 2005-07-28 | ベス イスラエル デアコネス メディカル センター | Use of heme oxygenase-1 and heme degradation products |
ES2546280T3 (en) * | 2002-04-15 | 2015-09-22 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Carbon monoxide for use in a method to treat ileus |
US20040126400A1 (en) * | 2002-05-03 | 2004-07-01 | Iversen Patrick L. | Delivery of therapeutic compounds via microparticles or microbubbles |
AU2003234576A1 (en) * | 2002-05-17 | 2003-12-02 | Case Western Reserve University | Chemical shift markers for improved wireless fiducial marker tracking |
CN1668314B (en) | 2002-05-17 | 2011-01-12 | 耶鲁大学 | Methods of treating hepatitis |
DE10223196B4 (en) * | 2002-05-24 | 2004-05-13 | Dornier Medtech Systems Gmbh | Method and device for transferring molecules into cells |
EA200401622A1 (en) * | 2002-06-05 | 2005-06-30 | Йейл Юниверсити | METHODS OF TREATING ANGIOGENESIS, GROWTH OF TUMORS AND METASTASES |
CA2490392A1 (en) * | 2002-06-21 | 2003-12-31 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Pharmaceutical use of nitric oxide, heme oxygenase-1 and products of heme degradation |
US8084054B2 (en) * | 2002-07-15 | 2011-12-27 | Novartis Ag | Bioerodible film for ophthalmic drug delivery |
JP4579683B2 (en) * | 2002-07-22 | 2010-11-10 | ブラッコ イメージング エッセ ピ ア | Method for cell labeling with paramagnetic complexes for MRI applications |
CA2497792C (en) | 2002-09-06 | 2014-08-05 | Insert Therapeutics, Inc. | Cyclodextrin-based polymers for therapeutics delivery |
DE10244847A1 (en) | 2002-09-20 | 2004-04-01 | Ulrich Prof. Dr. Speck | Medical device for drug delivery |
CA2504604A1 (en) * | 2002-11-07 | 2004-05-27 | Timothy R. Billiar | Treatment for hemorrhagic shock |
KR100514092B1 (en) * | 2002-11-23 | 2005-09-13 | 한국생명공학연구원 | Novel composite gene delivery system consisting of cationic polymers and anionic polymers |
IL153124A (en) * | 2002-11-27 | 2010-06-30 | Herbal Synthesis Corp | Solid mucoadhesive composition |
US7311926B2 (en) * | 2002-12-20 | 2007-12-25 | Battelle Memorial Institute | Biocomposite materials and methods for making the same |
FR2848854B1 (en) | 2002-12-24 | 2005-03-18 | Coletica | PARTICLES COMPRISING A BIOPOLYMER DEGRADABLE UNDER THE EFFECT OF AN ELECTROMAGNETIC WAVE AS EMITTED BY SOLAR RADIATION |
TWI330079B (en) * | 2003-01-15 | 2010-09-11 | Synta Pharmaceuticals Corp | Treatment for cancers |
US7623908B2 (en) | 2003-01-24 | 2009-11-24 | The Board Of Trustees Of The University Of Illinois | Nonlinear interferometric vibrational imaging |
JP2004290745A (en) * | 2003-03-25 | 2004-10-21 | Ajinomoto Co Inc | Method for manufacturing microcapsule |
US20040225022A1 (en) * | 2003-05-09 | 2004-11-11 | Desai Neil P. | Propofol formulation containing reduced oil and surfactants |
US20040247624A1 (en) * | 2003-06-05 | 2004-12-09 | Unger Evan Charles | Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility |
US7217410B2 (en) * | 2003-06-17 | 2007-05-15 | The Board Of Trustees Of The Universtiy Of Illinois | Surface modified protein microparticles |
US7198777B2 (en) * | 2003-06-17 | 2007-04-03 | The Board Of Trustees Of The University Of Illinois | Optical contrast agents for optically modifying incident radiation |
US8476010B2 (en) | 2003-07-10 | 2013-07-02 | App Pharmaceuticals Llc | Propofol formulations with non-reactive container closures |
US7217270B2 (en) * | 2003-09-08 | 2007-05-15 | Mectra Labs, Inc. | Method and material for coating electro-cautery probes and lubricating surgical instruments |
US20050181018A1 (en) * | 2003-09-19 | 2005-08-18 | Peyman Gholam A. | Ocular drug delivery |
CA2548179A1 (en) * | 2003-12-02 | 2005-07-21 | Cytimmune Sciences, Inc. | Methods and compositions for the production of monoclonal antibodies |
US7610074B2 (en) * | 2004-01-08 | 2009-10-27 | The Board Of Trustees Of The University Of Illinois | Multi-functional plasmon-resonant contrast agents for optical coherence tomography |
CA2560544C (en) | 2004-01-16 | 2015-05-19 | Carnegie Mellon University | Cellular labeling for nuclear magnetic resonance techniques |
EP1715971A4 (en) * | 2004-01-28 | 2010-10-13 | Cytimmune Sciences Inc | Functionalized colloidal metal compositions and methods |
WO2005097208A2 (en) * | 2004-03-26 | 2005-10-20 | University Of Florida Research Foundation, Inc. | Tissue oxygenation measurements |
US7678888B2 (en) * | 2004-04-21 | 2010-03-16 | Albert Einstein College Of Medicine Of Yeshiva University | Stable oxidation resistant powdered hemoglobin, methods of preparing same, and uses thereof |
US20090004277A1 (en) * | 2004-05-18 | 2009-01-01 | Franchini Miriam K | Nanoparticle dispersion containing lactam compound |
EP1773303A2 (en) * | 2004-05-25 | 2007-04-18 | Chimeracore, Inc. | Self-assembling nanoparticle drug delivery system |
US8012457B2 (en) * | 2004-06-04 | 2011-09-06 | Acusphere, Inc. | Ultrasound contrast agent dosage formulation |
PL1750862T3 (en) * | 2004-06-04 | 2011-06-30 | Teva Pharma | Pharmaceutical composition containing irbesartan |
US7385084B2 (en) | 2004-06-23 | 2008-06-10 | Synta Pharmaceutical Corp. | Bis(thio-hydrazide amide) salts for treatment of cancers |
KR100578382B1 (en) | 2004-07-16 | 2006-05-11 | 나재운 | Water Soluble Chitosan Nanoparticles for Carrier of Anticancer Agents |
US7289840B2 (en) | 2004-09-22 | 2007-10-30 | Receptomon, Llc | Method for monitoring early treatment response |
CA2584299A1 (en) * | 2004-10-19 | 2006-04-27 | Joe Z. Sostaric | Methods and compositions for protecting cells from ultrasound-mediated cytolysis |
DE602005019367D1 (en) * | 2004-12-15 | 2010-04-01 | Dornier Medtech Systems Gmbh | Enhanced cell therapy and tissue regeneration via shock waves in patients with cardiovascular and neurological diseases |
US20060210478A1 (en) * | 2005-02-03 | 2006-09-21 | Weisskoff Robert M | Steady state perfusion methods |
US7622102B2 (en) * | 2005-02-08 | 2009-11-24 | Receptomon, Llc | Method for monitoring early treatment response |
US7586618B2 (en) * | 2005-02-28 | 2009-09-08 | The Board Of Trustees Of The University Of Illinois | Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering |
WO2006107950A2 (en) * | 2005-04-05 | 2006-10-12 | Receptomon, Llc. | Method for monitoring early treatment response |
US20060229585A1 (en) * | 2005-04-11 | 2006-10-12 | Minu, L.L.C. | Drug delivery to the crystalline lens and other ocular structures |
US7722581B2 (en) * | 2005-04-11 | 2010-05-25 | Gholam A. Peyman | Crystalline lens drug delivery |
US7725169B2 (en) * | 2005-04-15 | 2010-05-25 | The Board Of Trustees Of The University Of Illinois | Contrast enhanced spectroscopic optical coherence tomography |
MX2007012688A (en) * | 2005-04-15 | 2008-03-14 | Synta Pharmaceuticals Corp | Combination cancer therapy with bis(thiohydrazide) amide compounds. |
WO2007008300A2 (en) * | 2005-05-31 | 2007-01-18 | ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE | Triblock copolymers for cytoplasmic delivery of gene-based drugs |
ES2277743B2 (en) * | 2005-06-02 | 2008-12-16 | Universidade De Santiago De Compostela | NANOPARTICLES THAT INCLUDE QUITOSANE AND CYCLODEXTRINE. |
DE112006000047T5 (en) * | 2005-06-30 | 2007-10-11 | Amtec Co., Ltd. | An indicator composition for evaluating the cleaning of a medical instrument |
KR20080074207A (en) * | 2005-12-05 | 2008-08-12 | 닛토덴코 가부시키가이샤 | Polyglutamate-amino Acid Conjugates and Methods for Making the Same |
AU2007211061B2 (en) | 2006-01-31 | 2013-04-18 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for measurement of optical properties in tissue |
EP2018156B1 (en) * | 2006-04-07 | 2010-03-17 | Chimeros, Inc. | Compositions and methods for treating b- cell malignancies |
US7744928B2 (en) * | 2006-04-14 | 2010-06-29 | Advanced Cardiovascular Systems, Inc. | Methods and compositions for treatment of lesioned sites of body vessels |
WO2007120911A2 (en) | 2006-04-14 | 2007-10-25 | Carnegie Mellon University | Cellular labeling and quantification for nuclear magnetic resonance techniques |
US7458953B2 (en) * | 2006-06-20 | 2008-12-02 | Gholam A. Peyman | Ocular drainage device |
WO2008024303A2 (en) | 2006-08-21 | 2008-02-28 | Synta Pharmaceuticals Corp. | Compounds for treating proliferative disorders |
US20100055459A1 (en) * | 2006-08-30 | 2010-03-04 | Liquidia Technologies, Inc. | Nanoparticles Having Functional Additives for Self and Directed Assembly and Methods of Fabricating Same |
WO2008027445A2 (en) * | 2006-08-31 | 2008-03-06 | Synta Pharmaceuticals Corp. | Combination with bis(thiohydrazide amides) for treating cancer |
US9498528B2 (en) * | 2006-09-13 | 2016-11-22 | Genzyme Corporation | Treatment of multiple sclerosis (MS) |
CA2672618C (en) | 2006-12-14 | 2021-03-02 | Abraxis Bioscience, Llc | Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane |
US20080176958A1 (en) | 2007-01-24 | 2008-07-24 | Insert Therapeutics, Inc. | Cyclodextrin-based polymers for therapeutics delivery |
US20080181852A1 (en) * | 2007-01-29 | 2008-07-31 | Nitto Denko Corporation | Multi-functional Drug Carriers |
PL2131821T3 (en) * | 2007-03-07 | 2018-11-30 | Abraxis Bioscience, Llc | Nanoparticle comprising rapamycin and albumin as anticancer agent |
DE102007015598A1 (en) * | 2007-03-29 | 2008-10-02 | Heinrich-Heine-Universität Düsseldorf | Use of fluorochemical compounds for diagnostic purposes using imaging techniques |
EP2144600A4 (en) * | 2007-04-04 | 2011-03-16 | Massachusetts Inst Technology | POLY TARGETING FRACTIONS (AMINO ACID) |
US20090226525A1 (en) * | 2007-04-09 | 2009-09-10 | Chimeros Inc. | Self-assembling nanoparticle drug delivery system |
EP2144631A2 (en) * | 2007-04-10 | 2010-01-20 | Nitto Denko Corporation | Multi-functional polyglutamate drug carriers |
WO2008124764A1 (en) * | 2007-04-10 | 2008-10-16 | Saint Simeon Lda | Novel compositions containing lysozyme and c-1/c-4 polysaccharides and use thereof in oral care, cosmetology and dermatology, contraception, urology and gynecology |
DK2136850T3 (en) * | 2007-04-13 | 2012-04-10 | Kuros Biosurgery Ag | Polymer fabric seal |
CA2686736A1 (en) * | 2007-05-03 | 2008-11-13 | Abraxis Bioscience, Llc | Nanoparticle compositions comprising rapamycin for treating pulmonary hypertension |
EP2155254B1 (en) * | 2007-05-09 | 2012-11-28 | Nitto Denko Corporation | Polymers conjugated with platinum drugs |
US8197828B2 (en) | 2007-05-09 | 2012-06-12 | Nitto Denko Corporation | Compositions that include a hydrophobic compound and a polyamino acid conjugate |
AU2008260447B2 (en) | 2007-06-01 | 2013-10-10 | Abraxis Bioscience, Llc | Methods and compositions for treating recurrent cancer |
US8227610B2 (en) | 2007-07-10 | 2012-07-24 | Carnegie Mellon University | Compositions and methods for producing cellular labels for nuclear magnetic resonance techniques |
WO2009036368A2 (en) * | 2007-09-14 | 2009-03-19 | Nitto Denko Corporation | Drug carriers |
US20110014118A1 (en) * | 2007-09-21 | 2011-01-20 | Lawrence Tamarkin | Nanotherapeutic colloidal metal compositions and methods |
KR20100123674A (en) * | 2007-09-21 | 2010-11-24 | 싸이티뮨 사이언스, 인크. | Nanotherapeutic colloidal metal compositions and methods |
PT2644192T (en) | 2007-09-28 | 2017-07-12 | Pfizer | Cancer cell targeting using nanoparticles |
WO2009062151A1 (en) | 2007-11-08 | 2009-05-14 | Cytimmune Sciences, Inc. | Compositions and methods for generating antibodies |
US8063020B2 (en) * | 2007-12-22 | 2011-11-22 | Simpkins Cuthbert O | Resuscitation fluid |
US8906855B2 (en) | 2007-12-22 | 2014-12-09 | Vivacelle Bio, Inc. | Methods and compositions for treating conditions related to lack of blood supply, shock and neuronal injuries |
US8618056B2 (en) | 2007-12-22 | 2013-12-31 | Cuthbert O. Simpkins | Methods and compositions for treating conditions related to lack of blood supply, shock and neuronal injuries |
US8115934B2 (en) | 2008-01-18 | 2012-02-14 | The Board Of Trustees Of The University Of Illinois | Device and method for imaging the ear using optical coherence tomography |
US7751057B2 (en) | 2008-01-18 | 2010-07-06 | The Board Of Trustees Of The University Of Illinois | Magnetomotive optical coherence tomography |
US8983580B2 (en) | 2008-01-18 | 2015-03-17 | The Board Of Trustees Of The University Of Illinois | Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
WO2009111271A1 (en) * | 2008-03-06 | 2009-09-11 | Nitto Denko Corporation | Polymer paclitaxel conjugates and methods for treating cancer |
KR20100133475A (en) * | 2008-04-10 | 2010-12-21 | 아브락시스 바이오사이언스, 엘엘씨 | Compositions of Hydrophobic Taxane Derivatives Uses thereof |
AR071478A1 (en) | 2008-04-17 | 2010-06-23 | Baxter Healthcare Sa | PEPTIDES OF LOW MOLECULAR WEIGHT WITH PROCOAGULANT ACTIVITY FOR THE TREATMENT OF PATIENTS WITH FACTOR DEFICIENCY V (FV), FVII, FVIII, FX AND / OR FXI |
DE102008045152A1 (en) * | 2008-07-09 | 2010-01-14 | Universität Duisburg-Essen | Artificial oxygen carriers and their use |
CN101642570B (en) * | 2008-08-07 | 2012-09-05 | 江苏大学附属医院 | Application of carbon monoxide-releasing molecules and heparin in preparing medicament for treating sepsis |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
EP2334234A4 (en) | 2008-09-19 | 2013-03-20 | Tandem Diabetes Care Inc | Solute concentration measurement device and related methods |
US8870848B2 (en) | 2008-10-31 | 2014-10-28 | Medtronic, Inc. | System and method for delivery of biologic agents |
US20100114057A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | System and method for delivery of biologic agents |
JP5814793B2 (en) | 2008-11-25 | 2015-11-17 | エコール ポリテクニク フェデラル ド ローザンヌ(エーペーエフエル) | Block copolymer and use thereof |
NZ607892A (en) | 2008-12-19 | 2014-11-28 | Baxter Int | Tfpi inhibitors and methods of use |
EP2401587A2 (en) | 2009-02-27 | 2012-01-04 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US9250106B2 (en) | 2009-02-27 | 2016-02-02 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
WO2010120874A2 (en) | 2009-04-14 | 2010-10-21 | Chimeros, Inc. | Chimeric therapeutics, compositions, and methods for using same |
HUE047376T2 (en) | 2009-04-15 | 2020-04-28 | Abraxis Bioscience Llc | Prion-free nanoparticle compositions and methods |
EP2944332B1 (en) | 2009-07-10 | 2016-08-17 | Boston Scientific Scimed, Inc. | Use of nanocrystals for a drug delivery balloon |
EP3284494A1 (en) | 2009-07-30 | 2018-02-21 | Tandem Diabetes Care, Inc. | Portable infusion pump system |
US11285494B2 (en) | 2009-08-25 | 2022-03-29 | Nanoshell Company, Llc | Method and apparatus for continuous removal of sub-micron sized particles in a closed loop liquid flow system |
US10099227B2 (en) | 2009-08-25 | 2018-10-16 | Nanoshell Company, Llc | Method and apparatus for continuous removal of sub-micron sized particles in a closed loop liquid flow system |
US10751464B2 (en) | 2009-08-25 | 2020-08-25 | Nanoshell Company, Llc | Therapeutic retrieval of targets in biological fluids |
US20120164231A1 (en) * | 2009-08-25 | 2012-06-28 | Agnes Ostafin | Synthesis Of Oxygen Carrying, Turbulence Resistant, High Density Submicron Particulates |
PT2501234T (en) * | 2009-11-20 | 2017-12-13 | Tonix Pharma Holdings Ltd | METHODS AND COMPOSITIONS FOR THE TREATMENT OF SYMPTOMS ASSOCIATED WITH POST-TRAUMATIC STRESS DISORDERS USING CICLOBENZAPRINA |
WO2011063421A1 (en) * | 2009-11-23 | 2011-05-26 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
WO2011069082A2 (en) * | 2009-12-04 | 2011-06-09 | The Regents Of The University Of Michigan | Red blood cell-mimetic particles and methods for making and use thereof |
US9333189B2 (en) * | 2010-02-03 | 2016-05-10 | Oncbiomune, Inc. | Taxane- and taxoid-protein compositions |
TWI438009B (en) * | 2010-02-19 | 2014-05-21 | Teikoku Pharma Usa Inc | Taxane pro-emulsion formulations and methods making and using the same |
NZ623576A (en) | 2010-03-19 | 2015-11-27 | Baxter Healthcare Sa | Tfpi inhibitors and methods of use |
MX359413B (en) | 2010-03-26 | 2018-09-27 | Abraxis Bioscience Llc | Methods of treatment of hepatocellular carcinoma. |
MX369728B (en) | 2010-03-29 | 2019-11-20 | Abraxis Bioscience Llc | Methods of enhancing drug delivery and effectiveness of therapeutic agents. |
NZ602385A (en) | 2010-03-29 | 2014-08-29 | Abraxis Bioscience Llc | Methods of treating cancer |
EP2566474B1 (en) | 2010-05-03 | 2017-11-15 | Teikoku Pharma USA, Inc. | Non-aqueous taxane pro-emulsion formulations and methods of making and using the same |
WO2011140193A1 (en) * | 2010-05-04 | 2011-11-10 | Massachusetts Institute Of Technology | Implantable dissolved oxygen sensor and methods of use |
KR20190038684A (en) | 2010-06-04 | 2019-04-08 | 아브락시스 바이오사이언스, 엘엘씨 | Methods of treatment of pancreatic cancer |
US20110319389A1 (en) | 2010-06-24 | 2011-12-29 | Tonix Pharmaceuticals, Inc. | Methods and compositions for treating fatigue associated with disordered sleep using very low dose cyclobenzaprine |
ES2386177B1 (en) * | 2010-09-21 | 2013-09-23 | Lipotec, S.A. | NANOCAPSULES CONTAINING MICROEMULSIONS |
WO2012054841A2 (en) | 2010-10-22 | 2012-04-26 | The Regents Of The University Of Michigan | Optical devices with switchable particles |
ES2716158T3 (en) | 2010-11-30 | 2019-06-10 | Gilead Pharmasset Llc | 2'-spiro-nucleotides for the treatment of hepatitis C |
US11998516B2 (en) | 2011-03-07 | 2024-06-04 | Tonix Pharma Holdings Limited | Methods and compositions for treating depression using cyclobenzaprine |
KR20200051841A (en) | 2011-04-28 | 2020-05-13 | 아브락시스 바이오사이언스, 엘엘씨 | Intravascular delivery of nanoparticle compositions and uses thereof |
EP2717884A1 (en) | 2011-06-06 | 2014-04-16 | Chevron Phillips Chemical Company LP | Use of metallocene compounds for cancer treatment |
LT2717898T (en) | 2011-06-10 | 2019-03-25 | Bioverativ Therapeutics Inc. | Pro-coagulant compounds and methods of use thereof |
US9504759B2 (en) | 2011-08-11 | 2016-11-29 | Bar-Ilan University | Surface modified proteinaceous spherical particles and uses thereof |
CA2847888A1 (en) | 2011-09-09 | 2013-03-14 | Biomed Realty, L.P. | Methods and compositions for controlling assembly of viral proteins |
WO2013084207A1 (en) | 2011-12-07 | 2013-06-13 | Universidade Do Minho | Formulations for micelle formation comprising a protein and methods preparation thereof |
ME03532B (en) | 2011-12-14 | 2020-04-20 | Abraxis Bioscience Llc | USE OF POLYMERIC ADDITIVES FOR FREEZE-DRYING OR FREEZING PARTICLES |
GB201221305D0 (en) * | 2012-11-27 | 2013-01-09 | Greater Glasgow Health Board | Improved methods of assessing metabolic function |
NZ629130A (en) | 2012-03-21 | 2016-10-28 | Baxalta Inc | Tfpi inhibitors and methods of use |
US10357450B2 (en) | 2012-04-06 | 2019-07-23 | Children's Medical Center Corporation | Process for forming microbubbles with high oxygen content and uses thereof |
US20150132227A1 (en) * | 2012-04-18 | 2015-05-14 | University Of Utah Research Foundation | Novel echogenic contrast agents |
US9335910B2 (en) | 2012-04-23 | 2016-05-10 | Tandem Diabetes Care, Inc. | System and method for reduction of inadvertent activation of medical device during manipulation |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US9715327B2 (en) | 2012-06-07 | 2017-07-25 | Tandem Diabetes Care, Inc. | Preventing inadvertent changes in ambulatory medical devices |
US10287564B2 (en) | 2012-06-08 | 2019-05-14 | Bioverativ Therapeutics Inc. | Procoagulant compounds |
CN103565745A (en) | 2012-08-10 | 2014-02-12 | 德克萨斯州大学系统董事会 | Neuroprotective liposome compositions and methods for treatment of stroke |
JO3685B1 (en) | 2012-10-01 | 2020-08-27 | Teikoku Pharma Usa Inc | Non-aqueous taxane nanodispersion formulations and methods of using the same |
US20140094432A1 (en) | 2012-10-02 | 2014-04-03 | Cerulean Pharma Inc. | Methods and systems for polymer precipitation and generation of particles |
US9149455B2 (en) | 2012-11-09 | 2015-10-06 | Abraxis Bioscience, Llc | Methods of treating melanoma |
LT2921166T (en) * | 2012-11-15 | 2017-09-25 | Utah-Inha Dds & Advanced Therapeutics Research Center | Biodegradable microbeads with improved anticancer drug adsorptivity, containing albumin and dextran sulfate, and preparation method therefor |
WO2014085633A1 (en) | 2012-11-30 | 2014-06-05 | Novomedix, Llc | Substituted biaryl sulfonamides and the use thereof |
PT106738B (en) * | 2013-01-09 | 2015-06-08 | Hovione Farmaciencia Sa | METHOD FOR THE CONTROL OF OSTWALD DIFUSIONAL DEGRADATION PHENOMENON (OSTWALD RIPENING) IN THE PROCESSING OF PARTICLES OF A PHARMACEUTICAL INGREDIENT |
US9511046B2 (en) | 2013-01-11 | 2016-12-06 | Abraxis Bioscience, Llc | Methods of treating pancreatic cancer |
EP3698784A1 (en) | 2013-03-12 | 2020-08-26 | Abraxis BioScience, LLC | Methods of treating lung cancer |
AU2014236802B2 (en) | 2013-03-14 | 2019-01-03 | Abraxis Bioscience, Llc | Methods of treating bladder cancer |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9101745B2 (en) | 2013-03-14 | 2015-08-11 | Sonogene Llc | Sonochemical induction of ABCA1 expression and compositions therefor |
LT2968992T (en) | 2013-03-15 | 2020-03-25 | Tonix Pharma Holdings Limited | Eutectic formulations of cyclobenzaprine hydrochloride and mannitol |
US9421329B2 (en) | 2013-03-15 | 2016-08-23 | Tandem Diabetes Care, Inc. | Infusion device occlusion detection system |
WO2014144364A1 (en) | 2013-03-15 | 2014-09-18 | Children's Medical Center Corporation | Gas-filled stabilized particles and methods of use |
EP2968163A4 (en) * | 2013-03-15 | 2017-01-25 | Children's Medical Center Corporation | Hollow particles encapsulating a biological gas and methods of use |
EP2968126B1 (en) * | 2013-03-15 | 2022-04-06 | The Board of Regents of The University of Texas System | Liquids rich in noble gas and methods of their preparation and use |
CA2916865A1 (en) | 2013-06-24 | 2014-12-31 | Anthrogenesis Corporation | Methods of expanding t cells |
WO2015013510A1 (en) | 2013-07-25 | 2015-01-29 | Ecole Polytechnique Federale De Lausanne Epfl | High aspect ratio nanofibril materials |
US20150140537A1 (en) * | 2013-11-19 | 2015-05-21 | Spectra Group Limited, Inc. | Blood simulant for simulatoin-based medical trauma training |
WO2015018380A2 (en) | 2014-07-03 | 2015-02-12 | Cspc Zhongqi Pharmaceutical Technology(Shijiazhuang)Co., Ltd. | Therapeutic nanoparticles and the preparation methods thereof |
EP3188716B1 (en) | 2014-09-03 | 2022-10-26 | GeneSegues, Inc. | Therapeutic nanoparticles and related compositions, methods and systems |
CN112618494B (en) | 2014-09-18 | 2023-06-30 | 通尼克斯制药控股有限公司 | Eutectic formulation of cyclobenzaprine hydrochloride |
US10705070B1 (en) | 2015-03-05 | 2020-07-07 | Abraxis Bioscience, Llc | Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug |
US10527604B1 (en) | 2015-03-05 | 2020-01-07 | Abraxis Bioscience, Llc | Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel |
EA202092187A1 (en) | 2015-06-29 | 2021-08-31 | АБРАКСИС БАЙОСАЙЕНС, ЭлЭлСи | METHODS FOR TREATMENT OF EPITHELIOID CELL TUMORS |
CN105901706B (en) * | 2016-04-21 | 2019-01-25 | 长江大学 | A kind of preparation method of the anti-oxidant hydrolysate of goose blood and its microcapsules |
TR201606102A2 (en) * | 2016-05-10 | 2016-10-21 | Tolgay Tuyan Ilhan | A DEVICE THAT CAN MEASURE OXYGEN CONCENTRATION IN INTRA-Abdominal CANCER TREATMENTS AND MAKES CHANGES ON OXYGEN DOSAGE GIVEN |
WO2018160752A1 (en) | 2017-02-28 | 2018-09-07 | Children's Medical Center Corporation | Stimuli-responsive particles encapsulating a gas and methods of use |
MX2020006140A (en) | 2017-12-11 | 2020-08-13 | Tonix Pharma Holdings Ltd | Cyclobenzaprine treatment for agitation, psychosis and cognitive decline in dementia and neurodegenerative conditions. |
AU2019239953B2 (en) | 2018-03-20 | 2025-01-02 | Abraxis Bioscience, Llc | Methods of treating central nervous system disorders via administration of nanoparticles of an mtor inhibitor and an albumin |
WO2020114615A1 (en) | 2018-12-07 | 2020-06-11 | Baxalta GmbH | Bispecific antibodies binding factor ixa and factor x |
WO2020115283A1 (en) | 2018-12-07 | 2020-06-11 | Baxalta GmbH | Bispecific antibodies binding factor ixa and factor x |
EP4037816A4 (en) * | 2019-10-04 | 2023-10-18 | The Regents Of The University Of Colorado, A Body Corporate | Micron sized droplets with solid endoskeleton or exoskeleton which tunes the thermal stability of the liquid droplets |
KR20220106758A (en) | 2019-10-28 | 2022-07-29 | 아브락시스 바이오사이언스, 엘엘씨 | Pharmaceutical Compositions of Albumin and Rapamycin |
CN112891566A (en) * | 2019-12-04 | 2021-06-04 | 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 | Nano material, preparation method thereof and contrast agent containing nano material |
US11366091B2 (en) * | 2020-02-11 | 2022-06-21 | Saudi Arabian Oil Company | High temperature high pressure (HTHP) cell in sum frequency generation (SFG) spectroscopy for oil/brine interface analysis with reservoir conditions and dynamic compositions |
CN112546406B (en) * | 2020-11-20 | 2022-04-22 | 广东药科大学 | Micro-robot drug delivery device and drug delivery system |
WO2023164487A1 (en) * | 2022-02-22 | 2023-08-31 | Brown University | Compositions and methods to achieve systemic uptake of particles following oral or mucosal administration |
WO2024046999A1 (en) | 2022-08-31 | 2024-03-07 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Lecithin-modified nanoscale oxygen carriers (lenox) |
CN118557720B (en) * | 2024-08-02 | 2024-11-22 | 苏州大学 | Antibody-modified fluorinated nanogel and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4861579A (en) * | 1988-03-17 | 1989-08-29 | American Cyanamid Company | Suppression of B-lymphocytes in mammals by administration of anti-B-lymphocyte antibodies |
US4975278A (en) * | 1988-02-26 | 1990-12-04 | Bristol-Myers Company | Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells |
US5439686A (en) * | 1993-02-22 | 1995-08-08 | Vivorx Pharmaceuticals, Inc. | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor |
US5498421A (en) * | 1993-02-22 | 1996-03-12 | Vivorx Pharmaceuticals, Inc. | Composition useful for in vivo delivery of biologics and methods employing same |
US5665382A (en) * | 1993-02-22 | 1997-09-09 | Vivorx Pharmaceuticals, Inc. | Methods for the preparation of pharmaceutically active agents for in vivo delivery |
US5916596A (en) * | 1993-02-22 | 1999-06-29 | Vivorx Pharmaceuticals, Inc. | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
US6096331A (en) * | 1993-02-22 | 2000-08-01 | Vivorx Pharmaceuticals, Inc. | Methods and compositions useful for administration of chemotherapeutic agents |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959457A (en) * | 1970-06-05 | 1976-05-25 | Temple University | Microparticulate material and method of making such material |
US4073943A (en) * | 1974-09-11 | 1978-02-14 | Apoteksvarucentralen Vitrum Ab | Method of enhancing the administration of pharmalogically active agents |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
JPS5933017B2 (en) * | 1980-03-14 | 1984-08-13 | 株式会社成和化成 | Wall goods for microcapsules |
US4558032A (en) * | 1981-12-31 | 1985-12-10 | Neomed Inc. | Synthetic whole blood substitute and a method of making the same |
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US4718433A (en) | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US4622219A (en) * | 1983-06-17 | 1986-11-11 | Haynes Duncan H | Method of inducing local anesthesia using microdroplets of a general anesthetic |
DE3376660D1 (en) * | 1983-06-22 | 1988-06-23 | Stolle Res & Dev | Encapsulated cells, their method of preparation and use |
US4671954A (en) * | 1983-12-13 | 1987-06-09 | University Of Florida | Microspheres for incorporation of therapeutic substances and methods of preparation thereof |
CA1215922A (en) * | 1984-05-25 | 1986-12-30 | Connaught Laboratories Limited | Microencapsulation of living tissue and cells |
US4753788A (en) * | 1985-01-31 | 1988-06-28 | Vestar Research Inc. | Method for preparing small vesicles using microemulsification |
SE459005B (en) * | 1985-07-12 | 1989-05-29 | Aake Rikard Lindahl | SET TO MANUFACTURE SPHERICAL POLYMER PARTICLES |
US5023271A (en) * | 1985-08-13 | 1991-06-11 | California Biotechnology Inc. | Pharmaceutical microemulsions |
DE3789965T2 (en) * | 1986-08-28 | 1994-10-13 | Enzacor Pty Ltd | MICROGRANULAR PREPARATION FOR THE ADMINISTRATION OF BIOLOGICALLY ACTIVE SUBSTANCES IN THE VEGETABLE REGIONS OF ANIMALS. |
US4925678A (en) * | 1987-04-01 | 1990-05-15 | Ranney David F | Endothelial envelopment drug carriers |
US5000960A (en) * | 1987-03-13 | 1991-03-19 | Micro-Pak, Inc. | Protein coupling to lipid vesicles |
IE59934B1 (en) * | 1987-06-19 | 1994-05-04 | Elan Corp Plc | Liquid suspension for oral administration |
SE8704158L (en) * | 1987-10-26 | 1989-04-27 | Carbomatrix Ab C O Ulf Schroed | MICROSPHERE, PROCEDURES FOR PREPARING IT AND USING THEREOF |
US4844882A (en) * | 1987-12-29 | 1989-07-04 | Molecular Biosystems, Inc. | Concentrated stabilized microbubble-type ultrasonic imaging agent |
IE61591B1 (en) * | 1987-12-29 | 1994-11-16 | Molecular Biosystems Inc | Concentrated stabilized microbubble-type ultrasonic imaging agent and method of production |
US4929446A (en) * | 1988-04-19 | 1990-05-29 | American Cyanamid Company | Unit dosage form |
NO176278C (en) * | 1988-08-24 | 1995-03-08 | Allied Colloids Ltd | Process for the preparation of a particulate mixture of active ingredient in a polymeric material |
US5026559A (en) * | 1989-04-03 | 1991-06-25 | Kinaform Technology, Inc. | Sustained-release pharmaceutical preparation |
DE69005800T2 (en) * | 1989-05-01 | 1994-05-19 | Alkermes Inc | METHOD FOR PRODUCING SMALL PARTICLES OF BIOLOGICALLY ACTIVE MOLECULES. |
US5019400A (en) * | 1989-05-01 | 1991-05-28 | Enzytech, Inc. | Very low temperature casting of controlled release microspheres |
FR2651680B1 (en) * | 1989-09-14 | 1991-12-27 | Medgenix Group Sa | NOVEL PROCESS FOR THE PREPARATION OF LIPID MICROPARTICLES. |
US5250283A (en) * | 1990-03-28 | 1993-10-05 | Molecular Biosystems, Inc. | Organic contrast agent analog and method of making same |
CA2080014C (en) * | 1990-04-17 | 2001-09-18 | Stephen L. Kopolow | Preparation of discrete microdroplets of an oil in water stabilized by in situ polymerization of a water-soluble vinyl monomer |
US5059699A (en) * | 1990-08-28 | 1991-10-22 | Virginia Tech Intellectual Properties, Inc. | Water soluble derivatives of taxol |
US5110606A (en) * | 1990-11-13 | 1992-05-05 | Affinity Biotech, Inc. | Non-aqueous microemulsions for drug delivery |
AU642066B2 (en) * | 1991-01-25 | 1993-10-07 | Nanosystems L.L.C. | X-ray contrast compositions useful in medical imaging |
GB9106686D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
US5362478A (en) * | 1993-03-26 | 1994-11-08 | Vivorx Pharmaceuticals, Inc. | Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell |
-
1994
- 1994-02-22 EP EP94909778A patent/EP0693924B2/en not_active Expired - Lifetime
- 1994-02-22 NZ NZ262679A patent/NZ262679A/en not_active IP Right Cessation
- 1994-02-22 US US08/200,235 patent/US5498421A/en not_active Expired - Lifetime
- 1994-02-22 WO PCT/US1994/001985 patent/WO1994018954A1/en active IP Right Grant
- 1994-02-22 BR BR9405798A patent/BR9405798A/en not_active Application Discontinuation
- 1994-02-22 AT AT94909778T patent/ATE264671T1/en active
- 1994-02-22 DK DK94909778T patent/DK0693924T4/en active
- 1994-02-22 CN CNB941912361A patent/CN1245156C/en not_active Expired - Lifetime
- 1994-02-22 AU AU62490/94A patent/AU673057B2/en not_active Expired
- 1994-02-22 JP JP51926094A patent/JP3746293B2/en not_active Expired - Lifetime
- 1994-02-22 CA CA002155947A patent/CA2155947C/en not_active Expired - Lifetime
- 1994-02-22 PT PT94909778T patent/PT693924E/en unknown
- 1994-02-22 ES ES94909778T patent/ES2219646T5/en not_active Expired - Lifetime
- 1994-02-22 DE DE69433723T patent/DE69433723T3/en not_active Expired - Lifetime
-
1995
- 1995-06-07 US US08/480,621 patent/US5635207A/en not_active Expired - Lifetime
- 1995-06-07 US US08/483,295 patent/US5639473A/en not_active Expired - Lifetime
- 1995-08-21 NO NO19953278A patent/NO314017B1/en not_active IP Right Cessation
-
2007
- 2007-03-28 HK HK07103295.9A patent/HK1097449A1/en not_active IP Right Cessation
-
2008
- 2008-03-19 US US12/051,782 patent/US20090048331A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4975278A (en) * | 1988-02-26 | 1990-12-04 | Bristol-Myers Company | Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells |
US4861579A (en) * | 1988-03-17 | 1989-08-29 | American Cyanamid Company | Suppression of B-lymphocytes in mammals by administration of anti-B-lymphocyte antibodies |
US5439686A (en) * | 1993-02-22 | 1995-08-08 | Vivorx Pharmaceuticals, Inc. | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor |
US5498421A (en) * | 1993-02-22 | 1996-03-12 | Vivorx Pharmaceuticals, Inc. | Composition useful for in vivo delivery of biologics and methods employing same |
US5665382A (en) * | 1993-02-22 | 1997-09-09 | Vivorx Pharmaceuticals, Inc. | Methods for the preparation of pharmaceutically active agents for in vivo delivery |
US5916596A (en) * | 1993-02-22 | 1999-06-29 | Vivorx Pharmaceuticals, Inc. | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
US6096331A (en) * | 1993-02-22 | 2000-08-01 | Vivorx Pharmaceuticals, Inc. | Methods and compositions useful for administration of chemotherapeutic agents |
US6506405B1 (en) * | 1993-02-22 | 2003-01-14 | American Bioscience, Inc. | Methods and formulations of cremophor-free taxanes |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7923536B2 (en) | 2002-12-09 | 2011-04-12 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US9012519B2 (en) | 2002-12-09 | 2015-04-21 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US9012518B2 (en) | 2002-12-09 | 2015-04-21 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US8846771B2 (en) | 2002-12-09 | 2014-09-30 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US8314156B2 (en) | 2002-12-09 | 2012-11-20 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US8138229B2 (en) | 2002-12-09 | 2012-03-20 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
US20090304805A1 (en) * | 2005-02-18 | 2009-12-10 | Desai Neil P | Combinations and modes of administration of therapeutic agents and combination therapy |
US8268348B2 (en) | 2005-02-18 | 2012-09-18 | Abraxis Bioscience, Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
US9561288B2 (en) | 2005-02-18 | 2017-02-07 | Abraxis Bioscience, Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
US20090098210A1 (en) * | 2005-02-18 | 2009-04-16 | Desai Neil P | Combinations and modes of administration of therapeutic agents and combination therapy |
US8735394B2 (en) | 2005-02-18 | 2014-05-27 | Abraxis Bioscience, Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
US7758891B2 (en) | 2005-02-18 | 2010-07-20 | Abraxis Bioscience, Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
US20110118342A1 (en) * | 2005-08-31 | 2011-05-19 | Tapas De | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US7771751B2 (en) | 2005-08-31 | 2010-08-10 | Abraxis Bioscience, Llc | Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents |
US8034765B2 (en) | 2005-08-31 | 2011-10-11 | Abraxis Bioscience, Llc | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US7981445B2 (en) | 2005-08-31 | 2011-07-19 | Abraxis Bioscience, Llc | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US20090196933A1 (en) * | 2005-08-31 | 2009-08-06 | Tapas De | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US20070082838A1 (en) * | 2005-08-31 | 2007-04-12 | Abraxis Bioscience, Inc. | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US9308180B2 (en) | 2005-08-31 | 2016-04-12 | Abraxis Bioscience, Llc | Compositions and methods for preparation of poorly water soluble drugs with increased stability |
US20070117744A1 (en) * | 2005-08-31 | 2007-05-24 | Desai Neil P | Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents |
US20080280987A1 (en) * | 2006-08-31 | 2008-11-13 | Desai Neil P | Methods of inhibiting angiogenesis and treating angiogenesis-associated diseases |
US20090263483A1 (en) * | 2008-04-10 | 2009-10-22 | Desai Neil P | Nanoparticle formulations and uses thereof |
US20100226856A1 (en) * | 2009-03-06 | 2010-09-09 | Franco Vitaliano | Dynamic bio-nanoparticle elements |
US11096901B2 (en) | 2009-03-06 | 2021-08-24 | Metaqor Llc | Dynamic bio-nanoparticle platforms |
US11235062B2 (en) | 2009-03-06 | 2022-02-01 | Metaqor Llc | Dynamic bio-nanoparticle elements |
US12239743B2 (en) | 2009-03-06 | 2025-03-04 | Metaqor Llc | Dynamic bio-nanoparticle platforms |
Also Published As
Publication number | Publication date |
---|---|
BR9405798A (en) | 1995-12-12 |
JP3746293B2 (en) | 2006-02-15 |
DK0693924T3 (en) | 2004-08-09 |
CA2155947A1 (en) | 1994-09-01 |
NO953278D0 (en) | 1995-08-21 |
PT693924E (en) | 2004-09-30 |
EP0693924B2 (en) | 2008-04-09 |
CN1245156C (en) | 2006-03-15 |
US5639473A (en) | 1997-06-17 |
NO314017B1 (en) | 2003-01-20 |
AU673057B2 (en) | 1996-10-24 |
DK0693924T4 (en) | 2008-08-04 |
US5498421A (en) | 1996-03-12 |
EP0693924B1 (en) | 2004-04-21 |
CN1118136A (en) | 1996-03-06 |
NZ262679A (en) | 1997-08-22 |
CA2155947C (en) | 2007-08-21 |
EP0693924A1 (en) | 1996-01-31 |
US5635207A (en) | 1997-06-03 |
ES2219646T5 (en) | 2008-11-01 |
HK1097449A1 (en) | 2007-06-29 |
DE69433723T3 (en) | 2008-10-30 |
DE69433723D1 (en) | 2004-05-27 |
NO953278L (en) | 1995-10-13 |
ATE264671T1 (en) | 2004-05-15 |
WO1994018954A1 (en) | 1994-09-01 |
ES2219646T3 (en) | 2004-12-01 |
DE69433723T2 (en) | 2005-02-24 |
JPH08507075A (en) | 1996-07-30 |
EP0693924A4 (en) | 1997-08-06 |
AU6249094A (en) | 1994-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090048331A1 (en) | Methods and formulations for the delivery of pharmacologically active agents | |
US20110052708A1 (en) | Methods and formulations for the delivery of pharmacologically active agents | |
US20030068362A1 (en) | Methods and formulations for the delivery of pharmacologically active agents | |
Ismail et al. | Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma | |
Zhai et al. | Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy | |
Tian et al. | Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models | |
US20150342872A1 (en) | Use of Paclitaxel Particles | |
Brigger et al. | Negative preclinical results with stealth® nanospheres-encapsulated doxorubicin in an orthotopic murine brain tumor model | |
Zara et al. | Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues | |
Mujokoro et al. | Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review | |
US11166914B2 (en) | Tumor therapeutic agent and kit containing gemcitabine liposome composition | |
Siegal | Which drug or drug delivery system can change clinical practice for brain tumor therapy? | |
JP5419716B2 (en) | Antitumor effect potentiator comprising oxaliplatin liposome preparation and antitumor agent containing the liposome preparation | |
US20230172856A1 (en) | Liposome formulations for treatment of cancers and drug resistance of cancers | |
US20100310611A1 (en) | Parenteral and oral formulations of benzimidazoles | |
van der Veen et al. | Biodistribution and tumor localization of stealth liposomal tumor necrosis factor‐α in soft tissue sarcoma bearing rats | |
WO2010124004A2 (en) | Nanocarrier therapy for treating invasive tumors | |
US20210030680A1 (en) | Nanoparticle compositions and methods of use of parp inhibitor for treatment of cancer | |
EP2310009B1 (en) | Parenteral and oral formulations of benzimidazoles | |
Naeini et al. | Multivesicular liposomes as a potential drug delivery platform for cancer therapy: A systematic review | |
US11806330B2 (en) | PACA and cabazitaxel for anti-cancer treatment | |
US20220257525A1 (en) | Drug delivery system for treatment of cancer | |
Bhardwaj et al. | Drug delivery systems to fight cancer | |
Hong et al. | Therapy of central nervous system leukemia in mice by liposome-entrapped 1-β-D-arabinofuranosylcytosine | |
WO2022124898A1 (en) | Auristatin-loaded liposomes and uses thereof. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABRAXIS BIOSCIENCE, INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:AMERICAN BIOSCIENCE, INC.;REEL/FRAME:022305/0345 Effective date: 20060418 Owner name: ABRAXIS BIOSCIENCE, LLC, CALIFORNIA Free format text: MERGER;ASSIGNOR:ABRAXIS BIOSCIENCE, INC.;REEL/FRAME:022305/0358 Effective date: 20071113 Owner name: AMERICAN BIOSCIENCE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOON-SHIONG, PATRICK;DESAI, NEIL P.;REEL/FRAME:022305/0338;SIGNING DATES FROM 20020612 TO 20020702 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |