US20090043376A1 - Endoluminal Prosthetic Conduit Systems and Method of Coupling - Google Patents
Endoluminal Prosthetic Conduit Systems and Method of Coupling Download PDFInfo
- Publication number
- US20090043376A1 US20090043376A1 US11/835,789 US83578907A US2009043376A1 US 20090043376 A1 US20090043376 A1 US 20090043376A1 US 83578907 A US83578907 A US 83578907A US 2009043376 A1 US2009043376 A1 US 2009043376A1
- Authority
- US
- United States
- Prior art keywords
- conduit
- prosthetic
- open end
- conduit system
- expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/061—Blood vessels provided with means for allowing access to secondary lumens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
Definitions
- the present invention relates to endoluminal prosthetic conduit systems and in particular to methods and components for joining together endoluminal prosthetic conduit components.
- Stents or stent grafts are forms of transluminal prosthetic components which are used to maintain, open or dilate stenotic lesions in body lumens or to cover and repair an aneurysm. It is often the case that an aneurysm occurs at a branch or bifurcation in a vessel.
- one current technique is to initially deploy across the aneurysm a main body stent or stent graft having a side wall opening. The side wall opening is aligned with the side branch ostium. A second stent or stent graft is then deployed through the main body stent side wall opening and into the side branch vessel.
- This modular repair approach requires the modular components to be effectively sealed at their connection points to prevent blood leakage into the aneurysm.
- the modular components must be locked or joined together to prevent subsequent relative displacement of the modular components. Similar requirements apply to those procedures that use multiple stent grafts that are coupled together to increase the effective length of the repair device.
- the present invention provides modular prosthetic conduit systems such as stent or stent graft systems.
- the modular prosthetic conduit systems may be tailored for the repair of aneurysms or for the repair of compromised vessel walls.
- the systems incorporate various embodiments for the secure interlocking of the multiple modular components used in a vessel repair procedure.
- An aspect of the invention includes a prosthetic conduit system comprising: an expandable main conduit having a first open end, a second open end, a main conduit wall extending therebetween, an outer conduit surface, and an inner conduit surface having at least one protuberance thereon; an expandable secondary conduit having a first open end, a second open end, a secondary conduit wall extending therebetween, and attachment portion extending at an angle of less than 90 degrees from the secondary conduit wall when in a deployed state; and wherein at least a portion of the secondary conduit is sized to fit inside the main conduit.
- a further aspect of the invention includes a prosthetic conduit system comprising: an expandable main conduit having a first open end, a second open end, a main conduit wall extending therebetween, at least one opening through the main conduit wall, and an internal channel having an inner surface, an outer surface, a first open end located within the main conduit and a second open end at the opening in the main conduit wall; an expandable secondary conduit having a first open end, a second open end, a secondary conduit wall extending therebetween, and attachment portion extending at an angle of less than 90 degrees from the secondary conduit wall when in a deployed state; and wherein at least a portion of the secondary conduit is sized to fit inside the internal channel and through the opening in the main conduit wall.
- FIG. 1 is a side view of a main conduit with an interconnected secondary conduit as implanted across an aortic aneurysm.
- FIG. 2 is a perspective view of a main conduit having an internal protuberance.
- FIG. 3 is a cross-sectional view of a main conduit having an internal protuberance.
- FIG. 4 is a perspective view of a main conduit joined to a secondary conduit.
- FIGS. 5A and 5B are perspective and side views of a secondary conduit having an attachment portion. Shown is a defined angle between an attachment portion and a secondary conduit longitudinal axis or secondary conduit wall.
- FIG. 6 is a cross-sectional view of a main conduit having an internal protuberance that is discontinuous or segmented.
- FIG. 7 is a cross-sectional view of a main conduit having an internal protuberance that incorporates stiffening support structures.
- FIG. 8 is a cross-sectional view of a main conduit having an internal stent or support structure with barbs or hooks configured to engage a secondary conduit.
- FIGS. 9A and 9B are cross-sectional views of a main conduit having internal barbs or internal hooks configured to engage a secondary conduit.
- FIGS. 10A and 10B are perspective views of a secondary conduit having external barbs or external hooks configured to engage a main conduit.
- FIG. 11 is a perspective view of a secondary conduit having an external cuff that is configured to engage and lock onto an open end of a support channel.
- FIG. 12 is a cross-sectional view of a main conduit having two opposed cuffs.
- FIG. 13 is a side view of a secondary conduit having two opposed cuffs.
- FIG. 14 is a perspective view of a main conduit and an interconnected secondary conduit.
- FIGS. 15 A and 15 B are side views of main conduits according to certain aspects of the invention.
- FIGS. 16 A and 16 B are side views of main conduits and secondary conduits according to certain aspects of the invention.
- FIG. 1 Shown in FIG. 1 is a main conduit 20 having a first open end 22 and a second open end 24 .
- a secondary conduit 26 is shown inserted into the second open end 24 of the main conduit 20 .
- the secondary conduit 26 is shown as a bifurcated endoluminal device bridging an aortic aneurysm 28 .
- the main conduit 20 and the secondary conduit 26 are expanded and share an engagement portion or engagement length 30 .
- the main conduit 20 and the secondary conduit 26 can be self-expanding or balloon expandable.
- a main conduit can have various configurations including stent grafts with or without side-branches or side-branch openings.
- Stent grafts can be fabricated, for example, according to the methods and materials as generally disclosed in U.S. Pat. Nos. 6,042,605; 6,361,637; and 6,520,986 all to Martin et al. Details relating to the fabrication and materials used for a main conduit with an internal side branch support tube or channel can be found in, for example, U.S. Pat. No. 6,645,242 to Quinn.
- the main conduit comprises at least one protuberance on the inner surface of the main conduit.
- Protuberances according to an aspect of the invention can be in many forms. For example, shown in FIG. 2 is a perspective view of a main conduit 20 having a first open end 22 and a second open end 24 . Internal to the main conduit is protuberance in the form of cuff 32 on the inner surface of the main conduit.
- FIG. 3 is a cross-sectional view of a main conduit 20 as viewed along the cross-sectional plane 3 of FIG. 2 . Shown is a section of a main conduit 20 , first and second open ends 22 , 24 and protuberance 32 .
- the protuberance 32 is in the form of a cuff 34 that is configured to engage an attachment portion of a secondary conduit.
- a protuberance or cuff can have various configurations and can be fabricated, for example, from tubes, sheets or films formed into tubular shapes, woven or knitted fibers or ribbons or combinations thereof.
- Protuberance or cuff materials can include conventional medical grade materials such as nylon, polyester, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylchloride, polyurethane and elastomeric organosilicon polymers.
- a protuberance or cuff can be joined to a graft or stent wall by sutures, medical grade adhesives or thermoplastics or can be integral to the graft or stent wall.
- FIG. 4 Shown in FIG. 4 is a main conduit 20 having a first open end 22 and a second open end 24 and a wall 25 extending between the two open ends.
- the wall defines an outer conduit surface 21 and an inner conduit surface 23 .
- a secondary conduit 26 is shown inserted into the second open end 24 of the main conduit 20 .
- the secondary conduit 26 has a first open end 27 a second open end 29 and a wall 31 extending between the two open ends.
- the secondary conduit 26 has an attachment portion 36 shown in a deployed state as flared apices of a stent support structure.
- the attachment portion 36 is shown engaged into the protuberance 32 of main conduit 20 .
- the flared apices of the stent support are therefore engaged and interlocked into the cuff 34 , preventing or inhibiting the secondary conduit 26 from dislodging toward the direction indicated by arrow 38 .
- An improved sealing surface between the secondary and the main conduits may also be provided by the protuberance 32 . Forces exerted by the flow of blood may encourage or drive the flared apices of the stent support into contact with or full engagement with the cuff 34 .
- FIG. 5A Shown in FIG. 5A is a secondary conduit 26 having open ends 27 and 29 , a wall 31 extending from open end 27 to open end 29 , a longitudinal axis 40 and attachment portion 36 shown in an unconstrained or deployed state as flared-out apices of a support stent.
- the inner surface 42 of the attachment portion 36 defines axis 44 .
- An angle 46 is shown between the secondary conduit longitudinal axis 40 (and the wall 31 ) and the attachment portion axis 44 . Shown is an angle of about 45°.
- Angle 46 can be any angle less than about 90°.
- angle 46 can be just less than 90°, about 80°, about 70°, about 60°, about 45°, about 30°, about 20° or less.
- FIG. 5B shown in FIG. 5B is a secondary conduit 26 having open ends 27 and 29 , a wall 31 extending from open end 27 to open end 29 , a longitudinal axis 40 and an attachment portion 36 shown in a deployed state as flared-out apices of a support stent.
- the inner surface 42 of the attachment portion 36 defines axis 44 .
- An angle 46 ′ is shown between the secondary conduit wall 31 and the attachment portion axis 44 . Shown is an angle of about 45°.
- the protuberance 32 can be discontinuous, forming discrete protuberance segments along the inner wall of a main conduit.
- a main conduit can have two, three, four or five or more discrete protuberance segments, spaced along the inner wall.
- FIG. 6 Shown in FIG. 6 is a cross-sectional view of a main conduit 20 as viewed along the cross-sectional plane 3 as defined in FIG. 2 . Shown is a section of a main conduit 20 , first and second open ends 22 , 24 and discontinuous protuberances 34 .
- the protuberances 34 form a series of cuffs that are configured to engage attachment portions of a secondary conduit, such as depicted in FIG. 4 .
- a protuberance can incorporate semi-rigid or densified segments along its length. Such semi-rigid sections along a protuberance may prevent or inhibit the protuberance from collapsing.
- FIG. 7 Shown in FIG. 7 is a cross-sectional view of a main conduit 20 as viewed along the cross-sectional plane 3 as defined in FIG. 2 . Shown is a section of a main conduit 20 , first and second open ends 22 , 24 and a protuberance, shown as cuff 34 .
- Densified or semi-rigid sections 62 are incorporated into the protuberance to add rigidity to cuff 34 and thus inhibiting or even preventing the cuff from collapsing.
- Semi-rigid sections 62 can be incorporated into segmented or discontinuous protuberances as previously described in FIG. 6 .
- Semi-rigid or densified segments may be formed from conventional medical grade materials such as nylon, polyacrylamide, polycarbonate, polyethylene, polyformaldehyde, polymethylmethacrylate, polypropylene, polytetrafluoroethylene, polytrifluorochlorethylene, polyvinylchloride, polyurethane, elastomeric organosilicon polymers; metals such as stainless steels, cobalt-chromium alloys and nitinol and biologically derived materials such as pericardium and collagen.
- Semi-rigid or densified segments can also comprise bioresorbable materials such as poly(amino acids), poly(anhydrides), poly(caprolactones), poly(lactic/glycolic acid) polymers, poly(hydroxybutyrates) and poly(orthoesters).
- bioresorbable materials such as poly(amino acids), poly(anhydrides), poly(caprolactones), poly(lactic/glycolic acid) polymers, poly(hydroxybutyrates) and poly(orthoesters).
- the at least one protuberance of the main conduit may comprise an internal stent or support structure that incorporates barbs, hooks or other suitable configurations to engage and/or lock with a secondary conduit.
- FIG. 8 Shown in FIG. 8 is a cross-sectional view of a main conduit 20 as viewed along the cross-sectional plane 3 of FIG. 2 . Shown is a section of a main conduit 20 , first and second open ends 22 , 24 and an internal stent or support structure 64 . Protruding out of the stent or support structure 64 are a series of barbs or hooks 66 . The barbs or hooks are oriented inwards toward the center of the main conduit and are configured to engage and/or lock onto a wall or attachment portion of a secondary conduit.
- a main conduit may have a series of internal, barbs or hooks that are integral to the main conduit wall or integral to a main conduit support stent.
- portions of the stent can be formed into hooks or barbs that are configured to engage and lock a secondary conduit.
- FIG. 9A is a cross-sectional view of a main conduit 20 as viewed along the cross-sectional plane 3 of FIG. 2 . Shown is a section of a main conduit 20 , first and second open ends 22 , 24 and a series of internal barbs 68 .
- FIG. 9B are a series of internal hooks 70 .
- the barbs or hooks are oriented inwards toward the center of the main conduit and are configured to engage and/or lock onto an external wall of a secondary conduit.
- Barbs or hooks may be formed from conventional medical grade materials such as those listed above.
- Secondary conduits can also incorporate various forms of attachment portions to engage and/or lock onto main conduits.
- FIG. 10A is a perspective view of a secondary conduit 26 having first and second open ends 27 , 29 and a wall 31 . Protruding outwardly away from the secondary conduit wall 31 are a series of external barbs 72 .
- FIG. 10B shows a series of external hooks 74 . The barbs or hooks are oriented outwardly away from the center of the secondary conduit and are configured to engage and lock onto an internal wall and/or protuberance of a main conduit.
- a secondary conduit may also incorporate an external cuff that is configured to engage a main body protuberance or an open end of an internal channel.
- FIG. 11 is a perspective view of a secondary conduit 26 having first and second open ends 27 , 29 and a wall 31 .
- Formed about the first open end 27 is an external cuff 76 configured to engage an internal protuberance or a first open end of an internal channel of a main conduit.
- the external cuff may incorporate semi-rigid sections as shown in FIG. 7 to add rigidity to the cuff.
- a main conduit may have opposed anchoring cuffs that prevent a secondary conduit from being displaced in two directions.
- Shown in FIG. 12 is a cross-sectional view of a main conduit 20 having two opposed engagement cuffs 78 .
- the cuffs 78 are configured in a linear state as shown in FIG. 2 and FIG. 3 .
- the cuffs 78 are configured to engage attachment portions 36 of a secondary conduit 26 .
- the engagement of the attachment portions 36 to the cuffs 78 inhibit or prevent dislodgement of the secondary conduit in the two directions shown by arrows 38 and 80 .
- Secondary conduits can also incorporate attachment portions in the form of bi-directional cuffs that inhibit or prevent dislodgement in two directions. Shown in FIG. 13 , is a secondary conduit 26 having bi-directional cuffs 82 .
- the bi-directional cuffs 82 are configured to engage opposed main conduit cuffs as shown in FIG. 12 .
- a side-branched endovascular device particularly for the repair of a vessel that is in close proximity to branched vasculature.
- FIG. 14 is a perspective view of an alternate main conduit 50 having a first open end 22 and a second open end 24 .
- an internal channel 54 having a first open end 56 and a second open end 58 that is aligned to an opening 60 in the main conduit wall 25 .
- Such a main conduit can be fabricated according to the teaching in U.S. Pat. No. 6,645,242 to Quinn.
- a secondary conduit 26 having a first open end 27 , a second open end 29 , a wall 31 , and an attachment portion 36 in a deployed state is shown inserted into the internal channel 54 .
- the secondary conduit 26 is shown exiting out through the second open end 58 of the internal channel 54 and through the opening 60 in the main conduit wall.
- the attachment portion 36 is configured to engage and/or interlock onto the first open end 56 of the internal channel. This interlocking may prevent the dislodgement of the secondary conduit 26 along the direction depicted by arrow 38 . Forces exerted by the flow of blood may encourage or drive the attachment portion 36 into full contact with the first open end 56 of the internal channel 54 .
- Stents can have various configurations as known in the art and can be fabricated, for example, from cut tubes, wound wires (or ribbons) or flat patterned sheets rolled into a tubular form.
- Stents can be formed from metallic, polymeric or natural materials and can comprise conventional medical grade materials such as nylon, polyacrylamide, polycarbonate, polyethylene, polyformaldehyde, polymethylmethacrylate, polypropylene, polytetrafluoroethylene, polytrifluorochlorethylene, polyvinylchloride, polyurethane, elastomeric organosilicon polymers; metals such as stainless steels, cobalt-chromium alloys and nitinol and biologically derived materials such as bovine arteries/veins, pericardium and collagen.
- Stents can also comprise bioresorbable materials such as poly(amino acids), poly(anhydrides), poly(caprolactones), poly(lactic/glycolic acid) polymers, poly(hydroxybutyrates) and poly(orthoesters).
- bioresorbable materials such as poly(amino acids), poly(anhydrides), poly(caprolactones), poly(lactic/glycolic acid) polymers, poly(hydroxybutyrates) and poly(orthoesters).
- Grafts can have various configurations as known in the art and can be fabricated, for example, from tubes, sheets or films formed into tubular shapes, woven or knitted fibers or ribbons or combinations thereof. Graft materials can include conventional medical grade materials such as nylon, polyester, polyethylene, polypropylene, polytetrafluoroethylene (including expanded polytetrafluoroethylene (“ePTFE,”)), polyvinylchloride, polyurethane and elastomeric organosilicon polymers.
- ePTFE expanded polytetrafluoroethylene
- Stents can be used alone or in combination with graft materials. Stents can be configured on the external or internal surface of a graft or may be incorporated into the internal wall structure of a graft.
- main and secondary conduits can incorporate various stent or support structures.
- a main conduit 20 may comprise separate stent segments 90 A and 92 A, positioned at or near the first and second open ends 22 and 24 of the main conduit 20 .
- the stent segments 90 A and 92 A can comprise a single stent 94 A extending from the first open end 22 to the second open end 24 of the main conduit 20 .
- FIGS. 16A and 16B Shown in FIGS. 16A and 16B are secondary conduits 26 tailored to be inserted into main conduits 22 along direction arrows 96 .
- a secondary conduit 26 can incorporate stents 90 B and 92 B at or near the first and second open ends 27 and 29 of the secondary conduit 26 .
- the stent segments 90 B and 92 B can comprise a single stent 94 B extending from the first open end 27 to the second open end 29 of the secondary conduit 26 .
- Expandable conduits according to the invention can be delivered in a constrained state endoluminally by various catheter based procedures known in the art.
- self-expanding endoluminal devices can be loaded onto the distal end of a catheter, compressed and maintained in a constrained state by an external sheath.
- the sheath can be folded to form a tube positioned external to the compressed device.
- the sheath edges can be sewn together with a deployment cord that forms a “chain stitch”.
- the constrained device Once the constrained device is positioned at a target site within a vessel the device can be deployed. In the deployed state, the device may still be constrained by the vasculature or by another device. For example a device may assume a diameter of 20 mm when fully unconstrained.
- This same device may be deployed into a vessel (or other device) having a lumen diameter of 15 mm and would therefore be “constrained” in the deployed state.
- An “un-constrained state” can therefore be defined as the state assumed by the device when there are no external forces inhibiting the full expansion of the device.
- a “constrained state” can therefore be defined as the state assumed by the device in the presence of external forces that inhibit the full expansion of the device.
- the deployed state can be defined as the state assumed by the device when expanded into a vessel or other device.
- one end of the deployment cord can be pulled to disrupt the chain stitch, allowing the sheath edges to separate and release the constrained device.
- Constraining sheaths and deployment cord stitching can be configured to release a self-expanding device in several ways.
- a constraining sheath may release a device starting from the proximal device end, terminating at the distal device end. In other configurations the device may be released starting from the distal end.
- Self expanding devices may also be released from the device center as the sheath disrupts towards the distal and proximal device ends. Details relating to constraining sheath materials, sheath methods of manufacture and main body compression techniques can be found in U.S. Pat. No. 6,352,561 to Leopold et al., and U.S. Pat. No. 6,551,350 Thornton et al.
- the secondary conduit can be released from a constraining sheath starting at the proximal (or hub) end of the constrained conduit.
- the attachment portion of the secondary conduit is located about the proximal end of the conduit and in an aspect of the invention this proximal end is the first end released from a constraining sheath, thus also deploying the attachment portion.
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
- The present invention relates to endoluminal prosthetic conduit systems and in particular to methods and components for joining together endoluminal prosthetic conduit components.
- Stents or stent grafts are forms of transluminal prosthetic components which are used to maintain, open or dilate stenotic lesions in body lumens or to cover and repair an aneurysm. It is often the case that an aneurysm occurs at a branch or bifurcation in a vessel. To repair such an aneurysm using modular components, one current technique is to initially deploy across the aneurysm a main body stent or stent graft having a side wall opening. The side wall opening is aligned with the side branch ostium. A second stent or stent graft is then deployed through the main body stent side wall opening and into the side branch vessel. This modular repair approach requires the modular components to be effectively sealed at their connection points to prevent blood leakage into the aneurysm. In addition the modular components must be locked or joined together to prevent subsequent relative displacement of the modular components. Similar requirements apply to those procedures that use multiple stent grafts that are coupled together to increase the effective length of the repair device.
- The present invention provides modular prosthetic conduit systems such as stent or stent graft systems. The modular prosthetic conduit systems may be tailored for the repair of aneurysms or for the repair of compromised vessel walls. The systems incorporate various embodiments for the secure interlocking of the multiple modular components used in a vessel repair procedure.
- An aspect of the invention includes a prosthetic conduit system comprising: an expandable main conduit having a first open end, a second open end, a main conduit wall extending therebetween, an outer conduit surface, and an inner conduit surface having at least one protuberance thereon; an expandable secondary conduit having a first open end, a second open end, a secondary conduit wall extending therebetween, and attachment portion extending at an angle of less than 90 degrees from the secondary conduit wall when in a deployed state; and wherein at least a portion of the secondary conduit is sized to fit inside the main conduit.
- A further aspect of the invention includes a prosthetic conduit system comprising: an expandable main conduit having a first open end, a second open end, a main conduit wall extending therebetween, at least one opening through the main conduit wall, and an internal channel having an inner surface, an outer surface, a first open end located within the main conduit and a second open end at the opening in the main conduit wall; an expandable secondary conduit having a first open end, a second open end, a secondary conduit wall extending therebetween, and attachment portion extending at an angle of less than 90 degrees from the secondary conduit wall when in a deployed state; and wherein at least a portion of the secondary conduit is sized to fit inside the internal channel and through the opening in the main conduit wall.
-
FIG. 1 is a side view of a main conduit with an interconnected secondary conduit as implanted across an aortic aneurysm. -
FIG. 2 is a perspective view of a main conduit having an internal protuberance. -
FIG. 3 is a cross-sectional view of a main conduit having an internal protuberance. -
FIG. 4 is a perspective view of a main conduit joined to a secondary conduit. -
FIGS. 5A and 5B are perspective and side views of a secondary conduit having an attachment portion. Shown is a defined angle between an attachment portion and a secondary conduit longitudinal axis or secondary conduit wall. -
FIG. 6 is a cross-sectional view of a main conduit having an internal protuberance that is discontinuous or segmented. -
FIG. 7 is a cross-sectional view of a main conduit having an internal protuberance that incorporates stiffening support structures. -
FIG. 8 is a cross-sectional view of a main conduit having an internal stent or support structure with barbs or hooks configured to engage a secondary conduit. -
FIGS. 9A and 9B are cross-sectional views of a main conduit having internal barbs or internal hooks configured to engage a secondary conduit. -
FIGS. 10A and 10B are perspective views of a secondary conduit having external barbs or external hooks configured to engage a main conduit. -
FIG. 11 is a perspective view of a secondary conduit having an external cuff that is configured to engage and lock onto an open end of a support channel. -
FIG. 12 is a cross-sectional view of a main conduit having two opposed cuffs. -
FIG. 13 is a side view of a secondary conduit having two opposed cuffs. -
FIG. 14 is a perspective view of a main conduit and an interconnected secondary conduit. -
FIGS. 15 A and 15B are side views of main conduits according to certain aspects of the invention. -
FIGS. 16 A and 16B are side views of main conduits and secondary conduits according to certain aspects of the invention. - A better understanding of the invention will be had with reference to the several figures.
- Shown in
FIG. 1 is amain conduit 20 having a firstopen end 22 and a secondopen end 24. Asecondary conduit 26 is shown inserted into the secondopen end 24 of themain conduit 20. Thesecondary conduit 26 is shown as a bifurcated endoluminal device bridging anaortic aneurysm 28. Themain conduit 20 and thesecondary conduit 26 are expanded and share an engagement portion orengagement length 30. In an aspect of the invention themain conduit 20 and thesecondary conduit 26 can be self-expanding or balloon expandable. - A main conduit can have various configurations including stent grafts with or without side-branches or side-branch openings. Stent grafts can be fabricated, for example, according to the methods and materials as generally disclosed in U.S. Pat. Nos. 6,042,605; 6,361,637; and 6,520,986 all to Martin et al. Details relating to the fabrication and materials used for a main conduit with an internal side branch support tube or channel can be found in, for example, U.S. Pat. No. 6,645,242 to Quinn.
- The main conduit comprises at least one protuberance on the inner surface of the main conduit. Protuberances according to an aspect of the invention can be in many forms. For example, shown in
FIG. 2 is a perspective view of amain conduit 20 having a firstopen end 22 and a secondopen end 24. Internal to the main conduit is protuberance in the form ofcuff 32 on the inner surface of the main conduit. -
FIG. 3 is a cross-sectional view of amain conduit 20 as viewed along thecross-sectional plane 3 ofFIG. 2 . Shown is a section of amain conduit 20, first and secondopen ends protuberance 32. Theprotuberance 32 is in the form of acuff 34 that is configured to engage an attachment portion of a secondary conduit. A protuberance or cuff can have various configurations and can be fabricated, for example, from tubes, sheets or films formed into tubular shapes, woven or knitted fibers or ribbons or combinations thereof. Protuberance or cuff materials can include conventional medical grade materials such as nylon, polyester, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylchloride, polyurethane and elastomeric organosilicon polymers. A protuberance or cuff can be joined to a graft or stent wall by sutures, medical grade adhesives or thermoplastics or can be integral to the graft or stent wall. - Shown in
FIG. 4 is amain conduit 20 having a firstopen end 22 and a secondopen end 24 and awall 25 extending between the two open ends. The wall defines an outer conduit surface 21 and an inner conduit surface 23. Asecondary conduit 26 is shown inserted into the secondopen end 24 of themain conduit 20. Thesecondary conduit 26 has a first open end 27 a secondopen end 29 and awall 31 extending between the two open ends. Thesecondary conduit 26 has anattachment portion 36 shown in a deployed state as flared apices of a stent support structure. Theattachment portion 36 is shown engaged into theprotuberance 32 ofmain conduit 20. The flared apices of the stent support are therefore engaged and interlocked into thecuff 34, preventing or inhibiting thesecondary conduit 26 from dislodging toward the direction indicated byarrow 38. An improved sealing surface between the secondary and the main conduits may also be provided by theprotuberance 32. Forces exerted by the flow of blood may encourage or drive the flared apices of the stent support into contact with or full engagement with thecuff 34. - Shown in
FIG. 5A is asecondary conduit 26 having open ends 27 and 29, awall 31 extending fromopen end 27 to openend 29, alongitudinal axis 40 andattachment portion 36 shown in an unconstrained or deployed state as flared-out apices of a support stent. Theinner surface 42 of theattachment portion 36 definesaxis 44. Anangle 46 is shown between the secondary conduit longitudinal axis 40 (and the wall 31) and theattachment portion axis 44. Shown is an angle of about 45°.Angle 46 can be any angle less than about 90°. Forexample angle 46 can be just less than 90°, about 80°, about 70°, about 60°, about 45°, about 30°, about 20° or less. - Similar to
FIG. 5A , shown inFIG. 5B is asecondary conduit 26 having open ends 27 and 29, awall 31 extending fromopen end 27 to openend 29, alongitudinal axis 40 and anattachment portion 36 shown in a deployed state as flared-out apices of a support stent. Theinner surface 42 of theattachment portion 36 definesaxis 44. Anangle 46′ is shown between thesecondary conduit wall 31 and theattachment portion axis 44. Shown is an angle of about 45°. - Various alternate configurations of attachment portions and/or protuberances are possible. For example the
protuberance 32 can be discontinuous, forming discrete protuberance segments along the inner wall of a main conduit. A main conduit can have two, three, four or five or more discrete protuberance segments, spaced along the inner wall. Shown inFIG. 6 is a cross-sectional view of amain conduit 20 as viewed along thecross-sectional plane 3 as defined inFIG. 2 . Shown is a section of amain conduit 20, first and second open ends 22, 24 anddiscontinuous protuberances 34. Theprotuberances 34 form a series of cuffs that are configured to engage attachment portions of a secondary conduit, such as depicted inFIG. 4 . - To assist in the engagement of an attachment portion, a protuberance can incorporate semi-rigid or densified segments along its length. Such semi-rigid sections along a protuberance may prevent or inhibit the protuberance from collapsing. Shown in
FIG. 7 is a cross-sectional view of amain conduit 20 as viewed along thecross-sectional plane 3 as defined inFIG. 2 . Shown is a section of amain conduit 20, first and second open ends 22, 24 and a protuberance, shown ascuff 34. Densified orsemi-rigid sections 62 are incorporated into the protuberance to add rigidity tocuff 34 and thus inhibiting or even preventing the cuff from collapsing.Semi-rigid sections 62 can be incorporated into segmented or discontinuous protuberances as previously described inFIG. 6 . - Semi-rigid or densified segments may be formed from conventional medical grade materials such as nylon, polyacrylamide, polycarbonate, polyethylene, polyformaldehyde, polymethylmethacrylate, polypropylene, polytetrafluoroethylene, polytrifluorochlorethylene, polyvinylchloride, polyurethane, elastomeric organosilicon polymers; metals such as stainless steels, cobalt-chromium alloys and nitinol and biologically derived materials such as pericardium and collagen. Semi-rigid or densified segments can also comprise bioresorbable materials such as poly(amino acids), poly(anhydrides), poly(caprolactones), poly(lactic/glycolic acid) polymers, poly(hydroxybutyrates) and poly(orthoesters).
- The at least one protuberance of the main conduit may comprise an internal stent or support structure that incorporates barbs, hooks or other suitable configurations to engage and/or lock with a secondary conduit. Shown in
FIG. 8 is a cross-sectional view of amain conduit 20 as viewed along thecross-sectional plane 3 ofFIG. 2 . Shown is a section of amain conduit 20, first and second open ends 22, 24 and an internal stent orsupport structure 64. Protruding out of the stent orsupport structure 64 are a series of barbs or hooks 66. The barbs or hooks are oriented inwards toward the center of the main conduit and are configured to engage and/or lock onto a wall or attachment portion of a secondary conduit. - A main conduit may have a series of internal, barbs or hooks that are integral to the main conduit wall or integral to a main conduit support stent. For example if the main conduit has a stent support structure, portions of the stent can be formed into hooks or barbs that are configured to engage and lock a secondary conduit. Shown in
FIG. 9A is a cross-sectional view of amain conduit 20 as viewed along thecross-sectional plane 3 ofFIG. 2 . Shown is a section of amain conduit 20, first and second open ends 22, 24 and a series ofinternal barbs 68. Similarly shown inFIG. 9B are a series ofinternal hooks 70. The barbs or hooks are oriented inwards toward the center of the main conduit and are configured to engage and/or lock onto an external wall of a secondary conduit. Barbs or hooks may be formed from conventional medical grade materials such as those listed above. - Secondary conduits can also incorporate various forms of attachment portions to engage and/or lock onto main conduits. For example shown in
FIG. 10A is a perspective view of asecondary conduit 26 having first and second open ends 27, 29 and awall 31. Protruding outwardly away from thesecondary conduit wall 31 are a series ofexternal barbs 72. Similarly, shown inFIG. 10B are a series ofexternal hooks 74. The barbs or hooks are oriented outwardly away from the center of the secondary conduit and are configured to engage and lock onto an internal wall and/or protuberance of a main conduit. - A secondary conduit may also incorporate an external cuff that is configured to engage a main body protuberance or an open end of an internal channel. For example shown in
FIG. 11 is a perspective view of asecondary conduit 26 having first and second open ends 27, 29 and awall 31. Formed about the firstopen end 27 is anexternal cuff 76 configured to engage an internal protuberance or a first open end of an internal channel of a main conduit. The external cuff may incorporate semi-rigid sections as shown inFIG. 7 to add rigidity to the cuff. - A main conduit may have opposed anchoring cuffs that prevent a secondary conduit from being displaced in two directions. Shown in
FIG. 12 is a cross-sectional view of amain conduit 20 having two opposed engagement cuffs 78. Thecuffs 78 are configured in a linear state as shown inFIG. 2 andFIG. 3 . Thecuffs 78 are configured to engageattachment portions 36 of asecondary conduit 26. The engagement of theattachment portions 36 to thecuffs 78 inhibit or prevent dislodgement of the secondary conduit in the two directions shown byarrows - Secondary conduits can also incorporate attachment portions in the form of bi-directional cuffs that inhibit or prevent dislodgement in two directions. Shown in
FIG. 13 , is asecondary conduit 26 havingbi-directional cuffs 82. Thebi-directional cuffs 82 are configured to engage opposed main conduit cuffs as shown inFIG. 12 . - In some surgical procedures it is desirable to have a side-branched endovascular device, particularly for the repair of a vessel that is in close proximity to branched vasculature.
-
FIG. 14 is a perspective view of an alternatemain conduit 50 having a firstopen end 22 and a secondopen end 24. Within themain conduit 50 is aninternal channel 54 having a firstopen end 56 and a secondopen end 58 that is aligned to anopening 60 in themain conduit wall 25. Such a main conduit can be fabricated according to the teaching in U.S. Pat. No. 6,645,242 to Quinn. Asecondary conduit 26 having a firstopen end 27, a secondopen end 29, awall 31, and anattachment portion 36 in a deployed state is shown inserted into theinternal channel 54. Thesecondary conduit 26 is shown exiting out through the secondopen end 58 of theinternal channel 54 and through theopening 60 in the main conduit wall. Theattachment portion 36 is configured to engage and/or interlock onto the firstopen end 56 of the internal channel. This interlocking may prevent the dislodgement of thesecondary conduit 26 along the direction depicted byarrow 38. Forces exerted by the flow of blood may encourage or drive theattachment portion 36 into full contact with the firstopen end 56 of theinternal channel 54. - Stents can have various configurations as known in the art and can be fabricated, for example, from cut tubes, wound wires (or ribbons) or flat patterned sheets rolled into a tubular form. Stents can be formed from metallic, polymeric or natural materials and can comprise conventional medical grade materials such as nylon, polyacrylamide, polycarbonate, polyethylene, polyformaldehyde, polymethylmethacrylate, polypropylene, polytetrafluoroethylene, polytrifluorochlorethylene, polyvinylchloride, polyurethane, elastomeric organosilicon polymers; metals such as stainless steels, cobalt-chromium alloys and nitinol and biologically derived materials such as bovine arteries/veins, pericardium and collagen. Stents can also comprise bioresorbable materials such as poly(amino acids), poly(anhydrides), poly(caprolactones), poly(lactic/glycolic acid) polymers, poly(hydroxybutyrates) and poly(orthoesters).
- Grafts can have various configurations as known in the art and can be fabricated, for example, from tubes, sheets or films formed into tubular shapes, woven or knitted fibers or ribbons or combinations thereof. Graft materials can include conventional medical grade materials such as nylon, polyester, polyethylene, polypropylene, polytetrafluoroethylene (including expanded polytetrafluoroethylene (“ePTFE,”)), polyvinylchloride, polyurethane and elastomeric organosilicon polymers.
- Stents can be used alone or in combination with graft materials. Stents can be configured on the external or internal surface of a graft or may be incorporated into the internal wall structure of a graft. Moreover, main and secondary conduits can incorporate various stent or support structures. For example as shown in
FIG. 15A , amain conduit 20 may compriseseparate stent segments main conduit 20. Similarly thestent segments single stent 94A extending from the firstopen end 22 to the secondopen end 24 of themain conduit 20. - Shown in
FIGS. 16A and 16B aresecondary conduits 26 tailored to be inserted intomain conduits 22 alongdirection arrows 96. As shown inFIG. 16A , asecondary conduit 26 can incorporatestents secondary conduit 26. Similarly thestent segments single stent 94B extending from the firstopen end 27 to the secondopen end 29 of thesecondary conduit 26. - Expandable conduits according to the invention can be delivered in a constrained state endoluminally by various catheter based procedures known in the art. For example self-expanding endoluminal devices can be loaded onto the distal end of a catheter, compressed and maintained in a constrained state by an external sheath. The sheath can be folded to form a tube positioned external to the compressed device. The sheath edges can be sewn together with a deployment cord that forms a “chain stitch”. Once the constrained device is positioned at a target site within a vessel the device can be deployed. In the deployed state, the device may still be constrained by the vasculature or by another device. For example a device may assume a diameter of 20 mm when fully unconstrained. This same device may be deployed into a vessel (or other device) having a lumen diameter of 15 mm and would therefore be “constrained” in the deployed state. An “un-constrained state” can therefore be defined as the state assumed by the device when there are no external forces inhibiting the full expansion of the device. A “constrained state” can therefore be defined as the state assumed by the device in the presence of external forces that inhibit the full expansion of the device. The deployed state can be defined as the state assumed by the device when expanded into a vessel or other device.
- To release and deploy the constrained device, one end of the deployment cord can be pulled to disrupt the chain stitch, allowing the sheath edges to separate and release the constrained device.
- Constraining sheaths and deployment cord stitching can be configured to release a self-expanding device in several ways. For example a constraining sheath may release a device starting from the proximal device end, terminating at the distal device end. In other configurations the device may be released starting from the distal end. Self expanding devices may also be released from the device center as the sheath disrupts towards the distal and proximal device ends. Details relating to constraining sheath materials, sheath methods of manufacture and main body compression techniques can be found in U.S. Pat. No. 6,352,561 to Leopold et al., and U.S. Pat. No. 6,551,350 Thornton et al.
- In the deployment of a secondary conduit for example, the secondary conduit can be released from a constraining sheath starting at the proximal (or hub) end of the constrained conduit. In typical procedures, the attachment portion of the secondary conduit is located about the proximal end of the conduit and in an aspect of the invention this proximal end is the first end released from a constraining sheath, thus also deploying the attachment portion.
- While particular embodiments of the present invention have been illustrated and described above, the present invention should not be limited to such particular illustrations and descriptions. It should be apparent that changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims.
Claims (91)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/835,789 US20090043376A1 (en) | 2007-08-08 | 2007-08-08 | Endoluminal Prosthetic Conduit Systems and Method of Coupling |
PCT/US2008/009290 WO2009020556A1 (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic conduit systems and method of coupling |
ES15193866.9T ES2664144T3 (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic duct systems |
ES08794953.3T ES2560277T3 (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic duct systems and coupling method |
AU2008284355A AU2008284355B2 (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic conduit systems and method of coupling |
EP08794953.3A EP2187839B1 (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic conduit systems and method of coupling |
CA2694637A CA2694637C (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic conduit systems and method of coupling |
EP15193866.9A EP3034037B1 (en) | 2007-08-08 | 2008-08-01 | Endoluminal prosthetic conduit systems |
JP2010519934A JP2010535578A (en) | 2007-08-08 | 2008-08-01 | Intraluminal prosthetic conduit system and coupling method |
US12/895,549 US8551157B2 (en) | 2007-08-08 | 2010-09-30 | Endoluminal prosthetic conduit systems and method of coupling |
US14/019,412 US8979920B2 (en) | 2007-08-08 | 2013-09-05 | Endoluminal prosthetic conduit systems and method of coupling |
JP2014088507A JP5856219B2 (en) | 2007-08-08 | 2014-04-22 | Intraluminal prosthetic conduit system and coupling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/835,789 US20090043376A1 (en) | 2007-08-08 | 2007-08-08 | Endoluminal Prosthetic Conduit Systems and Method of Coupling |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/895,549 Continuation US8551157B2 (en) | 2007-08-08 | 2010-09-30 | Endoluminal prosthetic conduit systems and method of coupling |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090043376A1 true US20090043376A1 (en) | 2009-02-12 |
Family
ID=39874002
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/835,789 Abandoned US20090043376A1 (en) | 2007-08-08 | 2007-08-08 | Endoluminal Prosthetic Conduit Systems and Method of Coupling |
US12/895,549 Active US8551157B2 (en) | 2007-08-08 | 2010-09-30 | Endoluminal prosthetic conduit systems and method of coupling |
US14/019,412 Active US8979920B2 (en) | 2007-08-08 | 2013-09-05 | Endoluminal prosthetic conduit systems and method of coupling |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/895,549 Active US8551157B2 (en) | 2007-08-08 | 2010-09-30 | Endoluminal prosthetic conduit systems and method of coupling |
US14/019,412 Active US8979920B2 (en) | 2007-08-08 | 2013-09-05 | Endoluminal prosthetic conduit systems and method of coupling |
Country Status (7)
Country | Link |
---|---|
US (3) | US20090043376A1 (en) |
EP (2) | EP3034037B1 (en) |
JP (2) | JP2010535578A (en) |
AU (1) | AU2008284355B2 (en) |
CA (1) | CA2694637C (en) |
ES (2) | ES2560277T3 (en) |
WO (1) | WO2009020556A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090255179A1 (en) * | 2008-04-12 | 2009-10-15 | Felknor Ventures, Llc | Plant retainer for retaining a plant for growth from the side or bottom of a planter |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US20090306763A1 (en) * | 2007-12-26 | 2009-12-10 | Roeder Blayne A | Low profile non-symmetrical bare alignment stents with graft |
US20110022154A1 (en) * | 2007-08-08 | 2011-01-27 | Hamer Rochelle M | Endoluminal prosthetic conduit systems and method of coupling |
US20110087318A1 (en) * | 2009-10-09 | 2011-04-14 | Daugherty John R | Bifurcated highly conformable medical device branch access |
US20110118821A1 (en) * | 2007-12-26 | 2011-05-19 | Cook Incorporated | Low profile non-symmetrical stent |
US20110130819A1 (en) * | 2009-12-01 | 2011-06-02 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US8728145B2 (en) | 2008-12-11 | 2014-05-20 | Cook Medical Technologies Llc | Low profile non-symmetrical stents and stent-grafts |
US8858613B2 (en) | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US8870946B1 (en) | 2000-12-11 | 2014-10-28 | W.L. Gore & Associates, Inc. | Method of deploying a bifurcated side-access intravascular stent graft |
US8992593B2 (en) | 2007-12-26 | 2015-03-31 | Cook Medical Technologies Llc | Apparatus and methods for deployment of a modular stent-graft system |
US9180030B2 (en) | 2007-12-26 | 2015-11-10 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US9717611B2 (en) | 2009-11-19 | 2017-08-01 | Cook Medical Technologies Llc | Stent graft and introducer assembly |
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US9757263B2 (en) | 2009-11-18 | 2017-09-12 | Cook Medical Technologies Llc | Stent graft and introducer assembly |
US10285833B2 (en) | 2012-08-10 | 2019-05-14 | Lombard Medical Limited | Stent delivery systems and associated methods |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US11602460B2 (en) * | 2020-12-15 | 2023-03-14 | Ayal Willner | Eustachian tube drug eluting stent |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10213329B2 (en) | 2011-08-12 | 2019-02-26 | W. L. Gore & Associates, Inc. | Evertable sheath devices, systems, and methods |
US9066824B2 (en) * | 2011-10-21 | 2015-06-30 | The Charlotte-Mecklenburg Hospital Authority | Method and apparatus for endovascular therapy of aortic pathology |
US9107770B2 (en) * | 2012-02-14 | 2015-08-18 | W. L. Gore & Associates, Inc. | Endoprosthesis with varying compressibility and methods of use |
US9724186B2 (en) | 2012-10-10 | 2017-08-08 | Trivascular, Inc. | Endovascular graft for aneurysms involving major branch vessels |
US9763819B1 (en) | 2013-03-05 | 2017-09-19 | W. L. Gore & Associates, Inc. | Tapered sleeve |
GB2515731A (en) * | 2013-06-18 | 2015-01-07 | Vascutek Ltd | Prosthesis |
US9907641B2 (en) | 2014-01-10 | 2018-03-06 | W. L. Gore & Associates, Inc. | Implantable intraluminal device |
US10966850B2 (en) | 2014-03-06 | 2021-04-06 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
US10765539B2 (en) * | 2015-05-27 | 2020-09-08 | W. L. Gore & Associates, Inc. | Stent graft device with anchoring members having adjustable geometries |
KR102499634B1 (en) * | 2015-11-09 | 2023-02-13 | 가부시키가이샤 와이솔재팬 | Duplexer device and substrate for mounting duplexer |
WO2019075069A1 (en) | 2017-10-11 | 2019-04-18 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
JP2021013405A (en) * | 2017-11-22 | 2021-02-12 | 川澄化学工業株式会社 | Intravascular detention tool coupling structure and intravascular detention system |
KR102572766B1 (en) | 2018-06-11 | 2023-08-30 | 보스톤 싸이엔티픽 싸이메드 인코포레이티드 | The sphincterotomy and methods for using the sphincterotomy |
CA3133857A1 (en) | 2019-03-20 | 2020-09-24 | inQB8 Medical Technologies, LLC | Aortic dissection implant |
WO2022047285A1 (en) | 2020-08-31 | 2022-03-03 | Boston Scientific Scimed, Inc. | Self expanding stent with covering |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3774615A (en) * | 1971-02-08 | 1973-11-27 | Ceskoslovenska Akademie Ved | Device for connecting or joining the ends of interrupted tubular organs in surgical operations without stitching |
US3818515A (en) * | 1972-11-13 | 1974-06-25 | W Neville | Bifurcated tracheo-bronchial prostheses |
US4728328A (en) * | 1984-10-19 | 1988-03-01 | Research Corporation | Cuffed tubular organic prostheses |
US6042605A (en) * | 1995-12-14 | 2000-03-28 | Gore Enterprose Holdings, Inc. | Kink resistant stent-graft |
US6210429B1 (en) * | 1996-11-04 | 2001-04-03 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6352561B1 (en) * | 1996-12-23 | 2002-03-05 | W. L. Gore & Associates | Implant deployment apparatus |
US6551350B1 (en) * | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US6645242B1 (en) * | 2000-12-11 | 2003-11-11 | Stephen F. Quinn | Bifurcated side-access intravascular stent graft |
US6890349B2 (en) * | 2000-10-13 | 2005-05-10 | Rex Medical, L.P. | Covered stent with side branch |
US6949121B1 (en) * | 2002-02-07 | 2005-09-27 | Sentient Engineering & Technology, Llc | Apparatus and methods for conduits and materials |
US20060247761A1 (en) * | 2003-01-14 | 2006-11-02 | The Cleveland Clinic Foundation | Branched vessel endoluminal device with fenestration |
US20080269866A1 (en) * | 2007-04-24 | 2008-10-30 | Hamer Rochelle M | Side Branched Endoluminal Prostheses and Methods fo Delivery Thereof |
US7550004B2 (en) * | 2002-08-20 | 2009-06-23 | Cook Biotech Incorporated | Endoluminal device with extracellular matrix material and methods |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6325826B1 (en) * | 1998-01-14 | 2001-12-04 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
AU737887B2 (en) * | 1997-01-29 | 2001-09-06 | Timothy A.M. Chuter | Bell-bottom modular stent-graft |
US7135037B1 (en) * | 2000-05-01 | 2006-11-14 | Endovascular Technologies, Inc. | System and method for forming a junction between elements of a modular endovascular prosthesis |
US7666221B2 (en) * | 2000-05-01 | 2010-02-23 | Endovascular Technologies, Inc. | Lock modular graft component junctions |
US7438721B2 (en) * | 2003-04-25 | 2008-10-21 | Medtronic Vascular, Inc. | Universal modular stent graft assembly to accommodate flow to collateral branches |
EP3424463A1 (en) * | 2003-11-08 | 2019-01-09 | Cook Medical Technologies LLC | Aorta and branch vessel stent grafts and system |
JP4852033B2 (en) * | 2004-03-11 | 2012-01-11 | トリバスキュラー インコーポレイテッド | Modular endovascular graft |
CA2573922C (en) * | 2004-06-15 | 2012-12-11 | Cook Incorporated | Stent graft with internal tube |
USD567763S1 (en) * | 2004-07-01 | 2008-04-29 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
AU2005282782B2 (en) * | 2004-09-02 | 2010-07-29 | Cook Medical Technologies Llc | Modular prosthesis and method for branch vessels |
US7828837B2 (en) * | 2005-02-17 | 2010-11-09 | Khoury Medical Devices, LLC. | Vascular endograft |
WO2007008533A1 (en) * | 2005-07-07 | 2007-01-18 | Med Institute, Inc. | Branch vessel stent graft |
WO2008021556A1 (en) * | 2006-08-18 | 2008-02-21 | William A. Cook Australia Pty. Ltd. | Stent graft extension |
US20090043376A1 (en) * | 2007-08-08 | 2009-02-12 | Hamer Rochelle M | Endoluminal Prosthetic Conduit Systems and Method of Coupling |
-
2007
- 2007-08-08 US US11/835,789 patent/US20090043376A1/en not_active Abandoned
-
2008
- 2008-08-01 EP EP15193866.9A patent/EP3034037B1/en active Active
- 2008-08-01 ES ES08794953.3T patent/ES2560277T3/en active Active
- 2008-08-01 JP JP2010519934A patent/JP2010535578A/en not_active Withdrawn
- 2008-08-01 CA CA2694637A patent/CA2694637C/en active Active
- 2008-08-01 WO PCT/US2008/009290 patent/WO2009020556A1/en active Application Filing
- 2008-08-01 EP EP08794953.3A patent/EP2187839B1/en active Active
- 2008-08-01 ES ES15193866.9T patent/ES2664144T3/en active Active
- 2008-08-01 AU AU2008284355A patent/AU2008284355B2/en active Active
-
2010
- 2010-09-30 US US12/895,549 patent/US8551157B2/en active Active
-
2013
- 2013-09-05 US US14/019,412 patent/US8979920B2/en active Active
-
2014
- 2014-04-22 JP JP2014088507A patent/JP5856219B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3774615A (en) * | 1971-02-08 | 1973-11-27 | Ceskoslovenska Akademie Ved | Device for connecting or joining the ends of interrupted tubular organs in surgical operations without stitching |
US3818515A (en) * | 1972-11-13 | 1974-06-25 | W Neville | Bifurcated tracheo-bronchial prostheses |
US4728328A (en) * | 1984-10-19 | 1988-03-01 | Research Corporation | Cuffed tubular organic prostheses |
US6361637B2 (en) * | 1995-12-14 | 2002-03-26 | Gore Enterprise Holdings, Inc. | Method of making a kink resistant stent-graft |
US6042605A (en) * | 1995-12-14 | 2000-03-28 | Gore Enterprose Holdings, Inc. | Kink resistant stent-graft |
US6520986B2 (en) * | 1995-12-14 | 2003-02-18 | Gore Enterprise Holdings, Inc. | Kink resistant stent-graft |
US6210429B1 (en) * | 1996-11-04 | 2001-04-03 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6352561B1 (en) * | 1996-12-23 | 2002-03-05 | W. L. Gore & Associates | Implant deployment apparatus |
US6551350B1 (en) * | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US6890349B2 (en) * | 2000-10-13 | 2005-05-10 | Rex Medical, L.P. | Covered stent with side branch |
US6645242B1 (en) * | 2000-12-11 | 2003-11-11 | Stephen F. Quinn | Bifurcated side-access intravascular stent graft |
US6949121B1 (en) * | 2002-02-07 | 2005-09-27 | Sentient Engineering & Technology, Llc | Apparatus and methods for conduits and materials |
US7550004B2 (en) * | 2002-08-20 | 2009-06-23 | Cook Biotech Incorporated | Endoluminal device with extracellular matrix material and methods |
US20060247761A1 (en) * | 2003-01-14 | 2006-11-02 | The Cleveland Clinic Foundation | Branched vessel endoluminal device with fenestration |
US20080269866A1 (en) * | 2007-04-24 | 2008-10-30 | Hamer Rochelle M | Side Branched Endoluminal Prostheses and Methods fo Delivery Thereof |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8870946B1 (en) | 2000-12-11 | 2014-10-28 | W.L. Gore & Associates, Inc. | Method of deploying a bifurcated side-access intravascular stent graft |
US11439497B2 (en) | 2001-12-20 | 2022-09-13 | Trivascular, Inc. | Advanced endovascular graft |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US8551157B2 (en) * | 2007-08-08 | 2013-10-08 | W. L. Gore & Associates, Inc. | Endoluminal prosthetic conduit systems and method of coupling |
US8979920B2 (en) | 2007-08-08 | 2015-03-17 | W. L. Gore & Associates, Inc. | Endoluminal prosthetic conduit systems and method of coupling |
US20110022154A1 (en) * | 2007-08-08 | 2011-01-27 | Hamer Rochelle M | Endoluminal prosthetic conduit systems and method of coupling |
US9993331B2 (en) | 2007-12-26 | 2018-06-12 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US9345595B2 (en) | 2007-12-26 | 2016-05-24 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US20110118821A1 (en) * | 2007-12-26 | 2011-05-19 | Cook Incorporated | Low profile non-symmetrical stent |
US10828183B2 (en) | 2007-12-26 | 2020-11-10 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US10729531B2 (en) | 2007-12-26 | 2020-08-04 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US10588736B2 (en) | 2007-12-26 | 2020-03-17 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US8574284B2 (en) | 2007-12-26 | 2013-11-05 | Cook Medical Technologies Llc | Low profile non-symmetrical bare alignment stents with graft |
US20090306763A1 (en) * | 2007-12-26 | 2009-12-10 | Roeder Blayne A | Low profile non-symmetrical bare alignment stents with graft |
US8740966B2 (en) | 2007-12-26 | 2014-06-03 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US11471263B2 (en) | 2007-12-26 | 2022-10-18 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US9980834B2 (en) | 2007-12-26 | 2018-05-29 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US20100161026A1 (en) * | 2007-12-26 | 2010-06-24 | David Brocker | Low profile non-symmetrical stent |
US8992593B2 (en) | 2007-12-26 | 2015-03-31 | Cook Medical Technologies Llc | Apparatus and methods for deployment of a modular stent-graft system |
US9180030B2 (en) | 2007-12-26 | 2015-11-10 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US9226813B2 (en) | 2007-12-26 | 2016-01-05 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US9687336B2 (en) | 2007-12-26 | 2017-06-27 | Cook Medical Technologies Llc | Low profile non-symmetrical stent |
US20090255179A1 (en) * | 2008-04-12 | 2009-10-15 | Felknor Ventures, Llc | Plant retainer for retaining a plant for growth from the side or bottom of a planter |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US8728145B2 (en) | 2008-12-11 | 2014-05-20 | Cook Medical Technologies Llc | Low profile non-symmetrical stents and stent-grafts |
US20110087319A1 (en) * | 2009-10-09 | 2011-04-14 | Hagaman Logan R | Bifurcated highly conformable medical device branch access |
EP4464277A1 (en) | 2009-10-09 | 2024-11-20 | W. L. Gore & Associates, Inc. | Stent graft |
US9827118B2 (en) | 2009-10-09 | 2017-11-28 | W. L. Gore & Associates, Inc. | Bifurcated highly conformable medical device branch access |
US20110087318A1 (en) * | 2009-10-09 | 2011-04-14 | Daugherty John R | Bifurcated highly conformable medical device branch access |
EP3067014A1 (en) | 2009-10-09 | 2016-09-14 | W.L. Gore & Associates, Inc. | Bifurcated highly conformable medical device branch access |
EP3610832A1 (en) | 2009-10-09 | 2020-02-19 | W.L. Gore & Associates, Inc. | Stent graft |
WO2011044459A2 (en) | 2009-10-09 | 2011-04-14 | Gore Enterprise Holdings, Inc. | Bifurcated highly conformable medical device branch access |
US8474120B2 (en) | 2009-10-09 | 2013-07-02 | W. L. Gore & Associates, Inc. | Bifurcated highly conformable medical device branch access |
US9757263B2 (en) | 2009-11-18 | 2017-09-12 | Cook Medical Technologies Llc | Stent graft and introducer assembly |
US9717611B2 (en) | 2009-11-19 | 2017-08-01 | Cook Medical Technologies Llc | Stent graft and introducer assembly |
US9572652B2 (en) | 2009-12-01 | 2017-02-21 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US20110130819A1 (en) * | 2009-12-01 | 2011-06-02 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US8858613B2 (en) | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US10285833B2 (en) | 2012-08-10 | 2019-05-14 | Lombard Medical Limited | Stent delivery systems and associated methods |
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US11602460B2 (en) * | 2020-12-15 | 2023-03-14 | Ayal Willner | Eustachian tube drug eluting stent |
Also Published As
Publication number | Publication date |
---|---|
AU2008284355B2 (en) | 2012-11-29 |
CA2694637A1 (en) | 2009-02-12 |
WO2009020556A1 (en) | 2009-02-12 |
US20110022154A1 (en) | 2011-01-27 |
JP2014144373A (en) | 2014-08-14 |
JP2010535578A (en) | 2010-11-25 |
EP3034037B1 (en) | 2018-01-31 |
JP5856219B2 (en) | 2016-02-09 |
CA2694637C (en) | 2014-07-08 |
US20140005765A1 (en) | 2014-01-02 |
US8979920B2 (en) | 2015-03-17 |
EP2187839A1 (en) | 2010-05-26 |
AU2008284355A1 (en) | 2009-02-12 |
EP3034037A1 (en) | 2016-06-22 |
EP2187839B1 (en) | 2015-11-11 |
ES2560277T3 (en) | 2016-02-18 |
ES2664144T3 (en) | 2018-04-18 |
US8551157B2 (en) | 2013-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8979920B2 (en) | Endoluminal prosthetic conduit systems and method of coupling | |
US11628079B2 (en) | Controlled deployable medical device and method of making the same | |
US7232459B2 (en) | Thoracic aortic aneurysm stent graft | |
US9907683B2 (en) | Controlled deployable medical device and method of making the same | |
EP2349084B1 (en) | Stent graft fixation coupling | |
EP2055264B1 (en) | Percutaneous endoprosthesis using suprarenal fixation and barbed anchors | |
US8518096B2 (en) | Elephant trunk thoracic endograft and delivery system | |
EP0964658B1 (en) | Kink resistant bifurcated prosthesis | |
US7556643B2 (en) | Graft inside stent | |
WO2003039621A9 (en) | Interlocking endoluminal stent-graft | |
GB2515731A (en) | Prosthesis | |
AU2013201110B2 (en) | Endoluminal prosthetic conduit systems and method of coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GORE ENTERPRISE HOLDINGS, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMER, ROCHELLE M., MS.;ZUKOWSKI, STANISLAW L., MR.;REEL/FRAME:019666/0960 Effective date: 20070807 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508 Effective date: 20120130 |