US20090032522A1 - Zone control heater plate for track lithography systems - Google Patents
Zone control heater plate for track lithography systems Download PDFInfo
- Publication number
- US20090032522A1 US20090032522A1 US12/192,857 US19285708A US2009032522A1 US 20090032522 A1 US20090032522 A1 US 20090032522A1 US 19285708 A US19285708 A US 19285708A US 2009032522 A1 US2009032522 A1 US 2009032522A1
- Authority
- US
- United States
- Prior art keywords
- bake plate
- substrate heater
- set forth
- layer
- wires
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/141—Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
- H05B3/143—Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
Definitions
- the present invention relates generally to the field of substrate processing equipment. More particularly, the present invention relates to a method and apparatus for controlling the temperature of substrates, such as semiconductor substrates, used in the formation of integrated circuits.
- Modern integrated circuits contain millions of individual elements that are formed by patterning the materials, such as silicon, metal and/or dielectric layers, that make up the integrated circuit to sizes that are small fractions of a micrometer.
- a number of steps associated with the fabrication of integrated circuits include heating the semiconductor substrate upon which the ICs are formed.
- One example of a heating step includes curing a photoresist film prior to a photolithography process.
- a photoresist film can be cured, for example, by placing a semiconductor substrate having an uncured photoresist film formed thereon on a bake plate and heating the plate to a sufficiently high temperature for a predetermined period of time.
- FIG. 1 is a top plan view of an example of a previously known bake plate that includes six different electrically independently heating zones. As shown in FIG. 1 , bake plate 10 includes six independent heater zones 12 1 - 12 6 along with a corresponding number of temperature sensors 14 1 - 14 6 , one for each of the heater zones 12 1 - 12 6 .
- each sensor and independent heater zone requires at least three separate wires and often five or more separate wires (e.g., a five wire arrangement may use two wires for AC power connections to the heater element and three wires for connections to the sensor).
- a five wire arrangement may use two wires for AC power connections to the heater element and three wires for connections to the sensor.
- a zone heater may readily have twenty, thirty or even more wires extending from it. Effectively and efficiently managing such a large number of wires presents challenges.
- embodiments of the present invention pertain to a method and apparatus for heating a substrate in a highly controllable manner and provide an effective and efficient solution for managing the large number of wires that may be required to effect such highly controlled heating. While embodiments of the invention may prove to be particularly useful in heating station of a track lithography tool, other embodiments of the invention can be used in other applications where it is desirable to heat substrates in a highly controllable manner.
- a substrate heater comprising a bake plate, a shield, a patterned signal layer formed on a lower surface of the shield and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
- the bake plate has an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces and includes at least one heating element and at least one temperature sensor.
- a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor are attached to the bake plate and electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer.
- the shield is spaced apart from and generally surrounds the lower and peripheral side surfaces of the bake plate.
- the shield has an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate and a lower surface opposite the interior upper surface.
- a substrate heater comprises a bake plate having an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces, the bake plate including at least one heating element, at least one temperature sensor and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor; a patterned signal layer formed on the lower surface of the bake plate, wherein the plurality of wires are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
- a substrate heater comprises a bake plate having an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces, the bake plate including a plurality of independently controllable heating zones, each zone including a heating element, a temperature sensor and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor; a shield spaced apart from and generally surrounding the lower and peripheral side surfaces of the bake plate, the shield having an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate and a lower surface opposite the interior upper surface; a patterned signal layer formed on the lower of the shield, wherein the plurality of wires associated with each independently controllable heating zone are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
- FIG. 1 is a simplified representative view of a previously known zone heater bake plate
- FIG. 2 is a simplified cross-section of a substrate heater according to an embodiment of the present invention.
- FIG. 3 is an expanded view of portion A of substrate heater 20 shown in FIG. 2 according to an embodiment of the present invention
- FIG. 4 is a bottom cross-sectional perspective view of substrate heater 20 shown in FIG. 2 according to an embodiment of the present invention.
- FIG. 5 is a simplified cross-sectional view of a portion of a bake plate 22 including a proximity pin 25 that can be used to space a wafer above the surface of the bake plate according to some embodiments of the invention.
- the present invention generally provides a method and apparatus for heating substrates in a highly controllable manner. While it is to be recognized that embodiments of the invention are particularly useful for heating substrates according a particular thermal recipe within a track lithography tool, other embodiments of the invention can be used in other applications where it is desirable to heat substrates in a highly controllable manner. Note the terms “substrate” and “wafer” are sometimes used herein interchangeably and are sometimes specifically used in reference to a semiconductor wafer upon which integrated circuits are formed. A person of skill in the art will recognize the present invention is not limited to processing semiconductor wafers and can be used to process any substrate for which a highly controlled thermal treatment is desirable.
- Substrate heater plate 20 includes a bake plate 22 and a heat shield 24 .
- Bake plate 22 includes an upper substrate receiving surface 22 a upon which a substrate is placed during a heat treatment step and a lower surface 22 b .
- Bake plate 22 can be, for example, an aluminum plate having a continuous upper surface with restive heater elements bonded to its backside.
- a plurality of proximity pins distributed across upper substrate receiving surface 22 a can be used to support a substrate in close proximity to upper surface 22 a during heat treatment.
- An example of a proximity pin 25 is shown in FIG. 5 .
- proximity pin 25 may be, for example, a sapphire ball placed in a trench 27 formed on upper surface 22 a of bake plate 22 .
- pin 25 spaces the wafer a predetermined distance (e.g., 100 ⁇ m) above surface 22 a .
- lower surface 22 b is spaced apart from an upper surface 24 a of the heat shield by a predetermined distance, d. In one embodiment distance d is, for example, between 2 to 10 mm.
- a side peripheral surface 22 c extends between upper surface 22 a and lower surface 22 b .
- Several support pins 26 protrude from lower surface 22 b extending through heat shield 24 to support both bake plate 22 and heat shield 24 . Because the contact area between support pins 26 and bake plate 22 is minimized, thermal loss to the support pins is also minimized. In embodiments where substrate heater 20 is moveable along a z-axis, support pins 26 are operatively coupled to an appropriate lift or motor.
- support pins 26 may be coupled to a support base or similar element.
- three symmetrically placed support pins 26 are used to support bake plate 22 , and the three pins all extend from a centered, inner-most heating zone, such as zone 12 shown in FIG. 1 .
- the inner-most zone can be controlled to heat the bake plate at a slightly elevated temperature to compensate for heat loss through the support pins.
- Temperature sensors 28 1 and 28 2 that are operatively coupled to measure temperature within two independently controllable heating zones 30 1 and 30 2 , respectively, are shown in FIG. 2 .
- Each temperature sensor 28 1 and 28 2 is electrically coupled to a respective wire bundle 29 1 and 29 2 , each of which typically includes between 3-8 separate wires.
- Wire bundles 29 1 and 29 2 extend through a pass-through opening in heat shield 24 and are coupled to a signal layer formed on a lower surface of the heat shield as described more fully with respect to FIG. 3 .
- Bake plate 22 may be, for example, a high performance, multi-zone bake plate that can be used for post-exposure bake of photoresist material in a track lithography tool.
- bake plate 22 may provide tight control over both spatial and temporal wafer temperature profile as well as the flexibility to induce a deliberate temperature non-uniformity in one area or zone of the bake plate to compensate for variations in wafer temperature, such as those due to wafer warp or other process variations in the wafer flow.
- other independently controllable heating zones 30 1 not shown in FIG. 2 may exist along with other temperature sensors 28 1 and wire bundles 29 1 .
- Heat shield 24 includes a cup-shaped shield 32 , which may be made, for example, from stainless steel or any other appropriate material. Shield 32 is spaced apart from and generally surrounds lower surface 22 b and side surface 22 c of bake plate 22 . Shield 32 includes an interior upper surface 24 a spaced apart from bake plate lower surface 22 b and an interior side surface 24 c spaced apart from bake plate side surface 22 c . A patterned wiring layer 36 is formed on the lower surface of shield 32 . Wiring layer 36 is sandwiched between an upper insulating layer 34 and a lower insulating layer 38 .
- each insulating layer 34 , 38 is a kapton layer and patterned wiring layer 36 includes a plurality of patterned metal traces formed on one of the kapton layers as is understood by a person of ordinary skill in the art.
- wiring layers 36 may be a multilayer structure having two or more signal layers separated by an insulating layer.
- a first layer may be used for AC signals, a second wiring layer for RTD signals, and a third grounding layer with each of the layers being separated by a kapton or other insulting layer appropriate for use in the PCB industry and high temperature applications.
- bundle of wires 29 1 includes two wires 51 , 52 that connect heater element 30 1 to an AC power supply and three wires 53 , 54 , 55 that connect temperature sensor 28 1 to an appropriate controller, e.g., a signal processor, that monitors the detected temperature and varies the frequency (duty cycle) at which power is supplied to heater element 30 1 as appropriate.
- Each of wires 51 - 55 passes through a pass-through hole in shield 24 and is coupled to an appropriate signal trace in wiring layer 36 . Using, for example, a high temperature solder connection or other appropriate process.
- wires 51 , 52 extend through through-hole 60 while wires 53 , 54 , 55 extend through through-hole 62 .
- the signal traces within wiring layer 36 that wires 51 - 55 are coupled to are electrically isolated from each other.
- the patterned metal traces in wiring layer 36 route the signals for each of the various wires in wire bundles 29 1 , 29 2 and 29 i to a common area (shown in FIG. 4 ) where they are electrically coupled, for example by a ribbon cable 70 , to an appropriate multi-pin connector 72 as shown in FIG. 4 , which is a simplified bottom cross-sectional perspective view of one embodiment of substrate heater 20 according to the present invention. As shown in FIG.
- wires for AC power may be thicker than wires for 52 , 53 , 54 that couple one of the temperature sensors to signal layer 36 .
- the AC power wires are 26 gauge wires while the sensor signal wires are 30 gauge.
- bake plate 22 typically includes multiple layers.
- bake plate 22 includes a continuous upper aluminum plate 40 over a layer 42 of resistive heating elements.
- Layer 42 includes separate heating elements for each individual heating zone 30 1 which are sandwiched between insulation layers 44 and 46 .
- Insulation layers 44 , 46 can be formed from kapton or other suitable materials.
- plate 40 consists of an aluminum 6061-T6 plate which acts as a low thermal mass for compensating for temperature variations and each heating zone 30 1 includes a resistive heater laminated and bonded to the aluminum plate using an all polyimide construction that allows operation up to 250° C.
- patterned signal layer 36 (along with appropriate insulating layers 34 , 38 ) can be formed on lower surface 22 b of bake plate 22 instead of on the lower surface of the heat shield as shown in FIGS. 3 and 4 .
- heat shield 24 is optional.
- routing the metal traces to a concentrated area on the bottom of the bake plate for connection to a ribbon cable or similar mechanism may result in small differences in the thermal characteristics of the region of the bake plate above the concentrated metal traces as compared to regions of the bake plate outside of this region.
- having a relatively high concentration of metal (even thin metal traces) formed on one portion of the bake plate may result in small differences in the thermal characteristics of that region of the bake plate as compared to other regions that do not have such a high concentration of metal formed on the lower surface. These small differences may in turn adversely impact the temperature uniformity of the bake plate.
- the inventors have found that forming patterned signal layer 36 on the bottom of the heat shield, which is separated from bake plate 22 by an air gap, as shown in FIGS. 3 and 4 eliminates thermal cross-talk between the metal traces in signal layer 36 and the bake plate.
- embodiments of the invention similar to that shown in FIGS. 3 and 4 which minimize or eliminate such non-uniformities by thermally isolating signal layer 36 from bake plate 22 are sometimes preferred.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Control Of Resistance Heating (AREA)
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
A substrate heater comprising a bake plate having an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces, the bake plate including at least one heating element, at least one temperature sensor and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor; a shield spaced apart from and generally surrounding the lower and peripheral side surfaces of the bake plate, the shield having an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate and a lower surface opposite the interior upper surface; a patterned signal layer formed on the lower surface of the shield, wherein the plurality of wires are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
Description
- The present application is a division of U.S. patent application Ser. No. 11/483,832, filed on Jul. 7, 2006, entitled “Zone Control Heater Plate for Track Lithography Systems,” the disclosure of which is hereby incorporated by reference in its entirety for all purposes.
- The present invention relates generally to the field of substrate processing equipment. More particularly, the present invention relates to a method and apparatus for controlling the temperature of substrates, such as semiconductor substrates, used in the formation of integrated circuits.
- Modern integrated circuits (ICs) contain millions of individual elements that are formed by patterning the materials, such as silicon, metal and/or dielectric layers, that make up the integrated circuit to sizes that are small fractions of a micrometer. A number of steps associated with the fabrication of integrated circuits include heating the semiconductor substrate upon which the ICs are formed. One example of a heating step includes curing a photoresist film prior to a photolithography process. A photoresist film can be cured, for example, by placing a semiconductor substrate having an uncured photoresist film formed thereon on a bake plate and heating the plate to a sufficiently high temperature for a predetermined period of time.
- Over the years there has been a strong push within the semiconductor industry to shrink the size of semiconductor devices. The reduced feature sizes have caused the industry's tolerance to process variability to shrink, which in turn, has resulted in semiconductor manufacturing specifications having more stringent requirements for process uniformity and repeatability. One manifestation of these more stringent requirements is the desirability to precisely control the temperature of a semiconductor substrate in a bake plate heating operation such as the photoresist curing operation just described.
- To this end, the industry has developed heater plates that include multiple heater elements arranged in different zones. Such an arrangement allowed one zone of the heater plate to be heated at a slightly higher temperature than other zones to compensate for temperature nonuniformities that may occur between different points on the semiconductor substrate.
FIG. 1 is a top plan view of an example of a previously known bake plate that includes six different electrically independently heating zones. As shown inFIG. 1 ,bake plate 10 includes six independent heater zones 12 1-12 6 along with a corresponding number of temperature sensors 14 1-14 6, one for each of the heater zones 12 1-12 6. - Depending on the type of temperature sensor used, each sensor and independent heater zone requires at least three separate wires and often five or more separate wires (e.g., a five wire arrangement may use two wires for AC power connections to the heater element and three wires for connections to the sensor). Between the multiple zones used in many zone heater bake plates and the fact that each zone often includes its own temperature sensor having multiple dedicated wires, it can be appreciated that a zone heater may readily have twenty, thirty or even more wires extending from it. Effectively and efficiently managing such a large number of wires presents challenges.
- According to the present invention, methods and apparatus related to substrate processing are provided. More particularly, embodiments of the present invention pertain to a method and apparatus for heating a substrate in a highly controllable manner and provide an effective and efficient solution for managing the large number of wires that may be required to effect such highly controlled heating. While embodiments of the invention may prove to be particularly useful in heating station of a track lithography tool, other embodiments of the invention can be used in other applications where it is desirable to heat substrates in a highly controllable manner.
- According to one embodiment a substrate heater comprising a bake plate, a shield, a patterned signal layer formed on a lower surface of the shield and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires is disclosed. The bake plate has an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces and includes at least one heating element and at least one temperature sensor. A plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor are attached to the bake plate and electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer. The shield is spaced apart from and generally surrounds the lower and peripheral side surfaces of the bake plate. The shield has an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate and a lower surface opposite the interior upper surface.
- In another embodiment a substrate heater comprises a bake plate having an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces, the bake plate including at least one heating element, at least one temperature sensor and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor; a patterned signal layer formed on the lower surface of the bake plate, wherein the plurality of wires are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
- In still another embodiment a substrate heater comprises a bake plate having an upper surface, a lower surface and a peripheral side surface extending between the upper and lower surfaces, the bake plate including a plurality of independently controllable heating zones, each zone including a heating element, a temperature sensor and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor; a shield spaced apart from and generally surrounding the lower and peripheral side surfaces of the bake plate, the shield having an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate and a lower surface opposite the interior upper surface; a patterned signal layer formed on the lower of the shield, wherein the plurality of wires associated with each independently controllable heating zone are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
- Various benefits and advantages that can be achieved by use of the present invention will be described in detail throughout the present specification and more particularly below in conjunction with the following drawings.
-
FIG. 1 is a simplified representative view of a previously known zone heater bake plate; -
FIG. 2 is a simplified cross-section of a substrate heater according to an embodiment of the present invention; -
FIG. 3 is an expanded view of portion A ofsubstrate heater 20 shown inFIG. 2 according to an embodiment of the present invention; -
FIG. 4 is a bottom cross-sectional perspective view ofsubstrate heater 20 shown inFIG. 2 according to an embodiment of the present invention; and -
FIG. 5 is a simplified cross-sectional view of a portion of abake plate 22 including aproximity pin 25 that can be used to space a wafer above the surface of the bake plate according to some embodiments of the invention. - The present invention generally provides a method and apparatus for heating substrates in a highly controllable manner. While it is to be recognized that embodiments of the invention are particularly useful for heating substrates according a particular thermal recipe within a track lithography tool, other embodiments of the invention can be used in other applications where it is desirable to heat substrates in a highly controllable manner. Note the terms “substrate” and “wafer” are sometimes used herein interchangeably and are sometimes specifically used in reference to a semiconductor wafer upon which integrated circuits are formed. A person of skill in the art will recognize the present invention is not limited to processing semiconductor wafers and can be used to process any substrate for which a highly controlled thermal treatment is desirable.
- Reference is now made to
FIG. 2 , which is a simplified cross-sectional view of asubstrate heater 20 according to an embodiment of the present invention.Substrate heater plate 20 includes abake plate 22 and aheat shield 24.Bake plate 22 includes an uppersubstrate receiving surface 22 a upon which a substrate is placed during a heat treatment step and alower surface 22 b.Bake plate 22 can be, for example, an aluminum plate having a continuous upper surface with restive heater elements bonded to its backside. - In some embodiments, a plurality of proximity pins distributed across upper
substrate receiving surface 22 a can be used to support a substrate in close proximity toupper surface 22 a during heat treatment. An example of aproximity pin 25 is shown inFIG. 5 . As shown inFIG. 5 ,proximity pin 25 may be, for example, a sapphire ball placed in atrench 27 formed onupper surface 22 a ofbake plate 22. When awafer 15 is placed over the bake plate ontoproximity pin 25,pin 25 spaces the wafer a predetermined distance (e.g., 100 μm) abovesurface 22 a. Details of proximity pins appropriate for this purpose are set forth in U.S. application Ser. No. 11/111,155, entitled “Purged Vacuum Chuck with Proximity Pins” filed on Apr. 20, 2005 (Attorney Docket No.: A9871/T60200), which is hereby incorporated by reference for all purposes. - Referring back to
FIG. 2 ,lower surface 22 b is spaced apart from anupper surface 24 a of the heat shield by a predetermined distance, d. In one embodiment distance d is, for example, between 2 to 10 mm. A sideperipheral surface 22 c extends betweenupper surface 22 a andlower surface 22 b. Several support pins 26 (two of which are shown inFIG. 2 ) protrude fromlower surface 22 b extending throughheat shield 24 to support bothbake plate 22 andheat shield 24. Because the contact area betweensupport pins 26 andbake plate 22 is minimized, thermal loss to the support pins is also minimized. In embodiments wheresubstrate heater 20 is moveable along a z-axis,support pins 26 are operatively coupled to an appropriate lift or motor. In other embodiments,support pins 26 may be coupled to a support base or similar element. In one particular embodiment, three symmetrically placedsupport pins 26 are used to supportbake plate 22, and the three pins all extend from a centered, inner-most heating zone, such as zone 12 shown inFIG. 1 . In such an arrangement, the inner-most zone can be controlled to heat the bake plate at a slightly elevated temperature to compensate for heat loss through the support pins. - Two temperature sensors 28 1 and 28 2 (e.g., resistance temperature detectors-“RTDs”) that are operatively coupled to measure temperature within two independently
controllable heating zones FIG. 2 . Each temperature sensor 28 1 and 28 2 is electrically coupled to a respective wire bundle 29 1 and 29 2, each of which typically includes between 3-8 separate wires. Wire bundles 29 1 and 29 2 extend through a pass-through opening inheat shield 24 and are coupled to a signal layer formed on a lower surface of the heat shield as described more fully with respect toFIG. 3 . -
Bake plate 22 may be, for example, a high performance, multi-zone bake plate that can be used for post-exposure bake of photoresist material in a track lithography tool. Thus, bakeplate 22 may provide tight control over both spatial and temporal wafer temperature profile as well as the flexibility to induce a deliberate temperature non-uniformity in one area or zone of the bake plate to compensate for variations in wafer temperature, such as those due to wafer warp or other process variations in the wafer flow. Towards this end, it is to be understood that other independentlycontrollable heating zones 30 1 not shown inFIG. 2 may exist along with other temperature sensors 28 1 and wire bundles 29 1. Also, in one embodiment there is at least one proximity pin within each of the independently controlledheater zones 30 1. - Referring now to
FIG. 3 , which is an enlarged view of portion A shown inFIG. 2 , includingbake plate 22 andheat shield 24.Heat shield 24 includes a cup-shapedshield 32, which may be made, for example, from stainless steel or any other appropriate material.Shield 32 is spaced apart from and generally surroundslower surface 22 b and side surface 22 c ofbake plate 22.Shield 32 includes an interiorupper surface 24 a spaced apart from bake platelower surface 22 b and aninterior side surface 24 c spaced apart from bakeplate side surface 22 c. A patternedwiring layer 36 is formed on the lower surface ofshield 32.Wiring layer 36 is sandwiched between an upper insulatinglayer 34 and a lower insulatinglayer 38. In one embodiment, each insulatinglayer wiring layer 36 includes a plurality of patterned metal traces formed on one of the kapton layers as is understood by a person of ordinary skill in the art. In an alternative embodiment, wiring layers 36 may be a multilayer structure having two or more signal layers separated by an insulating layer. For example, in one embodiment a first layer may be used for AC signals, a second wiring layer for RTD signals, and a third grounding layer with each of the layers being separated by a kapton or other insulting layer appropriate for use in the PCB industry and high temperature applications. - The individual wires in each wire bundle 29 1 are coupled to
wiring layer 36. For example, as shown inFIG. 3 , bundle of wires 29 1 includes twowires heater element 30 1 to an AC power supply and threewires heater element 30 1 as appropriate. Each of wires 51-55 passes through a pass-through hole inshield 24 and is coupled to an appropriate signal trace inwiring layer 36. Using, for example, a high temperature solder connection or other appropriate process. In the embodiment shown inFIG. 3 ,wires hole 60 whilewires hole 62. - While not shown in
FIG. 3 , the signal traces withinwiring layer 36 that wires 51-55 are coupled to are electrically isolated from each other. The patterned metal traces inwiring layer 36 route the signals for each of the various wires in wire bundles 29 1, 29 2 and 29 i to a common area (shown inFIG. 4 ) where they are electrically coupled, for example by aribbon cable 70, to an appropriatemulti-pin connector 72 as shown inFIG. 4 , which is a simplified bottom cross-sectional perspective view of one embodiment ofsubstrate heater 20 according to the present invention. As shown inFIG. 4 , wires for AC power (e.g.,wires 56, 57) may be thicker than wires for 52, 53, 54 that couple one of the temperature sensors to signallayer 36. In one embodiment, the AC power wires are 26 gauge wires while the sensor signal wires are 30 gauge. - As shown in
FIG. 3 , bakeplate 22 typically includes multiple layers. For example, in oneembodiment bake plate 22 includes a continuousupper aluminum plate 40 over alayer 42 of resistive heating elements.Layer 42 includes separate heating elements for eachindividual heating zone 30 1 which are sandwiched between insulation layers 44 and 46. Insulation layers 44, 46 can be formed from kapton or other suitable materials. In oneparticular embodiment plate 40 consists of an aluminum 6061-T6 plate which acts as a low thermal mass for compensating for temperature variations and eachheating zone 30 1 includes a resistive heater laminated and bonded to the aluminum plate using an all polyimide construction that allows operation up to 250° C. - In some embodiments patterned signal layer 36 (along with appropriate insulating
layers 34, 38) can be formed onlower surface 22 b ofbake plate 22 instead of on the lower surface of the heat shield as shown inFIGS. 3 and 4 . In such embodiments,heat shield 24 is optional. When a sufficiently large number of metal traces are formed on the bottom ofbake plate 22, however, routing the metal traces to a concentrated area on the bottom of the bake plate for connection to a ribbon cable or similar mechanism may result in small differences in the thermal characteristics of the region of the bake plate above the concentrated metal traces as compared to regions of the bake plate outside of this region. That is, having a relatively high concentration of metal (even thin metal traces) formed on one portion of the bake plate may result in small differences in the thermal characteristics of that region of the bake plate as compared to other regions that do not have such a high concentration of metal formed on the lower surface. These small differences may in turn adversely impact the temperature uniformity of the bake plate. The inventors have found that forming patternedsignal layer 36 on the bottom of the heat shield, which is separated frombake plate 22 by an air gap, as shown inFIGS. 3 and 4 eliminates thermal cross-talk between the metal traces insignal layer 36 and the bake plate. Thus, embodiments of the invention similar to that shown inFIGS. 3 and 4 which minimize or eliminate such non-uniformities by thermally isolatingsignal layer 36 frombake plate 22 are sometimes preferred. - While the present invention has been described with respect to particular embodiments and specific examples thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention. For example, while one embodiment of the bake plate described above included six independently controllable heating zones, the present invention is applicable to bake plates having more than six heating zones and less than six heating zones. The scope of the invention should, therefore, be determined with reference to the appended claims along with their full scope of equivalents.
Claims (20)
1. A substrate heater comprising:
a bake plate having an upper surface, a lower surface, and a peripheral side surface extending between the upper and lower surfaces, the bake plate including at least one heating element, at least one temperature sensor and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor;
a patterned signal layer formed on the lower surface of the bake plate, wherein the plurality of wires are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and
a connector, electrically coupled to the plurality of signal traces in the patterned signal layer, adapted to facilitate electrical connections to the plurality of wires.
2. The substrate heater set forth in claim 1 wherein the patterned signal layer is sandwiched between first and second insulation layers also formed on the lower surface of the bake plate.
3. The substrate heater set forth in claim 1 further comprising a plurality of support posts that extend from the lower surface of the bake plate.
4. The substrate heater set forth in claim 3 wherein the plurality of support posts extend from a central portion of the bake plate.
5. The substrate heater set forth in claim 1 further comprising a ribbon cable electrically coupled between the plurality of signal trances and the connector.
6. The substrate heater set forth in claim 1 wherein the patterned signal layer comprises a first conductive layer and an overlying second conductive layer separated by an insulation layer.
7. The substrate heater set forth in claim 6 wherein the first conductive layer is electrically coupled to one or more wires coupled to the heating element and the second conductive layer is electrically coupled to one or more wires coupled to the temperature sensor.
8. The substrate heater set forth in claim 1 wherein the bake plate further includes a plurality of layers, the plurality of layers including a conductive layer disposed over a layer having the at least one heating element.
9. The substrate heater set forth in claim 8 wherein the layer having the at least one heating element is sandwiched between first and second insulation layers.
10. The substrate heater set forth in claim 1 further comprising a shield spaced apart from and generally surrounding the lower and peripheral side surfaces of the bake plate, the shield having an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate, and a lower surface opposite the interior upper surface.
11. A substrate heater comprising:
a bake plate having an upper surface, a lower surface, and a peripheral side surface extending between the upper and lower surfaces, the bake plate including a plurality of independently controllable heating zones, each of the plurality of independently controllable heating zones including a heating element, a temperature sensor, and a plurality of wires including at least one wire coupled to the heating element and at least one wire coupled to the temperature sensor;
a patterned signal layer formed on the lower surface of the bake plate, wherein the plurality of wires included in each of the plurality of independently controllable heating zones are electrically coupled to a corresponding plurality of signal traces formed in the patterned signal layer; and
a connector electrically coupled to the plurality of signal traces in the patterned signal layer and adapted to facilitate electrical connections to the plurality of wires.
12. The substrate heater set forth in claim 11 wherein the patterned signal layer is sandwiched between first and second insulation layers also formed on the lower surface of the bake plate.
13. The substrate heater set forth in claim 11 further comprising a plurality of support posts that extend from the lower surface of the bake plate.
14. The substrate heater set forth in claim 13 wherein the plurality of support posts extend from a centered, inner-most heating zone of the plurality of independently controllable heating zones.
15. The substrate heater set forth in claim 11 further comprising a ribbon cable electrically coupled between the plurality of signal traces and the connector.
16. The substrate heater set forth in claim 11 wherein the patterned signal layer comprises a first conductive layer and an overlying second conductive layer separated by an insulation layer.
17. The substrate heater set forth in claim 16 wherein the first conductive layer is electrically coupled to one or more wires coupled to the heating elements and the second conductive layer is electrically coupled to one or more wires coupled to the temperature sensor.
18. The substrate heater set forth in claim 11 wherein the bake plate further includes a plurality of layers including a conductive layer disposed over a layer including the heating elements.
19. The substrate heater set forth in claim 18 wherein the bake plate further includes a first insulation layer and a second insulation layer, the layer having the heating elements being sandwiched between the first insulation layer and the second insulation layer.
20. The substrate heater set forth in claim 11 further comprising a shield spaced apart from and generally surrounding the lower and peripheral side surfaces of the bake plate, the shield having an interior upper surface facing the lower surface of the bake plate, an interior side surface facing the peripheral side surface of the bake plate, and a lower surface opposite the interior upper surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/192,857 US20090032522A1 (en) | 2006-07-07 | 2008-08-15 | Zone control heater plate for track lithography systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/483,832 US7427728B2 (en) | 2006-07-07 | 2006-07-07 | Zone control heater plate for track lithography systems |
US12/192,857 US20090032522A1 (en) | 2006-07-07 | 2008-08-15 | Zone control heater plate for track lithography systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/483,832 Division US7427728B2 (en) | 2006-07-07 | 2006-07-07 | Zone control heater plate for track lithography systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090032522A1 true US20090032522A1 (en) | 2009-02-05 |
Family
ID=38895379
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/483,832 Expired - Fee Related US7427728B2 (en) | 2006-07-07 | 2006-07-07 | Zone control heater plate for track lithography systems |
US12/192,857 Abandoned US20090032522A1 (en) | 2006-07-07 | 2008-08-15 | Zone control heater plate for track lithography systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/483,832 Expired - Fee Related US7427728B2 (en) | 2006-07-07 | 2006-07-07 | Zone control heater plate for track lithography systems |
Country Status (3)
Country | Link |
---|---|
US (2) | US7427728B2 (en) |
TW (1) | TW200818325A (en) |
WO (1) | WO2008005871A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120196242A1 (en) * | 2011-01-27 | 2012-08-02 | Applied Materials, Inc. | Substrate support with heater and rapid temperature change |
US20130037532A1 (en) * | 2011-08-08 | 2013-02-14 | Applied Materials, Inc. | Substrate support with heater |
US20180076062A1 (en) * | 2016-09-14 | 2018-03-15 | SCREEN Holdings Co., Ltd. | Light-irradiation thermal treatment apparatus |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI266378B (en) * | 2003-03-06 | 2006-11-11 | Toshiba Corp | Baking apparatus, heat treatment method, manufacturing method of semiconductor device and pattern forming method |
US7427728B2 (en) * | 2006-07-07 | 2008-09-23 | Sokudo Co., Ltd. | Zone control heater plate for track lithography systems |
US7534627B2 (en) * | 2006-08-07 | 2009-05-19 | Sokudo Co., Ltd. | Methods and systems for controlling critical dimensions in track lithography tools |
US7460972B2 (en) * | 2006-10-19 | 2008-12-02 | Sokudo Co., Ltd. | Methods and systems for performing real-time wireless temperature measurement for semiconductor substrates |
US20080153182A1 (en) * | 2006-12-21 | 2008-06-26 | Sokudo Co., Ltd | Method and system to measure and compensate for substrate warpage during thermal processing |
EP2365390A3 (en) | 2010-03-12 | 2017-10-04 | ASML Netherlands B.V. | Lithographic apparatus and method |
SG188036A1 (en) | 2011-08-18 | 2013-03-28 | Asml Netherlands Bv | Lithographic apparatus, support table for a lithographic apparatus and device manufacturing method |
US9349623B2 (en) | 2013-03-14 | 2016-05-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fine temperature controllable wafer heating system |
CN104051298B (en) * | 2013-03-14 | 2017-09-19 | 台湾积体电路制造股份有限公司 | Wafer heating system with fine temperature control |
US10707110B2 (en) * | 2015-11-23 | 2020-07-07 | Lam Research Corporation | Matched TCR joule heater designs for electrostatic chucks |
TWI634631B (en) * | 2017-06-30 | 2018-09-01 | 台灣積體電路製造股份有限公司 | Heating apparatus |
JP7094804B2 (en) * | 2018-07-03 | 2022-07-04 | 東京エレクトロン株式会社 | Board processing equipment and board processing method |
US10998205B2 (en) * | 2018-09-14 | 2021-05-04 | Kokusai Electric Corporation | Substrate processing apparatus and manufacturing method of semiconductor device |
CN110265323B (en) * | 2019-05-31 | 2021-09-03 | 拓荆科技股份有限公司 | Wafer heating seat with contact array |
CN112113247A (en) * | 2020-09-27 | 2020-12-22 | 广州富港万嘉智能科技有限公司 | A uniform heating cooking oven |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5817156A (en) * | 1994-10-26 | 1998-10-06 | Tokyo Electron Limited | Substrate heat treatment table apparatus |
US6082297A (en) * | 1997-09-12 | 2000-07-04 | Novellus Sytems, Inc. | Encapsulated thermofoil heater apparatus and associated methods |
US6082279A (en) * | 1998-06-02 | 2000-07-04 | Brother Kogyo Kabushiki Kaisha | Sewing machine with mechanism for retracting feed dog away from upper surface of needle plate |
US6222161B1 (en) * | 1998-01-12 | 2001-04-24 | Tokyo Electron Limited | Heat treatment apparatus |
US6229116B1 (en) * | 1998-02-03 | 2001-05-08 | Tokyo Electron Limited | Heat treatment apparatus |
US6384383B2 (en) * | 1999-12-09 | 2002-05-07 | Shin-Etsu Chemical Co., Ltd. | Ceramic heating jig |
US20020132052A1 (en) * | 2000-07-12 | 2002-09-19 | Devendra Kumar | Thermal processing system and methods for forming low-k dielectric films suitable for incorporation into microelectronic devices |
US20030075537A1 (en) * | 2001-10-24 | 2003-04-24 | Ngk Insulators, Ltd. | Heating apparatus |
US6669784B2 (en) * | 1997-06-09 | 2003-12-30 | Tokyo Electron Limited | Gas processing apparatus for object to be processed |
US6676416B1 (en) * | 2000-05-11 | 2004-01-13 | Zyvex Corporation | Ribbon cable and electrical connector for use with microcomponents |
US20040048220A1 (en) * | 2002-09-10 | 2004-03-11 | Nguyen Vuong P. | Thermal process station with heated lid |
US20040099958A1 (en) * | 2002-11-21 | 2004-05-27 | Schildgen William R. | Crack resistant interconnect module |
US6753508B2 (en) * | 2001-05-25 | 2004-06-22 | Tokyo Electron Limited | Heating apparatus and heating method |
US20040155026A1 (en) * | 2003-02-10 | 2004-08-12 | Mandal Robert P. | Integrally formed bake plate unit for use in wafer fabrication system |
US20050176272A1 (en) * | 2004-02-25 | 2005-08-11 | Rosenau Steven A. | Interconnect structure and method for connecting buried signal lines to electrical devices |
US6951998B2 (en) * | 2000-04-14 | 2005-10-04 | Omron Corporation | Controller, temperature regulator and heat treatment apparatus |
US7189946B2 (en) * | 2004-04-12 | 2007-03-13 | Ngk Insulators, Ltd. | Substrate heating device |
US7244912B1 (en) * | 2003-09-11 | 2007-07-17 | Magna Donnelly Mirrors North America, L.L.C. | Vehicular mirror with heater circuit module |
US7427728B2 (en) * | 2006-07-07 | 2008-09-23 | Sokudo Co., Ltd. | Zone control heater plate for track lithography systems |
-
2006
- 2006-07-07 US US11/483,832 patent/US7427728B2/en not_active Expired - Fee Related
-
2007
- 2007-06-29 WO PCT/US2007/072543 patent/WO2008005871A2/en active Application Filing
- 2007-07-05 TW TW096124540A patent/TW200818325A/en unknown
-
2008
- 2008-08-15 US US12/192,857 patent/US20090032522A1/en not_active Abandoned
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5817156A (en) * | 1994-10-26 | 1998-10-06 | Tokyo Electron Limited | Substrate heat treatment table apparatus |
US6669784B2 (en) * | 1997-06-09 | 2003-12-30 | Tokyo Electron Limited | Gas processing apparatus for object to be processed |
US6082297A (en) * | 1997-09-12 | 2000-07-04 | Novellus Sytems, Inc. | Encapsulated thermofoil heater apparatus and associated methods |
US6222161B1 (en) * | 1998-01-12 | 2001-04-24 | Tokyo Electron Limited | Heat treatment apparatus |
US6450803B2 (en) * | 1998-01-12 | 2002-09-17 | Tokyo Electron Limited | Heat treatment apparatus |
US6229116B1 (en) * | 1998-02-03 | 2001-05-08 | Tokyo Electron Limited | Heat treatment apparatus |
US6082279A (en) * | 1998-06-02 | 2000-07-04 | Brother Kogyo Kabushiki Kaisha | Sewing machine with mechanism for retracting feed dog away from upper surface of needle plate |
US6384383B2 (en) * | 1999-12-09 | 2002-05-07 | Shin-Etsu Chemical Co., Ltd. | Ceramic heating jig |
US6951998B2 (en) * | 2000-04-14 | 2005-10-04 | Omron Corporation | Controller, temperature regulator and heat treatment apparatus |
US6676416B1 (en) * | 2000-05-11 | 2004-01-13 | Zyvex Corporation | Ribbon cable and electrical connector for use with microcomponents |
US20020132052A1 (en) * | 2000-07-12 | 2002-09-19 | Devendra Kumar | Thermal processing system and methods for forming low-k dielectric films suitable for incorporation into microelectronic devices |
US6753508B2 (en) * | 2001-05-25 | 2004-06-22 | Tokyo Electron Limited | Heating apparatus and heating method |
US20030075537A1 (en) * | 2001-10-24 | 2003-04-24 | Ngk Insulators, Ltd. | Heating apparatus |
US7279661B2 (en) * | 2001-10-24 | 2007-10-09 | Ngk Insulators, Ltd. | Heating apparatus |
US20040048220A1 (en) * | 2002-09-10 | 2004-03-11 | Nguyen Vuong P. | Thermal process station with heated lid |
US20040099958A1 (en) * | 2002-11-21 | 2004-05-27 | Schildgen William R. | Crack resistant interconnect module |
US20040155026A1 (en) * | 2003-02-10 | 2004-08-12 | Mandal Robert P. | Integrally formed bake plate unit for use in wafer fabrication system |
US7244912B1 (en) * | 2003-09-11 | 2007-07-17 | Magna Donnelly Mirrors North America, L.L.C. | Vehicular mirror with heater circuit module |
US20050176272A1 (en) * | 2004-02-25 | 2005-08-11 | Rosenau Steven A. | Interconnect structure and method for connecting buried signal lines to electrical devices |
US7189946B2 (en) * | 2004-04-12 | 2007-03-13 | Ngk Insulators, Ltd. | Substrate heating device |
US7427728B2 (en) * | 2006-07-07 | 2008-09-23 | Sokudo Co., Ltd. | Zone control heater plate for track lithography systems |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120196242A1 (en) * | 2011-01-27 | 2012-08-02 | Applied Materials, Inc. | Substrate support with heater and rapid temperature change |
US20130037532A1 (en) * | 2011-08-08 | 2013-02-14 | Applied Materials, Inc. | Substrate support with heater |
US10242890B2 (en) * | 2011-08-08 | 2019-03-26 | Applied Materials, Inc. | Substrate support with heater |
US20180076062A1 (en) * | 2016-09-14 | 2018-03-15 | SCREEN Holdings Co., Ltd. | Light-irradiation thermal treatment apparatus |
US10950472B2 (en) * | 2016-09-14 | 2021-03-16 | SCREEN Holdings Co., Ltd. | Light-irradiation thermal treatment apparatus |
US20210159099A1 (en) * | 2016-09-14 | 2021-05-27 | SCREEN Holdings Co., Ltd. | Light-irradiation thermal treatment apparatus |
US11881420B2 (en) * | 2016-09-14 | 2024-01-23 | SCREEN Holdings Co., Ltd. | Light-irradiation thermal treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20080006619A1 (en) | 2008-01-10 |
TW200818325A (en) | 2008-04-16 |
WO2008005871A2 (en) | 2008-01-10 |
US7427728B2 (en) | 2008-09-23 |
WO2008005871A3 (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7427728B2 (en) | Zone control heater plate for track lithography systems | |
US11265971B2 (en) | Sensor system for multi-zone electrostatic chuck | |
US10292209B2 (en) | Electrostatic chuck heater | |
US20200251370A1 (en) | Apparatus for spatial and temporal control of temperature on a substrate | |
CN108028221B (en) | Electrostatic chuck heater | |
KR101914731B1 (en) | Method of manufacturing a high definition heater system | |
TWI650442B (en) | Temperature controlled substrate support assembly | |
US9538583B2 (en) | Substrate support with switchable multizone heater | |
US20170229327A1 (en) | Substrate supports with multi-layer structure including independent operated heater zones | |
US20060139042A1 (en) | Semiconductor inspection apparatus and manufacturing method of semiconductor device | |
TWI725149B (en) | Electrostatic chuck heater | |
US8348503B2 (en) | System for active array temperature sensing and cooling | |
KR102345253B1 (en) | Electrostatic chuck and substrate fixing device | |
CN101512750A (en) | Method of tuning thermal conductivity of electrostatic chuck support assemply | |
US11099227B2 (en) | Multilayer wiring base plate and probe card using the same | |
KR20180002490A (en) | Flexible board and production method for metal wiring bonding structure | |
KR102358295B1 (en) | Electrostatic chuck and substrate fixing device | |
KR20170113214A (en) | Metal wiring bonding structure and production method therefor | |
JP6760242B2 (en) | Heater module | |
KR102283385B1 (en) | Substrate fixing device and method of manufacturing thereof | |
US20220151026A1 (en) | Heater temperature control method, heater, and placement stand | |
TW202147483A (en) | Electrostatic chuck and substrate fixing device | |
KR20090082735A (en) | Fixing method of probe needle for probe card and making method of probe card | |
JP2005166946A (en) | Substrate and manufacturing method thereof | |
KR20060057221A (en) | Wafer Transfer Device with Temperature Control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |