US20090036333A1 - Metalworking Fluid Compositions and Preparation Thereof - Google Patents
Metalworking Fluid Compositions and Preparation Thereof Download PDFInfo
- Publication number
- US20090036333A1 US20090036333A1 US11/831,910 US83191007A US2009036333A1 US 20090036333 A1 US20090036333 A1 US 20090036333A1 US 83191007 A US83191007 A US 83191007A US 2009036333 A1 US2009036333 A1 US 2009036333A1
- Authority
- US
- United States
- Prior art keywords
- base oil
- metalworking fluid
- less
- kinematic viscosity
- molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 109
- 238000005555 metalworking Methods 0.000 title claims abstract description 95
- 239000000203 mixture Substances 0.000 title claims abstract description 44
- 239000002199 base oil Substances 0.000 claims abstract description 124
- 239000003595 mist Substances 0.000 claims abstract description 66
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 40
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 42
- 239000000654 additive Substances 0.000 claims description 40
- 238000012360 testing method Methods 0.000 claims description 33
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 239000000314 lubricant Substances 0.000 claims description 24
- 230000000996 additive effect Effects 0.000 claims description 23
- 239000000443 aerosol Substances 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 238000009825 accumulation Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 11
- 239000003112 inhibitor Substances 0.000 claims description 10
- 230000001050 lubricating effect Effects 0.000 claims description 8
- 239000003963 antioxidant agent Substances 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 239000006078 metal deactivator Substances 0.000 claims description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 5
- 230000000844 anti-bacterial effect Effects 0.000 claims description 5
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 5
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 5
- 230000000845 anti-microbial effect Effects 0.000 claims description 5
- 230000002421 anti-septic effect Effects 0.000 claims description 5
- 239000013556 antirust agent Substances 0.000 claims description 5
- 229940064004 antiseptic throat preparations Drugs 0.000 claims description 5
- 239000003899 bactericide agent Substances 0.000 claims description 5
- 239000002738 chelating agent Substances 0.000 claims description 5
- 238000005187 foaming Methods 0.000 abstract description 10
- 239000003921 oil Substances 0.000 description 50
- -1 naphtha Substances 0.000 description 29
- 150000001336 alkenes Chemical class 0.000 description 27
- 239000006260 foam Substances 0.000 description 27
- 150000002430 hydrocarbons Chemical class 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 239000001993 wax Substances 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 16
- 229930195733 hydrocarbon Natural products 0.000 description 16
- 239000000523 sample Substances 0.000 description 14
- 239000004215 Carbon black (E152) Substances 0.000 description 13
- 238000005481 NMR spectroscopy Methods 0.000 description 13
- 238000002397 field ionisation mass spectrometry Methods 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229920013639 polyalphaolefin Polymers 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000002173 cutting fluid Substances 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 229930195734 saturated hydrocarbon Natural products 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- XILIYVSXLSWUAI-UHFFFAOYSA-N 2-(diethylamino)ethyl n'-phenylcarbamimidothioate;dihydrobromide Chemical compound Br.Br.CCN(CC)CCSC(N)=NC1=CC=CC=C1 XILIYVSXLSWUAI-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 6
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 125000002950 monocyclic group Chemical group 0.000 description 4
- 239000010695 polyglycol Substances 0.000 description 4
- 229920000151 polyglycol Polymers 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000005864 Sulphur Substances 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 239000013530 defoamer Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- ZUQAPLKKNAQJAU-UHFFFAOYSA-N acetylenediol Chemical class OC#CO ZUQAPLKKNAQJAU-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 125000000746 allylic group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000010730 cutting oil Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000007655 standard test method Methods 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical class C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- BZJTUOGZUKFLQT-UHFFFAOYSA-N 1,3,5,7-tetramethylcyclooctane Chemical group CC1CC(C)CC(C)CC(C)C1 BZJTUOGZUKFLQT-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SHMVRUMGFMGYGG-UHFFFAOYSA-N [Mo].S=O Chemical compound [Mo].S=O SHMVRUMGFMGYGG-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003831 antifriction material Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- MJSNUBOCVAKFIJ-LNTINUHCSA-N chromium;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Cr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MJSNUBOCVAKFIJ-LNTINUHCSA-N 0.000 description 1
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- QTVNPOYQACGTQJ-UHFFFAOYSA-B dioxido-sulfanylidene-sulfido-lambda5-phosphane molybdenum(4+) sulfur monoxide Chemical compound P(=S)([S-])([O-])[O-].O=S.[Mo+4].P(=S)([S-])([O-])[O-].P(=S)([S-])([O-])[O-].P(=S)([S-])([O-])[O-].[Mo+4].[Mo+4] QTVNPOYQACGTQJ-UHFFFAOYSA-B 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000002518 distortionless enhancement with polarization transfer Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- XCPXWEJIDZSUMF-UHFFFAOYSA-M sodium;dioctyl phosphate Chemical class [Na+].CCCCCCCCOP([O-])(=O)OCCCCCCCC XCPXWEJIDZSUMF-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical class OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/106—Naphthenic fractions
- C10M2203/1065—Naphthenic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/011—Cloud point
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/065—Saturated Compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/071—Branched chain compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/18—Anti-foaming property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/24—Emulsion properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/30—Anti-misting
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/64—Environmental friendly compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/74—Noack Volatility
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
Definitions
- the invention relates generally to metalworking compositions exhibiting improved anti-mist properties, having a low foaming tendency and excellent air release properties.
- machining or metalworking fluids are employed.
- Metalworking fluids are used as cutting oils, rolling oils, drawing oils, pressing oils, forging oils, abrasive working oils for aluminium disks, abrasive oils for silicon wafers and coolants.
- Foaming is undesirable because it may reduce cooling at the workpiece-tool contact zone and causes containment transport and control problems.
- Various methods or strategies have been implemented to eliminate or reduce foaming, including the addition of foam control agent(s) when manufacturing the product or while the fluid is in-service.
- foam control agent(s) such as such as silicon-based foam inhibitors leaves residues on machined parts, making it rather difficult to subsequently paint the parts. Additionally for some foam control agent(s), their use is generally found to worsen the metalworking fluid's air release properties. Poor air release properties can lead to air entrainment issues and cavitation.
- Recent reforming processes have formed a new class of oil, e.g., Fischer Tropsch base oil (FTBO), wherein the oil, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process.
- FTBO Fischer Tropsch base oil
- the feedstock for a Fischer-Tropsch process may come from a wide variety of hydrocarbonaceous resources, including biomass, natural gas, coal, shale oil, petroleum, municipal waste, derivatives of these, and combinations thereof.
- Crude product prepared from the Fischer-Tropsch process can be refined into products such as diesel oil, naphtha, wax, and other liquid petroleum or specialty products.
- an isomerized base oil is produced from a process in which the feed is a waxy feed recovered from a Fischer-Tropsch synthesis.
- the process comprises a complete or partial hydroisomerization dewaxing step, using a dual-functional catalyst or a catalyst that can isomerize paraffins selectively.
- Hydroisomerization dewaxing is achieved by contacting the waxy feed with a hydroisomerization catalyst in an isomerization zone under hydroisomerizing conditions.
- a metalworking fluid comprising a lubricant base oil having consecutive numbers of carbon atoms and less than 10 wt % naphthenic carbon by n-d-M; and 0.10 to 10 wt. %.
- the metalworking fluid has an average mist accumulation rate of less than 300 mg/mm 3 within 30 seconds after start in an aerosol mist formation test.
- the metalworking fluid has an average mist accumulation rate of less than 150 mg/mm 3 in the first 60 seconds of the test.
- a method to reduce the mist formation in a metalworking fluid comprising blending a composition comprising a lubricant base oil having consecutive numbers of carbon atoms and less than 10 wt % naphthenic carbon by n-d-M; and 0.10 to 10 wt. %.
- metalworking fluid additive package metal deactivators; corrosion inhibitors; antimicrobial; anticorrosion; extreme pressure agents; antifriction; antirust agents; polymeric substances; anti inflammatory agents; bactericides; antiseptics; antioxidants; chelating agents such as edetic acid salts, and the like; pH regulators; antiwear agents; and mixtures thereof, for a metalworking fluid having an average mist accumulation rate of less than 300 mg/mm 3 within 30 seconds after start in an aerosol mist formation test
- FIGS. 1-3 are graphs illustrating the mist accumulation rates of Examples 7-13 in an aerosol mist formation test.
- metalworking fluid may be used interchangeably with “metalworking composition,” “metal removal fluid,” “cutting fluid,” “machining fluid,” referring to a composition that can be used in industrial metal cutting, metal forming, metal protecting, metal treating, metal grinding operations or in the semiconductor industry wherein the shape of the final object, e.g., silicon wafer or machine part, is obtained by with or without the progressive removal of metal or silicon.
- Metalworking fluids amongst other functions, are used to cool and to lubricate.
- Fischer-Tropsch derived means that the product, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process.
- Fischer-Tropsch base oil may be used interchangeably with “FT base oil,” “FTBO,” “GTL base oil” (GTL: gas-to-liquid), or “Fischer-Tropsch derived base oil.”
- isomerized base oil refers to a base oil made by isomerization of a waxy feed.
- a “waxy feed” comprises at least 40 wt % n-paraffins. In one embodiment, the waxy feed comprises greater than 50 wt % n-paraffins. In another embodiment, greater than 75 wt % n-paraffins. In one embodiment, the waxy feed also has very low levels of nitrogen and sulphur, e.g., less than 25 ppm total combined nitrogen and sulfur, or in other embodiments less than 20 ppm.
- waxy feeds examples include slack waxes, deoiled slack waxes, refined foots oils, waxy lubricant raffinates, n-paraffin waxes, NAO waxes, waxes produced in chemical plant processes, deoiled petroleum derived waxes, microcrystalline waxes, Fischer-Tropsch waxes, and mixtures thereof.
- the waxy feeds have a pour point of greater than 50° C. In another embodiment, greater than 60° C.
- “Kinematic viscosity” is a measurement in mm 2 /S of the resistance to flow of a fluid under gravity, determined by ASTM D445-06.
- Viscosity index (VI) is an empirical, unit-less number indicating the effect of temperature change on the kinematic viscosity of the oil. The higher the VI of an oil, the lower its tendency to change viscosity with temperature. Viscosity index is measured according to ASTM D 2270-04.
- CCS VIS Cold-cranking simulator apparent viscosity
- the boiling range distribution of base oil is determined by simulated distillation (SIMDIS) according to ASTM D 6352-04, “Boiling Range Distribution of Petroleum Distillates in Boiling Range from 174 to 700° C. by Gas Chromatography.”
- Noack volatility is defined as the mass of oil, expressed in weight %, which is lost when the oil is heated at 250° C. with a constant flow of air drawn through it for 60 min., measured according to ASTM D5800-05, Procedure B.
- Brookfield viscosity is used to determine the internal fluid-friction of a lubricant during cold temperature operation, which can be measured by ASTM D 2983-04.
- Pul point is a measurement of the temperature at which a sample of base oil will begin to flow under certain carefully controlled conditions, which can be determined as described in ASTM D 5950-02.
- Auto ignition temperature is the temperature at which a fluid will ignite spontaneously in contact with air, which can be determined according to ASTM 659-78.
- consecutive numbers of carbon atoms means that the base oil has a distribution of hydrocarbon molecules over a range of carbon numbers, with every number of carbon numbers in-between.
- the base oil may have hydrocarbon molecules ranging from C22 to C36 or from C30 to C60 with every carbon number in-between.
- the hydrocarbon molecules of the base oil differ from each other by consecutive numbers of carbon atoms, as a consequence of the waxy feed also having consecutive numbers of carbon atoms.
- the source of carbon atoms is CO and the hydrocarbon molecules are built up one carbon atom at a time. Petroleum-derived waxy feeds have consecutive numbers of carbon atoms.
- PAO poly-alpha-olefin
- the molecules of an isomerized base oil have a more linear structure, comprising a relatively long backbone with short branches.
- the classic textbook description of a PAO is a star-shaped molecule, and in particular tridecane, which is illustrated as three decane molecules attached at a central point. While a star-shaped molecule is theoretical, nevertheless PAO molecules have fewer and longer branches that the hydrocarbon molecules that make up the isomerized base oil disclosed herein.
- “Molecules with cycloparaffinic functionality” mean any molecule that is, or contains as one or more substituents, a monocyclic or a fused multicyclic saturated hydrocarbon group.
- “Molecules with monocycloparaffinic functionality” mean any molecule that is a monocyclic saturated hydrocarbon group of three to seven ring carbons or any molecule that is substituted with a single monocyclic saturated hydrocarbon group of three to seven ring carbons.
- “Molecules with multicycloparaffinic functionality” mean any molecule that is a fused multicyclic saturated hydrocarbon ring group of two or more fused rings, any molecule that is substituted with one or more fused multicyclic saturated hydrocarbon ring groups of two or more fused rings, or any molecule that is substituted with more than one monocyclic saturated hydrocarbon group of three to seven ring carbons.
- Molecules with cycloparaffinic functionality, molecules with monocycloparaffinic functionality, and molecules with multicycloparaffinic functionality are reported as weight percent and are determined by a combination of Field Ionization Mass Spectroscopy (FIMS), HPLC-UV for aromatics, and Proton NMR for olefins, further fully described herein.
- FIMS Field Ionization Mass Spectroscopy
- Oxidator BN measures the response of a lubricating oil in a simulated application. High values, or long times to adsorb one liter of oxygen, indicate good stability. Oxidator BN can be measured via a Domte-type oxygen absorption apparatus (R. W. Dornte “Oxidation of White Oils,” Industrial and Engineering Chemistry, Vol. 28, page 26, 1936), under 1 atmosphere of pure oxygen at 340° F., time to absorb 1000 ml of O 2 by 100 g. of oil is reported. In the Oxidator BN test, 0.8 ml of catalyst is used per 100 grams of oil. The catalyst is a mixture of soluble metal-naphthenates simulating the average metal analysis of used crankcase oil. The additive package is 80 millimoles of zinc bispolypropylenephenyldithiophosphate per 100 grams of oil.
- Molecular characterizations can be performed by methods known in the art, including Field Ionization Mass Spectroscopy (FIMS) and n-d-M analysis (ASTM D 3238-95 (Re-approved 2005)).
- FIMS Field Ionization Mass Spectroscopy
- ASTM D 3238-95 Re-approved 2005
- the base oil is characterized as alkanes and molecules with different numbers of unsaturations.
- the molecules with different numbers of unsaturations may be comprised of cycloparaffins, olefins, and aromatics. If aromatics are present in significant amount, they would be identified as 4-unsaturations. When olefins are present in significant amounts, they would be identified as 1-unsaturations.
- the total of the 1-unsaturations, 2-unsaturations, 3-unsaturations, 4-unsaturations, 5-unsaturations, and 6-unsaturations from the FIMS analysis, minus the wt % olefins by proton NMR, and minus the wt % aromatics by HPLC-UV is the total weight percent of molecules with cycloparaffinic functionality. If the aromatics content was not measured, it was assumed to be less than 0.1 wt % and not included in the calculation for total weight percent of molecules with cycloparaffinic functionality.
- the total weight percent of molecules with cycloparaffinic functionality is the sum of the weight percent of molecules with monocyclopraffinic functionality and the weight percent of molecules with multicycloparaffinic functionality.
- Molecular weights are determined by ASTM D2503-92 (Reapproved 2002). The method uses thermoelectric measurement of vapour pressure (VPO). In circumstances where there is insufficient sample volume, an alternative method of ASTM D2502-04 may be used; and where this has been used it is indicated.
- VPO vapour pressure
- Density is determined by ASTM D4052-96 (Reapproved 2002). The sample is introduced into an oscillating sample tube and the change in oscillating frequency caused by the change in the mass of the tube is used in conjunction with calibration data to determine the density of the sample.
- Weight percent olefins can be determined by proton-NMR according to the steps specified herein.
- the olefins are conventional olefins, i.e. a distributed mixture of those olefin types having hydrogens attached to the double bond carbons such as: alpha, vinylidene, cis, trans, and tri-substituted, with a detectable allylic to olefin integral ratio between 1 and 2.5. When this ratio exceeds 3, it indicates a higher percentage of tri or tetra substituted olefins being present, thus other assumptions known in the analytical art can be made to calculate the number of double bonds in the sample.
- the steps are as follows: A) Prepare a solution of 5-10% of the test hydrocarbon in deuterochloroform. B) Acquire a normal proton spectrum of at least 12 ppm spectral width and accurately reference the chemical shift (ppm) axis, with the instrument having sufficient gain range to acquire a signal without overloading the receiver/ADC, e.g., when a 30 degree pulse is applied, the instrument having a minimum signal digitization dynamic range of 65,000. In one embodiment, the instrument has a dynamic range of at least 260,000. C) Measure the integral intensities between: 6.0-4.5 ppm (olefin); 2.2-1.9 ppm (allylic); and 1.9-0.5 ppm (saturate).
- the wt % olefins by proton NMR 100 times the number of double bonds times the number of hydrogens in a typical olefin molecule divided by the number of hydrogens in a typical test substance molecule.
- the wt % olefins by proton NMR calculation procedure, D works particularly well when the percent olefins result is low, less than 15 wt %.
- Weight percent aromatics in one embodiment can be measured by HPLC-UV.
- the test is conducted using a Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography (HPLC) system, coupled with a HP 1050 Diode-Array UV-V is detector interfaced to an HP Chem-station.
- HPLC Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography
- HP 1050 Diode-Array UV-V is detector interfaced to an HP Chem-station.
- Identification of the individual aromatic classes in the highly saturated base oil can be made on the basis of the UV spectral pattern and the elution time.
- the amino column used for this analysis differentiates aromatic molecules largely on the basis of their ring-number (or double-bond number). Thus, the single ring aromatic containing molecules elute first, followed by the polycyclic aromatics in order of increasing double bond number per molecule.
- HPLC-UV Calibration can be used for identifying classes of aromatic compounds even at very low levels, e.g., multi-ring aromatics typically absorb 10 to 200 times more strongly than single-ring aromatics. Alkyl-substitution affects absorption by 20%. Integration limits for the co-eluting 1-ring and 2-ring aromatics at 272 nm can be made by the perpendicular drop method. Wavelength dependent response factors for each general aromatic class can be first determined by constructing Beer's Law plots from pure model compound mixtures based on the nearest spectral peak absorbances to the substituted aromatic analogs. Weight percent concentrations of aromatics can be calculated by assuming that the average molecular weight for each aromatic class was approximately equal to the average molecular weight for the whole base oil sample.
- the weight percent of all molecules with at least one aromatic function in the purified mono-aromatic standard can be confirmed via long-duration carbon 13 NMR analysis.
- the NMR results can be translated from % aromatic carbon to % aromatic molecules (to be consistent with HPLC-UV and D 2007) knowing that 95-99% of the aromatics in highly saturated base oils are single-ring aromatics.
- the standard D 5292-99 (Reapproved 2004) method can be modified to give a minimum carbon sensitivity of 500:1 (by ASTM standard practice E 386) with a 15-hour duration run on a 400-500 MHz NMR with a 10-12 mm Nalorac probe.
- Acorn PC integration software can be used to define the shape of the baseline and consistently integrate.
- Extent of branching refers to the number of alkyl branches in hydrocarbons.
- Branching and branching position can be determined using carbon-13 ( 13 C) NMR according to the following nine-step process: 1) Identify the CH branch centers and the CH 3 branch termination points using the DEPT Pulse sequence (Doddrell, D. T.; D. T. Pegg; M. R. Bendall, Journal of Magnetic Resonance 1982, 48, 323ff.). 2) Verify the absence of carbons initiating multiple branches (quaternary carbons) using the APT pulse sequence (Patt, S. L.; J. N. Shoolery, Journal of Magnetic Resonance 1982, 46, 535ff.).
- % in chloroform-d1 are excited by 30 degrees pulses followed by a 1.3 seconds (sec.) acquisition time.
- the broadband proton inverse-gated decoupling is used during a 6 sec. delay prior to the excitation pulse and on during acquisition.
- Samples are doped with 0.03 to 0.05 M Cr (acac) 3 (tris (acetylacetonato)-chromium (III)) as a relaxation agent to ensure full intensities are observed.
- the DEPT and APT sequences can be carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals.
- DEPT is Distortionless Enhancement by Polarization Transfer.
- the DEPT 45 sequence gives a signal all carbons bonded to protons.
- DEPT 90 shows CH carbons only.
- DEPT 135 shows CH and CH 3 up and CH 2 180 degrees out of phase (down).
- APT is attached proton test, known in the art. It allows all carbons to be seen, but if CH and CH 3 are up, then quaternaries and CH 2 are down.
- the branching properties of the sample can be determined by 13 C NMR using the assumption in the calculations that the entire sample was iso-paraffinic.
- the unsaturates content may be measured using Field Ionization Mass Spectroscopy (FIMS).
- the metalworking fluid comprises a number of components, including optional additives, in a matrix of base oil.
- the base oil or blends thereof forming the matrix comprises at least an isomerized base oil which the product itself, its fraction, or feed originates from or is produced at some stage by isomerization of a waxy feed from a Fischer-Tropsch process (“Fischer-Tropsch derived base oils”).
- the base oil comprises at least an isomerized base oil made from a substantially paraffinic wax feed (“waxy feed”).
- the base oil consists essentially of at least an isomerized base oil.
- Fischer-Tropsch derived base oils are disclosed in a number of patent publications, including for example U.S. Pat. Nos. 6,080,301, 6,090,989, and 6,165,949, and US Patent Publication No. US2004/0079678A1, US20050133409, US20060289337.
- the Fischer-Tropsch process is a catalyzed chemical reaction in which carbon monoxide and hydrogen are converted into liquid hydrocarbons of various forms including a light reaction product and a waxy reaction product, with both being substantially paraffinic.
- the isomerized base oil has consecutive numbers of carbon atoms and has less than 10 wt % naphthenic carbon by n-d-M.
- the isomerized base oil made from a waxy feed has a kinematic viscosity at 100° C. between 1.5 and 3.5 mm 2 /s.
- the isomerized base oil is made by a process in which the hydroisomerization dewaxing is performed at conditions sufficient for the base oil to have: a) a weight percent of all molecules with at least one aromatic functionality less than 0.30; b) a weight percent of all molecules with at least one cycloparaffinic functionality greater than 10; c) a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality greater than 20 and d) a viscosity index greater than 28 ⁇ Ln (Kinematic viscosity at 100° C.)+80.
- the isomerized base oil is made from a process in which the highly paraffinic wax is hydroisomerized using a shape selective intermediate pore size molecular sieve comprising a noble metal hydrogenation component, and under conditions of 600-750° F. (315-399° C.) In the process, the conditions for hydroisomerization are controlled such that the conversion of the compounds boiling above 700° F. (371° C.) in the wax feed to compounds boiling below 700° F. (371° C.) is maintained between 10 wt % and 50 wt %.
- a resulting isomerized base oil has a kinematic viscosity of between 1.0 and 3.5 mm 2 /s at 100° C. and a Noack volatility of less than 50 weight %.
- the base oil comprises greater than 3 weight % molecules with cycloparaffinic functionality and less than 0.30 weight percent aromatics.
- the isomerized base oil has a Noack volatility less than an amount calculated by the following equation: 1000 ⁇ (Kinematic Viscosity at 100° C.) ⁇ 2.7 .
- the isomerized base oil has a Noack volatility less than an amount calculated by the following equation: 900 ⁇ (Kinematic Vicosity at 100° C.) ⁇ 2.8 .
- the isomerized base oil has a Kinematic Vicosity at 100° C.
- the isomerized base oil has a kinematic viscosity at 100° C. of less than 4.0 mm 2 /s, and a wt % Noack volatility between 0 and 100.
- the isomerized base oil has a kinematic viscosity between 1.5 and 4.0 mm 2 /s and a Noack volatility less than the Noack volatility calculated by the following equation: 160 ⁇ 40 (Kinematic Viscosity at 100° C.).
- the isomerized base oil has a kinematic viscosity at 100° C. in the range of 2.4 and 3.8 mm 2 /s and a Noack volatility less than an amount defined by the equation: 900 ⁇ (Kinematic Viscosity at 100° C.) ⁇ 2.8 ⁇ 15).
- the equation: 900 ⁇ (Kinematic Viscosity at 100° C.) ⁇ 2.8 ⁇ 15) provides a lower Noack volatility than the equation: 160 ⁇ 40 (Kinematic Viscosity at 100° C.)
- the isomerized base oil is made from a process in which the highly paraffinic wax is hydroisomerized under conditions for the base oil to have a kinematic viscosity at 100° C. of 3.6 to 4.2 mm 2 /s, a viscosity index of greater than 130, a wt % Noack volatility less than 12, a pour point of less than ⁇ 9° C.
- AIT in ° C. 1.6 ⁇ (Kinematic Viscosity at 40° C., in mm2/s)+300.
- the base oil as an AIT of greater than 329° C. and a viscosity index greater than 28 ⁇ Ln (Kinematic Viscosity at 100° C., in mm 2 /s)+100.
- the isomerized base oil has a traction coefficient of less than 0.023 (or less than 0.021) when measured at a kinematic viscosity of 15 mm 2 /s and at a slide to roll ratio of 40%.
- the isomerized base oil has a traction coefficient of less than 0.017 when measured at a kinematic viscosity of 15 mm 2 /s and at a slide to roll ratio of 40%. In another embodiment the isomerized base oil has a viscosity index greater than 150 and a traction coefficient less than 0.015 when measured at a kinematic viscosity of 15 mm 2 /s and at a slide to roll ratio of 40 percent.
- the isomerized base oil having low traction coefficients also displays a higher kinematic viscosity and higher boiling points.
- the base oil has a traction coefficient less than 0.015, and a 50 wt % boiling point greater than 565° C. (1050° F.).
- the base oil has a traction coefficient less than 0.011 and a 50 wt % boiling point by ASTM D 6352-04 greater than 582° C. (1080° F.).
- the isomerized base oil having low traction coefficients also displays unique branching properties by NMR, including a branching index less than or equal to 23.4, a branching proximity greater than or equal to 22.0, and a Free Carbon Index between 9 and 30.
- the base oil has at least 4 wt % naphthenic carbon, in another embodiment, at least 5 wt % naphthenic carbon by n-d-M analysis by ASTM D 3238-95 (Reapproved 2005).
- the isomerized base oil is produced in a process wherein the intermediate oil isomerate comprises paraffinic hydrocarbon components, and in which the extent of branching is less than 7 alkyl branches per 100 carbons, and wherein the base oil comprises paraffinic hydrocarbon components in which the extent of branching is less than 8 alkyl branches per 100 carbons and less than 20 wt % of the alkyl branches are at the 2 position.
- the base oil comprises greater than 10 wt. % and less than 70 wt. % total molecules with cycloparaffinic functionality, and a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality greater than 15.
- the isomerized base oil has an average molecular weight between 600 and 1100, and an average degree of branching in the molecules between 6.5 and 10 alkyl branches per 100 carbon atoms. In another embodiment, the isomerized base oil has a kinematic viscosity between about 8 and about 25 mm 2 /s and an average degree of branching in the molecules between 6.5 and 10 alkyl branches per 100 carbon atoms.
- the isomerized base oil is obtained from a process in which the highly paraffinic wax is hydroisomerized at a hydrogen to feed ratio from 712.4 to 3562 liter H 2 /liter oil, for the base oil to have a total weight percent of molecules with cycloparaffinic functionality of greater than 10, and a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality of greater than 15.
- the base oil has a viscosity index greater than an amount defined by the equation: 28 ⁇ Ln (Kinematic viscosity at 100° C.)+95.
- the base oil comprises a weight percent aromatics less than 0.30; a weight percent of molecules with cycloparaffinic functionality greater than 10; a ratio of weight percent of molecules with monocycloparaffinic functionality to weight percent of molecules with multicycloparaffinic functionality greater than 20; and a viscosity index greater than 28 ⁇ Ln (Kinematic Viscosity at 100° C.)+110.
- the base oil further has a kinematic viscosity at 100° C. greater than 6 mm 2 /s.
- the base oil has a weight percent aromatics less than 0.05 and a viscosity index greater than 28 ⁇ Ln (Kinematic Viscosity at 100° C.)+95.
- the base oil has a weight percent aromatics less than 0.30, a weight percent molecules with cycloparaffinic functionality greater than the kinematic viscosity at 100° C., in mm 2 /s, multiplied by three, and a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 15.
- the isomerized base oil contains between 2 and 10% naphthenic carbon as measured by n-d-M.
- the base oil has a kinematic viscosity of 1.5-3.0 mm 2 /s at 100° C. and 2-3% naphthenic carbon.
- the isomerized base oil has an average molecular weight greater than 475; a viscosity index greater than 140, and a weight percent olefins less than 10.
- the base oil improves the air release and low foaming characteristics of the mixture when incorporated into the metalworking fluid.
- the isomerized base oil is a FT base oil having a kinematic viscosity at 100° C. between 2 mm 2 /s and 6 mm 2 /S; a kinematic viscosity at 40° C. between 7 mm 2 /s and 20 mm 2 /S; CCS viscosity of less than 2300 mPa ⁇ s at ⁇ 35° C.; pour point in the range of ⁇ 20 and ⁇ 40° C.; molecular weight of 300-500; density in the range of 0.800 to 0.820; paraffinic carbon in the range of 93-97%; naphthenic carbon in the range of 3-7%; Oxidator BN of 30 to 60 hours; and Noack volatility in wt. % of 8 to 20 as measured by ASTM D5800-05 Procedure B.
- the isomerized base oil is a FT base oil of “light” range viscosity having a kinematic viscosity at 100° C. between 2 mm 2 /s and 3 mm 2 /S; a kinematic viscosity at 40° C.
- the isomerized base oil is a FT base oil of “medium” range viscosity, having a kinematic viscosity at 100° C.
- the base oil comprises a mixture of “light” and “medium” range viscosity FT base oils.
- the metalworking fluid employs at least one of the isomerized base oils described above.
- the composition consists essentially of at least a Fischer-Tropsch base oil.
- the metalworking fluid employs at least an isomerized based oil as the base oil matrix and optionally 5 to 95 wt. % of at least another type of oil, e.g., lubricant base oils selected from Group I, II, III, IV, and V lubricant base oils as defined in the API Interchange Guidelines, and mixtures thereof.
- the metalworking fluid employs an isomerized based oil and 5 to 20 wt. % of at least another type of oil.
- Mineral lubricating oil base stocks can be any conventionally refined base stocks derived from paraffinic, naphthenic and mixed base crudes.
- Synthetic lubricating oils that can be used include esters of glycols and complex esters.
- synthetic oils that can be used include synthetic hydrocarbons such as polyalphaolefins; alkyl benzenes, e.g., alkylate bottoms from the alkylation of benzene with tetrapropylene, or the copolymers of ethylene and propylene; silicone oils, e.g., ethyl phenyl polysiloxanes, methyl polysiloxanes, etc., polyglycol oils, e.g., those obtained by condensing butyl alcohol with propylene oxide; etc.
- Other suitable synthetic oils include the polyphenyl ethers, e.g., those having from 3 to 7 ether linkages and 4 to 8 phenyl groups.
- Other suitable synthetic oils include polyisobutenes, and alkylated aromatics such as alkylated naphthalenes.
- the metalworking fluid in one embodiment is characterized as having reduced mist formation, lower foaming tendency, and better air release properties compared to compositions of the prior art.
- the metalworking fluid may contain applicable additives known in the art to improve the properties of the composition in amounts ranging from 0.10 to 10 wt. %.
- additives include metal deactivators; corrosion inhibitors; antimicrobial; anticorrosion; extreme pressure agents; antifriction; antirust agents; polymeric substances; anti inflammatory agents; bactericides; antiseptics; antioxidants; chelating agents such as edetic acid salts, and the like; pH regulators; antiwear agents including active sulphur anti-wear additive packages and the like; a metalworking fluid additive package containing at least one of the aforementioned additives.
- Non-limiting examples include rhamsan gum, hydrophobic and hydrophilic monomers, styrene or hydrocarbyl-substituted styrene hydrophobic monomers and hydrophilic monomers, oil soluble organic polymers ranging in molecular weight (viscosity average molecular weight) from about 0.3 to over 4 million such as isobutylene, styrene, alkyl methacrylate, ethylene, propylene, n-butylene vinyl acetate, etc. In one embodiment, polymethylmethacrylate or poly(ethylene, propylene, butylene or isobutylene) in the molecular weight range 1 to 3 million is used.
- small amount of foam inhibitors in the prior art can also be added to the composition in an amount ranging from 0.05 to 15.0 wt. %.
- Non-limiting examples include polydimethylsiloxanes, often trimethylsilyl terminated, alkyl polymethacrylates, polymethylsiloxanes, an N-acylamino acid having a long chain acyl group and/or a salt thereof, an N-alkylamino acid having a long chain alkyl group and/or a salt thereof used concurrently with an alkylalkylene oxide and/or an acylalkylene oxide, acetylene diols and ethoxylated acetylene diols, silicones, hydrophobic materials (e.g.
- silica fatty amides, fatty acids, fatty acid esters, and/or organic polymers, modified siloxanes, polyglycols, esterified or modified polyglycols, polyacrylates, fatty acids, fatty acid esters, fatty alcohols, fatty alcohol esters, oxo-alcohols, fluorosurfactants, waxes such as ethylenebistereamide wax, polyethylene wax, polypropylene wax, ethylenebisstereamide wax, and paraffinic wax, ureum.
- the foam control agents can be used with suitable dispersants and emulsifiers. Additional active foam control agents are described in “Foam Control Agents”, by Henry T. Kerner (Noyes Data Corporation, 1976), pages 125-162.
- the metalworking fluid further comprises anti-friction agents include overbased sulfonates, sulfurized olefins, chlorinated paraffins and olefins, sulfurized ester olefins, amine terminated polyglycols, and sodium dioctyl phosphate salts.
- the composition further comprises corrosion inhibitors including carboxylic/boric acid diamine salts, carboxylic acid amine salts, alkanol amines, alkanol amine borates and the like.
- the metalworking fluid further comprise oil soluble metal deactivators in an amount of 0.01 to 0.5 vol % (based on the final oil volume).
- oil soluble metal deactivators in an amount of 0.01 to 0.5 vol % (based on the final oil volume).
- Non-limiting examples include triazoles or thiadiazoles, specifically aryl triazoles such as benzotriazole and tolyltriazole, alkyl derivatives of such triazoles, and benzothiadiazoles such as R(C 6 H 3 )N 2 S where R is H or C 1 to C 10 alkyl.
- Suitable materials are available from Ciba Geigy under the tradenames Irgamet and Reomet or from Vanderbilt Chemical Corporation under the Vanlube tradename.
- a small amount of at least an antioxidant in the range 0.01 to 1.0 weight % can be added.
- antioxidants of the aminic or phenolic type or mixtures thereof e.g., butylated hydroxy toluene (BHT), bis-2,6-di-t-butylphenol derivatives, sulfur containing hindered phenols, and sulfur containing hindered bisphenol.
- the metalworking fluid further comprises 0.1 to 20 wt. % of at least an extreme-pressure agent.
- extreme pressure agents include zinc dithiophosphate, molybdenum oxysulfide dithiophosphate, molybdenum oxysulfide thithiocarbamate, molybdenum amine compounds, sulfurized oils and fats, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiocarbamates, thioterpenes, dialkyl thiodipropionates, and the like.
- various other conventional additives can be added to such extent that they do not inhibit the effects of the metalworking fluid.
- examples include fatty acids and salts thereof, polyhydric alcohols such as propylene glycol, glycerin, butylene glycerol, and the like; surfactants such as anionic surfactants, amphoteric surfactants, nonionic surfactants, and the like; and boron nitride dispersed in a dispersant such as a surfactant.
- the optional additives used in formulating the metalworking fluid composition can be blended into the base oil matrix individually or in various sub-combinations.
- all of the components are blended concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
- an additive concentrate i.e., additives plus a diluent, such as a hydrocarbon solvent.
- the use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate.
- the metalworking fluid is prepared by mixing the base oil matrix with the optional additives and/or additive package(s) at an appropriate temperature, such as approximately 60° C., until homogeneous, for use as a straight oil cutting fluid.
- the emulsifying agents may be added to the metalworking fluid to form an oil-in-water emulsion.
- the metalworking fluid composition is characterized as having reduced mist formation, low foaming tendency and excellent air release properties.
- the foaming tendency of the metalworking fluids can be measured using the ASTM D892-95 foam test.
- the metalworking fluid when evaluated under ASTM D892-06 method shows a sequence II foam tendency foam height of less than 50 mls.
- the metalworking fluid shows a sequence II foam height of less than 40 mls.
- the sequence II foam height is less than 20 mls.
- none can be measured (0 ml).
- the metalworking fluid shows a sequence I foam tendency by ASTM D 892-03 of less than 100 ml. In another embodiment, the fluid has a sequence I foam tendency of less than 50 ml. In a third embodiment, a sequence I foam tendency of less than 30 ml.
- the metalworking fluid has a number of minutes to 3 ml emulsion at 54° C. by ASTM D 1401-02 of equal or less than 30. In yet another embodiment, the fluid has a number of minutes to 3 ml emulsion at 82° C. by ASTM D 1401-02 equal to or less than 60.
- Air release properties can be measured using the ASTM D 3427 (2003) method for gas bubble separation time of petroleum oil to measure the ability of a fluid to separate entrained gas.
- the metalworking fluid has an air release time at 50° C. of less than 0.60 minutes as measured according to ASTM D 3427 (2003). In a second embodiment, an air release time of less than 1 ⁇ 2 minutes.
- the metalworking fluid exhibits reduced mist formation property and imparts aerosol control or particulate control to the fluid, e.g., having 5 to 50% mist reduction compared to metalworking fluids comprising base oil Group I in the prior art. Mist reduction experiments can be measured according to similar to the aerosol (mist) formation test as described in “Polymer Additives as Mist Suppressants in Metal Cutting Fluids,” by Marano et al., Journal of the Society of Tribologists and Lubrication Engineers, October 1995, pp. 25-35.
- the metalworking fluid without any addition of anti-mist additives has an average mist accumulation rate of less than 300 mg/mm 3 in the first 30 seconds (after start) of the aerosol mist formation test.
- the metalworking fluid without any mist additive has an average mist accumulation rate of less than 250 mg/mm 3 in the first 30 seconds of the aerosol mist formation test. In a third embodiment, the average mist accumulation rate is less than 200 mg/mm 3 in the first 30 seconds of the test. In a fourth embodiment, the average mist accumulation rate is less than 150 mg/mm 3 in the first 60 seconds of the test.
- the metalworking fluid composition is readily biodegradable, with the base oil having an OECD301D level ranging from 30 to 95%.
- the metalworking fluid has a biodegradability of at least 30% as measured according to OECD 301D.
- Metalworking fluids can be characterized as suitable or unsuitable for extreme pressure applications.
- a fluid that is considered as suitable for extreme pressure is one that prevents sliding metal surfaces from seizing under extreme pressure conditions. The seizing of metal surfaces result from friction between opposing asperities. Asperities are microscopic projections on metal surfaces resulting from metalworking operations.
- One technique for measuring extreme pressure properties of a fluid is to measure a load force between sliding surfaces which can be sustained by lubricant without seizing of the sliding surfaces. Such a technique is described as a Falex load test, which is an ASTM standard test for fluid lubricants (ASTM D-3233 (2003)).
- the metalworking fluid is characterized has having a Falex reference wear of less than ten teeth.
- the metalworking fluid is characterized as having a Falex reference load of greater than about 4,500 pounds force.
- the metalworking fluid is characterized as having excellent lubricating property, specifically lubricating surfaces in sliding contacts, as measured in a Four-Ball Wear Test per ASTM D4172-94 (2004)e1. In one embodiment, the metalworking fluid has a Four-Ball wear scar diameter of less than about 0.07 mm.
- the metalworking fluid is characterized has having a smooth liquid flow for excellent circulation in a pump. Moreover, the metalworking fluid has an excellent which can prevent frictional heat from being produced between a tool and a workpiece, so that the effective tool life can be increased.
- the metalworking fluid is used in the production of semiconductors, plant equipment, and auto parts, etc. wherein the shape of the final object, e.g., silicon wafer or machine part, is obtained by with or without the progressive removal of metal or silicon.
- Non-limiting examples of the operations include cutting, drilling, boring, honing, broaching, grinding, forming, stamping, casting, forging, rolling, piercing, coining, drawing, press forming, deburring, milling, grooving, tapping, chamfering, broaching, reaming, honing, lapping, straightening, and drawing.
- the metalworking fluid is applied to the contact zone between tool and workpiece.
- the fluid may be applied by a variety of methods, including immersing the contact zone in the fluid, spraying the fluid into the contact zone, flooding the contact zone with fluid, pumping a stream of fluid into the contact zone, periodically wetting the tool or the workpiece with lubricating fluid, or any means of constantly or intermittently applying the lubricant to the contact zone between the tool and the workpiece.
- compositions are prepared by mixing the components in the amounts indicated in the Examples/Tables.
- the components used in the Examples are listed below.
- EP agent is a commercially available sulfurized polymerized ester, 10% inactive sulphur extreme-pressure agent.
- AshlandTM 100SN Group 1 oil is from Ashland Inc.
- ChevronTM 100R group 2 oil, ChevronTM 100R group 3 oil, and Chevron Synfluid 4 cSt PAO oil are all from Chevron Corporation of San Ramon, Calif.
- Additive 2 is a sulfurized vegetable fatty acid ester.
- Defoamer is an acrylate oligomer antifoam/defoamer.
- Additive CAS is a commercially available overbased calcium sulphonate PEP metalworking additive containing carbonated alkylbenzene sulfonate.
- Additive SO is a sulfurized olefin.
- Mineral seal oil having a visocisty of 3.39 mm 2 /sec at 40° C., and basestock oils SN 100 (density of 0.864 and viscosity of 20.6 mm 2 /sec at 40° C.), SN 150 and SN 600 (API Group I) are commercially available from a number of sources.
- GTL Fischer-Tropsch derived base oils GST0449, FTBO L, FTBO XL, FTBO XXL, and FTBO M are from Chevron Corp. Properties of the Fischer-Tropsch derived base oils used in the Examples are shown in Table 3.
- Anti-mist agent 1 is a methacrylate copolymer.
- Anti-mist agent 2 is a commercially available high molecular weight oil soluble polymer tackifier.
- a number of metalworking fluid compositions having components as listed in Table 1 were formulated and their properties were measured using various standard test methods: ASTM D1401-02 for Water Separability of Petroleum Oils and Synthetic Fluids; ASTM D 3427 (2003) Standard Test Method for Air Release Properties of Petroleum Oils; and ASTM D892-95 Foam Stability Sequence Test. As shown in the table, the example incorporating the isomerized base oil shows low foaming tendency (foam height of nil) and air release property that is comparable if not better than the prior art oil (in view of the test repeatability of 1 min.).
- Example 1 Example 2
- Example 3 Example 4
- Example 5 Example 6
- Group V Group 1 Group 2 Group 3 PAO GTL Sample ID wt % wt % wt % wt % wt % wt % wt % SJR Hynap N100HTS - Group V 95 — — — — — Ashland 100 SN - Group 1 — 95 — — — — Chevron 100 R - Group 2 — — 95 — — — Chevron UCBO 4R - Group 3 — — — 95 — — Chevron Synfluid, 4 cSt - PAO — — — 95 — GTL GST0449 isomerized base oil — — — — — 95 EP agent 5 5 5 5 5 5 5 5 5 5
- metalworking fluid compositions having components as listed in Table 2 were formulated and their properties were measured/recorded.
- Examples 11-13 compare the compositions each with 0.25 wt. % of an anti-mist agent added (a high molecular weight oil soluble polymer tackifier).
- Mist generated by the atomizer was directed to a long wide plexiglass duct of square cross section or chamber (e.g., a 12′′ by 12′′ by 18′′ chamber).
- the amount of mist generated as a function of time was captured by a datalogger and recorded.
- a portable, real time aerosol monitor DataRAM® [MIE Instruments Inc., Bedford Mass.] was used as the datalogger to continuously quantify the mist levels generated.
- the DataRAM is a nephelometric monitor used to measure airborne particle concentration by sensing the amount of light scattered by the population of particles passing through a sampling volume.
- mist was generated for all of the samples at the beginning of the test. After atomizing, the mist tended to drop to the bottom of the container and thereby showing a drop in the amount of mist collected.
- FIGS. 1-3 Measurements from the aerosol (mist) formation experiments were plotted in FIGS. 1-3 as a function of time. The results show that generally, metalworking fluid compositions containing Fischer-Tropsch derived base oils result in significantly less mist formation than the base oils of the prior art, with a reduction in mist formation of at least 10% in some examples to up to 75% or more in the first 30 seconds of the aerosol mist formation test.
- Example 10 with the isomerized base oil performs better (with reduced mist formation) compared to Example 9 with a mineral group I base oil and even with 2 wt. % anti-mist additive.
- FIG. 3 all examples (#11-13) with the addition of a high molecular weight oil soluble polymer tackifier as a powerful (and expensive) anti-mist additive show comparable performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
- The invention relates generally to metalworking compositions exhibiting improved anti-mist properties, having a low foaming tendency and excellent air release properties.
- In industrial metal cutting operations or in the semiconductor industry for cutting silicon wafers, machining or metalworking fluids are employed. Metalworking fluids are used as cutting oils, rolling oils, drawing oils, pressing oils, forging oils, abrasive working oils for aluminium disks, abrasive oils for silicon wafers and coolants. In high-speed machining operations that require rapid fluid application and recirculation, foam and air entrainment are sometimes experienced with undesirable results. Foaming is undesirable because it may reduce cooling at the workpiece-tool contact zone and causes containment transport and control problems. Various methods or strategies have been implemented to eliminate or reduce foaming, including the addition of foam control agent(s) when manufacturing the product or while the fluid is in-service. The use of certain foam control agent(s) such as such as silicon-based foam inhibitors leaves residues on machined parts, making it rather difficult to subsequently paint the parts. Additionally for some foam control agent(s), their use is generally found to worsen the metalworking fluid's air release properties. Poor air release properties can lead to air entrainment issues and cavitation.
- Besides the foaming problem, there is a different problem often associated in the use of the metalworking fluids that is of fog or mist generation. During the cutting process, a small amount of cutting oil is thrown off into the surrounding air as micro-sized droplets known as a mist. Workers in the vicinity are exposed to the mist and, unless a protective breathing apparatus is worn, a portion of the mist may be drawn into the workers' lungs. While metal cutting fluids in the prior art are essential for metal forming and machining, they are currently being examined with increased scrutiny because of possible hazards associated with worker exposure.
- Various additives have been tried in the prior art to reduce the formation of fog, including the use of minor amounts of at least one of polyisobutene, poly-n-butene and mixtures thereof, having a viscosity average molecular weight ranging from 0.3 to 10 million. Rhamsan gum, hydrophobic and hydrophilic monomers, styrene or hydrocarbyl-substituted styrene hydrophobic monomers and hydrophilic monomers are amongst other additives suggested for use to reduce the mist formation. Some metal cutting fluids in the prior art with the use of various additives pose environmental problems associated with their disposal. There is now universal agreement on the need for safer more environmentally friendly metalworking fluids.
- Recent reforming processes have formed a new class of oil, e.g., Fischer Tropsch base oil (FTBO), wherein the oil, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process. The feedstock for a Fischer-Tropsch process may come from a wide variety of hydrocarbonaceous resources, including biomass, natural gas, coal, shale oil, petroleum, municipal waste, derivatives of these, and combinations thereof. Crude product prepared from the Fischer-Tropsch process can be refined into products such as diesel oil, naphtha, wax, and other liquid petroleum or specialty products. In a number of patent publications and applications, i.e., US 2006/0289337, US2006/0201851, US2006/0016721, US2006/0016724, US2006/0076267, US2006/020185, US2006/013210, US2005/0241990, US2005/0077208, US2005/0139513, US2005/0139514, US2005/0133409, US2005/0133407, US2005/0261147, US2005/0261146, US2005/0261145, US2004/0159582, U.S. Pat. No. 7,018,525, U.S. Pat. No. 7,083,713, U.S. application Ser. Nos. 11/400,570,11/535,165 and 11/613,936, which are incorporated herein by reference, an isomerized base oil is produced from a process in which the feed is a waxy feed recovered from a Fischer-Tropsch synthesis. The process comprises a complete or partial hydroisomerization dewaxing step, using a dual-functional catalyst or a catalyst that can isomerize paraffins selectively. Hydroisomerization dewaxing is achieved by contacting the waxy feed with a hydroisomerization catalyst in an isomerization zone under hydroisomerizing conditions.
- There is a need for an improved metalworking fluid with reduced mist and foam formation and excellent air release properties as compared to the compositions of the prior art. Additionally, there is a need for an environmentally friendly metalworking fluid.
- In one embodiment, there is provided a metalworking fluid comprising a lubricant base oil having consecutive numbers of carbon atoms and less than 10 wt % naphthenic carbon by n-d-M; and 0.10 to 10 wt. %. of at least an additive selected from the group of a metalworking fluid additive package; metal deactivators; corrosion inhibitors; antimicrobial; anticorrosion; extreme pressure agents; antifriction; antirust agents; polymeric substances; anti inflammatory agents; bactericides; antiseptics; antioxidants; chelating agents such as edetic acid salts, and the like; pH regulators; antiwear agents; and mixtures thereof, and wherein the metalworking fluid has an average mist accumulation rate of less than 300 mg/mm3 within 30 seconds after start in an aerosol mist formation test. In another embodiment, the metalworking fluid has an average mist accumulation rate of less than 150 mg/mm3 in the first 60 seconds of the test.
- In another aspect, there is provided a method to reduce the mist formation in a metalworking fluid, the method comprising blending a composition comprising a lubricant base oil having consecutive numbers of carbon atoms and less than 10 wt % naphthenic carbon by n-d-M; and 0.10 to 10 wt. %. of at least an additive selected from the group of a metalworking fluid additive package; metal deactivators; corrosion inhibitors; antimicrobial; anticorrosion; extreme pressure agents; antifriction; antirust agents; polymeric substances; anti inflammatory agents; bactericides; antiseptics; antioxidants; chelating agents such as edetic acid salts, and the like; pH regulators; antiwear agents; and mixtures thereof, for a metalworking fluid having an average mist accumulation rate of less than 300 mg/mm3 within 30 seconds after start in an aerosol mist formation test
-
FIGS. 1-3 are graphs illustrating the mist accumulation rates of Examples 7-13 in an aerosol mist formation test. - The following terms will be used throughout the specification and will have the following meanings unless otherwise indicated.
- As used herein, the term “metalworking fluid” may be used interchangeably with “metalworking composition,” “metal removal fluid,” “cutting fluid,” “machining fluid,” referring to a composition that can be used in industrial metal cutting, metal forming, metal protecting, metal treating, metal grinding operations or in the semiconductor industry wherein the shape of the final object, e.g., silicon wafer or machine part, is obtained by with or without the progressive removal of metal or silicon. Metalworking fluids amongst other functions, are used to cool and to lubricate.
- “Fischer-Tropsch derived” means that the product, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process. As used herein, “Fischer-Tropsch base oil” may be used interchangeably with “FT base oil,” “FTBO,” “GTL base oil” (GTL: gas-to-liquid), or “Fischer-Tropsch derived base oil.”
- As used herein, “isomerized base oil” refers to a base oil made by isomerization of a waxy feed.
- As used herein, a “waxy feed” comprises at least 40 wt % n-paraffins. In one embodiment, the waxy feed comprises greater than 50 wt % n-paraffins. In another embodiment, greater than 75 wt % n-paraffins. In one embodiment, the waxy feed also has very low levels of nitrogen and sulphur, e.g., less than 25 ppm total combined nitrogen and sulfur, or in other embodiments less than 20 ppm. Examples of waxy feeds include slack waxes, deoiled slack waxes, refined foots oils, waxy lubricant raffinates, n-paraffin waxes, NAO waxes, waxes produced in chemical plant processes, deoiled petroleum derived waxes, microcrystalline waxes, Fischer-Tropsch waxes, and mixtures thereof. In one embodiment, the waxy feeds have a pour point of greater than 50° C. In another embodiment, greater than 60° C.
- “Kinematic viscosity” is a measurement in mm2/S of the resistance to flow of a fluid under gravity, determined by ASTM D445-06.
- “Viscosity index” (VI) is an empirical, unit-less number indicating the effect of temperature change on the kinematic viscosity of the oil. The higher the VI of an oil, the lower its tendency to change viscosity with temperature. Viscosity index is measured according to ASTM D 2270-04.
- Cold-cranking simulator apparent viscosity (CCS VIS) is a measurement in millipascal seconds, mPa·s to measure the viscometric properties of lubricating base oils under low temperature and high shear. CCS VIS is determined by ASTM D 5293-04.
- The boiling range distribution of base oil, by wt %, is determined by simulated distillation (SIMDIS) according to ASTM D 6352-04, “Boiling Range Distribution of Petroleum Distillates in Boiling Range from 174 to 700° C. by Gas Chromatography.”
- “Noack volatility” is defined as the mass of oil, expressed in weight %, which is lost when the oil is heated at 250° C. with a constant flow of air drawn through it for 60 min., measured according to ASTM D5800-05, Procedure B.
- Brookfield viscosity is used to determine the internal fluid-friction of a lubricant during cold temperature operation, which can be measured by ASTM D 2983-04.
- “Pour point” is a measurement of the temperature at which a sample of base oil will begin to flow under certain carefully controlled conditions, which can be determined as described in ASTM D 5950-02.
- “Auto ignition temperature” is the temperature at which a fluid will ignite spontaneously in contact with air, which can be determined according to ASTM 659-78.
- “Ln” refers to natural logarithm with base “e.”
- “Traction coefficient” is an indicator of intrinsic lubricant properties, expressed as the dimensionless ratio of the friction force F and the normal force N, where friction is the mechanical force which resists movement or hinders movement between sliding or rolling surfaces. Traction coefficient can be measured with an MTM Traction Measurement System from PCS Instruments, Ltd., configured with a polished 19 mm diameter ball (SAE AISI 52100 steel) angled at 220 to a flat 46 mm diameter polished disk (SAE AISI 52100 steel). The steel ball and disk are independently measured at an average rolling speed of 3 meters per second, a slide to roll ratio of 40 percent, and a load of 20 Newtons. The roll ratio is defined as the difference in sliding speed between the ball and disk divided by the mean speed of the ball and disk, i.e. roll ratio=(Speed1−Speed2)/((Speed1+Speed2)−/2).
- As used herein, “consecutive numbers of carbon atoms” means that the base oil has a distribution of hydrocarbon molecules over a range of carbon numbers, with every number of carbon numbers in-between. For example, the base oil may have hydrocarbon molecules ranging from C22 to C36 or from C30 to C60 with every carbon number in-between. The hydrocarbon molecules of the base oil differ from each other by consecutive numbers of carbon atoms, as a consequence of the waxy feed also having consecutive numbers of carbon atoms. For example, in the Fischer-Tropsch hydrocarbon synthesis reaction, the source of carbon atoms is CO and the hydrocarbon molecules are built up one carbon atom at a time. Petroleum-derived waxy feeds have consecutive numbers of carbon atoms. In contrast to an oil based on poly-alpha-olefin (“PAO”), the molecules of an isomerized base oil have a more linear structure, comprising a relatively long backbone with short branches. The classic textbook description of a PAO is a star-shaped molecule, and in particular tridecane, which is illustrated as three decane molecules attached at a central point. While a star-shaped molecule is theoretical, nevertheless PAO molecules have fewer and longer branches that the hydrocarbon molecules that make up the isomerized base oil disclosed herein.
- “Molecules with cycloparaffinic functionality” mean any molecule that is, or contains as one or more substituents, a monocyclic or a fused multicyclic saturated hydrocarbon group.
- “Molecules with monocycloparaffinic functionality” mean any molecule that is a monocyclic saturated hydrocarbon group of three to seven ring carbons or any molecule that is substituted with a single monocyclic saturated hydrocarbon group of three to seven ring carbons.
- “Molecules with multicycloparaffinic functionality” mean any molecule that is a fused multicyclic saturated hydrocarbon ring group of two or more fused rings, any molecule that is substituted with one or more fused multicyclic saturated hydrocarbon ring groups of two or more fused rings, or any molecule that is substituted with more than one monocyclic saturated hydrocarbon group of three to seven ring carbons.
- Molecules with cycloparaffinic functionality, molecules with monocycloparaffinic functionality, and molecules with multicycloparaffinic functionality are reported as weight percent and are determined by a combination of Field Ionization Mass Spectroscopy (FIMS), HPLC-UV for aromatics, and Proton NMR for olefins, further fully described herein.
- Oxidator BN measures the response of a lubricating oil in a simulated application. High values, or long times to adsorb one liter of oxygen, indicate good stability. Oxidator BN can be measured via a Domte-type oxygen absorption apparatus (R. W. Dornte “Oxidation of White Oils,” Industrial and Engineering Chemistry, Vol. 28, page 26, 1936), under 1 atmosphere of pure oxygen at 340° F., time to absorb 1000 ml of O2 by 100 g. of oil is reported. In the Oxidator BN test, 0.8 ml of catalyst is used per 100 grams of oil. The catalyst is a mixture of soluble metal-naphthenates simulating the average metal analysis of used crankcase oil. The additive package is 80 millimoles of zinc bispolypropylenephenyldithiophosphate per 100 grams of oil.
- Molecular characterizations can be performed by methods known in the art, including Field Ionization Mass Spectroscopy (FIMS) and n-d-M analysis (ASTM D 3238-95 (Re-approved 2005)). In FIMS, the base oil is characterized as alkanes and molecules with different numbers of unsaturations. The molecules with different numbers of unsaturations may be comprised of cycloparaffins, olefins, and aromatics. If aromatics are present in significant amount, they would be identified as 4-unsaturations. When olefins are present in significant amounts, they would be identified as 1-unsaturations. The total of the 1-unsaturations, 2-unsaturations, 3-unsaturations, 4-unsaturations, 5-unsaturations, and 6-unsaturations from the FIMS analysis, minus the wt % olefins by proton NMR, and minus the wt % aromatics by HPLC-UV is the total weight percent of molecules with cycloparaffinic functionality. If the aromatics content was not measured, it was assumed to be less than 0.1 wt % and not included in the calculation for total weight percent of molecules with cycloparaffinic functionality. The total weight percent of molecules with cycloparaffinic functionality is the sum of the weight percent of molecules with monocyclopraffinic functionality and the weight percent of molecules with multicycloparaffinic functionality.
- Molecular weights are determined by ASTM D2503-92 (Reapproved 2002). The method uses thermoelectric measurement of vapour pressure (VPO). In circumstances where there is insufficient sample volume, an alternative method of ASTM D2502-04 may be used; and where this has been used it is indicated.
- Density is determined by ASTM D4052-96 (Reapproved 2002). The sample is introduced into an oscillating sample tube and the change in oscillating frequency caused by the change in the mass of the tube is used in conjunction with calibration data to determine the density of the sample.
- Weight percent olefins can be determined by proton-NMR according to the steps specified herein. In most tests, the olefins are conventional olefins, i.e. a distributed mixture of those olefin types having hydrogens attached to the double bond carbons such as: alpha, vinylidene, cis, trans, and tri-substituted, with a detectable allylic to olefin integral ratio between 1 and 2.5. When this ratio exceeds 3, it indicates a higher percentage of tri or tetra substituted olefins being present, thus other assumptions known in the analytical art can be made to calculate the number of double bonds in the sample. The steps are as follows: A) Prepare a solution of 5-10% of the test hydrocarbon in deuterochloroform. B) Acquire a normal proton spectrum of at least 12 ppm spectral width and accurately reference the chemical shift (ppm) axis, with the instrument having sufficient gain range to acquire a signal without overloading the receiver/ADC, e.g., when a 30 degree pulse is applied, the instrument having a minimum signal digitization dynamic range of 65,000. In one embodiment, the instrument has a dynamic range of at least 260,000. C) Measure the integral intensities between: 6.0-4.5 ppm (olefin); 2.2-1.9 ppm (allylic); and 1.9-0.5 ppm (saturate). D) Using the molecular weight of the test substance determined by ASTM D 2503-92 (Reapproved 2002), calculate: 1. The average molecular formula of the saturated hydrocarbons; 2. The average molecular formula of the olefins; 3. The total integral intensity (=sum of all integral intensities); 4. The integral intensity per sample hydrogen (=total integral/number of hydrogens in formula); 5. The number of olefin hydrogens (═Olefin integral/integral per hydrogen); 6. The number of double bonds (═Olefin hydrogen times hydrogens in olefin formula/2); and 7. The wt % olefins by proton NMR=100 times the number of double bonds times the number of hydrogens in a typical olefin molecule divided by the number of hydrogens in a typical test substance molecule. In this test, the wt % olefins by proton NMR calculation procedure, D, works particularly well when the percent olefins result is low, less than 15 wt %.
- Weight percent aromatics in one embodiment can be measured by HPLC-UV. In one embodiment, the test is conducted using a Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography (HPLC) system, coupled with a HP 1050 Diode-Array UV-V is detector interfaced to an HP Chem-station. Identification of the individual aromatic classes in the highly saturated base oil can be made on the basis of the UV spectral pattern and the elution time. The amino column used for this analysis differentiates aromatic molecules largely on the basis of their ring-number (or double-bond number). Thus, the single ring aromatic containing molecules elute first, followed by the polycyclic aromatics in order of increasing double bond number per molecule. For aromatics with similar double bond character, those with only alkyl substitution on the ring elute sooner than those with naphthenic substitution. Unequivocal identification of the various base oil aromatic hydrocarbons from their UV absorbance spectra can be accomplished recognizing that their peak electronic transitions are all red-shifted relative to the pure model compound analogs to a degree dependent on the amount of alkyl and naphthenic substitution on the ring system. Quantification of the eluting aromatic compounds can be made by integrating chromatograms made from wavelengths optimized for each general class of compounds over the appropriate retention time window for that aromatic. Retention time window limits for each aromatic class can be determined by manually evaluating the individual absorbance spectra of eluting compounds at different times and assigning them to the appropriate aromatic class based on their qualitative similarity to model compound absorption spectra.
- HPLC-UV Calibration. In one embodiment, HPLC-UV can be used for identifying classes of aromatic compounds even at very low levels, e.g., multi-ring aromatics typically absorb 10 to 200 times more strongly than single-ring aromatics. Alkyl-substitution affects absorption by 20%. Integration limits for the co-eluting 1-ring and 2-ring aromatics at 272 nm can be made by the perpendicular drop method. Wavelength dependent response factors for each general aromatic class can be first determined by constructing Beer's Law plots from pure model compound mixtures based on the nearest spectral peak absorbances to the substituted aromatic analogs. Weight percent concentrations of aromatics can be calculated by assuming that the average molecular weight for each aromatic class was approximately equal to the average molecular weight for the whole base oil sample.
- NMR analysis. In one embodiment, the weight percent of all molecules with at least one aromatic function in the purified mono-aromatic standard can be confirmed via long-duration carbon 13 NMR analysis. The NMR results can be translated from % aromatic carbon to % aromatic molecules (to be consistent with HPLC-UV and D 2007) knowing that 95-99% of the aromatics in highly saturated base oils are single-ring aromatics. In another test to accurately measure low levels of all molecules with at least one aromatic function by NMR, the standard D 5292-99 (Reapproved 2004) method can be modified to give a minimum carbon sensitivity of 500:1 (by ASTM standard practice E 386) with a 15-hour duration run on a 400-500 MHz NMR with a 10-12 mm Nalorac probe. Acorn PC integration software can be used to define the shape of the baseline and consistently integrate.
- Extent of branching refers to the number of alkyl branches in hydrocarbons. Branching and branching position can be determined using carbon-13 (13C) NMR according to the following nine-step process: 1) Identify the CH branch centers and the CH3 branch termination points using the DEPT Pulse sequence (Doddrell, D. T.; D. T. Pegg; M. R. Bendall, Journal of Magnetic Resonance 1982, 48, 323ff.). 2) Verify the absence of carbons initiating multiple branches (quaternary carbons) using the APT pulse sequence (Patt, S. L.; J. N. Shoolery, Journal of Magnetic Resonance 1982, 46, 535ff.). 3) Assign the various branch carbon resonances to specific branch positions and lengths using tabulated and calculated values known in the art (Lindeman, L. P., Journal of Qualitative Analytical Chemistry 43, 1971 1245ff; Netzel, D. A., et.al., Fuel, 60, 1981, 307ff). 4) Estimate relative branching density at different carbon positions by comparing the integrated intensity of the specific carbon of the methyl/alkyl group to the intensity of a single carbon (which is equal to total integral/number of carbons per molecule in the mixture). For the 2-methyl branch, where both the terminal and the branch methyl occur at the same resonance position, the intensity is divided by two before estimating the branching density. If the 4-methyl branch fraction is calculated and tabulated, its contribution to the 4+methyls is subtracted to avoid double counting. 5) Calculate the average carbon number. The average carbon number is determined by dividing the molecular weight of the sample by 14 (the formula weight of CH2). 6) The number of branches per molecule is the sum of the branches found in step 4. 7) The number of alkyl branches per 100 carbon atoms is calculated from the number of branches per molecule (step 6)
times 100/average carbon number. 8) Estimate Branching Index (BI) by 1H NMR Analysis, which is presented as percentage of methyl hydrogen (chemical shift range 0.6-1.05 ppm) among total hydrogen as estimated by NMR in the liquid hydrocarbon composition. 9) Estimate Branching proximity (BP) by 13C NMR, which is presented as percentage of recurring methylene carbons—which are four or more carbons away from the end group or a branch (represented by a NMR signal at 29.9 ppm) among total carbons as estimated by NMR in the liquid hydrocarbon composition. The measurements can be performed using any Fourier Transform NMR spectrometer, e.g., one having a magnet of 7.0 T or greater. After verification by Mass Spectrometry, UV or an NMR survey that aromatic carbons are absent, the spectral width for the 13C NMR studies can be limited to the saturated carbon region, 0-80 ppm vs. TMS (tetramethylsilane). Solutions of 25-50 wt. % in chloroform-d1 are excited by 30 degrees pulses followed by a 1.3 seconds (sec.) acquisition time. In order to minimize non-uniform intensity data, the broadband proton inverse-gated decoupling is used during a 6 sec. delay prior to the excitation pulse and on during acquisition. Samples are doped with 0.03 to 0.05 M Cr (acac) 3 (tris (acetylacetonato)-chromium (III)) as a relaxation agent to ensure full intensities are observed. The DEPT and APT sequences can be carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals. DEPT is Distortionless Enhancement by Polarization Transfer. The DEPT 45 sequence gives a signal all carbons bonded to protons. DEPT 90 shows CH carbons only. DEPT 135 shows CH and CH3 up andCH 2 180 degrees out of phase (down). APT is attached proton test, known in the art. It allows all carbons to be seen, but if CH and CH3 are up, then quaternaries and CH2 are down. The branching properties of the sample can be determined by 13C NMR using the assumption in the calculations that the entire sample was iso-paraffinic. The unsaturates content may be measured using Field Ionization Mass Spectroscopy (FIMS). - In one embodiment, the metalworking fluid comprises a number of components, including optional additives, in a matrix of base oil.
- Base Oil Matrix Component: In one embodiment, the base oil or blends thereof forming the matrix comprises at least an isomerized base oil which the product itself, its fraction, or feed originates from or is produced at some stage by isomerization of a waxy feed from a Fischer-Tropsch process (“Fischer-Tropsch derived base oils”). In another embodiment, the base oil comprises at least an isomerized base oil made from a substantially paraffinic wax feed (“waxy feed”). In a third embodiment, the base oil consists essentially of at least an isomerized base oil.
- Fischer-Tropsch derived base oils are disclosed in a number of patent publications, including for example U.S. Pat. Nos. 6,080,301, 6,090,989, and 6,165,949, and US Patent Publication No. US2004/0079678A1, US20050133409, US20060289337. The Fischer-Tropsch process is a catalyzed chemical reaction in which carbon monoxide and hydrogen are converted into liquid hydrocarbons of various forms including a light reaction product and a waxy reaction product, with both being substantially paraffinic.
- In one embodiment the isomerized base oil has consecutive numbers of carbon atoms and has less than 10 wt % naphthenic carbon by n-d-M. In yet another embodiment the isomerized base oil made from a waxy feed has a kinematic viscosity at 100° C. between 1.5 and 3.5 mm2/s.
- In one embodiment, the isomerized base oil is made by a process in which the hydroisomerization dewaxing is performed at conditions sufficient for the base oil to have: a) a weight percent of all molecules with at least one aromatic functionality less than 0.30; b) a weight percent of all molecules with at least one cycloparaffinic functionality greater than 10; c) a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality greater than 20 and d) a viscosity index greater than 28×Ln (Kinematic viscosity at 100° C.)+80.
- In another embodiment, the isomerized base oil is made from a process in which the highly paraffinic wax is hydroisomerized using a shape selective intermediate pore size molecular sieve comprising a noble metal hydrogenation component, and under conditions of 600-750° F. (315-399° C.) In the process, the conditions for hydroisomerization are controlled such that the conversion of the compounds boiling above 700° F. (371° C.) in the wax feed to compounds boiling below 700° F. (371° C.) is maintained between 10 wt % and 50 wt %. A resulting isomerized base oil has a kinematic viscosity of between 1.0 and 3.5 mm2/s at 100° C. and a Noack volatility of less than 50 weight %. The base oil comprises greater than 3 weight % molecules with cycloparaffinic functionality and less than 0.30 weight percent aromatics.
- In one embodiment the isomerized base oil has a Noack volatility less than an amount calculated by the following equation: 1000×(Kinematic Viscosity at 100° C.)−2.7. In another embodiment, the isomerized base oil has a Noack volatility less than an amount calculated by the following equation: 900×(Kinematic Vicosity at 100° C.)−2.8. In a third embodiment, the isomerized base oil has a Kinematic Vicosity at 100° C. of >1.808 mm2/s and a Noack volatility less than an amount calculated by the following equation: 1.286+20 (kv100)−1.5+551.8 e−kv100, where kv100 is the kinematic viscosity at 100° C. In a fourth embodiment, the isomerized base oil has a kinematic viscosity at 100° C. of less than 4.0 mm2/s, and a wt % Noack volatility between 0 and 100. In a fifth embodiment, the isomerized base oil has a kinematic viscosity between 1.5 and 4.0 mm2/s and a Noack volatility less than the Noack volatility calculated by the following equation: 160−40 (Kinematic Viscosity at 100° C.).
- In one embodiment, the isomerized base oil has a kinematic viscosity at 100° C. in the range of 2.4 and 3.8 mm2/s and a Noack volatility less than an amount defined by the equation: 900×(Kinematic Viscosity at 100° C.)−2.8−15). For kinematic viscosities in the range of 2.4 and 3.8 mm2/s, the equation: 900×(Kinematic Viscosity at 100° C.)−2.8−15) provides a lower Noack volatility than the equation: 160−40 (Kinematic Viscosity at 100° C.)
- In one embodiment, the isomerized base oil is made from a process in which the highly paraffinic wax is hydroisomerized under conditions for the base oil to have a kinematic viscosity at 100° C. of 3.6 to 4.2 mm2/s, a viscosity index of greater than 130, a wt % Noack volatility less than 12, a pour point of less than −9° C.
- In one embodiment, the isomerized base oil has an auto-ignition temperature (AIT) greater than the AIT defined by the equation: AIT in ° C.=1.6×(Kinematic Viscosity at 40° C., in mm2/s)+300. In a second embodiment, the base oil as an AIT of greater than 329° C. and a viscosity index greater than 28×Ln (Kinematic Viscosity at 100° C., in mm2/s)+100.
- In one embodiment, the isomerized base oil has a relatively low traction coefficient, specifically, its traction coefficient is less than an amount calculated by the equation: traction coefficient=0.009×Ln (kinematic viscosity in mm2/s)−0.001, wherein the kinematic viscosity in the equation is the kinematic viscosity during the traction coefficient measurement and is between 2 and 50 mm2/S. In one embodiment, the isomerized base oil has a traction coefficient of less than 0.023 (or less than 0.021) when measured at a kinematic viscosity of 15 mm2/s and at a slide to roll ratio of 40%. In another embodiment the isomerized base oil has a traction coefficient of less than 0.017 when measured at a kinematic viscosity of 15 mm2/s and at a slide to roll ratio of 40%. In another embodiment the isomerized base oil has a viscosity index greater than 150 and a traction coefficient less than 0.015 when measured at a kinematic viscosity of 15 mm2/s and at a slide to roll ratio of 40 percent.
- In some embodiments, the isomerized base oil having low traction coefficients also displays a higher kinematic viscosity and higher boiling points. In one embodiment, the base oil has a traction coefficient less than 0.015, and a 50 wt % boiling point greater than 565° C. (1050° F.). In another embodiment, the base oil has a traction coefficient less than 0.011 and a 50 wt % boiling point by ASTM D 6352-04 greater than 582° C. (1080° F.).
- In some embodiments, the isomerized base oil having low traction coefficients also displays unique branching properties by NMR, including a branching index less than or equal to 23.4, a branching proximity greater than or equal to 22.0, and a Free Carbon Index between 9 and 30. In one embodiment, the base oil has at least 4 wt % naphthenic carbon, in another embodiment, at least 5 wt % naphthenic carbon by n-d-M analysis by ASTM D 3238-95 (Reapproved 2005).
- In one embodiment, the isomerized base oil is produced in a process wherein the intermediate oil isomerate comprises paraffinic hydrocarbon components, and in which the extent of branching is less than 7 alkyl branches per 100 carbons, and wherein the base oil comprises paraffinic hydrocarbon components in which the extent of branching is less than 8 alkyl branches per 100 carbons and less than 20 wt % of the alkyl branches are at the 2 position. In one embodiment, the FT base oil has a pour point of less than −8° C.; a kinematic viscosity at 100° C. of at least 3. mm2/s; and a viscosity index greater than a viscosity index calculated by the equation of =22×Ln (kinematic viscosity at 100° C.)+132.
- In one embodiment, the base oil comprises greater than 10 wt. % and less than 70 wt. % total molecules with cycloparaffinic functionality, and a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality greater than 15.
- In one embodiment, the isomerized base oil has an average molecular weight between 600 and 1100, and an average degree of branching in the molecules between 6.5 and 10 alkyl branches per 100 carbon atoms. In another embodiment, the isomerized base oil has a kinematic viscosity between about 8 and about 25 mm2/s and an average degree of branching in the molecules between 6.5 and 10 alkyl branches per 100 carbon atoms.
- In one embodiment, the isomerized base oil is obtained from a process in which the highly paraffinic wax is hydroisomerized at a hydrogen to feed ratio from 712.4 to 3562 liter H2/liter oil, for the base oil to have a total weight percent of molecules with cycloparaffinic functionality of greater than 10, and a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality of greater than 15. In another embodiment, the base oil has a viscosity index greater than an amount defined by the equation: 28×Ln (Kinematic viscosity at 100° C.)+95. In a third embodiment, the base oil comprises a weight percent aromatics less than 0.30; a weight percent of molecules with cycloparaffinic functionality greater than 10; a ratio of weight percent of molecules with monocycloparaffinic functionality to weight percent of molecules with multicycloparaffinic functionality greater than 20; and a viscosity index greater than 28×Ln (Kinematic Viscosity at 100° C.)+110. In a fourth embodiment, the base oil further has a kinematic viscosity at 100° C. greater than 6 mm2/s. In a fifth embodiment, the base oil has a weight percent aromatics less than 0.05 and a viscosity index greater than 28×Ln (Kinematic Viscosity at 100° C.)+95. In a sixth embodiment, the base oil has a weight percent aromatics less than 0.30, a weight percent molecules with cycloparaffinic functionality greater than the kinematic viscosity at 100° C., in mm2/s, multiplied by three, and a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 15.
- In one embodiment, the isomerized base oil contains between 2 and 10% naphthenic carbon as measured by n-d-M. In one embodiment, the base oil has a kinematic viscosity of 1.5-3.0 mm2/s at 100° C. and 2-3% naphthenic carbon. In another embodiment, a kinematic viscosity of 1.8-3.5 mm2/s at 100° C. and 2.5-4% naphthenic carbon. In a third embodiment, a kinematic viscosity of 3-6 mm2/s at 100° C. and 2.7-5% naphthenic carbon. In a fourth embodiment, a kinematic viscosity of 10-30 mm2/s at 100° C. and greater than 5.2% naphthenic carbon.
- In one embodiment, the isomerized base oil has an average molecular weight greater than 475; a viscosity index greater than 140, and a weight percent olefins less than 10. The base oil improves the air release and low foaming characteristics of the mixture when incorporated into the metalworking fluid.
- In one embodiment, the isomerized base oil is a FT base oil having a kinematic viscosity at 100° C. between 2 mm2/s and 6 mm2/S; a kinematic viscosity at 40° C. between 7 mm2/s and 20 mm2/S; CCS viscosity of less than 2300 mPa·s at −35° C.; pour point in the range of −20 and −40° C.; molecular weight of 300-500; density in the range of 0.800 to 0.820; paraffinic carbon in the range of 93-97%; naphthenic carbon in the range of 3-7%; Oxidator BN of 30 to 60 hours; and Noack volatility in wt. % of 8 to 20 as measured by ASTM D5800-05 Procedure B.
- In another embodiment for an anti-mist performance, the isomerized base oil is a FT base oil of “light” range viscosity having a kinematic viscosity at 100° C. between 2 mm2/s and 3 mm2/S; a kinematic viscosity at 40° C. between 7 mm2/s and 25 mm2/s; a viscosity index of 120-150; pour point in the range of −20 and −50° C.; molecular weight of 300-500; density in the range of 0.800 to 0.820; paraffinic carbon in the range of 92-97%; naphthenic carbon in the range of 3-7%; Oxidator BN of 30 to 60 hours; and Noack volatility in wt. % of 8 to 60 as measured by ASTM D5800-05 Procedure B. In another embodiment, the isomerized base oil is a FT base oil of “medium” range viscosity, having a kinematic viscosity at 100° C. between 5 mm2/s and 7 mm2/S; a kinematic viscosity at 40° C. between 25 mm2/s and 50 mm2/S; a viscosity index of 140-160; pour point in the range of −15 and −25° C.; molecular weight of 450-550; density in the range of 0.820 to 0.830; paraffinic carbon in the range of 90-95%. In a third embodiment, the base oil comprises a mixture of “light” and “medium” range viscosity FT base oils.
- In one embodiment, the metalworking fluid employs at least one of the isomerized base oils described above. In another embodiment, the composition consists essentially of at least a Fischer-Tropsch base oil. In yet another embodiment, the metalworking fluid employs at least an isomerized based oil as the base oil matrix and optionally 5 to 95 wt. % of at least another type of oil, e.g., lubricant base oils selected from Group I, II, III, IV, and V lubricant base oils as defined in the API Interchange Guidelines, and mixtures thereof. In a fourth embodiment, the metalworking fluid employs an isomerized based oil and 5 to 20 wt. % of at least another type of oil. Examples include conventionally used mineral oils, synthetic hydrocarbon oils or synthetic ester oils, or mixtures thereof depending on the application. Mineral lubricating oil base stocks can be any conventionally refined base stocks derived from paraffinic, naphthenic and mixed base crudes. Synthetic lubricating oils that can be used include esters of glycols and complex esters. Other synthetic oils that can be used include synthetic hydrocarbons such as polyalphaolefins; alkyl benzenes, e.g., alkylate bottoms from the alkylation of benzene with tetrapropylene, or the copolymers of ethylene and propylene; silicone oils, e.g., ethyl phenyl polysiloxanes, methyl polysiloxanes, etc., polyglycol oils, e.g., those obtained by condensing butyl alcohol with propylene oxide; etc. Other suitable synthetic oils include the polyphenyl ethers, e.g., those having from 3 to 7 ether linkages and 4 to 8 phenyl groups. Other suitable synthetic oils include polyisobutenes, and alkylated aromatics such as alkylated naphthalenes.
- Additional Components: The metalworking fluid in one embodiment is characterized as having reduced mist formation, lower foaming tendency, and better air release properties compared to compositions of the prior art. Depending on the applications, e.g., straight oils (neat oils) or soluble oils, the metalworking fluid may contain applicable additives known in the art to improve the properties of the composition in amounts ranging from 0.10 to 10 wt. %. These additives include metal deactivators; corrosion inhibitors; antimicrobial; anticorrosion; extreme pressure agents; antifriction; antirust agents; polymeric substances; anti inflammatory agents; bactericides; antiseptics; antioxidants; chelating agents such as edetic acid salts, and the like; pH regulators; antiwear agents including active sulphur anti-wear additive packages and the like; a metalworking fluid additive package containing at least one of the aforementioned additives.
- In different embodiments, there is no need to add any of the anti-mist additives (mist control agents or anti-misting agents) nor the foam inhibitors in the prior art, for a metalworking fluid that consists essentially of the base oil matrix comprising the isomerized base oil and at least an additive other than an anti-misting agent/foam inhibitor. However, in other embodiments and depending on the end-use applications, small quantities of additives such as anti-misting agents may be optionally added in an amount ranging from 0.05 to 5.0% by vol. in one embodiment and less than 1 wt. % in other embodiments. Non-limiting examples include rhamsan gum, hydrophobic and hydrophilic monomers, styrene or hydrocarbyl-substituted styrene hydrophobic monomers and hydrophilic monomers, oil soluble organic polymers ranging in molecular weight (viscosity average molecular weight) from about 0.3 to over 4 million such as isobutylene, styrene, alkyl methacrylate, ethylene, propylene, n-butylene vinyl acetate, etc. In one embodiment, polymethylmethacrylate or poly(ethylene, propylene, butylene or isobutylene) in the molecular weight range 1 to 3 million is used.
- In some embodiments and for certain applications, small amount of foam inhibitors in the prior art can also be added to the composition in an amount ranging from 0.05 to 15.0 wt. %. Non-limiting examples include polydimethylsiloxanes, often trimethylsilyl terminated, alkyl polymethacrylates, polymethylsiloxanes, an N-acylamino acid having a long chain acyl group and/or a salt thereof, an N-alkylamino acid having a long chain alkyl group and/or a salt thereof used concurrently with an alkylalkylene oxide and/or an acylalkylene oxide, acetylene diols and ethoxylated acetylene diols, silicones, hydrophobic materials (e.g. silica), fatty amides, fatty acids, fatty acid esters, and/or organic polymers, modified siloxanes, polyglycols, esterified or modified polyglycols, polyacrylates, fatty acids, fatty acid esters, fatty alcohols, fatty alcohol esters, oxo-alcohols, fluorosurfactants, waxes such as ethylenebistereamide wax, polyethylene wax, polypropylene wax, ethylenebisstereamide wax, and paraffinic wax, ureum. The foam control agents can be used with suitable dispersants and emulsifiers. Additional active foam control agents are described in “Foam Control Agents”, by Henry T. Kerner (Noyes Data Corporation, 1976), pages 125-162.
- In various embodiment, the metalworking fluid further comprises anti-friction agents include overbased sulfonates, sulfurized olefins, chlorinated paraffins and olefins, sulfurized ester olefins, amine terminated polyglycols, and sodium dioctyl phosphate salts. In yet other embodiment, the composition further comprises corrosion inhibitors including carboxylic/boric acid diamine salts, carboxylic acid amine salts, alkanol amines, alkanol amine borates and the like.
- In various embodiments, the metalworking fluid further comprise oil soluble metal deactivators in an amount of 0.01 to 0.5 vol % (based on the final oil volume). Non-limiting examples include triazoles or thiadiazoles, specifically aryl triazoles such as benzotriazole and tolyltriazole, alkyl derivatives of such triazoles, and benzothiadiazoles such as R(C6H3)N2S where R is H or C1 to C10 alkyl. Suitable materials are available from Ciba Geigy under the tradenames Irgamet and Reomet or from Vanderbilt Chemical Corporation under the Vanlube tradename.
- In one embodiment, such as when the composition serves the dual purpose of cutting fluid and machine lube oil, a small amount of at least an antioxidant in the range 0.01 to 1.0 weight % can be added. Non-limiting examples include antioxidants of the aminic or phenolic type or mixtures thereof, e.g., butylated hydroxy toluene (BHT), bis-2,6-di-t-butylphenol derivatives, sulfur containing hindered phenols, and sulfur containing hindered bisphenol.
- In some embodiment, the metalworking fluid further comprises 0.1 to 20 wt. % of at least an extreme-pressure agent. Non-limiting examples of extreme pressure agents include zinc dithiophosphate, molybdenum oxysulfide dithiophosphate, molybdenum oxysulfide thithiocarbamate, molybdenum amine compounds, sulfurized oils and fats, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiocarbamates, thioterpenes, dialkyl thiodipropionates, and the like.
- In addition to the above additives, various other conventional additives can be added to such extent that they do not inhibit the effects of the metalworking fluid. Examples include fatty acids and salts thereof, polyhydric alcohols such as propylene glycol, glycerin, butylene glycerol, and the like; surfactants such as anionic surfactants, amphoteric surfactants, nonionic surfactants, and the like; and boron nitride dispersed in a dispersant such as a surfactant.
- Method for Making: The optional additives used in formulating the metalworking fluid composition can be blended into the base oil matrix individually or in various sub-combinations. In one embodiment, all of the components are blended concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent). The use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate.
- In another embodiment, the metalworking fluid is prepared by mixing the base oil matrix with the optional additives and/or additive package(s) at an appropriate temperature, such as approximately 60° C., until homogeneous, for use as a straight oil cutting fluid. In yet another embodiment, the emulsifying agents may be added to the metalworking fluid to form an oil-in-water emulsion.
- Properties: In one embodiment, the metalworking fluid composition is characterized as having reduced mist formation, low foaming tendency and excellent air release properties. The foaming tendency of the metalworking fluids can be measured using the ASTM D892-95 foam test. In one embodiment, the metalworking fluid when evaluated under ASTM D892-06 method shows a sequence II foam tendency foam height of less than 50 mls. In yet another embodiment, the metalworking fluid shows a sequence II foam height of less than 40 mls. In a third embodiment, a sequence II foam height of less than 30 mls. In a fifth embodiment, the sequence II foam height is less than 20 mls. In a six embodiment, none can be measured (0 ml).
- In one embodiment, the metalworking fluid shows a sequence I foam tendency by ASTM D 892-03 of less than 100 ml. In another embodiment, the fluid has a sequence I foam tendency of less than 50 ml. In a third embodiment, a sequence I foam tendency of less than 30 ml.
- In one embodiment, the metalworking fluid has a number of minutes to 3 ml emulsion at 54° C. by ASTM D 1401-02 of equal or less than 30. In yet another embodiment, the fluid has a number of minutes to 3 ml emulsion at 82° C. by ASTM D 1401-02 equal to or less than 60.
- Air release properties can be measured using the ASTM D 3427 (2003) method for gas bubble separation time of petroleum oil to measure the ability of a fluid to separate entrained gas. In one embodiment, the metalworking fluid has an air release time at 50° C. of less than 0.60 minutes as measured according to ASTM D 3427 (2003). In a second embodiment, an air release time of less than ½ minutes.
- In one embodiment, the metalworking fluid exhibits reduced mist formation property and imparts aerosol control or particulate control to the fluid, e.g., having 5 to 50% mist reduction compared to metalworking fluids comprising base oil Group I in the prior art. Mist reduction experiments can be measured according to similar to the aerosol (mist) formation test as described in “Polymer Additives as Mist Suppressants in Metal Cutting Fluids,” by Marano et al., Journal of the Society of Tribologists and Lubrication Engineers, October 1995, pp. 25-35. In one embodiment, the metalworking fluid without any addition of anti-mist additives has an average mist accumulation rate of less than 300 mg/mm3 in the first 30 seconds (after start) of the aerosol mist formation test. In another embodiment, the metalworking fluid without any mist additive has an average mist accumulation rate of less than 250 mg/mm3 in the first 30 seconds of the aerosol mist formation test. In a third embodiment, the average mist accumulation rate is less than 200 mg/mm3 in the first 30 seconds of the test. In a fourth embodiment, the average mist accumulation rate is less than 150 mg/mm3 in the first 60 seconds of the test.
- In one embodiment, the metalworking fluid composition is readily biodegradable, with the base oil having an OECD301D level ranging from 30 to 95%. In one embodiment, the metalworking fluid has a kinematic viscosity at 40° C. of 10-14 mm2/s and an OECD 301D biodegrability of >=60%. In a second embodiment, the composition has a kinematic viscosity at 40° C. of less than 10 mm2/s and an OECD 301D biodegrability of >=80%. In a third embodiment, the composition has a kinematic viscosity at 40° C. of less than 8 mm2/s and an OECD 301D biodegrability of >=90%. In a fifth embodiment, the metalworking fluid has a biodegradability of at least 30% as measured according to OECD 301D.
- Metalworking fluids can be characterized as suitable or unsuitable for extreme pressure applications. A fluid that is considered as suitable for extreme pressure is one that prevents sliding metal surfaces from seizing under extreme pressure conditions. The seizing of metal surfaces result from friction between opposing asperities. Asperities are microscopic projections on metal surfaces resulting from metalworking operations. One technique for measuring extreme pressure properties of a fluid is to measure a load force between sliding surfaces which can be sustained by lubricant without seizing of the sliding surfaces. Such a technique is described as a Falex load test, which is an ASTM standard test for fluid lubricants (ASTM D-3233 (2003)). In one embodiment, the metalworking fluid is characterized has having a Falex reference wear of less than ten teeth. In another embodiment, the metalworking fluid is characterized as having a Falex reference load of greater than about 4,500 pounds force.
- In one embodiment, the metalworking fluid is characterized as having excellent lubricating property, specifically lubricating surfaces in sliding contacts, as measured in a Four-Ball Wear Test per ASTM D4172-94 (2004)e1. In one embodiment, the metalworking fluid has a Four-Ball wear scar diameter of less than about 0.07 mm.
- In some applications and with the use of isomerized base oils having a low kinematic viscosity, the metalworking fluid is characterized has having a smooth liquid flow for excellent circulation in a pump. Moreover, the metalworking fluid has an excellent which can prevent frictional heat from being produced between a tool and a workpiece, so that the effective tool life can be increased.
- Applications: In one embodiment, the metalworking fluid is used in the production of semiconductors, plant equipment, and auto parts, etc. wherein the shape of the final object, e.g., silicon wafer or machine part, is obtained by with or without the progressive removal of metal or silicon. Non-limiting examples of the operations include cutting, drilling, boring, honing, broaching, grinding, forming, stamping, casting, forging, rolling, piercing, coining, drawing, press forming, deburring, milling, grooving, tapping, chamfering, broaching, reaming, honing, lapping, straightening, and drawing.
- In one embodiment of a metalworking operation, the metalworking fluid is applied to the contact zone between tool and workpiece. The fluid may be applied by a variety of methods, including immersing the contact zone in the fluid, spraying the fluid into the contact zone, flooding the contact zone with fluid, pumping a stream of fluid into the contact zone, periodically wetting the tool or the workpiece with lubricating fluid, or any means of constantly or intermittently applying the lubricant to the contact zone between the tool and the workpiece.
- Unless specified otherwise, the compositions are prepared by mixing the components in the amounts indicated in the Examples/Tables. The components used in the Examples are listed below.
- EP agent is a commercially available sulfurized polymerized ester, 10% inactive sulphur extreme-pressure agent.
- HYNAP™ N100HTS hydrotreated, naphthenic oil (Group V) is from San Joaquin Refining Oil, Inc. of Bakersfield, Calif.
- Ashland™ 100SN Group 1 oil is from Ashland Inc.
- Chevron™ 100R group 2 oil, Chevron™ 100R group 3 oil, and Chevron Synfluid 4 cSt PAO oil are all from Chevron Corporation of San Ramon, Calif.
- Additive 2 is a sulfurized vegetable fatty acid ester. Defoamer is an acrylate oligomer antifoam/defoamer. Additive CAS is a commercially available overbased calcium sulphonate PEP metalworking additive containing carbonated alkylbenzene sulfonate. Additive SO is a sulfurized olefin.
- Mineral seal oil (MSO) having a visocisty of 3.39 mm2/sec at 40° C., and basestock oils SN 100 (density of 0.864 and viscosity of 20.6 mm2/sec at 40° C.),
SN 150 and SN 600 (API Group I) are commercially available from a number of sources. - GTL Fischer-Tropsch derived base oils GST0449, FTBO L, FTBO XL, FTBO XXL, and FTBO M are from Chevron Corp. Properties of the Fischer-Tropsch derived base oils used in the Examples are shown in Table 3.
- Anti-mist agent 1 is a methacrylate copolymer. Anti-mist agent 2 is a commercially available high molecular weight oil soluble polymer tackifier.
- A number of metalworking fluid compositions having components as listed in Table 1 were formulated and their properties were measured using various standard test methods: ASTM D1401-02 for Water Separability of Petroleum Oils and Synthetic Fluids; ASTM D 3427 (2003) Standard Test Method for Air Release Properties of Petroleum Oils; and ASTM D892-95 Foam Stability Sequence Test. As shown in the table, the example incorporating the isomerized base oil shows low foaming tendency (foam height of nil) and air release property that is comparable if not better than the prior art oil (in view of the test repeatability of 1 min.).
-
TABLE 1 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Group V Group 1 Group 2 Group 3 PAO GTL Sample ID wt % wt % wt % wt % wt % wt % SJR Hynap N100HTS - Group V 95 — — — — — Ashland 100 SN - Group 1— 95 — — — — Chevron 100 R - Group 2 — — 95 — — — Chevron UCBO 4R - Group 3 — — — 95 — — Chevron Synfluid, 4 cSt - PAO — — — — 95 — GTL GST0449 isomerized base oil — — — — — 95 EP agent 5 5 5 5 5 5 Kinematic Viscosity @ 40° C., cSt 19.91 20.51 20.70 18.30 17.76 18.60 Air Release @ 50 C., D3427, min 0.72 0.88 0.5 0.42 <0.42 <0.42 Foam Sequence I-III, D892 Seq. I, 24 C., Tendency, ml foam 220 70 80 30 0 0 Seq. I, Stability, ml after 10 min. 0 0 0 0 0 0 Seq. II, 93.5 C., Tendency, ml foam 30 30 25 20 0 0 Seq. II, Stability, ml after 10 min. 0 0 0 0 0 0 Seq. III, 24 C., Tendency, ml foam 140 100 80 40 0 0 Seq. III, Stability, ml after 10 min. 0 0 0 0 0 0 Water Separability, D1401 @ 54 C. o-w-e, ml 2/0/78 2/0/78 2/0/78 2/0/78 2/0/78 2/2/76 Time, min 30 30 30 30 30 30 Water Separability, D1401 @ 82 C. o-w-e, ml 6/0/74 6/0/74 5/0/75 9/0/71 7/0/73 6/0/74 Time, min 60 60 60 60 60 60 - A number of metalworking fluid compositions having components as listed in Table 2 were formulated and their properties were measured/recorded. Examples 11-13 compare the compositions each with 0.25 wt. % of an anti-mist agent added (a high molecular weight oil soluble polymer tackifier).
- The samples were subject to an aerosol (mist) formation experiment similar to the one described in “Polymer Additives as Mist Suppressants in Metal Cutting Fluids,” by Marano et al., Journal of the Society of Tribologists and Lubrication Engineers, October 1995, pp. 25-35. Basically in the test, metalworking fluid (in 100 mil. sample) was supplied to a coaxial atomizer's tip through a tube (e.g., ID of 0.0011 m) by a syringe pump at constant flow rates up to 0.0084 litre/min. Compressed air was supplied through the annulus between the outer and inner tubes (ID 0.0021 m and OD 0.0013 m, respectively) at flow rates up to 35 litres/min. Mist generated by the atomizer was directed to a long wide plexiglass duct of square cross section or chamber (e.g., a 12″ by 12″ by 18″ chamber). The amount of mist generated as a function of time (as mg/mm3 over a duration of 5 minutes) was captured by a datalogger and recorded. In the experiments, a portable, real time aerosol monitor DataRAM® [MIE Instruments Inc., Bedford Mass.] was used as the datalogger to continuously quantify the mist levels generated. The DataRAM is a nephelometric monitor used to measure airborne particle concentration by sensing the amount of light scattered by the population of particles passing through a sampling volume.
- Most mist was generated for all of the samples at the beginning of the test. After atomizing, the mist tended to drop to the bottom of the container and thereby showing a drop in the amount of mist collected.
- Measurements from the aerosol (mist) formation experiments were plotted in
FIGS. 1-3 as a function of time. The results show that generally, metalworking fluid compositions containing Fischer-Tropsch derived base oils result in significantly less mist formation than the base oils of the prior art, with a reduction in mist formation of at least 10% in some examples to up to 75% or more in the first 30 seconds of the aerosol mist formation test. Example 10 with the isomerized base oil performs better (with reduced mist formation) compared to Example 9 with a mineral group I base oil and even with 2 wt. % anti-mist additive. InFIG. 3 , all examples (#11-13) with the addition of a high molecular weight oil soluble polymer tackifier as a powerful (and expensive) anti-mist additive show comparable performance. -
TABLE 2 Ex. 11 Ex. 12 Ex. 7 Ex. 8 Ex. 9 Ex. 10 ZX12A- ZX12B- Ex. 13 Components wt. % ZX12A ZX12B ZX46A ZX46B antimist antimist ZX12C- SN 10051.98 — — — 51.98 — — SN 150— — 70.98 — — — — SN 600 — — 15 — — — — MSO 36 — — — 36 — — FTBO M — — — 87.98 — — — FTBO L — — — — — — — FTBO XL — 16.21 — — — — 16.21 FTBO XXL — 71.77 — — — 87.98 71.77 Anti-mist agent 1 — — 2 — — — — Anti-mist agent 2 — — — — 0.25 0.25 0.25 CAS alkylbenzene 4 4 4 4 4 4 4 Sulfurized olefin 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Additive 2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Defoamer 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Visc.@ 40° C. m2/sec 10.4 9.89 48.12 45.19 10.7 9.61 9.89 Density @ 15° C. .8626 .8264 — — .8626 .826 .826 Visc.@ 100° C. m2/sec 2.84 2.8 — — — — — VI 122 141 — — — — — Flash point ° C. 148 178 — — — — — Color L3.5 L3.5 — — — — — -
TABLE 3 FTBO-XXL FTBO-XL FTBO-L FTBO-M BST00449 Properties Kinematic Viscosity @ 40° C., cSt 7.658 11.16 17.07 34.13 17.74 Kinematic Viscosity @ 100° C., cSt 2.333 2.988 4.028 6.134 4.12 Viscosity Index 124 125 139 156 138 Cold Crank Viscosity @ −40° C., cP 1,525 Cold Crank Viscosity @ −35° C., cP 578 1,524 6048 1,596 Cold Crank Viscosity @ −30° C., cP 361 866 3200 941 Pour Point, ° C. −46 −36 −28 −18 −26 n-d-m Molecular Weight, gm/mol (VPO) 314 375 436 508 431 Density, gm/ml 0.8026 0.8059 0.8122 0.824 0.8128 Refractive Index 1.4485 1.4507 1.454 1.4596 1.4541 Paraffinic Carbon, % 93.13 96.97 95.82 92.84 95.99 Naphthenic Carbon, % 6.87 3.03 4.18 7.16 4.01 Aromatic Carbon, % 0.00 0.00 0.00 0 0 Oxidator BN, hrs 35.9 56.27 39.97 41.02 ANTEK SULFUR <2 <1 <1 <2 LOW LEVEL NITROGEN <0.1 <.1 <0.1 <0.1 Noack, wt. % 60.69 26.8 10.72 3.15 10.22 Saybolt Color +33.6 Aromatics Total 0.00261 0 0.00082 COC Flash Point, ° C. 192 206 226 254 232 SIMDIST TBP (WT %), F. TBP @ 0.5 583 679 726 799 732 TBP @ 5 622 701 754 831 758 TBP @ 10 636 709 766 846 770 TBP @ 20 654 720 780 865 784 TBP @ 30 667 728 791 880 795 TBP @ 40 678 735 800 894 805 TBP @ 50 688 741 809 906 813 TBP @ 60 697 748 818 920 822 TBP @ 70 706 756 828 935 832 TBP @ 80 715 764 839 952 843 TBP @ 90 727 774 853 976 857 TBP @ 95 735 782 864 994 867 TBP @ 99.5 753 802 884 1034 887 FIMS Saturates 72.7 75.3 75 75.3 1-Unsaturation 19.3 23.2 24 23.6 2-Unsaturation 3.9 1.1 0.8 0.9 3-Unsaturation 2 0.2 0.1 0.1 4-Unsaturation 1.7 0 0 0 5-Unsaturation 0.5 0 0 0 6-Unsaturation 0 0.2 0.1 0.1 Branching Index 30.21 28.85 26.95 27.25 Branching Proximity 14.05 12.77 14.43 14.83 Alkyl Branches per Molecule 2.17 2.63 2.57 2.9 Methyl Branches per Molecule 1.90 2.07 2 2.26 FCI 3.15 3.42 4.5 4.56 FCI/END Methyl Ratio 2.50 2.33 3.66 3.1 Alkyl Branches per 100 Carbons 9.67 9.83 8.25 9.42 Methyl Branches per 100 Carbons 8.48 7.74 6.41 7.35 % Olefins by Proton NMR 0.00 0.12 0.23 0.32 Monocycloparaffin (FIMS 1-unsat- 23.88 NMR Olefins) Multicycloparaffin (FIMS 2-Unsat- 0.99739 6Unsat - HPLC-UV Aromatics) Mono/Multi ratio 23.94 - For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
- This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
- All citations referred herein are expressly incorporated herein by reference.
Claims (22)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/831,910 US20090036333A1 (en) | 2007-07-31 | 2007-07-31 | Metalworking Fluid Compositions and Preparation Thereof |
BRPI0814020-0A2A BRPI0814020A2 (en) | 2007-07-31 | 2008-07-15 | METAL WORKING FLUID, AND METHOD FOR LUBRICATION OF A WORKING PART IN A METAL WORKING OPERATION |
MX2010001002A MX2010001002A (en) | 2007-07-31 | 2008-07-15 | Metalworking fluid compositions of isomerized base oil with improved antimisting properties and preparation thereof. |
CA2694301A CA2694301A1 (en) | 2007-07-31 | 2008-07-15 | Metalworking fluid compositions of isomerized base oil with improved antimisting properties and preparation thereof |
JP2010520054A JP2010535275A (en) | 2007-07-31 | 2008-07-15 | Isomerized base oil metalworking fluid compositions with improved mist prevention properties and their preparation |
PCT/US2008/070039 WO2009017960A1 (en) | 2007-07-31 | 2008-07-15 | Metalworking fluid compositions of isomerized base oil with improved antimisting properties and preparation thereof |
CN200880107410A CN101802147A (en) | 2007-07-31 | 2008-07-15 | Metalworking fluid compositions and preparation thereof with isomerized base oil of improved anti-atomizing character |
DE112008002082T DE112008002082T5 (en) | 2007-07-31 | 2008-07-15 | Compositions for metalworking fluids with an isomerized base oil which has better anti-fogging properties and their preparation |
US13/112,548 US20120010113A1 (en) | 2007-07-31 | 2011-05-20 | Metalworking fluid compositions and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/831,910 US20090036333A1 (en) | 2007-07-31 | 2007-07-31 | Metalworking Fluid Compositions and Preparation Thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/831,896 Continuation-In-Part US20090036338A1 (en) | 2007-07-31 | 2007-07-31 | Metalworking Fluid Compositions and Preparation Thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US201113045816A Continuation-In-Part | 2007-07-31 | 2011-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090036333A1 true US20090036333A1 (en) | 2009-02-05 |
Family
ID=39735327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/831,910 Abandoned US20090036333A1 (en) | 2007-07-31 | 2007-07-31 | Metalworking Fluid Compositions and Preparation Thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090036333A1 (en) |
JP (1) | JP2010535275A (en) |
CN (1) | CN101802147A (en) |
BR (1) | BRPI0814020A2 (en) |
CA (1) | CA2694301A1 (en) |
DE (1) | DE112008002082T5 (en) |
MX (1) | MX2010001002A (en) |
WO (1) | WO2009017960A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100081590A1 (en) * | 2008-10-01 | 2010-04-01 | Chevron U.S.A. Inc. | 110 neutral base oil with improved properties |
US20100078354A1 (en) * | 2008-10-01 | 2010-04-01 | Chevron U.S.A. Inc. | 170 neutral base oil with improved properties |
CN102759503A (en) * | 2011-04-29 | 2012-10-31 | 中国石油化工股份有限公司 | Fast detecting case for metal working fluid |
WO2012103425A3 (en) * | 2011-01-28 | 2012-11-22 | Chevron U.S.A. Inc. | Rock drill oil |
US20140144846A1 (en) * | 2012-11-26 | 2014-05-29 | Memc Singapore, Pte. Ltd (Uen200614797D) | Methods For The Recycling of Wire-Saw Cutting Fluid |
US20140162913A1 (en) * | 2011-07-25 | 2014-06-12 | David McCreery | Corrosion-inhibiting lubricant and methods therefor |
US20150191671A1 (en) * | 2014-01-07 | 2015-07-09 | Shell Oil Company | Lubricating composition |
US20160102268A1 (en) * | 2014-10-10 | 2016-04-14 | Continental Automotive Systems, Inc. | Drilling fluid system |
US20170183595A1 (en) * | 2015-12-28 | 2017-06-29 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US9976099B2 (en) | 2015-12-28 | 2018-05-22 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US10233403B2 (en) | 2016-11-03 | 2019-03-19 | EXXONMOBiL RESEARCH AND ENGiNEERENG COMPANY | High viscosity index monomethyl ester lubricating oil base stocks and methods of making and use thereof |
US10316265B2 (en) | 2015-12-28 | 2019-06-11 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US20230142153A1 (en) * | 2017-10-06 | 2023-05-11 | Castrol Limited | Metal Working Fluid Additive Composition |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2835019C (en) * | 2011-05-06 | 2018-04-10 | Chemetall Gmbh | Amine-free voc-free metal working fluid |
JP5764505B2 (en) * | 2012-02-02 | 2015-08-19 | Jx日鉱日石エネルギー株式会社 | Oil composition |
WO2015187440A1 (en) * | 2014-06-03 | 2015-12-10 | Shell Oil Company | Defoaming agent and associated methods of use |
CN105296245B (en) * | 2015-11-18 | 2018-07-27 | 南京科润工业介质股份有限公司 | A kind of emulsion for without cleaning after nut tapping processing and use |
CN106590843A (en) * | 2016-11-30 | 2017-04-26 | 广州科卢斯流体科技有限公司 | Precision stainless steel band cold-rolling rolling oil |
CN107164024A (en) * | 2017-06-09 | 2017-09-15 | 中国石油化工股份有限公司 | Lubricant oil composite and purposes |
CN111205919B (en) * | 2020-01-13 | 2021-11-16 | 库勃智能科技(上海)有限公司 | Environment-friendly biostable cutting fluid and preparation method thereof |
CN114442995B (en) * | 2020-10-30 | 2024-08-13 | 中国石油化工股份有限公司 | Characterization method of isomerization index and application thereof |
CN114210761A (en) * | 2021-12-30 | 2022-03-22 | 武汉市博钛新材料科技有限公司 | High-frequency induction seamless titanium welded pipe and production method thereof |
Citations (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3805918A (en) * | 1972-07-19 | 1974-04-23 | Chevron Res | Mist oil lubrication process |
US3919098A (en) * | 1973-11-05 | 1975-11-11 | Chevron Res | Cutting oil of reduced stray fog |
US4956110A (en) * | 1985-06-27 | 1990-09-11 | Exxon Chemical Patents Inc. | Aqueous fluid |
US5716913A (en) * | 1995-04-18 | 1998-02-10 | Asahi Denka Kogyo Kabushiki Kaisha | Metal working oil composition and method of working metal |
US5985802A (en) * | 1997-06-02 | 1999-11-16 | Watari; Koji | High-performance lubricant oil |
US6059955A (en) * | 1998-02-13 | 2000-05-09 | Exxon Research And Engineering Co. | Low viscosity lube basestock |
US6096940A (en) * | 1995-12-08 | 2000-08-01 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
US6100225A (en) * | 1996-05-13 | 2000-08-08 | The Lubrizol Corporation | Sulfonate containing copolymers as mist suppressants insoluble oil (water-based) metal working fluids |
US6150577A (en) * | 1998-12-30 | 2000-11-21 | Chevron U.S.A., Inc. | Method for conversion of waste plastics to lube oil |
US6392108B1 (en) * | 2001-06-15 | 2002-05-21 | Chevron U.S.A. Inc. | Inhibiting oxidation of a fischer-tropsch product using temporary antioxidants |
US6518321B1 (en) * | 2000-11-08 | 2003-02-11 | Chevron U.S.A. Inc. | Method for transporting Fischer-Tropsch products |
US6579441B1 (en) * | 1999-06-11 | 2003-06-17 | Chevron U.S.A. Inc. | Haze-free lubricating oils |
US6589415B2 (en) * | 2001-04-04 | 2003-07-08 | Chevron U.S.A., Inc. | Liquid or two-phase quenching fluid for multi-bed hydroprocessing reactor |
US6605575B1 (en) * | 1998-11-19 | 2003-08-12 | Ajinomoto Co., Inc. | Cutting fluid composition |
US6627779B2 (en) * | 2001-10-19 | 2003-09-30 | Chevron U.S.A. Inc. | Lube base oils with improved yield |
US6656342B2 (en) * | 2001-04-04 | 2003-12-02 | Chevron U.S.A. Inc. | Graded catalyst bed for split-feed hydrocracking/hydrotreating |
US6699385B2 (en) * | 2001-10-17 | 2004-03-02 | Chevron U.S.A. Inc. | Process for converting waxy feeds into low haze heavy base oil |
US6703353B1 (en) * | 2002-09-04 | 2004-03-09 | Chevron U.S.A. Inc. | Blending of low viscosity Fischer-Tropsch base oils to produce high quality lubricating base oils |
US6713657B2 (en) * | 2002-04-04 | 2004-03-30 | Chevron U.S.A. Inc. | Condensation of olefins in fischer tropsch tail gas |
US20040079678A1 (en) * | 2001-03-05 | 2004-04-29 | Germaine Gilbert Robert Bernard | Process to prepare a lubricating base oil and a gas oil |
US6774272B2 (en) * | 2002-04-18 | 2004-08-10 | Chevron U.S.A. Inc. | Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils |
US6773578B1 (en) * | 2000-12-05 | 2004-08-10 | Chevron U.S.A. Inc. | Process for preparing lubes with high viscosity index values |
US20040159582A1 (en) * | 2003-02-18 | 2004-08-19 | Simmons Christopher A. | Process for producing premium fischer-tropsch diesel and lube base oils |
US20040176259A1 (en) * | 2003-03-06 | 2004-09-09 | Hilbert Esselbrugge | Stabilized foam control compostions for lubricating compositons and their use |
US20040181110A1 (en) * | 2003-03-10 | 2004-09-16 | Miller Stephen J. | Isomerization/dehazing process for base oils from fischer-tropsch wax |
US6806237B2 (en) * | 2001-09-27 | 2004-10-19 | Chevron U.S.A. Inc. | Lube base oils with improved stability |
US6822126B2 (en) * | 2002-04-18 | 2004-11-23 | Chevron U.S.A. Inc. | Process for converting waste plastic into lubricating oils |
US6833484B2 (en) * | 2001-06-15 | 2004-12-21 | Chevron U.S.A. Inc. | Inhibiting oxidation of a Fischer-Tropsch product using petroleum-derived products |
US20040256286A1 (en) * | 2003-06-19 | 2004-12-23 | Miller Stephen J. | Fuels and lubricants using layered bed catalysts in hydrotreating waxy feeds, including Fischer-Tropsch wax |
US20040256287A1 (en) * | 2003-06-19 | 2004-12-23 | Miller Stephen J. | Fuels and lubricants using layered bed catalysts in hydrotreating waxy feeds, including fischer-tropsch wax, plus solvent dewaxing |
US6878854B2 (en) * | 2001-06-15 | 2005-04-12 | Chevron U.S.A. Inc. | Temporary antioxidants for Fischer-Tropsch products |
US20050077208A1 (en) * | 2003-10-14 | 2005-04-14 | Miller Stephen J. | Lubricant base oils with optimized branching |
US6890423B2 (en) * | 2001-10-19 | 2005-05-10 | Chevron U.S.A. Inc. | Distillate fuel blends from Fischer Tropsch products with improved seal swell properties |
US6900366B2 (en) * | 2001-01-11 | 2005-05-31 | Chevron U.S.A. Inc. | Process for upgrading of Fischer-Tropsch products |
US20050133407A1 (en) * | 2003-12-23 | 2005-06-23 | Chevron U.S.A. Inc. | Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins |
US20050133409A1 (en) * | 2003-12-23 | 2005-06-23 | Chevron U.S.A. Inc. | Process for manufacturing lubricating base oil with high monocycloparaffins and low multicycloparaffins |
US20050139514A1 (en) * | 2003-12-30 | 2005-06-30 | Chevron U.S.A. Inc. | Hydroisomerization processes using sulfided catalysts |
US20050139513A1 (en) * | 2003-12-30 | 2005-06-30 | Chevron U.S.A. Inc. | Hydroisomerization processes using pre-sulfided catalysts |
US6924404B2 (en) * | 2001-10-18 | 2005-08-02 | Chevron U.S.A. Inc. | Inhibition of biological degradation of Fischer-Tropsch products |
US20050197262A1 (en) * | 2004-02-06 | 2005-09-08 | Fretz Mark J. | Antimicrobial metal working fluids |
US20050245403A1 (en) * | 2004-05-03 | 2005-11-03 | Harris Charles P | Gear cutting oil |
US6962651B2 (en) * | 2003-03-10 | 2005-11-08 | Chevron U.S.A. Inc. | Method for producing a plurality of lubricant base oils from paraffinic feedstock |
US20050247600A1 (en) * | 2004-05-04 | 2005-11-10 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using isomerized petroleum product |
US20050261145A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Lubricant blends with low brookfield viscosities |
US20050261147A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Lubricant blends with low brookfield viscosities |
US20050258078A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Processes for making lubricant blends with low brookfield viscosities |
US20050261146A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Processes for making lubricant blends with low brookfield viscosities |
US20060016721A1 (en) * | 2004-07-22 | 2006-01-26 | Chevron U.S.A. Inc. | White oil from waxy feed using highly selective and active wax hydroisomerization catalyst |
US20060016724A1 (en) * | 2004-07-22 | 2006-01-26 | Chevron U.S.A. Inc. | Process to make white oil from waxy feed using highly selective and active wax hydroisomerization catalyst |
US20060027486A1 (en) * | 2004-08-05 | 2006-02-09 | Chevron U.S.A. Inc. | Multigrade engine oil prepared from Fischer-Tropsch distillate base oil |
US7018959B2 (en) * | 2003-10-29 | 2006-03-28 | Miller Environmental | Water-based metal working fluid |
US7018525B2 (en) * | 2003-10-14 | 2006-03-28 | Chevron U.S.A. Inc. | Processes for producing lubricant base oils with optimized branching |
US20060065573A1 (en) * | 2004-09-28 | 2006-03-30 | Chevron U.S.A. Inc. | Fischer-tropsch wax composition and method of transport |
US20060069296A1 (en) * | 2004-09-28 | 2006-03-30 | Chevron U.S.A. Inc. | Fischer-tropsch wax composition and method of transport |
US20060069295A1 (en) * | 2004-09-28 | 2006-03-30 | Chevron U.S.A. Inc. | Fischer-Tropsch wax composition and method of transport |
US20060070914A1 (en) * | 2003-11-07 | 2006-04-06 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms |
US20060091043A1 (en) * | 2004-11-02 | 2006-05-04 | Chevron U.S.A. Inc. | Catalyst combination for the hydroisomerization of waxy feeds at low pressure |
US7045055B2 (en) * | 2004-04-29 | 2006-05-16 | Chevron U.S.A. Inc. | Method of operating a wormgear drive at high energy efficiency |
US20060113216A1 (en) * | 2004-12-01 | 2006-06-01 | Chevron U.S.A. Inc. | Dielectric fluids and processes for making same |
US20060113512A1 (en) * | 2004-12-01 | 2006-06-01 | Chevron U.S.A. Inc. | Dielectric fluids and processes for making same |
US7056869B2 (en) * | 2002-03-06 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Hydrocarbon fluids |
US20060122072A1 (en) * | 2002-10-25 | 2006-06-08 | University Of Chicago | Metalworking and machining fluids |
US20060131210A1 (en) * | 2004-12-16 | 2006-06-22 | Chevron U.S.A. Inc. | Hydraulic oil with excellent air release and low foaming tendency |
US7067049B1 (en) * | 2000-02-04 | 2006-06-27 | Exxonmobil Oil Corporation | Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons |
US7083713B2 (en) * | 2003-12-23 | 2006-08-01 | Chevron U.S.A. Inc. | Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins |
US20060199743A1 (en) * | 2005-03-03 | 2006-09-07 | Chevron U.S.A. Inc. | Polyalphaolefin & fischer-tropsch derived lubricant base oil lubricant blends |
US20060196807A1 (en) * | 2005-03-03 | 2006-09-07 | Chevron U.S.A. Inc. | Polyalphaolefin & Fischer-Tropsch derived lubricant base oil lubricant blends |
US20060201852A1 (en) * | 2005-03-11 | 2006-09-14 | Chevron U.S.A. Inc. | Extra light hydrocarbon liquids |
US20060201851A1 (en) * | 2005-03-10 | 2006-09-14 | Chevron U.S.A. Inc. | Multiple side draws during distillation in the production of base oil blends from waxy feeds |
US20060237344A1 (en) * | 2005-04-20 | 2006-10-26 | Chevron U.S.A. Inc. | Process to enhance oxidation stability of base oils by analysis of olefins using ¹H NMR |
US7141157B2 (en) * | 2003-03-11 | 2006-11-28 | Chevron U.S.A. Inc. | Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock |
US7144497B2 (en) * | 2002-11-20 | 2006-12-05 | Chevron U.S.A. Inc. | Blending of low viscosity Fischer-Tropsch base oils with conventional base oils to produce high quality lubricating base oils |
US20070010406A1 (en) * | 2003-03-24 | 2007-01-11 | Sanyo Chemical Industries, Ltd. | Lubricant for water-miscible metal working oil |
US20070087944A1 (en) * | 2003-04-28 | 2007-04-19 | Phillips William D | Lubricant compositions |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US616549A (en) | 1898-12-27 | Reverse-feed for type-writers | ||
US6090989A (en) | 1997-10-20 | 2000-07-18 | Mobil Oil Corporation | Isoparaffinic lube basestock compositions |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US7763161B2 (en) | 2003-12-23 | 2010-07-27 | Chevron U.S.A. Inc. | Process for making lubricating base oils with high ratio of monocycloparaffins to multicycloparaffins |
US7465696B2 (en) * | 2005-01-31 | 2008-12-16 | Chevron Oronite Company, Llc | Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same |
EP1851290A1 (en) * | 2005-02-24 | 2007-11-07 | Shell Internationale Research Maatschappij B.V. | Metal working fluid |
-
2007
- 2007-07-31 US US11/831,910 patent/US20090036333A1/en not_active Abandoned
-
2008
- 2008-07-15 JP JP2010520054A patent/JP2010535275A/en active Pending
- 2008-07-15 CA CA2694301A patent/CA2694301A1/en not_active Abandoned
- 2008-07-15 MX MX2010001002A patent/MX2010001002A/en unknown
- 2008-07-15 WO PCT/US2008/070039 patent/WO2009017960A1/en active Application Filing
- 2008-07-15 BR BRPI0814020-0A2A patent/BRPI0814020A2/en not_active IP Right Cessation
- 2008-07-15 DE DE112008002082T patent/DE112008002082T5/en not_active Ceased
- 2008-07-15 CN CN200880107410A patent/CN101802147A/en active Pending
Patent Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3805918A (en) * | 1972-07-19 | 1974-04-23 | Chevron Res | Mist oil lubrication process |
US3919098A (en) * | 1973-11-05 | 1975-11-11 | Chevron Res | Cutting oil of reduced stray fog |
US4956110A (en) * | 1985-06-27 | 1990-09-11 | Exxon Chemical Patents Inc. | Aqueous fluid |
US5716913A (en) * | 1995-04-18 | 1998-02-10 | Asahi Denka Kogyo Kabushiki Kaisha | Metal working oil composition and method of working metal |
US6096940A (en) * | 1995-12-08 | 2000-08-01 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
US6506297B1 (en) * | 1995-12-08 | 2003-01-14 | Exxonmobile Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
US6100225A (en) * | 1996-05-13 | 2000-08-08 | The Lubrizol Corporation | Sulfonate containing copolymers as mist suppressants insoluble oil (water-based) metal working fluids |
US5985802A (en) * | 1997-06-02 | 1999-11-16 | Watari; Koji | High-performance lubricant oil |
US6059955A (en) * | 1998-02-13 | 2000-05-09 | Exxon Research And Engineering Co. | Low viscosity lube basestock |
US6605575B1 (en) * | 1998-11-19 | 2003-08-12 | Ajinomoto Co., Inc. | Cutting fluid composition |
US6150577A (en) * | 1998-12-30 | 2000-11-21 | Chevron U.S.A., Inc. | Method for conversion of waste plastics to lube oil |
US6579441B1 (en) * | 1999-06-11 | 2003-06-17 | Chevron U.S.A. Inc. | Haze-free lubricating oils |
US7067049B1 (en) * | 2000-02-04 | 2006-06-27 | Exxonmobil Oil Corporation | Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons |
US6518321B1 (en) * | 2000-11-08 | 2003-02-11 | Chevron U.S.A. Inc. | Method for transporting Fischer-Tropsch products |
US6773578B1 (en) * | 2000-12-05 | 2004-08-10 | Chevron U.S.A. Inc. | Process for preparing lubes with high viscosity index values |
US6900366B2 (en) * | 2001-01-11 | 2005-05-31 | Chevron U.S.A. Inc. | Process for upgrading of Fischer-Tropsch products |
US20040079678A1 (en) * | 2001-03-05 | 2004-04-29 | Germaine Gilbert Robert Bernard | Process to prepare a lubricating base oil and a gas oil |
US6656342B2 (en) * | 2001-04-04 | 2003-12-02 | Chevron U.S.A. Inc. | Graded catalyst bed for split-feed hydrocracking/hydrotreating |
US6589415B2 (en) * | 2001-04-04 | 2003-07-08 | Chevron U.S.A., Inc. | Liquid or two-phase quenching fluid for multi-bed hydroprocessing reactor |
US6878854B2 (en) * | 2001-06-15 | 2005-04-12 | Chevron U.S.A. Inc. | Temporary antioxidants for Fischer-Tropsch products |
US6392108B1 (en) * | 2001-06-15 | 2002-05-21 | Chevron U.S.A. Inc. | Inhibiting oxidation of a fischer-tropsch product using temporary antioxidants |
US6833484B2 (en) * | 2001-06-15 | 2004-12-21 | Chevron U.S.A. Inc. | Inhibiting oxidation of a Fischer-Tropsch product using petroleum-derived products |
US6806237B2 (en) * | 2001-09-27 | 2004-10-19 | Chevron U.S.A. Inc. | Lube base oils with improved stability |
US6699385B2 (en) * | 2001-10-17 | 2004-03-02 | Chevron U.S.A. Inc. | Process for converting waxy feeds into low haze heavy base oil |
US6924404B2 (en) * | 2001-10-18 | 2005-08-02 | Chevron U.S.A. Inc. | Inhibition of biological degradation of Fischer-Tropsch products |
US6627779B2 (en) * | 2001-10-19 | 2003-09-30 | Chevron U.S.A. Inc. | Lube base oils with improved yield |
US6890423B2 (en) * | 2001-10-19 | 2005-05-10 | Chevron U.S.A. Inc. | Distillate fuel blends from Fischer Tropsch products with improved seal swell properties |
US6833065B2 (en) * | 2001-10-19 | 2004-12-21 | Chevron U.S.A. Inc. | Lube base oils with improved yield |
US7056869B2 (en) * | 2002-03-06 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Hydrocarbon fluids |
US6713657B2 (en) * | 2002-04-04 | 2004-03-30 | Chevron U.S.A. Inc. | Condensation of olefins in fischer tropsch tail gas |
US6822126B2 (en) * | 2002-04-18 | 2004-11-23 | Chevron U.S.A. Inc. | Process for converting waste plastic into lubricating oils |
US6774272B2 (en) * | 2002-04-18 | 2004-08-10 | Chevron U.S.A. Inc. | Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils |
US6703353B1 (en) * | 2002-09-04 | 2004-03-09 | Chevron U.S.A. Inc. | Blending of low viscosity Fischer-Tropsch base oils to produce high quality lubricating base oils |
US20060122072A1 (en) * | 2002-10-25 | 2006-06-08 | University Of Chicago | Metalworking and machining fluids |
US7144497B2 (en) * | 2002-11-20 | 2006-12-05 | Chevron U.S.A. Inc. | Blending of low viscosity Fischer-Tropsch base oils with conventional base oils to produce high quality lubricating base oils |
US20040232045A1 (en) * | 2003-02-18 | 2004-11-25 | Chevron U.S.A. Inc. | Process for producing premium fischer-tropsch diesel and lube base oils |
US20040159582A1 (en) * | 2003-02-18 | 2004-08-19 | Simmons Christopher A. | Process for producing premium fischer-tropsch diesel and lube base oils |
US20040176259A1 (en) * | 2003-03-06 | 2004-09-09 | Hilbert Esselbrugge | Stabilized foam control compostions for lubricating compositons and their use |
US6962651B2 (en) * | 2003-03-10 | 2005-11-08 | Chevron U.S.A. Inc. | Method for producing a plurality of lubricant base oils from paraffinic feedstock |
US20040181110A1 (en) * | 2003-03-10 | 2004-09-16 | Miller Stephen J. | Isomerization/dehazing process for base oils from fischer-tropsch wax |
US7141157B2 (en) * | 2003-03-11 | 2006-11-28 | Chevron U.S.A. Inc. | Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock |
US20070010406A1 (en) * | 2003-03-24 | 2007-01-11 | Sanyo Chemical Industries, Ltd. | Lubricant for water-miscible metal working oil |
US20070087944A1 (en) * | 2003-04-28 | 2007-04-19 | Phillips William D | Lubricant compositions |
US20040256287A1 (en) * | 2003-06-19 | 2004-12-23 | Miller Stephen J. | Fuels and lubricants using layered bed catalysts in hydrotreating waxy feeds, including fischer-tropsch wax, plus solvent dewaxing |
US20040256286A1 (en) * | 2003-06-19 | 2004-12-23 | Miller Stephen J. | Fuels and lubricants using layered bed catalysts in hydrotreating waxy feeds, including Fischer-Tropsch wax |
US20050077208A1 (en) * | 2003-10-14 | 2005-04-14 | Miller Stephen J. | Lubricant base oils with optimized branching |
US7018525B2 (en) * | 2003-10-14 | 2006-03-28 | Chevron U.S.A. Inc. | Processes for producing lubricant base oils with optimized branching |
US7018959B2 (en) * | 2003-10-29 | 2006-03-28 | Miller Environmental | Water-based metal working fluid |
US20060076267A1 (en) * | 2003-11-07 | 2006-04-13 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms |
US20060070914A1 (en) * | 2003-11-07 | 2006-04-06 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms |
US7053254B2 (en) * | 2003-11-07 | 2006-05-30 | Chevron U.S.A, Inc. | Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms |
US20060076266A1 (en) * | 2003-11-07 | 2006-04-13 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms |
US20050133407A1 (en) * | 2003-12-23 | 2005-06-23 | Chevron U.S.A. Inc. | Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins |
US7083713B2 (en) * | 2003-12-23 | 2006-08-01 | Chevron U.S.A. Inc. | Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins |
US20050133409A1 (en) * | 2003-12-23 | 2005-06-23 | Chevron U.S.A. Inc. | Process for manufacturing lubricating base oil with high monocycloparaffins and low multicycloparaffins |
US20050139513A1 (en) * | 2003-12-30 | 2005-06-30 | Chevron U.S.A. Inc. | Hydroisomerization processes using pre-sulfided catalysts |
US20050139514A1 (en) * | 2003-12-30 | 2005-06-30 | Chevron U.S.A. Inc. | Hydroisomerization processes using sulfided catalysts |
US20050197262A1 (en) * | 2004-02-06 | 2005-09-08 | Fretz Mark J. | Antimicrobial metal working fluids |
US7045055B2 (en) * | 2004-04-29 | 2006-05-16 | Chevron U.S.A. Inc. | Method of operating a wormgear drive at high energy efficiency |
US20050245403A1 (en) * | 2004-05-03 | 2005-11-03 | Harris Charles P | Gear cutting oil |
US20050247600A1 (en) * | 2004-05-04 | 2005-11-10 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using isomerized petroleum product |
US20050261145A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Lubricant blends with low brookfield viscosities |
US20050258078A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Processes for making lubricant blends with low brookfield viscosities |
US20050261147A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Lubricant blends with low brookfield viscosities |
US20050261146A1 (en) * | 2004-05-19 | 2005-11-24 | Chevron U.S.A. Inc. | Processes for making lubricant blends with low brookfield viscosities |
US20060016724A1 (en) * | 2004-07-22 | 2006-01-26 | Chevron U.S.A. Inc. | Process to make white oil from waxy feed using highly selective and active wax hydroisomerization catalyst |
US20060016721A1 (en) * | 2004-07-22 | 2006-01-26 | Chevron U.S.A. Inc. | White oil from waxy feed using highly selective and active wax hydroisomerization catalyst |
US20060027486A1 (en) * | 2004-08-05 | 2006-02-09 | Chevron U.S.A. Inc. | Multigrade engine oil prepared from Fischer-Tropsch distillate base oil |
US20060069295A1 (en) * | 2004-09-28 | 2006-03-30 | Chevron U.S.A. Inc. | Fischer-Tropsch wax composition and method of transport |
US20060069296A1 (en) * | 2004-09-28 | 2006-03-30 | Chevron U.S.A. Inc. | Fischer-tropsch wax composition and method of transport |
US20060065573A1 (en) * | 2004-09-28 | 2006-03-30 | Chevron U.S.A. Inc. | Fischer-tropsch wax composition and method of transport |
US20060091043A1 (en) * | 2004-11-02 | 2006-05-04 | Chevron U.S.A. Inc. | Catalyst combination for the hydroisomerization of waxy feeds at low pressure |
US20060113512A1 (en) * | 2004-12-01 | 2006-06-01 | Chevron U.S.A. Inc. | Dielectric fluids and processes for making same |
US20060113216A1 (en) * | 2004-12-01 | 2006-06-01 | Chevron U.S.A. Inc. | Dielectric fluids and processes for making same |
US20060131210A1 (en) * | 2004-12-16 | 2006-06-22 | Chevron U.S.A. Inc. | Hydraulic oil with excellent air release and low foaming tendency |
US20060196807A1 (en) * | 2005-03-03 | 2006-09-07 | Chevron U.S.A. Inc. | Polyalphaolefin & Fischer-Tropsch derived lubricant base oil lubricant blends |
US20060199743A1 (en) * | 2005-03-03 | 2006-09-07 | Chevron U.S.A. Inc. | Polyalphaolefin & fischer-tropsch derived lubricant base oil lubricant blends |
US20060201851A1 (en) * | 2005-03-10 | 2006-09-14 | Chevron U.S.A. Inc. | Multiple side draws during distillation in the production of base oil blends from waxy feeds |
US20060201852A1 (en) * | 2005-03-11 | 2006-09-14 | Chevron U.S.A. Inc. | Extra light hydrocarbon liquids |
US20060205610A1 (en) * | 2005-03-11 | 2006-09-14 | Chevron U.S.A. Inc. | Processes for producing extra light hydrocarbon liquids |
US20060237344A1 (en) * | 2005-04-20 | 2006-10-26 | Chevron U.S.A. Inc. | Process to enhance oxidation stability of base oils by analysis of olefins using ¹H NMR |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100078354A1 (en) * | 2008-10-01 | 2010-04-01 | Chevron U.S.A. Inc. | 170 neutral base oil with improved properties |
US8318001B2 (en) * | 2008-10-01 | 2012-11-27 | Chevron U.S.A. Inc. | 110 neutral base oil with improved properties |
US20100081590A1 (en) * | 2008-10-01 | 2010-04-01 | Chevron U.S.A. Inc. | 110 neutral base oil with improved properties |
WO2012103425A3 (en) * | 2011-01-28 | 2012-11-22 | Chevron U.S.A. Inc. | Rock drill oil |
CN102759503A (en) * | 2011-04-29 | 2012-10-31 | 中国石油化工股份有限公司 | Fast detecting case for metal working fluid |
US9453178B2 (en) * | 2011-07-25 | 2016-09-27 | David McCreery | Corrosion-inhibiting lubricant and methods therefor |
US20140162913A1 (en) * | 2011-07-25 | 2014-06-12 | David McCreery | Corrosion-inhibiting lubricant and methods therefor |
US20140144846A1 (en) * | 2012-11-26 | 2014-05-29 | Memc Singapore, Pte. Ltd (Uen200614797D) | Methods For The Recycling of Wire-Saw Cutting Fluid |
US20150191671A1 (en) * | 2014-01-07 | 2015-07-09 | Shell Oil Company | Lubricating composition |
US20160102268A1 (en) * | 2014-10-10 | 2016-04-14 | Continental Automotive Systems, Inc. | Drilling fluid system |
US10041019B2 (en) * | 2014-10-10 | 2018-08-07 | Continental Automotive Systems, Inc. | Drilling fluid system |
US20170183595A1 (en) * | 2015-12-28 | 2017-06-29 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US9976099B2 (en) | 2015-12-28 | 2018-05-22 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US10077409B2 (en) * | 2015-12-28 | 2018-09-18 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US10316265B2 (en) | 2015-12-28 | 2019-06-11 | Exxonmobil Research And Engineering Company | Low viscosity low volatility lubricating oil base stocks and methods of use thereof |
US10233403B2 (en) | 2016-11-03 | 2019-03-19 | EXXONMOBiL RESEARCH AND ENGiNEERENG COMPANY | High viscosity index monomethyl ester lubricating oil base stocks and methods of making and use thereof |
US20230142153A1 (en) * | 2017-10-06 | 2023-05-11 | Castrol Limited | Metal Working Fluid Additive Composition |
US11952552B2 (en) * | 2017-10-06 | 2024-04-09 | Castrol Limited | Metal working fluid additive composition |
Also Published As
Publication number | Publication date |
---|---|
BRPI0814020A2 (en) | 2015-02-03 |
MX2010001002A (en) | 2010-03-01 |
CN101802147A (en) | 2010-08-11 |
DE112008002082T5 (en) | 2010-08-26 |
CA2694301A1 (en) | 2009-02-05 |
WO2009017960A1 (en) | 2009-02-05 |
JP2010535275A (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090036333A1 (en) | Metalworking Fluid Compositions and Preparation Thereof | |
US20090036338A1 (en) | Metalworking Fluid Compositions and Preparation Thereof | |
US20120010113A1 (en) | Metalworking fluid compositions and preparation thereof | |
US7425524B2 (en) | Gear lubricant with a base oil having a low traction coefficient | |
US7582591B2 (en) | Gear lubricant with low Brookfield ratio | |
US7674364B2 (en) | Hydraulic fluid compositions and preparation thereof | |
US20070293408A1 (en) | Hydraulic Fluid Compositions and Preparation Thereof | |
US7932217B2 (en) | Gear oil compositions, methods of making and using thereof | |
US20090181871A1 (en) | Compressor Lubricant Compositions and Preparation Thereof | |
US20090088352A1 (en) | Tractor hydraulic fluid compositions and preparation thereof | |
CA2700637A1 (en) | Lubricating grease composition and preparation | |
US20090298732A1 (en) | Gear oil compositions, methods of making and using thereof | |
US20090062166A1 (en) | Slideway Lubricant Compositions, Methods of Making and Using Thereof | |
US20090062162A1 (en) | Gear oil composition, methods of making and using thereof | |
US20090062163A1 (en) | Gear Oil Compositions, Methods of Making and Using Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHEVRON CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHOLIER, THIERRY R.;DE KEYSER, MARIANNE;REEL/FRAME:019627/0350 Effective date: 20070709 |
|
AS | Assignment |
Owner name: CHEVRON U.S.A INC, CALIFORNIA Free format text: CORRECTED COVER SHEET TO CORRECT ASSIGNEE NAME, PR;ASSIGNORS:SCHOLIER, THIERRY R.;DE KEYSER, MARIANNE;REEL/FRAME:019883/0860 Effective date: 20070709 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |